]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/internal.h
dt-bindings: i2c: renesas,riic: Add interrupt-names
[mirror_ubuntu-jammy-kernel.git] / mm / internal.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3 *
4 * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
6 */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/tracepoint-defs.h>
14
15 /*
16 * The set of flags that only affect watermark checking and reclaim
17 * behaviour. This is used by the MM to obey the caller constraints
18 * about IO, FS and watermark checking while ignoring placement
19 * hints such as HIGHMEM usage.
20 */
21 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
22 __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
23 __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
24 __GFP_ATOMIC)
25
26 /* The GFP flags allowed during early boot */
27 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
28
29 /* Control allocation cpuset and node placement constraints */
30 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
31
32 /* Do not use these with a slab allocator */
33 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
34
35 void page_writeback_init(void);
36
37 vm_fault_t do_swap_page(struct vm_fault *vmf);
38
39 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
40 unsigned long floor, unsigned long ceiling);
41
42 static inline bool can_madv_lru_vma(struct vm_area_struct *vma)
43 {
44 return !(vma->vm_flags & (VM_LOCKED|VM_HUGETLB|VM_PFNMAP));
45 }
46
47 void unmap_page_range(struct mmu_gather *tlb,
48 struct vm_area_struct *vma,
49 unsigned long addr, unsigned long end,
50 struct zap_details *details);
51
52 void do_page_cache_ra(struct readahead_control *, unsigned long nr_to_read,
53 unsigned long lookahead_size);
54 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
55 static inline void force_page_cache_readahead(struct address_space *mapping,
56 struct file *file, pgoff_t index, unsigned long nr_to_read)
57 {
58 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
59 force_page_cache_ra(&ractl, nr_to_read);
60 }
61
62 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
63 pgoff_t end, struct pagevec *pvec, pgoff_t *indices);
64
65 /**
66 * page_evictable - test whether a page is evictable
67 * @page: the page to test
68 *
69 * Test whether page is evictable--i.e., should be placed on active/inactive
70 * lists vs unevictable list.
71 *
72 * Reasons page might not be evictable:
73 * (1) page's mapping marked unevictable
74 * (2) page is part of an mlocked VMA
75 *
76 */
77 static inline bool page_evictable(struct page *page)
78 {
79 bool ret;
80
81 /* Prevent address_space of inode and swap cache from being freed */
82 rcu_read_lock();
83 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
84 rcu_read_unlock();
85 return ret;
86 }
87
88 /*
89 * Turn a non-refcounted page (->_refcount == 0) into refcounted with
90 * a count of one.
91 */
92 static inline void set_page_refcounted(struct page *page)
93 {
94 VM_BUG_ON_PAGE(PageTail(page), page);
95 VM_BUG_ON_PAGE(page_ref_count(page), page);
96 set_page_count(page, 1);
97 }
98
99 extern unsigned long highest_memmap_pfn;
100
101 /*
102 * Maximum number of reclaim retries without progress before the OOM
103 * killer is consider the only way forward.
104 */
105 #define MAX_RECLAIM_RETRIES 16
106
107 /*
108 * in mm/vmscan.c:
109 */
110 extern int isolate_lru_page(struct page *page);
111 extern void putback_lru_page(struct page *page);
112
113 /*
114 * in mm/rmap.c:
115 */
116 extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
117
118 /*
119 * in mm/memcontrol.c:
120 */
121 extern bool cgroup_memory_nokmem;
122
123 /*
124 * in mm/page_alloc.c
125 */
126
127 /*
128 * Structure for holding the mostly immutable allocation parameters passed
129 * between functions involved in allocations, including the alloc_pages*
130 * family of functions.
131 *
132 * nodemask, migratetype and highest_zoneidx are initialized only once in
133 * __alloc_pages() and then never change.
134 *
135 * zonelist, preferred_zone and highest_zoneidx are set first in
136 * __alloc_pages() for the fast path, and might be later changed
137 * in __alloc_pages_slowpath(). All other functions pass the whole structure
138 * by a const pointer.
139 */
140 struct alloc_context {
141 struct zonelist *zonelist;
142 nodemask_t *nodemask;
143 struct zoneref *preferred_zoneref;
144 int migratetype;
145
146 /*
147 * highest_zoneidx represents highest usable zone index of
148 * the allocation request. Due to the nature of the zone,
149 * memory on lower zone than the highest_zoneidx will be
150 * protected by lowmem_reserve[highest_zoneidx].
