]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/internal.h
netfilter: nft_exthdr: check for IPv6 packet before further processing
[mirror_ubuntu-jammy-kernel.git] / mm / internal.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/tracepoint-defs.h>
14
15 /*
16 * The set of flags that only affect watermark checking and reclaim
17 * behaviour. This is used by the MM to obey the caller constraints
18 * about IO, FS and watermark checking while ignoring placement
19 * hints such as HIGHMEM usage.
20 */
21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
24 __GFP_ATOMIC)
25
26 /* The GFP flags allowed during early boot */
27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
28
29 /* Control allocation cpuset and node placement constraints */
30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
31
32 /* Do not use these with a slab allocator */
33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
34
35 void page_writeback_init(void);
36
37 vm_fault_t do_swap_page(struct vm_fault *vmf);
38
39 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
40 unsigned long floor, unsigned long ceiling);
41
42 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
43 {
44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
45 }
46
47 void unmap_page_range(struct mmu_gather *tlb,
48 struct vm_area_struct *vma,
49 unsigned long addr, unsigned long end,
50 struct zap_details *details);
51
52 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
53 unsigned long lookahead_size);
54 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
55 static inline void force_page_cache_readahead(struct address_space *mapping,
56 struct file *file, pgoff_t index, unsigned long nr_to_read)
57 {
58 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
59 force_page_cache_ra(&ractl, nr_to_read);
60 }
61
62 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
63 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
64
65 /**
66 * page_evictable - test whether a page is evictable
67 * @page: the page to test
68 *
69 * Test whether page is evictable--i.e., should be placed on active/inactive
70 * lists vs unevictable list.
71 *
72 * Reasons page might not be evictable:
73 * (1) page's mapping marked unevictable
74 * (2) page is part of an mlocked VMA
75 *
76 */
77 static inline bool page_evictable(struct page *page)
78 {
79 bool ret;
80
81 /* Prevent address_space of inode and swap cache from being freed */
82 rcu_read_lock();
83 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
84 rcu_read_unlock();
85 return ret;
86 }
87
88 /*
89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
90 * a count of one.
91 */
92 static inline void set_page_refcounted(struct page *page)
93 {
94 VM_BUG_ON_PAGE(PageTail(page), page);
95 VM_BUG_ON_PAGE(page_ref_count(page), page);
96 set_page_count(page, 1);
97 }
98
99 extern unsigned long highest_memmap_pfn;
100
101 /*
102 * Maximum number of reclaim retries without progress before the OOM
103 * killer is consider the only way forward.
104 */
105 #define MAX_RECLAIM_RETRIES 16
106
107 /*
108 * in mm/vmscan.c:
109 */
110 extern int isolate_lru_page(struct page *page);
111 extern void putback_lru_page(struct page *page);
112
113 /*
114 * in mm/rmap.c:
115 */
116 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
117
118 /*
119 * in mm/page_alloc.c
120 */
121
122 /*
123 * Structure for holding the mostly immutable allocation parameters passed
124 * between functions involved in allocations, including the alloc_pages*
125 * family of functions.
126 *
127 * nodemask, migratetype and highest_zoneidx are initialized only once in
128 * __alloc_pages() and then never change.
129 *
130 * zonelist, preferred_zone and highest_zoneidx are set first in
131 * __alloc_pages() for the fast path, and might be later changed
132 * in __alloc_pages_slowpath(). All other functions pass the whole structure
133 * by a const pointer.
134 */
135 struct alloc_context {
136 struct zonelist *zonelist;
137 nodemask_t *nodemask;
138 struct zoneref *preferred_zoneref;
139 int migratetype;
140
141 /*
142 * highest_zoneidx represents highest usable zone index of
143 * the allocation request. Due to the nature of the zone,
144 * memory on lower zone than the highest_zoneidx will be
145 * protected by lowmem_reserve[highest_zoneidx].
