]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - mm/khugepaged.c
khugepaged: fix null-pointer dereference due to race
[mirror_ubuntu-focal-kernel.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27 SCAN_FAIL,
28 SCAN_SUCCEED,
29 SCAN_PMD_NULL,
30 SCAN_EXCEED_NONE_PTE,
31 SCAN_PTE_NON_PRESENT,
32 SCAN_PAGE_RO,
33 SCAN_LACK_REFERENCED_PAGE,
34 SCAN_PAGE_NULL,
35 SCAN_SCAN_ABORT,
36 SCAN_PAGE_COUNT,
37 SCAN_PAGE_LRU,
38 SCAN_PAGE_LOCK,
39 SCAN_PAGE_ANON,
40 SCAN_PAGE_COMPOUND,
41 SCAN_ANY_PROCESS,
42 SCAN_VMA_NULL,
43 SCAN_VMA_CHECK,
44 SCAN_ADDRESS_RANGE,
45 SCAN_SWAP_CACHE_PAGE,
46 SCAN_DEL_PAGE_LRU,
47 SCAN_ALLOC_HUGE_PAGE_FAIL,
48 SCAN_CGROUP_CHARGE_FAIL,
49 SCAN_EXCEED_SWAP_PTE,
50 SCAN_TRUNCATED,
51 SCAN_PAGE_HAS_PRIVATE,
52 };
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/huge_memory.h>
56
57 /* default scan 8*512 pte (or vmas) every 30 second */
58 static unsigned int khugepaged_pages_to_scan __read_mostly;
59 static unsigned int khugepaged_pages_collapsed;
60 static unsigned int khugepaged_full_scans;
61 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
62 /* during fragmentation poll the hugepage allocator once every minute */
63 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
64 static unsigned long khugepaged_sleep_expire;
65 static DEFINE_SPINLOCK(khugepaged_mm_lock);
66 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
67 /*
68 * default collapse hugepages if there is at least one pte mapped like
69 * it would have happened if the vma was large enough during page
70 * fault.
71 */
72 static unsigned int khugepaged_max_ptes_none __read_mostly;
73 static unsigned int khugepaged_max_ptes_swap __read_mostly;
74
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
77
78 static struct kmem_cache *mm_slot_cache __read_mostly;
79
80 #define MAX_PTE_MAPPED_THP 8
81
82 /**
83 * struct mm_slot - hash lookup from mm to mm_slot
84 * @hash: hash collision list
85 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
86 * @mm: the mm that this information is valid for
87 */
88 struct mm_slot {
89 struct hlist_node hash;
90 struct list_head mm_node;
91 struct mm_struct *mm;
92
93 /* pte-mapped THP in this mm */
94 int nr_pte_mapped_thp;
95 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
96 };
97
98 /**
99 * struct khugepaged_scan - cursor for scanning
100 * @mm_head: the head of the mm list to scan
101 * @mm_slot: the current mm_slot we are scanning
102 * @address: the next address inside that to be scanned
103 *
104 * There is only the one khugepaged_scan instance of this cursor structure.
105 */
106 struct khugepaged_scan {
107 struct list_head mm_head;
108 struct mm_slot *mm_slot;
109 unsigned long address;
110 };
111
112 static struct khugepaged_scan khugepaged_scan = {
113 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
114 };
115
116 #ifdef CONFIG_SYSFS
117 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
118 struct kobj_attribute *attr,
119 char *buf)
120 {
121 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
122 }
123
124 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
125 struct kobj_attribute *attr,
126 const char *buf, size_t count)
127 {
128 unsigned long msecs;
129 int err;
130
131 err = kstrtoul(buf, 10, &msecs);
132 if (err || msecs > UINT_MAX)
133 return -EINVAL;
134
135 khugepaged_scan_sleep_millisecs = msecs;
136 khugepaged_sleep_expire = 0;
137 wake_up_interruptible(&khugepaged_wait);
138
139 return count;
140 }
141 static struct kobj_attribute scan_sleep_millisecs_attr =
142 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
143 scan_sleep_millisecs_store);
144
145 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
146 struct kobj_attribute *attr,
147 char *buf)
148 {
149 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
150 }
151
152 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
153 struct kobj_attribute *attr,
154 const char *buf, size_t count)
155 {
156 unsigned long msecs;
157 int err;
158
159 err = kstrtoul(buf, 10, &msecs);
160 if (err || msecs > UINT_MAX)
161 return -EINVAL;
162
163 khugepaged_alloc_sleep_millisecs = msecs;
164 khugepaged_sleep_expire = 0;
165 wake_up_interruptible(&khugepaged_wait);
166
167 return count;
168 }
169 static struct kobj_attribute alloc_sleep_millisecs_attr =
170 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
171 alloc_sleep_millisecs_store);
172
173 static ssize_t pages_to_scan_show(struct kobject *kobj,
174 struct kobj_attribute *attr,
175 char *buf)
176 {
177 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
178 }
179 static ssize_t pages_to_scan_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
182 {
183 int err;
184 unsigned long pages;
185
186 err = kstrtoul(buf, 10, &pages);
187 if (err || !pages || pages > UINT_MAX)
188 return -EINVAL;
189
190 khugepaged_pages_to_scan = pages;
191
192 return count;
193 }
194 static struct kobj_attribute pages_to_scan_attr =
195 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
196 pages_to_scan_store);
197
198 static ssize_t pages_collapsed_show(struct kobject *kobj,
199 struct kobj_attribute *attr,
200 char *buf)
201 {
202 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
203 }
204 static struct kobj_attribute pages_collapsed_attr =
205 __ATTR_RO(pages_collapsed);
206
207 static ssize_t full_scans_show(struct kobject *kobj,
208 struct kobj_attribute *attr,
209 char *buf)
210 {
211 return sprintf(buf, "%u\n", khugepaged_full_scans);
212 }
213 static struct kobj_attribute full_scans_attr =
214 __ATTR_RO(full_scans);
215
216 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
217 struct kobj_attribute *attr, char *buf)
218 {
219 return single_hugepage_flag_show(kobj, attr, buf,
220 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
221 }
222 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count)
225 {
226 return single_hugepage_flag_store(kobj, attr, buf, count,
227 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
228 }
229 static struct kobj_attribute khugepaged_defrag_attr =
230 __ATTR(defrag, 0644, khugepaged_defrag_show,
231 khugepaged_defrag_store);
232
233 /*
234 * max_ptes_none controls if khugepaged should collapse hugepages over
235 * any unmapped ptes in turn potentially increasing the memory
236 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
237 * reduce the available free memory in the system as it
238 * runs. Increasing max_ptes_none will instead potentially reduce the
239 * free memory in the system during the khugepaged scan.
240 */
241 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
242 struct kobj_attribute *attr,
243 char *buf)
244 {
245 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
246 }
247 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
248 struct kobj_attribute *attr,
249 const char *buf, size_t count)
250 {
251 int err;
252 unsigned long max_ptes_none;
253
254 err = kstrtoul(buf, 10, &max_ptes_none);
255 if (err || max_ptes_none > HPAGE_PMD_NR-1)
256 return -EINVAL;
257
258 khugepaged_max_ptes_none = max_ptes_none;
259
260 return count;
261 }
262 static struct kobj_attribute khugepaged_max_ptes_none_attr =
263 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
264 khugepaged_max_ptes_none_store);
265
266 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
267 struct kobj_attribute *attr,
268 char *buf)
269 {
270 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
271 }
272
273 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count)
276 {
277 int err;
278 unsigned long max_ptes_swap;
279
280 err = kstrtoul(buf, 10, &max_ptes_swap);
281 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
282 return -EINVAL;
283
284 khugepaged_max_ptes_swap = max_ptes_swap;
285
286 return count;
287 }
288
289 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
290 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
291 khugepaged_max_ptes_swap_store);
292
293 static struct attribute *khugepaged_attr[] = {
294 &khugepaged_defrag_attr.attr,
295 &khugepaged_max_ptes_none_attr.attr,
296 &pages_to_scan_attr.attr,
297 &pages_collapsed_attr.attr,
298 &full_scans_attr.attr,
299 &scan_sleep_millisecs_attr.attr,
300 &alloc_sleep_millisecs_attr.attr,
301 &khugepaged_max_ptes_swap_attr.attr,
302 NULL,
303 };
304
305 struct attribute_group khugepaged_attr_group = {
306 .attrs = khugepaged_attr,
307 .name = "khugepaged",
308 };
309 #endif /* CONFIG_SYSFS */
310
311 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
312
313 int hugepage_madvise(struct vm_area_struct *vma,
314 unsigned long *vm_flags, int advice)
315 {
316 switch (advice) {
317 case MADV_HUGEPAGE:
318 #ifdef CONFIG_S390
319 /*
320 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
321 * can't handle this properly after s390_enable_sie, so we simply
322 * ignore the madvise to prevent qemu from causing a SIGSEGV.
