]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/khugepaged.c
UBUNTU: Ubuntu-5.11.0-19.20
[mirror_ubuntu-hirsute-kernel.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_EXCEED_SWAP_PTE,
32 SCAN_EXCEED_SHARED_PTE,
33 SCAN_PTE_NON_PRESENT,
34 SCAN_PTE_UFFD_WP,
35 SCAN_PAGE_RO,
36 SCAN_LACK_REFERENCED_PAGE,
37 SCAN_PAGE_NULL,
38 SCAN_SCAN_ABORT,
39 SCAN_PAGE_COUNT,
40 SCAN_PAGE_LRU,
41 SCAN_PAGE_LOCK,
42 SCAN_PAGE_ANON,
43 SCAN_PAGE_COMPOUND,
44 SCAN_ANY_PROCESS,
45 SCAN_VMA_NULL,
46 SCAN_VMA_CHECK,
47 SCAN_ADDRESS_RANGE,
48 SCAN_SWAP_CACHE_PAGE,
49 SCAN_DEL_PAGE_LRU,
50 SCAN_ALLOC_HUGE_PAGE_FAIL,
51 SCAN_CGROUP_CHARGE_FAIL,
52 SCAN_TRUNCATED,
53 SCAN_PAGE_HAS_PRIVATE,
54 };
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73 * default collapse hugepages if there is at least one pte mapped like
74 * it would have happened if the vma was large enough during page
75 * fault.
76 */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85
86 #define MAX_PTE_MAPPED_THP 8
87
88 /**
89 * struct mm_slot - hash lookup from mm to mm_slot
90 * @hash: hash collision list
91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92 * @mm: the mm that this information is valid for
93 * @nr_pte_mapped_thp: number of pte mapped THP
94 * @pte_mapped_thp: address array corresponding pte mapped THP
95 */
96 struct mm_slot {
97 struct hlist_node hash;
98 struct list_head mm_node;
99 struct mm_struct *mm;
100
101 /* pte-mapped THP in this mm */
102 int nr_pte_mapped_thp;
103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105
106 /**
107 * struct khugepaged_scan - cursor for scanning
108 * @mm_head: the head of the mm list to scan
109 * @mm_slot: the current mm_slot we are scanning
110 * @address: the next address inside that to be scanned
111 *
112 * There is only the one khugepaged_scan instance of this cursor structure.
113 */
114 struct khugepaged_scan {
115 struct list_head mm_head;
116 struct mm_slot *mm_slot;
117 unsigned long address;
118 };
119
120 static struct khugepaged_scan khugepaged_scan = {
121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 struct kobj_attribute *attr,
127 char *buf)
128 {
129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 struct kobj_attribute *attr,
134 const char *buf, size_t count)
135 {
136 unsigned int msecs;
137 int err;
138
139 err = kstrtouint(buf, 10, &msecs);
140 if (err)
141 return -EINVAL;
142
143 khugepaged_scan_sleep_millisecs = msecs;
144 khugepaged_sleep_expire = 0;
145 wake_up_interruptible(&khugepaged_wait);
146
147 return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 scan_sleep_millisecs_store);
152
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 struct kobj_attribute *attr,
155 char *buf)
156 {
157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
163 {
164 unsigned int msecs;
165 int err;
166
167 err = kstrtouint(buf, 10, &msecs);
168 if (err)
169 return -EINVAL;
170
171 khugepaged_alloc_sleep_millisecs = msecs;
172 khugepaged_sleep_expire = 0;
173 wake_up_interruptible(&khugepaged_wait);
174
175 return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 alloc_sleep_millisecs_store);
180
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 struct kobj_attribute *attr,
183 char *buf)
184 {
185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 struct kobj_attribute *attr,
189 const char *buf, size_t count)
190 {
191 unsigned int pages;
192 int err;
193
194 err = kstrtouint(buf, 10, &pages);
195 if (err || !pages)
196 return -EINVAL;
197
198 khugepaged_pages_to_scan = pages;
199
200 return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 pages_to_scan_store);
205
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 struct kobj_attribute *attr,
208 char *buf)
209 {
210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213 __ATTR_RO(pages_collapsed);
214
215 static ssize_t full_scans_show(struct kobject *kobj,
216 struct kobj_attribute *attr,
217 char *buf)
218 {
219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222 __ATTR_RO(full_scans);
223
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 struct kobj_attribute *attr, char *buf)
226 {
227 return single_hugepage_flag_show(kobj, attr, buf,
228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 struct kobj_attribute *attr,
232 const char *buf, size_t count)
233 {
234 return single_hugepage_flag_store(kobj, attr, buf, count,
235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238 __ATTR(defrag, 0644, khugepaged_defrag_show,
239 khugepaged_defrag_store);
240
241 /*
242 * max_ptes_none controls if khugepaged should collapse hugepages over
243 * any unmapped ptes in turn potentially increasing the memory
244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245 * reduce the available free memory in the system as it
246 * runs. Increasing max_ptes_none will instead potentially reduce the
247 * free memory in the system during the khugepaged scan.
248 */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 struct kobj_attribute *attr,
251 char *buf)
252 {
253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
258 {
259 int err;
260 unsigned long max_ptes_none;
261
262 err = kstrtoul(buf, 10, &max_ptes_none);
263 if (err || max_ptes_none > HPAGE_PMD_NR-1)
264 return -EINVAL;
265
266 khugepaged_max_ptes_none = max_ptes_none;
267
268 return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 khugepaged_max_ptes_none_store);
273
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 struct kobj_attribute *attr,
276 char *buf)
277 {
278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
284 {
285 int err;
286 unsigned long max_ptes_swap;
287
288 err = kstrtoul(buf, 10, &max_ptes_swap);
289 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290 return -EINVAL;
291
292 khugepaged_max_ptes_swap = max_ptes_swap;
293
294 return count;
295 }
296
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 khugepaged_max_ptes_swap_store);
300
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 struct kobj_attribute *attr,
303 char *buf)
304 {
305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 struct kobj_attribute *attr,
310 const char *buf, size_t count)
311 {
312 int err;
313 unsigned long max_ptes_shared;
314
315 err = kstrtoul(buf, 10, &max_ptes_shared);
316 if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317 return -EINVAL;
318
319 khugepaged_max_ptes_shared = max_ptes_shared;
320
321 return count;
322 }
323
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 khugepaged_max_ptes_shared_store);
327
328 static struct attribute *khugepaged_attr[] = {
329 &khugepaged_defrag_attr.attr,
330 &khugepaged_max_ptes_none_attr.attr,
331 &khugepaged_max_ptes_swap_attr.attr,
332 &khugepaged_max_ptes_shared_attr.attr,
333 &pages_to_scan_attr.attr,
334 &pages_collapsed_attr.attr,
335 &full_scans_attr.attr,
336 &scan_sleep_millisecs_attr.attr,
337 &alloc_sleep_millisecs_attr.attr,
338 NULL,
339 };
340
341 struct attribute_group khugepaged_attr_group = {
342 .attrs = khugepaged_attr,
343 .name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346
347 int hugepage_madvise(struct vm_area_struct *vma,
348 unsigned long *vm_flags, int advice)
349 {
350 switch (advice) {
351 case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353 /*
354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 * can't handle this properly after s390_enable_sie, so we simply
356 * ignore the madvise to prevent qemu from causing a SIGSEGV.
357 */
358 if (mm_has_pgste(vma->vm_mm))
359 return 0;
360 #endif
361 *vm_flags &= ~VM_NOHUGEPAGE;
362 *vm_flags |= VM_HUGEPAGE;
363 /*
364 * If the vma become good for khugepaged to scan,
365 * register it here without waiting a page fault that
366 * may not happen any time soon.
367 */
368 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369 khugepaged_enter_vma_merge(vma, *vm_flags))
370 return -ENOMEM;
371 break;
372 case MADV_NOHUGEPAGE:
373 *vm_flags &= ~VM_HUGEPAGE;
374 *vm_flags |= VM_NOHUGEPAGE;
375 /*
376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 * this vma even if we leave the mm registered in khugepaged if
378 * it got registered before VM_NOHUGEPAGE was set.
