4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21 * For more information on the algorithm and kmemleak usage, please see
22 * Documentation/kmemleak.txt.
27 * The following locks and mutexes are used by kmemleak:
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
32 * blocks. The object_tree_root is a red black tree used to look-up
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
56 * The kmemleak_object structures have a use_count incremented or decremented
57 * using the get_object()/put_object() functions. When the use_count becomes
58 * 0, this count can no longer be incremented and put_object() schedules the
59 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60 * function must be protected by rcu_read_lock() to avoid accessing a freed
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/rbtree.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
101 #include <linux/kasan.h>
102 #include <linux/kmemcheck.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
107 * Kmemleak configuration and common defines.
109 #define MAX_TRACE 16 /* stack trace length */
110 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
112 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
115 #define BYTES_PER_POINTER sizeof(void *)
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119 __GFP_NOACCOUNT)) | \
120 __GFP_NORETRY | __GFP_NOMEMALLOC | \
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area
{
125 struct hlist_node node
;
130 #define KMEMLEAK_GREY 0
131 #define KMEMLEAK_BLACK -1
134 * Structure holding the metadata for each allocated memory block.
135 * Modifications to such objects should be made while holding the
136 * object->lock. Insertions or deletions from object_list, gray_list or
137 * rb_node are already protected by the corresponding locks or mutex (see
138 * the notes on locking above). These objects are reference-counted
139 * (use_count) and freed using the RCU mechanism.
141 struct kmemleak_object
{
143 unsigned long flags
; /* object status flags */
144 struct list_head object_list
;
145 struct list_head gray_list
;
146 struct rb_node rb_node
;
147 struct rcu_head rcu
; /* object_list lockless traversal */
148 /* object usage count; object freed when use_count == 0 */
150 unsigned long pointer
;
152 /* minimum number of a pointers found before it is considered leak */
154 /* the total number of pointers found pointing to this object */
156 /* checksum for detecting modified objects */
158 /* memory ranges to be scanned inside an object (empty for all) */
159 struct hlist_head area_list
;
160 unsigned long trace
[MAX_TRACE
];
161 unsigned int trace_len
;
162 unsigned long jiffies
; /* creation timestamp */
163 pid_t pid
; /* pid of the current task */
164 char comm
[TASK_COMM_LEN
]; /* executable name */
167 /* flag representing the memory block allocation status */
168 #define OBJECT_ALLOCATED (1 << 0)
169 /* flag set after the first reporting of an unreference object */
170 #define OBJECT_REPORTED (1 << 1)
171 /* flag set to not scan the object */
172 #define OBJECT_NO_SCAN (1 << 2)
174 /* number of bytes to print per line; must be 16 or 32 */
175 #define HEX_ROW_SIZE 16
176 /* number of bytes to print at a time (1, 2, 4, 8) */
177 #define HEX_GROUP_SIZE 1
178 /* include ASCII after the hex output */
180 /* max number of lines to be printed */
181 #define HEX_MAX_LINES 2
183 /* the list of all allocated objects */
184 static LIST_HEAD(object_list
);
185 /* the list of gray-colored objects (see color_gray comment below) */
186 static LIST_HEAD(gray_list
);
187 /* search tree for object boundaries */
188 static struct rb_root object_tree_root
= RB_ROOT
;
189 /* rw_lock protecting the access to object_list and object_tree_root */
190 static DEFINE_RWLOCK(kmemleak_lock
);
192 /* allocation caches for kmemleak internal data */
193 static struct kmem_cache
*object_cache
;
194 static struct kmem_cache
*scan_area_cache
;
196 /* set if tracing memory operations is enabled */
197 static int kmemleak_enabled
;
198 /* set in the late_initcall if there were no errors */
199 static int kmemleak_initialized
;
200 /* enables or disables early logging of the memory operations */
201 static int kmemleak_early_log
= 1;
202 /* set if a kmemleak warning was issued */
203 static int kmemleak_warning
;
204 /* set if a fatal kmemleak error has occurred */
205 static int kmemleak_error
;
207 /* minimum and maximum address that may be valid pointers */
208 static unsigned long min_addr
= ULONG_MAX
;
209 static unsigned long max_addr
;
211 static struct task_struct
*scan_thread
;
212 /* used to avoid reporting of recently allocated objects */
213 static unsigned long jiffies_min_age
;
214 static unsigned long jiffies_last_scan
;
215 /* delay between automatic memory scannings */
216 static signed long jiffies_scan_wait
;
217 /* enables or disables the task stacks scanning */
218 static int kmemleak_stack_scan
= 1;
219 /* protects the memory scanning, parameters and debug/kmemleak file access */
220 static DEFINE_MUTEX(scan_mutex
);
221 /* setting kmemleak=on, will set this var, skipping the disable */
222 static int kmemleak_skip_disable
;
223 /* If there are leaks that can be reported */
224 static bool kmemleak_found_leaks
;
227 * Early object allocation/freeing logging. Kmemleak is initialized after the
228 * kernel allocator. However, both the kernel allocator and kmemleak may
229 * allocate memory blocks which need to be tracked. Kmemleak defines an
230 * arbitrary buffer to hold the allocation/freeing information before it is
234 /* kmemleak operation type for early logging */
237 KMEMLEAK_ALLOC_PERCPU
,
240 KMEMLEAK_FREE_PERCPU
,
248 * Structure holding the information passed to kmemleak callbacks during the
252 int op_type
; /* kmemleak operation type */
253 const void *ptr
; /* allocated/freed memory block */
254 size_t size
; /* memory block size */
255 int min_count
; /* minimum reference count */
256 unsigned long trace
[MAX_TRACE
]; /* stack trace */
257 unsigned int trace_len
; /* stack trace length */
260 /* early logging buffer and current position */
261 static struct early_log
262 early_log
[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE
] __initdata
;
263 static int crt_early_log __initdata
;
265 static void kmemleak_disable(void);
268 * Print a warning and dump the stack trace.
270 #define kmemleak_warn(x...) do { \
273 kmemleak_warning = 1; \
277 * Macro invoked when a serious kmemleak condition occurred and cannot be
278 * recovered from. Kmemleak will be disabled and further allocation/freeing
279 * tracing no longer available.
281 #define kmemleak_stop(x...) do { \
283 kmemleak_disable(); \
287 * Printing of the objects hex dump to the seq file. The number of lines to be
288 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
289 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
290 * with the object->lock held.