151 *
152 * highest_zoneidx is also used by reclaim/compaction to limit
153 * the target zone since higher zone than this index cannot be
154 * usable for this allocation request.
155 */
156 enum zone_type highest_zoneidx;
157 bool spread_dirty_pages;
158 };
159
160 /*
161 * Locate the struct page for both the matching buddy in our
162 * pair (buddy1) and the combined O(n+1) page they form (page).
163 *
164 * 1) Any buddy B1 will have an order O twin B2 which satisfies
165 * the following equation:
166 * B2 = B1 ^ (1 << O)
167 * For example, if the starting buddy (buddy2) is #8 its order
168 * 1 buddy is #10:
169 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
170 *
171 * 2) Any buddy B will have an order O+1 parent P which
172 * satisfies the following equation:
173 * P = B & ~(1 << O)
174 *
175 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
176 */
177 static inline unsigned long
178 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
179 {
180 return page_pfn ^ (1 << order);
181 }
182
183 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
184 unsigned long end_pfn, struct zone *zone);
185
186 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
187 unsigned long end_pfn, struct zone *zone)
188 {
189 if (zone->contiguous)
190 return pfn_to_page(start_pfn);
191
192 return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
193 }
194
195 extern int __isolate_free_page(struct page *page, unsigned int order);
196 extern void __putback_isolated_page(struct page *page, unsigned int order,
197 int mt);
198 extern void memblock_free_pages(struct page *page, unsigned long pfn,
199 unsigned int order);
200 extern void __free_pages_core(struct page *page, unsigned int order);
201 extern void prep_compound_page(struct page *page, unsigned int order);
202 extern void post_alloc_hook(struct page *page, unsigned int order,
203 gfp_t gfp_flags);
204 extern int user_min_free_kbytes;
205
206 extern void free_unref_page(struct page *page, unsigned int order);
207 extern void free_unref_page_list(struct list_head *list);
208
209 extern void zone_pcp_update(struct zone *zone, int cpu_online);
210 extern void zone_pcp_reset(struct zone *zone);
211 extern void zone_pcp_disable(struct zone *zone);
212 extern void zone_pcp_enable(struct zone *zone);
213
214 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
215
216 /*
217 * in mm/compaction.c
218 */
219 /*
220 * compact_control is used to track pages being migrated and the free pages
221 * they are being migrated to during memory compaction. The free_pfn starts
222 * at the end of a zone and migrate_pfn begins at the start. Movable pages
223 * are moved to the end of a zone during a compaction run and the run
224 * completes when free_pfn <= migrate_pfn
225 */
226 struct compact_control {
227 struct list_head freepages; /* List of free pages to migrate to */
228 struct list_head migratepages; /* List of pages being migrated */
229 unsigned int nr_freepages; /* Number of isolated free pages */
230 unsigned int nr_migratepages; /* Number of pages to migrate */
231 unsigned long free_pfn; /* isolate_freepages search base */
232 /*
233 * Acts as an in/out parameter to page isolation for migration.
234 * isolate_migratepages uses it as a search base.
235 * isolate_migratepages_block will update the value to the next pfn
236 * after the last isolated one.
237 */
238 unsigned long migrate_pfn;
239 unsigned long fast_start_pfn; /* a pfn to start linear scan from */
240 struct zone *zone;
241 unsigned long total_migrate_scanned;
242 unsigned long total_free_scanned;
243 unsigned short fast_search_fail;/* failures to use free list searches */
244 short search_order; /* order to start a fast search at */
245 const gfp_t gfp_mask; /* gfp mask of a direct compactor */
246 int order; /* order a direct compactor needs */
247 int migratetype; /* migratetype of direct compactor */
248 const unsigned int alloc_flags; /* alloc flags of a direct compactor */
249 const int highest_zoneidx; /* zone index of a direct compactor */
250 enum migrate_mode mode; /* Async or sync migration mode */
251 bool ignore_skip_hint; /* Scan blocks even if marked skip */
252 bool no_set_skip_hint; /* Don't mark blocks for skipping */
253 bool ignore_block_suitable; /* Scan blocks considered unsuitable */
254 bool direct_compaction; /* False from kcompactd or /proc/... */
255 bool proactive_compaction; /* kcompactd proactive compaction */
256 bool whole_zone; /* Whole zone should/has been scanned */
257 bool contended; /* Signal lock or sched contention */
258 bool rescan; /* Rescanning the same pageblock */
259 bool alloc_contig; /* alloc_contig_range allocation */
260 };
261
262 /*
263 * Used in direct compaction when a page should be taken from the freelists
264 * immediately when one is created during the free path.