379 */
380 break;
381 }
382
383 return 0;
384 }
385
386 int __init khugepaged_init(void)
387 {
388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 sizeof(struct mm_slot),
390 __alignof__(struct mm_slot), 0, NULL);
391 if (!mm_slot_cache)
392 return -ENOMEM;
393
394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398
399 return 0;
400 }
401
402 void __init khugepaged_destroy(void)
403 {
404 kmem_cache_destroy(mm_slot_cache);
405 }
406
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409 if (!mm_slot_cache) /* initialization failed */
410 return NULL;
411 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416 kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421 struct mm_slot *mm_slot;
422
423 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424 if (mm == mm_slot->mm)
425 return mm_slot;
426
427 return NULL;
428 }
429
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431 struct mm_slot *mm_slot)
432 {
433 mm_slot->mm = mm;
434 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439 return atomic_read(&mm->mm_users) == 0;
440 }
441
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443 unsigned long vm_flags)
444 {
445 /* Explicitly disabled through madvise. */
446 if ((vm_flags & VM_NOHUGEPAGE) ||
447 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
448 return false;
449
450 /* Enabled via shmem mount options or sysfs settings. */
451 if (shmem_file(vma->vm_file) && shmem_huge_enabled(vma)) {
452 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
453 HPAGE_PMD_NR);
454 }
455
456 /* THP settings require madvise. */
457 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
458 return false;
459
460 /* Read-only file mappings need to be aligned for THP to work. */
461 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
462 (vm_flags & VM_DENYWRITE)) {
463 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
464 HPAGE_PMD_NR);
465 }
466
467 if (!vma->anon_vma || vma->vm_ops)
468 return false;
469 if (vma_is_temporary_stack(vma))
470 return false;
471 return !(vm_flags & VM_NO_KHUGEPAGED);
472 }
473
474 int __khugepaged_enter(struct mm_struct *mm)
475 {
476 struct mm_slot *mm_slot;
477 int wakeup;
478
479 mm_slot = alloc_mm_slot();
480 if (!mm_slot)
481 return -ENOMEM;
482
483 /* __khugepaged_exit() must not run from under us */
484 VM_BUG_ON_MM(atomic_read(&mm->mm_users) == 0, mm);
485 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
486 free_mm_slot(mm_slot);
487 return 0;
488 }
489
490 spin_lock(&khugepaged_mm_lock);
491 insert_to_mm_slots_hash(mm, mm_slot);
492 /*
493 * Insert just behind the scanning cursor, to let the area settle
494 * down a little.
495 */
496 wakeup = list_empty(&khugepaged_scan.mm_head);
497 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
498 spin_unlock(&khugepaged_mm_lock);
499
500 mmgrab(mm);
501 if (wakeup)
502 wake_up_interruptible(&khugepaged_wait);
503
504 return 0;
505 }
506
507 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
508 unsigned long vm_flags)
509 {
510 unsigned long hstart, hend;
511
512 /*
513 * khugepaged only supports read-only files for non-shmem files.
514 * khugepaged does not yet work on special mappings. And
515 * file-private shmem THP is not supported.
516 */
517 if (!hugepage_vma_check(vma, vm_flags))
518 return 0;
519
520 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
521 hend = vma->vm_end & HPAGE_PMD_MASK;
522 if (hstart < hend)
523 return khugepaged_enter(vma, vm_flags);
524 return 0;
525 }
526
527 void __khugepaged_exit(struct mm_struct *mm)
528 {
529 struct mm_slot *mm_slot;
530 int free = 0;
531
532 spin_lock(&khugepaged_mm_lock);
533 mm_slot = get_mm_slot(mm);
534 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
535 hash_del(&mm_slot->hash);
536 list_del(&mm_slot->mm_node);
537 free = 1;
538 }
539 spin_unlock(&khugepaged_mm_lock);
540
541 if (free) {
542 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
543 free_mm_slot(mm_slot);
544 mmdrop(mm);
545 } else if (mm_slot) {
546 /*
547 * This is required to serialize against
548 * khugepaged_test_exit() (which is guaranteed to run
549 * under mmap sem read mode). Stop here (after we
550 * return all pagetables will be destroyed) until
551 * khugepaged has finished working on the pagetables
552 * under the mmap_lock.
553 */
554 mmap_write_lock(mm);
555 mmap_write_unlock(mm);
556 }
557 }
558
559 static void release_pte_page(struct page *page)
560 {
561 mod_node_page_state(page_pgdat(page),
562 NR_ISOLATED_ANON + page_is_file_lru(page),
563 -compound_nr(page));
564 unlock_page(page);
565 putback_lru_page(page);
566 }
567
568 static void release_pte_pages(pte_t *pte, pte_t *_pte,
569 struct list_head *compound_pagelist)
570 {
571 struct page *page, *tmp;
572
573 while (--_pte >= pte) {
574 pte_t pteval = *_pte;
575
576 page = pte_page(pteval);
577 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
578 !PageCompound(page))
579 release_pte_page(page);
580 }
581
582 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
583 list_del(&page->lru);
584 release_pte_page(page);
585 }
586 }
587
588 static bool is_refcount_suitable(struct page *page)
589 {
590 int expected_refcount;
591
592 expected_refcount = total_mapcount(page);
593 if (PageSwapCache(page))
594 expected_refcount += compound_nr(page);
595
596 return page_count(page) == expected_refcount;
597 }
598
599 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
600 unsigned long address,
601 pte_t *pte,
602 struct list_head *compound_pagelist)
603 {
604 struct page *page = NULL;
605 pte_t *_pte;
606 int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
607 bool writable = false;
608
609 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
610 _pte++, address += PAGE_SIZE) {
611 pte_t pteval = *_pte;
612 if (pte_none(pteval) || (pte_present(pteval) &&
613 is_zero_pfn(pte_pfn(pteval)))) {
614 if (!userfaultfd_armed(vma) &&
615 ++none_or_zero <= khugepaged_max_ptes_none) {
616 continue;
617 } else {
618 result = SCAN_EXCEED_NONE_PTE;
619 goto out;
620 }
621 }
622 if (!pte_present(pteval)) {
623 result = SCAN_PTE_NON_PRESENT;
624 goto out;
625 }
626 page = vm_normal_page(vma, address, pteval);
627 if (unlikely(!page)) {
628 result = SCAN_PAGE_NULL;
629 goto out;
630 }
631
632 VM_BUG_ON_PAGE(!PageAnon(page), page);
633
634 if (page_mapcount(page) > 1 &&
635 ++shared > khugepaged_max_ptes_shared) {
636 result = SCAN_EXCEED_SHARED_PTE;
637 goto out;
638 }
639
640 if (PageCompound(page)) {
641 struct page *p;
642 page = compound_head(page);
643
644 /*
645 * Check if we have dealt with the compound page
646 * already
647 */
648 list_for_each_entry(p, compound_pagelist, lru) {
649 if (page == p)
650 goto next;
651 }
652 }
653
654 /*
655 * We can do it before isolate_lru_page because the
656 * page can't be freed from under us. NOTE: PG_lock
657 * is needed to serialize against split_huge_page
658 * when invoked from the VM.
659 */
660 if (!trylock_page(page)) {
661 result = SCAN_PAGE_LOCK;
662 goto out;
663 }
664
665 /*
666 * Check if the page has any GUP (or other external) pins.
667 *
668 * The page table that maps the page has been already unlinked
669 * from the page table tree and this process cannot get
670 * an additinal pin on the page.
671 *
672 * New pins can come later if the page is shared across fork,
673 * but not from this process. The other process cannot write to
674 * the page, only trigger CoW.
675 */
676 if (!is_refcount_suitable(page)) {
677 unlock_page(page);
678 result = SCAN_PAGE_COUNT;
679 goto out;
680 }
681 if (!pte_write(pteval) && PageSwapCache(page) &&
682 !reuse_swap_page(page, NULL)) {
683 /*
684 * Page is in the swap cache and cannot be re-used.
685 * It cannot be collapsed into a THP.
686 */
687 unlock_page(page);
688 result = SCAN_SWAP_CACHE_PAGE;
689 goto out;
690 }
691
692 /*
693 * Isolate the page to avoid collapsing an hugepage
694 * currently in use by the VM.
