]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blob - mm/ksm.c
UBUNTU: Ubuntu-5.13.0-12.12
[mirror_ubuntu-impish-kernel.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x) (x)
47 #define DO_NUMA(x) do { (x); } while (0)
48 #else
49 #define NUMA(x) (0)
50 #define DO_NUMA(x) do { } while (0)
51 #endif
52
53 /**
54 * DOC: Overview
55 *
56 * A few notes about the KSM scanning process,
57 * to make it easier to understand the data structures below:
58 *
59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
60 * contents into a data structure that holds pointers to the pages' locations.
61 *
62 * Since the contents of the pages may change at any moment, KSM cannot just
63 * insert the pages into a normal sorted tree and expect it to find anything.
64 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 *
66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67 * by their contents. Because each such page is write-protected, searching on
68 * this tree is fully assured to be working (except when pages are unmapped),
69 * and therefore this tree is called the stable tree.
70 *
71 * The stable tree node includes information required for reverse
72 * mapping from a KSM page to virtual addresses that map this page.
73 *
74 * In order to avoid large latencies of the rmap walks on KSM pages,
75 * KSM maintains two types of nodes in the stable tree:
76 *
77 * * the regular nodes that keep the reverse mapping structures in a
78 * linked list
79 * * the "chains" that link nodes ("dups") that represent the same
80 * write protected memory content, but each "dup" corresponds to a
81 * different KSM page copy of that content
82 *
83 * Internally, the regular nodes, "dups" and "chains" are represented
84 * using the same struct stable_node structure.
85 *
86 * In addition to the stable tree, KSM uses a second data structure called the
87 * unstable tree: this tree holds pointers to pages which have been found to
88 * be "unchanged for a period of time". The unstable tree sorts these pages
89 * by their contents, but since they are not write-protected, KSM cannot rely
90 * upon the unstable tree to work correctly - the unstable tree is liable to
91 * be corrupted as its contents are modified, and so it is called unstable.
92 *
93 * KSM solves this problem by several techniques:
94 *
95 * 1) The unstable tree is flushed every time KSM completes scanning all
96 * memory areas, and then the tree is rebuilt again from the beginning.
97 * 2) KSM will only insert into the unstable tree, pages whose hash value
98 * has not changed since the previous scan of all memory areas.
99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100 * colors of the nodes and not on their contents, assuring that even when
101 * the tree gets "corrupted" it won't get out of balance, so scanning time
102 * remains the same (also, searching and inserting nodes in an rbtree uses
103 * the same algorithm, so we have no overhead when we flush and rebuild).
104 * 4) KSM never flushes the stable tree, which means that even if it were to
105 * take 10 attempts to find a page in the unstable tree, once it is found,
106 * it is secured in the stable tree. (When we scan a new page, we first
107 * compare it against the stable tree, and then against the unstable tree.)
108 *
109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110 * stable trees and multiple unstable trees: one of each for each NUMA node.
111 */
112
113 /**
114 * struct mm_slot - ksm information per mm that is being scanned
115 * @link: link to the mm_slots hash list
116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118 * @mm: the mm that this information is valid for
119 */
120 struct mm_slot {
121 struct hlist_node link;
122 struct list_head mm_list;
123 struct rmap_item *rmap_list;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct ksm_scan - cursor for scanning
129 * @mm_slot: the current mm_slot we are scanning
130 * @address: the next address inside that to be scanned
131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
132 * @seqnr: count of completed full scans (needed when removing unstable node)
133 *
134 * There is only the one ksm_scan instance of this cursor structure.
135 */
136 struct ksm_scan {
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 struct rmap_item **rmap_list;
140 unsigned long seqnr;
141 };
142
143 /**
144 * struct stable_node - node of the stable rbtree
145 * @node: rb node of this ksm page in the stable tree
146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148 * @list: linked into migrate_nodes, pending placement in the proper node tree
149 * @hlist: hlist head of rmap_items using this ksm page
150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151 * @chain_prune_time: time of the last full garbage collection
152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154 */
155 struct stable_node {
156 union {
157 struct rb_node node; /* when node of stable tree */
158 struct { /* when listed for migration */
159 struct list_head *head;
160 struct {
161 struct hlist_node hlist_dup;
162 struct list_head list;
163 };
164 };
165 };
166 struct hlist_head hlist;
167 union {
168 unsigned long kpfn;
169 unsigned long chain_prune_time;
170 };
171 /*
172 * STABLE_NODE_CHAIN can be any negative number in
173 * rmap_hlist_len negative range, but better not -1 to be able
174 * to reliably detect underflows.
175 */
176 #define STABLE_NODE_CHAIN -1024
177 int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 int nid;
180 #endif
181 };
182
183 /**
184 * struct rmap_item - reverse mapping item for virtual addresses
185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
188 * @mm: the memory structure this rmap_item is pointing into
189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190 * @oldchecksum: previous checksum of the page at that virtual address
191 * @node: rb node of this rmap_item in the unstable tree
192 * @head: pointer to stable_node heading this list in the stable tree
193 * @hlist: link into hlist of rmap_items hanging off that stable_node
194 */
195 struct rmap_item {
196 struct rmap_item *rmap_list;
197 union {
198 struct anon_vma *anon_vma; /* when stable */
199 #ifdef CONFIG_NUMA
200 int nid; /* when node of unstable tree */
201 #endif
202 };
203 struct mm_struct *mm;
204 unsigned long address; /* + low bits used for flags below */
205 unsigned int oldchecksum; /* when unstable */
206 union {
207 struct rb_node node; /* when node of unstable tree */
208 struct { /* when listed from stable tree */
209 struct stable_node *head;
210 struct hlist_node hlist;
211 };
212 };
213 };
214
215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
218
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231
232 static struct mm_slot ksm_mm_head = {
233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236 .mm_slot = &ksm_mm_head,
237 };
238
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static int ksm_stable_node_chains_prune_millisecs = 2000;
263
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes 1U
285 #define ksm_nr_node_ids 1
286 #endif
287
288 #define KSM_RUN_STOP 0
289 #define KSM_RUN_MERGE 1
290 #define KSM_RUN_UNMERGE 2
291 #define KSM_RUN_OFFLINE 4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 sizeof(struct __struct), __alignof__(struct __struct),\
302 (__flags), NULL)
303
304 static int __init ksm_slab_init(void)
305 {
306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 if (!rmap_item_cache)
308 goto out;
309
310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 if (!stable_node_cache)
312 goto out_free1;
313
314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 if (!mm_slot_cache)
316 goto out_free2;
317
318 return 0;
319
320 out_free2:
321 kmem_cache_destroy(stable_node_cache);
322 out_free1:
323 kmem_cache_destroy(rmap_item_cache);
324 out:
325 return -ENOMEM;
326 }
327
328 static void __init ksm_slab_free(void)
329 {
330 kmem_cache_destroy(mm_slot_cache);
331 kmem_cache_destroy(stable_node_cache);
332 kmem_cache_destroy(rmap_item_cache);
333 mm_slot_cache = NULL;
334 }
335
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343 return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 struct stable_node *chain)
348 {
349 VM_BUG_ON(is_stable_node_dup(dup));
350 dup->head = STABLE_NODE_DUP_HEAD;
351 VM_BUG_ON(!is_stable_node_chain(chain));
352 hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 ksm_stable_node_dups++;
354 }
355
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358 VM_BUG_ON(!is_stable_node_dup(dup));
359 hlist_del(&dup->hlist_dup);
360 ksm_stable_node_dups--;
361 }
362
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365 VM_BUG_ON(is_stable_node_chain(dup));
366 if (is_stable_node_dup(dup))
367 __stable_node_dup_del(dup);
368 else
369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371 dup->head = NULL;
372 #endif
373 }
374
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377 struct rmap_item *rmap_item;
378
379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 __GFP_NORETRY | __GFP_NOWARN);
381 if (rmap_item)
382 ksm_rmap_items++;
383 return rmap_item;
384 }
385
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388 ksm_rmap_items--;
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395 /*
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
399 */
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
407 kmem_cache_free(stable_node_cache, stable_node);
408 }
409
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412 if (!mm_slot_cache) /* initialization failed */
413 return NULL;
414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419 kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424 struct mm_slot *slot;
425
426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427 if (slot->mm == mm)
428 return slot;
429
430 return NULL;
431 }
432
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 struct mm_slot *mm_slot)
435 {
436 mm_slot->mm = mm;
437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439
440 /*
441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442 * page tables after it has passed through ksm_exit() - which, if necessary,
443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
444 * a special flag: they can just back out as soon as mm_users goes to zero.
445 * ksm_test_exit() is used throughout to make this test for exit: in some
446 * places for correctness, in some places just to avoid unnecessary work.
447 */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450 return atomic_read(&mm->mm_users) == 0;
451 }
452
453 /*
454 * We use break_ksm to break COW on a ksm page: it's a stripped down
455 *
456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457 * put_page(page);
458 *
459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460 * in case the application has unmapped and remapped mm,addr meanwhile.
461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
462 * mmap of /dev/mem, where we would not want to touch it.
463 *
464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465 * of the process that owns 'vma'. We also do not want to enforce
466 * protection keys here anyway.
467 */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470 struct page *page;
471 vm_fault_t ret = 0;
472
473 do {
474 cond_resched();
475 page = follow_page(vma, addr,
476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477 if (IS_ERR_OR_NULL(page))
478 break;
479 if (PageKsm(page))
480 ret = handle_mm_fault(vma, addr,
481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482 NULL);
483 else
484 ret = VM_FAULT_WRITE;
485 put_page(page);
486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487 /*
488 * We must loop because handle_mm_fault() may back out if there's
489 * any difficulty e.g. if pte accessed bit gets updated concurrently.
490 *
491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492 * COW has been broken, even if the vma does not permit VM_WRITE;
493 * but note that a concurrent fault might break PageKsm for us.
494 *
495 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 * backing file, which also invalidates anonymous pages: that's
497 * okay, that truncation will have unmapped the PageKsm for us.
498 *
499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 * to user; and ksmd, having no mm, would never be chosen for that.
503 *
504 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 * even ksmd can fail in this way - though it's usually breaking ksm
507 * just to undo a merge it made a moment before, so unlikely to oom.
508 *
509 * That's a pity: we might therefore have more kernel pages allocated
510 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 * will retry to break_cow on each pass, so should recover the page
512 * in due course. The important thing is to not let VM_MERGEABLE
513 * be cleared while any such pages might remain in the area.
514 */
515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 unsigned long addr)
520 {
521 struct vm_area_struct *vma;
522 if (ksm_test_exit(mm))
523 return NULL;
524 vma = find_vma(mm, addr);
525 if (!vma || vma->vm_start > addr)
526 return NULL;
527 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
528 return NULL;
529 return vma;
530 }
531
532 static void break_cow(struct rmap_item *rmap_item)
533 {
534 struct mm_struct *mm = rmap_item->mm;
535 unsigned long addr = rmap_item->address;
536 struct vm_area_struct *vma;
537
538 /*
539 * It is not an accident that whenever we want to break COW
540 * to undo, we also need to drop a reference to the anon_vma.
541 */
542 put_anon_vma(rmap_item->anon_vma);
543
544 mmap_read_lock(mm);
545 vma = find_mergeable_vma(mm, addr);
546 if (vma)
547 break_ksm(vma, addr);
548 mmap_read_unlock(mm);
549 }
550
551 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
552 {
553 struct mm_struct *mm = rmap_item->mm;
554 unsigned long addr = rmap_item->address;
555 struct vm_area_struct *vma;
556 struct page *page;
557
558 mmap_read_lock(mm);
559 vma = find_mergeable_vma(mm, addr);
560 if (!vma)
561 goto out;
562
563 page = follow_page(vma, addr, FOLL_GET);
564 if (IS_ERR_OR_NULL(page))
565 goto out;
566 if (PageAnon(page)) {
567 flush_anon_page(vma, page, addr);
568 flush_dcache_page(page);
569 } else {
570 put_page(page);
571 out:
572 page = NULL;
573 }
574 mmap_read_unlock(mm);
575 return page;
576 }
577
578 /*
579 * This helper is used for getting right index into array of tree roots.