323 */
324 if (mm_has_pgste(vma->vm_mm))
325 return 0;
326 #endif
327 *vm_flags &= ~VM_NOHUGEPAGE;
328 *vm_flags |= VM_HUGEPAGE;
329 /*
330 * If the vma become good for khugepaged to scan,
331 * register it here without waiting a page fault that
332 * may not happen any time soon.
333 */
334 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
335 khugepaged_enter_vma_merge(vma, *vm_flags))
336 return -ENOMEM;
337 break;
338 case MADV_NOHUGEPAGE:
339 *vm_flags &= ~VM_HUGEPAGE;
340 *vm_flags |= VM_NOHUGEPAGE;
341 /*
342 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
343 * this vma even if we leave the mm registered in khugepaged if
344 * it got registered before VM_NOHUGEPAGE was set.
345 */
346 break;
347 }
348
349 return 0;
350 }
351
352 int __init khugepaged_init(void)
353 {
354 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
355 sizeof(struct mm_slot),
356 __alignof__(struct mm_slot), 0, NULL);
357 if (!mm_slot_cache)
358 return -ENOMEM;
359
360 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
361 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
362 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
363
364 return 0;
365 }
366
367 void __init khugepaged_destroy(void)
368 {
369 kmem_cache_destroy(mm_slot_cache);
370 }
371
372 static inline struct mm_slot *alloc_mm_slot(void)
373 {
374 if (!mm_slot_cache) /* initialization failed */
375 return NULL;
376 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
377 }
378
379 static inline void free_mm_slot(struct mm_slot *mm_slot)
380 {
381 kmem_cache_free(mm_slot_cache, mm_slot);
382 }
383
384 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
385 {
386 struct mm_slot *mm_slot;
387
388 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
389 if (mm == mm_slot->mm)
390 return mm_slot;
391
392 return NULL;
393 }
394
395 static void insert_to_mm_slots_hash(struct mm_struct *mm,
396 struct mm_slot *mm_slot)
397 {
398 mm_slot->mm = mm;
399 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
400 }
401
402 static inline int khugepaged_test_exit(struct mm_struct *mm)
403 {
404 return atomic_read(&mm->mm_users) == 0;
405 }
406
407 static bool hugepage_vma_check(struct vm_area_struct *vma,
408 unsigned long vm_flags)
409 {
410 if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
411 (vm_flags & VM_NOHUGEPAGE) ||
412 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
413 return false;
414
415 if (shmem_file(vma->vm_file) ||
416 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
417 vma->vm_file &&
418 (vm_flags & VM_DENYWRITE))) {
419 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
420 return false;
421 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
422 HPAGE_PMD_NR);
423 }
424 if (!vma->anon_vma || vma->vm_ops)
425 return false;
426 if (is_vma_temporary_stack(vma))
427 return false;
428 return !(vm_flags & VM_NO_KHUGEPAGED);
429 }
430
431 int __khugepaged_enter(struct mm_struct *mm)
432 {
433 struct mm_slot *mm_slot;
434 int wakeup;
435
436 mm_slot = alloc_mm_slot();
437 if (!mm_slot)
438 return -ENOMEM;
439
440 /* __khugepaged_exit() must not run from under us */
441 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
442 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
443 free_mm_slot(mm_slot);
444 return 0;
445 }
446
447 spin_lock(&khugepaged_mm_lock);
448 insert_to_mm_slots_hash(mm, mm_slot);
449 /*
450 * Insert just behind the scanning cursor, to let the area settle
451 * down a little.
452 */
453 wakeup = list_empty(&khugepaged_scan.mm_head);
454 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
455 spin_unlock(&khugepaged_mm_lock);
456
457 mmgrab(mm);
458 if (wakeup)
459 wake_up_interruptible(&khugepaged_wait);
460
461 return 0;
462 }
463
464 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
465 unsigned long vm_flags)
466 {
467 unsigned long hstart, hend;
468
469 /*
470 * khugepaged only supports read-only files for non-shmem files.
471 * khugepaged does not yet work on special mappings. And
472 * file-private shmem THP is not supported.
473 */
474 if (!hugepage_vma_check(vma, vm_flags))
475 return 0;
476
477 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
478 hend = vma->vm_end & HPAGE_PMD_MASK;
479 if (hstart < hend)
480 return khugepaged_enter(vma, vm_flags);
481 return 0;
482 }
483
484 void __khugepaged_exit(struct mm_struct *mm)
485 {
486 struct mm_slot *mm_slot;
487 int free = 0;
488
489 spin_lock(&khugepaged_mm_lock);
490 mm_slot = get_mm_slot(mm);
491 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
492 hash_del(&mm_slot->hash);
493 list_del(&mm_slot->mm_node);
494 free = 1;
495 }
496 spin_unlock(&khugepaged_mm_lock);
497
498 if (free) {
499 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
500 free_mm_slot(mm_slot);
501 mmdrop(mm);
502 } else if (mm_slot) {
503 /*
504 * This is required to serialize against
505 * khugepaged_test_exit() (which is guaranteed to run
506 * under mmap sem read mode). Stop here (after we
507 * return all pagetables will be destroyed) until
508 * khugepaged has finished working on the pagetables
509 * under the mmap_sem.
510 */
511 down_write(&mm->mmap_sem);
512 up_write(&mm->mmap_sem);
513 }
514 }
515
516 static void release_pte_page(struct page *page)
517 {
518 dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
519 unlock_page(page);
520 putback_lru_page(page);
521 }
522
523 static void release_pte_pages(pte_t *pte, pte_t *_pte)
524 {
525 while (--_pte >= pte) {
526 pte_t pteval = *_pte;
527 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
528 release_pte_page(pte_page(pteval));
529 }
530 }
531
532 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
533 unsigned long address,
534 pte_t *pte)
535 {
536 struct page *page = NULL;
537 pte_t *_pte;
538 int none_or_zero = 0, result = 0, referenced = 0;
539 bool writable = false;
540
541 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
542 _pte++, address += PAGE_SIZE) {
543 pte_t pteval = *_pte;
544 if (pte_none(pteval) || (pte_present(pteval) &&
545 is_zero_pfn(pte_pfn(pteval)))) {
546 if (!userfaultfd_armed(vma) &&
547 ++none_or_zero <= khugepaged_max_ptes_none) {
548 continue;
549 } else {
550 result = SCAN_EXCEED_NONE_PTE;
551 goto out;
552 }
553 }
554 if (!pte_present(pteval)) {
555 result = SCAN_PTE_NON_PRESENT;
556 goto out;
557 }
558 page = vm_normal_page(vma, address, pteval);
559 if (unlikely(!page)) {
560 result = SCAN_PAGE_NULL;
561 goto out;
562 }
563
564 /* TODO: teach khugepaged to collapse THP mapped with pte */
565 if (PageCompound(page)) {
566 result = SCAN_PAGE_COMPOUND;
567 goto out;
568 }
569
570 VM_BUG_ON_PAGE(!PageAnon(page), page);
571
572 /*
573 * We can do it before isolate_lru_page because the
574 * page can't be freed from under us. NOTE: PG_lock
575 * is needed to serialize against split_huge_page
576 * when invoked from the VM.
577 */
578 if (!trylock_page(page)) {
579 result = SCAN_PAGE_LOCK;
580 goto out;
581 }
582
583 /*
584 * cannot use mapcount: can't collapse if there's a gup pin.
585 * The page must only be referenced by the scanned process
586 * and page swap cache.
