]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/ksm.c
powerpc/powernv: Fix boot on Power8 bare metal due to opal_configure_cores()
[mirror_ubuntu-zesty-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
147 };
148
149 /**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179 };
180
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 /* Checksum of an empty (zeroed) page */
227 static unsigned int zero_checksum __read_mostly;
228
229 /* Whether to merge empty (zeroed) pages with actual zero pages */
230 static bool ksm_use_zero_pages __read_mostly;
231
232 #ifdef CONFIG_NUMA
233 /* Zeroed when merging across nodes is not allowed */
234 static unsigned int ksm_merge_across_nodes = 1;
235 static int ksm_nr_node_ids = 1;
236 #else
237 #define ksm_merge_across_nodes 1U
238 #define ksm_nr_node_ids 1
239 #endif
240
241 #define KSM_RUN_STOP 0
242 #define KSM_RUN_MERGE 1
243 #define KSM_RUN_UNMERGE 2
244 #define KSM_RUN_OFFLINE 4
245 static unsigned long ksm_run = KSM_RUN_STOP;
246 static void wait_while_offlining(void);
247
248 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
249 static DEFINE_MUTEX(ksm_thread_mutex);
250 static DEFINE_SPINLOCK(ksm_mmlist_lock);
251
252 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
253 sizeof(struct __struct), __alignof__(struct __struct),\
254 (__flags), NULL)
255
256 static int __init ksm_slab_init(void)
257 {
258 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
259 if (!rmap_item_cache)
260 goto out;
261
262 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
263 if (!stable_node_cache)
264 goto out_free1;
265
266 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
267 if (!mm_slot_cache)
268 goto out_free2;
269
270 return 0;
271
272 out_free2:
273 kmem_cache_destroy(stable_node_cache);
274 out_free1:
275 kmem_cache_destroy(rmap_item_cache);
276 out:
277 return -ENOMEM;
278 }
279
280 static void __init ksm_slab_free(void)
281 {
282 kmem_cache_destroy(mm_slot_cache);
283 kmem_cache_destroy(stable_node_cache);
284 kmem_cache_destroy(rmap_item_cache);
285 mm_slot_cache = NULL;
286 }
287
288 static inline struct rmap_item *alloc_rmap_item(void)
289 {
290 struct rmap_item *rmap_item;
291
292 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
293 __GFP_NORETRY | __GFP_NOWARN);
294 if (rmap_item)
295 ksm_rmap_items++;
296 return rmap_item;
297 }
298
299 static inline void free_rmap_item(struct rmap_item *rmap_item)
300 {
301 ksm_rmap_items--;
302 rmap_item->mm = NULL; /* debug safety */
303 kmem_cache_free(rmap_item_cache, rmap_item);
304 }
305
306 static inline struct stable_node *alloc_stable_node(void)
307 {
308 /*
309 * The allocation can take too long with GFP_KERNEL when memory is under
310 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
311 * grants access to memory reserves, helping to avoid this problem.
312 */
313 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
314 }
315
316 static inline void free_stable_node(struct stable_node *stable_node)
317 {
318 kmem_cache_free(stable_node_cache, stable_node);
319 }
320
321 static inline struct mm_slot *alloc_mm_slot(void)
322 {
323 if (!mm_slot_cache) /* initialization failed */
324 return NULL;
325 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
326 }
327
328 static inline void free_mm_slot(struct mm_slot *mm_slot)
329 {
330 kmem_cache_free(mm_slot_cache, mm_slot);
331 }
332
333 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
334 {
335 struct mm_slot *slot;
336
337 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
338 if (slot->mm == mm)
339 return slot;
340
341 return NULL;
342 }
343
344 static void insert_to_mm_slots_hash(struct mm_struct *mm,
345 struct mm_slot *mm_slot)
346 {
347 mm_slot->mm = mm;
348 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
349 }
350
351 /*
352 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
353 * page tables after it has passed through ksm_exit() - which, if necessary,
354 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
355 * a special flag: they can just back out as soon as mm_users goes to zero.
356 * ksm_test_exit() is used throughout to make this test for exit: in some
357 * places for correctness, in some places just to avoid unnecessary work.
358 */
359 static inline bool ksm_test_exit(struct mm_struct *mm)
360 {
361 return atomic_read(&mm->mm_users) == 0;
362 }
363
364 /*
365 * We use break_ksm to break COW on a ksm page: it's a stripped down
366 *
367 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
368 * put_page(page);
369 *
370 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
371 * in case the application has unmapped and remapped mm,addr meanwhile.
372 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
373 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
374 *
375 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
376 * of the process that owns 'vma'. We also do not want to enforce
377 * protection keys here anyway.
378 */
379 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
380 {
381 struct page *page;
382 int ret = 0;
383
384 do {
385 cond_resched();
386 page = follow_page(vma, addr,
387 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
388 if (IS_ERR_OR_NULL(page))
389 break;
390 if (PageKsm(page))
391 ret = handle_mm_fault(vma, addr,
392 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
393 else
394 ret = VM_FAULT_WRITE;
395 put_page(page);
396 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
397 /*
398 * We must loop because handle_mm_fault() may back out if there's
399 * any difficulty e.g. if pte accessed bit gets updated concurrently.
400 *
401 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
402 * COW has been broken, even if the vma does not permit VM_WRITE;
403 * but note that a concurrent fault might break PageKsm for us.
404 *
405 * VM_FAULT_SIGBUS could occur if we race with truncation of the
406 * backing file, which also invalidates anonymous pages: that's
407 * okay, that truncation will have unmapped the PageKsm for us.
408 *
409 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
410 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
411 * current task has TIF_MEMDIE set, and will be OOM killed on return
412 * to user; and ksmd, having no mm, would never be chosen for that.
413 *
414 * But if the mm is in a limited mem_cgroup, then the fault may fail
415 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
416 * even ksmd can fail in this way - though it's usually breaking ksm
417 * just to undo a merge it made a moment before, so unlikely to oom.
418 *
419 * That's a pity: we might therefore have more kernel pages allocated
420 * than we're counting as nodes in the stable tree; but ksm_do_scan
421 * will retry to break_cow on each pass, so should recover the page
422 * in due course. The important thing is to not let VM_MERGEABLE
423 * be cleared while any such pages might remain in the area.
424 */
425 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
426 }
427
428 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
429 unsigned long addr)
430 {
431 struct vm_area_struct *vma;
432 if (ksm_test_exit(mm))
433 return NULL;
434 vma = find_vma(mm, addr);
435 if (!vma || vma->vm_start > addr)
436 return NULL;
437 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
438 return NULL;
439 return vma;
440 }
441
442 static void break_cow(struct rmap_item *rmap_item)
443 {
444 struct mm_struct *mm = rmap_item->mm;
445 unsigned long addr = rmap_item->address;
446 struct vm_area_struct *vma;
447
448 /*
449 * It is not an accident that whenever we want to break COW
450 * to undo, we also need to drop a reference to the anon_vma.
451 */
452 put_anon_vma(rmap_item->anon_vma);
453
454 down_read(&mm->mmap_sem);
455 vma = find_mergeable_vma(mm, addr);
456 if (vma)
457 break_ksm(vma, addr);
458 up_read(&mm->mmap_sem);
459 }
460
461 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
462 {
463 struct mm_struct *mm = rmap_item->mm;
464 unsigned long addr = rmap_item->address;
465 struct vm_area_struct *vma;
466 struct page *page;
467
468 down_read(&mm->mmap_sem);
469 vma = find_mergeable_vma(mm, addr);
470 if (!vma)
471 goto out;
472
473 page = follow_page(vma, addr, FOLL_GET);
474 if (IS_ERR_OR_NULL(page))
475 goto out;
476 if (PageAnon(page)) {
477 flush_anon_page(vma, page, addr);
478 flush_dcache_page(page);
479 } else {
480 put_page(page);
481 out:
482 page = NULL;
483 }
484 up_read(&mm->mmap_sem);
485 return page;
486 }
487
488 /*
489 * This helper is used for getting right index into array of tree roots.
490 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
491 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
492 * every node has its own stable and unstable tree.
493 */
494 static inline int get_kpfn_nid(unsigned long kpfn)
495 {
496 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
497 }
498
499 static void remove_node_from_stable_tree(struct stable_node *stable_node)
500 {
501 struct rmap_item *rmap_item;
502
503 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
504 if (rmap_item->hlist.next)
505 ksm_pages_sharing--;
506 else
507 ksm_pages_shared--;
508 put_anon_vma(rmap_item->anon_vma);
509 rmap_item->address &= PAGE_MASK;
510 cond_resched();
511 }
512
513 if (stable_node->head == &migrate_nodes)
514 list_del(&stable_node->list);
515 else
516 rb_erase(&stable_node->node,
517 root_stable_tree + NUMA(stable_node->nid));
518 free_stable_node(stable_node);
519 }
520
521 /*
522 * get_ksm_page: checks if the page indicated by the stable node
523 * is still its ksm page, despite having held no reference to it.