292 static void hex_dump_object(struct seq_file
*seq
,
293 struct kmemleak_object
*object
)
295 const u8
*ptr
= (const u8
*)object
->pointer
;
296 int i
, len
, remaining
;
297 unsigned char linebuf
[HEX_ROW_SIZE
* 5];
299 /* limit the number of lines to HEX_MAX_LINES */
301 min(object
->size
, (size_t)(HEX_MAX_LINES
* HEX_ROW_SIZE
));
303 seq_printf(seq
, " hex dump (first %d bytes):\n", len
);
304 for (i
= 0; i
< len
; i
+= HEX_ROW_SIZE
) {
305 int linelen
= min(remaining
, HEX_ROW_SIZE
);
307 remaining
-= HEX_ROW_SIZE
;
308 hex_dump_to_buffer(ptr
+ i
, linelen
, HEX_ROW_SIZE
,
309 HEX_GROUP_SIZE
, linebuf
, sizeof(linebuf
),
311 seq_printf(seq
, " %s\n", linebuf
);
316 * Object colors, encoded with count and min_count:
317 * - white - orphan object, not enough references to it (count < min_count)
318 * - gray - not orphan, not marked as false positive (min_count == 0) or
319 * sufficient references to it (count >= min_count)
320 * - black - ignore, it doesn't contain references (e.g. text section)
321 * (min_count == -1). No function defined for this color.
322 * Newly created objects don't have any color assigned (object->count == -1)
323 * before the next memory scan when they become white.
325 static bool color_white(const struct kmemleak_object
*object
)
327 return object
->count
!= KMEMLEAK_BLACK
&&
328 object
->count
< object
->min_count
;
331 static bool color_gray(const struct kmemleak_object
*object
)
333 return object
->min_count
!= KMEMLEAK_BLACK
&&
334 object
->count
>= object
->min_count
;
338 * Objects are considered unreferenced only if their color is white, they have
339 * not be deleted and have a minimum age to avoid false positives caused by
340 * pointers temporarily stored in CPU registers.
342 static bool unreferenced_object(struct kmemleak_object
*object
)
344 return (color_white(object
) && object
->flags
& OBJECT_ALLOCATED
) &&
345 time_before_eq(object
->jiffies
+ jiffies_min_age
,
350 * Printing of the unreferenced objects information to the seq file. The
351 * print_unreferenced function must be called with the object->lock held.
353 static void print_unreferenced(struct seq_file
*seq
,
354 struct kmemleak_object
*object
)
357 unsigned int msecs_age
= jiffies_to_msecs(jiffies
- object
->jiffies
);
359 seq_printf(seq
, "unreferenced object 0x%08lx (size %zu):\n",
360 object
->pointer
, object
->size
);
361 seq_printf(seq
, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
362 object
->comm
, object
->pid
, object
->jiffies
,
363 msecs_age
/ 1000, msecs_age
% 1000);
364 hex_dump_object(seq
, object
);
365 seq_printf(seq
, " backtrace:\n");
367 for (i
= 0; i
< object
->trace_len
; i
++) {
368 void *ptr
= (void *)object
->trace
[i
];
369 seq_printf(seq
, " [<%p>] %pS\n", ptr
, ptr
);
374 * Print the kmemleak_object information. This function is used mainly for
375 * debugging special cases when kmemleak operations. It must be called with
376 * the object->lock held.
378 static void dump_object_info(struct kmemleak_object
*object
)
380 struct stack_trace trace
;
382 trace
.nr_entries
= object
->trace_len
;
383 trace
.entries
= object
->trace
;
385 pr_notice("Object 0x%08lx (size %zu):\n",
386 object
->pointer
, object
->size
);
387 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
388 object
->comm
, object
->pid
, object
->jiffies
);
389 pr_notice(" min_count = %d\n", object
->min_count
);
390 pr_notice(" count = %d\n", object
->count
);
391 pr_notice(" flags = 0x%lx\n", object
->flags
);
392 pr_notice(" checksum = %u\n", object
->checksum
);
393 pr_notice(" backtrace:\n");
394 print_stack_trace(&trace
, 4);
398 * Look-up a memory block metadata (kmemleak_object) in the object search
399 * tree based on a pointer value. If alias is 0, only values pointing to the
400 * beginning of the memory block are allowed. The kmemleak_lock must be held
401 * when calling this function.
403 static struct kmemleak_object
*lookup_object(unsigned long ptr
, int alias
)
405 struct rb_node
*rb
= object_tree_root
.rb_node
;
408 struct kmemleak_object
*object
=
409 rb_entry(rb
, struct kmemleak_object
, rb_node
);
410 if (ptr
< object
->pointer
)
411 rb
= object
->rb_node
.rb_left
;
412 else if (object
->pointer
+ object
->size
<= ptr
)
413 rb
= object
->rb_node
.rb_right
;
414 else if (object
->pointer
== ptr
|| alias
)
417 kmemleak_warn("Found object by alias at 0x%08lx\n",
419 dump_object_info(object
);
427 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428 * that once an object's use_count reached 0, the RCU freeing was already
429 * registered and the object should no longer be used. This function must be
430 * called under the protection of rcu_read_lock().
432 static int get_object(struct kmemleak_object
*object
)
434 return atomic_inc_not_zero(&object
->use_count
);
438 * RCU callback to free a kmemleak_object.
440 static void free_object_rcu(struct rcu_head
*rcu
)
442 struct hlist_node
*tmp
;
443 struct kmemleak_scan_area
*area
;
444 struct kmemleak_object
*object
=
445 container_of(rcu
, struct kmemleak_object
, rcu
);
448 * Once use_count is 0 (guaranteed by put_object), there is no other
449 * code accessing this object, hence no need for locking.
451 hlist_for_each_entry_safe(area
, tmp
, &object
->area_list
, node
) {
452 hlist_del(&area
->node
);
453 kmem_cache_free(scan_area_cache
, area
);
455 kmem_cache_free(object_cache
, object
);
459 * Decrement the object use_count. Once the count is 0, free the object using
460 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
461 * delete_object() path, the delayed RCU freeing ensures that there is no
462 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
465 static void put_object(struct kmemleak_object
*object
)
467 if (!atomic_dec_and_test(&object
->use_count
))
470 /* should only get here after delete_object was called */
471 WARN_ON(object
->flags
& OBJECT_ALLOCATED
);
473 call_rcu(&object
->rcu
, free_object_rcu
);
477 * Look up an object in the object search tree and increase its use_count.
479 static struct kmemleak_object
*find_and_get_object(unsigned long ptr
, int alias
)
482 struct kmemleak_object
*object
= NULL
;
485 read_lock_irqsave(&kmemleak_lock
, flags
);
486 if (ptr
>= min_addr
&& ptr
< max_addr
)
487 object
= lookup_object(ptr
, alias
);
488 read_unlock_irqrestore(&kmemleak_lock
, flags
);
490 /* check whether the object is still available */
491 if (object
&& !get_object(object
))
499 * Save stack trace to the given array of MAX_TRACE size.
