]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/kasan/common.c
kasan: add memory corruption identification for software tag-based mode
[mirror_ubuntu-hirsute-kernel.git] / mm / kasan / common.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains common generic and tag-based KASAN code.
4 *
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7 *
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License version 2 as
13 * published by the Free Software Foundation.
14 *
15 */
16
17 #include <linux/export.h>
18 #include <linux/interrupt.h>
19 #include <linux/init.h>
20 #include <linux/kasan.h>
21 #include <linux/kernel.h>
22 #include <linux/kmemleak.h>
23 #include <linux/linkage.h>
24 #include <linux/memblock.h>
25 #include <linux/memory.h>
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/printk.h>
29 #include <linux/sched.h>
30 #include <linux/sched/task_stack.h>
31 #include <linux/slab.h>
32 #include <linux/stacktrace.h>
33 #include <linux/string.h>
34 #include <linux/types.h>
35 #include <linux/vmalloc.h>
36 #include <linux/bug.h>
37 #include <linux/uaccess.h>
38
39 #include "kasan.h"
40 #include "../slab.h"
41
42 static inline int in_irqentry_text(unsigned long ptr)
43 {
44 return (ptr >= (unsigned long)&__irqentry_text_start &&
45 ptr < (unsigned long)&__irqentry_text_end) ||
46 (ptr >= (unsigned long)&__softirqentry_text_start &&
47 ptr < (unsigned long)&__softirqentry_text_end);
48 }
49
50 static inline unsigned int filter_irq_stacks(unsigned long *entries,
51 unsigned int nr_entries)
52 {
53 unsigned int i;
54
55 for (i = 0; i < nr_entries; i++) {
56 if (in_irqentry_text(entries[i])) {
57 /* Include the irqentry function into the stack. */
58 return i + 1;
59 }
60 }
61 return nr_entries;
62 }
63
64 static inline depot_stack_handle_t save_stack(gfp_t flags)
65 {
66 unsigned long entries[KASAN_STACK_DEPTH];
67 unsigned int nr_entries;
68
69 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
70 nr_entries = filter_irq_stacks(entries, nr_entries);
71 return stack_depot_save(entries, nr_entries, flags);
72 }
73
74 static inline void set_track(struct kasan_track *track, gfp_t flags)
75 {
76 track->pid = current->pid;
77 track->stack = save_stack(flags);
78 }
79
80 void kasan_enable_current(void)
81 {
82 current->kasan_depth++;
83 }
84
85 void kasan_disable_current(void)
86 {
87 current->kasan_depth--;
88 }
89
90 bool __kasan_check_read(const volatile void *p, unsigned int size)
91 {
92 return check_memory_region((unsigned long)p, size, false, _RET_IP_);
93 }
94 EXPORT_SYMBOL(__kasan_check_read);
95
96 bool __kasan_check_write(const volatile void *p, unsigned int size)
97 {
98 return check_memory_region((unsigned long)p, size, true, _RET_IP_);
99 }
100 EXPORT_SYMBOL(__kasan_check_write);
101
102 #undef memset
103 void *memset(void *addr, int c, size_t len)
104 {
105 check_memory_region((unsigned long)addr, len, true, _RET_IP_);
106
107 return __memset(addr, c, len);
108 }
109
110 #undef memmove
111 void *memmove(void *dest, const void *src, size_t len)
112 {
113 check_memory_region((unsigned long)src, len, false, _RET_IP_);
114 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
115
116 return __memmove(dest, src, len);
117 }
118
119 #undef memcpy
120 void *memcpy(void *dest, const void *src, size_t len)
121 {
122 check_memory_region((unsigned long)src, len, false, _RET_IP_);
123 check_memory_region((unsigned long)dest, len, true, _RET_IP_);
124
125 return __memcpy(dest, src, len);
126 }
127
128 /*
129 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
130 * Memory addresses should be aligned to KASAN_SHADOW_SCALE_SIZE.
