]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/ksm.c
mm, oom: rework oom detection
[mirror_ubuntu-artful-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
147 };
148
149 /**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179 };
180
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes 1U
232 #define ksm_nr_node_ids 1
233 #endif
234
235 #define KSM_RUN_STOP 0
236 #define KSM_RUN_MERGE 1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
255
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
259
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
262 goto out_free2;
263
264 return 0;
265
266 out_free2:
267 kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 kmem_cache_destroy(rmap_item_cache);
270 out:
271 return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276 kmem_cache_destroy(mm_slot_cache);
277 kmem_cache_destroy(stable_node_cache);
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 struct rmap_item *rmap_item;
285
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
287 __GFP_NORETRY | __GFP_NOWARN);
288 if (rmap_item)
289 ksm_rmap_items++;
290 return rmap_item;
291 }
292
293 static inline void free_rmap_item(struct rmap_item *rmap_item)
294 {
295 ksm_rmap_items--;
296 rmap_item->mm = NULL; /* debug safety */
297 kmem_cache_free(rmap_item_cache, rmap_item);
298 }
299
300 static inline struct stable_node *alloc_stable_node(void)
301 {
302 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
303 }
304
305 static inline void free_stable_node(struct stable_node *stable_node)
306 {
307 kmem_cache_free(stable_node_cache, stable_node);
308 }
309
310 static inline struct mm_slot *alloc_mm_slot(void)
311 {
312 if (!mm_slot_cache) /* initialization failed */
313 return NULL;
314 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
315 }
316
317 static inline void free_mm_slot(struct mm_slot *mm_slot)
318 {
319 kmem_cache_free(mm_slot_cache, mm_slot);
320 }
321
322 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
323 {
324 struct mm_slot *slot;
325
326 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
327 if (slot->mm == mm)
328 return slot;
329
330 return NULL;
331 }
332
333 static void insert_to_mm_slots_hash(struct mm_struct *mm,
334 struct mm_slot *mm_slot)
335 {
336 mm_slot->mm = mm;
337 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
338 }
339
340 /*
341 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
342 * page tables after it has passed through ksm_exit() - which, if necessary,
343 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
344 * a special flag: they can just back out as soon as mm_users goes to zero.
345 * ksm_test_exit() is used throughout to make this test for exit: in some
346 * places for correctness, in some places just to avoid unnecessary work.
347 */
348 static inline bool ksm_test_exit(struct mm_struct *mm)
349 {
350 return atomic_read(&mm->mm_users) == 0;
351 }
352
353 /*
354 * We use break_ksm to break COW on a ksm page: it's a stripped down
355 *
356 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
357 * put_page(page);
358 *
359 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
360 * in case the application has unmapped and remapped mm,addr meanwhile.
361 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
362 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
363 */
364 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
365 {
366 struct page *page;
367 int ret = 0;
368
369 do {
370 cond_resched();
371 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
372 if (IS_ERR_OR_NULL(page))
373 break;
374 if (PageKsm(page))
375 ret = handle_mm_fault(vma->vm_mm, vma, addr,
376 FAULT_FLAG_WRITE);
377 else
378 ret = VM_FAULT_WRITE;
379 put_page(page);
380 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
381 /*
382 * We must loop because handle_mm_fault() may back out if there's
383 * any difficulty e.g. if pte accessed bit gets updated concurrently.
384 *
385 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
386 * COW has been broken, even if the vma does not permit VM_WRITE;
387 * but note that a concurrent fault might break PageKsm for us.
388 *
389 * VM_FAULT_SIGBUS could occur if we race with truncation of the
390 * backing file, which also invalidates anonymous pages: that's
391 * okay, that truncation will have unmapped the PageKsm for us.
392 *
393 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
394 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
395 * current task has TIF_MEMDIE set, and will be OOM killed on return
396 * to user; and ksmd, having no mm, would never be chosen for that.
397 *
398 * But if the mm is in a limited mem_cgroup, then the fault may fail
399 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
400 * even ksmd can fail in this way - though it's usually breaking ksm
401 * just to undo a merge it made a moment before, so unlikely to oom.
402 *
403 * That's a pity: we might therefore have more kernel pages allocated
404 * than we're counting as nodes in the stable tree; but ksm_do_scan
405 * will retry to break_cow on each pass, so should recover the page
406 * in due course. The important thing is to not let VM_MERGEABLE
407 * be cleared while any such pages might remain in the area.
408 */
409 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
410 }
411
412 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
413 unsigned long addr)
414 {
415 struct vm_area_struct *vma;
416 if (ksm_test_exit(mm))
417 return NULL;
418 vma = find_vma(mm, addr);
419 if (!vma || vma->vm_start > addr)
420 return NULL;
421 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
422 return NULL;
423 return vma;
424 }
425
426 static void break_cow(struct rmap_item *rmap_item)
427 {
428 struct mm_struct *mm = rmap_item->mm;
429 unsigned long addr = rmap_item->address;
430 struct vm_area_struct *vma;
431
432 /*
433 * It is not an accident that whenever we want to break COW
434 * to undo, we also need to drop a reference to the anon_vma.