501 static int __save_stack_trace(unsigned long *trace
)
503 struct stack_trace stack_trace
;
505 stack_trace
.max_entries
= MAX_TRACE
;
506 stack_trace
.nr_entries
= 0;
507 stack_trace
.entries
= trace
;
508 stack_trace
.skip
= 2;
509 save_stack_trace(&stack_trace
);
511 return stack_trace
.nr_entries
;
515 * Create the metadata (struct kmemleak_object) corresponding to an allocated
516 * memory block and add it to the object_list and object_tree_root.
518 static struct kmemleak_object
*create_object(unsigned long ptr
, size_t size
,
519 int min_count
, gfp_t gfp
)
522 struct kmemleak_object
*object
, *parent
;
523 struct rb_node
**link
, *rb_parent
;
525 object
= kmem_cache_alloc(object_cache
, gfp_kmemleak_mask(gfp
));
527 pr_warning("Cannot allocate a kmemleak_object structure\n");
532 INIT_LIST_HEAD(&object
->object_list
);
533 INIT_LIST_HEAD(&object
->gray_list
);
534 INIT_HLIST_HEAD(&object
->area_list
);
535 spin_lock_init(&object
->lock
);
536 atomic_set(&object
->use_count
, 1);
537 object
->flags
= OBJECT_ALLOCATED
;
538 object
->pointer
= ptr
;
540 object
->min_count
= min_count
;
541 object
->count
= 0; /* white color initially */
542 object
->jiffies
= jiffies
;
543 object
->checksum
= 0;
545 /* task information */
548 strncpy(object
->comm
, "hardirq", sizeof(object
->comm
));
549 } else if (in_softirq()) {
551 strncpy(object
->comm
, "softirq", sizeof(object
->comm
));
553 object
->pid
= current
->pid
;
555 * There is a small chance of a race with set_task_comm(),
556 * however using get_task_comm() here may cause locking
557 * dependency issues with current->alloc_lock. In the worst
558 * case, the command line is not correct.
560 strncpy(object
->comm
, current
->comm
, sizeof(object
->comm
));
563 /* kernel backtrace */
564 object
->trace_len
= __save_stack_trace(object
->trace
);
566 write_lock_irqsave(&kmemleak_lock
, flags
);
568 min_addr
= min(min_addr
, ptr
);
569 max_addr
= max(max_addr
, ptr
+ size
);
570 link
= &object_tree_root
.rb_node
;
574 parent
= rb_entry(rb_parent
, struct kmemleak_object
, rb_node
);
575 if (ptr
+ size
<= parent
->pointer
)
576 link
= &parent
->rb_node
.rb_left
;
577 else if (parent
->pointer
+ parent
->size
<= ptr
)
578 link
= &parent
->rb_node
.rb_right
;
580 kmemleak_stop("Cannot insert 0x%lx into the object "
581 "search tree (overlaps existing)\n",
583 kmem_cache_free(object_cache
, object
);
585 spin_lock(&object
->lock
);
586 dump_object_info(object
);
587 spin_unlock(&object
->lock
);
591 rb_link_node(&object
->rb_node
, rb_parent
, link
);
592 rb_insert_color(&object
->rb_node
, &object_tree_root
);
594 list_add_tail_rcu(&object
->object_list
, &object_list
);
596 write_unlock_irqrestore(&kmemleak_lock
, flags
);
601 * Remove the metadata (struct kmemleak_object) for a memory block from the
602 * object_list and object_tree_root and decrement its use_count.
604 static void __delete_object(struct kmemleak_object
*object
)
608 write_lock_irqsave(&kmemleak_lock
, flags
);
609 rb_erase(&object
->rb_node
, &object_tree_root
);
610 list_del_rcu(&object
->object_list
);
611 write_unlock_irqrestore(&kmemleak_lock
, flags
);
613 WARN_ON(!(object
->flags
& OBJECT_ALLOCATED
));
614 WARN_ON(atomic_read(&object
->use_count
) < 2);
617 * Locking here also ensures that the corresponding memory block
618 * cannot be freed when it is being scanned.
620 spin_lock_irqsave(&object
->lock
, flags
);
621 object
->flags
&= ~OBJECT_ALLOCATED
;
622 spin_unlock_irqrestore(&object
->lock
, flags
);
627 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
630 static void delete_object_full(unsigned long ptr
)
632 struct kmemleak_object
*object
;
634 object
= find_and_get_object(ptr
, 0);
637 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
642 __delete_object(object
);
647 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
648 * delete it. If the memory block is partially freed, the function may create
649 * additional metadata for the remaining parts of the block.
651 static void delete_object_part(unsigned long ptr
, size_t size
)
653 struct kmemleak_object
*object
;
654 unsigned long start
, end
;
656 object
= find_and_get_object(ptr
, 1);
659 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
660 "(size %zu)\n", ptr
, size
);
664 __delete_object(object
);
667 * Create one or two objects that may result from the memory block
668 * split. Note that partial freeing is only done by free_bootmem() and
669 * this happens before kmemleak_init() is called. The path below is
670 * only executed during early log recording in kmemleak_init(), so
671 * GFP_KERNEL is enough.
673 start
= object
->pointer
;
674 end
= object
->pointer
+ object
->size
;
676 create_object(start
, ptr
- start
, object
->min_count
,
678 if (ptr
+ size
< end
)
679 create_object(ptr
+ size
, end
- ptr
- size
, object
->min_count
,
685 static void __paint_it(struct kmemleak_object
*object
, int color
)
687 object
->min_count
= color
;
688 if (color
== KMEMLEAK_BLACK
)
689 object
->flags
|= OBJECT_NO_SCAN
;
692 static void paint_it(struct kmemleak_object
*object
, int color
)
696 spin_lock_irqsave(&object
->lock
, flags
);
697 __paint_it(object
, color
);
698 spin_unlock_irqrestore(&object
->lock
, flags
);
701 static void paint_ptr(unsigned long ptr
, int color
)
703 struct kmemleak_object
*object
;
705 object
= find_and_get_object(ptr
, 0);
707 kmemleak_warn("Trying to color unknown object "
708 "at 0x%08lx as %s\n", ptr
,
709 (color
== KMEMLEAK_GREY
) ? "Grey" :
710 (color
== KMEMLEAK_BLACK
) ? "Black" : "Unknown");
713 paint_it(object
, color
);
718 * Mark an object permanently as gray-colored so that it can no longer be
719 * reported as a leak. This is used in general to mark a false positive.