695 */
696 if (isolate_lru_page(page)) {
697 unlock_page(page);
698 result = SCAN_DEL_PAGE_LRU;
699 goto out;
700 }
701 mod_node_page_state(page_pgdat(page),
702 NR_ISOLATED_ANON + page_is_file_lru(page),
703 compound_nr(page));
704 VM_BUG_ON_PAGE(!PageLocked(page), page);
705 VM_BUG_ON_PAGE(PageLRU(page), page);
706
707 if (PageCompound(page))
708 list_add_tail(&page->lru, compound_pagelist);
709 next:
710 /* There should be enough young pte to collapse the page */
711 if (pte_young(pteval) ||
712 page_is_young(page) || PageReferenced(page) ||
713 mmu_notifier_test_young(vma->vm_mm, address))
714 referenced++;
715
716 if (pte_write(pteval))
717 writable = true;
718 }
719 if (likely(writable)) {
720 if (likely(referenced)) {
721 result = SCAN_SUCCEED;
722 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
723 referenced, writable, result);
724 return 1;
725 }
726 } else {
727 result = SCAN_PAGE_RO;
728 }
729
730 out:
731 release_pte_pages(pte, _pte, compound_pagelist);
732 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
733 referenced, writable, result);
734 return 0;
735 }
736
737 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
738 struct vm_area_struct *vma,
739 unsigned long address,
740 spinlock_t *ptl,
741 struct list_head *compound_pagelist)
742 {
743 struct page *src_page, *tmp;
744 pte_t *_pte;
745 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
746 _pte++, page++, address += PAGE_SIZE) {
747 pte_t pteval = *_pte;
748
749 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
750 clear_user_highpage(page, address);
751 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
752 if (is_zero_pfn(pte_pfn(pteval))) {
753 /*
754 * ptl mostly unnecessary.
755 */
756 spin_lock(ptl);
757 /*
758 * paravirt calls inside pte_clear here are
759 * superfluous.
760 */
761 pte_clear(vma->vm_mm, address, _pte);
762 spin_unlock(ptl);
763 }
764 } else {
765 src_page = pte_page(pteval);
766 copy_user_highpage(page, src_page, address, vma);
767 if (!PageCompound(src_page))
768 release_pte_page(src_page);
769 /*
770 * ptl mostly unnecessary, but preempt has to
771 * be disabled to update the per-cpu stats
772 * inside page_remove_rmap().
773 */
774 spin_lock(ptl);
775 /*
776 * paravirt calls inside pte_clear here are
777 * superfluous.
778 */
779 pte_clear(vma->vm_mm, address, _pte);
780 page_remove_rmap(src_page, false);
781 spin_unlock(ptl);
782 free_page_and_swap_cache(src_page);
783 }
784 }
785
786 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
787 list_del(&src_page->lru);
788 release_pte_page(src_page);
789 }
790 }
791
792 static void khugepaged_alloc_sleep(void)
793 {
794 DEFINE_WAIT(wait);
795
796 add_wait_queue(&khugepaged_wait, &wait);
797 freezable_schedule_timeout_interruptible(
798 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
799 remove_wait_queue(&khugepaged_wait, &wait);
800 }
801
802 static int khugepaged_node_load[MAX_NUMNODES];
803
804 static bool khugepaged_scan_abort(int nid)
805 {
806 int i;
807
808 /*
809 * If node_reclaim_mode is disabled, then no extra effort is made to
810 * allocate memory locally.
811 */
812 if (!node_reclaim_mode)
813 return false;
814
815 /* If there is a count for this node already, it must be acceptable */
816 if (khugepaged_node_load[nid])
817 return false;
818
819 for (i = 0; i < MAX_NUMNODES; i++) {
820 if (!khugepaged_node_load[i])
821 continue;
822 if (node_distance(nid, i) > node_reclaim_distance)
823 return true;
824 }
825 return false;
826 }
827
828 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
829 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
830 {
831 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
832 }
833
834 #ifdef CONFIG_NUMA
835 static int khugepaged_find_target_node(void)
836 {
837 static int last_khugepaged_target_node = NUMA_NO_NODE;
838 int nid, target_node = 0, max_value = 0;
839
840 /* find first node with max normal pages hit */
841 for (nid = 0; nid < MAX_NUMNODES; nid++)
842 if (khugepaged_node_load[nid] > max_value) {
843 max_value = khugepaged_node_load[nid];
844 target_node = nid;
845 }
846
847 /* do some balance if several nodes have the same hit record */
848 if (target_node <= last_khugepaged_target_node)
849 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
850 nid++)
851 if (max_value == khugepaged_node_load[nid]) {
852 target_node = nid;
853 break;
854 }
855
856 last_khugepaged_target_node = target_node;
857 return target_node;
858 }
859
860 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
861 {
862 if (IS_ERR(*hpage)) {
863 if (!*wait)
864 return false;
865
866 *wait = false;
867 *hpage = NULL;
868 khugepaged_alloc_sleep();
869 } else if (*hpage) {
870 put_page(*hpage);
871 *hpage = NULL;
872 }
873
874 return true;
875 }
876
877 static struct page *
878 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
879 {
880 VM_BUG_ON_PAGE(*hpage, *hpage);
881
882 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
883 if (unlikely(!*hpage)) {
884 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
885 *hpage = ERR_PTR(-ENOMEM);
886 return NULL;
887 }
888
889 prep_transhuge_page(*hpage);
890 count_vm_event(THP_COLLAPSE_ALLOC);
891 return *hpage;
892 }
893 #else
894 static int khugepaged_find_target_node(void)
895 {
896 return 0;
897 }
898
899 static inline struct page *alloc_khugepaged_hugepage(void)
900 {
901 struct page *page;
902
903 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
904 HPAGE_PMD_ORDER);
905 if (page)
906 prep_transhuge_page(page);
907 return page;
908 }
909
910 static struct page *khugepaged_alloc_hugepage(bool *wait)
911 {
912 struct page *hpage;
913
914 do {
915 hpage = alloc_khugepaged_hugepage();
916 if (!hpage) {
917 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
918 if (!*wait)
919 return NULL;
920
921 *wait = false;
922 khugepaged_alloc_sleep();
923 } else
924 count_vm_event(THP_COLLAPSE_ALLOC);
925 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
926
927 return hpage;
928 }
929
930 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
931 {
932 /*
933 * If the hpage allocated earlier was briefly exposed in page cache
934 * before collapse_file() failed, it is possible that racing lookups
935 * have not yet completed, and would then be unpleasantly surprised by
936 * finding the hpage reused for the same mapping at a different offset.
937 * Just release the previous allocation if there is any danger of that.
938 */
939 if (*hpage && page_count(*hpage) > 1) {
940 put_page(*hpage);
941 *hpage = NULL;
942 }
943
944 if (!*hpage)
945 *hpage = khugepaged_alloc_hugepage(wait);
946
947 if (unlikely(!*hpage))
948 return false;
949
950 return true;
951 }
952
953 static struct page *
954 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
955 {
956 VM_BUG_ON(!*hpage);
957
958 return *hpage;
959 }
960 #endif
961
962 /*
963 * If mmap_lock temporarily dropped, revalidate vma
964 * before taking mmap_lock.
965 * Return 0 if succeeds, otherwise return none-zero
966 * value (scan code).
967 */
968
969 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
970 struct vm_area_struct **vmap)
971 {
972 struct vm_area_struct *vma;
973 unsigned long hstart, hend;
974
975 if (unlikely(khugepaged_test_exit(mm)))
976 return SCAN_ANY_PROCESS;
977
978 *vmap = vma = find_vma(mm, address);
979 if (!vma)
980 return SCAN_VMA_NULL;
981
982 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
983 hend = vma->vm_end & HPAGE_PMD_MASK;
984 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
985 return SCAN_ADDRESS_RANGE;
986 if (!hugepage_vma_check(vma, vma->vm_flags))
987 return SCAN_VMA_CHECK;
988 /* Anon VMA expected */
989 if (!vma->anon_vma || vma->vm_ops)
990 return SCAN_VMA_CHECK;
991 return 0;
992 }
993
994 /*
995 * Bring missing pages in from swap, to complete THP collapse.
996 * Only done if khugepaged_scan_pmd believes it is worthwhile.
997 *
998 * Called and returns without pte mapped or spinlocks held,
999 * but with mmap_lock held to protect against vma changes.
