]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/kmemleak.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/mason/btrfs-unstable
[mirror_ubuntu-zesty-kernel.git] / mm / kmemleak.c
1 /*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a priority search tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
61 * structure.
62 */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/module.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/gfp.h>
76 #include <linux/fs.h>
77 #include <linux/debugfs.h>
78 #include <linux/seq_file.h>
79 #include <linux/cpumask.h>
80 #include <linux/spinlock.h>
81 #include <linux/mutex.h>
82 #include <linux/rcupdate.h>
83 #include <linux/stacktrace.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/hardirq.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
94 #include <linux/mm.h>
95 #include <linux/workqueue.h>
96 #include <linux/crc32.h>
97
98 #include <asm/sections.h>
99 #include <asm/processor.h>
100 #include <asm/atomic.h>
101
102 #include <linux/kmemcheck.h>
103 #include <linux/kmemleak.h>
104
105 /*
106 * Kmemleak configuration and common defines.
107 */
108 #define MAX_TRACE 16 /* stack trace length */
109 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
110 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
111 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
113
114 #define BYTES_PER_POINTER sizeof(void *)
115
116 /* GFP bitmask for kmemleak internal allocations */
117 #define GFP_KMEMLEAK_MASK (GFP_KERNEL | GFP_ATOMIC)
118
119 /* scanning area inside a memory block */
120 struct kmemleak_scan_area {
121 struct hlist_node node;
122 unsigned long start;
123 size_t size;
124 };
125
126 #define KMEMLEAK_GREY 0
127 #define KMEMLEAK_BLACK -1
128
129 /*
130 * Structure holding the metadata for each allocated memory block.
131 * Modifications to such objects should be made while holding the
132 * object->lock. Insertions or deletions from object_list, gray_list or
133 * tree_node are already protected by the corresponding locks or mutex (see
134 * the notes on locking above). These objects are reference-counted
135 * (use_count) and freed using the RCU mechanism.
136 */
137 struct kmemleak_object {
138 spinlock_t lock;
139 unsigned long flags; /* object status flags */
140 struct list_head object_list;
141 struct list_head gray_list;
142 struct prio_tree_node tree_node;
143 struct rcu_head rcu; /* object_list lockless traversal */
144 /* object usage count; object freed when use_count == 0 */
145 atomic_t use_count;
146 unsigned long pointer;
147 size_t size;
148 /* minimum number of a pointers found before it is considered leak */
149 int min_count;
150 /* the total number of pointers found pointing to this object */
151 int count;
152 /* checksum for detecting modified objects */
153 u32 checksum;
154 /* memory ranges to be scanned inside an object (empty for all) */
155 struct hlist_head area_list;
156 unsigned long trace[MAX_TRACE];
157 unsigned int trace_len;
158 unsigned long jiffies; /* creation timestamp */
159 pid_t pid; /* pid of the current task */
160 char comm[TASK_COMM_LEN]; /* executable name */
161 };
162
163 /* flag representing the memory block allocation status */
164 #define OBJECT_ALLOCATED (1 << 0)
165 /* flag set after the first reporting of an unreference object */
166 #define OBJECT_REPORTED (1 << 1)
167 /* flag set to not scan the object */
168 #define OBJECT_NO_SCAN (1 << 2)
169
170 /* number of bytes to print per line; must be 16 or 32 */
171 #define HEX_ROW_SIZE 16
172 /* number of bytes to print at a time (1, 2, 4, 8) */
173 #define HEX_GROUP_SIZE 1
174 /* include ASCII after the hex output */
175 #define HEX_ASCII 1
176 /* max number of lines to be printed */
177 #define HEX_MAX_LINES 2
178
179 /* the list of all allocated objects */
180 static LIST_HEAD(object_list);
181 /* the list of gray-colored objects (see color_gray comment below) */
182 static LIST_HEAD(gray_list);
183 /* prio search tree for object boundaries */
184 static struct prio_tree_root object_tree_root;
185 /* rw_lock protecting the access to object_list and prio_tree_root */
186 static DEFINE_RWLOCK(kmemleak_lock);
187
188 /* allocation caches for kmemleak internal data */
189 static struct kmem_cache *object_cache;
190 static struct kmem_cache *scan_area_cache;
191
192 /* set if tracing memory operations is enabled */
193 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
194 /* set in the late_initcall if there were no errors */
195 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
196 /* enables or disables early logging of the memory operations */
197 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
198 /* set if a fata kmemleak error has occurred */
199 static atomic_t kmemleak_error = ATOMIC_INIT(0);
200
201 /* minimum and maximum address that may be valid pointers */
202 static unsigned long min_addr = ULONG_MAX;
203 static unsigned long max_addr;
204
205 static struct task_struct *scan_thread;
206 /* used to avoid reporting of recently allocated objects */
207 static unsigned long jiffies_min_age;
208 static unsigned long jiffies_last_scan;
209 /* delay between automatic memory scannings */
210 static signed long jiffies_scan_wait;
211 /* enables or disables the task stacks scanning */
212 static int kmemleak_stack_scan = 1;
213 /* protects the memory scanning, parameters and debug/kmemleak file access */
214 static DEFINE_MUTEX(scan_mutex);
215
216 /*
217 * Early object allocation/freeing logging. Kmemleak is initialized after the
218 * kernel allocator. However, both the kernel allocator and kmemleak may
219 * allocate memory blocks which need to be tracked. Kmemleak defines an
220 * arbitrary buffer to hold the allocation/freeing information before it is
221 * fully initialized.
222 */
223
224 /* kmemleak operation type for early logging */
225 enum {
226 KMEMLEAK_ALLOC,
227 KMEMLEAK_FREE,
228 KMEMLEAK_FREE_PART,
229 KMEMLEAK_NOT_LEAK,
230 KMEMLEAK_IGNORE,
231 KMEMLEAK_SCAN_AREA,
232 KMEMLEAK_NO_SCAN
233 };
234
235 /*
236 * Structure holding the information passed to kmemleak callbacks during the
237 * early logging.
238 */
239 struct early_log {
240 int op_type; /* kmemleak operation type */
241 const void *ptr; /* allocated/freed memory block */
242 size_t size; /* memory block size */
243 int min_count; /* minimum reference count */
244 unsigned long trace[MAX_TRACE]; /* stack trace */
245 unsigned int trace_len; /* stack trace length */
246 };
247
248 /* early logging buffer and current position */
249 static struct early_log
250 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
251 static int crt_early_log __initdata;
252
253 static void kmemleak_disable(void);
254
255 /*
256 * Print a warning and dump the stack trace.