587 */
588 if (page_count(page) != 1 + PageSwapCache(page)) {
589 unlock_page(page);
590 result = SCAN_PAGE_COUNT;
591 goto out;
592 }
593 if (pte_write(pteval)) {
594 writable = true;
595 } else {
596 if (PageSwapCache(page) &&
597 !reuse_swap_page(page, NULL)) {
598 unlock_page(page);
599 result = SCAN_SWAP_CACHE_PAGE;
600 goto out;
601 }
602 /*
603 * Page is not in the swap cache. It can be collapsed
604 * into a THP.
605 */
606 }
607
608 /*
609 * Isolate the page to avoid collapsing an hugepage
610 * currently in use by the VM.
611 */
612 if (isolate_lru_page(page)) {
613 unlock_page(page);
614 result = SCAN_DEL_PAGE_LRU;
615 goto out;
616 }
617 inc_node_page_state(page,
618 NR_ISOLATED_ANON + page_is_file_cache(page));
619 VM_BUG_ON_PAGE(!PageLocked(page), page);
620 VM_BUG_ON_PAGE(PageLRU(page), page);
621
622 /* There should be enough young pte to collapse the page */
623 if (pte_young(pteval) ||
624 page_is_young(page) || PageReferenced(page) ||
625 mmu_notifier_test_young(vma->vm_mm, address))
626 referenced++;
627 }
628 if (likely(writable)) {
629 if (likely(referenced)) {
630 result = SCAN_SUCCEED;
631 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
632 referenced, writable, result);
633 return 1;
634 }
635 } else {
636 result = SCAN_PAGE_RO;
637 }
638
639 out:
640 release_pte_pages(pte, _pte);
641 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
642 referenced, writable, result);
643 return 0;
644 }
645
646 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
647 struct vm_area_struct *vma,
648 unsigned long address,
649 spinlock_t *ptl)
650 {
651 pte_t *_pte;
652 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
653 _pte++, page++, address += PAGE_SIZE) {
654 pte_t pteval = *_pte;
655 struct page *src_page;
656
657 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
658 clear_user_highpage(page, address);
659 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
660 if (is_zero_pfn(pte_pfn(pteval))) {
661 /*
662 * ptl mostly unnecessary.
663 */
664 spin_lock(ptl);
665 /*
666 * paravirt calls inside pte_clear here are
667 * superfluous.
668 */
669 pte_clear(vma->vm_mm, address, _pte);
670 spin_unlock(ptl);
671 }
672 } else {
673 src_page = pte_page(pteval);
674 copy_user_highpage(page, src_page, address, vma);
675 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
676 release_pte_page(src_page);
677 /*
678 * ptl mostly unnecessary, but preempt has to
679 * be disabled to update the per-cpu stats
680 * inside page_remove_rmap().
681 */
682 spin_lock(ptl);
683 /*
684 * paravirt calls inside pte_clear here are
685 * superfluous.
686 */
687 pte_clear(vma->vm_mm, address, _pte);
688 page_remove_rmap(src_page, false);
689 spin_unlock(ptl);
690 free_page_and_swap_cache(src_page);
691 }
692 }
693 }
694
695 static void khugepaged_alloc_sleep(void)
696 {
697 DEFINE_WAIT(wait);
698
699 add_wait_queue(&khugepaged_wait, &wait);
700 freezable_schedule_timeout_interruptible(
701 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
702 remove_wait_queue(&khugepaged_wait, &wait);
703 }
704
705 static int khugepaged_node_load[MAX_NUMNODES];
706
707 static bool khugepaged_scan_abort(int nid)
708 {
709 int i;
710
711 /*
712 * If node_reclaim_mode is disabled, then no extra effort is made to
713 * allocate memory locally.
714 */
715 if (!node_reclaim_mode)
716 return false;
717
718 /* If there is a count for this node already, it must be acceptable */
719 if (khugepaged_node_load[nid])
720 return false;
721
722 for (i = 0; i < MAX_NUMNODES; i++) {
723 if (!khugepaged_node_load[i])
724 continue;
725 if (node_distance(nid, i) > node_reclaim_distance)
726 return true;
727 }
728 return false;
729 }
730
731 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
732 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
733 {
734 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
735 }
736
737 #ifdef CONFIG_NUMA
738 static int khugepaged_find_target_node(void)
739 {
740 static int last_khugepaged_target_node = NUMA_NO_NODE;
741 int nid, target_node = 0, max_value = 0;
742
743 /* find first node with max normal pages hit */
744 for (nid = 0; nid < MAX_NUMNODES; nid++)
745 if (khugepaged_node_load[nid] > max_value) {
746 max_value = khugepaged_node_load[nid];
747 target_node = nid;
748 }
749
750 /* do some balance if several nodes have the same hit record */
751 if (target_node <= last_khugepaged_target_node)
752 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
753 nid++)
754 if (max_value == khugepaged_node_load[nid]) {
755 target_node = nid;
756 break;
757 }
758
759 last_khugepaged_target_node = target_node;
760 return target_node;
761 }
762
763 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
764 {
765 if (IS_ERR(*hpage)) {
766 if (!*wait)
767 return false;
768
769 *wait = false;
770 *hpage = NULL;
771 khugepaged_alloc_sleep();
772 } else if (*hpage) {
773 put_page(*hpage);
774 *hpage = NULL;
775 }
776
777 return true;
778 }
779
780 static struct page *
781 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
782 {
783 VM_BUG_ON_PAGE(*hpage, *hpage);
784
785 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
786 if (unlikely(!*hpage)) {
787 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
788 *hpage = ERR_PTR(-ENOMEM);
789 return NULL;
790 }
791
792 prep_transhuge_page(*hpage);
793 count_vm_event(THP_COLLAPSE_ALLOC);
794 return *hpage;
795 }
796 #else
797 static int khugepaged_find_target_node(void)
798 {
799 return 0;
800 }
801
802 static inline struct page *alloc_khugepaged_hugepage(void)
803 {
804 struct page *page;
805
806 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
807 HPAGE_PMD_ORDER);
808 if (page)
809 prep_transhuge_page(page);
810 return page;
811 }
812
813 static struct page *khugepaged_alloc_hugepage(bool *wait)
814 {
815 struct page *hpage;
816
817 do {
818 hpage = alloc_khugepaged_hugepage();
819 if (!hpage) {
820 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
821 if (!*wait)
822 return NULL;
823
824 *wait = false;
825 khugepaged_alloc_sleep();
826 } else
827 count_vm_event(THP_COLLAPSE_ALLOC);
828 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
829
830 return hpage;
831 }
832
833 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
834 {
835 if (!*hpage)
836 *hpage = khugepaged_alloc_hugepage(wait);
837
838 if (unlikely(!*hpage))
839 return false;
840
841 return true;
842 }
843
844 static struct page *
845 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
846 {
847 VM_BUG_ON(!*hpage);
848
849 return *hpage;
850 }
851 #endif
852
853 /*
854 * If mmap_sem temporarily dropped, revalidate vma
855 * before taking mmap_sem.
856 * Return 0 if succeeds, otherwise return none-zero
857 * value (scan code).
858 */
859
860 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
861 struct vm_area_struct **vmap)
862 {
863 struct vm_area_struct *vma;
864 unsigned long hstart, hend;
865
866 if (unlikely(khugepaged_test_exit(mm)))
867 return SCAN_ANY_PROCESS;
868
869 *vmap = vma = find_vma(mm, address);
870 if (!vma)
871 return SCAN_VMA_NULL;
872
873 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
874 hend = vma->vm_end & HPAGE_PMD_MASK;
875 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
876 return SCAN_ADDRESS_RANGE;
877 if (!hugepage_vma_check(vma, vma->vm_flags))
878 return SCAN_VMA_CHECK;
879 /* Anon VMA expected */
880 if (!vma->anon_vma || vma->vm_ops)
881 return SCAN_VMA_CHECK;
882 return 0;
883 }
884
885 /*
886 * Bring missing pages in from swap, to complete THP collapse.
887 * Only done if khugepaged_scan_pmd believes it is worthwhile.
888 *
889 * Called and returns without pte mapped or spinlocks held,
890 * but with mmap_sem held to protect against vma changes.