265 */
266 struct capture_control {
267 struct compact_control *cc;
268 struct page *page;
269 };
270
271 unsigned long
272 isolate_freepages_range(struct compact_control *cc,
273 unsigned long start_pfn, unsigned long end_pfn);
274 int
275 isolate_migratepages_range(struct compact_control *cc,
276 unsigned long low_pfn, unsigned long end_pfn);
277 #endif
278 int find_suitable_fallback(struct free_area *area, unsigned int order,
279 int migratetype, bool only_stealable, bool *can_steal);
280
281 /*
282 * This function returns the order of a free page in the buddy system. In
283 * general, page_zone(page)->lock must be held by the caller to prevent the
284 * page from being allocated in parallel and returning garbage as the order.
285 * If a caller does not hold page_zone(page)->lock, it must guarantee that the
286 * page cannot be allocated or merged in parallel. Alternatively, it must
287 * handle invalid values gracefully, and use buddy_order_unsafe() below.
288 */
289 static inline unsigned int buddy_order(struct page *page)
290 {
291 /* PageBuddy() must be checked by the caller */
292 return page_private(page);
293 }
294
295 /*
296 * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
297 * PageBuddy() should be checked first by the caller to minimize race window,
298 * and invalid values must be handled gracefully.
299 *
300 * READ_ONCE is used so that if the caller assigns the result into a local
301 * variable and e.g. tests it for valid range before using, the compiler cannot
302 * decide to remove the variable and inline the page_private(page) multiple
303 * times, potentially observing different values in the tests and the actual
304 * use of the result.
305 */
306 #define buddy_order_unsafe(page) READ_ONCE(page_private(page))
307
308 /*
309 * These three helpers classifies VMAs for virtual memory accounting.
310 */
311
312 /*
313 * Executable code area - executable, not writable, not stack
314 */
315 static inline bool is_exec_mapping(vm_flags_t flags)
316 {
317 return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
318 }
319
320 /*
321 * Stack area - automatically grows in one direction
322 *
323 * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
324 * do_mmap() forbids all other combinations.
325 */
326 static inline bool is_stack_mapping(vm_flags_t flags)
327 {
328 return (flags & VM_STACK) == VM_STACK;
329 }
330
331 /*
332 * Data area - private, writable, not stack
333 */
334 static inline bool is_data_mapping(vm_flags_t flags)
335 {
336 return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
337 }
338
339 /* mm/util.c */
340 void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
341 struct vm_area_struct *prev);
342 void __vma_unlink_list(struct mm_struct *mm, struct vm_area_struct *vma);
343
344 #ifdef CONFIG_MMU
345 extern long populate_vma_page_range(struct vm_area_struct *vma,
346 unsigned long start, unsigned long end, int *locked);
347 extern long faultin_vma_page_range(struct vm_area_struct *vma,
348 unsigned long start, unsigned long end,
349 bool write, int *locked);
350 extern void munlock_vma_pages_range(struct vm_area_struct *vma,
351 unsigned long start, unsigned long end);
352 static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
353 {
354 munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
355 }
356
357 /*
358 * must be called with vma's mmap_lock held for read or write, and page locked.
359 */
360 extern void mlock_vma_page(struct page *page);
361 extern unsigned int munlock_vma_page(struct page *page);
362
363 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
364 unsigned long len);
365
366 /*
367 * Clear the page's PageMlocked(). This can be useful in a situation where
368 * we want to unconditionally remove a page from the pagecache -- e.g.,
369 * on truncation or freeing.
370 *
371 * It is legal to call this function for any page, mlocked or not.
372 * If called for a page that is still mapped by mlocked vmas, all we do
373 * is revert to lazy LRU behaviour -- semantics are not broken.
374 */
375 extern void clear_page_mlock(struct page *page);
376
377 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
378
379 /*
380 * At what user virtual address is page expected in vma?
381 * Returns -EFAULT if all of the page is outside the range of vma.
382 * If page is a compound head, the entire compound page is considered.
