]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/kmemleak.c
UBUNTU: SAUCE: (namespace) fs: Allow superblock owner to access do_remount_sb()
[mirror_ubuntu-zesty-kernel.git] / mm / kmemleak.c
1 /*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/dev-tools/kmemleak.rst.
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
55 *
56 * Locks and mutexes are acquired/nested in the following order:
57 *
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
62 *
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched.h>
77 #include <linux/jiffies.h>
78 #include <linux/delay.h>
79 #include <linux/export.h>
80 #include <linux/kthread.h>
81 #include <linux/rbtree.h>
82 #include <linux/fs.h>
83 #include <linux/debugfs.h>
84 #include <linux/seq_file.h>
85 #include <linux/cpumask.h>
86 #include <linux/spinlock.h>
87 #include <linux/mutex.h>
88 #include <linux/rcupdate.h>
89 #include <linux/stacktrace.h>
90 #include <linux/cache.h>
91 #include <linux/percpu.h>
92 #include <linux/hardirq.h>
93 #include <linux/bootmem.h>
94 #include <linux/pfn.h>
95 #include <linux/mmzone.h>
96 #include <linux/slab.h>
97 #include <linux/thread_info.h>
98 #include <linux/err.h>
99 #include <linux/uaccess.h>
100 #include <linux/string.h>
101 #include <linux/nodemask.h>
102 #include <linux/mm.h>
103 #include <linux/workqueue.h>
104 #include <linux/crc32.h>
105
106 #include <asm/sections.h>
107 #include <asm/processor.h>
108 #include <linux/atomic.h>
109
110 #include <linux/kasan.h>
111 #include <linux/kmemcheck.h>
112 #include <linux/kmemleak.h>
113 #include <linux/memory_hotplug.h>
114
115 /*
116 * Kmemleak configuration and common defines.
117 */
118 #define MAX_TRACE 16 /* stack trace length */
119 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
120 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
121 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
122 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
123
124 #define BYTES_PER_POINTER sizeof(void *)
125
126 /* GFP bitmask for kmemleak internal allocations */
127 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128 __GFP_NORETRY | __GFP_NOMEMALLOC | \
129 __GFP_NOWARN)
130
131 /* scanning area inside a memory block */
132 struct kmemleak_scan_area {
133 struct hlist_node node;
134 unsigned long start;
135 size_t size;
136 };
137
138 #define KMEMLEAK_GREY 0
139 #define KMEMLEAK_BLACK -1
140
141 /*
142 * Structure holding the metadata for each allocated memory block.
143 * Modifications to such objects should be made while holding the
144 * object->lock. Insertions or deletions from object_list, gray_list or
145 * rb_node are already protected by the corresponding locks or mutex (see
146 * the notes on locking above). These objects are reference-counted
147 * (use_count) and freed using the RCU mechanism.
148 */
149 struct kmemleak_object {
150 spinlock_t lock;
151 unsigned long flags; /* object status flags */
152 struct list_head object_list;
153 struct list_head gray_list;
154 struct rb_node rb_node;
155 struct rcu_head rcu; /* object_list lockless traversal */
156 /* object usage count; object freed when use_count == 0 */
157 atomic_t use_count;
158 unsigned long pointer;
159 size_t size;
160 /* minimum number of a pointers found before it is considered leak */
161 int min_count;
162 /* the total number of pointers found pointing to this object */
163 int count;
164 /* checksum for detecting modified objects */
165 u32 checksum;
166 /* memory ranges to be scanned inside an object (empty for all) */
167 struct hlist_head area_list;
168 unsigned long trace[MAX_TRACE];
169 unsigned int trace_len;
170 unsigned long jiffies; /* creation timestamp */
171 pid_t pid; /* pid of the current task */
172 char comm[TASK_COMM_LEN]; /* executable name */
173 };
174
175 /* flag representing the memory block allocation status */
176 #define OBJECT_ALLOCATED (1 << 0)
177 /* flag set after the first reporting of an unreference object */
178 #define OBJECT_REPORTED (1 << 1)
179 /* flag set to not scan the object */
180 #define OBJECT_NO_SCAN (1 << 2)
181
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE 16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE 1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII 1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES 2
190
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* search tree for object boundaries */
196 static struct rb_root object_tree_root = RB_ROOT;
197 /* rw_lock protecting the access to object_list and object_tree_root */
198 static DEFINE_RWLOCK(kmemleak_lock);
199
200 /* allocation caches for kmemleak internal data */
201 static struct kmem_cache *object_cache;
202 static struct kmem_cache *scan_area_cache;
203
204 /* set if tracing memory operations is enabled */
205 static int kmemleak_enabled;
206 /* same as above but only for the kmemleak_free() callback */
207 static int kmemleak_free_enabled;
208 /* set in the late_initcall if there were no errors */
209 static int kmemleak_initialized;
210 /* enables or disables early logging of the memory operations */
211 static int kmemleak_early_log = 1;
212 /* set if a kmemleak warning was issued */
213 static int kmemleak_warning;
214 /* set if a fatal kmemleak error has occurred */
215 static int kmemleak_error;
216
217 /* minimum and maximum address that may be valid pointers */
218 static unsigned long min_addr = ULONG_MAX;
219 static unsigned long max_addr;
220
221 static struct task_struct *scan_thread;
222 /* used to avoid reporting of recently allocated objects */
223 static unsigned long jiffies_min_age;
224 static unsigned long jiffies_last_scan;
225 /* delay between automatic memory scannings */
226 static signed long jiffies_scan_wait;
227 /* enables or disables the task stacks scanning */
228 static int kmemleak_stack_scan = 1;
229 /* protects the memory scanning, parameters and debug/kmemleak file access */
230 static DEFINE_MUTEX(scan_mutex);
231 /* setting kmemleak=on, will set this var, skipping the disable */
232 static int kmemleak_skip_disable;
233 /* If there are leaks that can be reported */
234 static bool kmemleak_found_leaks;
235
236 /*
237 * Early object allocation/freeing logging. Kmemleak is initialized after the
238 * kernel allocator. However, both the kernel allocator and kmemleak may
239 * allocate memory blocks which need to be tracked. Kmemleak defines an
240 * arbitrary buffer to hold the allocation/freeing information before it is
241 * fully initialized.
242 */
243
244 /* kmemleak operation type for early logging */
245 enum {
246 KMEMLEAK_ALLOC,
247 KMEMLEAK_ALLOC_PERCPU,
248 KMEMLEAK_FREE,
249 KMEMLEAK_FREE_PART,
250 KMEMLEAK_FREE_PERCPU,
251 KMEMLEAK_NOT_LEAK,
252 KMEMLEAK_IGNORE,
253 KMEMLEAK_SCAN_AREA,
254 KMEMLEAK_NO_SCAN
255 };
256
257 /*
258 * Structure holding the information passed to kmemleak callbacks during the
259 * early logging.
260 */
261 struct early_log {
262 int op_type; /* kmemleak operation type */
263 const void *ptr; /* allocated/freed memory block */
264 size_t size; /* memory block size */
265 int min_count; /* minimum reference count */
266 unsigned long trace[MAX_TRACE]; /* stack trace */
267 unsigned int trace_len; /* stack trace length */
268 };
269
270 /* early logging buffer and current position */
271 static struct early_log
272 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
273 static int crt_early_log __initdata;
274
275 static void kmemleak_disable(void);
276
277 /*
278 * Print a warning and dump the stack trace.