891 */
892
893 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
894 struct vm_area_struct *vma,
895 unsigned long address, pmd_t *pmd,
896 int referenced)
897 {
898 int swapped_in = 0;
899 vm_fault_t ret = 0;
900 struct vm_fault vmf = {
901 .vma = vma,
902 .address = address,
903 .flags = FAULT_FLAG_ALLOW_RETRY,
904 .pmd = pmd,
905 .pgoff = linear_page_index(vma, address),
906 };
907
908 /* we only decide to swapin, if there is enough young ptes */
909 if (referenced < HPAGE_PMD_NR/2) {
910 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
911 return false;
912 }
913 vmf.pte = pte_offset_map(pmd, address);
914 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
915 vmf.pte++, vmf.address += PAGE_SIZE) {
916 vmf.orig_pte = *vmf.pte;
917 if (!is_swap_pte(vmf.orig_pte))
918 continue;
919 swapped_in++;
920 ret = do_swap_page(&vmf);
921
922 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
923 if (ret & VM_FAULT_RETRY) {
924 down_read(&mm->mmap_sem);
925 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
926 /* vma is no longer available, don't continue to swapin */
927 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
928 return false;
929 }
930 /* check if the pmd is still valid */
931 if (mm_find_pmd(mm, address) != pmd) {
932 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
933 return false;
934 }
935 }
936 if (ret & VM_FAULT_ERROR) {
937 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
938 return false;
939 }
940 /* pte is unmapped now, we need to map it */
941 vmf.pte = pte_offset_map(pmd, vmf.address);
942 }
943 vmf.pte--;
944 pte_unmap(vmf.pte);
945 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
946 return true;
947 }
948
949 static void collapse_huge_page(struct mm_struct *mm,
950 unsigned long address,
951 struct page **hpage,
952 int node, int referenced)
953 {
954 pmd_t *pmd, _pmd;
955 pte_t *pte;
956 pgtable_t pgtable;
957 struct page *new_page;
958 spinlock_t *pmd_ptl, *pte_ptl;
959 int isolated = 0, result = 0;
960 struct mem_cgroup *memcg;
961 struct vm_area_struct *vma;
962 struct mmu_notifier_range range;
963 gfp_t gfp;
964
965 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
966
967 /* Only allocate from the target node */
968 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
969
970 /*
971 * Before allocating the hugepage, release the mmap_sem read lock.
972 * The allocation can take potentially a long time if it involves
973 * sync compaction, and we do not need to hold the mmap_sem during
974 * that. We will recheck the vma after taking it again in write mode.
975 */
976 up_read(&mm->mmap_sem);
977 new_page = khugepaged_alloc_page(hpage, gfp, node);
978 if (!new_page) {
979 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
980 goto out_nolock;
981 }
982
983 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
984 result = SCAN_CGROUP_CHARGE_FAIL;
985 goto out_nolock;
986 }
987
988 down_read(&mm->mmap_sem);
989 result = hugepage_vma_revalidate(mm, address, &vma);
990 if (result) {
991 mem_cgroup_cancel_charge(new_page, memcg, true);
992 up_read(&mm->mmap_sem);
993 goto out_nolock;
994 }
995
996 pmd = mm_find_pmd(mm, address);
997 if (!pmd) {
998 result = SCAN_PMD_NULL;
999 mem_cgroup_cancel_charge(new_page, memcg, true);
1000 up_read(&mm->mmap_sem);
1001 goto out_nolock;
1002 }
1003
1004 /*
1005 * __collapse_huge_page_swapin always returns with mmap_sem locked.
1006 * If it fails, we release mmap_sem and jump out_nolock.
1007 * Continuing to collapse causes inconsistency.
1008 */
1009 if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1010 mem_cgroup_cancel_charge(new_page, memcg, true);
1011 up_read(&mm->mmap_sem);
1012 goto out_nolock;
1013 }
1014
1015 up_read(&mm->mmap_sem);
1016 /*
1017 * Prevent all access to pagetables with the exception of
1018 * gup_fast later handled by the ptep_clear_flush and the VM
1019 * handled by the anon_vma lock + PG_lock.
1020 */
1021 down_write(&mm->mmap_sem);
1022 result = SCAN_ANY_PROCESS;
1023 if (!mmget_still_valid(mm))
1024 goto out;
1025 result = hugepage_vma_revalidate(mm, address, &vma);
1026 if (result)
1027 goto out;
1028 /* check if the pmd is still valid */
1029 if (mm_find_pmd(mm, address) != pmd)
1030 goto out;
1031
1032 anon_vma_lock_write(vma->anon_vma);
1033
1034 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1035 address, address + HPAGE_PMD_SIZE);
1036 mmu_notifier_invalidate_range_start(&range);
1037
1038 pte = pte_offset_map(pmd, address);
1039 pte_ptl = pte_lockptr(mm, pmd);
1040
1041 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1042 /*
1043 * After this gup_fast can't run anymore. This also removes
1044 * any huge TLB entry from the CPU so we won't allow
1045 * huge and small TLB entries for the same virtual address
1046 * to avoid the risk of CPU bugs in that area.
1047 */
1048 _pmd = pmdp_collapse_flush(vma, address, pmd);
1049 spin_unlock(pmd_ptl);
1050 mmu_notifier_invalidate_range_end(&range);
1051
1052 spin_lock(pte_ptl);
1053 isolated = __collapse_huge_page_isolate(vma, address, pte);
1054 spin_unlock(pte_ptl);
1055
1056 if (unlikely(!isolated)) {
1057 pte_unmap(pte);
1058 spin_lock(pmd_ptl);
1059 BUG_ON(!pmd_none(*pmd));
1060 /*
1061 * We can only use set_pmd_at when establishing
1062 * hugepmds and never for establishing regular pmds that
1063 * points to regular pagetables. Use pmd_populate for that
1064 */
1065 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1066 spin_unlock(pmd_ptl);
1067 anon_vma_unlock_write(vma->anon_vma);
1068 result = SCAN_FAIL;
1069 goto out;
1070 }
1071
1072 /*
1073 * All pages are isolated and locked so anon_vma rmap
1074 * can't run anymore.
1075 */
1076 anon_vma_unlock_write(vma->anon_vma);
1077
1078 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1079 pte_unmap(pte);
1080 __SetPageUptodate(new_page);
1081 pgtable = pmd_pgtable(_pmd);
1082
1083 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1084 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1085
1086 /*
1087 * spin_lock() below is not the equivalent of smp_wmb(), so
1088 * this is needed to avoid the copy_huge_page writes to become
1089 * visible after the set_pmd_at() write.
1090 */
1091 smp_wmb();
1092
1093 spin_lock(pmd_ptl);
1094 BUG_ON(!pmd_none(*pmd));
1095 page_add_new_anon_rmap(new_page, vma, address, true);
1096 mem_cgroup_commit_charge(new_page, memcg, false, true);
1097 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1098 lru_cache_add_active_or_unevictable(new_page, vma);
1099 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1100 set_pmd_at(mm, address, pmd, _pmd);
1101 update_mmu_cache_pmd(vma, address, pmd);
1102 spin_unlock(pmd_ptl);
1103
1104 *hpage = NULL;
1105
1106 khugepaged_pages_collapsed++;
1107 result = SCAN_SUCCEED;
1108 out_up_write:
1109 up_write(&mm->mmap_sem);
1110 out_nolock:
1111 trace_mm_collapse_huge_page(mm, isolated, result);
1112 return;
1113 out:
1114 mem_cgroup_cancel_charge(new_page, memcg, true);
1115 goto out_up_write;
1116 }
1117
1118 static int khugepaged_scan_pmd(struct mm_struct *mm,
1119 struct vm_area_struct *vma,
1120 unsigned long address,
1121 struct page **hpage)
1122 {
1123 pmd_t *pmd;
1124 pte_t *pte, *_pte;
1125 int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1126 struct page *page = NULL;
1127 unsigned long _address;
1128 spinlock_t *ptl;
1129 int node = NUMA_NO_NODE, unmapped = 0;
1130 bool writable = false;
1131
1132 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1133
1134 pmd = mm_find_pmd(mm, address);
1135 if (!pmd) {
1136 result = SCAN_PMD_NULL;
1137 goto out;
1138 }
1139
1140 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1141 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1142 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1143 _pte++, _address += PAGE_SIZE) {
1144 pte_t pteval = *_pte;
1145 if (is_swap_pte(pteval)) {
1146 if (++unmapped <= khugepaged_max_ptes_swap) {
1147 continue;
1148 } else {
1149 result = SCAN_EXCEED_SWAP_PTE;
1150 goto out_unmap;
1151 }
1152 }
1153 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1154 if (!userfaultfd_armed(vma) &&
1155 ++none_or_zero <= khugepaged_max_ptes_none) {
1156 continue;
1157 } else {
1158 result = SCAN_EXCEED_NONE_PTE;
1159 goto out_unmap;
1160 }
1161 }
1162 if (!pte_present(pteval)) {
1163 result = SCAN_PTE_NON_PRESENT;
1164 goto out_unmap;
1165 }
1166 if (pte_write(pteval))
1167 writable = true;
1168
1169 page = vm_normal_page(vma, _address, pteval);
1170 if (unlikely(!page)) {
1171 result = SCAN_PAGE_NULL;
1172 goto out_unmap;
1173 }
1174
1175 /* TODO: teach khugepaged to collapse THP mapped with pte */
1176 if (PageCompound(page)) {
1177 result = SCAN_PAGE_COMPOUND;
1178 goto out_unmap;
1179 }
1180
1181 /*
1182 * Record which node the original page is from and save this
1183 * information to khugepaged_node_load[].