721 static void make_gray_object(unsigned long ptr
)
723 paint_ptr(ptr
, KMEMLEAK_GREY
);
727 * Mark the object as black-colored so that it is ignored from scans and
730 static void make_black_object(unsigned long ptr
)
732 paint_ptr(ptr
, KMEMLEAK_BLACK
);
736 * Add a scanning area to the object. If at least one such area is added,
737 * kmemleak will only scan these ranges rather than the whole memory block.
739 static void add_scan_area(unsigned long ptr
, size_t size
, gfp_t gfp
)
742 struct kmemleak_object
*object
;
743 struct kmemleak_scan_area
*area
;
745 object
= find_and_get_object(ptr
, 1);
747 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
752 area
= kmem_cache_alloc(scan_area_cache
, gfp_kmemleak_mask(gfp
));
754 pr_warning("Cannot allocate a scan area\n");
758 spin_lock_irqsave(&object
->lock
, flags
);
759 if (size
== SIZE_MAX
) {
760 size
= object
->pointer
+ object
->size
- ptr
;
761 } else if (ptr
+ size
> object
->pointer
+ object
->size
) {
762 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr
);
763 dump_object_info(object
);
764 kmem_cache_free(scan_area_cache
, area
);
768 INIT_HLIST_NODE(&area
->node
);
772 hlist_add_head(&area
->node
, &object
->area_list
);
774 spin_unlock_irqrestore(&object
->lock
, flags
);
780 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
781 * pointer. Such object will not be scanned by kmemleak but references to it
784 static void object_no_scan(unsigned long ptr
)
787 struct kmemleak_object
*object
;
789 object
= find_and_get_object(ptr
, 0);
791 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr
);
795 spin_lock_irqsave(&object
->lock
, flags
);
796 object
->flags
|= OBJECT_NO_SCAN
;
797 spin_unlock_irqrestore(&object
->lock
, flags
);
802 * Log an early kmemleak_* call to the early_log buffer. These calls will be
803 * processed later once kmemleak is fully initialized.
805 static void __init
log_early(int op_type
, const void *ptr
, size_t size
,
809 struct early_log
*log
;
811 if (kmemleak_error
) {
812 /* kmemleak stopped recording, just count the requests */
817 if (crt_early_log
>= ARRAY_SIZE(early_log
)) {
823 * There is no need for locking since the kernel is still in UP mode
824 * at this stage. Disabling the IRQs is enough.
826 local_irq_save(flags
);
827 log
= &early_log
[crt_early_log
];
828 log
->op_type
= op_type
;
831 log
->min_count
= min_count
;
832 log
->trace_len
= __save_stack_trace(log
->trace
);
834 local_irq_restore(flags
);
838 * Log an early allocated block and populate the stack trace.
840 static void early_alloc(struct early_log
*log
)
842 struct kmemleak_object
*object
;
846 if (!kmemleak_enabled
|| !log
->ptr
|| IS_ERR(log
->ptr
))
850 * RCU locking needed to ensure object is not freed via put_object().
853 object
= create_object((unsigned long)log
->ptr
, log
->size
,
854 log
->min_count
, GFP_ATOMIC
);
857 spin_lock_irqsave(&object
->lock
, flags
);
858 for (i
= 0; i
< log
->trace_len
; i
++)
859 object
->trace
[i
] = log
->trace
[i
];
860 object
->trace_len
= log
->trace_len
;
861 spin_unlock_irqrestore(&object
->lock
, flags
);
867 * Log an early allocated block and populate the stack trace.
869 static void early_alloc_percpu(struct early_log
*log
)
872 const void __percpu
*ptr
= log
->ptr
;
874 for_each_possible_cpu(cpu
) {
875 log
->ptr
= per_cpu_ptr(ptr
, cpu
);
881 * kmemleak_alloc - register a newly allocated object
882 * @ptr: pointer to beginning of the object
883 * @size: size of the object
884 * @min_count: minimum number of references to this object. If during memory
885 * scanning a number of references less than @min_count is found,
886 * the object is reported as a memory leak. If @min_count is 0,
887 * the object is never reported as a leak. If @min_count is -1,
888 * the object is ignored (not scanned and not reported as a leak)
889 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
891 * This function is called from the kernel allocators when a new object
892 * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
894 void __ref
kmemleak_alloc(const void *ptr
, size_t size
, int min_count
,
897 pr_debug("%s(0x%p, %zu, %d)\n", __func__
, ptr
, size
, min_count
);
899 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
900 create_object((unsigned long)ptr
, size
, min_count
, gfp
);
901 else if (kmemleak_early_log
)
902 log_early(KMEMLEAK_ALLOC
, ptr
, size
, min_count
);
904 EXPORT_SYMBOL_GPL(kmemleak_alloc
);
907 * kmemleak_alloc_percpu - register a newly allocated __percpu object
908 * @ptr: __percpu pointer to beginning of the object
909 * @size: size of the object
911 * This function is called from the kernel percpu allocator when a new object
912 * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
915 void __ref
kmemleak_alloc_percpu(const void __percpu
*ptr
, size_t size
)
919 pr_debug("%s(0x%p, %zu)\n", __func__
, ptr
, size
);
922 * Percpu allocations are only scanned and not reported as leaks
923 * (min_count is set to 0).
925 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
926 for_each_possible_cpu(cpu
)
927 create_object((unsigned long)per_cpu_ptr(ptr
, cpu
),
928 size
, 0, GFP_KERNEL
);
929 else if (kmemleak_early_log
)
930 log_early(KMEMLEAK_ALLOC_PERCPU
, ptr
, size
, 0);
932 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu
);
935 * kmemleak_free - unregister a previously registered object
936 * @ptr: pointer to beginning of the object
938 * This function is called from the kernel allocators when an object (memory
939 * block) is freed (kmem_cache_free, kfree, vfree etc.).
941 void __ref
kmemleak_free(const void *ptr
)
943 pr_debug("%s(0x%p)\n", __func__
, ptr
);
945 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
946 delete_object_full((unsigned long)ptr
);
947 else if (kmemleak_early_log
)
948 log_early(KMEMLEAK_FREE
, ptr
, 0, 0);
950 EXPORT_SYMBOL_GPL(kmemleak_free
);
953 * kmemleak_free_part - partially unregister a previously registered object
954 * @ptr: pointer to the beginning or inside the object. This also
955 * represents the start of the range to be freed
956 * @size: size to be unregistered
958 * This function is called when only a part of a memory block is freed
959 * (usually from the bootmem allocator).