435 */
436 put_anon_vma(rmap_item->anon_vma);
437
438 down_read(&mm->mmap_sem);
439 vma = find_mergeable_vma(mm, addr);
440 if (vma)
441 break_ksm(vma, addr);
442 up_read(&mm->mmap_sem);
443 }
444
445 static struct page *page_trans_compound_anon(struct page *page)
446 {
447 if (PageTransCompound(page)) {
448 struct page *head = compound_head(page);
449 /*
450 * head may actually be splitted and freed from under
451 * us but it's ok here.
452 */
453 if (PageAnon(head))
454 return head;
455 }
456 return NULL;
457 }
458
459 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
460 {
461 struct mm_struct *mm = rmap_item->mm;
462 unsigned long addr = rmap_item->address;
463 struct vm_area_struct *vma;
464 struct page *page;
465
466 down_read(&mm->mmap_sem);
467 vma = find_mergeable_vma(mm, addr);
468 if (!vma)
469 goto out;
470
471 page = follow_page(vma, addr, FOLL_GET);
472 if (IS_ERR_OR_NULL(page))
473 goto out;
474 if (PageAnon(page) || page_trans_compound_anon(page)) {
475 flush_anon_page(vma, page, addr);
476 flush_dcache_page(page);
477 } else {
478 put_page(page);
479 out:
480 page = NULL;
481 }
482 up_read(&mm->mmap_sem);
483 return page;
484 }
485
486 /*
487 * This helper is used for getting right index into array of tree roots.
488 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
489 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
490 * every node has its own stable and unstable tree.
491 */
492 static inline int get_kpfn_nid(unsigned long kpfn)
493 {
494 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
495 }
496
497 static void remove_node_from_stable_tree(struct stable_node *stable_node)
498 {
499 struct rmap_item *rmap_item;
500
501 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
502 if (rmap_item->hlist.next)
503 ksm_pages_sharing--;
504 else
505 ksm_pages_shared--;
506 put_anon_vma(rmap_item->anon_vma);
507 rmap_item->address &= PAGE_MASK;
508 cond_resched();
509 }
510
511 if (stable_node->head == &migrate_nodes)
512 list_del(&stable_node->list);
513 else
514 rb_erase(&stable_node->node,
515 root_stable_tree + NUMA(stable_node->nid));
516 free_stable_node(stable_node);
517 }
518
519 /*
520 * get_ksm_page: checks if the page indicated by the stable node
521 * is still its ksm page, despite having held no reference to it.
522 * In which case we can trust the content of the page, and it
523 * returns the gotten page; but if the page has now been zapped,
524 * remove the stale node from the stable tree and return NULL.
525 * But beware, the stable node's page might be being migrated.
526 *
527 * You would expect the stable_node to hold a reference to the ksm page.
528 * But if it increments the page's count, swapping out has to wait for
529 * ksmd to come around again before it can free the page, which may take
530 * seconds or even minutes: much too unresponsive. So instead we use a
531 * "keyhole reference": access to the ksm page from the stable node peeps
532 * out through its keyhole to see if that page still holds the right key,
533 * pointing back to this stable node. This relies on freeing a PageAnon
534 * page to reset its page->mapping to NULL, and relies on no other use of
535 * a page to put something that might look like our key in page->mapping.
536 * is on its way to being freed; but it is an anomaly to bear in mind.
537 */
538 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
539 {
540 struct page *page;
541 void *expected_mapping;
542 unsigned long kpfn;
543
544 expected_mapping = (void *)stable_node +
545 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
546 again:
547 kpfn = READ_ONCE(stable_node->kpfn);
548 page = pfn_to_page(kpfn);
549
550 /*
551 * page is computed from kpfn, so on most architectures reading
552 * page->mapping is naturally ordered after reading node->kpfn,
553 * but on Alpha we need to be more careful.
554 */
555 smp_read_barrier_depends();
556 if (READ_ONCE(page->mapping) != expected_mapping)
557 goto stale;
558
559 /*
560 * We cannot do anything with the page while its refcount is 0.
561 * Usually 0 means free, or tail of a higher-order page: in which
562 * case this node is no longer referenced, and should be freed;
563 * however, it might mean that the page is under page_freeze_refs().
564 * The __remove_mapping() case is easy, again the node is now stale;
565 * but if page is swapcache in migrate_page_move_mapping(), it might
566 * still be our page, in which case it's essential to keep the node.
567 */
568 while (!get_page_unless_zero(page)) {
569 /*
570 * Another check for page->mapping != expected_mapping would
571 * work here too. We have chosen the !PageSwapCache test to
572 * optimize the common case, when the page is or is about to
573 * be freed: PageSwapCache is cleared (under spin_lock_irq)
574 * in the freeze_refs section of __remove_mapping(); but Anon
575 * page->mapping reset to NULL later, in free_pages_prepare().