524 * In which case we can trust the content of the page, and it
525 * returns the gotten page; but if the page has now been zapped,
526 * remove the stale node from the stable tree and return NULL.
527 * But beware, the stable node's page might be being migrated.
528 *
529 * You would expect the stable_node to hold a reference to the ksm page.
530 * But if it increments the page's count, swapping out has to wait for
531 * ksmd to come around again before it can free the page, which may take
532 * seconds or even minutes: much too unresponsive. So instead we use a
533 * "keyhole reference": access to the ksm page from the stable node peeps
534 * out through its keyhole to see if that page still holds the right key,
535 * pointing back to this stable node. This relies on freeing a PageAnon
536 * page to reset its page->mapping to NULL, and relies on no other use of
537 * a page to put something that might look like our key in page->mapping.
538 * is on its way to being freed; but it is an anomaly to bear in mind.
539 */
540 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
541 {
542 struct page *page;
543 void *expected_mapping;
544 unsigned long kpfn;
545
546 expected_mapping = (void *)((unsigned long)stable_node |
547 PAGE_MAPPING_KSM);
548 again:
549 kpfn = READ_ONCE(stable_node->kpfn);
550 page = pfn_to_page(kpfn);
551
552 /*
553 * page is computed from kpfn, so on most architectures reading
554 * page->mapping is naturally ordered after reading node->kpfn,
555 * but on Alpha we need to be more careful.
556 */
557 smp_read_barrier_depends();
558 if (READ_ONCE(page->mapping) != expected_mapping)
559 goto stale;
560
561 /*
562 * We cannot do anything with the page while its refcount is 0.
563 * Usually 0 means free, or tail of a higher-order page: in which
564 * case this node is no longer referenced, and should be freed;
565 * however, it might mean that the page is under page_freeze_refs().
566 * The __remove_mapping() case is easy, again the node is now stale;
567 * but if page is swapcache in migrate_page_move_mapping(), it might
568 * still be our page, in which case it's essential to keep the node.
569 */
570 while (!get_page_unless_zero(page)) {
571 /*
572 * Another check for page->mapping != expected_mapping would
573 * work here too. We have chosen the !PageSwapCache test to
574 * optimize the common case, when the page is or is about to
575 * be freed: PageSwapCache is cleared (under spin_lock_irq)
576 * in the freeze_refs section of __remove_mapping(); but Anon
577 * page->mapping reset to NULL later, in free_pages_prepare().
578 */
579 if (!PageSwapCache(page))
580 goto stale;
581 cpu_relax();
582 }
583
584 if (READ_ONCE(page->mapping) != expected_mapping) {
585 put_page(page);
586 goto stale;
587 }
588
589 if (lock_it) {
590 lock_page(page);
591 if (READ_ONCE(page->mapping) != expected_mapping) {
592 unlock_page(page);
593 put_page(page);
594 goto stale;
595 }
596 }
597 return page;
598
599 stale:
600 /*
601 * We come here from above when page->mapping or !PageSwapCache
602 * suggests that the node is stale; but it might be under migration.
603 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
604 * before checking whether node->kpfn has been changed.
605 */
606 smp_rmb();
607 if (READ_ONCE(stable_node->kpfn) != kpfn)
608 goto again;
609 remove_node_from_stable_tree(stable_node);
610 return NULL;
611 }
612
613 /*
614 * Removing rmap_item from stable or unstable tree.
615 * This function will clean the information from the stable/unstable tree.
616 */
617 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
618 {
619 if (rmap_item->address & STABLE_FLAG) {
620 struct stable_node *stable_node;
621 struct page *page;
622
623 stable_node = rmap_item->head;
624 page = get_ksm_page(stable_node, true);
625 if (!page)
626 goto out;
627
628 hlist_del(&rmap_item->hlist);
629 unlock_page(page);
630 put_page(page);
631
632 if (!hlist_empty(&stable_node->hlist))
633 ksm_pages_sharing--;
634 else
635 ksm_pages_shared--;
636
637 put_anon_vma(rmap_item->anon_vma);
638 rmap_item->address &= PAGE_MASK;
639
640 } else if (rmap_item->address & UNSTABLE_FLAG) {
641 unsigned char age;
642 /*
643 * Usually ksmd can and must skip the rb_erase, because
644 * root_unstable_tree was already reset to RB_ROOT.
645 * But be careful when an mm is exiting: do the rb_erase
646 * if this rmap_item was inserted by this scan, rather
647 * than left over from before.
648 */
649 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
650 BUG_ON(age > 1);
651 if (!age)
652 rb_erase(&rmap_item->node,
653 root_unstable_tree + NUMA(rmap_item->nid));
654 ksm_pages_unshared--;
655 rmap_item->address &= PAGE_MASK;
656 }
657 out:
658 cond_resched(); /* we're called from many long loops */
659 }
660
661 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
662 struct rmap_item **rmap_list)
663 {
664 while (*rmap_list) {
665 struct rmap_item *rmap_item = *rmap_list;
666 *rmap_list = rmap_item->rmap_list;
667 remove_rmap_item_from_tree(rmap_item);
668 free_rmap_item(rmap_item);
669 }
670 }
671
672 /*
673 * Though it's very tempting to unmerge rmap_items from stable tree rather
674 * than check every pte of a given vma, the locking doesn't quite work for
675 * that - an rmap_item is assigned to the stable tree after inserting ksm
676 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
677 * rmap_items from parent to child at fork time (so as not to waste time
678 * if exit comes before the next scan reaches it).
679 *
680 * Similarly, although we'd like to remove rmap_items (so updating counts
681 * and freeing memory) when unmerging an area, it's easier to leave that
682 * to the next pass of ksmd - consider, for example, how ksmd might be
683 * in cmp_and_merge_page on one of the rmap_items we would be removing.
684 */
685 static int unmerge_ksm_pages(struct vm_area_struct *vma,
686 unsigned long start, unsigned long end)
687 {
688 unsigned long addr;
689 int err = 0;
690
691 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
692 if (ksm_test_exit(vma->vm_mm))
693 break;
694 if (signal_pending(current))
695 err = -ERESTARTSYS;
696 else
697 err = break_ksm(vma, addr);
698 }
699 return err;
700 }
701
702 #ifdef CONFIG_SYSFS
703 /*
704 * Only called through the sysfs control interface:
705 */
706 static int remove_stable_node(struct stable_node *stable_node)
707 {
708 struct page *page;
709 int err;
710
711 page = get_ksm_page(stable_node, true);
712 if (!page) {
713 /*
714 * get_ksm_page did remove_node_from_stable_tree itself.
715 */
716 return 0;
717 }
718
719 if (WARN_ON_ONCE(page_mapped(page))) {
720 /*
721 * This should not happen: but if it does, just refuse to let
722 * merge_across_nodes be switched - there is no need to panic.
723 */
724 err = -EBUSY;
725 } else {
726 /*
727 * The stable node did not yet appear stale to get_ksm_page(),
728 * since that allows for an unmapped ksm page to be recognized
729 * right up until it is freed; but the node is safe to remove.
730 * This page might be in a pagevec waiting to be freed,
731 * or it might be PageSwapCache (perhaps under writeback),
732 * or it might have been removed from swapcache a moment ago.