961 void __ref
kmemleak_free_part(const void *ptr
, size_t size
)
963 pr_debug("%s(0x%p)\n", __func__
, ptr
);
965 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
966 delete_object_part((unsigned long)ptr
, size
);
967 else if (kmemleak_early_log
)
968 log_early(KMEMLEAK_FREE_PART
, ptr
, size
, 0);
970 EXPORT_SYMBOL_GPL(kmemleak_free_part
);
973 * kmemleak_free_percpu - unregister a previously registered __percpu object
974 * @ptr: __percpu pointer to beginning of the object
976 * This function is called from the kernel percpu allocator when an object
977 * (memory block) is freed (free_percpu).
979 void __ref
kmemleak_free_percpu(const void __percpu
*ptr
)
983 pr_debug("%s(0x%p)\n", __func__
, ptr
);
985 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
986 for_each_possible_cpu(cpu
)
987 delete_object_full((unsigned long)per_cpu_ptr(ptr
,
989 else if (kmemleak_early_log
)
990 log_early(KMEMLEAK_FREE_PERCPU
, ptr
, 0, 0);
992 EXPORT_SYMBOL_GPL(kmemleak_free_percpu
);
995 * kmemleak_update_trace - update object allocation stack trace
996 * @ptr: pointer to beginning of the object
998 * Override the object allocation stack trace for cases where the actual
999 * allocation place is not always useful.
1001 void __ref
kmemleak_update_trace(const void *ptr
)
1003 struct kmemleak_object
*object
;
1004 unsigned long flags
;
1006 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1008 if (!kmemleak_enabled
|| IS_ERR_OR_NULL(ptr
))
1011 object
= find_and_get_object((unsigned long)ptr
, 1);
1014 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1020 spin_lock_irqsave(&object
->lock
, flags
);
1021 object
->trace_len
= __save_stack_trace(object
->trace
);
1022 spin_unlock_irqrestore(&object
->lock
, flags
);
1026 EXPORT_SYMBOL(kmemleak_update_trace
);
1029 * kmemleak_not_leak - mark an allocated object as false positive
1030 * @ptr: pointer to beginning of the object
1032 * Calling this function on an object will cause the memory block to no longer
1033 * be reported as leak and always be scanned.
1035 void __ref
kmemleak_not_leak(const void *ptr
)
1037 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1039 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1040 make_gray_object((unsigned long)ptr
);
1041 else if (kmemleak_early_log
)
1042 log_early(KMEMLEAK_NOT_LEAK
, ptr
, 0, 0);
1044 EXPORT_SYMBOL(kmemleak_not_leak
);
1047 * kmemleak_ignore - ignore an allocated object
1048 * @ptr: pointer to beginning of the object
1050 * Calling this function on an object will cause the memory block to be
1051 * ignored (not scanned and not reported as a leak). This is usually done when
1052 * it is known that the corresponding block is not a leak and does not contain
1053 * any references to other allocated memory blocks.
1055 void __ref
kmemleak_ignore(const void *ptr
)
1057 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1059 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1060 make_black_object((unsigned long)ptr
);
1061 else if (kmemleak_early_log
)
1062 log_early(KMEMLEAK_IGNORE
, ptr
, 0, 0);
1064 EXPORT_SYMBOL(kmemleak_ignore
);
1067 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1068 * @ptr: pointer to beginning or inside the object. This also
1069 * represents the start of the scan area
1070 * @size: size of the scan area
1071 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1073 * This function is used when it is known that only certain parts of an object
1074 * contain references to other objects. Kmemleak will only scan these areas
1075 * reducing the number false negatives.
1077 void __ref
kmemleak_scan_area(const void *ptr
, size_t size
, gfp_t gfp
)
1079 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1081 if (kmemleak_enabled
&& ptr
&& size
&& !IS_ERR(ptr
))
1082 add_scan_area((unsigned long)ptr
, size
, gfp
);
1083 else if (kmemleak_early_log
)
1084 log_early(KMEMLEAK_SCAN_AREA
, ptr
, size
, 0);
1086 EXPORT_SYMBOL(kmemleak_scan_area
);
1089 * kmemleak_no_scan - do not scan an allocated object
1090 * @ptr: pointer to beginning of the object
1092 * This function notifies kmemleak not to scan the given memory block. Useful
1093 * in situations where it is known that the given object does not contain any
1094 * references to other objects. Kmemleak will not scan such objects reducing
1095 * the number of false negatives.
1097 void __ref
kmemleak_no_scan(const void *ptr
)
1099 pr_debug("%s(0x%p)\n", __func__
, ptr
);
1101 if (kmemleak_enabled
&& ptr
&& !IS_ERR(ptr
))
1102 object_no_scan((unsigned long)ptr
);
1103 else if (kmemleak_early_log
)
1104 log_early(KMEMLEAK_NO_SCAN
, ptr
, 0, 0);
1106 EXPORT_SYMBOL(kmemleak_no_scan
);
1109 * Update an object's checksum and return true if it was modified.
1111 static bool update_checksum(struct kmemleak_object
*object
)
1113 u32 old_csum
= object
->checksum
;
1115 if (!kmemcheck_is_obj_initialized(object
->pointer
, object
->size
))
1118 kasan_disable_current();
1119 object
->checksum
= crc32(0, (void *)object
->pointer
, object
->size
);
1120 kasan_enable_current();
1122 return object
->checksum
!= old_csum
;
1126 * Memory scanning is a long process and it needs to be interruptable. This
1127 * function checks whether such interrupt condition occurred.
1129 static int scan_should_stop(void)
1131 if (!kmemleak_enabled
)
1135 * This function may be called from either process or kthread context,
1136 * hence the need to check for both stop conditions.
1139 return signal_pending(current
);
1141 return kthread_should_stop();
1147 * Scan a memory block (exclusive range) for valid pointers and add those
1148 * found to the gray list.
1150 static void scan_block(void *_start
, void *_end
,
1151 struct kmemleak_object
*scanned
, int allow_resched
)
1154 unsigned long *start
= PTR_ALIGN(_start
, BYTES_PER_POINTER
);
1155 unsigned long *end
= _end
- (BYTES_PER_POINTER
- 1);
1157 for (ptr
= start
; ptr
< end
; ptr
++) {
1158 struct kmemleak_object
*object
;
1159 unsigned long flags
;
1160 unsigned long pointer
;
1164 if (scan_should_stop())
1167 /* don't scan uninitialized memory */
1168 if (!kmemcheck_is_obj_initialized((unsigned long)ptr
,
1172 kasan_disable_current();
1174 kasan_enable_current();
1176 object
= find_and_get_object(pointer
, 1);
1179 if (object
== scanned
) {
1180 /* self referenced, ignore */
1186 * Avoid the lockdep recursive warning on object->lock being
1187 * previously acquired in scan_object(). These locks are
1188 * enclosed by scan_mutex.