279 */
280 #define kmemleak_warn(x...) do { \
281 pr_warn(x); \
282 dump_stack(); \
283 kmemleak_warning = 1; \
284 } while (0)
285
286 /*
287 * Macro invoked when a serious kmemleak condition occurred and cannot be
288 * recovered from. Kmemleak will be disabled and further allocation/freeing
289 * tracing no longer available.
290 */
291 #define kmemleak_stop(x...) do { \
292 kmemleak_warn(x); \
293 kmemleak_disable(); \
294 } while (0)
295
296 /*
297 * Printing of the objects hex dump to the seq file. The number of lines to be
298 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
299 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
300 * with the object->lock held.
301 */
302 static void hex_dump_object(struct seq_file *seq,
303 struct kmemleak_object *object)
304 {
305 const u8 *ptr = (const u8 *)object->pointer;
306 size_t len;
307
308 /* limit the number of lines to HEX_MAX_LINES */
309 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
310
311 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
312 kasan_disable_current();
313 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
314 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
315 kasan_enable_current();
316 }
317
318 /*
319 * Object colors, encoded with count and min_count:
320 * - white - orphan object, not enough references to it (count < min_count)
321 * - gray - not orphan, not marked as false positive (min_count == 0) or
322 * sufficient references to it (count >= min_count)
323 * - black - ignore, it doesn't contain references (e.g. text section)
324 * (min_count == -1). No function defined for this color.
325 * Newly created objects don't have any color assigned (object->count == -1)
326 * before the next memory scan when they become white.
327 */
328 static bool color_white(const struct kmemleak_object *object)
329 {
330 return object->count != KMEMLEAK_BLACK &&
331 object->count < object->min_count;
332 }
333
334 static bool color_gray(const struct kmemleak_object *object)
335 {
336 return object->min_count != KMEMLEAK_BLACK &&
337 object->count >= object->min_count;
338 }
339
340 /*
341 * Objects are considered unreferenced only if their color is white, they have
342 * not be deleted and have a minimum age to avoid false positives caused by
343 * pointers temporarily stored in CPU registers.
344 */
345 static bool unreferenced_object(struct kmemleak_object *object)
346 {
347 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
348 time_before_eq(object->jiffies + jiffies_min_age,
349 jiffies_last_scan);
350 }
351
352 /*
353 * Printing of the unreferenced objects information to the seq file. The
354 * print_unreferenced function must be called with the object->lock held.
355 */
356 static void print_unreferenced(struct seq_file *seq,
357 struct kmemleak_object *object)
358 {
359 int i;
360 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
361
362 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
363 object->pointer, object->size);
364 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
365 object->comm, object->pid, object->jiffies,
366 msecs_age / 1000, msecs_age % 1000);
367 hex_dump_object(seq, object);
368 seq_printf(seq, " backtrace:\n");
369
370 for (i = 0; i < object->trace_len; i++) {
371 void *ptr = (void *)object->trace[i];
372 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
373 }
374 }
375
376 /*
377 * Print the kmemleak_object information. This function is used mainly for
378 * debugging special cases when kmemleak operations. It must be called with
379 * the object->lock held.
380 */
381 static void dump_object_info(struct kmemleak_object *object)
382 {
383 struct stack_trace trace;
384
385 trace.nr_entries = object->trace_len;
386 trace.entries = object->trace;
387
388 pr_notice("Object 0x%08lx (size %zu):\n",
389 object->pointer, object->size);
390 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
391 object->comm, object->pid, object->jiffies);
392 pr_notice(" min_count = %d\n", object->min_count);
393 pr_notice(" count = %d\n", object->count);
394 pr_notice(" flags = 0x%lx\n", object->flags);
395 pr_notice(" checksum = %u\n", object->checksum);
396 pr_notice(" backtrace:\n");
397 print_stack_trace(&trace, 4);
398 }
399
400 /*
401 * Look-up a memory block metadata (kmemleak_object) in the object search
402 * tree based on a pointer value. If alias is 0, only values pointing to the
403 * beginning of the memory block are allowed. The kmemleak_lock must be held
404 * when calling this function.
405 */
406 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
407 {
408 struct rb_node *rb = object_tree_root.rb_node;
409
410 while (rb) {
411 struct kmemleak_object *object =
412 rb_entry(rb, struct kmemleak_object, rb_node);
413 if (ptr < object->pointer)
414 rb = object->rb_node.rb_left;
415 else if (object->pointer + object->size <= ptr)
416 rb = object->rb_node.rb_right;
417 else if (object->pointer == ptr || alias)
418 return object;
419 else {
420 kmemleak_warn("Found object by alias at 0x%08lx\n",
421 ptr);
422 dump_object_info(object);
423 break;
424 }
425 }
426 return NULL;
427 }
428
429 /*
430 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
431 * that once an object's use_count reached 0, the RCU freeing was already
432 * registered and the object should no longer be used. This function must be
433 * called under the protection of rcu_read_lock().
434 */
435 static int get_object(struct kmemleak_object *object)
436 {
437 return atomic_inc_not_zero(&object->use_count);
438 }
439
440 /*
441 * RCU callback to free a kmemleak_object.
442 */
443 static void free_object_rcu(struct rcu_head *rcu)
444 {
445 struct hlist_node *tmp;
446 struct kmemleak_scan_area *area;
447 struct kmemleak_object *object =
448 container_of(rcu, struct kmemleak_object, rcu);
449
450 /*
451 * Once use_count is 0 (guaranteed by put_object), there is no other
452 * code accessing this object, hence no need for locking.
453 */
454 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
455 hlist_del(&area->node);
456 kmem_cache_free(scan_area_cache, area);
457 }
458 kmem_cache_free(object_cache, object);
459 }
460
461 /*
462 * Decrement the object use_count. Once the count is 0, free the object using
463 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
464 * delete_object() path, the delayed RCU freeing ensures that there is no
465 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
466 * is also possible.
467 */
468 static void put_object(struct kmemleak_object *object)
469 {
470 if (!atomic_dec_and_test(&object->use_count))
471 return;
472
473 /* should only get here after delete_object was called */
474 WARN_ON(object->flags & OBJECT_ALLOCATED);
475
476 call_rcu(&object->rcu, free_object_rcu);
477 }
478
479 /*
480 * Look up an object in the object search tree and increase its use_count.
481 */
482 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
483 {
484 unsigned long flags;
485 struct kmemleak_object *object;
486
487 rcu_read_lock();
488 read_lock_irqsave(&kmemleak_lock, flags);
489 object = lookup_object(ptr, alias);
490 read_unlock_irqrestore(&kmemleak_lock, flags);
491
492 /* check whether the object is still available */
493 if (object && !get_object(object))
494 object = NULL;
495 rcu_read_unlock();
496
497 return object;
498 }
499
500 /*
501 * Look up an object in the object search tree and remove it from both
502 * object_tree_root and object_list. The returned object's use_count should be
503 * at least 1, as initially set by create_object().
504 */
505 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
506 {
507 unsigned long flags;
508 struct kmemleak_object *object;
509
510 write_lock_irqsave(&kmemleak_lock, flags);
511 object = lookup_object(ptr, alias);
512 if (object) {
513 rb_erase(&object->rb_node, &object_tree_root);
514 list_del_rcu(&object->object_list);
515 }
516 write_unlock_irqrestore(&kmemleak_lock, flags);
517
518 return object;
519 }
520
521 /*
522 * Save stack trace to the given array of MAX_TRACE size.
