]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/ksm.c
netfilter: nft_ct: allow to set ctnetlink event types of a connection
[mirror_ubuntu-artful-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 */
96
97 /**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
103 */
104 struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
107 struct rmap_item *rmap_list;
108 struct mm_struct *mm;
109 };
110
111 /**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120 struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
123 struct rmap_item **rmap_list;
124 unsigned long seqnr;
125 };
126
127 /**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @list: linked into migrate_nodes, pending placement in the proper node tree
132 * @hlist: hlist head of rmap_items using this ksm page
133 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
134 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
135 */
136 struct stable_node {
137 union {
138 struct rb_node node; /* when node of stable tree */
139 struct { /* when listed for migration */
140 struct list_head *head;
141 struct list_head list;
142 };
143 };
144 struct hlist_head hlist;
145 unsigned long kpfn;
146 #ifdef CONFIG_NUMA
147 int nid;
148 #endif
149 };
150
151 /**
152 * struct rmap_item - reverse mapping item for virtual addresses
153 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
154 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
155 * @nid: NUMA node id of unstable tree in which linked (may not match page)
156 * @mm: the memory structure this rmap_item is pointing into
157 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
158 * @oldchecksum: previous checksum of the page at that virtual address
159 * @node: rb node of this rmap_item in the unstable tree
160 * @head: pointer to stable_node heading this list in the stable tree
161 * @hlist: link into hlist of rmap_items hanging off that stable_node
162 */
163 struct rmap_item {
164 struct rmap_item *rmap_list;
165 union {
166 struct anon_vma *anon_vma; /* when stable */
167 #ifdef CONFIG_NUMA
168 int nid; /* when node of unstable tree */
169 #endif
170 };
171 struct mm_struct *mm;
172 unsigned long address; /* + low bits used for flags below */
173 unsigned int oldchecksum; /* when unstable */
174 union {
175 struct rb_node node; /* when node of unstable tree */
176 struct { /* when listed from stable tree */
177 struct stable_node *head;
178 struct hlist_node hlist;
179 };
180 };
181 };
182
183 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
184 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
185 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
186
187 /* The stable and unstable tree heads */
188 static struct rb_root one_stable_tree[1] = { RB_ROOT };
189 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
190 static struct rb_root *root_stable_tree = one_stable_tree;
191 static struct rb_root *root_unstable_tree = one_unstable_tree;
192
193 /* Recently migrated nodes of stable tree, pending proper placement */
194 static LIST_HEAD(migrate_nodes);
195
196 #define MM_SLOTS_HASH_BITS 10
197 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
198
199 static struct mm_slot ksm_mm_head = {
200 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
201 };
202 static struct ksm_scan ksm_scan = {
203 .mm_slot = &ksm_mm_head,
204 };
205
206 static struct kmem_cache *rmap_item_cache;
207 static struct kmem_cache *stable_node_cache;
208 static struct kmem_cache *mm_slot_cache;
209
210 /* The number of nodes in the stable tree */
211 static unsigned long ksm_pages_shared;
212
213 /* The number of page slots additionally sharing those nodes */
214 static unsigned long ksm_pages_sharing;
215
216 /* The number of nodes in the unstable tree */
217 static unsigned long ksm_pages_unshared;
218
219 /* The number of rmap_items in use: to calculate pages_volatile */
220 static unsigned long ksm_rmap_items;
221
222 /* Number of pages ksmd should scan in one batch */
223 static unsigned int ksm_thread_pages_to_scan = 100;
224
225 /* Milliseconds ksmd should sleep between batches */
226 static unsigned int ksm_thread_sleep_millisecs = 20;
227
228 /* Checksum of an empty (zeroed) page */
229 static unsigned int zero_checksum __read_mostly;
230
231 /* Whether to merge empty (zeroed) pages with actual zero pages */
232 static bool ksm_use_zero_pages __read_mostly;
233
234 #ifdef CONFIG_NUMA
235 /* Zeroed when merging across nodes is not allowed */
236 static unsigned int ksm_merge_across_nodes = 1;
237 static int ksm_nr_node_ids = 1;
238 #else
239 #define ksm_merge_across_nodes 1U
240 #define ksm_nr_node_ids 1
241 #endif
242
243 #define KSM_RUN_STOP 0
244 #define KSM_RUN_MERGE 1
245 #define KSM_RUN_UNMERGE 2
246 #define KSM_RUN_OFFLINE 4
247 static unsigned long ksm_run = KSM_RUN_STOP;
248 static void wait_while_offlining(void);
249
250 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
251 static DEFINE_MUTEX(ksm_thread_mutex);
252 static DEFINE_SPINLOCK(ksm_mmlist_lock);
253
254 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
255 sizeof(struct __struct), __alignof__(struct __struct),\
256 (__flags), NULL)
257
258 static int __init ksm_slab_init(void)
259 {
260 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
261 if (!rmap_item_cache)
262 goto out;
263
264 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
265 if (!stable_node_cache)
266 goto out_free1;
267
268 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
269 if (!mm_slot_cache)
270 goto out_free2;
271
272 return 0;
273
274 out_free2:
275 kmem_cache_destroy(stable_node_cache);
276 out_free1:
277 kmem_cache_destroy(rmap_item_cache);
278 out:
279 return -ENOMEM;
280 }
281
282 static void __init ksm_slab_free(void)
283 {
284 kmem_cache_destroy(mm_slot_cache);
285 kmem_cache_destroy(stable_node_cache);
286 kmem_cache_destroy(rmap_item_cache);
287 mm_slot_cache = NULL;
288 }
289
290 static inline struct rmap_item *alloc_rmap_item(void)
291 {
292 struct rmap_item *rmap_item;
293
294 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
295 __GFP_NORETRY | __GFP_NOWARN);
296 if (rmap_item)
297 ksm_rmap_items++;
298 return rmap_item;
299 }
300
301 static inline void free_rmap_item(struct rmap_item *rmap_item)
302 {
303 ksm_rmap_items--;
304 rmap_item->mm = NULL; /* debug safety */
305 kmem_cache_free(rmap_item_cache, rmap_item);
306 }
307
308 static inline struct stable_node *alloc_stable_node(void)
309 {
310 /*
311 * The allocation can take too long with GFP_KERNEL when memory is under
312 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
313 * grants access to memory reserves, helping to avoid this problem.
314 */
315 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
316 }
317
318 static inline void free_stable_node(struct stable_node *stable_node)
319 {
320 kmem_cache_free(stable_node_cache, stable_node);
321 }
322
323 static inline struct mm_slot *alloc_mm_slot(void)
324 {
325 if (!mm_slot_cache) /* initialization failed */
326 return NULL;
327 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
328 }
329
330 static inline void free_mm_slot(struct mm_slot *mm_slot)
331 {
332 kmem_cache_free(mm_slot_cache, mm_slot);
333 }
334
335 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
336 {
337 struct mm_slot *slot;
338
339 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
340 if (slot->mm == mm)
341 return slot;
342
343 return NULL;
344 }
345
346 static void insert_to_mm_slots_hash(struct mm_struct *mm,
347 struct mm_slot *mm_slot)
348 {
349 mm_slot->mm = mm;
350 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
351 }
352
353 /*
354 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
355 * page tables after it has passed through ksm_exit() - which, if necessary,
356 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
357 * a special flag: they can just back out as soon as mm_users goes to zero.
358 * ksm_test_exit() is used throughout to make this test for exit: in some
359 * places for correctness, in some places just to avoid unnecessary work.
360 */
361 static inline bool ksm_test_exit(struct mm_struct *mm)
362 {
363 return atomic_read(&mm->mm_users) == 0;
364 }
365
366 /*
367 * We use break_ksm to break COW on a ksm page: it's a stripped down
368 *
369 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
370 * put_page(page);
371 *
372 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
373 * in case the application has unmapped and remapped mm,addr meanwhile.
374 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
375 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
376 *
377 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
378 * of the process that owns 'vma'. We also do not want to enforce
379 * protection keys here anyway.
380 */
381 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
382 {
383 struct page *page;
384 int ret = 0;
385
386 do {
387 cond_resched();
388 page = follow_page(vma, addr,
389 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
390 if (IS_ERR_OR_NULL(page))
391 break;
392 if (PageKsm(page))
393 ret = handle_mm_fault(vma, addr,
394 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
395 else
396 ret = VM_FAULT_WRITE;
397 put_page(page);
398 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
399 /*
400 * We must loop because handle_mm_fault() may back out if there's
401 * any difficulty e.g. if pte accessed bit gets updated concurrently.
402 *
403 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
404 * COW has been broken, even if the vma does not permit VM_WRITE;
405 * but note that a concurrent fault might break PageKsm for us.
406 *
407 * VM_FAULT_SIGBUS could occur if we race with truncation of the
408 * backing file, which also invalidates anonymous pages: that's
409 * okay, that truncation will have unmapped the PageKsm for us.
410 *
411 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
412 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
413 * current task has TIF_MEMDIE set, and will be OOM killed on return
414 * to user; and ksmd, having no mm, would never be chosen for that.