146 *
147 * highest_zoneidx is also used by reclaim/compaction to limit
148 * the target zone since higher zone than this index cannot be
149 * usable for this allocation request.
150 */
151 enum zone_type highest_zoneidx;
152 bool spread_dirty_pages;
153 };
154
155 /*
156 * Locate the struct page for both the matching buddy in our
157 * pair (buddy1) and the combined O(n+1) page they form (page).
158 *
159 * 1) Any buddy B1 will have an order O twin B2 which satisfies
160 * the following equation:
161 * B2 = B1 ^ (1 << O)
162 * For example, if the starting buddy (buddy2) is #8 its order
163 * 1 buddy is #10:
164 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
165 *
166 * 2) Any buddy B will have an order O+1 parent P which
167 * satisfies the following equation:
168 * P = B & ~(1 << O)
169 *
170 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
171 */
172 static inline unsigned long
173 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
174 {
175 return page_pfn ^ (1 << order);
176 }
177
178 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
179 unsigned long end_pfn, struct zone *zone);
180
181 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
182 unsigned long end_pfn, struct zone *zone)
183 {
184 if (zone->contiguous)
185 return pfn_to_page(start_pfn);
186
187 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
188 }
189
190 extern int __isolate_free_page(struct page *page, unsigned int order);
191 extern void __putback_isolated_page(struct page *page, unsigned int order,
192 int mt);
193 extern void memblock_free_pages(struct page *page, unsigned long pfn,
194 unsigned int order);
195 extern void __free_pages_core(struct page *page, unsigned int order);
196 extern void prep_compound_page(struct page *page, unsigned int order);
197 extern void post_alloc_hook(struct page *page, unsigned int order,
198 gfp_t gfp_flags);
199 extern int user_min_free_kbytes;
200
201 extern void free_unref_page(struct page *page);
202 extern void free_unref_page_list(struct list_head *list);
203
204 extern void zone_pcp_update(struct zone *zone);
205 extern void zone_pcp_reset(struct zone *zone);
206 extern void zone_pcp_disable(struct zone *zone);
207 extern void zone_pcp_enable(struct zone *zone);
208
209 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
210
211 /*
212 * in mm/compaction.c
213 */
214 /*
215 * compact_control is used to track pages being migrated and the free pages
216 * they are being migrated to during memory compaction. The free_pfn starts
217 * at the end of a zone and migrate_pfn begins at the start. Movable pages
218 * are moved to the end of a zone during a compaction run and the run
219 * completes when free_pfn <= migrate_pfn
220 */
221 struct compact_control {
222 struct list_head freepages; /* List of free pages to migrate to */
223 struct list_head migratepages; /* List of pages being migrated */
224 unsigned int nr_freepages; /* Number of isolated free pages */
225 unsigned int nr_migratepages; /* Number of pages to migrate */
226 unsigned long free_pfn; /* isolate_freepages search base */
227 /*
228 * Acts as an in/out parameter to page isolation for migration.
229 * isolate_migratepages uses it as a search base.
230 * isolate_migratepages_block will update the value to the next pfn
231 * after the last isolated one.
232 */
233 unsigned long migrate_pfn;
234 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
235 struct zone *zone;
236 unsigned long total_migrate_scanned;
237 unsigned long total_free_scanned;
238 unsigned short fast_search_fail;/* failures to use free list searches */
239 short search_order; /* order to start a fast search at */
240 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
241 int order; /* order a direct compactor needs */
242 int migratetype; /* migratetype of direct compactor */
243 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
244 const int highest_zoneidx; /* zone index of a direct compactor */
245 enum migrate_mode mode; /* Async or sync migration mode */
246 bool ignore_skip_hint; /* Scan blocks even if marked skip */
247 bool no_set_skip_hint; /* Don't mark blocks for skipping */
248 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
249 bool direct_compaction; /* False from kcompactd or /proc/... */
250 bool proactive_compaction; /* kcompactd proactive compaction */
251 bool whole_zone; /* Whole zone should/has been scanned */
252 bool contended; /* Signal lock or sched contention */
253 bool rescan; /* Rescanning the same pageblock */
254 bool alloc_contig; /* alloc_contig_range allocation */
255 };
256
257 /*
258 * Used in direct compaction when a page should be taken from the freelists
259 * immediately when one is created during the free path.