1184 * Khupaged will allocate hugepage from the node has the max
1185 * hit record.
1186 */
1187 node = page_to_nid(page);
1188 if (khugepaged_scan_abort(node)) {
1189 result = SCAN_SCAN_ABORT;
1190 goto out_unmap;
1191 }
1192 khugepaged_node_load[node]++;
1193 if (!PageLRU(page)) {
1194 result = SCAN_PAGE_LRU;
1195 goto out_unmap;
1196 }
1197 if (PageLocked(page)) {
1198 result = SCAN_PAGE_LOCK;
1199 goto out_unmap;
1200 }
1201 if (!PageAnon(page)) {
1202 result = SCAN_PAGE_ANON;
1203 goto out_unmap;
1204 }
1205
1206 /*
1207 * cannot use mapcount: can't collapse if there's a gup pin.
1208 * The page must only be referenced by the scanned process
1209 * and page swap cache.
1210 */
1211 if (page_count(page) != 1 + PageSwapCache(page)) {
1212 result = SCAN_PAGE_COUNT;
1213 goto out_unmap;
1214 }
1215 if (pte_young(pteval) ||
1216 page_is_young(page) || PageReferenced(page) ||
1217 mmu_notifier_test_young(vma->vm_mm, address))
1218 referenced++;
1219 }
1220 if (writable) {
1221 if (referenced) {
1222 result = SCAN_SUCCEED;
1223 ret = 1;
1224 } else {
1225 result = SCAN_LACK_REFERENCED_PAGE;
1226 }
1227 } else {
1228 result = SCAN_PAGE_RO;
1229 }
1230 out_unmap:
1231 pte_unmap_unlock(pte, ptl);
1232 if (ret) {
1233 node = khugepaged_find_target_node();
1234 /* collapse_huge_page will return with the mmap_sem released */
1235 collapse_huge_page(mm, address, hpage, node, referenced);
1236 }
1237 out:
1238 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1239 none_or_zero, result, unmapped);
1240 return ret;
1241 }
1242
1243 static void collect_mm_slot(struct mm_slot *mm_slot)
1244 {
1245 struct mm_struct *mm = mm_slot->mm;
1246
1247 lockdep_assert_held(&khugepaged_mm_lock);
1248
1249 if (khugepaged_test_exit(mm)) {
1250 /* free mm_slot */
1251 hash_del(&mm_slot->hash);
1252 list_del(&mm_slot->mm_node);
1253
1254 /*
1255 * Not strictly needed because the mm exited already.
1256 *
1257 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1258 */
1259
1260 /* khugepaged_mm_lock actually not necessary for the below */
1261 free_mm_slot(mm_slot);
1262 mmdrop(mm);
1263 }
1264 }
1265
1266 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1267 /*
1268 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1269 * khugepaged should try to collapse the page table.
1270 */
1271 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1272 unsigned long addr)
1273 {
1274 struct mm_slot *mm_slot;
1275
1276 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1277
1278 spin_lock(&khugepaged_mm_lock);
1279 mm_slot = get_mm_slot(mm);
1280 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1281 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1282 spin_unlock(&khugepaged_mm_lock);
1283 return 0;
1284 }
1285
1286 /**
1287 * Try to collapse a pte-mapped THP for mm at address haddr.
1288 *
1289 * This function checks whether all the PTEs in the PMD are pointing to the
1290 * right THP. If so, retract the page table so the THP can refault in with
1291 * as pmd-mapped.
1292 */
1293 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1294 {
1295 unsigned long haddr = addr & HPAGE_PMD_MASK;
1296 struct vm_area_struct *vma = find_vma(mm, haddr);
1297 struct page *hpage = NULL;
1298 pte_t *start_pte, *pte;
1299 pmd_t *pmd, _pmd;
1300 spinlock_t *ptl;
1301 int count = 0;
1302 int i;
1303
1304 if (!vma || !vma->vm_file ||
1305 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1306 return;
1307
1308 /*
1309 * This vm_flags may not have VM_HUGEPAGE if the page was not
1310 * collapsed by this mm. But we can still collapse if the page is
1311 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1312 * will not fail the vma for missing VM_HUGEPAGE
1313 */
1314 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1315 return;
1316
1317 pmd = mm_find_pmd(mm, haddr);
1318 if (!pmd)
1319 return;
1320
1321 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1322
1323 /* step 1: check all mapped PTEs are to the right huge page */
1324 for (i = 0, addr = haddr, pte = start_pte;
1325 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1326 struct page *page;
1327
1328 /* empty pte, skip */
1329 if (pte_none(*pte))
1330 continue;
1331
1332 /* page swapped out, abort */
1333 if (!pte_present(*pte))
1334 goto abort;
1335
1336 page = vm_normal_page(vma, addr, *pte);
1337
1338 if (!page || !PageCompound(page))
1339 goto abort;
1340
1341 if (!hpage) {
1342 hpage = compound_head(page);
1343 /*
1344 * The mapping of the THP should not change.
1345 *
1346 * Note that uprobe, debugger, or MAP_PRIVATE may
1347 * change the page table, but the new page will
1348 * not pass PageCompound() check.
1349 */
1350 if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
1351 goto abort;
1352 }
1353
1354 /*
1355 * Confirm the page maps to the correct subpage.
1356 *
1357 * Note that uprobe, debugger, or MAP_PRIVATE may change
1358 * the page table, but the new page will not pass
1359 * PageCompound() check.
1360 */
1361 if (WARN_ON(hpage + i != page))
1362 goto abort;
1363 count++;
1364 }
1365
1366 /* step 2: adjust rmap */
1367 for (i = 0, addr = haddr, pte = start_pte;
1368 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1369 struct page *page;
1370
1371 if (pte_none(*pte))
1372 continue;
1373 page = vm_normal_page(vma, addr, *pte);
1374 page_remove_rmap(page, false);
1375 }
1376
1377 pte_unmap_unlock(start_pte, ptl);
1378
1379 /* step 3: set proper refcount and mm_counters. */
1380 if (hpage) {
1381 page_ref_sub(hpage, count);
1382 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1383 }
1384
1385 /* step 4: collapse pmd */
1386 ptl = pmd_lock(vma->vm_mm, pmd);
1387 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1388 spin_unlock(ptl);
1389 mm_dec_nr_ptes(mm);
1390 pte_free(mm, pmd_pgtable(_pmd));
1391 return;
1392
1393 abort:
1394 pte_unmap_unlock(start_pte, ptl);
1395 }
1396
1397 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1398 {
1399 struct mm_struct *mm = mm_slot->mm;
1400 int i;
1401
1402 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1403 return 0;
1404
1405 if (!down_write_trylock(&mm->mmap_sem))
1406 return -EBUSY;
1407
1408 if (unlikely(khugepaged_test_exit(mm)))
1409 goto out;
1410
1411 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1412 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1413
1414 out:
1415 mm_slot->nr_pte_mapped_thp = 0;
1416 up_write(&mm->mmap_sem);
1417 return 0;
1418 }
1419
1420 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1421 {
1422 struct vm_area_struct *vma;
1423 unsigned long addr;
1424 pmd_t *pmd, _pmd;
1425
1426 i_mmap_lock_write(mapping);
1427 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1428 /*
1429 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1430 * got written to. These VMAs are likely not worth investing
1431 * down_write(mmap_sem) as PMD-mapping is likely to be split
1432 * later.