415 *
416 * But if the mm is in a limited mem_cgroup, then the fault may fail
417 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
418 * even ksmd can fail in this way - though it's usually breaking ksm
419 * just to undo a merge it made a moment before, so unlikely to oom.
420 *
421 * That's a pity: we might therefore have more kernel pages allocated
422 * than we're counting as nodes in the stable tree; but ksm_do_scan
423 * will retry to break_cow on each pass, so should recover the page
424 * in due course. The important thing is to not let VM_MERGEABLE
425 * be cleared while any such pages might remain in the area.
426 */
427 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
428 }
429
430 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
431 unsigned long addr)
432 {
433 struct vm_area_struct *vma;
434 if (ksm_test_exit(mm))
435 return NULL;
436 vma = find_vma(mm, addr);
437 if (!vma || vma->vm_start > addr)
438 return NULL;
439 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
440 return NULL;
441 return vma;
442 }
443
444 static void break_cow(struct rmap_item *rmap_item)
445 {
446 struct mm_struct *mm = rmap_item->mm;
447 unsigned long addr = rmap_item->address;
448 struct vm_area_struct *vma;
449
450 /*
451 * It is not an accident that whenever we want to break COW
452 * to undo, we also need to drop a reference to the anon_vma.
453 */
454 put_anon_vma(rmap_item->anon_vma);
455
456 down_read(&mm->mmap_sem);
457 vma = find_mergeable_vma(mm, addr);
458 if (vma)
459 break_ksm(vma, addr);
460 up_read(&mm->mmap_sem);
461 }
462
463 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
464 {
465 struct mm_struct *mm = rmap_item->mm;
466 unsigned long addr = rmap_item->address;
467 struct vm_area_struct *vma;
468 struct page *page;
469
470 down_read(&mm->mmap_sem);
471 vma = find_mergeable_vma(mm, addr);
472 if (!vma)
473 goto out;
474
475 page = follow_page(vma, addr, FOLL_GET);
476 if (IS_ERR_OR_NULL(page))
477 goto out;
478 if (PageAnon(page)) {
479 flush_anon_page(vma, page, addr);
480 flush_dcache_page(page);
481 } else {
482 put_page(page);
483 out:
484 page = NULL;
485 }
486 up_read(&mm->mmap_sem);
487 return page;
488 }
489
490 /*
491 * This helper is used for getting right index into array of tree roots.
492 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
493 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
494 * every node has its own stable and unstable tree.
495 */
496 static inline int get_kpfn_nid(unsigned long kpfn)
497 {
498 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
499 }
500
501 static void remove_node_from_stable_tree(struct stable_node *stable_node)
502 {
503 struct rmap_item *rmap_item;
504
505 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
506 if (rmap_item->hlist.next)
507 ksm_pages_sharing--;
508 else
509 ksm_pages_shared--;
510 put_anon_vma(rmap_item->anon_vma);
511 rmap_item->address &= PAGE_MASK;
512 cond_resched();
513 }
514
515 if (stable_node->head == &migrate_nodes)
516 list_del(&stable_node->list);
517 else
518 rb_erase(&stable_node->node,
519 root_stable_tree + NUMA(stable_node->nid));
520 free_stable_node(stable_node);
521 }
522
523 /*
524 * get_ksm_page: checks if the page indicated by the stable node
525 * is still its ksm page, despite having held no reference to it.
526 * In which case we can trust the content of the page, and it
527 * returns the gotten page; but if the page has now been zapped,
528 * remove the stale node from the stable tree and return NULL.
529 * But beware, the stable node's page might be being migrated.
530 *
531 * You would expect the stable_node to hold a reference to the ksm page.
532 * But if it increments the page's count, swapping out has to wait for
533 * ksmd to come around again before it can free the page, which may take
534 * seconds or even minutes: much too unresponsive. So instead we use a
535 * "keyhole reference": access to the ksm page from the stable node peeps
536 * out through its keyhole to see if that page still holds the right key,
537 * pointing back to this stable node. This relies on freeing a PageAnon
538 * page to reset its page->mapping to NULL, and relies on no other use of
539 * a page to put something that might look like our key in page->mapping.
540 * is on its way to being freed; but it is an anomaly to bear in mind.
541 */
542 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
543 {
544 struct page *page;
545 void *expected_mapping;
546 unsigned long kpfn;
547
548 expected_mapping = (void *)((unsigned long)stable_node |
549 PAGE_MAPPING_KSM);
550 again:
551 kpfn = READ_ONCE(stable_node->kpfn);
552 page = pfn_to_page(kpfn);
553
554 /*
555 * page is computed from kpfn, so on most architectures reading
556 * page->mapping is naturally ordered after reading node->kpfn,
557 * but on Alpha we need to be more careful.
558 */
559 smp_read_barrier_depends();
560 if (READ_ONCE(page->mapping) != expected_mapping)
561 goto stale;
562
563 /*
564 * We cannot do anything with the page while its refcount is 0.
565 * Usually 0 means free, or tail of a higher-order page: in which
566 * case this node is no longer referenced, and should be freed;
567 * however, it might mean that the page is under page_freeze_refs().
568 * The __remove_mapping() case is easy, again the node is now stale;
569 * but if page is swapcache in migrate_page_move_mapping(), it might
570 * still be our page, in which case it's essential to keep the node.
571 */
572 while (!get_page_unless_zero(page)) {
573 /*
574 * Another check for page->mapping != expected_mapping would
575 * work here too. We have chosen the !PageSwapCache test to
576 * optimize the common case, when the page is or is about to
577 * be freed: PageSwapCache is cleared (under spin_lock_irq)
578 * in the freeze_refs section of __remove_mapping(); but Anon
579 * page->mapping reset to NULL later, in free_pages_prepare().
580 */
581 if (!PageSwapCache(page))
582 goto stale;
583 cpu_relax();
584 }
585
586 if (READ_ONCE(page->mapping) != expected_mapping) {
587 put_page(page);
588 goto stale;
589 }
590
591 if (lock_it) {
592 lock_page(page);
593 if (READ_ONCE(page->mapping) != expected_mapping) {
594 unlock_page(page);
595 put_page(page);
596 goto stale;
597 }
598 }
599 return page;
600
601 stale:
602 /*
603 * We come here from above when page->mapping or !PageSwapCache
604 * suggests that the node is stale; but it might be under migration.
605 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
606 * before checking whether node->kpfn has been changed.
607 */
608 smp_rmb();
609 if (READ_ONCE(stable_node->kpfn) != kpfn)
610 goto again;
611 remove_node_from_stable_tree(stable_node);
612 return NULL;
613 }
614
615 /*
616 * Removing rmap_item from stable or unstable tree.
617 * This function will clean the information from the stable/unstable tree.
618 */
619 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
620 {
621 if (rmap_item->address & STABLE_FLAG) {
622 struct stable_node *stable_node;
623 struct page *page;
624
625 stable_node = rmap_item->head;
626 page = get_ksm_page(stable_node, true);
627 if (!page)
628 goto out;
629
630 hlist_del(&rmap_item->hlist);
631 unlock_page(page);
632 put_page(page);
633
634 if (!hlist_empty(&stable_node->hlist))
635 ksm_pages_sharing--;
636 else
637 ksm_pages_shared--;
638
639 put_anon_vma(rmap_item->anon_vma);
640 rmap_item->address &= PAGE_MASK;
641
642 } else if (rmap_item->address & UNSTABLE_FLAG) {
643 unsigned char age;
644 /*
645 * Usually ksmd can and must skip the rb_erase, because
646 * root_unstable_tree was already reset to RB_ROOT.
647 * But be careful when an mm is exiting: do the rb_erase
648 * if this rmap_item was inserted by this scan, rather
649 * than left over from before.
650 */
651 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
652 BUG_ON(age > 1);
653 if (!age)
654 rb_erase(&rmap_item->node,
655 root_unstable_tree + NUMA(rmap_item->nid));
656 ksm_pages_unshared--;
657 rmap_item->address &= PAGE_MASK;
658 }
659 out:
660 cond_resched(); /* we're called from many long loops */
661 }
662
663 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
664 struct rmap_item **rmap_list)
665 {
666 while (*rmap_list) {
667 struct rmap_item *rmap_item = *rmap_list;
668 *rmap_list = rmap_item->rmap_list;
669 remove_rmap_item_from_tree(rmap_item);
670 free_rmap_item(rmap_item);
671 }
672 }
673
674 /*
675 * Though it's very tempting to unmerge rmap_items from stable tree rather
676 * than check every pte of a given vma, the locking doesn't quite work for
677 * that - an rmap_item is assigned to the stable tree after inserting ksm
678 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
679 * rmap_items from parent to child at fork time (so as not to waste time
680 * if exit comes before the next scan reaches it).
681 *
682 * Similarly, although we'd like to remove rmap_items (so updating counts
683 * and freeing memory) when unmerging an area, it's easier to leave that
684 * to the next pass of ksmd - consider, for example, how ksmd might be
685 * in cmp_and_merge_page on one of the rmap_items we would be removing.