733 */
734 set_page_stable_node(page, NULL);
735 remove_node_from_stable_tree(stable_node);
736 err = 0;
737 }
738
739 unlock_page(page);
740 put_page(page);
741 return err;
742 }
743
744 static int remove_all_stable_nodes(void)
745 {
746 struct stable_node *stable_node, *next;
747 int nid;
748 int err = 0;
749
750 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751 while (root_stable_tree[nid].rb_node) {
752 stable_node = rb_entry(root_stable_tree[nid].rb_node,
753 struct stable_node, node);
754 if (remove_stable_node(stable_node)) {
755 err = -EBUSY;
756 break; /* proceed to next nid */
757 }
758 cond_resched();
759 }
760 }
761 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
762 if (remove_stable_node(stable_node))
763 err = -EBUSY;
764 cond_resched();
765 }
766 return err;
767 }
768
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771 struct mm_slot *mm_slot;
772 struct mm_struct *mm;
773 struct vm_area_struct *vma;
774 int err = 0;
775
776 spin_lock(&ksm_mmlist_lock);
777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778 struct mm_slot, mm_list);
779 spin_unlock(&ksm_mmlist_lock);
780
781 for (mm_slot = ksm_scan.mm_slot;
782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783 mm = mm_slot->mm;
784 down_read(&mm->mmap_sem);
785 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786 if (ksm_test_exit(mm))
787 break;
788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 continue;
790 err = unmerge_ksm_pages(vma,
791 vma->vm_start, vma->vm_end);
792 if (err)
793 goto error;
794 }
795
796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797 up_read(&mm->mmap_sem);
798
799 spin_lock(&ksm_mmlist_lock);
800 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801 struct mm_slot, mm_list);
802 if (ksm_test_exit(mm)) {
803 hash_del(&mm_slot->link);
804 list_del(&mm_slot->mm_list);
805 spin_unlock(&ksm_mmlist_lock);
806
807 free_mm_slot(mm_slot);
808 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809 mmdrop(mm);
810 } else
811 spin_unlock(&ksm_mmlist_lock);
812 }
813
814 /* Clean up stable nodes, but don't worry if some are still busy */
815 remove_all_stable_nodes();
816 ksm_scan.seqnr = 0;
817 return 0;
818
819 error:
820 up_read(&mm->mmap_sem);
821 spin_lock(&ksm_mmlist_lock);
822 ksm_scan.mm_slot = &ksm_mm_head;
823 spin_unlock(&ksm_mmlist_lock);
824 return err;
825 }
826 #endif /* CONFIG_SYSFS */
827
828 static u32 calc_checksum(struct page *page)
829 {
830 u32 checksum;
831 void *addr = kmap_atomic(page);
832 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
833 kunmap_atomic(addr);
834 return checksum;
835 }
836
837 static int memcmp_pages(struct page *page1, struct page *page2)
838 {
839 char *addr1, *addr2;
840 int ret;
841
842 addr1 = kmap_atomic(page1);
843 addr2 = kmap_atomic(page2);
844 ret = memcmp(addr1, addr2, PAGE_SIZE);
845 kunmap_atomic(addr2);
846 kunmap_atomic(addr1);
847 return ret;
848 }
849
850 static inline int pages_identical(struct page *page1, struct page *page2)
851 {
852 return !memcmp_pages(page1, page2);
853 }
854
855 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856 pte_t *orig_pte)
857 {
858 struct mm_struct *mm = vma->vm_mm;
859 unsigned long addr;
860 pte_t *ptep;
861 spinlock_t *ptl;
862 int swapped;
863 int err = -EFAULT;
864 unsigned long mmun_start; /* For mmu_notifiers */
865 unsigned long mmun_end; /* For mmu_notifiers */
866
867 addr = page_address_in_vma(page, vma);
868 if (addr == -EFAULT)
869 goto out;
870
871 BUG_ON(PageTransCompound(page));
872
873 mmun_start = addr;
874 mmun_end = addr + PAGE_SIZE;
875 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
876
877 ptep = page_check_address(page, mm, addr, &ptl, 0);
878 if (!ptep)
879 goto out_mn;
880
881 if (pte_write(*ptep) || pte_dirty(*ptep) ||
882 (pte_protnone(*ptep) && pte_savedwrite(*ptep))) {
883 pte_t entry;
884
885 swapped = PageSwapCache(page);
886 flush_cache_page(vma, addr, page_to_pfn(page));
887 /*
888 * Ok this is tricky, when get_user_pages_fast() run it doesn't
889 * take any lock, therefore the check that we are going to make
890 * with the pagecount against the mapcount is racey and
891 * O_DIRECT can happen right after the check.
892 * So we clear the pte and flush the tlb before the check
893 * this assure us that no O_DIRECT can happen after the check
894 * or in the middle of the check.
895 */
896 entry = ptep_clear_flush_notify(vma, addr, ptep);
897 /*
898 * Check that no O_DIRECT or similar I/O is in progress on the
899 * page
900 */
901 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
902 set_pte_at(mm, addr, ptep, entry);
903 goto out_unlock;
904 }
905 if (pte_dirty(entry))
906 set_page_dirty(page);
907
908 if (pte_protnone(entry))
909 entry = pte_mkclean(pte_clear_savedwrite(entry));
910 else
911 entry = pte_mkclean(pte_wrprotect(entry));
912 set_pte_at_notify(mm, addr, ptep, entry);
913 }
914 *orig_pte = *ptep;
915 err = 0;
916
917 out_unlock:
918 pte_unmap_unlock(ptep, ptl);
919 out_mn:
920 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
921 out:
922 return err;
923 }
924
925 /**
926 * replace_page - replace page in vma by new ksm page
927 * @vma: vma that holds the pte pointing to page
928 * @page: the page we are replacing by kpage
929 * @kpage: the ksm page we replace page by
930 * @orig_pte: the original value of the pte
931 *
932 * Returns 0 on success, -EFAULT on failure.
933 */
934 static int replace_page(struct vm_area_struct *vma, struct page *page,
935 struct page *kpage, pte_t orig_pte)
936 {
937 struct mm_struct *mm = vma->vm_mm;
938 pmd_t *pmd;
939 pte_t *ptep;
940 pte_t newpte;
941 spinlock_t *ptl;
942 unsigned long addr;
943 int err = -EFAULT;
944 unsigned long mmun_start; /* For mmu_notifiers */
945 unsigned long mmun_end; /* For mmu_notifiers */
946
947 addr = page_address_in_vma(page, vma);
948 if (addr == -EFAULT)
949 goto out;
950
951 pmd = mm_find_pmd(mm, addr);
952 if (!pmd)
953 goto out;
954
955 mmun_start = addr;
956 mmun_end = addr + PAGE_SIZE;
957 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
958
959 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
960 if (!pte_same(*ptep, orig_pte)) {
961 pte_unmap_unlock(ptep, ptl);
962 goto out_mn;
963 }
964
965 /*
966 * No need to check ksm_use_zero_pages here: we can only have a
967 * zero_page here if ksm_use_zero_pages was enabled alreaady.
968 */
969 if (!is_zero_pfn(page_to_pfn(kpage))) {
970 get_page(kpage);
971 page_add_anon_rmap(kpage, vma, addr, false);
972 newpte = mk_pte(kpage, vma->vm_page_prot);
973 } else {
974 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
975 vma->vm_page_prot));
976 }
977
978 flush_cache_page(vma, addr, pte_pfn(*ptep));
979 ptep_clear_flush_notify(vma, addr, ptep);
980 set_pte_at_notify(mm, addr, ptep, newpte);
981
982 page_remove_rmap(page, false);
983 if (!page_mapped(page))
984 try_to_free_swap(page);
985 put_page(page);
986
987 pte_unmap_unlock(ptep, ptl);
988 err = 0;
989 out_mn:
990 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
991 out:
992 return err;
993 }
994
995 /*
996 * try_to_merge_one_page - take two pages and merge them into one
997 * @vma: the vma that holds the pte pointing to page
998 * @page: the PageAnon page that we want to replace with kpage
999 * @kpage: the PageKsm page that we want to map instead of page,
1000 * or NULL the first time when we want to use page as kpage.
1001 *
1002 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1003 */
1004 static int try_to_merge_one_page(struct vm_area_struct *vma,
1005 struct page *page, struct page *kpage)
1006 {
1007 pte_t orig_pte = __pte(0);
1008 int err = -EFAULT;
1009
1010 if (page == kpage) /* ksm page forked */
1011 return 0;
1012
1013 if (!PageAnon(page))
1014 goto out;
1015
1016 /*
1017 * We need the page lock to read a stable PageSwapCache in
1018 * write_protect_page(). We use trylock_page() instead of
1019 * lock_page() because we don't want to wait here - we
1020 * prefer to continue scanning and merging different pages,
1021 * then come back to this page when it is unlocked.
1022 */
1023 if (!trylock_page(page))
1024 goto out;
1025
1026 if (PageTransCompound(page)) {
1027 err = split_huge_page(page);
1028 if (err)
1029 goto out_unlock;
1030 }
1031
1032 /*
1033 * If this anonymous page is mapped only here, its pte may need
1034 * to be write-protected. If it's mapped elsewhere, all of its
1035 * ptes are necessarily already write-protected. But in either
1036 * case, we need to lock and check page_count is not raised.
1037 */
1038 if (write_protect_page(vma, page, &orig_pte) == 0) {
1039 if (!kpage) {
1040 /*
1041 * While we hold page lock, upgrade page from
1042 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1043 * stable_tree_insert() will update stable_node.
1044 */
1045 set_page_stable_node(page, NULL);
1046 mark_page_accessed(page);
1047 /*
1048 * Page reclaim just frees a clean page with no dirty
1049 * ptes: make sure that the ksm page would be swapped.