257 */
258 #define kmemleak_warn(x...) do { \
259 pr_warning(x); \
260 dump_stack(); \
261 } while (0)
262
263 /*
264 * Macro invoked when a serious kmemleak condition occured and cannot be
265 * recovered from. Kmemleak will be disabled and further allocation/freeing
266 * tracing no longer available.
267 */
268 #define kmemleak_stop(x...) do { \
269 kmemleak_warn(x); \
270 kmemleak_disable(); \
271 } while (0)
272
273 /*
274 * Printing of the objects hex dump to the seq file. The number of lines to be
275 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
276 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
277 * with the object->lock held.
278 */
279 static void hex_dump_object(struct seq_file *seq,
280 struct kmemleak_object *object)
281 {
282 const u8 *ptr = (const u8 *)object->pointer;
283 int i, len, remaining;
284 unsigned char linebuf[HEX_ROW_SIZE * 5];
285
286 /* limit the number of lines to HEX_MAX_LINES */
287 remaining = len =
288 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
289
290 seq_printf(seq, " hex dump (first %d bytes):\n", len);
291 for (i = 0; i < len; i += HEX_ROW_SIZE) {
292 int linelen = min(remaining, HEX_ROW_SIZE);
293
294 remaining -= HEX_ROW_SIZE;
295 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
296 HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
297 HEX_ASCII);
298 seq_printf(seq, " %s\n", linebuf);
299 }
300 }
301
302 /*
303 * Object colors, encoded with count and min_count:
304 * - white - orphan object, not enough references to it (count < min_count)
305 * - gray - not orphan, not marked as false positive (min_count == 0) or
306 * sufficient references to it (count >= min_count)
307 * - black - ignore, it doesn't contain references (e.g. text section)
308 * (min_count == -1). No function defined for this color.
309 * Newly created objects don't have any color assigned (object->count == -1)
310 * before the next memory scan when they become white.
311 */
312 static bool color_white(const struct kmemleak_object *object)
313 {
314 return object->count != KMEMLEAK_BLACK &&
315 object->count < object->min_count;
316 }
317
318 static bool color_gray(const struct kmemleak_object *object)
319 {
320 return object->min_count != KMEMLEAK_BLACK &&
321 object->count >= object->min_count;
322 }
323
324 /*
325 * Objects are considered unreferenced only if their color is white, they have
326 * not be deleted and have a minimum age to avoid false positives caused by
327 * pointers temporarily stored in CPU registers.
328 */
329 static bool unreferenced_object(struct kmemleak_object *object)
330 {
331 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
332 time_before_eq(object->jiffies + jiffies_min_age,
333 jiffies_last_scan);
334 }
335
336 /*
337 * Printing of the unreferenced objects information to the seq file. The
338 * print_unreferenced function must be called with the object->lock held.
339 */
340 static void print_unreferenced(struct seq_file *seq,
341 struct kmemleak_object *object)
342 {
343 int i;
344 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
345
346 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
347 object->pointer, object->size);
348 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
349 object->comm, object->pid, object->jiffies,
350 msecs_age / 1000, msecs_age % 1000);
351 hex_dump_object(seq, object);
352 seq_printf(seq, " backtrace:\n");
353
354 for (i = 0; i < object->trace_len; i++) {
355 void *ptr = (void *)object->trace[i];
356 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
357 }
358 }
359
360 /*
361 * Print the kmemleak_object information. This function is used mainly for
362 * debugging special cases when kmemleak operations. It must be called with
363 * the object->lock held.
364 */
365 static void dump_object_info(struct kmemleak_object *object)
366 {
367 struct stack_trace trace;
368
369 trace.nr_entries = object->trace_len;
370 trace.entries = object->trace;
371
372 pr_notice("Object 0x%08lx (size %zu):\n",
373 object->tree_node.start, object->size);
374 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
375 object->comm, object->pid, object->jiffies);
376 pr_notice(" min_count = %d\n", object->min_count);
377 pr_notice(" count = %d\n", object->count);
378 pr_notice(" flags = 0x%lx\n", object->flags);
379 pr_notice(" checksum = %d\n", object->checksum);
380 pr_notice(" backtrace:\n");
381 print_stack_trace(&trace, 4);
382 }
383
384 /*
385 * Look-up a memory block metadata (kmemleak_object) in the priority search
386 * tree based on a pointer value. If alias is 0, only values pointing to the
387 * beginning of the memory block are allowed. The kmemleak_lock must be held
388 * when calling this function.
389 */
390 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
391 {
392 struct prio_tree_node *node;
393 struct prio_tree_iter iter;
394 struct kmemleak_object *object;
395
396 prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
397 node = prio_tree_next(&iter);
398 if (node) {
399 object = prio_tree_entry(node, struct kmemleak_object,
400 tree_node);
401 if (!alias && object->pointer != ptr) {
402 kmemleak_warn("Found object by alias");
403 object = NULL;
404 }
405 } else
406 object = NULL;
407
408 return object;
409 }
410
411 /*
412 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
413 * that once an object's use_count reached 0, the RCU freeing was already
414 * registered and the object should no longer be used. This function must be
415 * called under the protection of rcu_read_lock().
416 */
417 static int get_object(struct kmemleak_object *object)
418 {
419 return atomic_inc_not_zero(&object->use_count);
420 }
421
422 /*
423 * RCU callback to free a kmemleak_object.
424 */
425 static void free_object_rcu(struct rcu_head *rcu)
426 {
427 struct hlist_node *elem, *tmp;
428 struct kmemleak_scan_area *area;
429 struct kmemleak_object *object =
430 container_of(rcu, struct kmemleak_object, rcu);
431
432 /*
433 * Once use_count is 0 (guaranteed by put_object), there is no other
434 * code accessing this object, hence no need for locking.
435 */
436 hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
437 hlist_del(elem);
438 kmem_cache_free(scan_area_cache, area);
439 }
440 kmem_cache_free(object_cache, object);
441 }
442
443 /*
444 * Decrement the object use_count. Once the count is 0, free the object using
445 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
446 * delete_object() path, the delayed RCU freeing ensures that there is no
447 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
448 * is also possible.
449 */
450 static void put_object(struct kmemleak_object *object)
451 {
452 if (!atomic_dec_and_test(&object->use_count))
453 return;
454
455 /* should only get here after delete_object was called */
456 WARN_ON(object->flags & OBJECT_ALLOCATED);
457
458 call_rcu(&object->rcu, free_object_rcu);
459 }
460
461 /*
462 * Look up an object in the prio search tree and increase its use_count.