260 */
261 struct capture_control {
262 struct compact_control *cc;
263 struct page *page;
264 };
265
266 unsigned long
267 isolate_freepages_range(struct compact_control *cc,
268 unsigned long start_pfn, unsigned long end_pfn);
269 int
270 isolate_migratepages_range(struct compact_control *cc,
271 unsigned long low_pfn, unsigned long end_pfn);
272 int find_suitable_fallback(struct free_area *area, unsigned int order,
273 int migratetype, bool only_stealable, bool *can_steal);
274
275 #endif
276
277 /*
278 * This function returns the order of a free page in the buddy system. In
279 * general, page_zone(page)->lock must be held by the caller to prevent the
280 * page from being allocated in parallel and returning garbage as the order.
281 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
282 * page cannot be allocated or merged in parallel. Alternatively, it must
283 * handle invalid values gracefully, and use buddy_order_unsafe() below.
284 */
285 static inline unsigned int buddy_order(struct page *page)
286 {
287 /* PageBuddy() must be checked by the caller */
288 return page_private(page);
289 }
290
291 /*
292 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
293 * PageBuddy() should be checked first by the caller to minimize race window,
294 * and invalid values must be handled gracefully.
295 *
296 * READ_ONCE is used so that if the caller assigns the result into a local
297 * variable and e.g. tests it for valid range before using, the compiler cannot
298 * decide to remove the variable and inline the page_private(page) multiple
299 * times, potentially observing different values in the tests and the actual
300 * use of the result.
301 */
302 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
303
304 /*
305 * These three helpers classifies VMAs for virtual memory accounting.
306 */
307
308 /*
309 * Executable code area - executable, not writable, not stack
310 */
311 static inline bool is_exec_mapping(vm_flags_t flags)
312 {
313 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
314 }
315
316 /*
317 * Stack area - automatically grows in one direction
318 *
319 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
320 * do_mmap() forbids all other combinations.
321 */
322 static inline bool is_stack_mapping(vm_flags_t flags)
323 {
324 return (flags & VM_STACK) == VM_STACK;
325 }
326
327 /*
328 * Data area - private, writable, not stack
329 */
330 static inline bool is_data_mapping(vm_flags_t flags)
331 {
332 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
333 }
334
335 /* mm/util.c */
336 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
337 struct vm_area_struct *prev);
338 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
339
340 #ifdef CONFIG_MMU
341 extern long populate_vma_page_range(struct vm_area_struct *vma,
342 unsigned long start, unsigned long end, int *nonblocking);
343 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
344 unsigned long start, unsigned long end);
345 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
346 {
347 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
348 }
349
350 /*
351 * must be called with vma's mmap_lock held for read or write, and page locked.
352 */
353 extern void mlock_vma_page(struct page *page);
354 extern unsigned int munlock_vma_page(struct page *page);
355
356 /*
357 * Clear the page's PageMlocked(). This can be useful in a situation where
358 * we want to unconditionally remove a page from the pagecache -- e.g.,
359 * on truncation or freeing.
360 *
361 * It is legal to call this function for any page, mlocked or not.
362 * If called for a page that is still mapped by mlocked vmas, all we do
363 * is revert to lazy LRU behaviour -- semantics are not broken.
364 */
365 extern void clear_page_mlock(struct page *page);
366
367 /*
368 * mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
369 * (because that does not go through the full procedure of migration ptes):
370 * to migrate the Mlocked page flag; update statistics.