1000 */
1001
1002 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1003 struct vm_area_struct *vma,
1004 unsigned long address, pmd_t *pmd,
1005 int referenced)
1006 {
1007 int swapped_in = 0;
1008 vm_fault_t ret = 0;
1009 struct vm_fault vmf = {
1010 .vma = vma,
1011 .address = address,
1012 .flags = FAULT_FLAG_ALLOW_RETRY,
1013 .pmd = pmd,
1014 .pgoff = linear_page_index(vma, address),
1015 };
1016
1017 vmf.pte = pte_offset_map(pmd, address);
1018 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
1019 vmf.pte++, vmf.address += PAGE_SIZE) {
1020 vmf.orig_pte = *vmf.pte;
1021 if (!is_swap_pte(vmf.orig_pte))
1022 continue;
1023 swapped_in++;
1024 ret = do_swap_page(&vmf);
1025
1026 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1027 if (ret & VM_FAULT_RETRY) {
1028 mmap_read_lock(mm);
1029 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
1030 /* vma is no longer available, don't continue to swapin */
1031 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1032 return false;
1033 }
1034 /* check if the pmd is still valid */
1035 if (mm_find_pmd(mm, address) != pmd) {
1036 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1037 return false;
1038 }
1039 }
1040 if (ret & VM_FAULT_ERROR) {
1041 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1042 return false;
1043 }
1044 /* pte is unmapped now, we need to map it */
1045 vmf.pte = pte_offset_map(pmd, vmf.address);
1046 }
1047 vmf.pte--;
1048 pte_unmap(vmf.pte);
1049
1050 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1051 if (swapped_in)
1052 lru_add_drain();
1053
1054 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1055 return true;
1056 }
1057
1058 static void collapse_huge_page(struct mm_struct *mm,
1059 unsigned long address,
1060 struct page **hpage,
1061 int node, int referenced, int unmapped)
1062 {
1063 LIST_HEAD(compound_pagelist);
1064 pmd_t *pmd, _pmd;
1065 pte_t *pte;
1066 pgtable_t pgtable;
1067 struct page *new_page;
1068 spinlock_t *pmd_ptl, *pte_ptl;
1069 int isolated = 0, result = 0;
1070 struct vm_area_struct *vma;
1071 struct mmu_notifier_range range;
1072 gfp_t gfp;
1073
1074 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1075
1076 /* Only allocate from the target node */
1077 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1078
1079 /*
1080 * Before allocating the hugepage, release the mmap_lock read lock.
1081 * The allocation can take potentially a long time if it involves
1082 * sync compaction, and we do not need to hold the mmap_lock during
1083 * that. We will recheck the vma after taking it again in write mode.
1084 */
1085 mmap_read_unlock(mm);
1086 new_page = khugepaged_alloc_page(hpage, gfp, node);
1087 if (!new_page) {
1088 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1089 goto out_nolock;
1090 }
1091
1092 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1093 result = SCAN_CGROUP_CHARGE_FAIL;
1094 goto out_nolock;
1095 }
1096 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1097
1098 mmap_read_lock(mm);
1099 result = hugepage_vma_revalidate(mm, address, &vma);
1100 if (result) {
1101 mmap_read_unlock(mm);
1102 goto out_nolock;
1103 }
1104
1105 pmd = mm_find_pmd(mm, address);
1106 if (!pmd) {
1107 result = SCAN_PMD_NULL;
1108 mmap_read_unlock(mm);
1109 goto out_nolock;
1110 }
1111
1112 /*
1113 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1114 * If it fails, we release mmap_lock and jump out_nolock.
1115 * Continuing to collapse causes inconsistency.
1116 */
1117 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1118 pmd, referenced)) {
1119 mmap_read_unlock(mm);
1120 goto out_nolock;
1121 }
1122
1123 mmap_read_unlock(mm);
1124 /*
1125 * Prevent all access to pagetables with the exception of
1126 * gup_fast later handled by the ptep_clear_flush and the VM
1127 * handled by the anon_vma lock + PG_lock.
1128 */
1129 mmap_write_lock(mm);
1130 result = hugepage_vma_revalidate(mm, address, &vma);
1131 if (result)
1132 goto out;
1133 /* check if the pmd is still valid */
1134 if (mm_find_pmd(mm, address) != pmd)
1135 goto out;
1136
1137 anon_vma_lock_write(vma->anon_vma);
1138
1139 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1140 address, address + HPAGE_PMD_SIZE);
1141 mmu_notifier_invalidate_range_start(&range);
1142
1143 pte = pte_offset_map(pmd, address);
1144 pte_ptl = pte_lockptr(mm, pmd);
1145
1146 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1147 /*
1148 * After this gup_fast can't run anymore. This also removes
1149 * any huge TLB entry from the CPU so we won't allow
1150 * huge and small TLB entries for the same virtual address
1151 * to avoid the risk of CPU bugs in that area.
1152 */
1153 _pmd = pmdp_collapse_flush(vma, address, pmd);
1154 spin_unlock(pmd_ptl);
1155 mmu_notifier_invalidate_range_end(&range);
1156
1157 spin_lock(pte_ptl);
1158 isolated = __collapse_huge_page_isolate(vma, address, pte,
1159 &compound_pagelist);
1160 spin_unlock(pte_ptl);
1161
1162 if (unlikely(!isolated)) {
1163 pte_unmap(pte);
1164 spin_lock(pmd_ptl);
1165 BUG_ON(!pmd_none(*pmd));
1166 /*
1167 * We can only use set_pmd_at when establishing
1168 * hugepmds and never for establishing regular pmds that
1169 * points to regular pagetables. Use pmd_populate for that
1170 */
1171 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1172 spin_unlock(pmd_ptl);
1173 anon_vma_unlock_write(vma->anon_vma);
1174 result = SCAN_FAIL;
1175 goto out;
1176 }
1177
1178 /*
1179 * All pages are isolated and locked so anon_vma rmap
1180 * can't run anymore.
1181 */
1182 anon_vma_unlock_write(vma->anon_vma);
1183
1184 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1185 &compound_pagelist);
1186 pte_unmap(pte);
1187 __SetPageUptodate(new_page);
1188 pgtable = pmd_pgtable(_pmd);
1189
1190 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1191 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1192
1193 /*
1194 * spin_lock() below is not the equivalent of smp_wmb(), so
1195 * this is needed to avoid the copy_huge_page writes to become
1196 * visible after the set_pmd_at() write.
1197 */
1198 smp_wmb();
1199
1200 spin_lock(pmd_ptl);
1201 BUG_ON(!pmd_none(*pmd));
1202 page_add_new_anon_rmap(new_page, vma, address, true);
1203 lru_cache_add_inactive_or_unevictable(new_page, vma);
1204 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1205 set_pmd_at(mm, address, pmd, _pmd);
1206 update_mmu_cache_pmd(vma, address, pmd);
1207 spin_unlock(pmd_ptl);
1208
1209 *hpage = NULL;
1210
1211 khugepaged_pages_collapsed++;
1212 result = SCAN_SUCCEED;
1213 out_up_write:
1214 mmap_write_unlock(mm);
1215 out_nolock:
1216 if (!IS_ERR_OR_NULL(*hpage))
1217 mem_cgroup_uncharge(*hpage);
1218 trace_mm_collapse_huge_page(mm, isolated, result);
1219 return;
1220 out:
1221 goto out_up_write;
1222 }
1223
1224 static int khugepaged_scan_pmd(struct mm_struct *mm,
1225 struct vm_area_struct *vma,
1226 unsigned long address,
1227 struct page **hpage)
1228 {
1229 pmd_t *pmd;
1230 pte_t *pte, *_pte;
1231 int ret = 0, result = 0, referenced = 0;
1232 int none_or_zero = 0, shared = 0;
1233 struct page *page = NULL;
1234 unsigned long _address;
1235 spinlock_t *ptl;
1236 int node = NUMA_NO_NODE, unmapped = 0;
1237 bool writable = false;
1238
1239 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1240
1241 pmd = mm_find_pmd(mm, address);
1242 if (!pmd) {
1243 result = SCAN_PMD_NULL;
1244 goto out;
1245 }
1246
1247 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1248 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1249 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1250 _pte++, _address += PAGE_SIZE) {
1251 pte_t pteval = *_pte;
1252 if (is_swap_pte(pteval)) {
1253 if (++unmapped <= khugepaged_max_ptes_swap) {
1254 /*
1255 * Always be strict with uffd-wp
1256 * enabled swap entries. Please see
1257 * comment below for pte_uffd_wp().
1258 */
1259 if (pte_swp_uffd_wp(pteval)) {
1260 result = SCAN_PTE_UFFD_WP;
1261 goto out_unmap;
1262 }
1263 continue;
1264 } else {
1265 result = SCAN_EXCEED_SWAP_PTE;
1266 goto out_unmap;
1267 }
1268 }
1269 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1270 if (!userfaultfd_armed(vma) &&
1271 ++none_or_zero <= khugepaged_max_ptes_none) {
1272 continue;
1273 } else {
1274 result = SCAN_EXCEED_NONE_PTE;
1275 goto out_unmap;
1276 }
1277 }
1278 if (!pte_present(pteval)) {
1279 result = SCAN_PTE_NON_PRESENT;
1280 goto out_unmap;
1281 }
1282 if (pte_uffd_wp(pteval)) {
1283 /*
1284 * Don't collapse the page if any of the small
1285 * PTEs are armed with uffd write protection.