463 */
464 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
465 {
466 unsigned long flags;
467 struct kmemleak_object *object = NULL;
468
469 rcu_read_lock();
470 read_lock_irqsave(&kmemleak_lock, flags);
471 if (ptr >= min_addr && ptr < max_addr)
472 object = lookup_object(ptr, alias);
473 read_unlock_irqrestore(&kmemleak_lock, flags);
474
475 /* check whether the object is still available */
476 if (object && !get_object(object))
477 object = NULL;
478 rcu_read_unlock();
479
480 return object;
481 }
482
483 /*
484 * Save stack trace to the given array of MAX_TRACE size.
485 */
486 static int __save_stack_trace(unsigned long *trace)
487 {
488 struct stack_trace stack_trace;
489
490 stack_trace.max_entries = MAX_TRACE;
491 stack_trace.nr_entries = 0;
492 stack_trace.entries = trace;
493 stack_trace.skip = 2;
494 save_stack_trace(&stack_trace);
495
496 return stack_trace.nr_entries;
497 }
498
499 /*
500 * Create the metadata (struct kmemleak_object) corresponding to an allocated
501 * memory block and add it to the object_list and object_tree_root.
502 */
503 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
504 int min_count, gfp_t gfp)
505 {
506 unsigned long flags;
507 struct kmemleak_object *object;
508 struct prio_tree_node *node;
509
510 object = kmem_cache_alloc(object_cache, gfp & GFP_KMEMLEAK_MASK);
511 if (!object) {
512 kmemleak_stop("Cannot allocate a kmemleak_object structure\n");
513 return NULL;
514 }
515
516 INIT_LIST_HEAD(&object->object_list);
517 INIT_LIST_HEAD(&object->gray_list);
518 INIT_HLIST_HEAD(&object->area_list);
519 spin_lock_init(&object->lock);
520 atomic_set(&object->use_count, 1);
521 object->flags = OBJECT_ALLOCATED;
522 object->pointer = ptr;
523 object->size = size;
524 object->min_count = min_count;
525 object->count = 0; /* white color initially */
526 object->jiffies = jiffies;
527 object->checksum = 0;
528
529 /* task information */
530 if (in_irq()) {
531 object->pid = 0;
532 strncpy(object->comm, "hardirq", sizeof(object->comm));
533 } else if (in_softirq()) {
534 object->pid = 0;
535 strncpy(object->comm, "softirq", sizeof(object->comm));
536 } else {
537 object->pid = current->pid;
538 /*
539 * There is a small chance of a race with set_task_comm(),
540 * however using get_task_comm() here may cause locking
541 * dependency issues with current->alloc_lock. In the worst
542 * case, the command line is not correct.
543 */
544 strncpy(object->comm, current->comm, sizeof(object->comm));
545 }
546
547 /* kernel backtrace */
548 object->trace_len = __save_stack_trace(object->trace);
549
550 INIT_PRIO_TREE_NODE(&object->tree_node);
551 object->tree_node.start = ptr;
552 object->tree_node.last = ptr + size - 1;
553
554 write_lock_irqsave(&kmemleak_lock, flags);
555
556 min_addr = min(min_addr, ptr);
557 max_addr = max(max_addr, ptr + size);
558 node = prio_tree_insert(&object_tree_root, &object->tree_node);
559 /*
560 * The code calling the kernel does not yet have the pointer to the
561 * memory block to be able to free it. However, we still hold the
562 * kmemleak_lock here in case parts of the kernel started freeing
563 * random memory blocks.
564 */
565 if (node != &object->tree_node) {
566 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
567 "(already existing)\n", ptr);
568 object = lookup_object(ptr, 1);
569 spin_lock(&object->lock);
570 dump_object_info(object);
571 spin_unlock(&object->lock);
572
573 goto out;
574 }
575 list_add_tail_rcu(&object->object_list, &object_list);
576 out:
577 write_unlock_irqrestore(&kmemleak_lock, flags);
578 return object;
579 }
580
581 /*
582 * Remove the metadata (struct kmemleak_object) for a memory block from the
583 * object_list and object_tree_root and decrement its use_count.
584 */
585 static void __delete_object(struct kmemleak_object *object)
586 {
587 unsigned long flags;
588
589 write_lock_irqsave(&kmemleak_lock, flags);
590 prio_tree_remove(&object_tree_root, &object->tree_node);
591 list_del_rcu(&object->object_list);
592 write_unlock_irqrestore(&kmemleak_lock, flags);
593
594 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
595 WARN_ON(atomic_read(&object->use_count) < 2);
596
597 /*
598 * Locking here also ensures that the corresponding memory block
599 * cannot be freed when it is being scanned.
600 */
601 spin_lock_irqsave(&object->lock, flags);
602 object->flags &= ~OBJECT_ALLOCATED;
603 spin_unlock_irqrestore(&object->lock, flags);
604 put_object(object);
605 }
606
607 /*
608 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
609 * delete it.
610 */
611 static void delete_object_full(unsigned long ptr)
612 {
613 struct kmemleak_object *object;
614
615 object = find_and_get_object(ptr, 0);
616 if (!object) {
617 #ifdef DEBUG
618 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
619 ptr);
620 #endif
621 return;
622 }
623 __delete_object(object);
624 put_object(object);
625 }
626
627 /*
628 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
629 * delete it. If the memory block is partially freed, the function may create
630 * additional metadata for the remaining parts of the block.
631 */
632 static void delete_object_part(unsigned long ptr, size_t size)
633 {
634 struct kmemleak_object *object;
635 unsigned long start, end;
636
637 object = find_and_get_object(ptr, 1);
638 if (!object) {
639 #ifdef DEBUG
640 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
641 "(size %zu)\n", ptr, size);
642 #endif
643 return;
644 }
645 __delete_object(object);
646
647 /*
648 * Create one or two objects that may result from the memory block
649 * split. Note that partial freeing is only done by free_bootmem() and
650 * this happens before kmemleak_init() is called. The path below is
651 * only executed during early log recording in kmemleak_init(), so
652 * GFP_KERNEL is enough.