1190 spin_lock_irqsave_nested(&object
->lock
, flags
,
1191 SINGLE_DEPTH_NESTING
);
1192 if (!color_white(object
)) {
1193 /* non-orphan, ignored or new */
1194 spin_unlock_irqrestore(&object
->lock
, flags
);
1200 * Increase the object's reference count (number of pointers
1201 * to the memory block). If this count reaches the required
1202 * minimum, the object's color will become gray and it will be
1203 * added to the gray_list.
1206 if (color_gray(object
)) {
1207 list_add_tail(&object
->gray_list
, &gray_list
);
1208 spin_unlock_irqrestore(&object
->lock
, flags
);
1212 spin_unlock_irqrestore(&object
->lock
, flags
);
1218 * Scan a memory block corresponding to a kmemleak_object. A condition is
1219 * that object->use_count >= 1.
1221 static void scan_object(struct kmemleak_object
*object
)
1223 struct kmemleak_scan_area
*area
;
1224 unsigned long flags
;
1227 * Once the object->lock is acquired, the corresponding memory block
1228 * cannot be freed (the same lock is acquired in delete_object).
1230 spin_lock_irqsave(&object
->lock
, flags
);
1231 if (object
->flags
& OBJECT_NO_SCAN
)
1233 if (!(object
->flags
& OBJECT_ALLOCATED
))
1234 /* already freed object */
1236 if (hlist_empty(&object
->area_list
)) {
1237 void *start
= (void *)object
->pointer
;
1238 void *end
= (void *)(object
->pointer
+ object
->size
);
1240 while (start
< end
&& (object
->flags
& OBJECT_ALLOCATED
) &&
1241 !(object
->flags
& OBJECT_NO_SCAN
)) {
1242 scan_block(start
, min(start
+ MAX_SCAN_SIZE
, end
),
1244 start
+= MAX_SCAN_SIZE
;
1246 spin_unlock_irqrestore(&object
->lock
, flags
);
1248 spin_lock_irqsave(&object
->lock
, flags
);
1251 hlist_for_each_entry(area
, &object
->area_list
, node
)
1252 scan_block((void *)area
->start
,
1253 (void *)(area
->start
+ area
->size
),
1256 spin_unlock_irqrestore(&object
->lock
, flags
);
1260 * Scan the objects already referenced (gray objects). More objects will be
1261 * referenced and, if there are no memory leaks, all the objects are scanned.
1263 static void scan_gray_list(void)
1265 struct kmemleak_object
*object
, *tmp
;
1268 * The list traversal is safe for both tail additions and removals
1269 * from inside the loop. The kmemleak objects cannot be freed from
1270 * outside the loop because their use_count was incremented.
1272 object
= list_entry(gray_list
.next
, typeof(*object
), gray_list
);
1273 while (&object
->gray_list
!= &gray_list
) {
1276 /* may add new objects to the list */
1277 if (!scan_should_stop())
1278 scan_object(object
);
1280 tmp
= list_entry(object
->gray_list
.next
, typeof(*object
),
1283 /* remove the object from the list and release it */
1284 list_del(&object
->gray_list
);
1289 WARN_ON(!list_empty(&gray_list
));
1293 * Scan data sections and all the referenced memory blocks allocated via the
1294 * kernel's standard allocators. This function must be called with the
1297 static void kmemleak_scan(void)
1299 unsigned long flags
;
1300 struct kmemleak_object
*object
;
1304 jiffies_last_scan
= jiffies
;
1306 /* prepare the kmemleak_object's */
1308 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1309 spin_lock_irqsave(&object
->lock
, flags
);
1312 * With a few exceptions there should be a maximum of
1313 * 1 reference to any object at this point.
1315 if (atomic_read(&object
->use_count
) > 1) {
1316 pr_debug("object->use_count = %d\n",
1317 atomic_read(&object
->use_count
));
1318 dump_object_info(object
);
1321 /* reset the reference count (whiten the object) */
1323 if (color_gray(object
) && get_object(object
))
1324 list_add_tail(&object
->gray_list
, &gray_list
);
1326 spin_unlock_irqrestore(&object
->lock
, flags
);
1330 /* data/bss scanning */
1331 scan_block(_sdata
, _edata
, NULL
, 1);
1332 scan_block(__bss_start
, __bss_stop
, NULL
, 1);
1335 /* per-cpu sections scanning */
1336 for_each_possible_cpu(i
)
1337 scan_block(__per_cpu_start
+ per_cpu_offset(i
),
1338 __per_cpu_end
+ per_cpu_offset(i
), NULL
, 1);
1342 * Struct page scanning for each node.
1345 for_each_online_node(i
) {
1346 unsigned long start_pfn
= node_start_pfn(i
);
1347 unsigned long end_pfn
= node_end_pfn(i
);
1350 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
1353 if (!pfn_valid(pfn
))
1355 page
= pfn_to_page(pfn
);
1356 /* only scan if page is in use */
1357 if (page_count(page
) == 0)
1359 scan_block(page
, page
+ 1, NULL
, 1);
1365 * Scanning the task stacks (may introduce false negatives).
1367 if (kmemleak_stack_scan
) {
1368 struct task_struct
*p
, *g
;
1370 read_lock(&tasklist_lock
);
1371 do_each_thread(g
, p
) {
1372 scan_block(task_stack_page(p
), task_stack_page(p
) +
1373 THREAD_SIZE
, NULL
, 0);
1374 } while_each_thread(g
, p
);
1375 read_unlock(&tasklist_lock
);
1379 * Scan the objects already referenced from the sections scanned
1385 * Check for new or unreferenced objects modified since the previous
1386 * scan and color them gray until the next scan.
1389 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1390 spin_lock_irqsave(&object
->lock
, flags
);
1391 if (color_white(object
) && (object
->flags
& OBJECT_ALLOCATED
)
1392 && update_checksum(object
) && get_object(object
)) {
1393 /* color it gray temporarily */
1394 object
->count
= object
->min_count
;
1395 list_add_tail(&object
->gray_list
, &gray_list
);
1397 spin_unlock_irqrestore(&object
->lock
, flags
);
1402 * Re-scan the gray list for modified unreferenced objects.
1407 * If scanning was stopped do not report any new unreferenced objects.
1409 if (scan_should_stop())
1413 * Scanning result reporting.
1416 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1417 spin_lock_irqsave(&object
->lock
, flags
);
1418 if (unreferenced_object(object
) &&
1419 !(object
->flags
& OBJECT_REPORTED
)) {
1420 object
->flags
|= OBJECT_REPORTED
;
1423 spin_unlock_irqrestore(&object
->lock
, flags
);
1428 kmemleak_found_leaks
= true;
1430 pr_info("%d new suspected memory leaks (see "
1431 "/sys/kernel/debug/kmemleak)\n", new_leaks
);
1437 * Thread function performing automatic memory scanning. Unreferenced objects
1438 * at the end of a memory scan are reported but only the first time.