580 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
581 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
582 * every node has its own stable and unstable tree.
583 */
584 static inline int get_kpfn_nid(unsigned long kpfn)
585 {
586 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
587 }
588
589 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
590 struct rb_root *root)
591 {
592 struct stable_node *chain = alloc_stable_node();
593 VM_BUG_ON(is_stable_node_chain(dup));
594 if (likely(chain)) {
595 INIT_HLIST_HEAD(&chain->hlist);
596 chain->chain_prune_time = jiffies;
597 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
598 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
599 chain->nid = NUMA_NO_NODE; /* debug */
600 #endif
601 ksm_stable_node_chains++;
602
603 /*
604 * Put the stable node chain in the first dimension of
605 * the stable tree and at the same time remove the old
606 * stable node.
607 */
608 rb_replace_node(&dup->node, &chain->node, root);
609
610 /*
611 * Move the old stable node to the second dimension
612 * queued in the hlist_dup. The invariant is that all
613 * dup stable_nodes in the chain->hlist point to pages
614 * that are write protected and have the exact same
615 * content.
616 */
617 stable_node_chain_add_dup(dup, chain);
618 }
619 return chain;
620 }
621
622 static inline void free_stable_node_chain(struct stable_node *chain,
623 struct rb_root *root)
624 {
625 rb_erase(&chain->node, root);
626 free_stable_node(chain);
627 ksm_stable_node_chains--;
628 }
629
630 static void remove_node_from_stable_tree(struct stable_node *stable_node)
631 {
632 struct rmap_item *rmap_item;
633
634 /* check it's not STABLE_NODE_CHAIN or negative */
635 BUG_ON(stable_node->rmap_hlist_len < 0);
636
637 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
638 if (rmap_item->hlist.next)
639 ksm_pages_sharing--;
640 else
641 ksm_pages_shared--;
642 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
643 stable_node->rmap_hlist_len--;
644 put_anon_vma(rmap_item->anon_vma);
645 rmap_item->address &= PAGE_MASK;
646 cond_resched();
647 }
648
649 /*
650 * We need the second aligned pointer of the migrate_nodes
651 * list_head to stay clear from the rb_parent_color union
652 * (aligned and different than any node) and also different
653 * from &migrate_nodes. This will verify that future list.h changes
654 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
655 */
656 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659 #endif
660
661 if (stable_node->head == &migrate_nodes)
662 list_del(&stable_node->list);
663 else
664 stable_node_dup_del(stable_node);
665 free_stable_node(stable_node);
666 }
667
668 enum get_ksm_page_flags {
669 GET_KSM_PAGE_NOLOCK,
670 GET_KSM_PAGE_LOCK,
671 GET_KSM_PAGE_TRYLOCK
672 };
673
674 /*
675 * get_ksm_page: checks if the page indicated by the stable node
676 * is still its ksm page, despite having held no reference to it.
677 * In which case we can trust the content of the page, and it
678 * returns the gotten page; but if the page has now been zapped,
679 * remove the stale node from the stable tree and return NULL.
680 * But beware, the stable node's page might be being migrated.
681 *
682 * You would expect the stable_node to hold a reference to the ksm page.
683 * But if it increments the page's count, swapping out has to wait for
684 * ksmd to come around again before it can free the page, which may take
685 * seconds or even minutes: much too unresponsive. So instead we use a
686 * "keyhole reference": access to the ksm page from the stable node peeps
687 * out through its keyhole to see if that page still holds the right key,
688 * pointing back to this stable node. This relies on freeing a PageAnon
689 * page to reset its page->mapping to NULL, and relies on no other use of
690 * a page to put something that might look like our key in page->mapping.
691 * is on its way to being freed; but it is an anomaly to bear in mind.
692 */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694 enum get_ksm_page_flags flags)
695 {
696 struct page *page;
697 void *expected_mapping;
698 unsigned long kpfn;
699
700 expected_mapping = (void *)((unsigned long)stable_node |
701 PAGE_MAPPING_KSM);
702 again:
703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704 page = pfn_to_page(kpfn);
705 if (READ_ONCE(page->mapping) != expected_mapping)
706 goto stale;
707
708 /*
709 * We cannot do anything with the page while its refcount is 0.
710 * Usually 0 means free, or tail of a higher-order page: in which
711 * case this node is no longer referenced, and should be freed;
712 * however, it might mean that the page is under page_ref_freeze().
713 * The __remove_mapping() case is easy, again the node is now stale;
714 * the same is in reuse_ksm_page() case; but if page is swapcache
715 * in migrate_page_move_mapping(), it might still be our page,
716 * in which case it's essential to keep the node.
717 */
718 while (!get_page_unless_zero(page)) {
719 /*
720 * Another check for page->mapping != expected_mapping would
721 * work here too. We have chosen the !PageSwapCache test to
722 * optimize the common case, when the page is or is about to
723 * be freed: PageSwapCache is cleared (under spin_lock_irq)
724 * in the ref_freeze section of __remove_mapping(); but Anon
725 * page->mapping reset to NULL later, in free_pages_prepare().
726 */
727 if (!PageSwapCache(page))
728 goto stale;
729 cpu_relax();
730 }
731
732 if (READ_ONCE(page->mapping) != expected_mapping) {
733 put_page(page);
734 goto stale;
735 }
736
737 if (flags == GET_KSM_PAGE_TRYLOCK) {
738 if (!trylock_page(page)) {
739 put_page(page);
740 return ERR_PTR(-EBUSY);
741 }
742 } else if (flags == GET_KSM_PAGE_LOCK)
743 lock_page(page);
744
745 if (flags != GET_KSM_PAGE_NOLOCK) {
746 if (READ_ONCE(page->mapping) != expected_mapping) {
747 unlock_page(page);
748 put_page(page);
749 goto stale;
750 }
751 }
752 return page;
753
754 stale:
755 /*
756 * We come here from above when page->mapping or !PageSwapCache
757 * suggests that the node is stale; but it might be under migration.
758 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
759 * before checking whether node->kpfn has been changed.
760 */
761 smp_rmb();
762 if (READ_ONCE(stable_node->kpfn) != kpfn)
763 goto again;
764 remove_node_from_stable_tree(stable_node);
765 return NULL;
766 }
767
768 /*
769 * Removing rmap_item from stable or unstable tree.
770 * This function will clean the information from the stable/unstable tree.
771 */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774 if (rmap_item->address & STABLE_FLAG) {
775 struct stable_node *stable_node;
776 struct page *page;
777
778 stable_node = rmap_item->head;
779 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
780 if (!page)
781 goto out;
782
783 hlist_del(&rmap_item->hlist);
784 unlock_page(page);
785 put_page(page);
786
787 if (!hlist_empty(&stable_node->hlist))
788 ksm_pages_sharing--;
789 else
790 ksm_pages_shared--;
791 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
792 stable_node->rmap_hlist_len--;
793
794 put_anon_vma(rmap_item->anon_vma);
795 rmap_item->head = NULL;
796 rmap_item->address &= PAGE_MASK;
797
798 } else if (rmap_item->address & UNSTABLE_FLAG) {
799 unsigned char age;
800 /*
801 * Usually ksmd can and must skip the rb_erase, because
802 * root_unstable_tree was already reset to RB_ROOT.
803 * But be careful when an mm is exiting: do the rb_erase
804 * if this rmap_item was inserted by this scan, rather
805 * than left over from before.
806 */
807 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
808 BUG_ON(age > 1);
809 if (!age)
810 rb_erase(&rmap_item->node,
811 root_unstable_tree + NUMA(rmap_item->nid));
812 ksm_pages_unshared--;
813 rmap_item->address &= PAGE_MASK;
814 }
815 out:
816 cond_resched(); /* we're called from many long loops */
817 }
818
819 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
820 {
821 while (*rmap_list) {
822 struct rmap_item *rmap_item = *rmap_list;
823 *rmap_list = rmap_item->rmap_list;
824 remove_rmap_item_from_tree(rmap_item);
825 free_rmap_item(rmap_item);
826 }
827 }
828
829 /*
830 * Though it's very tempting to unmerge rmap_items from stable tree rather
831 * than check every pte of a given vma, the locking doesn't quite work for
832 * that - an rmap_item is assigned to the stable tree after inserting ksm
833 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
834 * rmap_items from parent to child at fork time (so as not to waste time
835 * if exit comes before the next scan reaches it).
836 *
837 * Similarly, although we'd like to remove rmap_items (so updating counts
838 * and freeing memory) when unmerging an area, it's easier to leave that
839 * to the next pass of ksmd - consider, for example, how ksmd might be
840 * in cmp_and_merge_page on one of the rmap_items we would be removing.
841 */
842 static int unmerge_ksm_pages(struct vm_area_struct *vma,
843 unsigned long start, unsigned long end)
844 {
845 unsigned long addr;
846 int err = 0;
847
848 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
849 if (ksm_test_exit(vma->vm_mm))
850 break;
851 if (signal_pending(current))
852 err = -ERESTARTSYS;
853 else
854 err = break_ksm(vma, addr);
855 }
856 return err;
857 }
858
859 static inline struct stable_node *page_stable_node(struct page *page)
860 {
861 return PageKsm(page) ? page_rmapping(page) : NULL;
862 }
863
864 static inline void set_page_stable_node(struct page *page,
865 struct stable_node *stable_node)
866 {
867 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
868 }
869
870 #ifdef CONFIG_SYSFS
871 /*
872 * Only called through the sysfs control interface:
873 */
874 static int remove_stable_node(struct stable_node *stable_node)
875 {
876 struct page *page;
877 int err;
878
879 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
880 if (!page) {
881 /*
882 * get_ksm_page did remove_node_from_stable_tree itself.
883 */
884 return 0;
885 }
886
887 /*
888 * Page could be still mapped if this races with __mmput() running in
889 * between ksm_exit() and exit_mmap(). Just refuse to let
890 * merge_across_nodes/max_page_sharing be switched.
891 */
892 err = -EBUSY;
893 if (!page_mapped(page)) {
894 /*
895 * The stable node did not yet appear stale to get_ksm_page(),
896 * since that allows for an unmapped ksm page to be recognized
897 * right up until it is freed; but the node is safe to remove.
898 * This page might be in a pagevec waiting to be freed,
899 * or it might be PageSwapCache (perhaps under writeback),
900 * or it might have been removed from swapcache a moment ago.