523 */
524 static int __save_stack_trace(unsigned long *trace)
525 {
526 struct stack_trace stack_trace;
527
528 stack_trace.max_entries = MAX_TRACE;
529 stack_trace.nr_entries = 0;
530 stack_trace.entries = trace;
531 stack_trace.skip = 2;
532 save_stack_trace(&stack_trace);
533
534 return stack_trace.nr_entries;
535 }
536
537 /*
538 * Create the metadata (struct kmemleak_object) corresponding to an allocated
539 * memory block and add it to the object_list and object_tree_root.
540 */
541 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
542 int min_count, gfp_t gfp)
543 {
544 unsigned long flags;
545 struct kmemleak_object *object, *parent;
546 struct rb_node **link, *rb_parent;
547
548 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
549 if (!object) {
550 pr_warn("Cannot allocate a kmemleak_object structure\n");
551 kmemleak_disable();
552 return NULL;
553 }
554
555 INIT_LIST_HEAD(&object->object_list);
556 INIT_LIST_HEAD(&object->gray_list);
557 INIT_HLIST_HEAD(&object->area_list);
558 spin_lock_init(&object->lock);
559 atomic_set(&object->use_count, 1);
560 object->flags = OBJECT_ALLOCATED;
561 object->pointer = ptr;
562 object->size = size;
563 object->min_count = min_count;
564 object->count = 0; /* white color initially */
565 object->jiffies = jiffies;
566 object->checksum = 0;
567
568 /* task information */
569 if (in_irq()) {
570 object->pid = 0;
571 strncpy(object->comm, "hardirq", sizeof(object->comm));
572 } else if (in_softirq()) {
573 object->pid = 0;
574 strncpy(object->comm, "softirq", sizeof(object->comm));
575 } else {
576 object->pid = current->pid;
577 /*
578 * There is a small chance of a race with set_task_comm(),
579 * however using get_task_comm() here may cause locking
580 * dependency issues with current->alloc_lock. In the worst
581 * case, the command line is not correct.
582 */
583 strncpy(object->comm, current->comm, sizeof(object->comm));
584 }
585
586 /* kernel backtrace */
587 object->trace_len = __save_stack_trace(object->trace);
588
589 write_lock_irqsave(&kmemleak_lock, flags);
590
591 min_addr = min(min_addr, ptr);
592 max_addr = max(max_addr, ptr + size);
593 link = &object_tree_root.rb_node;
594 rb_parent = NULL;
595 while (*link) {
596 rb_parent = *link;
597 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
598 if (ptr + size <= parent->pointer)
599 link = &parent->rb_node.rb_left;
600 else if (parent->pointer + parent->size <= ptr)
601 link = &parent->rb_node.rb_right;
602 else {
603 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
604 ptr);
605 /*
606 * No need for parent->lock here since "parent" cannot
607 * be freed while the kmemleak_lock is held.
608 */
609 dump_object_info(parent);
610 kmem_cache_free(object_cache, object);
611 object = NULL;
612 goto out;
613 }
614 }
615 rb_link_node(&object->rb_node, rb_parent, link);
616 rb_insert_color(&object->rb_node, &object_tree_root);
617
618 list_add_tail_rcu(&object->object_list, &object_list);
619 out:
620 write_unlock_irqrestore(&kmemleak_lock, flags);
621 return object;
622 }
623
624 /*
625 * Mark the object as not allocated and schedule RCU freeing via put_object().
626 */
627 static void __delete_object(struct kmemleak_object *object)
628 {
629 unsigned long flags;
630
631 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
632 WARN_ON(atomic_read(&object->use_count) < 1);
633
634 /*
635 * Locking here also ensures that the corresponding memory block
636 * cannot be freed when it is being scanned.
637 */
638 spin_lock_irqsave(&object->lock, flags);
639 object->flags &= ~OBJECT_ALLOCATED;
640 spin_unlock_irqrestore(&object->lock, flags);
641 put_object(object);
642 }
643
644 /*
645 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646 * delete it.
647 */
648 static void delete_object_full(unsigned long ptr)
649 {
650 struct kmemleak_object *object;
651
652 object = find_and_remove_object(ptr, 0);
653 if (!object) {
654 #ifdef DEBUG
655 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
656 ptr);
657 #endif
658 return;
659 }
660 __delete_object(object);
661 }
662
663 /*
664 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
665 * delete it. If the memory block is partially freed, the function may create
666 * additional metadata for the remaining parts of the block.
667 */
668 static void delete_object_part(unsigned long ptr, size_t size)
669 {
670 struct kmemleak_object *object;
671 unsigned long start, end;
672
673 object = find_and_remove_object(ptr, 1);
674 if (!object) {
675 #ifdef DEBUG
676 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
677 ptr, size);
678 #endif
679 return;
680 }
681
682 /*
683 * Create one or two objects that may result from the memory block
684 * split. Note that partial freeing is only done by free_bootmem() and
685 * this happens before kmemleak_init() is called. The path below is
686 * only executed during early log recording in kmemleak_init(), so
687 * GFP_KERNEL is enough.
688 */
689 start = object->pointer;
690 end = object->pointer + object->size;
691 if (ptr > start)
692 create_object(start, ptr - start, object->min_count,
693 GFP_KERNEL);
694 if (ptr + size < end)
695 create_object(ptr + size, end - ptr - size, object->min_count,
696 GFP_KERNEL);
697
698 __delete_object(object);
699 }
700
701 static void __paint_it(struct kmemleak_object *object, int color)
702 {
703 object->min_count = color;
704 if (color == KMEMLEAK_BLACK)
705 object->flags |= OBJECT_NO_SCAN;
706 }
707
708 static void paint_it(struct kmemleak_object *object, int color)
709 {
710 unsigned long flags;
711
712 spin_lock_irqsave(&object->lock, flags);
713 __paint_it(object, color);
714 spin_unlock_irqrestore(&object->lock, flags);
715 }
716
717 static void paint_ptr(unsigned long ptr, int color)
718 {
719 struct kmemleak_object *object;
720
721 object = find_and_get_object(ptr, 0);
722 if (!object) {
723 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
724 ptr,
725 (color == KMEMLEAK_GREY) ? "Grey" :
726 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
727 return;
728 }
729 paint_it(object, color);
730 put_object(object);
731 }
732
733 /*
734 * Mark an object permanently as gray-colored so that it can no longer be
735 * reported as a leak. This is used in general to mark a false positive.
736 */
737 static void make_gray_object(unsigned long ptr)
738 {
739 paint_ptr(ptr, KMEMLEAK_GREY);
740 }
741
742 /*
743 * Mark the object as black-colored so that it is ignored from scans and
744 * reporting.
745 */
746 static void make_black_object(unsigned long ptr)
747 {
748 paint_ptr(ptr, KMEMLEAK_BLACK);
749 }
750
751 /*
752 * Add a scanning area to the object. If at least one such area is added,
753 * kmemleak will only scan these ranges rather than the whole memory block.
754 */
755 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
756 {
757 unsigned long flags;
758 struct kmemleak_object *object;
759 struct kmemleak_scan_area *area;
760
761 object = find_and_get_object(ptr, 1);
762 if (!object) {
763 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
764 ptr);
765 return;
766 }
767
768 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
769 if (!area) {
770 pr_warn("Cannot allocate a scan area\n");
771 goto out;
772 }
773
774 spin_lock_irqsave(&object->lock, flags);
775 if (size == SIZE_MAX) {
776 size = object->pointer + object->size - ptr;
777 } else if (ptr + size > object->pointer + object->size) {
778 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
779 dump_object_info(object);
780 kmem_cache_free(scan_area_cache, area);
781 goto out_unlock;
782 }
783
784 INIT_HLIST_NODE(&area->node);
785 area->start = ptr;
786 area->size = size;
787
788 hlist_add_head(&area->node, &object->area_list);
789 out_unlock:
790 spin_unlock_irqrestore(&object->lock, flags);
791 out:
792 put_object(object);
793 }
794
795 /*
796 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
797 * pointer. Such object will not be scanned by kmemleak but references to it
798 * are searched.