1433 *
1434 * Not that vma->anon_vma check is racy: it can be set up after
1435 * the check but before we took mmap_sem by the fault path.
1436 * But page lock would prevent establishing any new ptes of the
1437 * page, so we are safe.
1438 *
1439 * An alternative would be drop the check, but check that page
1440 * table is clear before calling pmdp_collapse_flush() under
1441 * ptl. It has higher chance to recover THP for the VMA, but
1442 * has higher cost too.
1443 */
1444 if (vma->anon_vma)
1445 continue;
1446 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1447 if (addr & ~HPAGE_PMD_MASK)
1448 continue;
1449 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1450 continue;
1451 pmd = mm_find_pmd(vma->vm_mm, addr);
1452 if (!pmd)
1453 continue;
1454 /*
1455 * We need exclusive mmap_sem to retract page table.
1456 *
1457 * We use trylock due to lock inversion: we need to acquire
1458 * mmap_sem while holding page lock. Fault path does it in
1459 * reverse order. Trylock is a way to avoid deadlock.
1460 */
1461 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1462 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1463 /* assume page table is clear */
1464 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1465 spin_unlock(ptl);
1466 up_write(&vma->vm_mm->mmap_sem);
1467 mm_dec_nr_ptes(vma->vm_mm);
1468 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1469 } else {
1470 /* Try again later */
1471 khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1472 }
1473 }
1474 i_mmap_unlock_write(mapping);
1475 }
1476
1477 /**
1478 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1479 *
1480 * Basic scheme is simple, details are more complex:
1481 * - allocate and lock a new huge page;
1482 * - scan page cache replacing old pages with the new one
1483 * + swap/gup in pages if necessary;
1484 * + fill in gaps;
1485 * + keep old pages around in case rollback is required;
1486 * - if replacing succeeds:
1487 * + copy data over;
1488 * + free old pages;
1489 * + unlock huge page;
1490 * - if replacing failed;
1491 * + put all pages back and unfreeze them;
1492 * + restore gaps in the page cache;
1493 * + unlock and free huge page;
1494 */
1495 static void collapse_file(struct mm_struct *mm,
1496 struct file *file, pgoff_t start,
1497 struct page **hpage, int node)
1498 {
1499 struct address_space *mapping = file->f_mapping;
1500 gfp_t gfp;
1501 struct page *new_page;
1502 struct mem_cgroup *memcg;
1503 pgoff_t index, end = start + HPAGE_PMD_NR;
1504 LIST_HEAD(pagelist);
1505 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1506 int nr_none = 0, result = SCAN_SUCCEED;
1507 bool is_shmem = shmem_file(file);
1508
1509 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1510 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1511
1512 /* Only allocate from the target node */
1513 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1514
1515 new_page = khugepaged_alloc_page(hpage, gfp, node);
1516 if (!new_page) {
1517 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1518 goto out;
1519 }
1520
1521 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1522 result = SCAN_CGROUP_CHARGE_FAIL;
1523 goto out;
1524 }
1525
1526 /* This will be less messy when we use multi-index entries */
1527 do {
1528 xas_lock_irq(&xas);
1529 xas_create_range(&xas);
1530 if (!xas_error(&xas))
1531 break;
1532 xas_unlock_irq(&xas);
1533 if (!xas_nomem(&xas, GFP_KERNEL)) {
1534 mem_cgroup_cancel_charge(new_page, memcg, true);
1535 result = SCAN_FAIL;
1536 goto out;
1537 }
1538 } while (1);
1539
1540 __SetPageLocked(new_page);
1541 if (is_shmem)
1542 __SetPageSwapBacked(new_page);
1543 new_page->index = start;
1544 new_page->mapping = mapping;
1545
1546 /*
1547 * At this point the new_page is locked and not up-to-date.
1548 * It's safe to insert it into the page cache, because nobody would
1549 * be able to map it or use it in another way until we unlock it.
1550 */
1551
1552 xas_set(&xas, start);
1553 for (index = start; index < end; index++) {
1554 struct page *page = xas_next(&xas);
1555
1556 VM_BUG_ON(index != xas.xa_index);
1557 if (is_shmem) {
1558 if (!page) {
1559 /*
1560 * Stop if extent has been truncated or
1561 * hole-punched, and is now completely
1562 * empty.
1563 */
1564 if (index == start) {
1565 if (!xas_next_entry(&xas, end - 1)) {
1566 result = SCAN_TRUNCATED;
1567 goto xa_locked;
1568 }
1569 xas_set(&xas, index);
1570 }
1571 if (!shmem_charge(mapping->host, 1)) {
1572 result = SCAN_FAIL;
1573 goto xa_locked;
1574 }
1575 xas_store(&xas, new_page);
1576 nr_none++;
1577 continue;
1578 }
1579
1580 if (xa_is_value(page) || !PageUptodate(page)) {
1581 xas_unlock_irq(&xas);
1582 /* swap in or instantiate fallocated page */
1583 if (shmem_getpage(mapping->host, index, &page,
1584 SGP_NOHUGE)) {
1585 result = SCAN_FAIL;
1586 goto xa_unlocked;
1587 }
1588 } else if (trylock_page(page)) {
1589 get_page(page);
1590 xas_unlock_irq(&xas);
1591 } else {
1592 result = SCAN_PAGE_LOCK;
1593 goto xa_locked;
1594 }
1595 } else { /* !is_shmem */
1596 if (!page || xa_is_value(page)) {
1597 xas_unlock_irq(&xas);
1598 page_cache_sync_readahead(mapping, &file->f_ra,
1599 file, index,
1600 PAGE_SIZE);
1601 /* drain pagevecs to help isolate_lru_page() */
1602 lru_add_drain();
1603 page = find_lock_page(mapping, index);
1604 if (unlikely(page == NULL)) {
1605 result = SCAN_FAIL;
1606 goto xa_unlocked;
1607 }
1608 } else if (trylock_page(page)) {
1609 get_page(page);
1610 xas_unlock_irq(&xas);
1611 } else {
1612 result = SCAN_PAGE_LOCK;
1613 goto xa_locked;
1614 }
1615 }
1616
1617 /*
1618 * The page must be locked, so we can drop the i_pages lock
1619 * without racing with truncate.
1620 */
1621 VM_BUG_ON_PAGE(!PageLocked(page), page);
1622
1623 /* make sure the page is up to date */
1624 if (unlikely(!PageUptodate(page))) {
1625 result = SCAN_FAIL;
1626 goto out_unlock;
1627 }
1628
1629 /*
1630 * If file was truncated then extended, or hole-punched, before
1631 * we locked the first page, then a THP might be there already.
1632 */
1633 if (PageTransCompound(page)) {
1634 result = SCAN_PAGE_COMPOUND;
1635 goto out_unlock;
1636 }
1637
1638 if (page_mapping(page) != mapping) {
1639 result = SCAN_TRUNCATED;
1640 goto out_unlock;
1641 }
1642
1643 if (!is_shmem && PageDirty(page)) {
1644 /*
1645 * khugepaged only works on read-only fd, so this
1646 * page is dirty because it hasn't been flushed
1647 * since first write.
1648 */
1649 result = SCAN_FAIL;
1650 goto out_unlock;
1651 }
1652
1653 if (isolate_lru_page(page)) {
1654 result = SCAN_DEL_PAGE_LRU;
1655 goto out_unlock;
1656 }
1657
1658 if (page_has_private(page) &&
1659 !try_to_release_page(page, GFP_KERNEL)) {
1660 result = SCAN_PAGE_HAS_PRIVATE;
1661 putback_lru_page(page);
1662 goto out_unlock;
1663 }
1664
1665 if (page_mapped(page))
1666 unmap_mapping_pages(mapping, index, 1, false);
1667
1668 xas_lock_irq(&xas);
1669 xas_set(&xas, index);
1670
1671 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1672 VM_BUG_ON_PAGE(page_mapped(page), page);
1673
1674 /*
1675 * The page is expected to have page_count() == 3:
1676 * - we hold a pin on it;
1677 * - one reference from page cache;
1678 * - one from isolate_lru_page;
1679 */
1680 if (!page_ref_freeze(page, 3)) {
1681 result = SCAN_PAGE_COUNT;
1682 xas_unlock_irq(&xas);
1683 putback_lru_page(page);
1684 goto out_unlock;
1685 }
1686
1687 /*
1688 * Add the page to the list to be able to undo the collapse if
1689 * something go wrong.