686 */
687 static int unmerge_ksm_pages(struct vm_area_struct *vma,
688 unsigned long start, unsigned long end)
689 {
690 unsigned long addr;
691 int err = 0;
692
693 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
694 if (ksm_test_exit(vma->vm_mm))
695 break;
696 if (signal_pending(current))
697 err = -ERESTARTSYS;
698 else
699 err = break_ksm(vma, addr);
700 }
701 return err;
702 }
703
704 #ifdef CONFIG_SYSFS
705 /*
706 * Only called through the sysfs control interface:
707 */
708 static int remove_stable_node(struct stable_node *stable_node)
709 {
710 struct page *page;
711 int err;
712
713 page = get_ksm_page(stable_node, true);
714 if (!page) {
715 /*
716 * get_ksm_page did remove_node_from_stable_tree itself.
717 */
718 return 0;
719 }
720
721 if (WARN_ON_ONCE(page_mapped(page))) {
722 /*
723 * This should not happen: but if it does, just refuse to let
724 * merge_across_nodes be switched - there is no need to panic.
725 */
726 err = -EBUSY;
727 } else {
728 /*
729 * The stable node did not yet appear stale to get_ksm_page(),
730 * since that allows for an unmapped ksm page to be recognized
731 * right up until it is freed; but the node is safe to remove.
732 * This page might be in a pagevec waiting to be freed,
733 * or it might be PageSwapCache (perhaps under writeback),
734 * or it might have been removed from swapcache a moment ago.
735 */
736 set_page_stable_node(page, NULL);
737 remove_node_from_stable_tree(stable_node);
738 err = 0;
739 }
740
741 unlock_page(page);
742 put_page(page);
743 return err;
744 }
745
746 static int remove_all_stable_nodes(void)
747 {
748 struct stable_node *stable_node, *next;
749 int nid;
750 int err = 0;
751
752 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
753 while (root_stable_tree[nid].rb_node) {
754 stable_node = rb_entry(root_stable_tree[nid].rb_node,
755 struct stable_node, node);
756 if (remove_stable_node(stable_node)) {
757 err = -EBUSY;
758 break; /* proceed to next nid */
759 }
760 cond_resched();
761 }
762 }
763 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
764 if (remove_stable_node(stable_node))
765 err = -EBUSY;
766 cond_resched();
767 }
768 return err;
769 }
770
771 static int unmerge_and_remove_all_rmap_items(void)
772 {
773 struct mm_slot *mm_slot;
774 struct mm_struct *mm;
775 struct vm_area_struct *vma;
776 int err = 0;
777
778 spin_lock(&ksm_mmlist_lock);
779 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
780 struct mm_slot, mm_list);
781 spin_unlock(&ksm_mmlist_lock);
782
783 for (mm_slot = ksm_scan.mm_slot;
784 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
785 mm = mm_slot->mm;
786 down_read(&mm->mmap_sem);
787 for (vma = mm->mmap; vma; vma = vma->vm_next) {
788 if (ksm_test_exit(mm))
789 break;
790 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
791 continue;
792 err = unmerge_ksm_pages(vma,
793 vma->vm_start, vma->vm_end);
794 if (err)
795 goto error;
796 }
797
798 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
799 up_read(&mm->mmap_sem);
800
801 spin_lock(&ksm_mmlist_lock);
802 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
803 struct mm_slot, mm_list);
804 if (ksm_test_exit(mm)) {
805 hash_del(&mm_slot->link);
806 list_del(&mm_slot->mm_list);
807 spin_unlock(&ksm_mmlist_lock);
808
809 free_mm_slot(mm_slot);
810 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
811 mmdrop(mm);
812 } else
813 spin_unlock(&ksm_mmlist_lock);
814 }
815
816 /* Clean up stable nodes, but don't worry if some are still busy */
817 remove_all_stable_nodes();
818 ksm_scan.seqnr = 0;
819 return 0;
820
821 error:
822 up_read(&mm->mmap_sem);
823 spin_lock(&ksm_mmlist_lock);
824 ksm_scan.mm_slot = &ksm_mm_head;
825 spin_unlock(&ksm_mmlist_lock);
826 return err;
827 }
828 #endif /* CONFIG_SYSFS */
829
830 static u32 calc_checksum(struct page *page)
831 {
832 u32 checksum;
833 void *addr = kmap_atomic(page);
834 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835 kunmap_atomic(addr);
836 return checksum;
837 }
838
839 static int memcmp_pages(struct page *page1, struct page *page2)
840 {
841 char *addr1, *addr2;
842 int ret;
843
844 addr1 = kmap_atomic(page1);
845 addr2 = kmap_atomic(page2);
846 ret = memcmp(addr1, addr2, PAGE_SIZE);
847 kunmap_atomic(addr2);
848 kunmap_atomic(addr1);
849 return ret;
850 }
851
852 static inline int pages_identical(struct page *page1, struct page *page2)
853 {
854 return !memcmp_pages(page1, page2);
855 }
856
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858 pte_t *orig_pte)
859 {
860 struct mm_struct *mm = vma->vm_mm;
861 struct page_vma_mapped_walk pvmw = {
862 .page = page,
863 .vma = vma,
864 };
865 int swapped;
866 int err = -EFAULT;
867 unsigned long mmun_start; /* For mmu_notifiers */
868 unsigned long mmun_end; /* For mmu_notifiers */
869
870 pvmw.address = page_address_in_vma(page, vma);
871 if (pvmw.address == -EFAULT)
872 goto out;
873
874 BUG_ON(PageTransCompound(page));
875
876 mmun_start = pvmw.address;
877 mmun_end = pvmw.address + PAGE_SIZE;
878 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
879
880 if (!page_vma_mapped_walk(&pvmw))
881 goto out_mn;
882 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
883 goto out_unlock;
884
885 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
886 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
887 pte_t entry;
888
889 swapped = PageSwapCache(page);
890 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
891 /*
892 * Ok this is tricky, when get_user_pages_fast() run it doesn't
893 * take any lock, therefore the check that we are going to make
894 * with the pagecount against the mapcount is racey and
895 * O_DIRECT can happen right after the check.
896 * So we clear the pte and flush the tlb before the check
897 * this assure us that no O_DIRECT can happen after the check
898 * or in the middle of the check.
899 */
900 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
901 /*
902 * Check that no O_DIRECT or similar I/O is in progress on the
903 * page
904 */
905 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
906 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
907 goto out_unlock;
908 }
909 if (pte_dirty(entry))
910 set_page_dirty(page);
911
912 if (pte_protnone(entry))
913 entry = pte_mkclean(pte_clear_savedwrite(entry));
914 else
915 entry = pte_mkclean(pte_wrprotect(entry));
916 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
917 }
918 *orig_pte = *pvmw.pte;
919 err = 0;
920
921 out_unlock:
922 page_vma_mapped_walk_done(&pvmw);
923 out_mn:
924 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
925 out:
926 return err;
927 }
928
929 /**
930 * replace_page - replace page in vma by new ksm page
931 * @vma: vma that holds the pte pointing to page
932 * @page: the page we are replacing by kpage
933 * @kpage: the ksm page we replace page by
934 * @orig_pte: the original value of the pte
935 *
936 * Returns 0 on success, -EFAULT on failure.
937 */
938 static int replace_page(struct vm_area_struct *vma, struct page *page,
939 struct page *kpage, pte_t orig_pte)
940 {
941 struct mm_struct *mm = vma->vm_mm;
942 pmd_t *pmd;
943 pte_t *ptep;
944 pte_t newpte;
945 spinlock_t *ptl;
946 unsigned long addr;
947 int err = -EFAULT;
948 unsigned long mmun_start; /* For mmu_notifiers */
949 unsigned long mmun_end; /* For mmu_notifiers */
950
951 addr = page_address_in_vma(page, vma);
952 if (addr == -EFAULT)
953 goto out;
954
955 pmd = mm_find_pmd(mm, addr);
956 if (!pmd)
957 goto out;
958
959 mmun_start = addr;
960 mmun_end = addr + PAGE_SIZE;
961 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
962
963 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
964 if (!pte_same(*ptep, orig_pte)) {
965 pte_unmap_unlock(ptep, ptl);
966 goto out_mn;
967 }
968
969 /*
970 * No need to check ksm_use_zero_pages here: we can only have a
971 * zero_page here if ksm_use_zero_pages was enabled alreaady.
972 */
973 if (!is_zero_pfn(page_to_pfn(kpage))) {
974 get_page(kpage);
975 page_add_anon_rmap(kpage, vma, addr, false);
976 newpte = mk_pte(kpage, vma->vm_page_prot);
977 } else {
978 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
979 vma->vm_page_prot));
980 }
981
982 flush_cache_page(vma, addr, pte_pfn(*ptep));
983 ptep_clear_flush_notify(vma, addr, ptep);
984 set_pte_at_notify(mm, addr, ptep, newpte);
985
986 page_remove_rmap(page, false);
987 if (!page_mapped(page))
988 try_to_free_swap(page);
989 put_page(page);
990
991 pte_unmap_unlock(ptep, ptl);
992 err = 0;
993 out_mn:
994 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
995 out:
996 return err;
997 }
998
999 /*
1000 * try_to_merge_one_page - take two pages and merge them into one
1001 * @vma: the vma that holds the pte pointing to page
1002 * @page: the PageAnon page that we want to replace with kpage
1003 * @kpage: the PageKsm page that we want to map instead of page,
1004 * or NULL the first time when we want to use page as kpage.