1440 static int kmemleak_scan_thread(void *arg
)
1442 static int first_run
= 1;
1444 pr_info("Automatic memory scanning thread started\n");
1445 set_user_nice(current
, 10);
1448 * Wait before the first scan to allow the system to fully initialize.
1452 ssleep(SECS_FIRST_SCAN
);
1455 while (!kthread_should_stop()) {
1456 signed long timeout
= jiffies_scan_wait
;
1458 mutex_lock(&scan_mutex
);
1460 mutex_unlock(&scan_mutex
);
1462 /* wait before the next scan */
1463 while (timeout
&& !kthread_should_stop())
1464 timeout
= schedule_timeout_interruptible(timeout
);
1467 pr_info("Automatic memory scanning thread ended\n");
1473 * Start the automatic memory scanning thread. This function must be called
1474 * with the scan_mutex held.
1476 static void start_scan_thread(void)
1480 scan_thread
= kthread_run(kmemleak_scan_thread
, NULL
, "kmemleak");
1481 if (IS_ERR(scan_thread
)) {
1482 pr_warning("Failed to create the scan thread\n");
1488 * Stop the automatic memory scanning thread. This function must be called
1489 * with the scan_mutex held.
1491 static void stop_scan_thread(void)
1494 kthread_stop(scan_thread
);
1500 * Iterate over the object_list and return the first valid object at or after
1501 * the required position with its use_count incremented. The function triggers
1502 * a memory scanning when the pos argument points to the first position.
1504 static void *kmemleak_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1506 struct kmemleak_object
*object
;
1510 err
= mutex_lock_interruptible(&scan_mutex
);
1512 return ERR_PTR(err
);
1515 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1518 if (get_object(object
))
1527 * Return the next object in the object_list. The function decrements the
1528 * use_count of the previous object and increases that of the next one.
1530 static void *kmemleak_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1532 struct kmemleak_object
*prev_obj
= v
;
1533 struct kmemleak_object
*next_obj
= NULL
;
1534 struct kmemleak_object
*obj
= prev_obj
;
1538 list_for_each_entry_continue_rcu(obj
, &object_list
, object_list
) {
1539 if (get_object(obj
)) {
1545 put_object(prev_obj
);
1550 * Decrement the use_count of the last object required, if any.
1552 static void kmemleak_seq_stop(struct seq_file
*seq
, void *v
)
1556 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1557 * waiting was interrupted, so only release it if !IS_ERR.
1560 mutex_unlock(&scan_mutex
);
1567 * Print the information for an unreferenced object to the seq file.
1569 static int kmemleak_seq_show(struct seq_file
*seq
, void *v
)
1571 struct kmemleak_object
*object
= v
;
1572 unsigned long flags
;
1574 spin_lock_irqsave(&object
->lock
, flags
);
1575 if ((object
->flags
& OBJECT_REPORTED
) && unreferenced_object(object
))
1576 print_unreferenced(seq
, object
);
1577 spin_unlock_irqrestore(&object
->lock
, flags
);
1581 static const struct seq_operations kmemleak_seq_ops
= {
1582 .start
= kmemleak_seq_start
,
1583 .next
= kmemleak_seq_next
,
1584 .stop
= kmemleak_seq_stop
,
1585 .show
= kmemleak_seq_show
,
1588 static int kmemleak_open(struct inode
*inode
, struct file
*file
)
1590 return seq_open(file
, &kmemleak_seq_ops
);
1593 static int dump_str_object_info(const char *str
)
1595 unsigned long flags
;
1596 struct kmemleak_object
*object
;
1599 if (kstrtoul(str
, 0, &addr
))
1601 object
= find_and_get_object(addr
, 0);
1603 pr_info("Unknown object at 0x%08lx\n", addr
);
1607 spin_lock_irqsave(&object
->lock
, flags
);
1608 dump_object_info(object
);
1609 spin_unlock_irqrestore(&object
->lock
, flags
);
1616 * We use grey instead of black to ensure we can do future scans on the same
1617 * objects. If we did not do future scans these black objects could
1618 * potentially contain references to newly allocated objects in the future and
1619 * we'd end up with false positives.
1621 static void kmemleak_clear(void)
1623 struct kmemleak_object
*object
;
1624 unsigned long flags
;
1627 list_for_each_entry_rcu(object
, &object_list
, object_list
) {
1628 spin_lock_irqsave(&object
->lock
, flags
);
1629 if ((object
->flags
& OBJECT_REPORTED
) &&
1630 unreferenced_object(object
))
1631 __paint_it(object
, KMEMLEAK_GREY
);
1632 spin_unlock_irqrestore(&object
->lock
, flags
);
1636 kmemleak_found_leaks
= false;
1639 static void __kmemleak_do_cleanup(void);
1642 * File write operation to configure kmemleak at run-time. The following
1643 * commands can be written to the /sys/kernel/debug/kmemleak file:
1644 * off - disable kmemleak (irreversible)
1645 * stack=on - enable the task stacks scanning
1646 * stack=off - disable the tasks stacks scanning
1647 * scan=on - start the automatic memory scanning thread
1648 * scan=off - stop the automatic memory scanning thread
1649 * scan=... - set the automatic memory scanning period in seconds (0 to
1651 * scan - trigger a memory scan
1652 * clear - mark all current reported unreferenced kmemleak objects as
1653 * grey to ignore printing them, or free all kmemleak objects
1654 * if kmemleak has been disabled.