1286 * Here we can also mark the new huge pmd as
1287 * write protected if any of the small ones is
1288 * marked but that could bring unknown
1289 * userfault messages that falls outside of
1290 * the registered range. So, just be simple.
1291 */
1292 result = SCAN_PTE_UFFD_WP;
1293 goto out_unmap;
1294 }
1295 if (pte_write(pteval))
1296 writable = true;
1297
1298 page = vm_normal_page(vma, _address, pteval);
1299 if (unlikely(!page)) {
1300 result = SCAN_PAGE_NULL;
1301 goto out_unmap;
1302 }
1303
1304 if (page_mapcount(page) > 1 &&
1305 ++shared > khugepaged_max_ptes_shared) {
1306 result = SCAN_EXCEED_SHARED_PTE;
1307 goto out_unmap;
1308 }
1309
1310 page = compound_head(page);
1311
1312 /*
1313 * Record which node the original page is from and save this
1314 * information to khugepaged_node_load[].
1315 * Khupaged will allocate hugepage from the node has the max
1316 * hit record.
1317 */
1318 node = page_to_nid(page);
1319 if (khugepaged_scan_abort(node)) {
1320 result = SCAN_SCAN_ABORT;
1321 goto out_unmap;
1322 }
1323 khugepaged_node_load[node]++;
1324 if (!PageLRU(page)) {
1325 result = SCAN_PAGE_LRU;
1326 goto out_unmap;
1327 }
1328 if (PageLocked(page)) {
1329 result = SCAN_PAGE_LOCK;
1330 goto out_unmap;
1331 }
1332 if (!PageAnon(page)) {
1333 result = SCAN_PAGE_ANON;
1334 goto out_unmap;
1335 }
1336
1337 /*
1338 * Check if the page has any GUP (or other external) pins.
1339 *
1340 * Here the check is racy it may see totmal_mapcount > refcount
1341 * in some cases.
1342 * For example, one process with one forked child process.
1343 * The parent has the PMD split due to MADV_DONTNEED, then
1344 * the child is trying unmap the whole PMD, but khugepaged
1345 * may be scanning the parent between the child has
1346 * PageDoubleMap flag cleared and dec the mapcount. So
1347 * khugepaged may see total_mapcount > refcount.
1348 *
1349 * But such case is ephemeral we could always retry collapse
1350 * later. However it may report false positive if the page
1351 * has excessive GUP pins (i.e. 512). Anyway the same check
1352 * will be done again later the risk seems low.
1353 */
1354 if (!is_refcount_suitable(page)) {
1355 result = SCAN_PAGE_COUNT;
1356 goto out_unmap;
1357 }
1358 if (pte_young(pteval) ||
1359 page_is_young(page) || PageReferenced(page) ||
1360 mmu_notifier_test_young(vma->vm_mm, address))
1361 referenced++;
1362 }
1363 if (!writable) {
1364 result = SCAN_PAGE_RO;
1365 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1366 result = SCAN_LACK_REFERENCED_PAGE;
1367 } else {
1368 result = SCAN_SUCCEED;
1369 ret = 1;
1370 }
1371 out_unmap:
1372 pte_unmap_unlock(pte, ptl);
1373 if (ret) {
1374 node = khugepaged_find_target_node();
1375 /* collapse_huge_page will return with the mmap_lock released */
1376 collapse_huge_page(mm, address, hpage, node,
1377 referenced, unmapped);
1378 }
1379 out:
1380 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1381 none_or_zero, result, unmapped);
1382 return ret;
1383 }
1384
1385 static void collect_mm_slot(struct mm_slot *mm_slot)
1386 {
1387 struct mm_struct *mm = mm_slot->mm;
1388
1389 lockdep_assert_held(&khugepaged_mm_lock);
1390
1391 if (khugepaged_test_exit(mm)) {
1392 /* free mm_slot */
1393 hash_del(&mm_slot->hash);
1394 list_del(&mm_slot->mm_node);
1395
1396 /*
1397 * Not strictly needed because the mm exited already.
1398 *
1399 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1400 */
1401
1402 /* khugepaged_mm_lock actually not necessary for the below */
1403 free_mm_slot(mm_slot);
1404 mmdrop(mm);
1405 }
1406 }
1407
1408 #ifdef CONFIG_SHMEM
1409 /*
1410 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1411 * khugepaged should try to collapse the page table.
1412 */
1413 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1414 unsigned long addr)
1415 {
1416 struct mm_slot *mm_slot;
1417
1418 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1419
1420 spin_lock(&khugepaged_mm_lock);
1421 mm_slot = get_mm_slot(mm);
1422 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1423 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1424 spin_unlock(&khugepaged_mm_lock);
1425 return 0;
1426 }
1427
1428 /**
1429 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1430 * address haddr.
1431 *
1432 * @mm: process address space where collapse happens
1433 * @addr: THP collapse address
1434 *
1435 * This function checks whether all the PTEs in the PMD are pointing to the
1436 * right THP. If so, retract the page table so the THP can refault in with
1437 * as pmd-mapped.
1438 */
1439 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1440 {
1441 unsigned long haddr = addr & HPAGE_PMD_MASK;
1442 struct vm_area_struct *vma = find_vma(mm, haddr);
1443 struct page *hpage;
1444 pte_t *start_pte, *pte;
1445 pmd_t *pmd, _pmd;
1446 spinlock_t *ptl;
1447 int count = 0;
1448 int i;
1449
1450 if (!vma || !vma->vm_file ||
1451 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1452 return;
1453
1454 /*
1455 * This vm_flags may not have VM_HUGEPAGE if the page was not
1456 * collapsed by this mm. But we can still collapse if the page is
1457 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1458 * will not fail the vma for missing VM_HUGEPAGE
1459 */
1460 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1461 return;
1462
1463 hpage = find_lock_page(vma->vm_file->f_mapping,
1464 linear_page_index(vma, haddr));
1465 if (!hpage)
1466 return;
1467
1468 if (!PageHead(hpage))
1469 goto drop_hpage;
1470
1471 pmd = mm_find_pmd(mm, haddr);
1472 if (!pmd)
1473 goto drop_hpage;
1474
1475 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1476
1477 /* step 1: check all mapped PTEs are to the right huge page */
1478 for (i = 0, addr = haddr, pte = start_pte;
1479 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1480 struct page *page;
1481
1482 /* empty pte, skip */
1483 if (pte_none(*pte))
1484 continue;
1485
1486 /* page swapped out, abort */
1487 if (!pte_present(*pte))
1488 goto abort;
1489
1490 page = vm_normal_page(vma, addr, *pte);
1491
1492 /*
1493 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1494 * page table, but the new page will not be a subpage of hpage.
1495 */
1496 if (hpage + i != page)
1497 goto abort;
1498 count++;
1499 }
1500
1501 /* step 2: adjust rmap */
1502 for (i = 0, addr = haddr, pte = start_pte;
1503 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1504 struct page *page;
1505
1506 if (pte_none(*pte))
1507 continue;
1508 page = vm_normal_page(vma, addr, *pte);
1509 page_remove_rmap(page, false);
1510 }
1511
1512 pte_unmap_unlock(start_pte, ptl);
1513
1514 /* step 3: set proper refcount and mm_counters. */
1515 if (count) {
1516 page_ref_sub(hpage, count);
1517 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1518 }
1519
1520 /* step 4: collapse pmd */
1521 ptl = pmd_lock(vma->vm_mm, pmd);
1522 _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1523 spin_unlock(ptl);
1524 mm_dec_nr_ptes(mm);
1525 pte_free(mm, pmd_pgtable(_pmd));
1526
1527 drop_hpage:
1528 unlock_page(hpage);
1529 put_page(hpage);
1530 return;
1531
1532 abort:
1533 pte_unmap_unlock(start_pte, ptl);
1534 goto drop_hpage;
1535 }
1536
1537 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1538 {
1539 struct mm_struct *mm = mm_slot->mm;
1540 int i;
1541
1542 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1543 return 0;
1544
1545 if (!mmap_write_trylock(mm))
1546 return -EBUSY;
1547
1548 if (unlikely(khugepaged_test_exit(mm)))
1549 goto out;
1550
1551 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1552 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1553
1554 out:
1555 mm_slot->nr_pte_mapped_thp = 0;
1556 mmap_write_unlock(mm);
1557 return 0;
1558 }
1559
1560 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1561 {
1562 struct vm_area_struct *vma;
1563 struct mm_struct *mm;
1564 unsigned long addr;
1565 pmd_t *pmd, _pmd;
1566
1567 i_mmap_lock_write(mapping);
1568 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1569 /*
1570 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1571 * got written to. These VMAs are likely not worth investing
1572 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1573 * later.