383 */
384 static inline unsigned long
385 vma_address(struct page *page, struct vm_area_struct *vma)
386 {
387 pgoff_t pgoff;
388 unsigned long address;
389
390 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
391 pgoff = page_to_pgoff(page);
392 if (pgoff >= vma->vm_pgoff) {
393 address = vma->vm_start +
394 ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
395 /* Check for address beyond vma (or wrapped through 0?) */
396 if (address < vma->vm_start || address >= vma->vm_end)
397 address = -EFAULT;
398 } else if (PageHead(page) &&
399 pgoff + compound_nr(page) - 1 >= vma->vm_pgoff) {
400 /* Test above avoids possibility of wrap to 0 on 32-bit */
401 address = vma->vm_start;
402 } else {
403 address = -EFAULT;
404 }
405 return address;
406 }
407
408 /*
409 * Then at what user virtual address will none of the page be found in vma?
410 * Assumes that vma_address() already returned a good starting address.
411 * If page is a compound head, the entire compound page is considered.
412 */
413 static inline unsigned long
414 vma_address_end(struct page *page, struct vm_area_struct *vma)
415 {
416 pgoff_t pgoff;
417 unsigned long address;
418
419 VM_BUG_ON_PAGE(PageKsm(page), page); /* KSM page->index unusable */
420 pgoff = page_to_pgoff(page) + compound_nr(page);
421 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
422 /* Check for address beyond vma (or wrapped through 0?) */
423 if (address < vma->vm_start || address > vma->vm_end)
424 address = vma->vm_end;
425 return address;
426 }
427
428 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
429 struct file *fpin)
430 {
431 int flags = vmf->flags;
432
433 if (fpin)
434 return fpin;
435
436 /*
437 * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
438 * anything, so we only pin the file and drop the mmap_lock if only
439 * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
440 */
441 if (fault_flag_allow_retry_first(flags) &&
442 !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
443 fpin = get_file(vmf->vma->vm_file);
444 mmap_read_unlock(vmf->vma->vm_mm);
445 }
446 return fpin;
447 }
448
449 #else /* !CONFIG_MMU */
450 static inline void clear_page_mlock(struct page *page) { }
451 static inline void mlock_vma_page(struct page *page) { }
452 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
453 {
454 }
455 #endif /* !CONFIG_MMU */
456
457 /*
458 * Return the mem_map entry representing the 'offset' subpage within
459 * the maximally aligned gigantic page 'base'. Handle any discontiguity
460 * in the mem_map at MAX_ORDER_NR_PAGES boundaries.
461 */
462 static inline struct page *mem_map_offset(struct page *base, int offset)
463 {
464 if (unlikely(offset >= MAX_ORDER_NR_PAGES))
465 return nth_page(base, offset);
466 return base + offset;
467 }
468
469 /*
470 * Iterator over all subpages within the maximally aligned gigantic
471 * page 'base'. Handle any discontiguity in the mem_map.
472 */
473 static inline struct page *mem_map_next(struct page *iter,
474 struct page *base, int offset)
475 {
476 if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
477 unsigned long pfn = page_to_pfn(base) + offset;
478 if (!pfn_valid(pfn))
479 return NULL;
480 return pfn_to_page(pfn);
481 }
482 return iter + 1;
483 }
484
485 /* Memory initialisation debug and verification */
486 enum mminit_level {
487 MMINIT_WARNING,
488 MMINIT_VERIFY,
489 MMINIT_TRACE
490 };
491
492 #ifdef CONFIG_DEBUG_MEMORY_INIT
493
494 extern int mminit_loglevel;
495
496 #define mminit_dprintk(level, prefix, fmt, arg...) \
497 do { \
498 if (level < mminit_loglevel) { \
499 if (level <= MMINIT_WARNING) \
500 pr_warn("mminit::" prefix " " fmt, ##arg); \
501 else \
502 printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
503 } \
504 } while (0)
505
506 extern void mminit_verify_pageflags_layout(void);
507 extern void mminit_verify_zonelist(void);
508 #else
509
510 static inline void mminit_dprintk(enum mminit_level level,
511 const char *prefix, const char *fmt, ...)