901 */
902 set_page_stable_node(page, NULL);
903 remove_node_from_stable_tree(stable_node);
904 err = 0;
905 }
906
907 unlock_page(page);
908 put_page(page);
909 return err;
910 }
911
912 static int remove_stable_node_chain(struct stable_node *stable_node,
913 struct rb_root *root)
914 {
915 struct stable_node *dup;
916 struct hlist_node *hlist_safe;
917
918 if (!is_stable_node_chain(stable_node)) {
919 VM_BUG_ON(is_stable_node_dup(stable_node));
920 if (remove_stable_node(stable_node))
921 return true;
922 else
923 return false;
924 }
925
926 hlist_for_each_entry_safe(dup, hlist_safe,
927 &stable_node->hlist, hlist_dup) {
928 VM_BUG_ON(!is_stable_node_dup(dup));
929 if (remove_stable_node(dup))
930 return true;
931 }
932 BUG_ON(!hlist_empty(&stable_node->hlist));
933 free_stable_node_chain(stable_node, root);
934 return false;
935 }
936
937 static int remove_all_stable_nodes(void)
938 {
939 struct stable_node *stable_node, *next;
940 int nid;
941 int err = 0;
942
943 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
944 while (root_stable_tree[nid].rb_node) {
945 stable_node = rb_entry(root_stable_tree[nid].rb_node,
946 struct stable_node, node);
947 if (remove_stable_node_chain(stable_node,
948 root_stable_tree + nid)) {
949 err = -EBUSY;
950 break; /* proceed to next nid */
951 }
952 cond_resched();
953 }
954 }
955 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
956 if (remove_stable_node(stable_node))
957 err = -EBUSY;
958 cond_resched();
959 }
960 return err;
961 }
962
963 static int unmerge_and_remove_all_rmap_items(void)
964 {
965 struct mm_slot *mm_slot;
966 struct mm_struct *mm;
967 struct vm_area_struct *vma;
968 int err = 0;
969
970 spin_lock(&ksm_mmlist_lock);
971 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
972 struct mm_slot, mm_list);
973 spin_unlock(&ksm_mmlist_lock);
974
975 for (mm_slot = ksm_scan.mm_slot;
976 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
977 mm = mm_slot->mm;
978 mmap_read_lock(mm);
979 for (vma = mm->mmap; vma; vma = vma->vm_next) {
980 if (ksm_test_exit(mm))
981 break;
982 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
983 continue;
984 err = unmerge_ksm_pages(vma,
985 vma->vm_start, vma->vm_end);
986 if (err)
987 goto error;
988 }
989
990 remove_trailing_rmap_items(&mm_slot->rmap_list);
991 mmap_read_unlock(mm);
992
993 spin_lock(&ksm_mmlist_lock);
994 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
995 struct mm_slot, mm_list);
996 if (ksm_test_exit(mm)) {
997 hash_del(&mm_slot->link);
998 list_del(&mm_slot->mm_list);
999 spin_unlock(&ksm_mmlist_lock);
1000
1001 free_mm_slot(mm_slot);
1002 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1003 mmdrop(mm);
1004 } else
1005 spin_unlock(&ksm_mmlist_lock);
1006 }
1007
1008 /* Clean up stable nodes, but don't worry if some are still busy */
1009 remove_all_stable_nodes();
1010 ksm_scan.seqnr = 0;
1011 return 0;
1012
1013 error:
1014 mmap_read_unlock(mm);
1015 spin_lock(&ksm_mmlist_lock);
1016 ksm_scan.mm_slot = &ksm_mm_head;
1017 spin_unlock(&ksm_mmlist_lock);
1018 return err;
1019 }
1020 #endif /* CONFIG_SYSFS */
1021
1022 static u32 calc_checksum(struct page *page)
1023 {
1024 u32 checksum;
1025 void *addr = kmap_atomic(page);
1026 checksum = xxhash(addr, PAGE_SIZE, 0);
1027 kunmap_atomic(addr);
1028 return checksum;
1029 }
1030
1031 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1032 pte_t *orig_pte)
1033 {
1034 struct mm_struct *mm = vma->vm_mm;
1035 struct page_vma_mapped_walk pvmw = {
1036 .page = page,
1037 .vma = vma,
1038 };
1039 int swapped;
1040 int err = -EFAULT;
1041 struct mmu_notifier_range range;
1042
1043 pvmw.address = page_address_in_vma(page, vma);
1044 if (pvmw.address == -EFAULT)
1045 goto out;
1046
1047 BUG_ON(PageTransCompound(page));
1048
1049 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1050 pvmw.address,
1051 pvmw.address + PAGE_SIZE);
1052 mmu_notifier_invalidate_range_start(&range);
1053
1054 if (!page_vma_mapped_walk(&pvmw))
1055 goto out_mn;
1056 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1057 goto out_unlock;
1058
1059 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1060 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1061 mm_tlb_flush_pending(mm)) {
1062 pte_t entry;
1063
1064 swapped = PageSwapCache(page);
1065 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1066 /*
1067 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1068 * take any lock, therefore the check that we are going to make
1069 * with the pagecount against the mapcount is racy and
1070 * O_DIRECT can happen right after the check.
1071 * So we clear the pte and flush the tlb before the check
1072 * this assure us that no O_DIRECT can happen after the check
1073 * or in the middle of the check.
1074 *
1075 * No need to notify as we are downgrading page table to read
1076 * only not changing it to point to a new page.
1077 *
1078 * See Documentation/vm/mmu_notifier.rst
1079 */
1080 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1081 /*
1082 * Check that no O_DIRECT or similar I/O is in progress on the
1083 * page
1084 */
1085 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1086 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1087 goto out_unlock;
1088 }
1089 if (pte_dirty(entry))
1090 set_page_dirty(page);
1091
1092 if (pte_protnone(entry))
1093 entry = pte_mkclean(pte_clear_savedwrite(entry));
1094 else
1095 entry = pte_mkclean(pte_wrprotect(entry));
1096 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1097 }
1098 *orig_pte = *pvmw.pte;
1099 err = 0;
1100
1101 out_unlock:
1102 page_vma_mapped_walk_done(&pvmw);
1103 out_mn:
1104 mmu_notifier_invalidate_range_end(&range);
1105 out:
1106 return err;
1107 }
1108
1109 /**
1110 * replace_page - replace page in vma by new ksm page
1111 * @vma: vma that holds the pte pointing to page
1112 * @page: the page we are replacing by kpage
1113 * @kpage: the ksm page we replace page by
1114 * @orig_pte: the original value of the pte
1115 *
1116 * Returns 0 on success, -EFAULT on failure.
1117 */
1118 static int replace_page(struct vm_area_struct *vma, struct page *page,
1119 struct page *kpage, pte_t orig_pte)
1120 {
1121 struct mm_struct *mm = vma->vm_mm;
1122 pmd_t *pmd;
1123 pte_t *ptep;
1124 pte_t newpte;
1125 spinlock_t *ptl;
1126 unsigned long addr;
1127 int err = -EFAULT;
1128 struct mmu_notifier_range range;
1129
1130 addr = page_address_in_vma(page, vma);
1131 if (addr == -EFAULT)
1132 goto out;
1133
1134 pmd = mm_find_pmd(mm, addr);
1135 if (!pmd)
1136 goto out;
1137
1138 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1139 addr + PAGE_SIZE);
1140 mmu_notifier_invalidate_range_start(&range);
1141
1142 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1143 if (!pte_same(*ptep, orig_pte)) {
1144 pte_unmap_unlock(ptep, ptl);
1145 goto out_mn;
1146 }
1147
1148 /*
1149 * No need to check ksm_use_zero_pages here: we can only have a
1150 * zero_page here if ksm_use_zero_pages was enabled already.
1151 */
1152 if (!is_zero_pfn(page_to_pfn(kpage))) {
1153 get_page(kpage);
1154 page_add_anon_rmap(kpage, vma, addr, false);
1155 newpte = mk_pte(kpage, vma->vm_page_prot);
1156 } else {
1157 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1158 vma->vm_page_prot));
1159 /*
1160 * We're replacing an anonymous page with a zero page, which is
1161 * not anonymous. We need to do proper accounting otherwise we
1162 * will get wrong values in /proc, and a BUG message in dmesg
1163 * when tearing down the mm.
1164 */
1165 dec_mm_counter(mm, MM_ANONPAGES);
1166 }
1167
1168 flush_cache_page(vma, addr, pte_pfn(*ptep));
1169 /*
1170 * No need to notify as we are replacing a read only page with another
1171 * read only page with the same content.
1172 *
1173 * See Documentation/vm/mmu_notifier.rst
1174 */
1175 ptep_clear_flush(vma, addr, ptep);
1176 set_pte_at_notify(mm, addr, ptep, newpte);
1177
1178 page_remove_rmap(page, false);
1179 if (!page_mapped(page))
1180 try_to_free_swap(page);
1181 put_page(page);
1182
1183 pte_unmap_unlock(ptep, ptl);
1184 err = 0;
1185 out_mn:
1186 mmu_notifier_invalidate_range_end(&range);
1187 out:
1188 return err;
1189 }
1190
1191 /*
1192 * try_to_merge_one_page - take two pages and merge them into one
1193 * @vma: the vma that holds the pte pointing to page
1194 * @page: the PageAnon page that we want to replace with kpage
1195 * @kpage: the PageKsm page that we want to map instead of page,
1196 * or NULL the first time when we want to use page as kpage.
1197 *
1198 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1199 */
1200 static int try_to_merge_one_page(struct vm_area_struct *vma,
1201 struct page *page, struct page *kpage)
1202 {
1203 pte_t orig_pte = __pte(0);
1204 int err = -EFAULT;
1205
1206 if (page == kpage) /* ksm page forked */
1207 return 0;
1208
1209 if (!PageAnon(page))
1210 goto out;
1211
1212 /*
1213 * We need the page lock to read a stable PageSwapCache in
1214 * write_protect_page(). We use trylock_page() instead of
1215 * lock_page() because we don't want to wait here - we
1216 * prefer to continue scanning and merging different pages,
1217 * then come back to this page when it is unlocked.
1218 */
1219 if (!trylock_page(page))
1220 goto out;
1221
1222 if (PageTransCompound(page)) {
1223 if (split_huge_page(page))
1224 goto out_unlock;
1225 }
1226
1227 /*
1228 * If this anonymous page is mapped only here, its pte may need
1229 * to be write-protected. If it's mapped elsewhere, all of its
1230 * ptes are necessarily already write-protected. But in either
1231 * case, we need to lock and check page_count is not raised.
1232 */
1233 if (write_protect_page(vma, page, &orig_pte) == 0) {
1234 if (!kpage) {
1235 /*
1236 * While we hold page lock, upgrade page from
1237 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1238 * stable_tree_insert() will update stable_node.
1239 */
1240 set_page_stable_node(page, NULL);
1241 mark_page_accessed(page);
1242 /*
1243 * Page reclaim just frees a clean page with no dirty
1244 * ptes: make sure that the ksm page would be swapped.
1245 */
1246 if (!PageDirty(page))
1247 SetPageDirty(page);
1248 err = 0;
1249 } else if (pages_identical(page, kpage))
1250 err = replace_page(vma, page, kpage, orig_pte);
1251 }
1252
1253 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1254 munlock_vma_page(page);
1255 if (!PageMlocked(kpage)) {
1256 unlock_page(page);
1257 lock_page(kpage);
1258 mlock_vma_page(kpage);
1259 page = kpage; /* for final unlock */
1260 }
1261 }
1262
1263 out_unlock:
1264 unlock_page(page);
1265 out:
1266 return err;
1267 }
1268
1269 /*
1270 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1271 * but no new kernel page is allocated: kpage must already be a ksm page.
1272 *
1273 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1274 */
1275 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1276 struct page *page, struct page *kpage)
1277 {
1278 struct mm_struct *mm = rmap_item->mm;
1279 struct vm_area_struct *vma;
1280 int err = -EFAULT;
1281
1282 mmap_read_lock(mm);
1283 vma = find_mergeable_vma(mm, rmap_item->address);
1284 if (!vma)
1285 goto out;
1286
1287 err = try_to_merge_one_page(vma, page, kpage);
1288 if (err)
1289 goto out;
1290
1291 /* Unstable nid is in union with stable anon_vma: remove first */
1292 remove_rmap_item_from_tree(rmap_item);
1293
1294 /* Must get reference to anon_vma while still holding mmap_lock */
1295 rmap_item->anon_vma = vma->anon_vma;
1296 get_anon_vma(vma->anon_vma);
1297 out:
1298 mmap_read_unlock(mm);
1299 return err;
1300 }
1301
1302 /*
1303 * try_to_merge_two_pages - take two identical pages and prepare them
1304 * to be merged into one page.
1305 *
1306 * This function returns the kpage if we successfully merged two identical
1307 * pages into one ksm page, NULL otherwise.
1308 *
1309 * Note that this function upgrades page to ksm page: if one of the pages
1310 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1311 */
1312 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1313 struct page *page,
1314 struct rmap_item *tree_rmap_item,
1315 struct page *tree_page)
1316 {
1317 int err;
1318
1319 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1320 if (!err) {
1321 err = try_to_merge_with_ksm_page(tree_rmap_item,
1322 tree_page, page);
1323 /*
1324 * If that fails, we have a ksm page with only one pte
1325 * pointing to it: so break it.
1326 */
1327 if (err)
1328 break_cow(rmap_item);
1329 }
1330 return err ? NULL : page;
1331 }
1332
1333 static __always_inline
1334 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1335 {
1336 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1337 /*
1338 * Check that at least one mapping still exists, otherwise
1339 * there's no much point to merge and share with this
1340 * stable_node, as the underlying tree_page of the other
1341 * sharer is going to be freed soon.