1574 *
1575 * Not that vma->anon_vma check is racy: it can be set up after
1576 * the check but before we took mmap_lock by the fault path.
1577 * But page lock would prevent establishing any new ptes of the
1578 * page, so we are safe.
1579 *
1580 * An alternative would be drop the check, but check that page
1581 * table is clear before calling pmdp_collapse_flush() under
1582 * ptl. It has higher chance to recover THP for the VMA, but
1583 * has higher cost too.
1584 */
1585 if (vma->anon_vma)
1586 continue;
1587 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1588 if (addr & ~HPAGE_PMD_MASK)
1589 continue;
1590 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1591 continue;
1592 mm = vma->vm_mm;
1593 pmd = mm_find_pmd(mm, addr);
1594 if (!pmd)
1595 continue;
1596 /*
1597 * We need exclusive mmap_lock to retract page table.
1598 *
1599 * We use trylock due to lock inversion: we need to acquire
1600 * mmap_lock while holding page lock. Fault path does it in
1601 * reverse order. Trylock is a way to avoid deadlock.
1602 */
1603 if (mmap_write_trylock(mm)) {
1604 if (!khugepaged_test_exit(mm)) {
1605 spinlock_t *ptl = pmd_lock(mm, pmd);
1606 /* assume page table is clear */
1607 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1608 spin_unlock(ptl);
1609 mm_dec_nr_ptes(mm);
1610 pte_free(mm, pmd_pgtable(_pmd));
1611 }
1612 mmap_write_unlock(mm);
1613 } else {
1614 /* Try again later */
1615 khugepaged_add_pte_mapped_thp(mm, addr);
1616 }
1617 }
1618 i_mmap_unlock_write(mapping);
1619 }
1620
1621 /**
1622 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1623 *
1624 * @mm: process address space where collapse happens
1625 * @file: file that collapse on
1626 * @start: collapse start address
1627 * @hpage: new allocated huge page for collapse
1628 * @node: appointed node the new huge page allocate from
1629 *
1630 * Basic scheme is simple, details are more complex:
1631 * - allocate and lock a new huge page;
1632 * - scan page cache replacing old pages with the new one
1633 * + swap/gup in pages if necessary;
1634 * + fill in gaps;
1635 * + keep old pages around in case rollback is required;
1636 * - if replacing succeeds:
1637 * + copy data over;
1638 * + free old pages;
1639 * + unlock huge page;
1640 * - if replacing failed;
1641 * + put all pages back and unfreeze them;
1642 * + restore gaps in the page cache;
1643 * + unlock and free huge page;
1644 */
1645 static void collapse_file(struct mm_struct *mm,
1646 struct file *file, pgoff_t start,
1647 struct page **hpage, int node)
1648 {
1649 struct address_space *mapping = file->f_mapping;
1650 gfp_t gfp;
1651 struct page *new_page;
1652 pgoff_t index, end = start + HPAGE_PMD_NR;
1653 LIST_HEAD(pagelist);
1654 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1655 int nr_none = 0, result = SCAN_SUCCEED;
1656 bool is_shmem = shmem_file(file);
1657
1658 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1659 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1660
1661 /* Only allocate from the target node */
1662 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1663
1664 new_page = khugepaged_alloc_page(hpage, gfp, node);
1665 if (!new_page) {
1666 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1667 goto out;
1668 }
1669
1670 if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1671 result = SCAN_CGROUP_CHARGE_FAIL;
1672 goto out;
1673 }
1674 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1675
1676 /* This will be less messy when we use multi-index entries */
1677 do {
1678 xas_lock_irq(&xas);
1679 xas_create_range(&xas);
1680 if (!xas_error(&xas))
1681 break;
1682 xas_unlock_irq(&xas);
1683 if (!xas_nomem(&xas, GFP_KERNEL)) {
1684 result = SCAN_FAIL;
1685 goto out;
1686 }
1687 } while (1);
1688
1689 __SetPageLocked(new_page);
1690 if (is_shmem)
1691 __SetPageSwapBacked(new_page);
1692 new_page->index = start;
1693 new_page->mapping = mapping;
1694
1695 /*
1696 * At this point the new_page is locked and not up-to-date.
1697 * It's safe to insert it into the page cache, because nobody would
1698 * be able to map it or use it in another way until we unlock it.
1699 */
1700
1701 xas_set(&xas, start);
1702 for (index = start; index < end; index++) {
1703 struct page *page = xas_next(&xas);
1704
1705 VM_BUG_ON(index != xas.xa_index);
1706 if (is_shmem) {
1707 if (!page) {
1708 /*
1709 * Stop if extent has been truncated or
1710 * hole-punched, and is now completely
1711 * empty.
1712 */
1713 if (index == start) {
1714 if (!xas_next_entry(&xas, end - 1)) {
1715 result = SCAN_TRUNCATED;
1716 goto xa_locked;
1717 }
1718 xas_set(&xas, index);
1719 }
1720 if (!shmem_charge(mapping->host, 1)) {
1721 result = SCAN_FAIL;
1722 goto xa_locked;
1723 }
1724 xas_store(&xas, new_page);
1725 nr_none++;
1726 continue;
1727 }
1728
1729 if (xa_is_value(page) || !PageUptodate(page)) {
1730 xas_unlock_irq(&xas);
1731 /* swap in or instantiate fallocated page */
1732 if (shmem_getpage(mapping->host, index, &page,
1733 SGP_NOHUGE)) {
1734 result = SCAN_FAIL;
1735 goto xa_unlocked;
1736 }
1737 } else if (trylock_page(page)) {
1738 get_page(page);
1739 xas_unlock_irq(&xas);
1740 } else {
1741 result = SCAN_PAGE_LOCK;
1742 goto xa_locked;
1743 }
1744 } else { /* !is_shmem */
1745 if (!page || xa_is_value(page)) {
1746 xas_unlock_irq(&xas);
1747 page_cache_sync_readahead(mapping, &file->f_ra,
1748 file, index,
1749 end - index);
1750 /* drain pagevecs to help isolate_lru_page() */
1751 lru_add_drain();
1752 page = find_lock_page(mapping, index);
1753 if (unlikely(page == NULL)) {
1754 result = SCAN_FAIL;
1755 goto xa_unlocked;
1756 }
1757 } else if (PageDirty(page)) {
1758 /*
1759 * khugepaged only works on read-only fd,
1760 * so this page is dirty because it hasn't
1761 * been flushed since first write. There
1762 * won't be new dirty pages.
1763 *
1764 * Trigger async flush here and hope the
1765 * writeback is done when khugepaged
1766 * revisits this page.
1767 *
1768 * This is a one-off situation. We are not
1769 * forcing writeback in loop.
1770 */
1771 xas_unlock_irq(&xas);
1772 filemap_flush(mapping);
1773 result = SCAN_FAIL;
1774 goto xa_unlocked;
1775 } else if (trylock_page(page)) {
1776 get_page(page);
1777 xas_unlock_irq(&xas);
1778 } else {
1779 result = SCAN_PAGE_LOCK;
1780 goto xa_locked;
1781 }
1782 }
1783
1784 /*
1785 * The page must be locked, so we can drop the i_pages lock
1786 * without racing with truncate.
1787 */
1788 VM_BUG_ON_PAGE(!PageLocked(page), page);
1789
1790 /* make sure the page is up to date */
1791 if (unlikely(!PageUptodate(page))) {
1792 result = SCAN_FAIL;
1793 goto out_unlock;
1794 }
1795
1796 /*
1797 * If file was truncated then extended, or hole-punched, before
1798 * we locked the first page, then a THP might be there already.
1799 */
1800 if (PageTransCompound(page)) {
1801 result = SCAN_PAGE_COMPOUND;
1802 goto out_unlock;
1803 }
1804
1805 if (page_mapping(page) != mapping) {
1806 result = SCAN_TRUNCATED;
1807 goto out_unlock;
1808 }
1809
1810 if (!is_shmem && PageDirty(page)) {
1811 /*
1812 * khugepaged only works on read-only fd, so this
1813 * page is dirty because it hasn't been flushed
1814 * since first write.