1655 * dump=... - dump information about the object found at the given address
1657 static ssize_t
kmemleak_write(struct file
*file
, const char __user
*user_buf
,
1658 size_t size
, loff_t
*ppos
)
1664 buf_size
= min(size
, (sizeof(buf
) - 1));
1665 if (strncpy_from_user(buf
, user_buf
, buf_size
) < 0)
1669 ret
= mutex_lock_interruptible(&scan_mutex
);
1673 if (strncmp(buf
, "clear", 5) == 0) {
1674 if (kmemleak_enabled
)
1677 __kmemleak_do_cleanup();
1681 if (!kmemleak_enabled
) {
1686 if (strncmp(buf
, "off", 3) == 0)
1688 else if (strncmp(buf
, "stack=on", 8) == 0)
1689 kmemleak_stack_scan
= 1;
1690 else if (strncmp(buf
, "stack=off", 9) == 0)
1691 kmemleak_stack_scan
= 0;
1692 else if (strncmp(buf
, "scan=on", 7) == 0)
1693 start_scan_thread();
1694 else if (strncmp(buf
, "scan=off", 8) == 0)
1696 else if (strncmp(buf
, "scan=", 5) == 0) {
1699 ret
= kstrtoul(buf
+ 5, 0, &secs
);
1704 jiffies_scan_wait
= msecs_to_jiffies(secs
* 1000);
1705 start_scan_thread();
1707 } else if (strncmp(buf
, "scan", 4) == 0)
1709 else if (strncmp(buf
, "dump=", 5) == 0)
1710 ret
= dump_str_object_info(buf
+ 5);
1715 mutex_unlock(&scan_mutex
);
1719 /* ignore the rest of the buffer, only one command at a time */
1724 static const struct file_operations kmemleak_fops
= {
1725 .owner
= THIS_MODULE
,
1726 .open
= kmemleak_open
,
1728 .write
= kmemleak_write
,
1729 .llseek
= seq_lseek
,
1730 .release
= seq_release
,
1733 static void __kmemleak_do_cleanup(void)
1735 struct kmemleak_object
*object
;
1738 list_for_each_entry_rcu(object
, &object_list
, object_list
)
1739 delete_object_full(object
->pointer
);
1744 * Stop the memory scanning thread and free the kmemleak internal objects if
1745 * no previous scan thread (otherwise, kmemleak may still have some useful
1746 * information on memory leaks).
1748 static void kmemleak_do_cleanup(struct work_struct
*work
)
1750 mutex_lock(&scan_mutex
);
1753 if (!kmemleak_found_leaks
)
1754 __kmemleak_do_cleanup();
1756 pr_info("Kmemleak disabled without freeing internal data. "
1757 "Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\"\n");
1758 mutex_unlock(&scan_mutex
);
1761 static DECLARE_WORK(cleanup_work
, kmemleak_do_cleanup
);
1764 * Disable kmemleak. No memory allocation/freeing will be traced once this
1765 * function is called. Disabling kmemleak is an irreversible operation.
1767 static void kmemleak_disable(void)
1769 /* atomically check whether it was already invoked */
1770 if (cmpxchg(&kmemleak_error
, 0, 1))
1773 /* stop any memory operation tracing */
1774 kmemleak_enabled
= 0;
1776 /* check whether it is too early for a kernel thread */
1777 if (kmemleak_initialized
)
1778 schedule_work(&cleanup_work
);
1780 pr_info("Kernel memory leak detector disabled\n");
1784 * Allow boot-time kmemleak disabling (enabled by default).
1786 static int kmemleak_boot_config(char *str
)
1790 if (strcmp(str
, "off") == 0)
1792 else if (strcmp(str
, "on") == 0)
1793 kmemleak_skip_disable
= 1;
1798 early_param("kmemleak", kmemleak_boot_config
);
1800 static void __init
print_log_trace(struct early_log
*log
)
1802 struct stack_trace trace
;
1804 trace
.nr_entries
= log
->trace_len
;
1805 trace
.entries
= log
->trace
;
1807 pr_notice("Early log backtrace:\n");
1808 print_stack_trace(&trace
, 2);
1812 * Kmemleak initialization.
1814 void __init
kmemleak_init(void)
1817 unsigned long flags
;
1819 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1820 if (!kmemleak_skip_disable
) {
1821 kmemleak_early_log
= 0;
1827 jiffies_min_age
= msecs_to_jiffies(MSECS_MIN_AGE
);
1828 jiffies_scan_wait
= msecs_to_jiffies(SECS_SCAN_WAIT
* 1000);
1830 object_cache
= KMEM_CACHE(kmemleak_object
, SLAB_NOLEAKTRACE
);
1831 scan_area_cache
= KMEM_CACHE(kmemleak_scan_area
, SLAB_NOLEAKTRACE
);
1833 if (crt_early_log
>= ARRAY_SIZE(early_log
))
1834 pr_warning("Early log buffer exceeded (%d), please increase "
1835 "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log
);
1837 /* the kernel is still in UP mode, so disabling the IRQs is enough */
1838 local_irq_save(flags
);
1839 kmemleak_early_log
= 0;
1840 if (kmemleak_error
) {
1841 local_irq_restore(flags
);
1844 kmemleak_enabled
= 1;
1845 local_irq_restore(flags
);
1848 * This is the point where tracking allocations is safe. Automatic
1849 * scanning is started during the late initcall. Add the early logged
1850 * callbacks to the kmemleak infrastructure.
1852 for (i
= 0; i
< crt_early_log
; i
++) {
1853 struct early_log
*log
= &early_log
[i
];
1855 switch (log
->op_type
) {
1856 case KMEMLEAK_ALLOC
:
1859 case KMEMLEAK_ALLOC_PERCPU
:
1860 early_alloc_percpu(log
);
1863 kmemleak_free(log
->ptr
);
1865 case KMEMLEAK_FREE_PART
:
1866 kmemleak_free_part(log
->ptr
, log
->size
);
1868 case KMEMLEAK_FREE_PERCPU
:
1869 kmemleak_free_percpu(log
->ptr
);
1871 case KMEMLEAK_NOT_LEAK
:
1872 kmemleak_not_leak(log
->ptr
);
1874 case KMEMLEAK_IGNORE
:
1875 kmemleak_ignore(log
->ptr
);
1877 case KMEMLEAK_SCAN_AREA
:
1878 kmemleak_scan_area(log
->ptr
, log
->size
, GFP_KERNEL
);
1880 case KMEMLEAK_NO_SCAN
:
1881 kmemleak_no_scan(log
->ptr
);
1884 kmemleak_warn("Unknown early log operation: %d\n",
1888 if (kmemleak_warning
) {
1889 print_log_trace(log
);
1890 kmemleak_warning
= 0;
1896 * Late initialization function.
1898 static int __init
kmemleak_late_init(void)
1900 struct dentry
*dentry
;
1902 kmemleak_initialized
= 1;
1904 if (kmemleak_error
) {
1906 * Some error occurred and kmemleak was disabled. There is a
1907 * small chance that kmemleak_disable() was called immediately
1908 * after setting kmemleak_initialized and we may end up with
1909 * two clean-up threads but serialized by scan_mutex.
1911 schedule_work(&cleanup_work
);
1915 dentry
= debugfs_create_file("kmemleak", S_IRUGO
, NULL
, NULL
,
1918 pr_warning("Failed to create the debugfs kmemleak file\n");
1919 mutex_lock(&scan_mutex
);
1920 start_scan_thread();
1921 mutex_unlock(&scan_mutex
);
1923 pr_info("Kernel memory leak detector initialized\n");
1927 late_initcall(kmemleak_late_init
);