1050 */
1051 if (!PageDirty(page))
1052 SetPageDirty(page);
1053 err = 0;
1054 } else if (pages_identical(page, kpage))
1055 err = replace_page(vma, page, kpage, orig_pte);
1056 }
1057
1058 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1059 munlock_vma_page(page);
1060 if (!PageMlocked(kpage)) {
1061 unlock_page(page);
1062 lock_page(kpage);
1063 mlock_vma_page(kpage);
1064 page = kpage; /* for final unlock */
1065 }
1066 }
1067
1068 out_unlock:
1069 unlock_page(page);
1070 out:
1071 return err;
1072 }
1073
1074 /*
1075 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1076 * but no new kernel page is allocated: kpage must already be a ksm page.
1077 *
1078 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1079 */
1080 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1081 struct page *page, struct page *kpage)
1082 {
1083 struct mm_struct *mm = rmap_item->mm;
1084 struct vm_area_struct *vma;
1085 int err = -EFAULT;
1086
1087 down_read(&mm->mmap_sem);
1088 vma = find_mergeable_vma(mm, rmap_item->address);
1089 if (!vma)
1090 goto out;
1091
1092 err = try_to_merge_one_page(vma, page, kpage);
1093 if (err)
1094 goto out;
1095
1096 /* Unstable nid is in union with stable anon_vma: remove first */
1097 remove_rmap_item_from_tree(rmap_item);
1098
1099 /* Must get reference to anon_vma while still holding mmap_sem */
1100 rmap_item->anon_vma = vma->anon_vma;
1101 get_anon_vma(vma->anon_vma);
1102 out:
1103 up_read(&mm->mmap_sem);
1104 return err;
1105 }
1106
1107 /*
1108 * try_to_merge_two_pages - take two identical pages and prepare them
1109 * to be merged into one page.
1110 *
1111 * This function returns the kpage if we successfully merged two identical
1112 * pages into one ksm page, NULL otherwise.
1113 *
1114 * Note that this function upgrades page to ksm page: if one of the pages
1115 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1116 */
1117 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1118 struct page *page,
1119 struct rmap_item *tree_rmap_item,
1120 struct page *tree_page)
1121 {
1122 int err;
1123
1124 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1125 if (!err) {
1126 err = try_to_merge_with_ksm_page(tree_rmap_item,
1127 tree_page, page);
1128 /*
1129 * If that fails, we have a ksm page with only one pte
1130 * pointing to it: so break it.
1131 */
1132 if (err)
1133 break_cow(rmap_item);
1134 }
1135 return err ? NULL : page;
1136 }
1137
1138 /*
1139 * stable_tree_search - search for page inside the stable tree
1140 *
1141 * This function checks if there is a page inside the stable tree
1142 * with identical content to the page that we are scanning right now.
1143 *
1144 * This function returns the stable tree node of identical content if found,
1145 * NULL otherwise.
1146 */
1147 static struct page *stable_tree_search(struct page *page)
1148 {
1149 int nid;
1150 struct rb_root *root;
1151 struct rb_node **new;
1152 struct rb_node *parent;
1153 struct stable_node *stable_node;
1154 struct stable_node *page_node;
1155
1156 page_node = page_stable_node(page);
1157 if (page_node && page_node->head != &migrate_nodes) {
1158 /* ksm page forked */
1159 get_page(page);
1160 return page;
1161 }
1162
1163 nid = get_kpfn_nid(page_to_pfn(page));
1164 root = root_stable_tree + nid;
1165 again:
1166 new = &root->rb_node;
1167 parent = NULL;
1168
1169 while (*new) {
1170 struct page *tree_page;
1171 int ret;
1172
1173 cond_resched();
1174 stable_node = rb_entry(*new, struct stable_node, node);
1175 tree_page = get_ksm_page(stable_node, false);
1176 if (!tree_page) {
1177 /*
1178 * If we walked over a stale stable_node,
1179 * get_ksm_page() will call rb_erase() and it
1180 * may rebalance the tree from under us. So
1181 * restart the search from scratch. Returning
1182 * NULL would be safe too, but we'd generate
1183 * false negative insertions just because some
1184 * stable_node was stale.
1185 */
1186 goto again;
1187 }
1188
1189 ret = memcmp_pages(page, tree_page);
1190 put_page(tree_page);
1191
1192 parent = *new;
1193 if (ret < 0)
1194 new = &parent->rb_left;
1195 else if (ret > 0)
1196 new = &parent->rb_right;
1197 else {
1198 /*
1199 * Lock and unlock the stable_node's page (which
1200 * might already have been migrated) so that page
1201 * migration is sure to notice its raised count.
1202 * It would be more elegant to return stable_node
1203 * than kpage, but that involves more changes.
1204 */
1205 tree_page = get_ksm_page(stable_node, true);
1206 if (tree_page) {
1207 unlock_page(tree_page);
1208 if (get_kpfn_nid(stable_node->kpfn) !=
1209 NUMA(stable_node->nid)) {
1210 put_page(tree_page);
1211 goto replace;
1212 }
1213 return tree_page;
1214 }
1215 /*
1216 * There is now a place for page_node, but the tree may
1217 * have been rebalanced, so re-evaluate parent and new.
1218 */
1219 if (page_node)
1220 goto again;
1221 return NULL;
1222 }
1223 }
1224
1225 if (!page_node)
1226 return NULL;
1227
1228 list_del(&page_node->list);
1229 DO_NUMA(page_node->nid = nid);
1230 rb_link_node(&page_node->node, parent, new);
1231 rb_insert_color(&page_node->node, root);
1232 get_page(page);
1233 return page;
1234
1235 replace:
1236 if (page_node) {
1237 list_del(&page_node->list);
1238 DO_NUMA(page_node->nid = nid);
1239 rb_replace_node(&stable_node->node, &page_node->node, root);
1240 get_page(page);
1241 } else {
1242 rb_erase(&stable_node->node, root);
1243 page = NULL;
1244 }
1245 stable_node->head = &migrate_nodes;
1246 list_add(&stable_node->list, stable_node->head);
1247 return page;
1248 }
1249
1250 /*
1251 * stable_tree_insert - insert stable tree node pointing to new ksm page
1252 * into the stable tree.
1253 *
1254 * This function returns the stable tree node just allocated on success,
1255 * NULL otherwise.
1256 */
1257 static struct stable_node *stable_tree_insert(struct page *kpage)
1258 {
1259 int nid;
1260 unsigned long kpfn;
1261 struct rb_root *root;
1262 struct rb_node **new;
1263 struct rb_node *parent;
1264 struct stable_node *stable_node;
1265
1266 kpfn = page_to_pfn(kpage);
1267 nid = get_kpfn_nid(kpfn);
1268 root = root_stable_tree + nid;
1269 again:
1270 parent = NULL;
1271 new = &root->rb_node;
1272
1273 while (*new) {
1274 struct page *tree_page;
1275 int ret;
1276
1277 cond_resched();
1278 stable_node = rb_entry(*new, struct stable_node, node);
1279 tree_page = get_ksm_page(stable_node, false);
1280 if (!tree_page) {
1281 /*
1282 * If we walked over a stale stable_node,
1283 * get_ksm_page() will call rb_erase() and it
1284 * may rebalance the tree from under us. So
1285 * restart the search from scratch. Returning
1286 * NULL would be safe too, but we'd generate
1287 * false negative insertions just because some
1288 * stable_node was stale.
1289 */
1290 goto again;
1291 }
1292
1293 ret = memcmp_pages(kpage, tree_page);
1294 put_page(tree_page);
1295
1296 parent = *new;
1297 if (ret < 0)
1298 new = &parent->rb_left;
1299 else if (ret > 0)
1300 new = &parent->rb_right;
1301 else {
1302 /*
1303 * It is not a bug that stable_tree_search() didn't
1304 * find this node: because at that time our page was
1305 * not yet write-protected, so may have changed since.
1306 */
1307 return NULL;
1308 }
1309 }
1310
1311 stable_node = alloc_stable_node();
1312 if (!stable_node)
1313 return NULL;
1314
1315 INIT_HLIST_HEAD(&stable_node->hlist);
1316 stable_node->kpfn = kpfn;
1317 set_page_stable_node(kpage, stable_node);
1318 DO_NUMA(stable_node->nid = nid);
1319 rb_link_node(&stable_node->node, parent, new);
1320 rb_insert_color(&stable_node->node, root);
1321
1322 return stable_node;
1323 }
1324
1325 /*
1326 * unstable_tree_search_insert - search for identical page,
1327 * else insert rmap_item into the unstable tree.
1328 *
1329 * This function searches for a page in the unstable tree identical to the
1330 * page currently being scanned; and if no identical page is found in the
1331 * tree, we insert rmap_item as a new object into the unstable tree.
1332 *
1333 * This function returns pointer to rmap_item found to be identical
1334 * to the currently scanned page, NULL otherwise.
1335 *
1336 * This function does both searching and inserting, because they share
1337 * the same walking algorithm in an rbtree.