1815 */
1816 result = SCAN_FAIL;
1817 goto out_unlock;
1818 }
1819
1820 if (isolate_lru_page(page)) {
1821 result = SCAN_DEL_PAGE_LRU;
1822 goto out_unlock;
1823 }
1824
1825 if (page_has_private(page) &&
1826 !try_to_release_page(page, GFP_KERNEL)) {
1827 result = SCAN_PAGE_HAS_PRIVATE;
1828 putback_lru_page(page);
1829 goto out_unlock;
1830 }
1831
1832 if (page_mapped(page))
1833 unmap_mapping_pages(mapping, index, 1, false);
1834
1835 xas_lock_irq(&xas);
1836 xas_set(&xas, index);
1837
1838 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1839 VM_BUG_ON_PAGE(page_mapped(page), page);
1840
1841 /*
1842 * The page is expected to have page_count() == 3:
1843 * - we hold a pin on it;
1844 * - one reference from page cache;
1845 * - one from isolate_lru_page;
1846 */
1847 if (!page_ref_freeze(page, 3)) {
1848 result = SCAN_PAGE_COUNT;
1849 xas_unlock_irq(&xas);
1850 putback_lru_page(page);
1851 goto out_unlock;
1852 }
1853
1854 /*
1855 * Add the page to the list to be able to undo the collapse if
1856 * something go wrong.
1857 */
1858 list_add_tail(&page->lru, &pagelist);
1859
1860 /* Finally, replace with the new page. */
1861 xas_store(&xas, new_page);
1862 continue;
1863 out_unlock:
1864 unlock_page(page);
1865 put_page(page);
1866 goto xa_unlocked;
1867 }
1868
1869 if (is_shmem)
1870 __inc_lruvec_page_state(new_page, NR_SHMEM_THPS);
1871 else {
1872 __inc_lruvec_page_state(new_page, NR_FILE_THPS);
1873 filemap_nr_thps_inc(mapping);
1874 }
1875
1876 if (nr_none) {
1877 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1878 if (is_shmem)
1879 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1880 }
1881
1882 xa_locked:
1883 xas_unlock_irq(&xas);
1884 xa_unlocked:
1885
1886 if (result == SCAN_SUCCEED) {
1887 struct page *page, *tmp;
1888
1889 /*
1890 * Replacing old pages with new one has succeeded, now we
1891 * need to copy the content and free the old pages.
1892 */
1893 index = start;
1894 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1895 while (index < page->index) {
1896 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1897 index++;
1898 }
1899 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1900 page);
1901 list_del(&page->lru);
1902 page->mapping = NULL;
1903 page_ref_unfreeze(page, 1);
1904 ClearPageActive(page);
1905 ClearPageUnevictable(page);
1906 unlock_page(page);
1907 put_page(page);
1908 index++;
1909 }
1910 while (index < end) {
1911 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1912 index++;
1913 }
1914
1915 SetPageUptodate(new_page);
1916 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1917 if (is_shmem)
1918 set_page_dirty(new_page);
1919 lru_cache_add(new_page);
1920
1921 /*
1922 * Remove pte page tables, so we can re-fault the page as huge.
1923 */
1924 retract_page_tables(mapping, start);
1925 *hpage = NULL;
1926
1927 khugepaged_pages_collapsed++;
1928 } else {
1929 struct page *page;
1930
1931 /* Something went wrong: roll back page cache changes */
1932 xas_lock_irq(&xas);
1933 mapping->nrpages -= nr_none;
1934
1935 if (is_shmem)
1936 shmem_uncharge(mapping->host, nr_none);
1937
1938 xas_set(&xas, start);
1939 xas_for_each(&xas, page, end - 1) {
1940 page = list_first_entry_or_null(&pagelist,
1941 struct page, lru);
1942 if (!page || xas.xa_index < page->index) {
1943 if (!nr_none)
1944 break;
1945 nr_none--;
1946 /* Put holes back where they were */
1947 xas_store(&xas, NULL);
1948 continue;
1949 }
1950
1951 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1952
1953 /* Unfreeze the page. */
1954 list_del(&page->lru);
1955 page_ref_unfreeze(page, 2);
1956 xas_store(&xas, page);
1957 xas_pause(&xas);
1958 xas_unlock_irq(&xas);
1959 unlock_page(page);
1960 putback_lru_page(page);
1961 xas_lock_irq(&xas);
1962 }
1963 VM_BUG_ON(nr_none);
1964 xas_unlock_irq(&xas);
1965
1966 new_page->mapping = NULL;
1967 }
1968
1969 unlock_page(new_page);
1970 out:
1971 VM_BUG_ON(!list_empty(&pagelist));
1972 if (!IS_ERR_OR_NULL(*hpage))
1973 mem_cgroup_uncharge(*hpage);
1974 /* TODO: tracepoints */
1975 }
1976
1977 static void khugepaged_scan_file(struct mm_struct *mm,
1978 struct file *file, pgoff_t start, struct page **hpage)
1979 {
1980 struct page *page = NULL;
1981 struct address_space *mapping = file->f_mapping;
1982 XA_STATE(xas, &mapping->i_pages, start);
1983 int present, swap;
1984 int node = NUMA_NO_NODE;
1985 int result = SCAN_SUCCEED;
1986
1987 present = 0;
1988 swap = 0;
1989 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1990 rcu_read_lock();
1991 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1992 if (xas_retry(&xas, page))
1993 continue;
1994
1995 if (xa_is_value(page)) {
1996 if (++swap > khugepaged_max_ptes_swap) {
1997 result = SCAN_EXCEED_SWAP_PTE;
1998 break;
1999 }
2000 continue;
2001 }
2002
2003 if (PageTransCompound(page)) {
2004 result = SCAN_PAGE_COMPOUND;
2005 break;
2006 }
2007
2008 node = page_to_nid(page);
2009 if (khugepaged_scan_abort(node)) {
2010 result = SCAN_SCAN_ABORT;
2011 break;
2012 }
2013 khugepaged_node_load[node]++;
2014
2015 if (!PageLRU(page)) {
2016 result = SCAN_PAGE_LRU;
2017 break;
2018 }
2019
2020 if (page_count(page) !=
2021 1 + page_mapcount(page) + page_has_private(page)) {
2022 result = SCAN_PAGE_COUNT;
2023 break;
2024 }
2025
2026 /*
2027 * We probably should check if the page is referenced here, but
2028 * nobody would transfer pte_young() to PageReferenced() for us.
2029 * And rmap walk here is just too costly...
2030 */
2031
2032 present++;
2033
2034 if (need_resched()) {
2035 xas_pause(&xas);
2036 cond_resched_rcu();
2037 }
2038 }
2039 rcu_read_unlock();
2040
2041 if (result == SCAN_SUCCEED) {
2042 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2043 result = SCAN_EXCEED_NONE_PTE;
2044 } else {
2045 node = khugepaged_find_target_node();
2046 collapse_file(mm, file, start, hpage, node);
2047 }
2048 }
2049
2050 /* TODO: tracepoints */
2051 }
2052 #else
2053 static void khugepaged_scan_file(struct mm_struct *mm,
2054 struct file *file, pgoff_t start, struct page **hpage)
2055 {
2056 BUILD_BUG();
2057 }
2058
2059 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2060 {
2061 return 0;
2062 }
2063 #endif
2064
2065 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2066 struct page **hpage)
2067 __releases(&khugepaged_mm_lock)
2068 __acquires(&khugepaged_mm_lock)
2069 {
2070 struct mm_slot *mm_slot;
2071 struct mm_struct *mm;
2072 struct vm_area_struct *vma;
2073 int progress = 0;
2074
2075 VM_BUG_ON(!pages);
2076 lockdep_assert_held(&khugepaged_mm_lock);
2077
2078 if (khugepaged_scan.mm_slot)
2079 mm_slot = khugepaged_scan.mm_slot;
2080 else {
2081 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2082 struct mm_slot, mm_node);
2083 khugepaged_scan.address = 0;
2084 khugepaged_scan.mm_slot = mm_slot;
2085 }
2086 spin_unlock(&khugepaged_mm_lock);
2087 khugepaged_collapse_pte_mapped_thps(mm_slot);
2088
2089 mm = mm_slot->mm;
2090 /*
2091 * Don't wait for semaphore (to avoid long wait times). Just move to
2092 * the next mm on the list.