131 */
132 void kasan_poison_shadow(const void *address, size_t size, u8 value)
133 {
134 void *shadow_start, *shadow_end;
135
136 /*
137 * Perform shadow offset calculation based on untagged address, as
138 * some of the callers (e.g. kasan_poison_object_data) pass tagged
139 * addresses to this function.
140 */
141 address = reset_tag(address);
142
143 shadow_start = kasan_mem_to_shadow(address);
144 shadow_end = kasan_mem_to_shadow(address + size);
145
146 __memset(shadow_start, value, shadow_end - shadow_start);
147 }
148
149 void kasan_unpoison_shadow(const void *address, size_t size)
150 {
151 u8 tag = get_tag(address);
152
153 /*
154 * Perform shadow offset calculation based on untagged address, as
155 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
156 * addresses to this function.
157 */
158 address = reset_tag(address);
159
160 kasan_poison_shadow(address, size, tag);
161
162 if (size & KASAN_SHADOW_MASK) {
163 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
164
165 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
166 *shadow = tag;
167 else
168 *shadow = size & KASAN_SHADOW_MASK;
169 }
170 }
171
172 static void __kasan_unpoison_stack(struct task_struct *task, const void *sp)
173 {
174 void *base = task_stack_page(task);
175 size_t size = sp - base;
176
177 kasan_unpoison_shadow(base, size);
178 }
179
180 /* Unpoison the entire stack for a task. */
181 void kasan_unpoison_task_stack(struct task_struct *task)
182 {
183 __kasan_unpoison_stack(task, task_stack_page(task) + THREAD_SIZE);
184 }
185
186 /* Unpoison the stack for the current task beyond a watermark sp value. */
187 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
188 {
189 /*
190 * Calculate the task stack base address. Avoid using 'current'
191 * because this function is called by early resume code which hasn't
192 * yet set up the percpu register (%gs).
193 */
194 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
195
196 kasan_unpoison_shadow(base, watermark - base);
197 }
198
199 /*
200 * Clear all poison for the region between the current SP and a provided
201 * watermark value, as is sometimes required prior to hand-crafted asm function
202 * returns in the middle of functions.
203 */
204 void kasan_unpoison_stack_above_sp_to(const void *watermark)
205 {
206 const void *sp = __builtin_frame_address(0);
207 size_t size = watermark - sp;
208
209 if (WARN_ON(sp > watermark))
210 return;
211 kasan_unpoison_shadow(sp, size);
212 }
213
214 void kasan_alloc_pages(struct page *page, unsigned int order)
215 {
216 u8 tag;
217 unsigned long i;
218
219 if (unlikely(PageHighMem(page)))
220 return;
221
222 tag = random_tag();
223 for (i = 0; i < (1 << order); i++)
224 page_kasan_tag_set(page + i, tag);
225 kasan_unpoison_shadow(page_address(page), PAGE_SIZE << order);
226 }
227
228 void kasan_free_pages(struct page *page, unsigned int order)
229 {
230 if (likely(!PageHighMem(page)))
231 kasan_poison_shadow(page_address(page),
232 PAGE_SIZE << order,
233 KASAN_FREE_PAGE);
234 }
235
236 /*
237 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
238 * For larger allocations larger redzones are used.
239 */
240 static inline unsigned int optimal_redzone(unsigned int object_size)
241 {
242 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
243 return 0;
244
245 return
246 object_size <= 64 - 16 ? 16 :
247 object_size <= 128 - 32 ? 32 :
248 object_size <= 512 - 64 ? 64 :
249 object_size <= 4096 - 128 ? 128 :
250 object_size <= (1 << 14) - 256 ? 256 :
251 object_size <= (1 << 15) - 512 ? 512 :
252 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
253 }
254
255 void kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
256 slab_flags_t *flags)
257 {
258 unsigned int orig_size = *size;
259 unsigned int redzone_size;
260 int redzone_adjust;
261
262 /* Add alloc meta. */
263 cache->kasan_info.alloc_meta_offset = *size;
264 *size += sizeof(struct kasan_alloc_meta);
265
266 /* Add free meta. */
267 if (IS_ENABLED(CONFIG_KASAN_GENERIC) &&
268 (cache->flags & SLAB_TYPESAFE_BY_RCU || cache->ctor ||
269 cache->object_size < sizeof(struct kasan_free_meta))) {
270 cache->kasan_info.free_meta_offset = *size;
271 *size += sizeof(struct kasan_free_meta);
272 }
273
274 redzone_size = optimal_redzone(cache->object_size);
275 redzone_adjust = redzone_size - (*size - cache->object_size);
276 if (redzone_adjust > 0)
277 *size += redzone_adjust;
278
279 *size = min_t(unsigned int, KMALLOC_MAX_SIZE,
280 max(*size, cache->object_size + redzone_size));
281
282 /*
283 * If the metadata doesn't fit, don't enable KASAN at all.