1338 */
1339 static
1340 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1341 struct page *page,
1342 struct page **tree_pagep)
1343 {
1344 struct rb_node **new;
1345 struct rb_root *root;
1346 struct rb_node *parent = NULL;
1347 int nid;
1348
1349 nid = get_kpfn_nid(page_to_pfn(page));
1350 root = root_unstable_tree + nid;
1351 new = &root->rb_node;
1352
1353 while (*new) {
1354 struct rmap_item *tree_rmap_item;
1355 struct page *tree_page;
1356 int ret;
1357
1358 cond_resched();
1359 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1360 tree_page = get_mergeable_page(tree_rmap_item);
1361 if (!tree_page)
1362 return NULL;
1363
1364 /*
1365 * Don't substitute a ksm page for a forked page.
1366 */
1367 if (page == tree_page) {
1368 put_page(tree_page);
1369 return NULL;
1370 }
1371
1372 ret = memcmp_pages(page, tree_page);
1373
1374 parent = *new;
1375 if (ret < 0) {
1376 put_page(tree_page);
1377 new = &parent->rb_left;
1378 } else if (ret > 0) {
1379 put_page(tree_page);
1380 new = &parent->rb_right;
1381 } else if (!ksm_merge_across_nodes &&
1382 page_to_nid(tree_page) != nid) {
1383 /*
1384 * If tree_page has been migrated to another NUMA node,
1385 * it will be flushed out and put in the right unstable
1386 * tree next time: only merge with it when across_nodes.
1387 */
1388 put_page(tree_page);
1389 return NULL;
1390 } else {
1391 *tree_pagep = tree_page;
1392 return tree_rmap_item;
1393 }
1394 }
1395
1396 rmap_item->address |= UNSTABLE_FLAG;
1397 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1398 DO_NUMA(rmap_item->nid = nid);
1399 rb_link_node(&rmap_item->node, parent, new);
1400 rb_insert_color(&rmap_item->node, root);
1401
1402 ksm_pages_unshared++;
1403 return NULL;
1404 }
1405
1406 /*
1407 * stable_tree_append - add another rmap_item to the linked list of
1408 * rmap_items hanging off a given node of the stable tree, all sharing
1409 * the same ksm page.
1410 */
1411 static void stable_tree_append(struct rmap_item *rmap_item,
1412 struct stable_node *stable_node)
1413 {
1414 rmap_item->head = stable_node;
1415 rmap_item->address |= STABLE_FLAG;
1416 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1417
1418 if (rmap_item->hlist.next)
1419 ksm_pages_sharing++;
1420 else
1421 ksm_pages_shared++;
1422 }
1423
1424 /*
1425 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1426 * if not, compare checksum to previous and if it's the same, see if page can
1427 * be inserted into the unstable tree, or merged with a page already there and
1428 * both transferred to the stable tree.
1429 *
1430 * @page: the page that we are searching identical page to.
1431 * @rmap_item: the reverse mapping into the virtual address of this page
1432 */
1433 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1434 {
1435 struct rmap_item *tree_rmap_item;
1436 struct page *tree_page = NULL;
1437 struct stable_node *stable_node;
1438 struct page *kpage;
1439 unsigned int checksum;
1440 int err;
1441
1442 stable_node = page_stable_node(page);
1443 if (stable_node) {
1444 if (stable_node->head != &migrate_nodes &&
1445 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1446 rb_erase(&stable_node->node,
1447 root_stable_tree + NUMA(stable_node->nid));
1448 stable_node->head = &migrate_nodes;
1449 list_add(&stable_node->list, stable_node->head);
1450 }
1451 if (stable_node->head != &migrate_nodes &&
1452 rmap_item->head == stable_node)
1453 return;
1454 }
1455
1456 /* We first start with searching the page inside the stable tree */
1457 kpage = stable_tree_search(page);
1458 if (kpage == page && rmap_item->head == stable_node) {
1459 put_page(kpage);
1460 return;
1461 }
1462
1463 remove_rmap_item_from_tree(rmap_item);
1464
1465 if (kpage) {
1466 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1467 if (!err) {
1468 /*
1469 * The page was successfully merged:
1470 * add its rmap_item to the stable tree.
1471 */
1472 lock_page(kpage);
1473 stable_tree_append(rmap_item, page_stable_node(kpage));
1474 unlock_page(kpage);
1475 }
1476 put_page(kpage);
1477 return;
1478 }
1479
1480 /*
1481 * If the hash value of the page has changed from the last time
1482 * we calculated it, this page is changing frequently: therefore we
1483 * don't want to insert it in the unstable tree, and we don't want
1484 * to waste our time searching for something identical to it there.
1485 */
1486 checksum = calc_checksum(page);
1487 if (rmap_item->oldchecksum != checksum) {
1488 rmap_item->oldchecksum = checksum;
1489 return;
1490 }
1491
1492 /*
1493 * Same checksum as an empty page. We attempt to merge it with the
1494 * appropriate zero page if the user enabled this via sysfs.
1495 */
1496 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1497 struct vm_area_struct *vma;
1498
1499 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1500 err = try_to_merge_one_page(vma, page,
1501 ZERO_PAGE(rmap_item->address));
1502 /*
1503 * In case of failure, the page was not really empty, so we
1504 * need to continue. Otherwise we're done.
1505 */
1506 if (!err)
1507 return;
1508 }
1509 tree_rmap_item =
1510 unstable_tree_search_insert(rmap_item, page, &tree_page);
1511 if (tree_rmap_item) {
1512 kpage = try_to_merge_two_pages(rmap_item, page,
1513 tree_rmap_item, tree_page);
1514 put_page(tree_page);
1515 if (kpage) {
1516 /*
1517 * The pages were successfully merged: insert new
1518 * node in the stable tree and add both rmap_items.
1519 */
1520 lock_page(kpage);
1521 stable_node = stable_tree_insert(kpage);
1522 if (stable_node) {
1523 stable_tree_append(tree_rmap_item, stable_node);
1524 stable_tree_append(rmap_item, stable_node);
1525 }
1526 unlock_page(kpage);
1527
1528 /*
1529 * If we fail to insert the page into the stable tree,
1530 * we will have 2 virtual addresses that are pointing
1531 * to a ksm page left outside the stable tree,
1532 * in which case we need to break_cow on both.
1533 */
1534 if (!stable_node) {
1535 break_cow(tree_rmap_item);
1536 break_cow(rmap_item);
1537 }
1538 }
1539 }
1540 }
1541
1542 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1543 struct rmap_item **rmap_list,
1544 unsigned long addr)
1545 {
1546 struct rmap_item *rmap_item;
1547
1548 while (*rmap_list) {
1549 rmap_item = *rmap_list;
1550 if ((rmap_item->address & PAGE_MASK) == addr)
1551 return rmap_item;
1552 if (rmap_item->address > addr)
1553 break;
1554 *rmap_list = rmap_item->rmap_list;
1555 remove_rmap_item_from_tree(rmap_item);
1556 free_rmap_item(rmap_item);
1557 }
1558
1559 rmap_item = alloc_rmap_item();
1560 if (rmap_item) {
1561 /* It has already been zeroed */
1562 rmap_item->mm = mm_slot->mm;
1563 rmap_item->address = addr;
1564 rmap_item->rmap_list = *rmap_list;
1565 *rmap_list = rmap_item;
1566 }
1567 return rmap_item;
1568 }
1569
1570 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1571 {
1572 struct mm_struct *mm;
1573 struct mm_slot *slot;
1574 struct vm_area_struct *vma;
1575 struct rmap_item *rmap_item;
1576 int nid;
1577
1578 if (list_empty(&ksm_mm_head.mm_list))
1579 return NULL;
1580
1581 slot = ksm_scan.mm_slot;
1582 if (slot == &ksm_mm_head) {
1583 /*
1584 * A number of pages can hang around indefinitely on per-cpu
1585 * pagevecs, raised page count preventing write_protect_page
1586 * from merging them. Though it doesn't really matter much,
1587 * it is puzzling to see some stuck in pages_volatile until
1588 * other activity jostles them out, and they also prevented
1589 * LTP's KSM test from succeeding deterministically; so drain
1590 * them here (here rather than on entry to ksm_do_scan(),
1591 * so we don't IPI too often when pages_to_scan is set low).
1592 */
1593 lru_add_drain_all();
1594
1595 /*
1596 * Whereas stale stable_nodes on the stable_tree itself
1597 * get pruned in the regular course of stable_tree_search(),
1598 * those moved out to the migrate_nodes list can accumulate:
1599 * so prune them once before each full scan.