1005 *
1006 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1007 */
1008 static int try_to_merge_one_page(struct vm_area_struct *vma,
1009 struct page *page, struct page *kpage)
1010 {
1011 pte_t orig_pte = __pte(0);
1012 int err = -EFAULT;
1013
1014 if (page == kpage) /* ksm page forked */
1015 return 0;
1016
1017 if (!PageAnon(page))
1018 goto out;
1019
1020 /*
1021 * We need the page lock to read a stable PageSwapCache in
1022 * write_protect_page(). We use trylock_page() instead of
1023 * lock_page() because we don't want to wait here - we
1024 * prefer to continue scanning and merging different pages,
1025 * then come back to this page when it is unlocked.
1026 */
1027 if (!trylock_page(page))
1028 goto out;
1029
1030 if (PageTransCompound(page)) {
1031 err = split_huge_page(page);
1032 if (err)
1033 goto out_unlock;
1034 }
1035
1036 /*
1037 * If this anonymous page is mapped only here, its pte may need
1038 * to be write-protected. If it's mapped elsewhere, all of its
1039 * ptes are necessarily already write-protected. But in either
1040 * case, we need to lock and check page_count is not raised.
1041 */
1042 if (write_protect_page(vma, page, &orig_pte) == 0) {
1043 if (!kpage) {
1044 /*
1045 * While we hold page lock, upgrade page from
1046 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1047 * stable_tree_insert() will update stable_node.
1048 */
1049 set_page_stable_node(page, NULL);
1050 mark_page_accessed(page);
1051 /*
1052 * Page reclaim just frees a clean page with no dirty
1053 * ptes: make sure that the ksm page would be swapped.
1054 */
1055 if (!PageDirty(page))
1056 SetPageDirty(page);
1057 err = 0;
1058 } else if (pages_identical(page, kpage))
1059 err = replace_page(vma, page, kpage, orig_pte);
1060 }
1061
1062 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1063 munlock_vma_page(page);
1064 if (!PageMlocked(kpage)) {
1065 unlock_page(page);
1066 lock_page(kpage);
1067 mlock_vma_page(kpage);
1068 page = kpage; /* for final unlock */
1069 }
1070 }
1071
1072 out_unlock:
1073 unlock_page(page);
1074 out:
1075 return err;
1076 }
1077
1078 /*
1079 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1080 * but no new kernel page is allocated: kpage must already be a ksm page.
1081 *
1082 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1083 */
1084 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1085 struct page *page, struct page *kpage)
1086 {
1087 struct mm_struct *mm = rmap_item->mm;
1088 struct vm_area_struct *vma;
1089 int err = -EFAULT;
1090
1091 down_read(&mm->mmap_sem);
1092 vma = find_mergeable_vma(mm, rmap_item->address);
1093 if (!vma)
1094 goto out;
1095
1096 err = try_to_merge_one_page(vma, page, kpage);
1097 if (err)
1098 goto out;
1099
1100 /* Unstable nid is in union with stable anon_vma: remove first */
1101 remove_rmap_item_from_tree(rmap_item);
1102
1103 /* Must get reference to anon_vma while still holding mmap_sem */
1104 rmap_item->anon_vma = vma->anon_vma;
1105 get_anon_vma(vma->anon_vma);
1106 out:
1107 up_read(&mm->mmap_sem);
1108 return err;
1109 }
1110
1111 /*
1112 * try_to_merge_two_pages - take two identical pages and prepare them
1113 * to be merged into one page.
1114 *
1115 * This function returns the kpage if we successfully merged two identical
1116 * pages into one ksm page, NULL otherwise.
1117 *
1118 * Note that this function upgrades page to ksm page: if one of the pages
1119 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1120 */
1121 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1122 struct page *page,
1123 struct rmap_item *tree_rmap_item,
1124 struct page *tree_page)
1125 {
1126 int err;
1127
1128 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1129 if (!err) {
1130 err = try_to_merge_with_ksm_page(tree_rmap_item,
1131 tree_page, page);
1132 /*
1133 * If that fails, we have a ksm page with only one pte
1134 * pointing to it: so break it.
1135 */
1136 if (err)
1137 break_cow(rmap_item);
1138 }
1139 return err ? NULL : page;
1140 }
1141
1142 /*
1143 * stable_tree_search - search for page inside the stable tree
1144 *
1145 * This function checks if there is a page inside the stable tree
1146 * with identical content to the page that we are scanning right now.
1147 *
1148 * This function returns the stable tree node of identical content if found,
1149 * NULL otherwise.
1150 */
1151 static struct page *stable_tree_search(struct page *page)
1152 {
1153 int nid;
1154 struct rb_root *root;
1155 struct rb_node **new;
1156 struct rb_node *parent;
1157 struct stable_node *stable_node;
1158 struct stable_node *page_node;
1159
1160 page_node = page_stable_node(page);
1161 if (page_node && page_node->head != &migrate_nodes) {
1162 /* ksm page forked */
1163 get_page(page);
1164 return page;
1165 }
1166
1167 nid = get_kpfn_nid(page_to_pfn(page));
1168 root = root_stable_tree + nid;
1169 again:
1170 new = &root->rb_node;
1171 parent = NULL;
1172
1173 while (*new) {
1174 struct page *tree_page;
1175 int ret;
1176
1177 cond_resched();
1178 stable_node = rb_entry(*new, struct stable_node, node);
1179 tree_page = get_ksm_page(stable_node, false);
1180 if (!tree_page) {
1181 /*
1182 * If we walked over a stale stable_node,
1183 * get_ksm_page() will call rb_erase() and it
1184 * may rebalance the tree from under us. So
1185 * restart the search from scratch. Returning
1186 * NULL would be safe too, but we'd generate
1187 * false negative insertions just because some
1188 * stable_node was stale.
1189 */
1190 goto again;
1191 }
1192
1193 ret = memcmp_pages(page, tree_page);
1194 put_page(tree_page);
1195
1196 parent = *new;
1197 if (ret < 0)
1198 new = &parent->rb_left;
1199 else if (ret > 0)
1200 new = &parent->rb_right;
1201 else {
1202 /*
1203 * Lock and unlock the stable_node's page (which
1204 * might already have been migrated) so that page
1205 * migration is sure to notice its raised count.
1206 * It would be more elegant to return stable_node
1207 * than kpage, but that involves more changes.
1208 */
1209 tree_page = get_ksm_page(stable_node, true);
1210 if (tree_page) {
1211 unlock_page(tree_page);
1212 if (get_kpfn_nid(stable_node->kpfn) !=
1213 NUMA(stable_node->nid)) {
1214 put_page(tree_page);
1215 goto replace;
1216 }
1217 return tree_page;
1218 }
1219 /*
1220 * There is now a place for page_node, but the tree may
1221 * have been rebalanced, so re-evaluate parent and new.
1222 */
1223 if (page_node)
1224 goto again;
1225 return NULL;
1226 }
1227 }
1228
1229 if (!page_node)
1230 return NULL;
1231
1232 list_del(&page_node->list);
1233 DO_NUMA(page_node->nid = nid);
1234 rb_link_node(&page_node->node, parent, new);
1235 rb_insert_color(&page_node->node, root);
1236 get_page(page);
1237 return page;
1238
1239 replace:
1240 if (page_node) {
1241 list_del(&page_node->list);
1242 DO_NUMA(page_node->nid = nid);
1243 rb_replace_node(&stable_node->node, &page_node->node, root);
1244 get_page(page);
1245 } else {
1246 rb_erase(&stable_node->node, root);
1247 page = NULL;
1248 }
1249 stable_node->head = &migrate_nodes;
1250 list_add(&stable_node->list, stable_node->head);
1251 return page;
1252 }
1253
1254 /*
1255 * stable_tree_insert - insert stable tree node pointing to new ksm page
1256 * into the stable tree.
1257 *
1258 * This function returns the stable tree node just allocated on success,
1259 * NULL otherwise.
1260 */
1261 static struct stable_node *stable_tree_insert(struct page *kpage)
1262 {
1263 int nid;
1264 unsigned long kpfn;
1265 struct rb_root *root;
1266 struct rb_node **new;
1267 struct rb_node *parent;
1268 struct stable_node *stable_node;
1269
1270 kpfn = page_to_pfn(kpage);
1271 nid = get_kpfn_nid(kpfn);
1272 root = root_stable_tree + nid;
1273 again:
1274 parent = NULL;
1275 new = &root->rb_node;
1276
1277 while (*new) {
1278 struct page *tree_page;
1279 int ret;
1280
1281 cond_resched();
1282 stable_node = rb_entry(*new, struct stable_node, node);
1283 tree_page = get_ksm_page(stable_node, false);
1284 if (!tree_page) {
1285 /*
1286 * If we walked over a stale stable_node,
1287 * get_ksm_page() will call rb_erase() and it
1288 * may rebalance the tree from under us. So
1289 * restart the search from scratch. Returning
1290 * NULL would be safe too, but we'd generate
1291 * false negative insertions just because some
1292 * stable_node was stale.