1342 */
1343 return stable_node->rmap_hlist_len &&
1344 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1345 }
1346
1347 static __always_inline
1348 bool is_page_sharing_candidate(struct stable_node *stable_node)
1349 {
1350 return __is_page_sharing_candidate(stable_node, 0);
1351 }
1352
1353 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1354 struct stable_node **_stable_node,
1355 struct rb_root *root,
1356 bool prune_stale_stable_nodes)
1357 {
1358 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1359 struct hlist_node *hlist_safe;
1360 struct page *_tree_page, *tree_page = NULL;
1361 int nr = 0;
1362 int found_rmap_hlist_len;
1363
1364 if (!prune_stale_stable_nodes ||
1365 time_before(jiffies, stable_node->chain_prune_time +
1366 msecs_to_jiffies(
1367 ksm_stable_node_chains_prune_millisecs)))
1368 prune_stale_stable_nodes = false;
1369 else
1370 stable_node->chain_prune_time = jiffies;
1371
1372 hlist_for_each_entry_safe(dup, hlist_safe,
1373 &stable_node->hlist, hlist_dup) {
1374 cond_resched();
1375 /*
1376 * We must walk all stable_node_dup to prune the stale
1377 * stable nodes during lookup.
1378 *
1379 * get_ksm_page can drop the nodes from the
1380 * stable_node->hlist if they point to freed pages
1381 * (that's why we do a _safe walk). The "dup"
1382 * stable_node parameter itself will be freed from
1383 * under us if it returns NULL.
1384 */
1385 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1386 if (!_tree_page)
1387 continue;
1388 nr += 1;
1389 if (is_page_sharing_candidate(dup)) {
1390 if (!found ||
1391 dup->rmap_hlist_len > found_rmap_hlist_len) {
1392 if (found)
1393 put_page(tree_page);
1394 found = dup;
1395 found_rmap_hlist_len = found->rmap_hlist_len;
1396 tree_page = _tree_page;
1397
1398 /* skip put_page for found dup */
1399 if (!prune_stale_stable_nodes)
1400 break;
1401 continue;
1402 }
1403 }
1404 put_page(_tree_page);
1405 }
1406
1407 if (found) {
1408 /*
1409 * nr is counting all dups in the chain only if
1410 * prune_stale_stable_nodes is true, otherwise we may
1411 * break the loop at nr == 1 even if there are
1412 * multiple entries.
1413 */
1414 if (prune_stale_stable_nodes && nr == 1) {
1415 /*
1416 * If there's not just one entry it would
1417 * corrupt memory, better BUG_ON. In KSM
1418 * context with no lock held it's not even
1419 * fatal.
1420 */
1421 BUG_ON(stable_node->hlist.first->next);
1422
1423 /*
1424 * There's just one entry and it is below the
1425 * deduplication limit so drop the chain.
1426 */
1427 rb_replace_node(&stable_node->node, &found->node,
1428 root);
1429 free_stable_node(stable_node);
1430 ksm_stable_node_chains--;
1431 ksm_stable_node_dups--;
1432 /*
1433 * NOTE: the caller depends on the stable_node
1434 * to be equal to stable_node_dup if the chain
1435 * was collapsed.
1436 */
1437 *_stable_node = found;
1438 /*
1439 * Just for robustness, as stable_node is
1440 * otherwise left as a stable pointer, the
1441 * compiler shall optimize it away at build
1442 * time.
1443 */
1444 stable_node = NULL;
1445 } else if (stable_node->hlist.first != &found->hlist_dup &&
1446 __is_page_sharing_candidate(found, 1)) {
1447 /*
1448 * If the found stable_node dup can accept one
1449 * more future merge (in addition to the one
1450 * that is underway) and is not at the head of
1451 * the chain, put it there so next search will
1452 * be quicker in the !prune_stale_stable_nodes
1453 * case.
1454 *
1455 * NOTE: it would be inaccurate to use nr > 1
1456 * instead of checking the hlist.first pointer
1457 * directly, because in the
1458 * prune_stale_stable_nodes case "nr" isn't
1459 * the position of the found dup in the chain,
1460 * but the total number of dups in the chain.
1461 */
1462 hlist_del(&found->hlist_dup);
1463 hlist_add_head(&found->hlist_dup,
1464 &stable_node->hlist);
1465 }
1466 }
1467
1468 *_stable_node_dup = found;
1469 return tree_page;
1470 }
1471
1472 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1473 struct rb_root *root)
1474 {
1475 if (!is_stable_node_chain(stable_node))
1476 return stable_node;
1477 if (hlist_empty(&stable_node->hlist)) {
1478 free_stable_node_chain(stable_node, root);
1479 return NULL;
1480 }
1481 return hlist_entry(stable_node->hlist.first,
1482 typeof(*stable_node), hlist_dup);
1483 }
1484
1485 /*
1486 * Like for get_ksm_page, this function can free the *_stable_node and
1487 * *_stable_node_dup if the returned tree_page is NULL.
1488 *
1489 * It can also free and overwrite *_stable_node with the found
1490 * stable_node_dup if the chain is collapsed (in which case
1491 * *_stable_node will be equal to *_stable_node_dup like if the chain
1492 * never existed). It's up to the caller to verify tree_page is not
1493 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1494 *
1495 * *_stable_node_dup is really a second output parameter of this
1496 * function and will be overwritten in all cases, the caller doesn't
1497 * need to initialize it.
1498 */
1499 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1500 struct stable_node **_stable_node,
1501 struct rb_root *root,
1502 bool prune_stale_stable_nodes)
1503 {
1504 struct stable_node *stable_node = *_stable_node;
1505 if (!is_stable_node_chain(stable_node)) {
1506 if (is_page_sharing_candidate(stable_node)) {
1507 *_stable_node_dup = stable_node;
1508 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1509 }
1510 /*
1511 * _stable_node_dup set to NULL means the stable_node
1512 * reached the ksm_max_page_sharing limit.
1513 */
1514 *_stable_node_dup = NULL;
1515 return NULL;
1516 }
1517 return stable_node_dup(_stable_node_dup, _stable_node, root,
1518 prune_stale_stable_nodes);
1519 }
1520
1521 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1522 struct stable_node **s_n,
1523 struct rb_root *root)
1524 {
1525 return __stable_node_chain(s_n_d, s_n, root, true);
1526 }
1527
1528 static __always_inline struct page *chain(struct stable_node **s_n_d,
1529 struct stable_node *s_n,
1530 struct rb_root *root)
1531 {
1532 struct stable_node *old_stable_node = s_n;
1533 struct page *tree_page;
1534
1535 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1536 /* not pruning dups so s_n cannot have changed */
1537 VM_BUG_ON(s_n != old_stable_node);
1538 return tree_page;
1539 }
1540
1541 /*
1542 * stable_tree_search - search for page inside the stable tree
1543 *
1544 * This function checks if there is a page inside the stable tree
1545 * with identical content to the page that we are scanning right now.
1546 *
1547 * This function returns the stable tree node of identical content if found,
1548 * NULL otherwise.
1549 */
1550 static struct page *stable_tree_search(struct page *page)
1551 {
1552 int nid;
1553 struct rb_root *root;
1554 struct rb_node **new;
1555 struct rb_node *parent;
1556 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1557 struct stable_node *page_node;
1558
1559 page_node = page_stable_node(page);
1560 if (page_node && page_node->head != &migrate_nodes) {
1561 /* ksm page forked */
1562 get_page(page);
1563 return page;
1564 }
1565
1566 nid = get_kpfn_nid(page_to_pfn(page));
1567 root = root_stable_tree + nid;
1568 again:
1569 new = &root->rb_node;
1570 parent = NULL;
1571
1572 while (*new) {
1573 struct page *tree_page;
1574 int ret;
1575
1576 cond_resched();
1577 stable_node = rb_entry(*new, struct stable_node, node);
1578 stable_node_any = NULL;
1579 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1580 /*
1581 * NOTE: stable_node may have been freed by
1582 * chain_prune() if the returned stable_node_dup is
1583 * not NULL. stable_node_dup may have been inserted in
1584 * the rbtree instead as a regular stable_node (in
1585 * order to collapse the stable_node chain if a single
1586 * stable_node dup was found in it). In such case the
1587 * stable_node is overwritten by the calleee to point
1588 * to the stable_node_dup that was collapsed in the
1589 * stable rbtree and stable_node will be equal to
1590 * stable_node_dup like if the chain never existed.
1591 */
1592 if (!stable_node_dup) {
1593 /*
1594 * Either all stable_node dups were full in
1595 * this stable_node chain, or this chain was
1596 * empty and should be rb_erased.
1597 */
1598 stable_node_any = stable_node_dup_any(stable_node,
1599 root);
1600 if (!stable_node_any) {
1601 /* rb_erase just run */
1602 goto again;
1603 }
1604 /*
1605 * Take any of the stable_node dups page of
1606 * this stable_node chain to let the tree walk
1607 * continue. All KSM pages belonging to the
1608 * stable_node dups in a stable_node chain
1609 * have the same content and they're
1610 * write protected at all times. Any will work
1611 * fine to continue the walk.
1612 */
1613 tree_page = get_ksm_page(stable_node_any,
1614 GET_KSM_PAGE_NOLOCK);
1615 }
1616 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1617 if (!tree_page) {
1618 /*
1619 * If we walked over a stale stable_node,
1620 * get_ksm_page() will call rb_erase() and it
1621 * may rebalance the tree from under us. So
1622 * restart the search from scratch. Returning
1623 * NULL would be safe too, but we'd generate
1624 * false negative insertions just because some
1625 * stable_node was stale.
1626 */
1627 goto again;
1628 }
1629
1630 ret = memcmp_pages(page, tree_page);
1631 put_page(tree_page);
1632
1633 parent = *new;
1634 if (ret < 0)
1635 new = &parent->rb_left;
1636 else if (ret > 0)
1637 new = &parent->rb_right;
1638 else {
1639 if (page_node) {
1640 VM_BUG_ON(page_node->head != &migrate_nodes);
1641 /*
1642 * Test if the migrated page should be merged
1643 * into a stable node dup. If the mapcount is
1644 * 1 we can migrate it with another KSM page
1645 * without adding it to the chain.
1646 */
1647 if (page_mapcount(page) > 1)
1648 goto chain_append;
1649 }
1650
1651 if (!stable_node_dup) {
1652 /*
1653 * If the stable_node is a chain and
1654 * we got a payload match in memcmp
1655 * but we cannot merge the scanned
1656 * page in any of the existing
1657 * stable_node dups because they're
1658 * all full, we need to wait the
1659 * scanned page to find itself a match
1660 * in the unstable tree to create a
1661 * brand new KSM page to add later to
1662 * the dups of this stable_node.
1663 */
1664 return NULL;
1665 }
1666
1667 /*
1668 * Lock and unlock the stable_node's page (which
1669 * might already have been migrated) so that page
1670 * migration is sure to notice its raised count.
1671 * It would be more elegant to return stable_node
1672 * than kpage, but that involves more changes.
1673 */
1674 tree_page = get_ksm_page(stable_node_dup,
1675 GET_KSM_PAGE_TRYLOCK);
1676
1677 if (PTR_ERR(tree_page) == -EBUSY)
1678 return ERR_PTR(-EBUSY);
1679
1680 if (unlikely(!tree_page))
1681 /*
1682 * The tree may have been rebalanced,
1683 * so re-evaluate parent and new.
1684 */
1685 goto again;
1686 unlock_page(tree_page);
1687
1688 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1689 NUMA(stable_node_dup->nid)) {
1690 put_page(tree_page);
1691 goto replace;
1692 }
1693 return tree_page;
1694 }
1695 }
1696
1697 if (!page_node)
1698 return NULL;
1699
1700 list_del(&page_node->list);
1701 DO_NUMA(page_node->nid = nid);
1702 rb_link_node(&page_node->node, parent, new);
1703 rb_insert_color(&page_node->node, root);
1704 out:
1705 if (is_page_sharing_candidate(page_node)) {
1706 get_page(page);
1707 return page;
1708 } else
1709 return NULL;
1710
1711 replace:
1712 /*
1713 * If stable_node was a chain and chain_prune collapsed it,
1714 * stable_node has been updated to be the new regular
1715 * stable_node. A collapse of the chain is indistinguishable
1716 * from the case there was no chain in the stable
1717 * rbtree. Otherwise stable_node is the chain and
1718 * stable_node_dup is the dup to replace.