284 */
285 if (*size <= cache->kasan_info.alloc_meta_offset ||
286 *size <= cache->kasan_info.free_meta_offset) {
287 cache->kasan_info.alloc_meta_offset = 0;
288 cache->kasan_info.free_meta_offset = 0;
289 *size = orig_size;
290 return;
291 }
292
293 *flags |= SLAB_KASAN;
294 }
295
296 size_t kasan_metadata_size(struct kmem_cache *cache)
297 {
298 return (cache->kasan_info.alloc_meta_offset ?
299 sizeof(struct kasan_alloc_meta) : 0) +
300 (cache->kasan_info.free_meta_offset ?
301 sizeof(struct kasan_free_meta) : 0);
302 }
303
304 struct kasan_alloc_meta *get_alloc_info(struct kmem_cache *cache,
305 const void *object)
306 {
307 return (void *)object + cache->kasan_info.alloc_meta_offset;
308 }
309
310 struct kasan_free_meta *get_free_info(struct kmem_cache *cache,
311 const void *object)
312 {
313 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
314 return (void *)object + cache->kasan_info.free_meta_offset;
315 }
316
317
318 static void kasan_set_free_info(struct kmem_cache *cache,
319 void *object, u8 tag)
320 {
321 struct kasan_alloc_meta *alloc_meta;
322 u8 idx = 0;
323
324 alloc_meta = get_alloc_info(cache, object);
325
326 #ifdef CONFIG_KASAN_SW_TAGS_IDENTIFY
327 idx = alloc_meta->free_track_idx;
328 alloc_meta->free_pointer_tag[idx] = tag;
329 alloc_meta->free_track_idx = (idx + 1) % KASAN_NR_FREE_STACKS;
330 #endif
331
332 set_track(&alloc_meta->free_track[idx], GFP_NOWAIT);
333 }
334
335 void kasan_poison_slab(struct page *page)
336 {
337 unsigned long i;
338
339 for (i = 0; i < (1 << compound_order(page)); i++)
340 page_kasan_tag_reset(page + i);
341 kasan_poison_shadow(page_address(page),
342 PAGE_SIZE << compound_order(page),
343 KASAN_KMALLOC_REDZONE);
344 }
345
346 void kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
347 {
348 kasan_unpoison_shadow(object, cache->object_size);
349 }
350
351 void kasan_poison_object_data(struct kmem_cache *cache, void *object)
352 {
353 kasan_poison_shadow(object,
354 round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE),
355 KASAN_KMALLOC_REDZONE);
356 }
357
358 /*
359 * This function assigns a tag to an object considering the following:
360 * 1. A cache might have a constructor, which might save a pointer to a slab
361 * object somewhere (e.g. in the object itself). We preassign a tag for
362 * each object in caches with constructors during slab creation and reuse
363 * the same tag each time a particular object is allocated.
364 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
365 * accessed after being freed. We preassign tags for objects in these
366 * caches as well.
367 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
368 * is stored as an array of indexes instead of a linked list. Assign tags
369 * based on objects indexes, so that objects that are next to each other
370 * get different tags.
371 */
372 static u8 assign_tag(struct kmem_cache *cache, const void *object,
373 bool init, bool keep_tag)
374 {
375 /*
376 * 1. When an object is kmalloc()'ed, two hooks are called:
377 * kasan_slab_alloc() and kasan_kmalloc(). We assign the
378 * tag only in the first one.