1690 */
1691 list_add_tail(&page->lru, &pagelist);
1692
1693 /* Finally, replace with the new page. */
1694 xas_store(&xas, new_page);
1695 continue;
1696 out_unlock:
1697 unlock_page(page);
1698 put_page(page);
1699 goto xa_unlocked;
1700 }
1701
1702 if (is_shmem)
1703 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1704 else {
1705 __inc_node_page_state(new_page, NR_FILE_THPS);
1706 filemap_nr_thps_inc(mapping);
1707 }
1708
1709 if (nr_none) {
1710 struct zone *zone = page_zone(new_page);
1711
1712 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1713 if (is_shmem)
1714 __mod_node_page_state(zone->zone_pgdat,
1715 NR_SHMEM, nr_none);
1716 }
1717
1718 xa_locked:
1719 xas_unlock_irq(&xas);
1720 xa_unlocked:
1721
1722 if (result == SCAN_SUCCEED) {
1723 struct page *page, *tmp;
1724
1725 /*
1726 * Replacing old pages with new one has succeeded, now we
1727 * need to copy the content and free the old pages.
1728 */
1729 index = start;
1730 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1731 while (index < page->index) {
1732 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1733 index++;
1734 }
1735 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1736 page);
1737 list_del(&page->lru);
1738 page->mapping = NULL;
1739 page_ref_unfreeze(page, 1);
1740 ClearPageActive(page);
1741 ClearPageUnevictable(page);
1742 unlock_page(page);
1743 put_page(page);
1744 index++;
1745 }
1746 while (index < end) {
1747 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1748 index++;
1749 }
1750
1751 SetPageUptodate(new_page);
1752 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1753 mem_cgroup_commit_charge(new_page, memcg, false, true);
1754
1755 if (is_shmem) {
1756 set_page_dirty(new_page);
1757 lru_cache_add_anon(new_page);
1758 } else {
1759 lru_cache_add_file(new_page);
1760 }
1761 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1762
1763 /*
1764 * Remove pte page tables, so we can re-fault the page as huge.
1765 */
1766 retract_page_tables(mapping, start);
1767 *hpage = NULL;
1768
1769 khugepaged_pages_collapsed++;
1770 } else {
1771 struct page *page;
1772
1773 /* Something went wrong: roll back page cache changes */
1774 xas_lock_irq(&xas);
1775 mapping->nrpages -= nr_none;
1776
1777 if (is_shmem)
1778 shmem_uncharge(mapping->host, nr_none);
1779
1780 xas_set(&xas, start);
1781 xas_for_each(&xas, page, end - 1) {
1782 page = list_first_entry_or_null(&pagelist,
1783 struct page, lru);
1784 if (!page || xas.xa_index < page->index) {
1785 if (!nr_none)
1786 break;
1787 nr_none--;
1788 /* Put holes back where they were */
1789 xas_store(&xas, NULL);
1790 continue;
1791 }
1792
1793 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1794
1795 /* Unfreeze the page. */
1796 list_del(&page->lru);
1797 page_ref_unfreeze(page, 2);
1798 xas_store(&xas, page);
1799 xas_pause(&xas);
1800 xas_unlock_irq(&xas);
1801 unlock_page(page);
1802 putback_lru_page(page);
1803 xas_lock_irq(&xas);
1804 }
1805 VM_BUG_ON(nr_none);
1806 xas_unlock_irq(&xas);
1807
1808 mem_cgroup_cancel_charge(new_page, memcg, true);
1809 new_page->mapping = NULL;
1810 }
1811
1812 unlock_page(new_page);
1813 out:
1814 VM_BUG_ON(!list_empty(&pagelist));
1815 /* TODO: tracepoints */
1816 }
1817
1818 static void khugepaged_scan_file(struct mm_struct *mm,
1819 struct file *file, pgoff_t start, struct page **hpage)
1820 {
1821 struct page *page = NULL;
1822 struct address_space *mapping = file->f_mapping;
1823 XA_STATE(xas, &mapping->i_pages, start);
1824 int present, swap;
1825 int node = NUMA_NO_NODE;
1826 int result = SCAN_SUCCEED;
1827
1828 present = 0;
1829 swap = 0;
1830 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1831 rcu_read_lock();
1832 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1833 if (xas_retry(&xas, page))
1834 continue;
1835
1836 if (xa_is_value(page)) {
1837 if (++swap > khugepaged_max_ptes_swap) {
1838 result = SCAN_EXCEED_SWAP_PTE;
1839 break;
1840 }
1841 continue;
1842 }
1843
1844 if (PageTransCompound(page)) {
1845 result = SCAN_PAGE_COMPOUND;
1846 break;
1847 }
1848
1849 node = page_to_nid(page);
1850 if (khugepaged_scan_abort(node)) {
1851 result = SCAN_SCAN_ABORT;
1852 break;
1853 }
1854 khugepaged_node_load[node]++;
1855
1856 if (!PageLRU(page)) {
1857 result = SCAN_PAGE_LRU;
1858 break;
1859 }
1860
1861 if (page_count(page) !=
1862 1 + page_mapcount(page) + page_has_private(page)) {
1863 result = SCAN_PAGE_COUNT;
1864 break;
1865 }
1866
1867 /*
1868 * We probably should check if the page is referenced here, but
1869 * nobody would transfer pte_young() to PageReferenced() for us.
1870 * And rmap walk here is just too costly...
1871 */
1872
1873 present++;
1874
1875 if (need_resched()) {
1876 xas_pause(&xas);
1877 cond_resched_rcu();
1878 }
1879 }
1880 rcu_read_unlock();
1881
1882 if (result == SCAN_SUCCEED) {
1883 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1884 result = SCAN_EXCEED_NONE_PTE;
1885 } else {
1886 node = khugepaged_find_target_node();
1887 collapse_file(mm, file, start, hpage, node);
1888 }
1889 }
1890
1891 /* TODO: tracepoints */
1892 }
1893 #else
1894 static void khugepaged_scan_file(struct mm_struct *mm,
1895 struct file *file, pgoff_t start, struct page **hpage)
1896 {
1897 BUILD_BUG();
1898 }
1899
1900 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1901 {
1902 return 0;
1903 }
1904 #endif
1905
1906 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1907 struct page **hpage)
1908 __releases(&khugepaged_mm_lock)
1909 __acquires(&khugepaged_mm_lock)
1910 {
1911 struct mm_slot *mm_slot;
1912 struct mm_struct *mm;
1913 struct vm_area_struct *vma;
1914 int progress = 0;
1915
1916 VM_BUG_ON(!pages);
1917 lockdep_assert_held(&khugepaged_mm_lock);
1918
1919 if (khugepaged_scan.mm_slot)
1920 mm_slot = khugepaged_scan.mm_slot;
1921 else {
1922 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1923 struct mm_slot, mm_node);
1924 khugepaged_scan.address = 0;
1925 khugepaged_scan.mm_slot = mm_slot;
1926 }
1927 spin_unlock(&khugepaged_mm_lock);
1928 khugepaged_collapse_pte_mapped_thps(mm_slot);
1929
1930 mm = mm_slot->mm;
1931 /*
1932 * Don't wait for semaphore (to avoid long wait times). Just move to
1933 * the next mm on the list.