2093 */
2094 vma = NULL;
2095 if (unlikely(!mmap_read_trylock(mm)))
2096 goto breakouterloop_mmap_lock;
2097 if (likely(!khugepaged_test_exit(mm)))
2098 vma = find_vma(mm, khugepaged_scan.address);
2099
2100 progress++;
2101 for (; vma; vma = vma->vm_next) {
2102 unsigned long hstart, hend;
2103
2104 cond_resched();
2105 if (unlikely(khugepaged_test_exit(mm))) {
2106 progress++;
2107 break;
2108 }
2109 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2110 skip:
2111 progress++;
2112 continue;
2113 }
2114 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2115 hend = vma->vm_end & HPAGE_PMD_MASK;
2116 if (hstart >= hend)
2117 goto skip;
2118 if (khugepaged_scan.address > hend)
2119 goto skip;
2120 if (khugepaged_scan.address < hstart)
2121 khugepaged_scan.address = hstart;
2122 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2123 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2124 goto skip;
2125
2126 while (khugepaged_scan.address < hend) {
2127 int ret;
2128 cond_resched();
2129 if (unlikely(khugepaged_test_exit(mm)))
2130 goto breakouterloop;
2131
2132 VM_BUG_ON(khugepaged_scan.address < hstart ||
2133 khugepaged_scan.address + HPAGE_PMD_SIZE >
2134 hend);
2135 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2136 struct file *file = get_file(vma->vm_file);
2137 pgoff_t pgoff = linear_page_index(vma,
2138 khugepaged_scan.address);
2139
2140 mmap_read_unlock(mm);
2141 ret = 1;
2142 khugepaged_scan_file(mm, file, pgoff, hpage);
2143 fput(file);
2144 } else {
2145 ret = khugepaged_scan_pmd(mm, vma,
2146 khugepaged_scan.address,
2147 hpage);
2148 }
2149 /* move to next address */
2150 khugepaged_scan.address += HPAGE_PMD_SIZE;
2151 progress += HPAGE_PMD_NR;
2152 if (ret)
2153 /* we released mmap_lock so break loop */
2154 goto breakouterloop_mmap_lock;
2155 if (progress >= pages)
2156 goto breakouterloop;
2157 }
2158 }
2159 breakouterloop:
2160 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2161 breakouterloop_mmap_lock:
2162
2163 spin_lock(&khugepaged_mm_lock);
2164 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2165 /*
2166 * Release the current mm_slot if this mm is about to die, or
2167 * if we scanned all vmas of this mm.
2168 */
2169 if (khugepaged_test_exit(mm) || !vma) {
2170 /*
2171 * Make sure that if mm_users is reaching zero while
2172 * khugepaged runs here, khugepaged_exit will find
2173 * mm_slot not pointing to the exiting mm.
2174 */
2175 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2176 khugepaged_scan.mm_slot = list_entry(
2177 mm_slot->mm_node.next,
2178 struct mm_slot, mm_node);
2179 khugepaged_scan.address = 0;
2180 } else {
2181 khugepaged_scan.mm_slot = NULL;
2182 khugepaged_full_scans++;
2183 }
2184
2185 collect_mm_slot(mm_slot);
2186 }
2187
2188 return progress;
2189 }
2190
2191 static int khugepaged_has_work(void)
2192 {
2193 return !list_empty(&khugepaged_scan.mm_head) &&
2194 khugepaged_enabled();
2195 }
2196
2197 static int khugepaged_wait_event(void)
2198 {
2199 return !list_empty(&khugepaged_scan.mm_head) ||
2200 kthread_should_stop();
2201 }
2202
2203 static void khugepaged_do_scan(void)
2204 {
2205 struct page *hpage = NULL;
2206 unsigned int progress = 0, pass_through_head = 0;
2207 unsigned int pages = khugepaged_pages_to_scan;
2208 bool wait = true;
2209
2210 barrier(); /* write khugepaged_pages_to_scan to local stack */
2211
2212 lru_add_drain_all();
2213
2214 while (progress < pages) {
2215 if (!khugepaged_prealloc_page(&hpage, &wait))
2216 break;
2217
2218 cond_resched();
2219
2220 if (unlikely(kthread_should_stop() || try_to_freeze()))
2221 break;
2222
2223 spin_lock(&khugepaged_mm_lock);
2224 if (!khugepaged_scan.mm_slot)
2225 pass_through_head++;
2226 if (khugepaged_has_work() &&
2227 pass_through_head < 2)
2228 progress += khugepaged_scan_mm_slot(pages - progress,
2229 &hpage);
2230 else
2231 progress = pages;
2232 spin_unlock(&khugepaged_mm_lock);
2233 }
2234
2235 if (!IS_ERR_OR_NULL(hpage))
2236 put_page(hpage);
2237 }
2238
2239 static bool khugepaged_should_wakeup(void)
2240 {
2241 return kthread_should_stop() ||
2242 time_after_eq(jiffies, khugepaged_sleep_expire);
2243 }
2244
2245 static void khugepaged_wait_work(void)
2246 {
2247 if (khugepaged_has_work()) {
2248 const unsigned long scan_sleep_jiffies =
2249 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2250
2251 if (!scan_sleep_jiffies)
2252 return;
2253
2254 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2255 wait_event_freezable_timeout(khugepaged_wait,
2256 khugepaged_should_wakeup(),
2257 scan_sleep_jiffies);
2258 return;
2259 }
2260
2261 if (khugepaged_enabled())
2262 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2263 }
2264
2265 static int khugepaged(void *none)
2266 {
2267 struct mm_slot *mm_slot;
2268
2269 set_freezable();
2270 set_user_nice(current, MAX_NICE);
2271
2272 while (!kthread_should_stop()) {
2273 khugepaged_do_scan();
2274 khugepaged_wait_work();
2275 }
2276
2277 spin_lock(&khugepaged_mm_lock);
2278 mm_slot = khugepaged_scan.mm_slot;
2279 khugepaged_scan.mm_slot = NULL;
2280 if (mm_slot)
2281 collect_mm_slot(mm_slot);
2282 spin_unlock(&khugepaged_mm_lock);
2283 return 0;
2284 }
2285
2286 static void set_recommended_min_free_kbytes(void)
2287 {
2288 struct zone *zone;
2289 int nr_zones = 0;
2290 unsigned long recommended_min;
2291
2292 for_each_populated_zone(zone) {
2293 /*
2294 * We don't need to worry about fragmentation of
2295 * ZONE_MOVABLE since it only has movable pages.
2296 */
2297 if (zone_idx(zone) > gfp_zone(GFP_USER))
2298 continue;
2299
2300 nr_zones++;
2301 }
2302
2303 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2304 recommended_min = pageblock_nr_pages * nr_zones * 2;
2305
2306 /*
2307 * Make sure that on average at least two pageblocks are almost free
2308 * of another type, one for a migratetype to fall back to and a
2309 * second to avoid subsequent fallbacks of other types There are 3
2310 * MIGRATE_TYPES we care about.
2311 */
2312 recommended_min += pageblock_nr_pages * nr_zones *
2313 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2314
2315 /* don't ever allow to reserve more than 5% of the lowmem */
2316 recommended_min = min(recommended_min,
2317 (unsigned long) nr_free_buffer_pages() / 20);
2318 recommended_min <<= (PAGE_SHIFT-10);
2319
2320 if (recommended_min > min_free_kbytes) {
2321 if (user_min_free_kbytes >= 0)
2322 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2323 min_free_kbytes, recommended_min);
2324
2325 min_free_kbytes = recommended_min;
2326 }
2327 setup_per_zone_wmarks();
2328 }
2329
2330 int start_stop_khugepaged(void)
2331 {
2332 int err = 0;
2333
2334 mutex_lock(&khugepaged_mutex);
2335 if (khugepaged_enabled()) {
2336 if (!khugepaged_thread)
2337 khugepaged_thread = kthread_run(khugepaged, NULL,
2338 "khugepaged");
2339 if (IS_ERR(khugepaged_thread)) {
2340 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2341 err = PTR_ERR(khugepaged_thread);
2342 khugepaged_thread = NULL;
2343 goto fail;
2344 }
2345
2346 if (!list_empty(&khugepaged_scan.mm_head))
2347 wake_up_interruptible(&khugepaged_wait);
2348
2349 set_recommended_min_free_kbytes();
2350 } else if (khugepaged_thread) {
2351 kthread_stop(khugepaged_thread);
2352 khugepaged_thread = NULL;
2353 }
2354 fail:
2355 mutex_unlock(&khugepaged_mutex);
2356 return err;
2357 }
2358
2359 void khugepaged_min_free_kbytes_update(void)
2360 {
2361 mutex_lock(&khugepaged_mutex);
2362 if (khugepaged_enabled() && khugepaged_thread)
2363 set_recommended_min_free_kbytes();
2364 mutex_unlock(&khugepaged_mutex);
2365 }