512 {
513 }
514
515 static inline void mminit_verify_pageflags_layout(void)
516 {
517 }
518
519 static inline void mminit_verify_zonelist(void)
520 {
521 }
522 #endif /* CONFIG_DEBUG_MEMORY_INIT */
523
524 /* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
525 #if defined(CONFIG_SPARSEMEM)
526 extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
527 unsigned long *end_pfn);
528 #else
529 static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
530 unsigned long *end_pfn)
531 {
532 }
533 #endif /* CONFIG_SPARSEMEM */
534
535 #define NODE_RECLAIM_NOSCAN -2
536 #define NODE_RECLAIM_FULL -1
537 #define NODE_RECLAIM_SOME 0
538 #define NODE_RECLAIM_SUCCESS 1
539
540 #ifdef CONFIG_NUMA
541 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
542 #else
543 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
544 unsigned int order)
545 {
546 return NODE_RECLAIM_NOSCAN;
547 }
548 #endif
549
550 extern int hwpoison_filter(struct page *p);
551
552 extern u32 hwpoison_filter_dev_major;
553 extern u32 hwpoison_filter_dev_minor;
554 extern u64 hwpoison_filter_flags_mask;
555 extern u64 hwpoison_filter_flags_value;
556 extern u64 hwpoison_filter_memcg;
557 extern u32 hwpoison_filter_enable;
558
559 extern unsigned long __must_check vm_mmap_pgoff(struct file *, unsigned long,
560 unsigned long, unsigned long,
561 unsigned long, unsigned long);
562
563 extern void set_pageblock_order(void);
564 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
565 struct list_head *page_list);
566 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
567 #define ALLOC_WMARK_MIN WMARK_MIN
568 #define ALLOC_WMARK_LOW WMARK_LOW
569 #define ALLOC_WMARK_HIGH WMARK_HIGH
570 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
571
572 /* Mask to get the watermark bits */
573 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
574
575 /*
576 * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
577 * cannot assume a reduced access to memory reserves is sufficient for
578 * !MMU
579 */
580 #ifdef CONFIG_MMU
581 #define ALLOC_OOM 0x08
582 #else
583 #define ALLOC_OOM ALLOC_NO_WATERMARKS
584 #endif
585
586 #define ALLOC_HARDER 0x10 /* try to alloc harder */
587 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
588 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
589 #define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
590 #ifdef CONFIG_ZONE_DMA32
591 #define ALLOC_NOFRAGMENT 0x100 /* avoid mixing pageblock types */
592 #else
593 #define ALLOC_NOFRAGMENT 0x0
594 #endif
595 #define ALLOC_KSWAPD 0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
596
597 enum ttu_flags;
598 struct tlbflush_unmap_batch;
599
600
601 /*
602 * only for MM internal work items which do not depend on
603 * any allocations or locks which might depend on allocations
604 */
605 extern struct workqueue_struct *mm_percpu_wq;
606
607 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
608 void try_to_unmap_flush(void);
609 void try_to_unmap_flush_dirty(void);
610 void flush_tlb_batched_pending(struct mm_struct *mm);
611 #else
612 static inline void try_to_unmap_flush(void)
613 {
614 }
615 static inline void try_to_unmap_flush_dirty(void)
616 {
617 }
618 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
619 {
620 }
621 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
622
623 extern const struct trace_print_flags pageflag_names[];
624 extern const struct trace_print_flags vmaflag_names[];
625 extern const struct trace_print_flags gfpflag_names[];
626
627 static inline bool is_migrate_highatomic(enum migratetype migratetype)
628 {
629 return migratetype == MIGRATE_HIGHATOMIC;
630 }
631
632 static inline bool is_migrate_highatomic_page(struct page *page)
633 {
634 return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
635 }
636
637 void setup_zone_pageset(struct zone *zone);
638
639 struct migration_target_control {
640 int nid; /* preferred node id */
641 nodemask_t *nmask;
642 gfp_t gfp_mask;
643 };
644
645 /*
646 * mm/vmalloc.c
647 */
648 #ifdef CONFIG_MMU
649 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
650 pgprot_t prot, struct page **pages, unsigned int page_shift);
651 #else
652 static inline
653 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
654 pgprot_t prot, struct page **pages, unsigned int page_shift)
655 {
656 return -EINVAL;
657 }
658 #endif
659
660 void vunmap_range_noflush(unsigned long start, unsigned long end);
661
662 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
663 unsigned long addr, int page_nid, int *flags);
664
665 #endif /* __MM_INTERNAL_H */