371 */
372 static inline void mlock_migrate_page(struct page *newpage, struct page *page)
373 {
374 if (TestClearPageMlocked(page)) {
375 int nr_pages = thp_nr_pages(page);
376
377 /* Holding pmd lock, no change in irq context: __mod is safe */
378 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
379 SetPageMlocked(newpage);
380 __mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
381 }
382 }
383
384 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
385
386 /*
387 * At what user virtual address is page expected in @vma?
388 */
389 static inline unsigned long
390 __vma_address(struct page *page, struct vm_area_struct *vma)
391 {
392 pgoff_t pgoff = page_to_pgoff(page);
393 return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
394 }
395
396 static inline unsigned long
397 vma_address(struct page *page, struct vm_area_struct *vma)
398 {
399 unsigned long start, end;
400
401 start = __vma_address(page, vma);
402 end = start + thp_size(page) - PAGE_SIZE;
403
404 /* page should be within @vma mapping range */
405 VM_BUG_ON_VMA(end < vma->vm_start || start >= vma->vm_end, vma);
406
407 return max(start, vma->vm_start);
408 }
409
410 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
411 struct file *fpin)
412 {
413 int flags = vmf->flags;
414
415 if (fpin)
416 return fpin;
417
418 /*
419 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
420 * anything, so we only pin the file and drop the mmap_lock if only
421 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
422 */
423 if (fault_flag_allow_retry_first(flags) &&
424 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
425 fpin = get_file(vmf->vma->vm_file);
426 mmap_read_unlock(vmf->vma->vm_mm);
427 }
428 return fpin;
429 }
430
431 #else /* !CONFIG_MMU */
432 static inline void clear_page_mlock(struct page *page) { }
433 static inline void mlock_vma_page(struct page *page) { }
434 static inline void mlock_migrate_page(struct page *new, struct page *old) { }
435 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
436 {
437 }
438 #endif /* !CONFIG_MMU */
439
440 /*
441 * Return the mem_map entry representing the 'offset' subpage within
442 * the maximally aligned gigantic page 'base'. Handle any discontiguity
443 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
444 */
445 static inline struct page *mem_map_offset(struct page *base, int offset)
446 {
447 if (unlikely(offset >= MAX_ORDER_NR_PAGES))
448 return nth_page(base, offset);
449 return base + offset;
450 }
451
452 /*
453 * Iterator over all subpages within the maximally aligned gigantic
454 * page 'base'. Handle any discontiguity in the mem_map.
455 */
456 static inline struct page *mem_map_next(struct page *iter,
457 struct page *base, int offset)
458 {
459 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
460 unsigned long pfn = page_to_pfn(base) + offset;
461 if (!pfn_valid(pfn))
462 return NULL;
463 return pfn_to_page(pfn);
464 }
465 return iter + 1;
466 }
467
468 /* Memory initialisation debug and verification */
469 enum mminit_level {
470 MMINIT_WARNING,
471 MMINIT_VERIFY,
472 MMINIT_TRACE
473 };
474
475 #ifdef CONFIG_DEBUG_MEMORY_INIT
476
477 extern int mminit_loglevel;
478
479 #define mminit_dprintk(level, prefix, fmt, arg...) \
480 do { \
481 if (level < mminit_loglevel) { \
482 if (level <= MMINIT_WARNING) \
483 pr_warn("mminit::" prefix " " fmt, ##arg); \
484 else \
485 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
486 } \
487 } while (0)
488
489 extern void mminit_verify_pageflags_layout(void);
490 extern void mminit_verify_zonelist(void);
491 #else
492
493 static inline void mminit_dprintk(enum mminit_level level,
494 const char *prefix, const char *fmt, ...)