653 */
654 start = object->pointer;
655 end = object->pointer + object->size;
656 if (ptr > start)
657 create_object(start, ptr - start, object->min_count,
658 GFP_KERNEL);
659 if (ptr + size < end)
660 create_object(ptr + size, end - ptr - size, object->min_count,
661 GFP_KERNEL);
662
663 put_object(object);
664 }
665
666 static void __paint_it(struct kmemleak_object *object, int color)
667 {
668 object->min_count = color;
669 if (color == KMEMLEAK_BLACK)
670 object->flags |= OBJECT_NO_SCAN;
671 }
672
673 static void paint_it(struct kmemleak_object *object, int color)
674 {
675 unsigned long flags;
676
677 spin_lock_irqsave(&object->lock, flags);
678 __paint_it(object, color);
679 spin_unlock_irqrestore(&object->lock, flags);
680 }
681
682 static void paint_ptr(unsigned long ptr, int color)
683 {
684 struct kmemleak_object *object;
685
686 object = find_and_get_object(ptr, 0);
687 if (!object) {
688 kmemleak_warn("Trying to color unknown object "
689 "at 0x%08lx as %s\n", ptr,
690 (color == KMEMLEAK_GREY) ? "Grey" :
691 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
692 return;
693 }
694 paint_it(object, color);
695 put_object(object);
696 }
697
698 /*
699 * Make a object permanently as gray-colored so that it can no longer be
700 * reported as a leak. This is used in general to mark a false positive.
701 */
702 static void make_gray_object(unsigned long ptr)
703 {
704 paint_ptr(ptr, KMEMLEAK_GREY);
705 }
706
707 /*
708 * Mark the object as black-colored so that it is ignored from scans and
709 * reporting.
710 */
711 static void make_black_object(unsigned long ptr)
712 {
713 paint_ptr(ptr, KMEMLEAK_BLACK);
714 }
715
716 /*
717 * Add a scanning area to the object. If at least one such area is added,
718 * kmemleak will only scan these ranges rather than the whole memory block.
719 */
720 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
721 {
722 unsigned long flags;
723 struct kmemleak_object *object;
724 struct kmemleak_scan_area *area;
725
726 object = find_and_get_object(ptr, 1);
727 if (!object) {
728 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
729 ptr);
730 return;
731 }
732
733 area = kmem_cache_alloc(scan_area_cache, gfp & GFP_KMEMLEAK_MASK);
734 if (!area) {
735 kmemleak_warn("Cannot allocate a scan area\n");
736 goto out;
737 }
738
739 spin_lock_irqsave(&object->lock, flags);
740 if (ptr + size > object->pointer + object->size) {
741 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
742 dump_object_info(object);
743 kmem_cache_free(scan_area_cache, area);
744 goto out_unlock;
745 }
746
747 INIT_HLIST_NODE(&area->node);
748 area->start = ptr;
749 area->size = size;
750
751 hlist_add_head(&area->node, &object->area_list);
752 out_unlock:
753 spin_unlock_irqrestore(&object->lock, flags);
754 out:
755 put_object(object);
756 }
757
758 /*
759 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
760 * pointer. Such object will not be scanned by kmemleak but references to it
761 * are searched.
762 */
763 static void object_no_scan(unsigned long ptr)
764 {
765 unsigned long flags;
766 struct kmemleak_object *object;
767
768 object = find_and_get_object(ptr, 0);
769 if (!object) {
770 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
771 return;
772 }
773
774 spin_lock_irqsave(&object->lock, flags);
775 object->flags |= OBJECT_NO_SCAN;
776 spin_unlock_irqrestore(&object->lock, flags);
777 put_object(object);
778 }
779
780 /*
781 * Log an early kmemleak_* call to the early_log buffer. These calls will be
782 * processed later once kmemleak is fully initialized.
783 */
784 static void __init log_early(int op_type, const void *ptr, size_t size,
785 int min_count)
786 {
787 unsigned long flags;
788 struct early_log *log;
789
790 if (crt_early_log >= ARRAY_SIZE(early_log)) {
791 pr_warning("Early log buffer exceeded, "
792 "please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n");
793 kmemleak_disable();
794 return;
795 }
796
797 /*
798 * There is no need for locking since the kernel is still in UP mode
799 * at this stage. Disabling the IRQs is enough.
800 */
801 local_irq_save(flags);
802 log = &early_log[crt_early_log];
803 log->op_type = op_type;
804 log->ptr = ptr;
805 log->size = size;
806 log->min_count = min_count;
807 if (op_type == KMEMLEAK_ALLOC)
808 log->trace_len = __save_stack_trace(log->trace);
809 crt_early_log++;
810 local_irq_restore(flags);
811 }
812
813 /*
814 * Log an early allocated block and populate the stack trace.
815 */
816 static void early_alloc(struct early_log *log)
817 {
818 struct kmemleak_object *object;
819 unsigned long flags;
820 int i;
821
822 if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
823 return;
824
825 /*
826 * RCU locking needed to ensure object is not freed via put_object().
827 */
828 rcu_read_lock();
829 object = create_object((unsigned long)log->ptr, log->size,
830 log->min_count, GFP_ATOMIC);
831 if (!object)
832 goto out;
833 spin_lock_irqsave(&object->lock, flags);
834 for (i = 0; i < log->trace_len; i++)
835 object->trace[i] = log->trace[i];
836 object->trace_len = log->trace_len;
837 spin_unlock_irqrestore(&object->lock, flags);
838 out:
839 rcu_read_unlock();
840 }
841
842 /*
843 * Memory allocation function callback. This function is called from the
844 * kernel allocators when a new block is allocated (kmem_cache_alloc, kmalloc,
845 * vmalloc etc.).
846 */
847 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
848 gfp_t gfp)
849 {
850 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
851
852 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
853 create_object((unsigned long)ptr, size, min_count, gfp);
854 else if (atomic_read(&kmemleak_early_log))
855 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
856 }
857 EXPORT_SYMBOL_GPL(kmemleak_alloc);
858
859 /*
860 * Memory freeing function callback. This function is called from the kernel
861 * allocators when a block is freed (kmem_cache_free, kfree, vfree etc.).
862 */
863 void __ref kmemleak_free(const void *ptr)
864 {
865 pr_debug("%s(0x%p)\n", __func__, ptr);
866
867 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
868 delete_object_full((unsigned long)ptr);
869 else if (atomic_read(&kmemleak_early_log))
870 log_early(KMEMLEAK_FREE, ptr, 0, 0);
871 }
872 EXPORT_SYMBOL_GPL(kmemleak_free);
873
874 /*
875 * Partial memory freeing function callback. This function is usually called
876 * from bootmem allocator when (part of) a memory block is freed.
877 */
878 void __ref kmemleak_free_part(const void *ptr, size_t size)
879 {
880 pr_debug("%s(0x%p)\n", __func__, ptr);
881
882 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
883 delete_object_part((unsigned long)ptr, size);
884 else if (atomic_read(&kmemleak_early_log))
885 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
886 }
887 EXPORT_SYMBOL_GPL(kmemleak_free_part);
888
889 /*
890 * Mark an already allocated memory block as a false positive. This will cause
891 * the block to no longer be reported as leak and always be scanned.