1293 */
1294 goto again;
1295 }
1296
1297 ret = memcmp_pages(kpage, tree_page);
1298 put_page(tree_page);
1299
1300 parent = *new;
1301 if (ret < 0)
1302 new = &parent->rb_left;
1303 else if (ret > 0)
1304 new = &parent->rb_right;
1305 else {
1306 /*
1307 * It is not a bug that stable_tree_search() didn't
1308 * find this node: because at that time our page was
1309 * not yet write-protected, so may have changed since.
1310 */
1311 return NULL;
1312 }
1313 }
1314
1315 stable_node = alloc_stable_node();
1316 if (!stable_node)
1317 return NULL;
1318
1319 INIT_HLIST_HEAD(&stable_node->hlist);
1320 stable_node->kpfn = kpfn;
1321 set_page_stable_node(kpage, stable_node);
1322 DO_NUMA(stable_node->nid = nid);
1323 rb_link_node(&stable_node->node, parent, new);
1324 rb_insert_color(&stable_node->node, root);
1325
1326 return stable_node;
1327 }
1328
1329 /*
1330 * unstable_tree_search_insert - search for identical page,
1331 * else insert rmap_item into the unstable tree.
1332 *
1333 * This function searches for a page in the unstable tree identical to the
1334 * page currently being scanned; and if no identical page is found in the
1335 * tree, we insert rmap_item as a new object into the unstable tree.
1336 *
1337 * This function returns pointer to rmap_item found to be identical
1338 * to the currently scanned page, NULL otherwise.
1339 *
1340 * This function does both searching and inserting, because they share
1341 * the same walking algorithm in an rbtree.
1342 */
1343 static
1344 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1345 struct page *page,
1346 struct page **tree_pagep)
1347 {
1348 struct rb_node **new;
1349 struct rb_root *root;
1350 struct rb_node *parent = NULL;
1351 int nid;
1352
1353 nid = get_kpfn_nid(page_to_pfn(page));
1354 root = root_unstable_tree + nid;
1355 new = &root->rb_node;
1356
1357 while (*new) {
1358 struct rmap_item *tree_rmap_item;
1359 struct page *tree_page;
1360 int ret;
1361
1362 cond_resched();
1363 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1364 tree_page = get_mergeable_page(tree_rmap_item);
1365 if (!tree_page)
1366 return NULL;
1367
1368 /*
1369 * Don't substitute a ksm page for a forked page.
1370 */
1371 if (page == tree_page) {
1372 put_page(tree_page);
1373 return NULL;
1374 }
1375
1376 ret = memcmp_pages(page, tree_page);
1377
1378 parent = *new;
1379 if (ret < 0) {
1380 put_page(tree_page);
1381 new = &parent->rb_left;
1382 } else if (ret > 0) {
1383 put_page(tree_page);
1384 new = &parent->rb_right;
1385 } else if (!ksm_merge_across_nodes &&
1386 page_to_nid(tree_page) != nid) {
1387 /*
1388 * If tree_page has been migrated to another NUMA node,
1389 * it will be flushed out and put in the right unstable
1390 * tree next time: only merge with it when across_nodes.
1391 */
1392 put_page(tree_page);
1393 return NULL;
1394 } else {
1395 *tree_pagep = tree_page;
1396 return tree_rmap_item;
1397 }
1398 }
1399
1400 rmap_item->address |= UNSTABLE_FLAG;
1401 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1402 DO_NUMA(rmap_item->nid = nid);
1403 rb_link_node(&rmap_item->node, parent, new);
1404 rb_insert_color(&rmap_item->node, root);
1405
1406 ksm_pages_unshared++;
1407 return NULL;
1408 }
1409
1410 /*
1411 * stable_tree_append - add another rmap_item to the linked list of
1412 * rmap_items hanging off a given node of the stable tree, all sharing
1413 * the same ksm page.
1414 */
1415 static void stable_tree_append(struct rmap_item *rmap_item,
1416 struct stable_node *stable_node)
1417 {
1418 rmap_item->head = stable_node;
1419 rmap_item->address |= STABLE_FLAG;
1420 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1421
1422 if (rmap_item->hlist.next)
1423 ksm_pages_sharing++;
1424 else
1425 ksm_pages_shared++;
1426 }
1427
1428 /*
1429 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1430 * if not, compare checksum to previous and if it's the same, see if page can
1431 * be inserted into the unstable tree, or merged with a page already there and
1432 * both transferred to the stable tree.
1433 *
1434 * @page: the page that we are searching identical page to.
1435 * @rmap_item: the reverse mapping into the virtual address of this page
1436 */
1437 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1438 {
1439 struct rmap_item *tree_rmap_item;
1440 struct page *tree_page = NULL;
1441 struct stable_node *stable_node;
1442 struct page *kpage;
1443 unsigned int checksum;
1444 int err;
1445
1446 stable_node = page_stable_node(page);
1447 if (stable_node) {
1448 if (stable_node->head != &migrate_nodes &&
1449 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1450 rb_erase(&stable_node->node,
1451 root_stable_tree + NUMA(stable_node->nid));
1452 stable_node->head = &migrate_nodes;
1453 list_add(&stable_node->list, stable_node->head);
1454 }
1455 if (stable_node->head != &migrate_nodes &&
1456 rmap_item->head == stable_node)
1457 return;
1458 }
1459
1460 /* We first start with searching the page inside the stable tree */
1461 kpage = stable_tree_search(page);
1462 if (kpage == page && rmap_item->head == stable_node) {
1463 put_page(kpage);
1464 return;
1465 }
1466
1467 remove_rmap_item_from_tree(rmap_item);
1468
1469 if (kpage) {
1470 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1471 if (!err) {
1472 /*
1473 * The page was successfully merged:
1474 * add its rmap_item to the stable tree.
1475 */
1476 lock_page(kpage);
1477 stable_tree_append(rmap_item, page_stable_node(kpage));
1478 unlock_page(kpage);
1479 }
1480 put_page(kpage);
1481 return;
1482 }
1483
1484 /*
1485 * If the hash value of the page has changed from the last time
1486 * we calculated it, this page is changing frequently: therefore we
1487 * don't want to insert it in the unstable tree, and we don't want
1488 * to waste our time searching for something identical to it there.
1489 */
1490 checksum = calc_checksum(page);
1491 if (rmap_item->oldchecksum != checksum) {
1492 rmap_item->oldchecksum = checksum;
1493 return;
1494 }
1495
1496 /*
1497 * Same checksum as an empty page. We attempt to merge it with the
1498 * appropriate zero page if the user enabled this via sysfs.
1499 */
1500 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1501 struct vm_area_struct *vma;
1502
1503 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1504 err = try_to_merge_one_page(vma, page,
1505 ZERO_PAGE(rmap_item->address));
1506 /*
1507 * In case of failure, the page was not really empty, so we
1508 * need to continue. Otherwise we're done.
1509 */
1510 if (!err)
1511 return;
1512 }
1513 tree_rmap_item =
1514 unstable_tree_search_insert(rmap_item, page, &tree_page);
1515 if (tree_rmap_item) {
1516 kpage = try_to_merge_two_pages(rmap_item, page,
1517 tree_rmap_item, tree_page);
1518 put_page(tree_page);
1519 if (kpage) {
1520 /*
1521 * The pages were successfully merged: insert new
1522 * node in the stable tree and add both rmap_items.
1523 */
1524 lock_page(kpage);
1525 stable_node = stable_tree_insert(kpage);
1526 if (stable_node) {
1527 stable_tree_append(tree_rmap_item, stable_node);
1528 stable_tree_append(rmap_item, stable_node);
1529 }
1530 unlock_page(kpage);
1531
1532 /*
1533 * If we fail to insert the page into the stable tree,
1534 * we will have 2 virtual addresses that are pointing
1535 * to a ksm page left outside the stable tree,
1536 * in which case we need to break_cow on both.
1537 */
1538 if (!stable_node) {
1539 break_cow(tree_rmap_item);
1540 break_cow(rmap_item);
1541 }
1542 }
1543 }
1544 }
1545
1546 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1547 struct rmap_item **rmap_list,
1548 unsigned long addr)
1549 {
1550 struct rmap_item *rmap_item;
1551
1552 while (*rmap_list) {
1553 rmap_item = *rmap_list;
1554 if ((rmap_item->address & PAGE_MASK) == addr)
1555 return rmap_item;
1556 if (rmap_item->address > addr)
1557 break;
1558 *rmap_list = rmap_item->rmap_list;
1559 remove_rmap_item_from_tree(rmap_item);
1560 free_rmap_item(rmap_item);
1561 }
1562
1563 rmap_item = alloc_rmap_item();
1564 if (rmap_item) {
1565 /* It has already been zeroed */
1566 rmap_item->mm = mm_slot->mm;
1567 rmap_item->address = addr;
1568 rmap_item->rmap_list = *rmap_list;
1569 *rmap_list = rmap_item;
1570 }
1571 return rmap_item;
1572 }
1573
1574 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1575 {
1576 struct mm_struct *mm;
1577 struct mm_slot *slot;
1578 struct vm_area_struct *vma;
1579 struct rmap_item *rmap_item;
1580 int nid;
1581
1582 if (list_empty(&ksm_mm_head.mm_list))
1583 return NULL;
1584
1585 slot = ksm_scan.mm_slot;
1586 if (slot == &ksm_mm_head) {
1587 /*
1588 * A number of pages can hang around indefinitely on per-cpu
1589 * pagevecs, raised page count preventing write_protect_page
1590 * from merging them. Though it doesn't really matter much,
1591 * it is puzzling to see some stuck in pages_volatile until
1592 * other activity jostles them out, and they also prevented
1593 * LTP's KSM test from succeeding deterministically; so drain
1594 * them here (here rather than on entry to ksm_do_scan(),
1595 * so we don't IPI too often when pages_to_scan is set low).