379 * 2. We reuse the same tag for krealloc'ed objects.
380 */
381 if (keep_tag)
382 return get_tag(object);
383
384 /*
385 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
386 * set, assign a tag when the object is being allocated (init == false).
387 */
388 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
389 return init ? KASAN_TAG_KERNEL : random_tag();
390
391 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
392 #ifdef CONFIG_SLAB
393 /* For SLAB assign tags based on the object index in the freelist. */
394 return (u8)obj_to_index(cache, virt_to_page(object), (void *)object);
395 #else
396 /*
397 * For SLUB assign a random tag during slab creation, otherwise reuse
398 * the already assigned tag.
399 */
400 return init ? random_tag() : get_tag(object);
401 #endif
402 }
403
404 void * __must_check kasan_init_slab_obj(struct kmem_cache *cache,
405 const void *object)
406 {
407 struct kasan_alloc_meta *alloc_info;
408
409 if (!(cache->flags & SLAB_KASAN))
410 return (void *)object;
411
412 alloc_info = get_alloc_info(cache, object);
413 __memset(alloc_info, 0, sizeof(*alloc_info));
414
415 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
416 object = set_tag(object,
417 assign_tag(cache, object, true, false));
418
419 return (void *)object;
420 }
421
422 static inline bool shadow_invalid(u8 tag, s8 shadow_byte)
423 {
424 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
425 return shadow_byte < 0 ||
426 shadow_byte >= KASAN_SHADOW_SCALE_SIZE;
427
428 /* else CONFIG_KASAN_SW_TAGS: */
429 if ((u8)shadow_byte == KASAN_TAG_INVALID)
430 return true;
431 if ((tag != KASAN_TAG_KERNEL) && (tag != (u8)shadow_byte))
432 return true;
433
434 return false;
435 }
436
437 static bool __kasan_slab_free(struct kmem_cache *cache, void *object,
438 unsigned long ip, bool quarantine)
439 {
440 s8 shadow_byte;
441 u8 tag;
442 void *tagged_object;
443 unsigned long rounded_up_size;
444
445 tag = get_tag(object);
446 tagged_object = object;
447 object = reset_tag(object);
448
449 if (unlikely(nearest_obj(cache, virt_to_head_page(object), object) !=
450 object)) {
451 kasan_report_invalid_free(tagged_object, ip);
452 return true;
453 }
454
455 /* RCU slabs could be legally used after free within the RCU period */
456 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
457 return false;
458
459 shadow_byte = READ_ONCE(*(s8 *)kasan_mem_to_shadow(object));
460 if (shadow_invalid(tag, shadow_byte)) {
461 kasan_report_invalid_free(tagged_object, ip);
462 return true;
463 }
464
465 rounded_up_size = round_up(cache->object_size, KASAN_SHADOW_SCALE_SIZE);
466 kasan_poison_shadow(object, rounded_up_size, KASAN_KMALLOC_FREE);
467
468 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine) ||
469 unlikely(!(cache->flags & SLAB_KASAN)))
470 return false;
471
472 kasan_set_free_info(cache, object, tag);
473
474 quarantine_put(get_free_info(cache, object), cache);
475
476 return IS_ENABLED(CONFIG_KASAN_GENERIC);
477 }
478
479 bool kasan_slab_free(struct kmem_cache *cache, void *object, unsigned long ip)
480 {
481 return __kasan_slab_free(cache, object, ip, true);
482 }
483
484 static void *__kasan_kmalloc(struct kmem_cache *cache, const void *object,
485 size_t size, gfp_t flags, bool keep_tag)
486 {
487 unsigned long redzone_start;
488 unsigned long redzone_end;
489 u8 tag = 0xff;
490
491 if (gfpflags_allow_blocking(flags))
492 quarantine_reduce();
493
494 if (unlikely(object == NULL))
495 return NULL;
496
497 redzone_start = round_up((unsigned long)(object + size),