1600 */
1601 if (!ksm_merge_across_nodes) {
1602 struct stable_node *stable_node, *next;
1603 struct page *page;
1604
1605 list_for_each_entry_safe(stable_node, next,
1606 &migrate_nodes, list) {
1607 page = get_ksm_page(stable_node, false);
1608 if (page)
1609 put_page(page);
1610 cond_resched();
1611 }
1612 }
1613
1614 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1615 root_unstable_tree[nid] = RB_ROOT;
1616
1617 spin_lock(&ksm_mmlist_lock);
1618 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1619 ksm_scan.mm_slot = slot;
1620 spin_unlock(&ksm_mmlist_lock);
1621 /*
1622 * Although we tested list_empty() above, a racing __ksm_exit
1623 * of the last mm on the list may have removed it since then.
1624 */
1625 if (slot == &ksm_mm_head)
1626 return NULL;
1627 next_mm:
1628 ksm_scan.address = 0;
1629 ksm_scan.rmap_list = &slot->rmap_list;
1630 }
1631
1632 mm = slot->mm;
1633 down_read(&mm->mmap_sem);
1634 if (ksm_test_exit(mm))
1635 vma = NULL;
1636 else
1637 vma = find_vma(mm, ksm_scan.address);
1638
1639 for (; vma; vma = vma->vm_next) {
1640 if (!(vma->vm_flags & VM_MERGEABLE))
1641 continue;
1642 if (ksm_scan.address < vma->vm_start)
1643 ksm_scan.address = vma->vm_start;
1644 if (!vma->anon_vma)
1645 ksm_scan.address = vma->vm_end;
1646
1647 while (ksm_scan.address < vma->vm_end) {
1648 if (ksm_test_exit(mm))
1649 break;
1650 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1651 if (IS_ERR_OR_NULL(*page)) {
1652 ksm_scan.address += PAGE_SIZE;
1653 cond_resched();
1654 continue;
1655 }
1656 if (PageAnon(*page)) {
1657 flush_anon_page(vma, *page, ksm_scan.address);
1658 flush_dcache_page(*page);
1659 rmap_item = get_next_rmap_item(slot,
1660 ksm_scan.rmap_list, ksm_scan.address);
1661 if (rmap_item) {
1662 ksm_scan.rmap_list =
1663 &rmap_item->rmap_list;
1664 ksm_scan.address += PAGE_SIZE;
1665 } else
1666 put_page(*page);
1667 up_read(&mm->mmap_sem);
1668 return rmap_item;
1669 }
1670 put_page(*page);
1671 ksm_scan.address += PAGE_SIZE;
1672 cond_resched();
1673 }
1674 }
1675
1676 if (ksm_test_exit(mm)) {
1677 ksm_scan.address = 0;
1678 ksm_scan.rmap_list = &slot->rmap_list;
1679 }
1680 /*
1681 * Nuke all the rmap_items that are above this current rmap:
1682 * because there were no VM_MERGEABLE vmas with such addresses.
1683 */
1684 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1685
1686 spin_lock(&ksm_mmlist_lock);
1687 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1688 struct mm_slot, mm_list);
1689 if (ksm_scan.address == 0) {
1690 /*
1691 * We've completed a full scan of all vmas, holding mmap_sem
1692 * throughout, and found no VM_MERGEABLE: so do the same as
1693 * __ksm_exit does to remove this mm from all our lists now.
1694 * This applies either when cleaning up after __ksm_exit
1695 * (but beware: we can reach here even before __ksm_exit),
1696 * or when all VM_MERGEABLE areas have been unmapped (and
1697 * mmap_sem then protects against race with MADV_MERGEABLE).
1698 */
1699 hash_del(&slot->link);
1700 list_del(&slot->mm_list);
1701 spin_unlock(&ksm_mmlist_lock);
1702
1703 free_mm_slot(slot);
1704 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1705 up_read(&mm->mmap_sem);
1706 mmdrop(mm);
1707 } else {
1708 up_read(&mm->mmap_sem);
1709 /*
1710 * up_read(&mm->mmap_sem) first because after
1711 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1712 * already have been freed under us by __ksm_exit()
1713 * because the "mm_slot" is still hashed and
1714 * ksm_scan.mm_slot doesn't point to it anymore.
1715 */
1716 spin_unlock(&ksm_mmlist_lock);
1717 }
1718
1719 /* Repeat until we've completed scanning the whole list */
1720 slot = ksm_scan.mm_slot;
1721 if (slot != &ksm_mm_head)
1722 goto next_mm;
1723
1724 ksm_scan.seqnr++;
1725 return NULL;
1726 }
1727
1728 /**
1729 * ksm_do_scan - the ksm scanner main worker function.
1730 * @scan_npages - number of pages we want to scan before we return.
1731 */
1732 static void ksm_do_scan(unsigned int scan_npages)
1733 {
1734 struct rmap_item *rmap_item;
1735 struct page *uninitialized_var(page);
1736
1737 while (scan_npages-- && likely(!freezing(current))) {
1738 cond_resched();
1739 rmap_item = scan_get_next_rmap_item(&page);
1740 if (!rmap_item)
1741 return;
1742 cmp_and_merge_page(page, rmap_item);
1743 put_page(page);
1744 }
1745 }
1746
1747 static int ksmd_should_run(void)
1748 {
1749 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1750 }
1751
1752 static int ksm_scan_thread(void *nothing)
1753 {
1754 set_freezable();
1755 set_user_nice(current, 5);
1756
1757 while (!kthread_should_stop()) {
1758 mutex_lock(&ksm_thread_mutex);
1759 wait_while_offlining();
1760 if (ksmd_should_run())
1761 ksm_do_scan(ksm_thread_pages_to_scan);
1762 mutex_unlock(&ksm_thread_mutex);
1763
1764 try_to_freeze();
1765
1766 if (ksmd_should_run()) {
1767 if (ksm_thread_sleep_millisecs >= 1000)
1768 schedule_timeout_interruptible(
1769 msecs_to_jiffies(round_jiffies_relative(ksm_thread_sleep_millisecs)));
1770 else
1771 schedule_timeout_interruptible(
1772 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1773 } else {
1774 wait_event_freezable(ksm_thread_wait,
1775 ksmd_should_run() || kthread_should_stop());
1776 }
1777 }
1778 return 0;
1779 }
1780
1781 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1782 unsigned long end, int advice, unsigned long *vm_flags)
1783 {
1784 struct mm_struct *mm = vma->vm_mm;
1785 int err;
1786
1787 switch (advice) {
1788 case MADV_MERGEABLE:
1789 /*
1790 * Be somewhat over-protective for now!
1791 */
1792 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1793 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1794 VM_HUGETLB | VM_MIXEDMAP))
1795 return 0; /* just ignore the advice */
1796
1797 #ifdef VM_SAO
1798 if (*vm_flags & VM_SAO)
1799 return 0;
1800 #endif
1801
1802 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1803 err = __ksm_enter(mm);
1804 if (err)
1805 return err;
1806 }
1807
1808 *vm_flags |= VM_MERGEABLE;
1809 break;
1810
1811 case MADV_UNMERGEABLE:
1812 if (!(*vm_flags & VM_MERGEABLE))
1813 return 0; /* just ignore the advice */
1814
1815 if (vma->anon_vma) {
1816 err = unmerge_ksm_pages(vma, start, end);
1817 if (err)
1818 return err;
1819 }
1820
1821 *vm_flags &= ~VM_MERGEABLE;
1822 break;
1823 }
1824
1825 return 0;
1826 }
1827
1828 int __ksm_enter(struct mm_struct *mm)
1829 {
1830 struct mm_slot *mm_slot;
1831 int needs_wakeup;
1832
1833 mm_slot = alloc_mm_slot();
1834 if (!mm_slot)
1835 return -ENOMEM;
1836
1837 /* Check ksm_run too? Would need tighter locking */
1838 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1839
1840 spin_lock(&ksm_mmlist_lock);
1841 insert_to_mm_slots_hash(mm, mm_slot);
1842 /*
1843 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1844 * insert just behind the scanning cursor, to let the area settle
1845 * down a little; when fork is followed by immediate exec, we don't
1846 * want ksmd to waste time setting up and tearing down an rmap_list.
1847 *
1848 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1849 * scanning cursor, otherwise KSM pages in newly forked mms will be
1850 * missed: then we might as well insert at the end of the list.
1851 */
1852 if (ksm_run & KSM_RUN_UNMERGE)
1853 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1854 else
1855 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1856 spin_unlock(&ksm_mmlist_lock);
1857
1858 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1859 atomic_inc(&mm->mm_count);
1860
1861 if (needs_wakeup)
1862 wake_up_interruptible(&ksm_thread_wait);
1863
1864 return 0;
1865 }
1866
1867 void __ksm_exit(struct mm_struct *mm)
1868 {
1869 struct mm_slot *mm_slot;
1870 int easy_to_free = 0;
1871
1872 /*
1873 * This process is exiting: if it's straightforward (as is the
1874 * case when ksmd was never running), free mm_slot immediately.