1596 */
1597 lru_add_drain_all();
1598
1599 /*
1600 * Whereas stale stable_nodes on the stable_tree itself
1601 * get pruned in the regular course of stable_tree_search(),
1602 * those moved out to the migrate_nodes list can accumulate:
1603 * so prune them once before each full scan.
1604 */
1605 if (!ksm_merge_across_nodes) {
1606 struct stable_node *stable_node, *next;
1607 struct page *page;
1608
1609 list_for_each_entry_safe(stable_node, next,
1610 &migrate_nodes, list) {
1611 page = get_ksm_page(stable_node, false);
1612 if (page)
1613 put_page(page);
1614 cond_resched();
1615 }
1616 }
1617
1618 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1619 root_unstable_tree[nid] = RB_ROOT;
1620
1621 spin_lock(&ksm_mmlist_lock);
1622 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1623 ksm_scan.mm_slot = slot;
1624 spin_unlock(&ksm_mmlist_lock);
1625 /*
1626 * Although we tested list_empty() above, a racing __ksm_exit
1627 * of the last mm on the list may have removed it since then.
1628 */
1629 if (slot == &ksm_mm_head)
1630 return NULL;
1631 next_mm:
1632 ksm_scan.address = 0;
1633 ksm_scan.rmap_list = &slot->rmap_list;
1634 }
1635
1636 mm = slot->mm;
1637 down_read(&mm->mmap_sem);
1638 if (ksm_test_exit(mm))
1639 vma = NULL;
1640 else
1641 vma = find_vma(mm, ksm_scan.address);
1642
1643 for (; vma; vma = vma->vm_next) {
1644 if (!(vma->vm_flags & VM_MERGEABLE))
1645 continue;
1646 if (ksm_scan.address < vma->vm_start)
1647 ksm_scan.address = vma->vm_start;
1648 if (!vma->anon_vma)
1649 ksm_scan.address = vma->vm_end;
1650
1651 while (ksm_scan.address < vma->vm_end) {
1652 if (ksm_test_exit(mm))
1653 break;
1654 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1655 if (IS_ERR_OR_NULL(*page)) {
1656 ksm_scan.address += PAGE_SIZE;
1657 cond_resched();
1658 continue;
1659 }
1660 if (PageAnon(*page)) {
1661 flush_anon_page(vma, *page, ksm_scan.address);
1662 flush_dcache_page(*page);
1663 rmap_item = get_next_rmap_item(slot,
1664 ksm_scan.rmap_list, ksm_scan.address);
1665 if (rmap_item) {
1666 ksm_scan.rmap_list =
1667 &rmap_item->rmap_list;
1668 ksm_scan.address += PAGE_SIZE;
1669 } else
1670 put_page(*page);
1671 up_read(&mm->mmap_sem);
1672 return rmap_item;
1673 }
1674 put_page(*page);
1675 ksm_scan.address += PAGE_SIZE;
1676 cond_resched();
1677 }
1678 }
1679
1680 if (ksm_test_exit(mm)) {
1681 ksm_scan.address = 0;
1682 ksm_scan.rmap_list = &slot->rmap_list;
1683 }
1684 /*
1685 * Nuke all the rmap_items that are above this current rmap:
1686 * because there were no VM_MERGEABLE vmas with such addresses.
1687 */
1688 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1689
1690 spin_lock(&ksm_mmlist_lock);
1691 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1692 struct mm_slot, mm_list);
1693 if (ksm_scan.address == 0) {
1694 /*
1695 * We've completed a full scan of all vmas, holding mmap_sem
1696 * throughout, and found no VM_MERGEABLE: so do the same as
1697 * __ksm_exit does to remove this mm from all our lists now.
1698 * This applies either when cleaning up after __ksm_exit
1699 * (but beware: we can reach here even before __ksm_exit),
1700 * or when all VM_MERGEABLE areas have been unmapped (and
1701 * mmap_sem then protects against race with MADV_MERGEABLE).
1702 */
1703 hash_del(&slot->link);
1704 list_del(&slot->mm_list);
1705 spin_unlock(&ksm_mmlist_lock);
1706
1707 free_mm_slot(slot);
1708 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1709 up_read(&mm->mmap_sem);
1710 mmdrop(mm);
1711 } else {
1712 up_read(&mm->mmap_sem);
1713 /*
1714 * up_read(&mm->mmap_sem) first because after
1715 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1716 * already have been freed under us by __ksm_exit()
1717 * because the "mm_slot" is still hashed and
1718 * ksm_scan.mm_slot doesn't point to it anymore.
1719 */
1720 spin_unlock(&ksm_mmlist_lock);
1721 }
1722
1723 /* Repeat until we've completed scanning the whole list */
1724 slot = ksm_scan.mm_slot;
1725 if (slot != &ksm_mm_head)
1726 goto next_mm;
1727
1728 ksm_scan.seqnr++;
1729 return NULL;
1730 }
1731
1732 /**
1733 * ksm_do_scan - the ksm scanner main worker function.
1734 * @scan_npages - number of pages we want to scan before we return.
1735 */
1736 static void ksm_do_scan(unsigned int scan_npages)
1737 {
1738 struct rmap_item *rmap_item;
1739 struct page *uninitialized_var(page);
1740
1741 while (scan_npages-- && likely(!freezing(current))) {
1742 cond_resched();
1743 rmap_item = scan_get_next_rmap_item(&page);
1744 if (!rmap_item)
1745 return;
1746 cmp_and_merge_page(page, rmap_item);
1747 put_page(page);
1748 }
1749 }
1750
1751 static int ksmd_should_run(void)
1752 {
1753 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1754 }
1755
1756 static int ksm_scan_thread(void *nothing)
1757 {
1758 set_freezable();
1759 set_user_nice(current, 5);
1760
1761 while (!kthread_should_stop()) {
1762 mutex_lock(&ksm_thread_mutex);
1763 wait_while_offlining();
1764 if (ksmd_should_run())
1765 ksm_do_scan(ksm_thread_pages_to_scan);
1766 mutex_unlock(&ksm_thread_mutex);
1767
1768 try_to_freeze();
1769
1770 if (ksmd_should_run()) {
1771 schedule_timeout_interruptible(
1772 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1773 } else {
1774 wait_event_freezable(ksm_thread_wait,
1775 ksmd_should_run() || kthread_should_stop());
1776 }
1777 }
1778 return 0;
1779 }
1780
1781 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1782 unsigned long end, int advice, unsigned long *vm_flags)
1783 {
1784 struct mm_struct *mm = vma->vm_mm;
1785 int err;
1786
1787 switch (advice) {
1788 case MADV_MERGEABLE:
1789 /*
1790 * Be somewhat over-protective for now!
1791 */
1792 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1793 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1794 VM_HUGETLB | VM_MIXEDMAP))
1795 return 0; /* just ignore the advice */
1796
1797 #ifdef VM_SAO
1798 if (*vm_flags & VM_SAO)
1799 return 0;
1800 #endif
1801
1802 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1803 err = __ksm_enter(mm);
1804 if (err)
1805 return err;
1806 }
1807
1808 *vm_flags |= VM_MERGEABLE;
1809 break;
1810
1811 case MADV_UNMERGEABLE:
1812 if (!(*vm_flags & VM_MERGEABLE))
1813 return 0; /* just ignore the advice */
1814
1815 if (vma->anon_vma) {
1816 err = unmerge_ksm_pages(vma, start, end);
1817 if (err)
1818 return err;
1819 }
1820
1821 *vm_flags &= ~VM_MERGEABLE;
1822 break;
1823 }
1824
1825 return 0;
1826 }
1827
1828 int __ksm_enter(struct mm_struct *mm)
1829 {
1830 struct mm_slot *mm_slot;
1831 int needs_wakeup;
1832
1833 mm_slot = alloc_mm_slot();
1834 if (!mm_slot)
1835 return -ENOMEM;
1836
1837 /* Check ksm_run too? Would need tighter locking */
1838 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1839
1840 spin_lock(&ksm_mmlist_lock);
1841 insert_to_mm_slots_hash(mm, mm_slot);
1842 /*
1843 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1844 * insert just behind the scanning cursor, to let the area settle
1845 * down a little; when fork is followed by immediate exec, we don't
1846 * want ksmd to waste time setting up and tearing down an rmap_list.