892 */
893 void __ref kmemleak_not_leak(const void *ptr)
894 {
895 pr_debug("%s(0x%p)\n", __func__, ptr);
896
897 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
898 make_gray_object((unsigned long)ptr);
899 else if (atomic_read(&kmemleak_early_log))
900 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
901 }
902 EXPORT_SYMBOL(kmemleak_not_leak);
903
904 /*
905 * Ignore a memory block. This is usually done when it is known that the
906 * corresponding block is not a leak and does not contain any references to
907 * other allocated memory blocks.
908 */
909 void __ref kmemleak_ignore(const void *ptr)
910 {
911 pr_debug("%s(0x%p)\n", __func__, ptr);
912
913 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
914 make_black_object((unsigned long)ptr);
915 else if (atomic_read(&kmemleak_early_log))
916 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
917 }
918 EXPORT_SYMBOL(kmemleak_ignore);
919
920 /*
921 * Limit the range to be scanned in an allocated memory block.
922 */
923 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
924 {
925 pr_debug("%s(0x%p)\n", __func__, ptr);
926
927 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
928 add_scan_area((unsigned long)ptr, size, gfp);
929 else if (atomic_read(&kmemleak_early_log))
930 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
931 }
932 EXPORT_SYMBOL(kmemleak_scan_area);
933
934 /*
935 * Inform kmemleak not to scan the given memory block.
936 */
937 void __ref kmemleak_no_scan(const void *ptr)
938 {
939 pr_debug("%s(0x%p)\n", __func__, ptr);
940
941 if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
942 object_no_scan((unsigned long)ptr);
943 else if (atomic_read(&kmemleak_early_log))
944 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
945 }
946 EXPORT_SYMBOL(kmemleak_no_scan);
947
948 /*
949 * Update an object's checksum and return true if it was modified.
950 */
951 static bool update_checksum(struct kmemleak_object *object)
952 {
953 u32 old_csum = object->checksum;
954
955 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
956 return false;
957
958 object->checksum = crc32(0, (void *)object->pointer, object->size);
959 return object->checksum != old_csum;
960 }
961
962 /*
963 * Memory scanning is a long process and it needs to be interruptable. This
964 * function checks whether such interrupt condition occured.
965 */
966 static int scan_should_stop(void)
967 {
968 if (!atomic_read(&kmemleak_enabled))
969 return 1;
970
971 /*
972 * This function may be called from either process or kthread context,
973 * hence the need to check for both stop conditions.
974 */
975 if (current->mm)
976 return signal_pending(current);
977 else
978 return kthread_should_stop();
979
980 return 0;
981 }
982
983 /*
984 * Scan a memory block (exclusive range) for valid pointers and add those
985 * found to the gray list.
986 */
987 static void scan_block(void *_start, void *_end,
988 struct kmemleak_object *scanned, int allow_resched)
989 {
990 unsigned long *ptr;
991 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
992 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
993
994 for (ptr = start; ptr < end; ptr++) {
995 struct kmemleak_object *object;
996 unsigned long flags;
997 unsigned long pointer;
998
999 if (allow_resched)
1000 cond_resched();
1001 if (scan_should_stop())
1002 break;
1003
1004 /* don't scan uninitialized memory */
1005 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1006 BYTES_PER_POINTER))
1007 continue;
1008
1009 pointer = *ptr;
1010
1011 object = find_and_get_object(pointer, 1);
1012 if (!object)
1013 continue;
1014 if (object == scanned) {
1015 /* self referenced, ignore */
1016 put_object(object);
1017 continue;
1018 }
1019
1020 /*
1021 * Avoid the lockdep recursive warning on object->lock being
1022 * previously acquired in scan_object(). These locks are
1023 * enclosed by scan_mutex.
1024 */
1025 spin_lock_irqsave_nested(&object->lock, flags,
1026 SINGLE_DEPTH_NESTING);
1027 if (!color_white(object)) {
1028 /* non-orphan, ignored or new */
1029 spin_unlock_irqrestore(&object->lock, flags);
1030 put_object(object);
1031 continue;
1032 }
1033
1034 /*
1035 * Increase the object's reference count (number of pointers
1036 * to the memory block). If this count reaches the required
1037 * minimum, the object's color will become gray and it will be
1038 * added to the gray_list.
1039 */
1040 object->count++;
1041 if (color_gray(object)) {
1042 list_add_tail(&object->gray_list, &gray_list);
1043 spin_unlock_irqrestore(&object->lock, flags);
1044 continue;
1045 }
1046
1047 spin_unlock_irqrestore(&object->lock, flags);
1048 put_object(object);
1049 }
1050 }
1051
1052 /*
1053 * Scan a memory block corresponding to a kmemleak_object. A condition is
1054 * that object->use_count >= 1.
1055 */
1056 static void scan_object(struct kmemleak_object *object)
1057 {
1058 struct kmemleak_scan_area *area;
1059 struct hlist_node *elem;
1060 unsigned long flags;
1061
1062 /*
1063 * Once the object->lock is acquired, the corresponding memory block
1064 * cannot be freed (the same lock is acquired in delete_object).
1065 */
1066 spin_lock_irqsave(&object->lock, flags);
1067 if (object->flags & OBJECT_NO_SCAN)
1068 goto out;
1069 if (!(object->flags & OBJECT_ALLOCATED))
1070 /* already freed object */
1071 goto out;
1072 if (hlist_empty(&object->area_list)) {
1073 void *start = (void *)object->pointer;
1074 void *end = (void *)(object->pointer + object->size);
1075
1076 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1077 !(object->flags & OBJECT_NO_SCAN)) {
1078 scan_block(start, min(start + MAX_SCAN_SIZE, end),
1079 object, 0);
1080 start += MAX_SCAN_SIZE;
1081
1082 spin_unlock_irqrestore(&object->lock, flags);
1083 cond_resched();
1084 spin_lock_irqsave(&object->lock, flags);
1085 }
1086 } else
1087 hlist_for_each_entry(area, elem, &object->area_list, node)
1088 scan_block((void *)area->start,
1089 (void *)(area->start + area->size),
1090 object, 0);
1091 out:
1092 spin_unlock_irqrestore(&object->lock, flags);
1093 }
1094
1095 /*
1096 * Scan the objects already referenced (gray objects). More objects will be
1097 * referenced and, if there are no memory leaks, all the objects are scanned.