1875 * But if it's at the cursor or has rmap_items linked to it, use
1876 * mmap_sem to synchronize with any break_cows before pagetables
1877 * are freed, and leave the mm_slot on the list for ksmd to free.
1878 * Beware: ksm may already have noticed it exiting and freed the slot.
1879 */
1880
1881 spin_lock(&ksm_mmlist_lock);
1882 mm_slot = get_mm_slot(mm);
1883 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1884 if (!mm_slot->rmap_list) {
1885 hash_del(&mm_slot->link);
1886 list_del(&mm_slot->mm_list);
1887 easy_to_free = 1;
1888 } else {
1889 list_move(&mm_slot->mm_list,
1890 &ksm_scan.mm_slot->mm_list);
1891 }
1892 }
1893 spin_unlock(&ksm_mmlist_lock);
1894
1895 if (easy_to_free) {
1896 free_mm_slot(mm_slot);
1897 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1898 mmdrop(mm);
1899 } else if (mm_slot) {
1900 down_write(&mm->mmap_sem);
1901 up_write(&mm->mmap_sem);
1902 }
1903 }
1904
1905 struct page *ksm_might_need_to_copy(struct page *page,
1906 struct vm_area_struct *vma, unsigned long address)
1907 {
1908 struct anon_vma *anon_vma = page_anon_vma(page);
1909 struct page *new_page;
1910
1911 if (PageKsm(page)) {
1912 if (page_stable_node(page) &&
1913 !(ksm_run & KSM_RUN_UNMERGE))
1914 return page; /* no need to copy it */
1915 } else if (!anon_vma) {
1916 return page; /* no need to copy it */
1917 } else if (anon_vma->root == vma->anon_vma->root &&
1918 page->index == linear_page_index(vma, address)) {
1919 return page; /* still no need to copy it */
1920 }
1921 if (!PageUptodate(page))
1922 return page; /* let do_swap_page report the error */
1923
1924 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1925 if (new_page) {
1926 copy_user_highpage(new_page, page, address, vma);
1927
1928 SetPageDirty(new_page);
1929 __SetPageUptodate(new_page);
1930 __SetPageLocked(new_page);
1931 }
1932
1933 return new_page;
1934 }
1935
1936 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1937 {
1938 struct stable_node *stable_node;
1939 struct rmap_item *rmap_item;
1940 int ret = SWAP_AGAIN;
1941 int search_new_forks = 0;
1942
1943 VM_BUG_ON_PAGE(!PageKsm(page), page);
1944
1945 /*
1946 * Rely on the page lock to protect against concurrent modifications
1947 * to that page's node of the stable tree.
1948 */
1949 VM_BUG_ON_PAGE(!PageLocked(page), page);
1950
1951 stable_node = page_stable_node(page);
1952 if (!stable_node)
1953 return ret;
1954 again:
1955 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1956 struct anon_vma *anon_vma = rmap_item->anon_vma;
1957 struct anon_vma_chain *vmac;
1958 struct vm_area_struct *vma;
1959
1960 cond_resched();
1961 anon_vma_lock_read(anon_vma);
1962 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1963 0, ULONG_MAX) {
1964 cond_resched();
1965 vma = vmac->vma;
1966 if (rmap_item->address < vma->vm_start ||
1967 rmap_item->address >= vma->vm_end)
1968 continue;
1969 /*
1970 * Initially we examine only the vma which covers this
1971 * rmap_item; but later, if there is still work to do,
1972 * we examine covering vmas in other mms: in case they
1973 * were forked from the original since ksmd passed.
1974 */
1975 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1976 continue;
1977
1978 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1979 continue;
1980
1981 ret = rwc->rmap_one(page, vma,
1982 rmap_item->address, rwc->arg);
1983 if (ret != SWAP_AGAIN) {
1984 anon_vma_unlock_read(anon_vma);
1985 goto out;
1986 }
1987 if (rwc->done && rwc->done(page)) {
1988 anon_vma_unlock_read(anon_vma);
1989 goto out;
1990 }
1991 }
1992 anon_vma_unlock_read(anon_vma);
1993 }
1994 if (!search_new_forks++)
1995 goto again;
1996 out:
1997 return ret;
1998 }
1999
2000 #ifdef CONFIG_MIGRATION
2001 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2002 {
2003 struct stable_node *stable_node;
2004
2005 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2006 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2007 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2008
2009 stable_node = page_stable_node(newpage);
2010 if (stable_node) {
2011 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2012 stable_node->kpfn = page_to_pfn(newpage);
2013 /*
2014 * newpage->mapping was set in advance; now we need smp_wmb()
2015 * to make sure that the new stable_node->kpfn is visible
2016 * to get_ksm_page() before it can see that oldpage->mapping
2017 * has gone stale (or that PageSwapCache has been cleared).
2018 */
2019 smp_wmb();
2020 set_page_stable_node(oldpage, NULL);
2021 }
2022 }
2023 #endif /* CONFIG_MIGRATION */
2024
2025 #ifdef CONFIG_MEMORY_HOTREMOVE
2026 static void wait_while_offlining(void)
2027 {
2028 while (ksm_run & KSM_RUN_OFFLINE) {
2029 mutex_unlock(&ksm_thread_mutex);
2030 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2031 TASK_UNINTERRUPTIBLE);
2032 mutex_lock(&ksm_thread_mutex);
2033 }
2034 }
2035
2036 static void ksm_check_stable_tree(unsigned long start_pfn,
2037 unsigned long end_pfn)
2038 {
2039 struct stable_node *stable_node, *next;
2040 struct rb_node *node;
2041 int nid;
2042
2043 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2044 node = rb_first(root_stable_tree + nid);
2045 while (node) {
2046 stable_node = rb_entry(node, struct stable_node, node);
2047 if (stable_node->kpfn >= start_pfn &&
2048 stable_node->kpfn < end_pfn) {
2049 /*
2050 * Don't get_ksm_page, page has already gone:
2051 * which is why we keep kpfn instead of page*
2052 */
2053 remove_node_from_stable_tree(stable_node);
2054 node = rb_first(root_stable_tree + nid);
2055 } else
2056 node = rb_next(node);
2057 cond_resched();
2058 }
2059 }
2060 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2061 if (stable_node->kpfn >= start_pfn &&
2062 stable_node->kpfn < end_pfn)
2063 remove_node_from_stable_tree(stable_node);
2064 cond_resched();
2065 }
2066 }
2067
2068 static int ksm_memory_callback(struct notifier_block *self,
2069 unsigned long action, void *arg)
2070 {
2071 struct memory_notify *mn = arg;
2072
2073 switch (action) {
2074 case MEM_GOING_OFFLINE:
2075 /*
2076 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2077 * and remove_all_stable_nodes() while memory is going offline:
2078 * it is unsafe for them to touch the stable tree at this time.
2079 * But unmerge_ksm_pages(), rmap lookups and other entry points
2080 * which do not need the ksm_thread_mutex are all safe.
2081 */
2082 mutex_lock(&ksm_thread_mutex);
2083 ksm_run |= KSM_RUN_OFFLINE;
2084 mutex_unlock(&ksm_thread_mutex);
2085 break;
2086
2087 case MEM_OFFLINE:
2088 /*
2089 * Most of the work is done by page migration; but there might
2090 * be a few stable_nodes left over, still pointing to struct
2091 * pages which have been offlined: prune those from the tree,
2092 * otherwise get_ksm_page() might later try to access a
2093 * non-existent struct page.