1847 *
1848 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1849 * scanning cursor, otherwise KSM pages in newly forked mms will be
1850 * missed: then we might as well insert at the end of the list.
1851 */
1852 if (ksm_run & KSM_RUN_UNMERGE)
1853 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1854 else
1855 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1856 spin_unlock(&ksm_mmlist_lock);
1857
1858 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1859 mmgrab(mm);
1860
1861 if (needs_wakeup)
1862 wake_up_interruptible(&ksm_thread_wait);
1863
1864 return 0;
1865 }
1866
1867 void __ksm_exit(struct mm_struct *mm)
1868 {
1869 struct mm_slot *mm_slot;
1870 int easy_to_free = 0;
1871
1872 /*
1873 * This process is exiting: if it's straightforward (as is the
1874 * case when ksmd was never running), free mm_slot immediately.
1875 * But if it's at the cursor or has rmap_items linked to it, use
1876 * mmap_sem to synchronize with any break_cows before pagetables
1877 * are freed, and leave the mm_slot on the list for ksmd to free.
1878 * Beware: ksm may already have noticed it exiting and freed the slot.
1879 */
1880
1881 spin_lock(&ksm_mmlist_lock);
1882 mm_slot = get_mm_slot(mm);
1883 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1884 if (!mm_slot->rmap_list) {
1885 hash_del(&mm_slot->link);
1886 list_del(&mm_slot->mm_list);
1887 easy_to_free = 1;
1888 } else {
1889 list_move(&mm_slot->mm_list,
1890 &ksm_scan.mm_slot->mm_list);
1891 }
1892 }
1893 spin_unlock(&ksm_mmlist_lock);
1894
1895 if (easy_to_free) {
1896 free_mm_slot(mm_slot);
1897 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1898 mmdrop(mm);
1899 } else if (mm_slot) {
1900 down_write(&mm->mmap_sem);
1901 up_write(&mm->mmap_sem);
1902 }
1903 }
1904
1905 struct page *ksm_might_need_to_copy(struct page *page,
1906 struct vm_area_struct *vma, unsigned long address)
1907 {
1908 struct anon_vma *anon_vma = page_anon_vma(page);
1909 struct page *new_page;
1910
1911 if (PageKsm(page)) {
1912 if (page_stable_node(page) &&
1913 !(ksm_run & KSM_RUN_UNMERGE))
1914 return page; /* no need to copy it */
1915 } else if (!anon_vma) {
1916 return page; /* no need to copy it */
1917 } else if (anon_vma->root == vma->anon_vma->root &&
1918 page->index == linear_page_index(vma, address)) {
1919 return page; /* still no need to copy it */
1920 }
1921 if (!PageUptodate(page))
1922 return page; /* let do_swap_page report the error */
1923
1924 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1925 if (new_page) {
1926 copy_user_highpage(new_page, page, address, vma);
1927
1928 SetPageDirty(new_page);
1929 __SetPageUptodate(new_page);
1930 __SetPageLocked(new_page);
1931 }
1932
1933 return new_page;
1934 }
1935
1936 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1937 {
1938 struct stable_node *stable_node;
1939 struct rmap_item *rmap_item;
1940 int ret = SWAP_AGAIN;
1941 int search_new_forks = 0;
1942
1943 VM_BUG_ON_PAGE(!PageKsm(page), page);
1944
1945 /*
1946 * Rely on the page lock to protect against concurrent modifications
1947 * to that page's node of the stable tree.
1948 */
1949 VM_BUG_ON_PAGE(!PageLocked(page), page);
1950
1951 stable_node = page_stable_node(page);
1952 if (!stable_node)
1953 return ret;
1954 again:
1955 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1956 struct anon_vma *anon_vma = rmap_item->anon_vma;
1957 struct anon_vma_chain *vmac;
1958 struct vm_area_struct *vma;
1959
1960 cond_resched();
1961 anon_vma_lock_read(anon_vma);
1962 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1963 0, ULONG_MAX) {
1964 cond_resched();
1965 vma = vmac->vma;
1966 if (rmap_item->address < vma->vm_start ||
1967 rmap_item->address >= vma->vm_end)
1968 continue;
1969 /*
1970 * Initially we examine only the vma which covers this
1971 * rmap_item; but later, if there is still work to do,
1972 * we examine covering vmas in other mms: in case they
1973 * were forked from the original since ksmd passed.
1974 */
1975 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1976 continue;
1977
1978 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1979 continue;
1980
1981 ret = rwc->rmap_one(page, vma,
1982 rmap_item->address, rwc->arg);
1983 if (ret != SWAP_AGAIN) {
1984 anon_vma_unlock_read(anon_vma);
1985 goto out;
1986 }
1987 if (rwc->done && rwc->done(page)) {
1988 anon_vma_unlock_read(anon_vma);
1989 goto out;
1990 }
1991 }
1992 anon_vma_unlock_read(anon_vma);
1993 }
1994 if (!search_new_forks++)
1995 goto again;
1996 out:
1997 return ret;
1998 }
1999
2000 #ifdef CONFIG_MIGRATION
2001 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2002 {
2003 struct stable_node *stable_node;
2004
2005 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2006 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2007 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2008
2009 stable_node = page_stable_node(newpage);
2010 if (stable_node) {
2011 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2012 stable_node->kpfn = page_to_pfn(newpage);
2013 /*
2014 * newpage->mapping was set in advance; now we need smp_wmb()
2015 * to make sure that the new stable_node->kpfn is visible
2016 * to get_ksm_page() before it can see that oldpage->mapping
2017 * has gone stale (or that PageSwapCache has been cleared).
2018 */
2019 smp_wmb();
2020 set_page_stable_node(oldpage, NULL);
2021 }
2022 }
2023 #endif /* CONFIG_MIGRATION */
2024
2025 #ifdef CONFIG_MEMORY_HOTREMOVE
2026 static void wait_while_offlining(void)
2027 {
2028 while (ksm_run & KSM_RUN_OFFLINE) {
2029 mutex_unlock(&ksm_thread_mutex);
2030 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2031 TASK_UNINTERRUPTIBLE);
2032 mutex_lock(&ksm_thread_mutex);
2033 }
2034 }
2035
2036 static void ksm_check_stable_tree(unsigned long start_pfn,
2037 unsigned long end_pfn)
2038 {
2039 struct stable_node *stable_node, *next;
2040 struct rb_node *node;
2041 int nid;
2042
2043 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2044 node = rb_first(root_stable_tree + nid);
2045 while (node) {
2046 stable_node = rb_entry(node, struct stable_node, node);
2047 if (stable_node->kpfn >= start_pfn &&
2048 stable_node->kpfn < end_pfn) {
2049 /*
2050 * Don't get_ksm_page, page has already gone:
2051 * which is why we keep kpfn instead of page*
2052 */
2053 remove_node_from_stable_tree(stable_node);
2054 node = rb_first(root_stable_tree + nid);
2055 } else
2056 node = rb_next(node);
2057 cond_resched();
2058 }
2059 }
2060 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2061 if (stable_node->kpfn >= start_pfn &&
2062 stable_node->kpfn < end_pfn)
2063 remove_node_from_stable_tree(stable_node);
2064 cond_resched();
2065 }
2066 }
2067
2068 static int ksm_memory_callback(struct notifier_block *self,
2069 unsigned long action, void *arg)
2070 {
2071 struct memory_notify *mn = arg;
2072
2073 switch (action) {
2074 case MEM_GOING_OFFLINE:
2075 /*
2076 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2077 * and remove_all_stable_nodes() while memory is going offline:
2078 * it is unsafe for them to touch the stable tree at this time.
2079 * But unmerge_ksm_pages(), rmap lookups and other entry points
2080 * which do not need the ksm_thread_mutex are all safe.
2081 */
2082 mutex_lock(&ksm_thread_mutex);
2083 ksm_run |= KSM_RUN_OFFLINE;
2084 mutex_unlock(&ksm_thread_mutex);
2085 break;
2086
2087 case MEM_OFFLINE:
2088 /*
2089 * Most of the work is done by page migration; but there might
2090 * be a few stable_nodes left over, still pointing to struct
2091 * pages which have been offlined: prune those from the tree,
2092 * otherwise get_ksm_page() might later try to access a
2093 * non-existent struct page.