498 KASAN_SHADOW_SCALE_SIZE);
499 redzone_end = round_up((unsigned long)object + cache->object_size,
500 KASAN_SHADOW_SCALE_SIZE);
501
502 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
503 tag = assign_tag(cache, object, false, keep_tag);
504
505 /* Tag is ignored in set_tag without CONFIG_KASAN_SW_TAGS */
506 kasan_unpoison_shadow(set_tag(object, tag), size);
507 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
508 KASAN_KMALLOC_REDZONE);
509
510 if (cache->flags & SLAB_KASAN)
511 set_track(&get_alloc_info(cache, object)->alloc_track, flags);
512
513 return set_tag(object, tag);
514 }
515
516 void * __must_check kasan_slab_alloc(struct kmem_cache *cache, void *object,
517 gfp_t flags)
518 {
519 return __kasan_kmalloc(cache, object, cache->object_size, flags, false);
520 }
521
522 void * __must_check kasan_kmalloc(struct kmem_cache *cache, const void *object,
523 size_t size, gfp_t flags)
524 {
525 return __kasan_kmalloc(cache, object, size, flags, true);
526 }
527 EXPORT_SYMBOL(kasan_kmalloc);
528
529 void * __must_check kasan_kmalloc_large(const void *ptr, size_t size,
530 gfp_t flags)
531 {
532 struct page *page;
533 unsigned long redzone_start;
534 unsigned long redzone_end;
535
536 if (gfpflags_allow_blocking(flags))
537 quarantine_reduce();
538
539 if (unlikely(ptr == NULL))
540 return NULL;
541
542 page = virt_to_page(ptr);
543 redzone_start = round_up((unsigned long)(ptr + size),
544 KASAN_SHADOW_SCALE_SIZE);
545 redzone_end = (unsigned long)ptr + (PAGE_SIZE << compound_order(page));
546
547 kasan_unpoison_shadow(ptr, size);
548 kasan_poison_shadow((void *)redzone_start, redzone_end - redzone_start,
549 KASAN_PAGE_REDZONE);
550
551 return (void *)ptr;
552 }
553
554 void * __must_check kasan_krealloc(const void *object, size_t size, gfp_t flags)
555 {
556 struct page *page;
557
558 if (unlikely(object == ZERO_SIZE_PTR))
559 return (void *)object;
560
561 page = virt_to_head_page(object);
562
563 if (unlikely(!PageSlab(page)))
564 return kasan_kmalloc_large(object, size, flags);
565 else
566 return __kasan_kmalloc(page->slab_cache, object, size,
567 flags, true);
568 }
569
570 void kasan_poison_kfree(void *ptr, unsigned long ip)
571 {
572 struct page *page;
573
574 page = virt_to_head_page(ptr);
575
576 if (unlikely(!PageSlab(page))) {
577 if (ptr != page_address(page)) {
578 kasan_report_invalid_free(ptr, ip);
579 return;
580 }
581 kasan_poison_shadow(ptr, PAGE_SIZE << compound_order(page),
582 KASAN_FREE_PAGE);
583 } else {
584 __kasan_slab_free(page->slab_cache, ptr, ip, false);
585 }
586 }
587
588 void kasan_kfree_large(void *ptr, unsigned long ip)
589 {
590 if (ptr != page_address(virt_to_head_page(ptr)))
591 kasan_report_invalid_free(ptr, ip);
592 /* The object will be poisoned by page_alloc. */
593 }
594
595 int kasan_module_alloc(void *addr, size_t size)
596 {
597 void *ret;
598 size_t scaled_size;
599 size_t shadow_size;
600 unsigned long shadow_start;
601
602 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
603 scaled_size = (size + KASAN_SHADOW_MASK) >> KASAN_SHADOW_SCALE_SHIFT;
604 shadow_size = round_up(scaled_size, PAGE_SIZE);
605
606 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
607 return -EINVAL;
608
609 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
610 shadow_start + shadow_size,
611 GFP_KERNEL,
612 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
613 __builtin_return_address(0));
614
615 if (ret) {
616 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
617 find_vm_area(addr)->flags |= VM_KASAN;