1098 */
1099 static void scan_gray_list(void)
1100 {
1101 struct kmemleak_object *object, *tmp;
1102
1103 /*
1104 * The list traversal is safe for both tail additions and removals
1105 * from inside the loop. The kmemleak objects cannot be freed from
1106 * outside the loop because their use_count was incremented.
1107 */
1108 object = list_entry(gray_list.next, typeof(*object), gray_list);
1109 while (&object->gray_list != &gray_list) {
1110 cond_resched();
1111
1112 /* may add new objects to the list */
1113 if (!scan_should_stop())
1114 scan_object(object);
1115
1116 tmp = list_entry(object->gray_list.next, typeof(*object),
1117 gray_list);
1118
1119 /* remove the object from the list and release it */
1120 list_del(&object->gray_list);
1121 put_object(object);
1122
1123 object = tmp;
1124 }
1125 WARN_ON(!list_empty(&gray_list));
1126 }
1127
1128 /*
1129 * Scan data sections and all the referenced memory blocks allocated via the
1130 * kernel's standard allocators. This function must be called with the
1131 * scan_mutex held.
1132 */
1133 static void kmemleak_scan(void)
1134 {
1135 unsigned long flags;
1136 struct kmemleak_object *object;
1137 int i;
1138 int new_leaks = 0;
1139
1140 jiffies_last_scan = jiffies;
1141
1142 /* prepare the kmemleak_object's */
1143 rcu_read_lock();
1144 list_for_each_entry_rcu(object, &object_list, object_list) {
1145 spin_lock_irqsave(&object->lock, flags);
1146 #ifdef DEBUG
1147 /*
1148 * With a few exceptions there should be a maximum of
1149 * 1 reference to any object at this point.
1150 */
1151 if (atomic_read(&object->use_count) > 1) {
1152 pr_debug("object->use_count = %d\n",
1153 atomic_read(&object->use_count));
1154 dump_object_info(object);
1155 }
1156 #endif
1157 /* reset the reference count (whiten the object) */
1158 object->count = 0;
1159 if (color_gray(object) && get_object(object))
1160 list_add_tail(&object->gray_list, &gray_list);
1161
1162 spin_unlock_irqrestore(&object->lock, flags);
1163 }
1164 rcu_read_unlock();
1165
1166 /* data/bss scanning */
1167 scan_block(_sdata, _edata, NULL, 1);
1168 scan_block(__bss_start, __bss_stop, NULL, 1);
1169
1170 #ifdef CONFIG_SMP
1171 /* per-cpu sections scanning */
1172 for_each_possible_cpu(i)
1173 scan_block(__per_cpu_start + per_cpu_offset(i),
1174 __per_cpu_end + per_cpu_offset(i), NULL, 1);
1175 #endif
1176
1177 /*
1178 * Struct page scanning for each node. The code below is not yet safe
1179 * with MEMORY_HOTPLUG.
1180 */
1181 for_each_online_node(i) {
1182 pg_data_t *pgdat = NODE_DATA(i);
1183 unsigned long start_pfn = pgdat->node_start_pfn;
1184 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1185 unsigned long pfn;
1186
1187 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1188 struct page *page;
1189
1190 if (!pfn_valid(pfn))
1191 continue;
1192 page = pfn_to_page(pfn);
1193 /* only scan if page is in use */
1194 if (page_count(page) == 0)
1195 continue;
1196 scan_block(page, page + 1, NULL, 1);
1197 }
1198 }
1199
1200 /*
1201 * Scanning the task stacks (may introduce false negatives).
1202 */
1203 if (kmemleak_stack_scan) {
1204 struct task_struct *p, *g;
1205
1206 read_lock(&tasklist_lock);
1207 do_each_thread(g, p) {
1208 scan_block(task_stack_page(p), task_stack_page(p) +
1209 THREAD_SIZE, NULL, 0);
1210 } while_each_thread(g, p);
1211 read_unlock(&tasklist_lock);
1212 }
1213
1214 /*
1215 * Scan the objects already referenced from the sections scanned
1216 * above.
1217 */
1218 scan_gray_list();
1219
1220 /*
1221 * Check for new or unreferenced objects modified since the previous
1222 * scan and color them gray until the next scan.
1223 */
1224 rcu_read_lock();
1225 list_for_each_entry_rcu(object, &object_list, object_list) {
1226 spin_lock_irqsave(&object->lock, flags);
1227 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1228 && update_checksum(object) && get_object(object)) {
1229 /* color it gray temporarily */
1230 object->count = object->min_count;
1231 list_add_tail(&object->gray_list, &gray_list);
1232 }
1233 spin_unlock_irqrestore(&object->lock, flags);
1234 }
1235 rcu_read_unlock();
1236
1237 /*
1238 * Re-scan the gray list for modified unreferenced objects.
1239 */
1240 scan_gray_list();
1241
1242 /*
1243 * If scanning was stopped do not report any new unreferenced objects.
1244 */
1245 if (scan_should_stop())
1246 return;
1247
1248 /*
1249 * Scanning result reporting.
1250 */
1251 rcu_read_lock();
1252 list_for_each_entry_rcu(object, &object_list, object_list) {
1253 spin_lock_irqsave(&object->lock, flags);
1254 if (unreferenced_object(object) &&
1255 !(object->flags & OBJECT_REPORTED)) {
1256 object->flags |= OBJECT_REPORTED;
1257 new_leaks++;
1258 }
1259 spin_unlock_irqrestore(&object->lock, flags);
1260 }
1261 rcu_read_unlock();
1262
1263 if (new_leaks)
1264 pr_info("%d new suspected memory leaks (see "
1265 "/sys/kernel/debug/kmemleak)\n", new_leaks);
1266
1267 }
1268
1269 /*
1270 * Thread function performing automatic memory scanning. Unreferenced objects
1271 * at the end of a memory scan are reported but only the first time.
1272 */
1273 static int kmemleak_scan_thread(void *arg)
1274 {
1275 static int first_run = 1;
1276
1277 pr_info("Automatic memory scanning thread started\n");
1278 set_user_nice(current, 10);
1279
1280 /*
1281 * Wait before the first scan to allow the system to fully initialize.