2094 */
2095 ksm_check_stable_tree(mn->start_pfn,
2096 mn->start_pfn + mn->nr_pages);
2097 /* fallthrough */
2098
2099 case MEM_CANCEL_OFFLINE:
2100 mutex_lock(&ksm_thread_mutex);
2101 ksm_run &= ~KSM_RUN_OFFLINE;
2102 mutex_unlock(&ksm_thread_mutex);
2103
2104 smp_mb(); /* wake_up_bit advises this */
2105 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2106 break;
2107 }
2108 return NOTIFY_OK;
2109 }
2110 #else
2111 static void wait_while_offlining(void)
2112 {
2113 }
2114 #endif /* CONFIG_MEMORY_HOTREMOVE */
2115
2116 #ifdef CONFIG_SYSFS
2117 /*
2118 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2119 */
2120
2121 #define KSM_ATTR_RO(_name) \
2122 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2123 #define KSM_ATTR(_name) \
2124 static struct kobj_attribute _name##_attr = \
2125 __ATTR(_name, 0644, _name##_show, _name##_store)
2126
2127 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2128 struct kobj_attribute *attr, char *buf)
2129 {
2130 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2131 }
2132
2133 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2134 struct kobj_attribute *attr,
2135 const char *buf, size_t count)
2136 {
2137 unsigned long msecs;
2138 int err;
2139
2140 err = kstrtoul(buf, 10, &msecs);
2141 if (err || msecs > UINT_MAX)
2142 return -EINVAL;
2143
2144 ksm_thread_sleep_millisecs = msecs;
2145
2146 return count;
2147 }
2148 KSM_ATTR(sleep_millisecs);
2149
2150 static ssize_t pages_to_scan_show(struct kobject *kobj,
2151 struct kobj_attribute *attr, char *buf)
2152 {
2153 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2154 }
2155
2156 static ssize_t pages_to_scan_store(struct kobject *kobj,
2157 struct kobj_attribute *attr,
2158 const char *buf, size_t count)
2159 {
2160 int err;
2161 unsigned long nr_pages;
2162
2163 err = kstrtoul(buf, 10, &nr_pages);
2164 if (err || nr_pages > UINT_MAX)
2165 return -EINVAL;
2166
2167 ksm_thread_pages_to_scan = nr_pages;
2168
2169 return count;
2170 }
2171 KSM_ATTR(pages_to_scan);
2172
2173 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2174 char *buf)
2175 {
2176 return sprintf(buf, "%lu\n", ksm_run);
2177 }
2178
2179 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2180 const char *buf, size_t count)
2181 {
2182 int err;
2183 unsigned long flags;
2184
2185 err = kstrtoul(buf, 10, &flags);
2186 if (err || flags > UINT_MAX)
2187 return -EINVAL;
2188 if (flags > KSM_RUN_UNMERGE)
2189 return -EINVAL;
2190
2191 /*
2192 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2193 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2194 * breaking COW to free the pages_shared (but leaves mm_slots
2195 * on the list for when ksmd may be set running again).
2196 */
2197
2198 mutex_lock(&ksm_thread_mutex);
2199 wait_while_offlining();
2200 if (ksm_run != flags) {
2201 ksm_run = flags;
2202 if (flags & KSM_RUN_UNMERGE) {
2203 set_current_oom_origin();
2204 err = unmerge_and_remove_all_rmap_items();
2205 clear_current_oom_origin();
2206 if (err) {
2207 ksm_run = KSM_RUN_STOP;
2208 count = err;
2209 }
2210 }
2211 }
2212 mutex_unlock(&ksm_thread_mutex);
2213
2214 if (flags & KSM_RUN_MERGE)
2215 wake_up_interruptible(&ksm_thread_wait);
2216
2217 return count;
2218 }
2219 KSM_ATTR(run);
2220
2221 #ifdef CONFIG_NUMA
2222 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2223 struct kobj_attribute *attr, char *buf)
2224 {
2225 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2226 }
2227
2228 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2229 struct kobj_attribute *attr,
2230 const char *buf, size_t count)
2231 {
2232 int err;
2233 unsigned long knob;
2234
2235 err = kstrtoul(buf, 10, &knob);
2236 if (err)
2237 return err;
2238 if (knob > 1)
2239 return -EINVAL;
2240
2241 mutex_lock(&ksm_thread_mutex);
2242 wait_while_offlining();
2243 if (ksm_merge_across_nodes != knob) {
2244 if (ksm_pages_shared || remove_all_stable_nodes())
2245 err = -EBUSY;
2246 else if (root_stable_tree == one_stable_tree) {
2247 struct rb_root *buf;
2248 /*
2249 * This is the first time that we switch away from the
2250 * default of merging across nodes: must now allocate
2251 * a buffer to hold as many roots as may be needed.
2252 * Allocate stable and unstable together:
2253 * MAXSMP NODES_SHIFT 10 will use 16kB.
2254 */
2255 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2256 GFP_KERNEL);
2257 /* Let us assume that RB_ROOT is NULL is zero */
2258 if (!buf)
2259 err = -ENOMEM;
2260 else {
2261 root_stable_tree = buf;
2262 root_unstable_tree = buf + nr_node_ids;
2263 /* Stable tree is empty but not the unstable */
2264 root_unstable_tree[0] = one_unstable_tree[0];
2265 }
2266 }
2267 if (!err) {
2268 ksm_merge_across_nodes = knob;
2269 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2270 }
2271 }
2272 mutex_unlock(&ksm_thread_mutex);
2273
2274 return err ? err : count;
2275 }
2276 KSM_ATTR(merge_across_nodes);
2277 #endif
2278
2279 static ssize_t use_zero_pages_show(struct kobject *kobj,
2280 struct kobj_attribute *attr, char *buf)
2281 {
2282 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2283 }
2284 static ssize_t use_zero_pages_store(struct kobject *kobj,
2285 struct kobj_attribute *attr,
2286 const char *buf, size_t count)
2287 {
2288 int err;
2289 bool value;
2290
2291 err = kstrtobool(buf, &value);
2292 if (err)
2293 return -EINVAL;
2294
2295 ksm_use_zero_pages = value;
2296
2297 return count;
2298 }
2299 KSM_ATTR(use_zero_pages);
2300
2301 static ssize_t pages_shared_show(struct kobject *kobj,
2302 struct kobj_attribute *attr, char *buf)
2303 {
2304 return sprintf(buf, "%lu\n", ksm_pages_shared);
2305 }
2306 KSM_ATTR_RO(pages_shared);
2307
2308 static ssize_t pages_sharing_show(struct kobject *kobj,
2309 struct kobj_attribute *attr, char *buf)
2310 {
2311 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2312 }
2313 KSM_ATTR_RO(pages_sharing);
2314
2315 static ssize_t pages_unshared_show(struct kobject *kobj,
2316 struct kobj_attribute *attr, char *buf)
2317 {
2318 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2319 }
2320 KSM_ATTR_RO(pages_unshared);
2321
2322 static ssize_t pages_volatile_show(struct kobject *kobj,
2323 struct kobj_attribute *attr, char *buf)
2324 {
2325 long ksm_pages_volatile;
2326
2327 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2328 - ksm_pages_sharing - ksm_pages_unshared;
2329 /*
2330 * It was not worth any locking to calculate that statistic,
2331 * but it might therefore sometimes be negative: conceal that.
2332 */
2333 if (ksm_pages_volatile < 0)
2334 ksm_pages_volatile = 0;
2335 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2336 }
2337 KSM_ATTR_RO(pages_volatile);
2338
2339 static ssize_t full_scans_show(struct kobject *kobj,
2340 struct kobj_attribute *attr, char *buf)
2341 {
2342 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2343 }
2344 KSM_ATTR_RO(full_scans);
2345
2346 static struct attribute *ksm_attrs[] = {
2347 &sleep_millisecs_attr.attr,
2348 &pages_to_scan_attr.attr,
2349 &run_attr.attr,
2350 &pages_shared_attr.attr,
2351 &pages_sharing_attr.attr,
2352 &pages_unshared_attr.attr,
2353 &pages_volatile_attr.attr,
2354 &full_scans_attr.attr,
2355 #ifdef CONFIG_NUMA
2356 &merge_across_nodes_attr.attr,
2357 #endif
2358 &use_zero_pages_attr.attr,
2359 NULL,
2360 };
2361
2362 static struct attribute_group ksm_attr_group = {
2363 .attrs = ksm_attrs,
2364 .name = "ksm",
2365 };
2366 #endif /* CONFIG_SYSFS */
2367
2368 static int __init ksm_init(void)
2369 {
2370 struct task_struct *ksm_thread;
2371 int err;
2372
2373 /* The correct value depends on page size and endianness */
2374 zero_checksum = calc_checksum(ZERO_PAGE(0));
2375 /* Default to false for backwards compatibility */
2376 ksm_use_zero_pages = false;
2377
2378 err = ksm_slab_init();
2379 if (err)
2380 goto out;
2381
2382 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2383 if (IS_ERR(ksm_thread)) {
2384 pr_err("ksm: creating kthread failed\n");
2385 err = PTR_ERR(ksm_thread);
2386 goto out_free;
2387 }
2388
2389 #ifdef CONFIG_SYSFS
2390 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2391 if (err) {
2392 pr_err("ksm: register sysfs failed\n");
2393 kthread_stop(ksm_thread);
2394 goto out_free;
2395 }
2396 #else
2397 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2398
2399 #endif /* CONFIG_SYSFS */
2400
2401 #ifdef CONFIG_MEMORY_HOTREMOVE
2402 /* There is no significance to this priority 100 */
2403 hotplug_memory_notifier(ksm_memory_callback, 100);
2404 #endif
2405 return 0;
2406
2407 out_free:
2408 ksm_slab_free();
2409 out:
2410 return err;
2411 }
2412 subsys_initcall(ksm_init);