799 */
800 static void object_no_scan(unsigned long ptr)
801 {
802 unsigned long flags;
803 struct kmemleak_object *object;
804
805 object = find_and_get_object(ptr, 0);
806 if (!object) {
807 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
808 return;
809 }
810
811 spin_lock_irqsave(&object->lock, flags);
812 object->flags |= OBJECT_NO_SCAN;
813 spin_unlock_irqrestore(&object->lock, flags);
814 put_object(object);
815 }
816
817 /*
818 * Log an early kmemleak_* call to the early_log buffer. These calls will be
819 * processed later once kmemleak is fully initialized.
820 */
821 static void __init log_early(int op_type, const void *ptr, size_t size,
822 int min_count)
823 {
824 unsigned long flags;
825 struct early_log *log;
826
827 if (kmemleak_error) {
828 /* kmemleak stopped recording, just count the requests */
829 crt_early_log++;
830 return;
831 }
832
833 if (crt_early_log >= ARRAY_SIZE(early_log)) {
834 crt_early_log++;
835 kmemleak_disable();
836 return;
837 }
838
839 /*
840 * There is no need for locking since the kernel is still in UP mode
841 * at this stage. Disabling the IRQs is enough.
842 */
843 local_irq_save(flags);
844 log = &early_log[crt_early_log];
845 log->op_type = op_type;
846 log->ptr = ptr;
847 log->size = size;
848 log->min_count = min_count;
849 log->trace_len = __save_stack_trace(log->trace);
850 crt_early_log++;
851 local_irq_restore(flags);
852 }
853
854 /*
855 * Log an early allocated block and populate the stack trace.
856 */
857 static void early_alloc(struct early_log *log)
858 {
859 struct kmemleak_object *object;
860 unsigned long flags;
861 int i;
862
863 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
864 return;
865
866 /*
867 * RCU locking needed to ensure object is not freed via put_object().
868 */
869 rcu_read_lock();
870 object = create_object((unsigned long)log->ptr, log->size,
871 log->min_count, GFP_ATOMIC);
872 if (!object)
873 goto out;
874 spin_lock_irqsave(&object->lock, flags);
875 for (i = 0; i < log->trace_len; i++)
876 object->trace[i] = log->trace[i];
877 object->trace_len = log->trace_len;
878 spin_unlock_irqrestore(&object->lock, flags);
879 out:
880 rcu_read_unlock();
881 }
882
883 /*
884 * Log an early allocated block and populate the stack trace.
885 */
886 static void early_alloc_percpu(struct early_log *log)
887 {
888 unsigned int cpu;
889 const void __percpu *ptr = log->ptr;
890
891 for_each_possible_cpu(cpu) {
892 log->ptr = per_cpu_ptr(ptr, cpu);
893 early_alloc(log);
894 }
895 }
896
897 /**
898 * kmemleak_alloc - register a newly allocated object
899 * @ptr: pointer to beginning of the object
900 * @size: size of the object
901 * @min_count: minimum number of references to this object. If during memory
902 * scanning a number of references less than @min_count is found,
903 * the object is reported as a memory leak. If @min_count is 0,
904 * the object is never reported as a leak. If @min_count is -1,
905 * the object is ignored (not scanned and not reported as a leak)
906 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
907 *
908 * This function is called from the kernel allocators when a new object
909 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
910 */
911 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
912 gfp_t gfp)
913 {
914 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
915
916 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
917 create_object((unsigned long)ptr, size, min_count, gfp);
918 else if (kmemleak_early_log)
919 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
920 }
921 EXPORT_SYMBOL_GPL(kmemleak_alloc);
922
923 /**
924 * kmemleak_alloc_percpu - register a newly allocated __percpu object
925 * @ptr: __percpu pointer to beginning of the object
926 * @size: size of the object
927 * @gfp: flags used for kmemleak internal memory allocations
928 *
929 * This function is called from the kernel percpu allocator when a new object
930 * (memory block) is allocated (alloc_percpu).
931 */
932 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
933 gfp_t gfp)
934 {
935 unsigned int cpu;
936
937 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
938
939 /*
940 * Percpu allocations are only scanned and not reported as leaks
941 * (min_count is set to 0).
942 */
943 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
944 for_each_possible_cpu(cpu)
945 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
946 size, 0, gfp);
947 else if (kmemleak_early_log)
948 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
949 }
950 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
951
952 /**
953 * kmemleak_free - unregister a previously registered object
954 * @ptr: pointer to beginning of the object
955 *
956 * This function is called from the kernel allocators when an object (memory
957 * block) is freed (kmem_cache_free, kfree, vfree etc.).
958 */
959 void __ref kmemleak_free(const void *ptr)
960 {
961 pr_debug("%s(0x%p)\n", __func__, ptr);
962
963 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
964 delete_object_full((unsigned long)ptr);
965 else if (kmemleak_early_log)
966 log_early(KMEMLEAK_FREE, ptr, 0, 0);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_free);
969
970 /**
971 * kmemleak_free_part - partially unregister a previously registered object
972 * @ptr: pointer to the beginning or inside the object. This also
973 * represents the start of the range to be freed
974 * @size: size to be unregistered
975 *
976 * This function is called when only a part of a memory block is freed
977 * (usually from the bootmem allocator).
978 */
979 void __ref kmemleak_free_part(const void *ptr, size_t size)
980 {
981 pr_debug("%s(0x%p)\n", __func__, ptr);
982
983 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984 delete_object_part((unsigned long)ptr, size);
985 else if (kmemleak_early_log)
986 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
987 }
988 EXPORT_SYMBOL_GPL(kmemleak_free_part);
989
990 /**
991 * kmemleak_free_percpu - unregister a previously registered __percpu object
992 * @ptr: __percpu pointer to beginning of the object
993 *
994 * This function is called from the kernel percpu allocator when an object
995 * (memory block) is freed (free_percpu).
996 */
997 void __ref kmemleak_free_percpu(const void __percpu *ptr)
998 {
999 unsigned int cpu;
1000
1001 pr_debug("%s(0x%p)\n", __func__, ptr);
1002
1003 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1004 for_each_possible_cpu(cpu)
1005 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1006 cpu));
1007 else if (kmemleak_early_log)
1008 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1009 }
1010 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1011
1012 /**
1013 * kmemleak_update_trace - update object allocation stack trace
1014 * @ptr: pointer to beginning of the object
1015 *
1016 * Override the object allocation stack trace for cases where the actual
1017 * allocation place is not always useful.
1018 */
1019 void __ref kmemleak_update_trace(const void *ptr)
1020 {
1021 struct kmemleak_object *object;
1022 unsigned long flags;
1023
1024 pr_debug("%s(0x%p)\n", __func__, ptr);
1025
1026 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1027 return;
1028
1029 object = find_and_get_object((unsigned long)ptr, 1);
1030 if (!object) {
1031 #ifdef DEBUG
1032 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1033 ptr);
1034 #endif
1035 return;
1036 }
1037
1038 spin_lock_irqsave(&object->lock, flags);
1039 object->trace_len = __save_stack_trace(object->trace);
1040 spin_unlock_irqrestore(&object->lock, flags);
1041
1042 put_object(object);
1043 }
1044 EXPORT_SYMBOL(kmemleak_update_trace);
1045
1046 /**
1047 * kmemleak_not_leak - mark an allocated object as false positive
1048 * @ptr: pointer to beginning of the object
1049 *
1050 * Calling this function on an object will cause the memory block to no longer
1051 * be reported as leak and always be scanned.