1719 */
1720 if (stable_node_dup == stable_node) {
1721 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1722 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1723 /* there is no chain */
1724 if (page_node) {
1725 VM_BUG_ON(page_node->head != &migrate_nodes);
1726 list_del(&page_node->list);
1727 DO_NUMA(page_node->nid = nid);
1728 rb_replace_node(&stable_node_dup->node,
1729 &page_node->node,
1730 root);
1731 if (is_page_sharing_candidate(page_node))
1732 get_page(page);
1733 else
1734 page = NULL;
1735 } else {
1736 rb_erase(&stable_node_dup->node, root);
1737 page = NULL;
1738 }
1739 } else {
1740 VM_BUG_ON(!is_stable_node_chain(stable_node));
1741 __stable_node_dup_del(stable_node_dup);
1742 if (page_node) {
1743 VM_BUG_ON(page_node->head != &migrate_nodes);
1744 list_del(&page_node->list);
1745 DO_NUMA(page_node->nid = nid);
1746 stable_node_chain_add_dup(page_node, stable_node);
1747 if (is_page_sharing_candidate(page_node))
1748 get_page(page);
1749 else
1750 page = NULL;
1751 } else {
1752 page = NULL;
1753 }
1754 }
1755 stable_node_dup->head = &migrate_nodes;
1756 list_add(&stable_node_dup->list, stable_node_dup->head);
1757 return page;
1758
1759 chain_append:
1760 /* stable_node_dup could be null if it reached the limit */
1761 if (!stable_node_dup)
1762 stable_node_dup = stable_node_any;
1763 /*
1764 * If stable_node was a chain and chain_prune collapsed it,
1765 * stable_node has been updated to be the new regular
1766 * stable_node. A collapse of the chain is indistinguishable
1767 * from the case there was no chain in the stable
1768 * rbtree. Otherwise stable_node is the chain and
1769 * stable_node_dup is the dup to replace.
1770 */
1771 if (stable_node_dup == stable_node) {
1772 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1773 /* chain is missing so create it */
1774 stable_node = alloc_stable_node_chain(stable_node_dup,
1775 root);
1776 if (!stable_node)
1777 return NULL;
1778 }
1779 /*
1780 * Add this stable_node dup that was
1781 * migrated to the stable_node chain
1782 * of the current nid for this page
1783 * content.
1784 */
1785 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1786 VM_BUG_ON(page_node->head != &migrate_nodes);
1787 list_del(&page_node->list);
1788 DO_NUMA(page_node->nid = nid);
1789 stable_node_chain_add_dup(page_node, stable_node);
1790 goto out;
1791 }
1792
1793 /*
1794 * stable_tree_insert - insert stable tree node pointing to new ksm page
1795 * into the stable tree.
1796 *
1797 * This function returns the stable tree node just allocated on success,
1798 * NULL otherwise.
1799 */
1800 static struct stable_node *stable_tree_insert(struct page *kpage)
1801 {
1802 int nid;
1803 unsigned long kpfn;
1804 struct rb_root *root;
1805 struct rb_node **new;
1806 struct rb_node *parent;
1807 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1808 bool need_chain = false;
1809
1810 kpfn = page_to_pfn(kpage);
1811 nid = get_kpfn_nid(kpfn);
1812 root = root_stable_tree + nid;
1813 again:
1814 parent = NULL;
1815 new = &root->rb_node;
1816
1817 while (*new) {
1818 struct page *tree_page;
1819 int ret;
1820
1821 cond_resched();
1822 stable_node = rb_entry(*new, struct stable_node, node);
1823 stable_node_any = NULL;
1824 tree_page = chain(&stable_node_dup, stable_node, root);
1825 if (!stable_node_dup) {
1826 /*
1827 * Either all stable_node dups were full in
1828 * this stable_node chain, or this chain was
1829 * empty and should be rb_erased.
1830 */
1831 stable_node_any = stable_node_dup_any(stable_node,
1832 root);
1833 if (!stable_node_any) {
1834 /* rb_erase just run */
1835 goto again;
1836 }
1837 /*
1838 * Take any of the stable_node dups page of
1839 * this stable_node chain to let the tree walk
1840 * continue. All KSM pages belonging to the
1841 * stable_node dups in a stable_node chain
1842 * have the same content and they're
1843 * write protected at all times. Any will work
1844 * fine to continue the walk.
1845 */
1846 tree_page = get_ksm_page(stable_node_any,
1847 GET_KSM_PAGE_NOLOCK);
1848 }
1849 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1850 if (!tree_page) {
1851 /*
1852 * If we walked over a stale stable_node,
1853 * get_ksm_page() will call rb_erase() and it
1854 * may rebalance the tree from under us. So
1855 * restart the search from scratch. Returning
1856 * NULL would be safe too, but we'd generate
1857 * false negative insertions just because some
1858 * stable_node was stale.
1859 */
1860 goto again;
1861 }
1862
1863 ret = memcmp_pages(kpage, tree_page);
1864 put_page(tree_page);
1865
1866 parent = *new;
1867 if (ret < 0)
1868 new = &parent->rb_left;
1869 else if (ret > 0)
1870 new = &parent->rb_right;
1871 else {
1872 need_chain = true;
1873 break;
1874 }
1875 }
1876
1877 stable_node_dup = alloc_stable_node();
1878 if (!stable_node_dup)
1879 return NULL;
1880
1881 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1882 stable_node_dup->kpfn = kpfn;
1883 set_page_stable_node(kpage, stable_node_dup);
1884 stable_node_dup->rmap_hlist_len = 0;
1885 DO_NUMA(stable_node_dup->nid = nid);
1886 if (!need_chain) {
1887 rb_link_node(&stable_node_dup->node, parent, new);
1888 rb_insert_color(&stable_node_dup->node, root);
1889 } else {
1890 if (!is_stable_node_chain(stable_node)) {
1891 struct stable_node *orig = stable_node;
1892 /* chain is missing so create it */
1893 stable_node = alloc_stable_node_chain(orig, root);
1894 if (!stable_node) {
1895 free_stable_node(stable_node_dup);
1896 return NULL;
1897 }
1898 }
1899 stable_node_chain_add_dup(stable_node_dup, stable_node);
1900 }
1901
1902 return stable_node_dup;
1903 }
1904
1905 /*
1906 * unstable_tree_search_insert - search for identical page,
1907 * else insert rmap_item into the unstable tree.
1908 *
1909 * This function searches for a page in the unstable tree identical to the
1910 * page currently being scanned; and if no identical page is found in the
1911 * tree, we insert rmap_item as a new object into the unstable tree.
1912 *
1913 * This function returns pointer to rmap_item found to be identical
1914 * to the currently scanned page, NULL otherwise.
1915 *
1916 * This function does both searching and inserting, because they share
1917 * the same walking algorithm in an rbtree.
1918 */
1919 static
1920 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1921 struct page *page,
1922 struct page **tree_pagep)
1923 {
1924 struct rb_node **new;
1925 struct rb_root *root;
1926 struct rb_node *parent = NULL;
1927 int nid;
1928
1929 nid = get_kpfn_nid(page_to_pfn(page));
1930 root = root_unstable_tree + nid;
1931 new = &root->rb_node;
1932
1933 while (*new) {
1934 struct rmap_item *tree_rmap_item;
1935 struct page *tree_page;
1936 int ret;
1937
1938 cond_resched();
1939 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1940 tree_page = get_mergeable_page(tree_rmap_item);
1941 if (!tree_page)
1942 return NULL;
1943
1944 /*
1945 * Don't substitute a ksm page for a forked page.
1946 */
1947 if (page == tree_page) {
1948 put_page(tree_page);
1949 return NULL;
1950 }
1951
1952 ret = memcmp_pages(page, tree_page);
1953
1954 parent = *new;
1955 if (ret < 0) {
1956 put_page(tree_page);
1957 new = &parent->rb_left;
1958 } else if (ret > 0) {
1959 put_page(tree_page);
1960 new = &parent->rb_right;
1961 } else if (!ksm_merge_across_nodes &&
1962 page_to_nid(tree_page) != nid) {
1963 /*
1964 * If tree_page has been migrated to another NUMA node,
1965 * it will be flushed out and put in the right unstable
1966 * tree next time: only merge with it when across_nodes.
1967 */
1968 put_page(tree_page);
1969 return NULL;
1970 } else {
1971 *tree_pagep = tree_page;
1972 return tree_rmap_item;
1973 }
1974 }
1975
1976 rmap_item->address |= UNSTABLE_FLAG;
1977 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1978 DO_NUMA(rmap_item->nid = nid);
1979 rb_link_node(&rmap_item->node, parent, new);
1980 rb_insert_color(&rmap_item->node, root);
1981
1982 ksm_pages_unshared++;
1983 return NULL;
1984 }
1985
1986 /*
1987 * stable_tree_append - add another rmap_item to the linked list of
1988 * rmap_items hanging off a given node of the stable tree, all sharing
1989 * the same ksm page.
1990 */
1991 static void stable_tree_append(struct rmap_item *rmap_item,
1992 struct stable_node *stable_node,
1993 bool max_page_sharing_bypass)
1994 {
1995 /*
1996 * rmap won't find this mapping if we don't insert the
1997 * rmap_item in the right stable_node
1998 * duplicate. page_migration could break later if rmap breaks,
1999 * so we can as well crash here. We really need to check for
2000 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2001 * for other negative values as an underflow if detected here
2002 * for the first time (and not when decreasing rmap_hlist_len)
2003 * would be sign of memory corruption in the stable_node.
2004 */
2005 BUG_ON(stable_node->rmap_hlist_len < 0);
2006
2007 stable_node->rmap_hlist_len++;
2008 if (!max_page_sharing_bypass)
2009 /* possibly non fatal but unexpected overflow, only warn */
2010 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2011 ksm_max_page_sharing);
2012
2013 rmap_item->head = stable_node;
2014 rmap_item->address |= STABLE_FLAG;
2015 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2016
2017 if (rmap_item->hlist.next)
2018 ksm_pages_sharing++;
2019 else
2020 ksm_pages_shared++;
2021 }
2022
2023 /*
2024 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2025 * if not, compare checksum to previous and if it's the same, see if page can
2026 * be inserted into the unstable tree, or merged with a page already there and
2027 * both transferred to the stable tree.
2028 *
2029 * @page: the page that we are searching identical page to.
2030 * @rmap_item: the reverse mapping into the virtual address of this page
2031 */
2032 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2033 {
2034 struct mm_struct *mm = rmap_item->mm;
2035 struct rmap_item *tree_rmap_item;
2036 struct page *tree_page = NULL;
2037 struct stable_node *stable_node;
2038 struct page *kpage;
2039 unsigned int checksum;
2040 int err;
2041 bool max_page_sharing_bypass = false;
2042
2043 stable_node = page_stable_node(page);
2044 if (stable_node) {
2045 if (stable_node->head != &migrate_nodes &&
2046 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2047 NUMA(stable_node->nid)) {
2048 stable_node_dup_del(stable_node);
2049 stable_node->head = &migrate_nodes;
2050 list_add(&stable_node->list, stable_node->head);
2051 }
2052 if (stable_node->head != &migrate_nodes &&
2053 rmap_item->head == stable_node)
2054 return;
2055 /*
2056 * If it's a KSM fork, allow it to go over the sharing limit
2057 * without warnings.
2058 */
2059 if (!is_page_sharing_candidate(stable_node))
2060 max_page_sharing_bypass = true;
2061 }
2062
2063 /* We first start with searching the page inside the stable tree */
2064 kpage = stable_tree_search(page);
2065 if (kpage == page && rmap_item->head == stable_node) {
2066 put_page(kpage);
2067 return;
2068 }
2069
2070 remove_rmap_item_from_tree(rmap_item);
2071
2072 if (kpage) {
2073 if (PTR_ERR(kpage) == -EBUSY)
2074 return;
2075
2076 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2077 if (!err) {
2078 /*
2079 * The page was successfully merged:
2080 * add its rmap_item to the stable tree.