1934 */
1935 vma = NULL;
1936 if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1937 goto breakouterloop_mmap_sem;
1938 if (likely(!khugepaged_test_exit(mm)))
1939 vma = find_vma(mm, khugepaged_scan.address);
1940
1941 progress++;
1942 for (; vma; vma = vma->vm_next) {
1943 unsigned long hstart, hend;
1944
1945 cond_resched();
1946 if (unlikely(khugepaged_test_exit(mm))) {
1947 progress++;
1948 break;
1949 }
1950 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1951 skip:
1952 progress++;
1953 continue;
1954 }
1955 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1956 hend = vma->vm_end & HPAGE_PMD_MASK;
1957 if (hstart >= hend)
1958 goto skip;
1959 if (khugepaged_scan.address > hend)
1960 goto skip;
1961 if (khugepaged_scan.address < hstart)
1962 khugepaged_scan.address = hstart;
1963 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1964
1965 while (khugepaged_scan.address < hend) {
1966 int ret;
1967 cond_resched();
1968 if (unlikely(khugepaged_test_exit(mm)))
1969 goto breakouterloop;
1970
1971 VM_BUG_ON(khugepaged_scan.address < hstart ||
1972 khugepaged_scan.address + HPAGE_PMD_SIZE >
1973 hend);
1974 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
1975 struct file *file;
1976 pgoff_t pgoff = linear_page_index(vma,
1977 khugepaged_scan.address);
1978
1979 if (shmem_file(vma->vm_file)
1980 && !shmem_huge_enabled(vma))
1981 goto skip;
1982 file = get_file(vma->vm_file);
1983 up_read(&mm->mmap_sem);
1984 ret = 1;
1985 khugepaged_scan_file(mm, file, pgoff, hpage);
1986 fput(file);
1987 } else {
1988 ret = khugepaged_scan_pmd(mm, vma,
1989 khugepaged_scan.address,
1990 hpage);
1991 }
1992 /* move to next address */
1993 khugepaged_scan.address += HPAGE_PMD_SIZE;
1994 progress += HPAGE_PMD_NR;
1995 if (ret)
1996 /* we released mmap_sem so break loop */
1997 goto breakouterloop_mmap_sem;
1998 if (progress >= pages)
1999 goto breakouterloop;
2000 }
2001 }
2002 breakouterloop:
2003 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2004 breakouterloop_mmap_sem:
2005
2006 spin_lock(&khugepaged_mm_lock);
2007 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2008 /*
2009 * Release the current mm_slot if this mm is about to die, or
2010 * if we scanned all vmas of this mm.
2011 */
2012 if (khugepaged_test_exit(mm) || !vma) {
2013 /*
2014 * Make sure that if mm_users is reaching zero while
2015 * khugepaged runs here, khugepaged_exit will find
2016 * mm_slot not pointing to the exiting mm.
2017 */
2018 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2019 khugepaged_scan.mm_slot = list_entry(
2020 mm_slot->mm_node.next,
2021 struct mm_slot, mm_node);
2022 khugepaged_scan.address = 0;
2023 } else {
2024 khugepaged_scan.mm_slot = NULL;
2025 khugepaged_full_scans++;
2026 }
2027
2028 collect_mm_slot(mm_slot);
2029 }
2030
2031 return progress;
2032 }
2033
2034 static int khugepaged_has_work(void)
2035 {
2036 return !list_empty(&khugepaged_scan.mm_head) &&
2037 khugepaged_enabled();
2038 }
2039
2040 static int khugepaged_wait_event(void)
2041 {
2042 return !list_empty(&khugepaged_scan.mm_head) ||
2043 kthread_should_stop();
2044 }
2045
2046 static void khugepaged_do_scan(void)
2047 {
2048 struct page *hpage = NULL;
2049 unsigned int progress = 0, pass_through_head = 0;
2050 unsigned int pages = khugepaged_pages_to_scan;
2051 bool wait = true;
2052
2053 barrier(); /* write khugepaged_pages_to_scan to local stack */
2054
2055 while (progress < pages) {
2056 if (!khugepaged_prealloc_page(&hpage, &wait))
2057 break;
2058
2059 cond_resched();
2060
2061 if (unlikely(kthread_should_stop() || try_to_freeze()))
2062 break;
2063
2064 spin_lock(&khugepaged_mm_lock);
2065 if (!khugepaged_scan.mm_slot)
2066 pass_through_head++;
2067 if (khugepaged_has_work() &&
2068 pass_through_head < 2)
2069 progress += khugepaged_scan_mm_slot(pages - progress,
2070 &hpage);
2071 else
2072 progress = pages;
2073 spin_unlock(&khugepaged_mm_lock);
2074 }
2075
2076 if (!IS_ERR_OR_NULL(hpage))
2077 put_page(hpage);
2078 }
2079
2080 static bool khugepaged_should_wakeup(void)
2081 {
2082 return kthread_should_stop() ||
2083 time_after_eq(jiffies, khugepaged_sleep_expire);
2084 }
2085
2086 static void khugepaged_wait_work(void)
2087 {
2088 if (khugepaged_has_work()) {
2089 const unsigned long scan_sleep_jiffies =
2090 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2091
2092 if (!scan_sleep_jiffies)
2093 return;
2094
2095 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2096 wait_event_freezable_timeout(khugepaged_wait,
2097 khugepaged_should_wakeup(),
2098 scan_sleep_jiffies);
2099 return;
2100 }
2101
2102 if (khugepaged_enabled())
2103 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2104 }
2105
2106 static int khugepaged(void *none)
2107 {
2108 struct mm_slot *mm_slot;
2109
2110 set_freezable();
2111 set_user_nice(current, MAX_NICE);
2112
2113 while (!kthread_should_stop()) {
2114 khugepaged_do_scan();
2115 khugepaged_wait_work();
2116 }
2117
2118 spin_lock(&khugepaged_mm_lock);
2119 mm_slot = khugepaged_scan.mm_slot;
2120 khugepaged_scan.mm_slot = NULL;
2121 if (mm_slot)
2122 collect_mm_slot(mm_slot);
2123 spin_unlock(&khugepaged_mm_lock);
2124 return 0;
2125 }
2126
2127 static void set_recommended_min_free_kbytes(void)
2128 {
2129 struct zone *zone;
2130 int nr_zones = 0;
2131 unsigned long recommended_min;
2132
2133 for_each_populated_zone(zone) {
2134 /*
2135 * We don't need to worry about fragmentation of
2136 * ZONE_MOVABLE since it only has movable pages.
2137 */
2138 if (zone_idx(zone) > gfp_zone(GFP_USER))
2139 continue;
2140
2141 nr_zones++;
2142 }
2143
2144 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2145 recommended_min = pageblock_nr_pages * nr_zones * 2;
2146
2147 /*
2148 * Make sure that on average at least two pageblocks are almost free
2149 * of another type, one for a migratetype to fall back to and a
2150 * second to avoid subsequent fallbacks of other types There are 3
2151 * MIGRATE_TYPES we care about.
2152 */
2153 recommended_min += pageblock_nr_pages * nr_zones *
2154 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2155
2156 /* don't ever allow to reserve more than 5% of the lowmem */
2157 recommended_min = min(recommended_min,
2158 (unsigned long) nr_free_buffer_pages() / 20);
2159 recommended_min <<= (PAGE_SHIFT-10);
2160
2161 if (recommended_min > min_free_kbytes) {
2162 if (user_min_free_kbytes >= 0)
2163 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2164 min_free_kbytes, recommended_min);
2165
2166 min_free_kbytes = recommended_min;
2167 }
2168 setup_per_zone_wmarks();
2169 }
2170
2171 int start_stop_khugepaged(void)
2172 {
2173 static struct task_struct *khugepaged_thread __read_mostly;
2174 static DEFINE_MUTEX(khugepaged_mutex);
2175 int err = 0;
2176
2177 mutex_lock(&khugepaged_mutex);
2178 if (khugepaged_enabled()) {
2179 if (!khugepaged_thread)
2180 khugepaged_thread = kthread_run(khugepaged, NULL,
2181 "khugepaged");
2182 if (IS_ERR(khugepaged_thread)) {
2183 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2184 err = PTR_ERR(khugepaged_thread);
2185 khugepaged_thread = NULL;
2186 goto fail;
2187 }
2188
2189 if (!list_empty(&khugepaged_scan.mm_head))
2190 wake_up_interruptible(&khugepaged_wait);
2191
2192 set_recommended_min_free_kbytes();
2193 } else if (khugepaged_thread) {
2194 kthread_stop(khugepaged_thread);
2195 khugepaged_thread = NULL;
2196 }
2197 fail:
2198 mutex_unlock(&khugepaged_mutex);
2199 return err;
2200 }