1052 */
1053 void __ref kmemleak_not_leak(const void *ptr)
1054 {
1055 pr_debug("%s(0x%p)\n", __func__, ptr);
1056
1057 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058 make_gray_object((unsigned long)ptr);
1059 else if (kmemleak_early_log)
1060 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1061 }
1062 EXPORT_SYMBOL(kmemleak_not_leak);
1063
1064 /**
1065 * kmemleak_ignore - ignore an allocated object
1066 * @ptr: pointer to beginning of the object
1067 *
1068 * Calling this function on an object will cause the memory block to be
1069 * ignored (not scanned and not reported as a leak). This is usually done when
1070 * it is known that the corresponding block is not a leak and does not contain
1071 * any references to other allocated memory blocks.
1072 */
1073 void __ref kmemleak_ignore(const void *ptr)
1074 {
1075 pr_debug("%s(0x%p)\n", __func__, ptr);
1076
1077 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1078 make_black_object((unsigned long)ptr);
1079 else if (kmemleak_early_log)
1080 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1081 }
1082 EXPORT_SYMBOL(kmemleak_ignore);
1083
1084 /**
1085 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1086 * @ptr: pointer to beginning or inside the object. This also
1087 * represents the start of the scan area
1088 * @size: size of the scan area
1089 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1090 *
1091 * This function is used when it is known that only certain parts of an object
1092 * contain references to other objects. Kmemleak will only scan these areas
1093 * reducing the number false negatives.
1094 */
1095 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1096 {
1097 pr_debug("%s(0x%p)\n", __func__, ptr);
1098
1099 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1100 add_scan_area((unsigned long)ptr, size, gfp);
1101 else if (kmemleak_early_log)
1102 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1103 }
1104 EXPORT_SYMBOL(kmemleak_scan_area);
1105
1106 /**
1107 * kmemleak_no_scan - do not scan an allocated object
1108 * @ptr: pointer to beginning of the object
1109 *
1110 * This function notifies kmemleak not to scan the given memory block. Useful
1111 * in situations where it is known that the given object does not contain any
1112 * references to other objects. Kmemleak will not scan such objects reducing
1113 * the number of false negatives.
1114 */
1115 void __ref kmemleak_no_scan(const void *ptr)
1116 {
1117 pr_debug("%s(0x%p)\n", __func__, ptr);
1118
1119 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1120 object_no_scan((unsigned long)ptr);
1121 else if (kmemleak_early_log)
1122 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1123 }
1124 EXPORT_SYMBOL(kmemleak_no_scan);
1125
1126 /**
1127 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1128 * address argument
1129 */
1130 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1131 gfp_t gfp)
1132 {
1133 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1134 kmemleak_alloc(__va(phys), size, min_count, gfp);
1135 }
1136 EXPORT_SYMBOL(kmemleak_alloc_phys);
1137
1138 /**
1139 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1140 * physical address argument
1141 */
1142 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1143 {
1144 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1145 kmemleak_free_part(__va(phys), size);
1146 }
1147 EXPORT_SYMBOL(kmemleak_free_part_phys);
1148
1149 /**
1150 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1151 * address argument
1152 */
1153 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1154 {
1155 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1156 kmemleak_not_leak(__va(phys));
1157 }
1158 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1159
1160 /**
1161 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1162 * address argument
1163 */
1164 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1165 {
1166 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1167 kmemleak_ignore(__va(phys));
1168 }
1169 EXPORT_SYMBOL(kmemleak_ignore_phys);
1170
1171 /*
1172 * Update an object's checksum and return true if it was modified.
1173 */
1174 static bool update_checksum(struct kmemleak_object *object)
1175 {
1176 u32 old_csum = object->checksum;
1177
1178 if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1179 return false;
1180
1181 kasan_disable_current();
1182 object->checksum = crc32(0, (void *)object->pointer, object->size);
1183 kasan_enable_current();
1184
1185 return object->checksum != old_csum;
1186 }
1187
1188 /*
1189 * Memory scanning is a long process and it needs to be interruptable. This
1190 * function checks whether such interrupt condition occurred.
1191 */
1192 static int scan_should_stop(void)
1193 {
1194 if (!kmemleak_enabled)
1195 return 1;
1196
1197 /*
1198 * This function may be called from either process or kthread context,
1199 * hence the need to check for both stop conditions.
1200 */
1201 if (current->mm)
1202 return signal_pending(current);
1203 else
1204 return kthread_should_stop();
1205
1206 return 0;
1207 }
1208
1209 /*
1210 * Scan a memory block (exclusive range) for valid pointers and add those
1211 * found to the gray list.
1212 */
1213 static void scan_block(void *_start, void *_end,
1214 struct kmemleak_object *scanned)
1215 {
1216 unsigned long *ptr;
1217 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1218 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1219 unsigned long flags;
1220
1221 read_lock_irqsave(&kmemleak_lock, flags);
1222 for (ptr = start; ptr < end; ptr++) {
1223 struct kmemleak_object *object;
1224 unsigned long pointer;
1225
1226 if (scan_should_stop())
1227 break;
1228
1229 /* don't scan uninitialized memory */
1230 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1231 BYTES_PER_POINTER))
1232 continue;
1233
1234 kasan_disable_current();
1235 pointer = *ptr;
1236 kasan_enable_current();
1237
1238 if (pointer < min_addr || pointer >= max_addr)
1239 continue;
1240
1241 /*
1242 * No need for get_object() here since we hold kmemleak_lock.
1243 * object->use_count cannot be dropped to 0 while the object
1244 * is still present in object_tree_root and object_list
1245 * (with updates protected by kmemleak_lock).
1246 */
1247 object = lookup_object(pointer, 1);
1248 if (!object)
1249 continue;
1250 if (object == scanned)
1251 /* self referenced, ignore */
1252 continue;
1253
1254 /*
1255 * Avoid the lockdep recursive warning on object->lock being
1256 * previously acquired in scan_object(). These locks are
1257 * enclosed by scan_mutex.
1258 */
1259 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1260 if (!color_white(object)) {
1261 /* non-orphan, ignored or new */
1262 spin_unlock(&object->lock);
1263 continue;
1264 }
1265
1266 /*
1267 * Increase the object's reference count (number of pointers
1268 * to the memory block). If this count reaches the required
1269 * minimum, the object's color will become gray and it will be
1270 * added to the gray_list.
1271 */
1272 object->count++;
1273 if (color_gray(object)) {
1274 /* put_object() called when removing from gray_list */
1275 WARN_ON(!get_object(object));
1276 list_add_tail(&object->gray_list, &gray_list);
1277 }
1278 spin_unlock(&object->lock);
1279 }
1280 read_unlock_irqrestore(&kmemleak_lock, flags);
1281 }
1282
1283 /*
1284 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1285 */
1286 static void scan_large_block(void *start, void *end)
1287 {
1288 void *next;
1289
1290 while (start < end) {
1291 next = min(start + MAX_SCAN_SIZE, end);
1292 scan_block(start, next, NULL);
1293 start = next;
1294 cond_resched();
1295 }
1296 }
1297
1298 /*
1299 * Scan a memory block corresponding to a kmemleak_object. A condition is
1300 * that object->use_count >= 1.