2081 */
2082 lock_page(kpage);
2083 stable_tree_append(rmap_item, page_stable_node(kpage),
2084 max_page_sharing_bypass);
2085 unlock_page(kpage);
2086 }
2087 put_page(kpage);
2088 return;
2089 }
2090
2091 /*
2092 * If the hash value of the page has changed from the last time
2093 * we calculated it, this page is changing frequently: therefore we
2094 * don't want to insert it in the unstable tree, and we don't want
2095 * to waste our time searching for something identical to it there.
2096 */
2097 checksum = calc_checksum(page);
2098 if (rmap_item->oldchecksum != checksum) {
2099 rmap_item->oldchecksum = checksum;
2100 return;
2101 }
2102
2103 /*
2104 * Same checksum as an empty page. We attempt to merge it with the
2105 * appropriate zero page if the user enabled this via sysfs.
2106 */
2107 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2108 struct vm_area_struct *vma;
2109
2110 mmap_read_lock(mm);
2111 vma = find_mergeable_vma(mm, rmap_item->address);
2112 if (vma) {
2113 err = try_to_merge_one_page(vma, page,
2114 ZERO_PAGE(rmap_item->address));
2115 } else {
2116 /*
2117 * If the vma is out of date, we do not need to
2118 * continue.
2119 */
2120 err = 0;
2121 }
2122 mmap_read_unlock(mm);
2123 /*
2124 * In case of failure, the page was not really empty, so we
2125 * need to continue. Otherwise we're done.
2126 */
2127 if (!err)
2128 return;
2129 }
2130 tree_rmap_item =
2131 unstable_tree_search_insert(rmap_item, page, &tree_page);
2132 if (tree_rmap_item) {
2133 bool split;
2134
2135 kpage = try_to_merge_two_pages(rmap_item, page,
2136 tree_rmap_item, tree_page);
2137 /*
2138 * If both pages we tried to merge belong to the same compound
2139 * page, then we actually ended up increasing the reference
2140 * count of the same compound page twice, and split_huge_page
2141 * failed.
2142 * Here we set a flag if that happened, and we use it later to
2143 * try split_huge_page again. Since we call put_page right
2144 * afterwards, the reference count will be correct and
2145 * split_huge_page should succeed.
2146 */
2147 split = PageTransCompound(page)
2148 && compound_head(page) == compound_head(tree_page);
2149 put_page(tree_page);
2150 if (kpage) {
2151 /*
2152 * The pages were successfully merged: insert new
2153 * node in the stable tree and add both rmap_items.
2154 */
2155 lock_page(kpage);
2156 stable_node = stable_tree_insert(kpage);
2157 if (stable_node) {
2158 stable_tree_append(tree_rmap_item, stable_node,
2159 false);
2160 stable_tree_append(rmap_item, stable_node,
2161 false);
2162 }
2163 unlock_page(kpage);
2164
2165 /*
2166 * If we fail to insert the page into the stable tree,
2167 * we will have 2 virtual addresses that are pointing
2168 * to a ksm page left outside the stable tree,
2169 * in which case we need to break_cow on both.
2170 */
2171 if (!stable_node) {
2172 break_cow(tree_rmap_item);
2173 break_cow(rmap_item);
2174 }
2175 } else if (split) {
2176 /*
2177 * We are here if we tried to merge two pages and
2178 * failed because they both belonged to the same
2179 * compound page. We will split the page now, but no
2180 * merging will take place.
2181 * We do not want to add the cost of a full lock; if
2182 * the page is locked, it is better to skip it and
2183 * perhaps try again later.
2184 */
2185 if (!trylock_page(page))
2186 return;
2187 split_huge_page(page);
2188 unlock_page(page);
2189 }
2190 }
2191 }
2192
2193 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2194 struct rmap_item **rmap_list,
2195 unsigned long addr)
2196 {
2197 struct rmap_item *rmap_item;
2198
2199 while (*rmap_list) {
2200 rmap_item = *rmap_list;
2201 if ((rmap_item->address & PAGE_MASK) == addr)
2202 return rmap_item;
2203 if (rmap_item->address > addr)
2204 break;
2205 *rmap_list = rmap_item->rmap_list;
2206 remove_rmap_item_from_tree(rmap_item);
2207 free_rmap_item(rmap_item);
2208 }
2209
2210 rmap_item = alloc_rmap_item();
2211 if (rmap_item) {
2212 /* It has already been zeroed */
2213 rmap_item->mm = mm_slot->mm;
2214 rmap_item->address = addr;
2215 rmap_item->rmap_list = *rmap_list;
2216 *rmap_list = rmap_item;
2217 }
2218 return rmap_item;
2219 }
2220
2221 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2222 {
2223 struct mm_struct *mm;
2224 struct mm_slot *slot;
2225 struct vm_area_struct *vma;
2226 struct rmap_item *rmap_item;
2227 int nid;
2228
2229 if (list_empty(&ksm_mm_head.mm_list))
2230 return NULL;
2231
2232 slot = ksm_scan.mm_slot;
2233 if (slot == &ksm_mm_head) {
2234 /*
2235 * A number of pages can hang around indefinitely on per-cpu
2236 * pagevecs, raised page count preventing write_protect_page
2237 * from merging them. Though it doesn't really matter much,
2238 * it is puzzling to see some stuck in pages_volatile until
2239 * other activity jostles them out, and they also prevented
2240 * LTP's KSM test from succeeding deterministically; so drain
2241 * them here (here rather than on entry to ksm_do_scan(),
2242 * so we don't IPI too often when pages_to_scan is set low).
2243 */
2244 lru_add_drain_all();
2245
2246 /*
2247 * Whereas stale stable_nodes on the stable_tree itself
2248 * get pruned in the regular course of stable_tree_search(),
2249 * those moved out to the migrate_nodes list can accumulate:
2250 * so prune them once before each full scan.
2251 */
2252 if (!ksm_merge_across_nodes) {
2253 struct stable_node *stable_node, *next;
2254 struct page *page;
2255
2256 list_for_each_entry_safe(stable_node, next,
2257 &migrate_nodes, list) {
2258 page = get_ksm_page(stable_node,
2259 GET_KSM_PAGE_NOLOCK);
2260 if (page)
2261 put_page(page);
2262 cond_resched();
2263 }
2264 }
2265
2266 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2267 root_unstable_tree[nid] = RB_ROOT;
2268
2269 spin_lock(&ksm_mmlist_lock);
2270 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2271 ksm_scan.mm_slot = slot;
2272 spin_unlock(&ksm_mmlist_lock);
2273 /*
2274 * Although we tested list_empty() above, a racing __ksm_exit
2275 * of the last mm on the list may have removed it since then.
2276 */
2277 if (slot == &ksm_mm_head)
2278 return NULL;
2279 next_mm:
2280 ksm_scan.address = 0;
2281 ksm_scan.rmap_list = &slot->rmap_list;
2282 }
2283
2284 mm = slot->mm;
2285 mmap_read_lock(mm);
2286 if (ksm_test_exit(mm))
2287 vma = NULL;
2288 else
2289 vma = find_vma(mm, ksm_scan.address);
2290
2291 for (; vma; vma = vma->vm_next) {
2292 if (!(vma->vm_flags & VM_MERGEABLE))
2293 continue;
2294 if (ksm_scan.address < vma->vm_start)
2295 ksm_scan.address = vma->vm_start;
2296 if (!vma->anon_vma)
2297 ksm_scan.address = vma->vm_end;
2298
2299 while (ksm_scan.address < vma->vm_end) {
2300 if (ksm_test_exit(mm))
2301 break;
2302 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2303 if (IS_ERR_OR_NULL(*page)) {
2304 ksm_scan.address += PAGE_SIZE;
2305 cond_resched();
2306 continue;
2307 }
2308 if (PageAnon(*page)) {
2309 flush_anon_page(vma, *page, ksm_scan.address);
2310 flush_dcache_page(*page);
2311 rmap_item = get_next_rmap_item(slot,
2312 ksm_scan.rmap_list, ksm_scan.address);
2313 if (rmap_item) {
2314 ksm_scan.rmap_list =
2315 &rmap_item->rmap_list;
2316 ksm_scan.address += PAGE_SIZE;
2317 } else
2318 put_page(*page);
2319 mmap_read_unlock(mm);
2320 return rmap_item;
2321 }
2322 put_page(*page);
2323 ksm_scan.address += PAGE_SIZE;
2324 cond_resched();
2325 }
2326 }
2327
2328 if (ksm_test_exit(mm)) {
2329 ksm_scan.address = 0;
2330 ksm_scan.rmap_list = &slot->rmap_list;
2331 }
2332 /*
2333 * Nuke all the rmap_items that are above this current rmap:
2334 * because there were no VM_MERGEABLE vmas with such addresses.
2335 */
2336 remove_trailing_rmap_items(ksm_scan.rmap_list);
2337
2338 spin_lock(&ksm_mmlist_lock);
2339 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2340 struct mm_slot, mm_list);
2341 if (ksm_scan.address == 0) {
2342 /*
2343 * We've completed a full scan of all vmas, holding mmap_lock
2344 * throughout, and found no VM_MERGEABLE: so do the same as
2345 * __ksm_exit does to remove this mm from all our lists now.
2346 * This applies either when cleaning up after __ksm_exit
2347 * (but beware: we can reach here even before __ksm_exit),
2348 * or when all VM_MERGEABLE areas have been unmapped (and
2349 * mmap_lock then protects against race with MADV_MERGEABLE).
2350 */
2351 hash_del(&slot->link);
2352 list_del(&slot->mm_list);
2353 spin_unlock(&ksm_mmlist_lock);
2354
2355 free_mm_slot(slot);
2356 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2357 mmap_read_unlock(mm);
2358 mmdrop(mm);
2359 } else {
2360 mmap_read_unlock(mm);
2361 /*
2362 * mmap_read_unlock(mm) first because after
2363 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2364 * already have been freed under us by __ksm_exit()
2365 * because the "mm_slot" is still hashed and
2366 * ksm_scan.mm_slot doesn't point to it anymore.
2367 */
2368 spin_unlock(&ksm_mmlist_lock);
2369 }
2370
2371 /* Repeat until we've completed scanning the whole list */
2372 slot = ksm_scan.mm_slot;
2373 if (slot != &ksm_mm_head)
2374 goto next_mm;
2375
2376 ksm_scan.seqnr++;
2377 return NULL;
2378 }
2379
2380 /**
2381 * ksm_do_scan - the ksm scanner main worker function.
2382 * @scan_npages: number of pages we want to scan before we return.
2383 */
2384 static void ksm_do_scan(unsigned int scan_npages)
2385 {
2386 struct rmap_item *rmap_item;
2387 struct page *page;
2388
2389 while (scan_npages-- && likely(!freezing(current))) {
2390 cond_resched();
2391 rmap_item = scan_get_next_rmap_item(&page);
2392 if (!rmap_item)
2393 return;
2394 cmp_and_merge_page(page, rmap_item);
2395 put_page(page);
2396 }
2397 }
2398
2399 static int ksmd_should_run(void)
2400 {
2401 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2402 }
2403
2404 static int ksm_scan_thread(void *nothing)
2405 {
2406 unsigned int sleep_ms;
2407
2408 set_freezable();
2409 set_user_nice(current, 5);
2410
2411 while (!kthread_should_stop()) {
2412 mutex_lock(&ksm_thread_mutex);
2413 wait_while_offlining();
2414 if (ksmd_should_run())
2415 ksm_do_scan(ksm_thread_pages_to_scan);
2416 mutex_unlock(&ksm_thread_mutex);
2417
2418 try_to_freeze();
2419
2420 if (ksmd_should_run()) {
2421 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2422 if (sleep_ms >= 1000)
2423 wait_event_interruptible_timeout(ksm_iter_wait,
2424 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2425 msecs_to_jiffies(round_jiffies_relative(sleep_ms)));
2426 else
2427 wait_event_interruptible_timeout(ksm_iter_wait,
2428 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2429 msecs_to_jiffies(sleep_ms));
2430 } else {
2431 wait_event_freezable(ksm_thread_wait,
2432 ksmd_should_run() || kthread_should_stop());
2433 }
2434 }
2435 return 0;
2436 }
2437
2438 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2439 unsigned long end, int advice, unsigned long *vm_flags)
2440 {
2441 struct mm_struct *mm = vma->vm_mm;
2442 int err;
2443
2444 switch (advice) {
2445 case MADV_MERGEABLE:
2446 /*
2447 * Be somewhat over-protective for now!