1282 */
1283 if (first_run) {
1284 first_run = 0;
1285 ssleep(SECS_FIRST_SCAN);
1286 }
1287
1288 while (!kthread_should_stop()) {
1289 signed long timeout = jiffies_scan_wait;
1290
1291 mutex_lock(&scan_mutex);
1292 kmemleak_scan();
1293 mutex_unlock(&scan_mutex);
1294
1295 /* wait before the next scan */
1296 while (timeout && !kthread_should_stop())
1297 timeout = schedule_timeout_interruptible(timeout);
1298 }
1299
1300 pr_info("Automatic memory scanning thread ended\n");
1301
1302 return 0;
1303 }
1304
1305 /*
1306 * Start the automatic memory scanning thread. This function must be called
1307 * with the scan_mutex held.
1308 */
1309 static void start_scan_thread(void)
1310 {
1311 if (scan_thread)
1312 return;
1313 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1314 if (IS_ERR(scan_thread)) {
1315 pr_warning("Failed to create the scan thread\n");
1316 scan_thread = NULL;
1317 }
1318 }
1319
1320 /*
1321 * Stop the automatic memory scanning thread. This function must be called
1322 * with the scan_mutex held.
1323 */
1324 static void stop_scan_thread(void)
1325 {
1326 if (scan_thread) {
1327 kthread_stop(scan_thread);
1328 scan_thread = NULL;
1329 }
1330 }
1331
1332 /*
1333 * Iterate over the object_list and return the first valid object at or after
1334 * the required position with its use_count incremented. The function triggers
1335 * a memory scanning when the pos argument points to the first position.
1336 */
1337 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1338 {
1339 struct kmemleak_object *object;
1340 loff_t n = *pos;
1341 int err;
1342
1343 err = mutex_lock_interruptible(&scan_mutex);
1344 if (err < 0)
1345 return ERR_PTR(err);
1346
1347 rcu_read_lock();
1348 list_for_each_entry_rcu(object, &object_list, object_list) {
1349 if (n-- > 0)
1350 continue;
1351 if (get_object(object))
1352 goto out;
1353 }
1354 object = NULL;
1355 out:
1356 return object;
1357 }
1358
1359 /*
1360 * Return the next object in the object_list. The function decrements the
1361 * use_count of the previous object and increases that of the next one.
1362 */
1363 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1364 {
1365 struct kmemleak_object *prev_obj = v;
1366 struct kmemleak_object *next_obj = NULL;
1367 struct list_head *n = &prev_obj->object_list;
1368
1369 ++(*pos);
1370
1371 list_for_each_continue_rcu(n, &object_list) {
1372 next_obj = list_entry(n, struct kmemleak_object, object_list);
1373 if (get_object(next_obj))
1374 break;
1375 }
1376
1377 put_object(prev_obj);
1378 return next_obj;
1379 }
1380
1381 /*
1382 * Decrement the use_count of the last object required, if any.
1383 */
1384 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1385 {
1386 if (!IS_ERR(v)) {
1387 /*
1388 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1389 * waiting was interrupted, so only release it if !IS_ERR.
1390 */
1391 rcu_read_unlock();
1392 mutex_unlock(&scan_mutex);
1393 if (v)
1394 put_object(v);
1395 }
1396 }
1397
1398 /*
1399 * Print the information for an unreferenced object to the seq file.
1400 */
1401 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1402 {
1403 struct kmemleak_object *object = v;
1404 unsigned long flags;
1405
1406 spin_lock_irqsave(&object->lock, flags);
1407 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1408 print_unreferenced(seq, object);
1409 spin_unlock_irqrestore(&object->lock, flags);
1410 return 0;
1411 }
1412
1413 static const struct seq_operations kmemleak_seq_ops = {
1414 .start = kmemleak_seq_start,
1415 .next = kmemleak_seq_next,
1416 .stop = kmemleak_seq_stop,
1417 .show = kmemleak_seq_show,
1418 };
1419
1420 static int kmemleak_open(struct inode *inode, struct file *file)
1421 {
1422 if (!atomic_read(&kmemleak_enabled))
1423 return -EBUSY;
1424
1425 return seq_open(file, &kmemleak_seq_ops);
1426 }
1427
1428 static int kmemleak_release(struct inode *inode, struct file *file)
1429 {
1430 return seq_release(inode, file);
1431 }
1432
1433 static int dump_str_object_info(const char *str)
1434 {
1435 unsigned long flags;
1436 struct kmemleak_object *object;
1437 unsigned long addr;
1438
1439 addr= simple_strtoul(str, NULL, 0);
1440 object = find_and_get_object(addr, 0);
1441 if (!object) {
1442 pr_info("Unknown object at 0x%08lx\n", addr);
1443 return -EINVAL;
1444 }
1445
1446 spin_lock_irqsave(&object->lock, flags);
1447 dump_object_info(object);
1448 spin_unlock_irqrestore(&object->lock, flags);
1449
1450 put_object(object);
1451 return 0;
1452 }
1453
1454 /*
1455 * We use grey instead of black to ensure we can do future scans on the same
1456 * objects. If we did not do future scans these black objects could
1457 * potentially contain references to newly allocated objects in the future and
1458 * we'd end up with false positives.