1301 */
1302 static void scan_object(struct kmemleak_object *object)
1303 {
1304 struct kmemleak_scan_area *area;
1305 unsigned long flags;
1306
1307 /*
1308 * Once the object->lock is acquired, the corresponding memory block
1309 * cannot be freed (the same lock is acquired in delete_object).
1310 */
1311 spin_lock_irqsave(&object->lock, flags);
1312 if (object->flags & OBJECT_NO_SCAN)
1313 goto out;
1314 if (!(object->flags & OBJECT_ALLOCATED))
1315 /* already freed object */
1316 goto out;
1317 if (hlist_empty(&object->area_list)) {
1318 void *start = (void *)object->pointer;
1319 void *end = (void *)(object->pointer + object->size);
1320 void *next;
1321
1322 do {
1323 next = min(start + MAX_SCAN_SIZE, end);
1324 scan_block(start, next, object);
1325
1326 start = next;
1327 if (start >= end)
1328 break;
1329
1330 spin_unlock_irqrestore(&object->lock, flags);
1331 cond_resched();
1332 spin_lock_irqsave(&object->lock, flags);
1333 } while (object->flags & OBJECT_ALLOCATED);
1334 } else
1335 hlist_for_each_entry(area, &object->area_list, node)
1336 scan_block((void *)area->start,
1337 (void *)(area->start + area->size),
1338 object);
1339 out:
1340 spin_unlock_irqrestore(&object->lock, flags);
1341 }
1342
1343 /*
1344 * Scan the objects already referenced (gray objects). More objects will be
1345 * referenced and, if there are no memory leaks, all the objects are scanned.
1346 */
1347 static void scan_gray_list(void)
1348 {
1349 struct kmemleak_object *object, *tmp;
1350
1351 /*
1352 * The list traversal is safe for both tail additions and removals
1353 * from inside the loop. The kmemleak objects cannot be freed from
1354 * outside the loop because their use_count was incremented.
1355 */
1356 object = list_entry(gray_list.next, typeof(*object), gray_list);
1357 while (&object->gray_list != &gray_list) {
1358 cond_resched();
1359
1360 /* may add new objects to the list */
1361 if (!scan_should_stop())
1362 scan_object(object);
1363
1364 tmp = list_entry(object->gray_list.next, typeof(*object),
1365 gray_list);
1366
1367 /* remove the object from the list and release it */
1368 list_del(&object->gray_list);
1369 put_object(object);
1370
1371 object = tmp;
1372 }
1373 WARN_ON(!list_empty(&gray_list));
1374 }
1375
1376 /*
1377 * Scan data sections and all the referenced memory blocks allocated via the
1378 * kernel's standard allocators. This function must be called with the
1379 * scan_mutex held.
1380 */
1381 static void kmemleak_scan(void)
1382 {
1383 unsigned long flags;
1384 struct kmemleak_object *object;
1385 int i;
1386 int new_leaks = 0;
1387
1388 jiffies_last_scan = jiffies;
1389
1390 /* prepare the kmemleak_object's */
1391 rcu_read_lock();
1392 list_for_each_entry_rcu(object, &object_list, object_list) {
1393 spin_lock_irqsave(&object->lock, flags);
1394 #ifdef DEBUG
1395 /*
1396 * With a few exceptions there should be a maximum of
1397 * 1 reference to any object at this point.
1398 */
1399 if (atomic_read(&object->use_count) > 1) {
1400 pr_debug("object->use_count = %d\n",
1401 atomic_read(&object->use_count));
1402 dump_object_info(object);
1403 }
1404 #endif
1405 /* reset the reference count (whiten the object) */
1406 object->count = 0;
1407 if (color_gray(object) && get_object(object))
1408 list_add_tail(&object->gray_list, &gray_list);
1409
1410 spin_unlock_irqrestore(&object->lock, flags);
1411 }
1412 rcu_read_unlock();
1413
1414 /* data/bss scanning */
1415 scan_large_block(_sdata, _edata);
1416 scan_large_block(__bss_start, __bss_stop);
1417 scan_large_block(__start_data_ro_after_init, __end_data_ro_after_init);
1418
1419 #ifdef CONFIG_SMP
1420 /* per-cpu sections scanning */
1421 for_each_possible_cpu(i)
1422 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1423 __per_cpu_end + per_cpu_offset(i));
1424 #endif
1425
1426 /*
1427 * Struct page scanning for each node.
1428 */
1429 get_online_mems();
1430 for_each_online_node(i) {
1431 unsigned long start_pfn = node_start_pfn(i);
1432 unsigned long end_pfn = node_end_pfn(i);
1433 unsigned long pfn;
1434
1435 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1436 struct page *page;
1437
1438 if (!pfn_valid(pfn))
1439 continue;
1440 page = pfn_to_page(pfn);
1441 /* only scan if page is in use */
1442 if (page_count(page) == 0)
1443 continue;
1444 scan_block(page, page + 1, NULL);
1445 }
1446 }
1447 put_online_mems();
1448
1449 /*
1450 * Scanning the task stacks (may introduce false negatives).
1451 */
1452 if (kmemleak_stack_scan) {
1453 struct task_struct *p, *g;
1454
1455 read_lock(&tasklist_lock);
1456 do_each_thread(g, p) {
1457 void *stack = try_get_task_stack(p);
1458 if (stack) {
1459 scan_block(stack, stack + THREAD_SIZE, NULL);
1460 put_task_stack(p);
1461 }
1462 } while_each_thread(g, p);
1463 read_unlock(&tasklist_lock);
1464 }
1465
1466 /*
1467 * Scan the objects already referenced from the sections scanned
1468 * above.
1469 */
1470 scan_gray_list();
1471
1472 /*
1473 * Check for new or unreferenced objects modified since the previous
1474 * scan and color them gray until the next scan.
1475 */
1476 rcu_read_lock();
1477 list_for_each_entry_rcu(object, &object_list, object_list) {
1478 spin_lock_irqsave(&object->lock, flags);
1479 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1480 && update_checksum(object) && get_object(object)) {
1481 /* color it gray temporarily */
1482 object->count = object->min_count;
1483 list_add_tail(&object->gray_list, &gray_list);
1484 }
1485 spin_unlock_irqrestore(&object->lock, flags);
1486 }
1487 rcu_read_unlock();
1488
1489 /*
1490 * Re-scan the gray list for modified unreferenced objects.
1491 */
1492 scan_gray_list();
1493
1494 /*
1495 * If scanning was stopped do not report any new unreferenced objects.
1496 */
1497 if (scan_should_stop())
1498 return;
1499
1500 /*
1501 * Scanning result reporting.
1502 */
1503 rcu_read_lock();
1504 list_for_each_entry_rcu(object, &object_list, object_list) {
1505 spin_lock_irqsave(&object->lock, flags);
1506 if (unreferenced_object(object) &&
1507 !(object->flags & OBJECT_REPORTED)) {
1508 object->flags |= OBJECT_REPORTED;
1509 new_leaks++;
1510 }
1511 spin_unlock_irqrestore(&object->lock, flags);
1512 }
1513 rcu_read_unlock();
1514
1515 if (new_leaks) {
1516 kmemleak_found_leaks = true;
1517
1518 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1519 new_leaks);
1520 }
1521
1522 }
1523
1524 /*
1525 * Thread function performing automatic memory scanning. Unreferenced objects
1526 * at the end of a memory scan are reported but only the first time.
1527 */
1528 static int kmemleak_scan_thread(void *arg)
1529 {
1530 static int first_run = 1;
1531
1532 pr_info("Automatic memory scanning thread started\n");
1533 set_user_nice(current, 10);
1534
1535 /*
1536 * Wait before the first scan to allow the system to fully initialize.