618 kmemleak_ignore(ret);
619 return 0;
620 }
621
622 return -ENOMEM;
623 }
624
625 void kasan_free_shadow(const struct vm_struct *vm)
626 {
627 if (vm->flags & VM_KASAN)
628 vfree(kasan_mem_to_shadow(vm->addr));
629 }
630
631 extern void __kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip);
632
633 void kasan_report(unsigned long addr, size_t size, bool is_write, unsigned long ip)
634 {
635 unsigned long flags = user_access_save();
636 __kasan_report(addr, size, is_write, ip);
637 user_access_restore(flags);
638 }
639
640 #ifdef CONFIG_MEMORY_HOTPLUG
641 static bool shadow_mapped(unsigned long addr)
642 {
643 pgd_t *pgd = pgd_offset_k(addr);
644 p4d_t *p4d;
645 pud_t *pud;
646 pmd_t *pmd;
647 pte_t *pte;
648
649 if (pgd_none(*pgd))
650 return false;
651 p4d = p4d_offset(pgd, addr);
652 if (p4d_none(*p4d))
653 return false;
654 pud = pud_offset(p4d, addr);
655 if (pud_none(*pud))
656 return false;
657
658 /*
659 * We can't use pud_large() or pud_huge(), the first one is
660 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
661 * pud_bad(), if pud is bad then it's bad because it's huge.
662 */
663 if (pud_bad(*pud))
664 return true;
665 pmd = pmd_offset(pud, addr);
666 if (pmd_none(*pmd))
667 return false;
668
669 if (pmd_bad(*pmd))
670 return true;
671 pte = pte_offset_kernel(pmd, addr);
672 return !pte_none(*pte);
673 }
674
675 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
676 unsigned long action, void *data)
677 {
678 struct memory_notify *mem_data = data;
679 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
680 unsigned long shadow_end, shadow_size;
681
682 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
683 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
684 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
685 shadow_size = nr_shadow_pages << PAGE_SHIFT;
686 shadow_end = shadow_start + shadow_size;
687
688 if (WARN_ON(mem_data->nr_pages % KASAN_SHADOW_SCALE_SIZE) ||
689 WARN_ON(start_kaddr % (KASAN_SHADOW_SCALE_SIZE << PAGE_SHIFT)))
690 return NOTIFY_BAD;
691
692 switch (action) {
693 case MEM_GOING_ONLINE: {
694 void *ret;
695
696 /*
697 * If shadow is mapped already than it must have been mapped
698 * during the boot. This could happen if we onlining previously
699 * offlined memory.
700 */
701 if (shadow_mapped(shadow_start))
702 return NOTIFY_OK;
703
704 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
705 shadow_end, GFP_KERNEL,
706 PAGE_KERNEL, VM_NO_GUARD,
707 pfn_to_nid(mem_data->start_pfn),
708 __builtin_return_address(0));
709 if (!ret)
710 return NOTIFY_BAD;
711
712 kmemleak_ignore(ret);
713 return NOTIFY_OK;
714 }
715 case MEM_CANCEL_ONLINE:
716 case MEM_OFFLINE: {
717 struct vm_struct *vm;
718
719 /*
720 * shadow_start was either mapped during boot by kasan_init()
721 * or during memory online by __vmalloc_node_range().
722 * In the latter case we can use vfree() to free shadow.
723 * Non-NULL result of the find_vm_area() will tell us if
724 * that was the second case.
725 *
726 * Currently it's not possible to free shadow mapped
727 * during boot by kasan_init(). It's because the code
728 * to do that hasn't been written yet. So we'll just
729 * leak the memory.
730 */
731 vm = find_vm_area((void *)shadow_start);
732 if (vm)
733 vfree((void *)shadow_start);
734 }
735 }
736
737 return NOTIFY_OK;
738 }
739
740 static int __init kasan_memhotplug_init(void)
741 {
742 hotplug_memory_notifier(kasan_mem_notifier, 0);
743
744 return 0;
745 }
746
747 core_initcall(kasan_memhotplug_init);
748 #endif