2448 */
2449 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2450 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2451 VM_HUGETLB | VM_MIXEDMAP))
2452 return 0; /* just ignore the advice */
2453
2454 if (vma_is_dax(vma))
2455 return 0;
2456
2457 #ifdef VM_SAO
2458 if (*vm_flags & VM_SAO)
2459 return 0;
2460 #endif
2461 #ifdef VM_SPARC_ADI
2462 if (*vm_flags & VM_SPARC_ADI)
2463 return 0;
2464 #endif
2465
2466 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2467 err = __ksm_enter(mm);
2468 if (err)
2469 return err;
2470 }
2471
2472 *vm_flags |= VM_MERGEABLE;
2473 break;
2474
2475 case MADV_UNMERGEABLE:
2476 if (!(*vm_flags & VM_MERGEABLE))
2477 return 0; /* just ignore the advice */
2478
2479 if (vma->anon_vma) {
2480 err = unmerge_ksm_pages(vma, start, end);
2481 if (err)
2482 return err;
2483 }
2484
2485 *vm_flags &= ~VM_MERGEABLE;
2486 break;
2487 }
2488
2489 return 0;
2490 }
2491 EXPORT_SYMBOL_GPL(ksm_madvise);
2492
2493 int __ksm_enter(struct mm_struct *mm)
2494 {
2495 struct mm_slot *mm_slot;
2496 int needs_wakeup;
2497
2498 mm_slot = alloc_mm_slot();
2499 if (!mm_slot)
2500 return -ENOMEM;
2501
2502 /* Check ksm_run too? Would need tighter locking */
2503 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2504
2505 spin_lock(&ksm_mmlist_lock);
2506 insert_to_mm_slots_hash(mm, mm_slot);
2507 /*
2508 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2509 * insert just behind the scanning cursor, to let the area settle
2510 * down a little; when fork is followed by immediate exec, we don't
2511 * want ksmd to waste time setting up and tearing down an rmap_list.
2512 *
2513 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2514 * scanning cursor, otherwise KSM pages in newly forked mms will be
2515 * missed: then we might as well insert at the end of the list.
2516 */
2517 if (ksm_run & KSM_RUN_UNMERGE)
2518 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2519 else
2520 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2521 spin_unlock(&ksm_mmlist_lock);
2522
2523 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2524 mmgrab(mm);
2525
2526 if (needs_wakeup)
2527 wake_up_interruptible(&ksm_thread_wait);
2528
2529 return 0;
2530 }
2531
2532 void __ksm_exit(struct mm_struct *mm)
2533 {
2534 struct mm_slot *mm_slot;
2535 int easy_to_free = 0;
2536
2537 /*
2538 * This process is exiting: if it's straightforward (as is the
2539 * case when ksmd was never running), free mm_slot immediately.
2540 * But if it's at the cursor or has rmap_items linked to it, use
2541 * mmap_lock to synchronize with any break_cows before pagetables
2542 * are freed, and leave the mm_slot on the list for ksmd to free.
2543 * Beware: ksm may already have noticed it exiting and freed the slot.
2544 */
2545
2546 spin_lock(&ksm_mmlist_lock);
2547 mm_slot = get_mm_slot(mm);
2548 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2549 if (!mm_slot->rmap_list) {
2550 hash_del(&mm_slot->link);
2551 list_del(&mm_slot->mm_list);
2552 easy_to_free = 1;
2553 } else {
2554 list_move(&mm_slot->mm_list,
2555 &ksm_scan.mm_slot->mm_list);
2556 }
2557 }
2558 spin_unlock(&ksm_mmlist_lock);
2559
2560 if (easy_to_free) {
2561 free_mm_slot(mm_slot);
2562 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2563 mmdrop(mm);
2564 } else if (mm_slot) {
2565 mmap_write_lock(mm);
2566 mmap_write_unlock(mm);
2567 }
2568 }
2569
2570 struct page *ksm_might_need_to_copy(struct page *page,
2571 struct vm_area_struct *vma, unsigned long address)
2572 {
2573 struct anon_vma *anon_vma = page_anon_vma(page);
2574 struct page *new_page;
2575
2576 if (PageKsm(page)) {
2577 if (page_stable_node(page) &&
2578 !(ksm_run & KSM_RUN_UNMERGE))
2579 return page; /* no need to copy it */
2580 } else if (!anon_vma) {
2581 return page; /* no need to copy it */
2582 } else if (anon_vma->root == vma->anon_vma->root &&
2583 page->index == linear_page_index(vma, address)) {
2584 return page; /* still no need to copy it */
2585 }
2586 if (!PageUptodate(page))
2587 return page; /* let do_swap_page report the error */
2588
2589 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2590 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2591 put_page(new_page);
2592 new_page = NULL;
2593 }
2594 if (new_page) {
2595 copy_user_highpage(new_page, page, address, vma);
2596
2597 SetPageDirty(new_page);
2598 __SetPageUptodate(new_page);
2599 __SetPageLocked(new_page);
2600 }
2601
2602 return new_page;
2603 }
2604
2605 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2606 {
2607 struct stable_node *stable_node;
2608 struct rmap_item *rmap_item;
2609 int search_new_forks = 0;
2610
2611 VM_BUG_ON_PAGE(!PageKsm(page), page);
2612
2613 /*
2614 * Rely on the page lock to protect against concurrent modifications
2615 * to that page's node of the stable tree.
2616 */
2617 VM_BUG_ON_PAGE(!PageLocked(page), page);
2618
2619 stable_node = page_stable_node(page);
2620 if (!stable_node)
2621 return;
2622 again:
2623 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2624 struct anon_vma *anon_vma = rmap_item->anon_vma;
2625 struct anon_vma_chain *vmac;
2626 struct vm_area_struct *vma;
2627
2628 cond_resched();
2629 anon_vma_lock_read(anon_vma);
2630 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2631 0, ULONG_MAX) {
2632 unsigned long addr;
2633
2634 cond_resched();
2635 vma = vmac->vma;
2636
2637 /* Ignore the stable/unstable/sqnr flags */
2638 addr = rmap_item->address & PAGE_MASK;
2639
2640 if (addr < vma->vm_start || addr >= vma->vm_end)
2641 continue;
2642 /*
2643 * Initially we examine only the vma which covers this
2644 * rmap_item; but later, if there is still work to do,
2645 * we examine covering vmas in other mms: in case they
2646 * were forked from the original since ksmd passed.
2647 */
2648 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2649 continue;
2650
2651 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2652 continue;
2653
2654 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2655 anon_vma_unlock_read(anon_vma);
2656 return;
2657 }
2658 if (rwc->done && rwc->done(page)) {
2659 anon_vma_unlock_read(anon_vma);
2660 return;
2661 }
2662 }
2663 anon_vma_unlock_read(anon_vma);
2664 }
2665 if (!search_new_forks++)
2666 goto again;
2667 }
2668
2669 #ifdef CONFIG_MIGRATION
2670 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2671 {
2672 struct stable_node *stable_node;
2673
2674 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2675 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2676 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2677
2678 stable_node = page_stable_node(newpage);
2679 if (stable_node) {
2680 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2681 stable_node->kpfn = page_to_pfn(newpage);
2682 /*
2683 * newpage->mapping was set in advance; now we need smp_wmb()
2684 * to make sure that the new stable_node->kpfn is visible
2685 * to get_ksm_page() before it can see that oldpage->mapping
2686 * has gone stale (or that PageSwapCache has been cleared).
2687 */
2688 smp_wmb();
2689 set_page_stable_node(oldpage, NULL);
2690 }
2691 }
2692 #endif /* CONFIG_MIGRATION */
2693
2694 #ifdef CONFIG_MEMORY_HOTREMOVE
2695 static void wait_while_offlining(void)
2696 {
2697 while (ksm_run & KSM_RUN_OFFLINE) {
2698 mutex_unlock(&ksm_thread_mutex);
2699 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2700 TASK_UNINTERRUPTIBLE);
2701 mutex_lock(&ksm_thread_mutex);
2702 }
2703 }
2704
2705 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2706 unsigned long start_pfn,
2707 unsigned long end_pfn)
2708 {
2709 if (stable_node->kpfn >= start_pfn &&
2710 stable_node->kpfn < end_pfn) {
2711 /*
2712 * Don't get_ksm_page, page has already gone:
2713 * which is why we keep kpfn instead of page*
2714 */
2715 remove_node_from_stable_tree(stable_node);
2716 return true;
2717 }
2718 return false;
2719 }
2720
2721 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2722 unsigned long start_pfn,
2723 unsigned long end_pfn,
2724 struct rb_root *root)
2725 {
2726 struct stable_node *dup;
2727 struct hlist_node *hlist_safe;
2728
2729 if (!is_stable_node_chain(stable_node)) {
2730 VM_BUG_ON(is_stable_node_dup(stable_node));
2731 return stable_node_dup_remove_range(stable_node, start_pfn,
2732 end_pfn);
2733 }
2734
2735 hlist_for_each_entry_safe(dup, hlist_safe,
2736 &stable_node->hlist, hlist_dup) {
2737 VM_BUG_ON(!is_stable_node_dup(dup));
2738 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2739 }
2740 if (hlist_empty(&stable_node->hlist)) {
2741 free_stable_node_chain(stable_node, root);
2742 return true; /* notify caller that tree was rebalanced */
2743 } else
2744 return false;
2745 }
2746
2747 static void ksm_check_stable_tree(unsigned long start_pfn,
2748 unsigned long end_pfn)
2749 {
2750 struct stable_node *stable_node, *next;
2751 struct rb_node *node;
2752 int nid;
2753
2754 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2755 node = rb_first(root_stable_tree + nid);
2756 while (node) {
2757 stable_node = rb_entry(node, struct stable_node, node);
2758 if (stable_node_chain_remove_range(stable_node,
2759 start_pfn, end_pfn,
2760 root_stable_tree +
2761 nid))
2762 node = rb_first(root_stable_tree + nid);
2763 else
2764 node = rb_next(node);
2765 cond_resched();
2766 }
2767 }
2768 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2769 if (stable_node->kpfn >= start_pfn &&
2770 stable_node->kpfn < end_pfn)
2771 remove_node_from_stable_tree(stable_node);
2772 cond_resched();
2773 }
2774 }
2775
2776 static int ksm_memory_callback(struct notifier_block *self,
2777 unsigned long action, void *arg)
2778 {
2779 struct memory_notify *mn = arg;
2780
2781 switch (action) {
2782 case MEM_GOING_OFFLINE:
2783 /*
2784 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2785 * and remove_all_stable_nodes() while memory is going offline:
2786 * it is unsafe for them to touch the stable tree at this time.
2787 * But unmerge_ksm_pages(), rmap lookups and other entry points
2788 * which do not need the ksm_thread_mutex are all safe.
2789 */
2790 mutex_lock(&ksm_thread_mutex);
2791 ksm_run |= KSM_RUN_OFFLINE;
2792 mutex_unlock(&ksm_thread_mutex);
2793 break;
2794
2795 case MEM_OFFLINE:
2796 /*
2797 * Most of the work is done by page migration; but there might
2798 * be a few stable_nodes left over, still pointing to struct
2799 * pages which have been offlined: prune those from the tree,
2800 * otherwise get_ksm_page() might later try to access a
2801 * non-existent struct page.