1537 */
1538 if (first_run) {
1539 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1540 first_run = 0;
1541 while (timeout && !kthread_should_stop())
1542 timeout = schedule_timeout_interruptible(timeout);
1543 }
1544
1545 while (!kthread_should_stop()) {
1546 signed long timeout = jiffies_scan_wait;
1547
1548 mutex_lock(&scan_mutex);
1549 kmemleak_scan();
1550 mutex_unlock(&scan_mutex);
1551
1552 /* wait before the next scan */
1553 while (timeout && !kthread_should_stop())
1554 timeout = schedule_timeout_interruptible(timeout);
1555 }
1556
1557 pr_info("Automatic memory scanning thread ended\n");
1558
1559 return 0;
1560 }
1561
1562 /*
1563 * Start the automatic memory scanning thread. This function must be called
1564 * with the scan_mutex held.
1565 */
1566 static void start_scan_thread(void)
1567 {
1568 if (scan_thread)
1569 return;
1570 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1571 if (IS_ERR(scan_thread)) {
1572 pr_warn("Failed to create the scan thread\n");
1573 scan_thread = NULL;
1574 }
1575 }
1576
1577 /*
1578 * Stop the automatic memory scanning thread. This function must be called
1579 * with the scan_mutex held.
1580 */
1581 static void stop_scan_thread(void)
1582 {
1583 if (scan_thread) {
1584 kthread_stop(scan_thread);
1585 scan_thread = NULL;
1586 }
1587 }
1588
1589 /*
1590 * Iterate over the object_list and return the first valid object at or after
1591 * the required position with its use_count incremented. The function triggers
1592 * a memory scanning when the pos argument points to the first position.
1593 */
1594 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1595 {
1596 struct kmemleak_object *object;
1597 loff_t n = *pos;
1598 int err;
1599
1600 err = mutex_lock_interruptible(&scan_mutex);
1601 if (err < 0)
1602 return ERR_PTR(err);
1603
1604 rcu_read_lock();
1605 list_for_each_entry_rcu(object, &object_list, object_list) {
1606 if (n-- > 0)
1607 continue;
1608 if (get_object(object))
1609 goto out;
1610 }
1611 object = NULL;
1612 out:
1613 return object;
1614 }
1615
1616 /*
1617 * Return the next object in the object_list. The function decrements the
1618 * use_count of the previous object and increases that of the next one.
1619 */
1620 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1621 {
1622 struct kmemleak_object *prev_obj = v;
1623 struct kmemleak_object *next_obj = NULL;
1624 struct kmemleak_object *obj = prev_obj;
1625
1626 ++(*pos);
1627
1628 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1629 if (get_object(obj)) {
1630 next_obj = obj;
1631 break;
1632 }
1633 }
1634
1635 put_object(prev_obj);
1636 return next_obj;
1637 }
1638
1639 /*
1640 * Decrement the use_count of the last object required, if any.
1641 */
1642 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1643 {
1644 if (!IS_ERR(v)) {
1645 /*
1646 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1647 * waiting was interrupted, so only release it if !IS_ERR.
1648 */
1649 rcu_read_unlock();
1650 mutex_unlock(&scan_mutex);
1651 if (v)
1652 put_object(v);
1653 }
1654 }
1655
1656 /*
1657 * Print the information for an unreferenced object to the seq file.
1658 */
1659 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1660 {
1661 struct kmemleak_object *object = v;
1662 unsigned long flags;
1663
1664 spin_lock_irqsave(&object->lock, flags);
1665 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1666 print_unreferenced(seq, object);
1667 spin_unlock_irqrestore(&object->lock, flags);
1668 return 0;
1669 }
1670
1671 static const struct seq_operations kmemleak_seq_ops = {
1672 .start = kmemleak_seq_start,
1673 .next = kmemleak_seq_next,
1674 .stop = kmemleak_seq_stop,
1675 .show = kmemleak_seq_show,
1676 };
1677
1678 static int kmemleak_open(struct inode *inode, struct file *file)
1679 {
1680 return seq_open(file, &kmemleak_seq_ops);
1681 }
1682
1683 static int dump_str_object_info(const char *str)
1684 {
1685 unsigned long flags;
1686 struct kmemleak_object *object;
1687 unsigned long addr;
1688
1689 if (kstrtoul(str, 0, &addr))
1690 return -EINVAL;
1691 object = find_and_get_object(addr, 0);
1692 if (!object) {
1693 pr_info("Unknown object at 0x%08lx\n", addr);
1694 return -EINVAL;
1695 }
1696
1697 spin_lock_irqsave(&object->lock, flags);
1698 dump_object_info(object);
1699 spin_unlock_irqrestore(&object->lock, flags);
1700
1701 put_object(object);
1702 return 0;
1703 }
1704
1705 /*
1706 * We use grey instead of black to ensure we can do future scans on the same
1707 * objects. If we did not do future scans these black objects could
1708 * potentially contain references to newly allocated objects in the future and
1709 * we'd end up with false positives.
1710 */
1711 static void kmemleak_clear(void)
1712 {
1713 struct kmemleak_object *object;
1714 unsigned long flags;
1715
1716 rcu_read_lock();
1717 list_for_each_entry_rcu(object, &object_list, object_list) {
1718 spin_lock_irqsave(&object->lock, flags);
1719 if ((object->flags & OBJECT_REPORTED) &&
1720 unreferenced_object(object))
1721 __paint_it(object, KMEMLEAK_GREY);
1722 spin_unlock_irqrestore(&object->lock, flags);
1723 }
1724 rcu_read_unlock();
1725
1726 kmemleak_found_leaks = false;
1727 }
1728
1729 static void __kmemleak_do_cleanup(void);
1730
1731 /*
1732 * File write operation to configure kmemleak at run-time. The following
1733 * commands can be written to the /sys/kernel/debug/kmemleak file:
1734 * off - disable kmemleak (irreversible)
1735 * stack=on - enable the task stacks scanning
1736 * stack=off - disable the tasks stacks scanning
1737 * scan=on - start the automatic memory scanning thread
1738 * scan=off - stop the automatic memory scanning thread
1739 * scan=... - set the automatic memory scanning period in seconds (0 to
1740 * disable it)
1741 * scan - trigger a memory scan
1742 * clear - mark all current reported unreferenced kmemleak objects as
1743 * grey to ignore printing them, or free all kmemleak objects
1744 * if kmemleak has been disabled.