2094 */
2095 ksm_check_stable_tree(mn->start_pfn,
2096 mn->start_pfn + mn->nr_pages);
2097 /* fallthrough */
2098
2099 case MEM_CANCEL_OFFLINE:
2100 mutex_lock(&ksm_thread_mutex);
2101 ksm_run &= ~KSM_RUN_OFFLINE;
2102 mutex_unlock(&ksm_thread_mutex);
2103
2104 smp_mb(); /* wake_up_bit advises this */
2105 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2106 break;
2107 }
2108 return NOTIFY_OK;
2109 }
2110 #else
2111 static void wait_while_offlining(void)
2112 {
2113 }
2114 #endif /* CONFIG_MEMORY_HOTREMOVE */
2115
2116 #ifdef CONFIG_SYSFS
2117 /*
2118 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2119 */
2120
2121 #define KSM_ATTR_RO(_name) \
2122 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2123 #define KSM_ATTR(_name) \
2124 static struct kobj_attribute _name##_attr = \
2125 __ATTR(_name, 0644, _name##_show, _name##_store)
2126
2127 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2128 struct kobj_attribute *attr, char *buf)
2129 {
2130 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2131 }
2132
2133 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2134 struct kobj_attribute *attr,
2135 const char *buf, size_t count)
2136 {
2137 unsigned long msecs;
2138 int err;
2139
2140 err = kstrtoul(buf, 10, &msecs);
2141 if (err || msecs > UINT_MAX)
2142 return -EINVAL;
2143
2144 ksm_thread_sleep_millisecs = msecs;
2145
2146 return count;
2147 }
2148 KSM_ATTR(sleep_millisecs);
2149
2150 static ssize_t pages_to_scan_show(struct kobject *kobj,
2151 struct kobj_attribute *attr, char *buf)
2152 {
2153 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2154 }
2155
2156 static ssize_t pages_to_scan_store(struct kobject *kobj,
2157 struct kobj_attribute *attr,
2158 const char *buf, size_t count)
2159 {
2160 int err;
2161 unsigned long nr_pages;
2162
2163 err = kstrtoul(buf, 10, &nr_pages);
2164 if (err || nr_pages > UINT_MAX)
2165 return -EINVAL;
2166
2167 ksm_thread_pages_to_scan = nr_pages;
2168
2169 return count;
2170 }
2171 KSM_ATTR(pages_to_scan);
2172
2173 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2174 char *buf)
2175 {
2176 return sprintf(buf, "%lu\n", ksm_run);
2177 }
2178
2179 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2180 const char *buf, size_t count)
2181 {
2182 int err;
2183 unsigned long flags;
2184
2185 err = kstrtoul(buf, 10, &flags);
2186 if (err || flags > UINT_MAX)
2187 return -EINVAL;
2188 if (flags > KSM_RUN_UNMERGE)
2189 return -EINVAL;
2190
2191 /*
2192 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2193 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2194 * breaking COW to free the pages_shared (but leaves mm_slots
2195 * on the list for when ksmd may be set running again).
2196 */
2197
2198 mutex_lock(&ksm_thread_mutex);
2199 wait_while_offlining();
2200 if (ksm_run != flags) {
2201 ksm_run = flags;
2202 if (flags & KSM_RUN_UNMERGE) {
2203 set_current_oom_origin();
2204 err = unmerge_and_remove_all_rmap_items();
2205 clear_current_oom_origin();
2206 if (err) {
2207 ksm_run = KSM_RUN_STOP;
2208 count = err;
2209 }
2210 }
2211 }
2212 mutex_unlock(&ksm_thread_mutex);
2213
2214 if (flags & KSM_RUN_MERGE)
2215 wake_up_interruptible(&ksm_thread_wait);
2216
2217 return count;
2218 }
2219 KSM_ATTR(run);
2220
2221 #ifdef CONFIG_NUMA
2222 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2223 struct kobj_attribute *attr, char *buf)
2224 {
2225 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2226 }
2227
2228 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2229 struct kobj_attribute *attr,
2230 const char *buf, size_t count)
2231 {
2232 int err;
2233 unsigned long knob;
2234
2235 err = kstrtoul(buf, 10, &knob);
2236 if (err)
2237 return err;
2238 if (knob > 1)
2239 return -EINVAL;
2240
2241 mutex_lock(&ksm_thread_mutex);
2242 wait_while_offlining();
2243 if (ksm_merge_across_nodes != knob) {
2244 if (ksm_pages_shared || remove_all_stable_nodes())
2245 err = -EBUSY;
2246 else if (root_stable_tree == one_stable_tree) {
2247 struct rb_root *buf;
2248 /*
2249 * This is the first time that we switch away from the
2250 * default of merging across nodes: must now allocate
2251 * a buffer to hold as many roots as may be needed.
2252 * Allocate stable and unstable together:
2253 * MAXSMP NODES_SHIFT 10 will use 16kB.
2254 */
2255 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2256 GFP_KERNEL);
2257 /* Let us assume that RB_ROOT is NULL is zero */
2258 if (!buf)
2259 err = -ENOMEM;
2260 else {
2261 root_stable_tree = buf;
2262 root_unstable_tree = buf + nr_node_ids;
2263 /* Stable tree is empty but not the unstable */
2264 root_unstable_tree[0] = one_unstable_tree[0];
2265 }
2266 }
2267 if (!err) {
2268 ksm_merge_across_nodes = knob;
2269 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2270 }
2271 }
2272 mutex_unlock(&ksm_thread_mutex);
2273
2274 return err ? err : count;
2275 }
2276 KSM_ATTR(merge_across_nodes);
2277 #endif
2278
2279 static ssize_t use_zero_pages_show(struct kobject *kobj,
2280 struct kobj_attribute *attr, char *buf)
2281 {
2282 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2283 }
2284 static ssize_t use_zero_pages_store(struct kobject *kobj,
2285 struct kobj_attribute *attr,
2286 const char *buf, size_t count)
2287 {
2288 int err;
2289 bool value;
2290
2291 err = kstrtobool(buf, &value);
2292 if (err)
2293 return -EINVAL;
2294
2295 ksm_use_zero_pages = value;
2296
2297 return count;
2298 }
2299 KSM_ATTR(use_zero_pages);
2300
2301 static ssize_t pages_shared_show(struct kobject *kobj,
2302 struct kobj_attribute *attr, char *buf)
2303 {
2304 return sprintf(buf, "%lu\n", ksm_pages_shared);
2305 }
2306 KSM_ATTR_RO(pages_shared);
2307
2308 static ssize_t pages_sharing_show(struct kobject *kobj,
2309 struct kobj_attribute *attr, char *buf)
2310 {
2311 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2312 }
2313 KSM_ATTR_RO(pages_sharing);
2314
2315 static ssize_t pages_unshared_show(struct kobject *kobj,
2316 struct kobj_attribute *attr, char *buf)
2317 {
2318 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2319 }
2320 KSM_ATTR_RO(pages_unshared);
2321
2322 static ssize_t pages_volatile_show(struct kobject *kobj,
2323 struct kobj_attribute *attr, char *buf)
2324 {
2325 long ksm_pages_volatile;
2326
2327 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2328 - ksm_pages_sharing - ksm_pages_unshared;
2329 /*
2330 * It was not worth any locking to calculate that statistic,
2331 * but it might therefore sometimes be negative: conceal that.
2332 */
2333 if (ksm_pages_volatile < 0)
2334 ksm_pages_volatile = 0;
2335 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2336 }
2337 KSM_ATTR_RO(pages_volatile);
2338
2339 static ssize_t full_scans_show(struct kobject *kobj,
2340 struct kobj_attribute *attr, char *buf)
2341 {
2342 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2343 }
2344 KSM_ATTR_RO(full_scans);
2345
2346 static struct attribute *ksm_attrs[] = {
2347 &sleep_millisecs_attr.attr,
2348 &pages_to_scan_attr.attr,
2349 &run_attr.attr,
2350 &pages_shared_attr.attr,
2351 &pages_sharing_attr.attr,
2352 &pages_unshared_attr.attr,
2353 &pages_volatile_attr.attr,
2354 &full_scans_attr.attr,
2355 #ifdef CONFIG_NUMA
2356 &merge_across_nodes_attr.attr,
2357 #endif
2358 &use_zero_pages_attr.attr,
2359 NULL,
2360 };
2361
2362 static struct attribute_group ksm_attr_group = {
2363 .attrs = ksm_attrs,
2364 .name = "ksm",
2365 };
2366 #endif /* CONFIG_SYSFS */
2367
2368 static int __init ksm_init(void)
2369 {
2370 struct task_struct *ksm_thread;
2371 int err;
2372
2373 /* The correct value depends on page size and endianness */
2374 zero_checksum = calc_checksum(ZERO_PAGE(0));
2375 /* Default to false for backwards compatibility */
2376 ksm_use_zero_pages = false;
2377
2378 err = ksm_slab_init();
2379 if (err)
2380 goto out;
2381
2382 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2383 if (IS_ERR(ksm_thread)) {
2384 pr_err("ksm: creating kthread failed\n");
2385 err = PTR_ERR(ksm_thread);
2386 goto out_free;
2387 }
2388
2389 #ifdef CONFIG_SYSFS
2390 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2391 if (err) {
2392 pr_err("ksm: register sysfs failed\n");
2393 kthread_stop(ksm_thread);
2394 goto out_free;
2395 }
2396 #else
2397 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2398
2399 #endif /* CONFIG_SYSFS */
2400
2401 #ifdef CONFIG_MEMORY_HOTREMOVE
2402 /* There is no significance to this priority 100 */
2403 hotplug_memory_notifier(ksm_memory_callback, 100);
2404 #endif
2405 return 0;
2406
2407 out_free:
2408 ksm_slab_free();
2409 out:
2410 return err;
2411 }
2412 subsys_initcall(ksm_init);