1459 */
1460 static void kmemleak_clear(void)
1461 {
1462 struct kmemleak_object *object;
1463 unsigned long flags;
1464
1465 rcu_read_lock();
1466 list_for_each_entry_rcu(object, &object_list, object_list) {
1467 spin_lock_irqsave(&object->lock, flags);
1468 if ((object->flags & OBJECT_REPORTED) &&
1469 unreferenced_object(object))
1470 __paint_it(object, KMEMLEAK_GREY);
1471 spin_unlock_irqrestore(&object->lock, flags);
1472 }
1473 rcu_read_unlock();
1474 }
1475
1476 /*
1477 * File write operation to configure kmemleak at run-time. The following
1478 * commands can be written to the /sys/kernel/debug/kmemleak file:
1479 * off - disable kmemleak (irreversible)
1480 * stack=on - enable the task stacks scanning
1481 * stack=off - disable the tasks stacks scanning
1482 * scan=on - start the automatic memory scanning thread
1483 * scan=off - stop the automatic memory scanning thread
1484 * scan=... - set the automatic memory scanning period in seconds (0 to
1485 * disable it)
1486 * scan - trigger a memory scan
1487 * clear - mark all current reported unreferenced kmemleak objects as
1488 * grey to ignore printing them
1489 * dump=... - dump information about the object found at the given address
1490 */
1491 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1492 size_t size, loff_t *ppos)
1493 {
1494 char buf[64];
1495 int buf_size;
1496 int ret;
1497
1498 buf_size = min(size, (sizeof(buf) - 1));
1499 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1500 return -EFAULT;
1501 buf[buf_size] = 0;
1502
1503 ret = mutex_lock_interruptible(&scan_mutex);
1504 if (ret < 0)
1505 return ret;
1506
1507 if (strncmp(buf, "off", 3) == 0)
1508 kmemleak_disable();
1509 else if (strncmp(buf, "stack=on", 8) == 0)
1510 kmemleak_stack_scan = 1;
1511 else if (strncmp(buf, "stack=off", 9) == 0)
1512 kmemleak_stack_scan = 0;
1513 else if (strncmp(buf, "scan=on", 7) == 0)
1514 start_scan_thread();
1515 else if (strncmp(buf, "scan=off", 8) == 0)
1516 stop_scan_thread();
1517 else if (strncmp(buf, "scan=", 5) == 0) {
1518 unsigned long secs;
1519
1520 ret = strict_strtoul(buf + 5, 0, &secs);
1521 if (ret < 0)
1522 goto out;
1523 stop_scan_thread();
1524 if (secs) {
1525 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1526 start_scan_thread();
1527 }
1528 } else if (strncmp(buf, "scan", 4) == 0)
1529 kmemleak_scan();
1530 else if (strncmp(buf, "clear", 5) == 0)
1531 kmemleak_clear();
1532 else if (strncmp(buf, "dump=", 5) == 0)
1533 ret = dump_str_object_info(buf + 5);
1534 else
1535 ret = -EINVAL;
1536
1537 out:
1538 mutex_unlock(&scan_mutex);
1539 if (ret < 0)
1540 return ret;
1541
1542 /* ignore the rest of the buffer, only one command at a time */
1543 *ppos += size;
1544 return size;
1545 }
1546
1547 static const struct file_operations kmemleak_fops = {
1548 .owner = THIS_MODULE,
1549 .open = kmemleak_open,
1550 .read = seq_read,
1551 .write = kmemleak_write,
1552 .llseek = seq_lseek,
1553 .release = kmemleak_release,
1554 };
1555
1556 /*
1557 * Perform the freeing of the kmemleak internal objects after waiting for any
1558 * current memory scan to complete.
1559 */
1560 static void kmemleak_do_cleanup(struct work_struct *work)
1561 {
1562 struct kmemleak_object *object;
1563
1564 mutex_lock(&scan_mutex);
1565 stop_scan_thread();
1566
1567 rcu_read_lock();
1568 list_for_each_entry_rcu(object, &object_list, object_list)
1569 delete_object_full(object->pointer);
1570 rcu_read_unlock();
1571 mutex_unlock(&scan_mutex);
1572 }
1573
1574 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1575
1576 /*
1577 * Disable kmemleak. No memory allocation/freeing will be traced once this
1578 * function is called. Disabling kmemleak is an irreversible operation.
1579 */
1580 static void kmemleak_disable(void)
1581 {
1582 /* atomically check whether it was already invoked */
1583 if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1584 return;
1585
1586 /* stop any memory operation tracing */
1587 atomic_set(&kmemleak_early_log, 0);
1588 atomic_set(&kmemleak_enabled, 0);
1589
1590 /* check whether it is too early for a kernel thread */
1591 if (atomic_read(&kmemleak_initialized))
1592 schedule_work(&cleanup_work);
1593
1594 pr_info("Kernel memory leak detector disabled\n");
1595 }
1596
1597 /*
1598 * Allow boot-time kmemleak disabling (enabled by default).
1599 */
1600 static int kmemleak_boot_config(char *str)
1601 {
1602 if (!str)
1603 return -EINVAL;
1604 if (strcmp(str, "off") == 0)
1605 kmemleak_disable();
1606 else if (strcmp(str, "on") != 0)
1607 return -EINVAL;
1608 return 0;
1609 }
1610 early_param("kmemleak", kmemleak_boot_config);
1611
1612 /*
1613 * Kmemleak initialization.
1614 */
1615 void __init kmemleak_init(void)
1616 {
1617 int i;
1618 unsigned long flags;
1619
1620 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1621 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1622
1623 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1624 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1625 INIT_PRIO_TREE_ROOT(&object_tree_root);
1626
1627 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1628 local_irq_save(flags);
1629 if (!atomic_read(&kmemleak_error)) {
1630 atomic_set(&kmemleak_enabled, 1);
1631 atomic_set(&kmemleak_early_log, 0);
1632 }
1633 local_irq_restore(flags);
1634
1635 /*
1636 * This is the point where tracking allocations is safe. Automatic
1637 * scanning is started during the late initcall. Add the early logged
1638 * callbacks to the kmemleak infrastructure.
1639 */
1640 for (i = 0; i < crt_early_log; i++) {
1641 struct early_log *log = &early_log[i];
1642
1643 switch (log->op_type) {
1644 case KMEMLEAK_ALLOC:
1645 early_alloc(log);
1646 break;
1647 case KMEMLEAK_FREE:
1648 kmemleak_free(log->ptr);
1649 break;
1650 case KMEMLEAK_FREE_PART:
1651 kmemleak_free_part(log->ptr, log->size);
1652 break;
1653 case KMEMLEAK_NOT_LEAK:
1654 kmemleak_not_leak(log->ptr);
1655 break;
1656 case KMEMLEAK_IGNORE:
1657 kmemleak_ignore(log->ptr);
1658 break;
1659 case KMEMLEAK_SCAN_AREA:
1660 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1661 break;
1662 case KMEMLEAK_NO_SCAN:
1663 kmemleak_no_scan(log->ptr);
1664 break;
1665 default:
1666 WARN_ON(1);
1667 }
1668 }
1669 }
1670
1671 /*
1672 * Late initialization function.
1673 */
1674 static int __init kmemleak_late_init(void)
1675 {
1676 struct dentry *dentry;
1677
1678 atomic_set(&kmemleak_initialized, 1);
1679
1680 if (atomic_read(&kmemleak_error)) {
1681 /*
1682 * Some error occured and kmemleak was disabled. There is a
1683 * small chance that kmemleak_disable() was called immediately
1684 * after setting kmemleak_initialized and we may end up with
1685 * two clean-up threads but serialized by scan_mutex.
1686 */
1687 schedule_work(&cleanup_work);
1688 return -ENOMEM;
1689 }
1690
1691 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1692 &kmemleak_fops);
1693 if (!dentry)
1694 pr_warning("Failed to create the debugfs kmemleak file\n");
1695 mutex_lock(&scan_mutex);
1696 start_scan_thread();
1697 mutex_unlock(&scan_mutex);
1698
1699 pr_info("Kernel memory leak detector initialized\n");
1700
1701 return 0;
1702 }
1703 late_initcall(kmemleak_late_init);