1745 * dump=... - dump information about the object found at the given address
1746 */
1747 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1748 size_t size, loff_t *ppos)
1749 {
1750 char buf[64];
1751 int buf_size;
1752 int ret;
1753
1754 buf_size = min(size, (sizeof(buf) - 1));
1755 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1756 return -EFAULT;
1757 buf[buf_size] = 0;
1758
1759 ret = mutex_lock_interruptible(&scan_mutex);
1760 if (ret < 0)
1761 return ret;
1762
1763 if (strncmp(buf, "clear", 5) == 0) {
1764 if (kmemleak_enabled)
1765 kmemleak_clear();
1766 else
1767 __kmemleak_do_cleanup();
1768 goto out;
1769 }
1770
1771 if (!kmemleak_enabled) {
1772 ret = -EBUSY;
1773 goto out;
1774 }
1775
1776 if (strncmp(buf, "off", 3) == 0)
1777 kmemleak_disable();
1778 else if (strncmp(buf, "stack=on", 8) == 0)
1779 kmemleak_stack_scan = 1;
1780 else if (strncmp(buf, "stack=off", 9) == 0)
1781 kmemleak_stack_scan = 0;
1782 else if (strncmp(buf, "scan=on", 7) == 0)
1783 start_scan_thread();
1784 else if (strncmp(buf, "scan=off", 8) == 0)
1785 stop_scan_thread();
1786 else if (strncmp(buf, "scan=", 5) == 0) {
1787 unsigned long secs;
1788
1789 ret = kstrtoul(buf + 5, 0, &secs);
1790 if (ret < 0)
1791 goto out;
1792 stop_scan_thread();
1793 if (secs) {
1794 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1795 start_scan_thread();
1796 }
1797 } else if (strncmp(buf, "scan", 4) == 0)
1798 kmemleak_scan();
1799 else if (strncmp(buf, "dump=", 5) == 0)
1800 ret = dump_str_object_info(buf + 5);
1801 else
1802 ret = -EINVAL;
1803
1804 out:
1805 mutex_unlock(&scan_mutex);
1806 if (ret < 0)
1807 return ret;
1808
1809 /* ignore the rest of the buffer, only one command at a time */
1810 *ppos += size;
1811 return size;
1812 }
1813
1814 static const struct file_operations kmemleak_fops = {
1815 .owner = THIS_MODULE,
1816 .open = kmemleak_open,
1817 .read = seq_read,
1818 .write = kmemleak_write,
1819 .llseek = seq_lseek,
1820 .release = seq_release,
1821 };
1822
1823 static void __kmemleak_do_cleanup(void)
1824 {
1825 struct kmemleak_object *object;
1826
1827 rcu_read_lock();
1828 list_for_each_entry_rcu(object, &object_list, object_list)
1829 delete_object_full(object->pointer);
1830 rcu_read_unlock();
1831 }
1832
1833 /*
1834 * Stop the memory scanning thread and free the kmemleak internal objects if
1835 * no previous scan thread (otherwise, kmemleak may still have some useful
1836 * information on memory leaks).
1837 */
1838 static void kmemleak_do_cleanup(struct work_struct *work)
1839 {
1840 stop_scan_thread();
1841
1842 /*
1843 * Once the scan thread has stopped, it is safe to no longer track
1844 * object freeing. Ordering of the scan thread stopping and the memory
1845 * accesses below is guaranteed by the kthread_stop() function.
1846 */
1847 kmemleak_free_enabled = 0;
1848
1849 if (!kmemleak_found_leaks)
1850 __kmemleak_do_cleanup();
1851 else
1852 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1853 }
1854
1855 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1856
1857 /*
1858 * Disable kmemleak. No memory allocation/freeing will be traced once this
1859 * function is called. Disabling kmemleak is an irreversible operation.
1860 */
1861 static void kmemleak_disable(void)
1862 {
1863 /* atomically check whether it was already invoked */
1864 if (cmpxchg(&kmemleak_error, 0, 1))
1865 return;
1866
1867 /* stop any memory operation tracing */
1868 kmemleak_enabled = 0;
1869
1870 /* check whether it is too early for a kernel thread */
1871 if (kmemleak_initialized)
1872 schedule_work(&cleanup_work);
1873 else
1874 kmemleak_free_enabled = 0;
1875
1876 pr_info("Kernel memory leak detector disabled\n");
1877 }
1878
1879 /*
1880 * Allow boot-time kmemleak disabling (enabled by default).
1881 */
1882 static int kmemleak_boot_config(char *str)
1883 {
1884 if (!str)
1885 return -EINVAL;
1886 if (strcmp(str, "off") == 0)
1887 kmemleak_disable();
1888 else if (strcmp(str, "on") == 0)
1889 kmemleak_skip_disable = 1;
1890 else
1891 return -EINVAL;
1892 return 0;
1893 }
1894 early_param("kmemleak", kmemleak_boot_config);
1895
1896 static void __init print_log_trace(struct early_log *log)
1897 {
1898 struct stack_trace trace;
1899
1900 trace.nr_entries = log->trace_len;
1901 trace.entries = log->trace;
1902
1903 pr_notice("Early log backtrace:\n");
1904 print_stack_trace(&trace, 2);
1905 }
1906
1907 /*
1908 * Kmemleak initialization.
1909 */
1910 void __init kmemleak_init(void)
1911 {
1912 int i;
1913 unsigned long flags;
1914
1915 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1916 if (!kmemleak_skip_disable) {
1917 kmemleak_early_log = 0;
1918 kmemleak_disable();
1919 return;
1920 }
1921 #endif
1922
1923 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1924 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1925
1926 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1927 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1928
1929 if (crt_early_log > ARRAY_SIZE(early_log))
1930 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1931 crt_early_log);
1932
1933 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1934 local_irq_save(flags);
1935 kmemleak_early_log = 0;
1936 if (kmemleak_error) {
1937 local_irq_restore(flags);
1938 return;
1939 } else {
1940 kmemleak_enabled = 1;
1941 kmemleak_free_enabled = 1;
1942 }
1943 local_irq_restore(flags);
1944
1945 /*
1946 * This is the point where tracking allocations is safe. Automatic
1947 * scanning is started during the late initcall. Add the early logged
1948 * callbacks to the kmemleak infrastructure.
1949 */
1950 for (i = 0; i < crt_early_log; i++) {
1951 struct early_log *log = &early_log[i];
1952
1953 switch (log->op_type) {
1954 case KMEMLEAK_ALLOC:
1955 early_alloc(log);
1956 break;
1957 case KMEMLEAK_ALLOC_PERCPU:
1958 early_alloc_percpu(log);
1959 break;
1960 case KMEMLEAK_FREE:
1961 kmemleak_free(log->ptr);
1962 break;
1963 case KMEMLEAK_FREE_PART:
1964 kmemleak_free_part(log->ptr, log->size);
1965 break;
1966 case KMEMLEAK_FREE_PERCPU:
1967 kmemleak_free_percpu(log->ptr);
1968 break;
1969 case KMEMLEAK_NOT_LEAK:
1970 kmemleak_not_leak(log->ptr);
1971 break;
1972 case KMEMLEAK_IGNORE:
1973 kmemleak_ignore(log->ptr);
1974 break;
1975 case KMEMLEAK_SCAN_AREA:
1976 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1977 break;
1978 case KMEMLEAK_NO_SCAN:
1979 kmemleak_no_scan(log->ptr);
1980 break;
1981 default:
1982 kmemleak_warn("Unknown early log operation: %d\n",
1983 log->op_type);
1984 }
1985
1986 if (kmemleak_warning) {
1987 print_log_trace(log);
1988 kmemleak_warning = 0;
1989 }
1990 }
1991 }
1992
1993 /*
1994 * Late initialization function.
1995 */
1996 static int __init kmemleak_late_init(void)
1997 {
1998 struct dentry *dentry;
1999
2000 kmemleak_initialized = 1;
2001
2002 if (kmemleak_error) {
2003 /*
2004 * Some error occurred and kmemleak was disabled. There is a
2005 * small chance that kmemleak_disable() was called immediately
2006 * after setting kmemleak_initialized and we may end up with
2007 * two clean-up threads but serialized by scan_mutex.
2008 */
2009 schedule_work(&cleanup_work);
2010 return -ENOMEM;
2011 }
2012
2013 dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2014 &kmemleak_fops);
2015 if (!dentry)
2016 pr_warn("Failed to create the debugfs kmemleak file\n");
2017 mutex_lock(&scan_mutex);
2018 start_scan_thread();
2019 mutex_unlock(&scan_mutex);
2020
2021 pr_info("Kernel memory leak detector initialized\n");
2022
2023 return 0;
2024 }
2025 late_initcall(kmemleak_late_init);