2802 */
2803 ksm_check_stable_tree(mn->start_pfn,
2804 mn->start_pfn + mn->nr_pages);
2805 fallthrough;
2806 case MEM_CANCEL_OFFLINE:
2807 mutex_lock(&ksm_thread_mutex);
2808 ksm_run &= ~KSM_RUN_OFFLINE;
2809 mutex_unlock(&ksm_thread_mutex);
2810
2811 smp_mb(); /* wake_up_bit advises this */
2812 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2813 break;
2814 }
2815 return NOTIFY_OK;
2816 }
2817 #else
2818 static void wait_while_offlining(void)
2819 {
2820 }
2821 #endif /* CONFIG_MEMORY_HOTREMOVE */
2822
2823 #ifdef CONFIG_SYSFS
2824 /*
2825 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2826 */
2827
2828 #define KSM_ATTR_RO(_name) \
2829 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2830 #define KSM_ATTR(_name) \
2831 static struct kobj_attribute _name##_attr = \
2832 __ATTR(_name, 0644, _name##_show, _name##_store)
2833
2834 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2835 struct kobj_attribute *attr, char *buf)
2836 {
2837 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2838 }
2839
2840 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2841 struct kobj_attribute *attr,
2842 const char *buf, size_t count)
2843 {
2844 unsigned int msecs;
2845 int err;
2846
2847 err = kstrtouint(buf, 10, &msecs);
2848 if (err)
2849 return -EINVAL;
2850
2851 ksm_thread_sleep_millisecs = msecs;
2852 wake_up_interruptible(&ksm_iter_wait);
2853
2854 return count;
2855 }
2856 KSM_ATTR(sleep_millisecs);
2857
2858 static ssize_t pages_to_scan_show(struct kobject *kobj,
2859 struct kobj_attribute *attr, char *buf)
2860 {
2861 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2862 }
2863
2864 static ssize_t pages_to_scan_store(struct kobject *kobj,
2865 struct kobj_attribute *attr,
2866 const char *buf, size_t count)
2867 {
2868 unsigned int nr_pages;
2869 int err;
2870
2871 err = kstrtouint(buf, 10, &nr_pages);
2872 if (err)
2873 return -EINVAL;
2874
2875 ksm_thread_pages_to_scan = nr_pages;
2876
2877 return count;
2878 }
2879 KSM_ATTR(pages_to_scan);
2880
2881 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2882 char *buf)
2883 {
2884 return sysfs_emit(buf, "%lu\n", ksm_run);
2885 }
2886
2887 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2888 const char *buf, size_t count)
2889 {
2890 unsigned int flags;
2891 int err;
2892
2893 err = kstrtouint(buf, 10, &flags);
2894 if (err)
2895 return -EINVAL;
2896 if (flags > KSM_RUN_UNMERGE)
2897 return -EINVAL;
2898
2899 /*
2900 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2901 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2902 * breaking COW to free the pages_shared (but leaves mm_slots
2903 * on the list for when ksmd may be set running again).
2904 */
2905
2906 mutex_lock(&ksm_thread_mutex);
2907 wait_while_offlining();
2908 if (ksm_run != flags) {
2909 ksm_run = flags;
2910 if (flags & KSM_RUN_UNMERGE) {
2911 set_current_oom_origin();
2912 err = unmerge_and_remove_all_rmap_items();
2913 clear_current_oom_origin();
2914 if (err) {
2915 ksm_run = KSM_RUN_STOP;
2916 count = err;
2917 }
2918 }
2919 }
2920 mutex_unlock(&ksm_thread_mutex);
2921
2922 if (flags & KSM_RUN_MERGE)
2923 wake_up_interruptible(&ksm_thread_wait);
2924
2925 return count;
2926 }
2927 KSM_ATTR(run);
2928
2929 #ifdef CONFIG_NUMA
2930 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2931 struct kobj_attribute *attr, char *buf)
2932 {
2933 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2934 }
2935
2936 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2937 struct kobj_attribute *attr,
2938 const char *buf, size_t count)
2939 {
2940 int err;
2941 unsigned long knob;
2942
2943 err = kstrtoul(buf, 10, &knob);
2944 if (err)
2945 return err;
2946 if (knob > 1)
2947 return -EINVAL;
2948
2949 mutex_lock(&ksm_thread_mutex);
2950 wait_while_offlining();
2951 if (ksm_merge_across_nodes != knob) {
2952 if (ksm_pages_shared || remove_all_stable_nodes())
2953 err = -EBUSY;
2954 else if (root_stable_tree == one_stable_tree) {
2955 struct rb_root *buf;
2956 /*
2957 * This is the first time that we switch away from the
2958 * default of merging across nodes: must now allocate
2959 * a buffer to hold as many roots as may be needed.
2960 * Allocate stable and unstable together:
2961 * MAXSMP NODES_SHIFT 10 will use 16kB.
2962 */
2963 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2964 GFP_KERNEL);
2965 /* Let us assume that RB_ROOT is NULL is zero */
2966 if (!buf)
2967 err = -ENOMEM;
2968 else {
2969 root_stable_tree = buf;
2970 root_unstable_tree = buf + nr_node_ids;
2971 /* Stable tree is empty but not the unstable */
2972 root_unstable_tree[0] = one_unstable_tree[0];
2973 }
2974 }
2975 if (!err) {
2976 ksm_merge_across_nodes = knob;
2977 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2978 }
2979 }
2980 mutex_unlock(&ksm_thread_mutex);
2981
2982 return err ? err : count;
2983 }
2984 KSM_ATTR(merge_across_nodes);
2985 #endif
2986
2987 static ssize_t use_zero_pages_show(struct kobject *kobj,
2988 struct kobj_attribute *attr, char *buf)
2989 {
2990 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2991 }
2992 static ssize_t use_zero_pages_store(struct kobject *kobj,
2993 struct kobj_attribute *attr,
2994 const char *buf, size_t count)
2995 {
2996 int err;
2997 bool value;
2998
2999 err = kstrtobool(buf, &value);
3000 if (err)
3001 return -EINVAL;
3002
3003 ksm_use_zero_pages = value;
3004
3005 return count;
3006 }
3007 KSM_ATTR(use_zero_pages);
3008
3009 static ssize_t max_page_sharing_show(struct kobject *kobj,
3010 struct kobj_attribute *attr, char *buf)
3011 {
3012 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3013 }
3014
3015 static ssize_t max_page_sharing_store(struct kobject *kobj,
3016 struct kobj_attribute *attr,
3017 const char *buf, size_t count)
3018 {
3019 int err;
3020 int knob;
3021
3022 err = kstrtoint(buf, 10, &knob);
3023 if (err)
3024 return err;
3025 /*
3026 * When a KSM page is created it is shared by 2 mappings. This
3027 * being a signed comparison, it implicitly verifies it's not
3028 * negative.
3029 */
3030 if (knob < 2)
3031 return -EINVAL;
3032
3033 if (READ_ONCE(ksm_max_page_sharing) == knob)
3034 return count;
3035
3036 mutex_lock(&ksm_thread_mutex);
3037 wait_while_offlining();
3038 if (ksm_max_page_sharing != knob) {
3039 if (ksm_pages_shared || remove_all_stable_nodes())
3040 err = -EBUSY;
3041 else
3042 ksm_max_page_sharing = knob;
3043 }
3044 mutex_unlock(&ksm_thread_mutex);
3045
3046 return err ? err : count;
3047 }
3048 KSM_ATTR(max_page_sharing);
3049
3050 static ssize_t pages_shared_show(struct kobject *kobj,
3051 struct kobj_attribute *attr, char *buf)
3052 {
3053 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3054 }
3055 KSM_ATTR_RO(pages_shared);
3056
3057 static ssize_t pages_sharing_show(struct kobject *kobj,
3058 struct kobj_attribute *attr, char *buf)
3059 {
3060 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3061 }
3062 KSM_ATTR_RO(pages_sharing);
3063
3064 static ssize_t pages_unshared_show(struct kobject *kobj,
3065 struct kobj_attribute *attr, char *buf)
3066 {
3067 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3068 }
3069 KSM_ATTR_RO(pages_unshared);
3070
3071 static ssize_t pages_volatile_show(struct kobject *kobj,
3072 struct kobj_attribute *attr, char *buf)
3073 {
3074 long ksm_pages_volatile;
3075
3076 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3077 - ksm_pages_sharing - ksm_pages_unshared;
3078 /*
3079 * It was not worth any locking to calculate that statistic,
3080 * but it might therefore sometimes be negative: conceal that.
3081 */
3082 if (ksm_pages_volatile < 0)
3083 ksm_pages_volatile = 0;
3084 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3085 }
3086 KSM_ATTR_RO(pages_volatile);
3087
3088 static ssize_t stable_node_dups_show(struct kobject *kobj,
3089 struct kobj_attribute *attr, char *buf)
3090 {
3091 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3092 }
3093 KSM_ATTR_RO(stable_node_dups);
3094
3095 static ssize_t stable_node_chains_show(struct kobject *kobj,
3096 struct kobj_attribute *attr, char *buf)
3097 {
3098 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3099 }
3100 KSM_ATTR_RO(stable_node_chains);
3101
3102 static ssize_t
3103 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3104 struct kobj_attribute *attr,
3105 char *buf)
3106 {
3107 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3108 }
3109
3110 static ssize_t
3111 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3112 struct kobj_attribute *attr,
3113 const char *buf, size_t count)
3114 {
3115 unsigned long msecs;
3116 int err;
3117
3118 err = kstrtoul(buf, 10, &msecs);
3119 if (err || msecs > UINT_MAX)
3120 return -EINVAL;
3121
3122 ksm_stable_node_chains_prune_millisecs = msecs;
3123
3124 return count;
3125 }
3126 KSM_ATTR(stable_node_chains_prune_millisecs);
3127
3128 static ssize_t full_scans_show(struct kobject *kobj,
3129 struct kobj_attribute *attr, char *buf)
3130 {
3131 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3132 }
3133 KSM_ATTR_RO(full_scans);
3134
3135 static struct attribute *ksm_attrs[] = {
3136 &sleep_millisecs_attr.attr,
3137 &pages_to_scan_attr.attr,
3138 &run_attr.attr,
3139 &pages_shared_attr.attr,
3140 &pages_sharing_attr.attr,
3141 &pages_unshared_attr.attr,
3142 &pages_volatile_attr.attr,
3143 &full_scans_attr.attr,
3144 #ifdef CONFIG_NUMA
3145 &merge_across_nodes_attr.attr,
3146 #endif
3147 &max_page_sharing_attr.attr,
3148 &stable_node_chains_attr.attr,
3149 &stable_node_dups_attr.attr,
3150 &stable_node_chains_prune_millisecs_attr.attr,
3151 &use_zero_pages_attr.attr,
3152 NULL,
3153 };
3154
3155 static const struct attribute_group ksm_attr_group = {
3156 .attrs = ksm_attrs,
3157 .name = "ksm",
3158 };
3159 #endif /* CONFIG_SYSFS */
3160
3161 static int __init ksm_init(void)
3162 {
3163 struct task_struct *ksm_thread;
3164 int err;
3165
3166 /* The correct value depends on page size and endianness */
3167 zero_checksum = calc_checksum(ZERO_PAGE(0));
3168 /* Default to false for backwards compatibility */
3169 ksm_use_zero_pages = false;
3170
3171 err = ksm_slab_init();
3172 if (err)
3173 goto out;
3174
3175 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3176 if (IS_ERR(ksm_thread)) {
3177 pr_err("ksm: creating kthread failed\n");
3178 err = PTR_ERR(ksm_thread);
3179 goto out_free;
3180 }
3181
3182 #ifdef CONFIG_SYSFS
3183 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3184 if (err) {
3185 pr_err("ksm: register sysfs failed\n");
3186 kthread_stop(ksm_thread);
3187 goto out_free;
3188 }
3189 #else
3190 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3191
3192 #endif /* CONFIG_SYSFS */
3193
3194 #ifdef CONFIG_MEMORY_HOTREMOVE
3195 /* There is no significance to this priority 100 */
3196 hotplug_memory_notifier(ksm_memory_callback, 100);
3197 #endif
3198 return 0;
3199
3200 out_free:
3201 ksm_slab_free();
3202 out:
3203 return err;
3204 }
3205 subsys_initcall(ksm_init);