495 {
496 }
497
498 static inline void mminit_verify_pageflags_layout(void)
499 {
500 }
501
502 static inline void mminit_verify_zonelist(void)
503 {
504 }
505 #endif /* CONFIG_DEBUG_MEMORY_INIT */
506
507 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
508 #if defined(CONFIG_SPARSEMEM)
509 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
510 unsigned long *end_pfn);
511 #else
512 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
513 unsigned long *end_pfn)
514 {
515 }
516 #endif /* CONFIG_SPARSEMEM */
517
518 #define NODE_RECLAIM_NOSCAN -2
519 #define NODE_RECLAIM_FULL -1
520 #define NODE_RECLAIM_SOME 0
521 #define NODE_RECLAIM_SUCCESS 1
522
523 #ifdef CONFIG_NUMA
524 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
525 #else
526 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
527 unsigned int order)
528 {
529 return NODE_RECLAIM_NOSCAN;
530 }
531 #endif
532
533 extern int hwpoison_filter(struct page *p);
534
535 extern u32 hwpoison_filter_dev_major;
536 extern u32 hwpoison_filter_dev_minor;
537 extern u64 hwpoison_filter_flags_mask;
538 extern u64 hwpoison_filter_flags_value;
539 extern u64 hwpoison_filter_memcg;
540 extern u32 hwpoison_filter_enable;
541
542 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
543 unsigned long, unsigned long,
544 unsigned long, unsigned long);
545
546 extern void set_pageblock_order(void);
547 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
548 struct list_head *page_list);
549 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
550 #define ALLOC_WMARK_MIN WMARK_MIN
551 #define ALLOC_WMARK_LOW WMARK_LOW
552 #define ALLOC_WMARK_HIGH WMARK_HIGH
553 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
554
555 /* Mask to get the watermark bits */
556 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
557
558 /*
559 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
560 * cannot assume a reduced access to memory reserves is sufficient for
561 * !MMU
562 */
563 #ifdef CONFIG_MMU
564 #define ALLOC_OOM 0x08
565 #else
566 #define ALLOC_OOM ALLOC_NO_WATERMARKS
567 #endif
568
569 #define ALLOC_HARDER 0x10 /* try to alloc harder */
570 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
571 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
572 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
573 #ifdef CONFIG_ZONE_DMA32
574 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
575 #else
576 #define ALLOC_NOFRAGMENT 0x0
577 #endif
578 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
579
580 enum ttu_flags;
581 struct tlbflush_unmap_batch;
582
583
584 /*
585 * only for MM internal work items which do not depend on
586 * any allocations or locks which might depend on allocations
587 */
588 extern struct workqueue_struct *mm_percpu_wq;
589
590 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
591 void try_to_unmap_flush(void);
592 void try_to_unmap_flush_dirty(void);
593 void flush_tlb_batched_pending(struct mm_struct *mm);
594 #else
595 static inline void try_to_unmap_flush(void)
596 {
597 }
598 static inline void try_to_unmap_flush_dirty(void)
599 {
600 }
601 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
602 {
603 }
604 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
605
606 extern const struct trace_print_flags pageflag_names[];
607 extern const struct trace_print_flags vmaflag_names[];
608 extern const struct trace_print_flags gfpflag_names[];
609
610 static inline bool is_migrate_highatomic(enum migratetype migratetype)
611 {
612 return migratetype == MIGRATE_HIGHATOMIC;
613 }
614
615 static inline bool is_migrate_highatomic_page(struct page *page)
616 {
617 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
618 }
619
620 void setup_zone_pageset(struct zone *zone);
621
622 struct migration_target_control {
623 int nid; /* preferred node id */
624 nodemask_t *nmask;
625 gfp_t gfp_mask;
626 };
627
628 /*
629 * mm/vmalloc.c
630 */
631 #ifdef CONFIG_MMU
632 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
633 pgprot_t prot, struct page **pages, unsigned int page_shift);
634 #else
635 static inline
636 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
637 pgprot_t prot, struct page **pages, unsigned int page_shift)
638 {
639 return -EINVAL;
640 }
641 #endif
642
643 void vunmap_range_noflush(unsigned long start, unsigned long end);
644
645 #endif /* __MM_INTERNAL_H */