576 */
577 if (!PageSwapCache(page))
578 goto stale;
579 cpu_relax();
580 }
581
582 if (READ_ONCE(page->mapping) != expected_mapping) {
583 put_page(page);
584 goto stale;
585 }
586
587 if (lock_it) {
588 lock_page(page);
589 if (READ_ONCE(page->mapping) != expected_mapping) {
590 unlock_page(page);
591 put_page(page);
592 goto stale;
593 }
594 }
595 return page;
596
597 stale:
598 /*
599 * We come here from above when page->mapping or !PageSwapCache
600 * suggests that the node is stale; but it might be under migration.
601 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
602 * before checking whether node->kpfn has been changed.
603 */
604 smp_rmb();
605 if (READ_ONCE(stable_node->kpfn) != kpfn)
606 goto again;
607 remove_node_from_stable_tree(stable_node);
608 return NULL;
609 }
610
611 /*
612 * Removing rmap_item from stable or unstable tree.
613 * This function will clean the information from the stable/unstable tree.
614 */
615 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
616 {
617 if (rmap_item->address & STABLE_FLAG) {
618 struct stable_node *stable_node;
619 struct page *page;
620
621 stable_node = rmap_item->head;
622 page = get_ksm_page(stable_node, true);
623 if (!page)
624 goto out;
625
626 hlist_del(&rmap_item->hlist);
627 unlock_page(page);
628 put_page(page);
629
630 if (!hlist_empty(&stable_node->hlist))
631 ksm_pages_sharing--;
632 else
633 ksm_pages_shared--;
634
635 put_anon_vma(rmap_item->anon_vma);
636 rmap_item->address &= PAGE_MASK;
637
638 } else if (rmap_item->address & UNSTABLE_FLAG) {
639 unsigned char age;
640 /*
641 * Usually ksmd can and must skip the rb_erase, because
642 * root_unstable_tree was already reset to RB_ROOT.
643 * But be careful when an mm is exiting: do the rb_erase
644 * if this rmap_item was inserted by this scan, rather
645 * than left over from before.
646 */
647 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
648 BUG_ON(age > 1);
649 if (!age)
650 rb_erase(&rmap_item->node,
651 root_unstable_tree + NUMA(rmap_item->nid));
652 ksm_pages_unshared--;
653 rmap_item->address &= PAGE_MASK;
654 }
655 out:
656 cond_resched(); /* we're called from many long loops */
657 }
658
659 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
660 struct rmap_item **rmap_list)
661 {
662 while (*rmap_list) {
663 struct rmap_item *rmap_item = *rmap_list;
664 *rmap_list = rmap_item->rmap_list;
665 remove_rmap_item_from_tree(rmap_item);
666 free_rmap_item(rmap_item);
667 }
668 }
669
670 /*
671 * Though it's very tempting to unmerge rmap_items from stable tree rather
672 * than check every pte of a given vma, the locking doesn't quite work for
673 * that - an rmap_item is assigned to the stable tree after inserting ksm
674 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
675 * rmap_items from parent to child at fork time (so as not to waste time
676 * if exit comes before the next scan reaches it).
677 *
678 * Similarly, although we'd like to remove rmap_items (so updating counts
679 * and freeing memory) when unmerging an area, it's easier to leave that
680 * to the next pass of ksmd - consider, for example, how ksmd might be
681 * in cmp_and_merge_page on one of the rmap_items we would be removing.
682 */
683 static int unmerge_ksm_pages(struct vm_area_struct *vma,
684 unsigned long start, unsigned long end)
685 {
686 unsigned long addr;
687 int err = 0;
688
689 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
690 if (ksm_test_exit(vma->vm_mm))
691 break;
692 if (signal_pending(current))
693 err = -ERESTARTSYS;
694 else
695 err = break_ksm(vma, addr);
696 }
697 return err;
698 }
699
700 #ifdef CONFIG_SYSFS
701 /*
702 * Only called through the sysfs control interface:
703 */
704 static int remove_stable_node(struct stable_node *stable_node)
705 {
706 struct page *page;
707 int err;
708
709 page = get_ksm_page(stable_node, true);
710 if (!page) {
711 /*
712 * get_ksm_page did remove_node_from_stable_tree itself.
713 */
714 return 0;
715 }
716
717 if (WARN_ON_ONCE(page_mapped(page))) {
718 /*
719 * This should not happen: but if it does, just refuse to let
720 * merge_across_nodes be switched - there is no need to panic.
721 */
722 err = -EBUSY;
723 } else {
724 /*
725 * The stable node did not yet appear stale to get_ksm_page(),
726 * since that allows for an unmapped ksm page to be recognized
727 * right up until it is freed; but the node is safe to remove.
728 * This page might be in a pagevec waiting to be freed,
729 * or it might be PageSwapCache (perhaps under writeback),
730 * or it might have been removed from swapcache a moment ago.
731 */
732 set_page_stable_node(page, NULL);
733 remove_node_from_stable_tree(stable_node);
734 err = 0;
735 }
736
737 unlock_page(page);
738 put_page(page);
739 return err;
740 }
741
742 static int remove_all_stable_nodes(void)
743 {
744 struct stable_node *stable_node;
745 struct list_head *this, *next;
746 int nid;
747 int err = 0;
748
749 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
750 while (root_stable_tree[nid].rb_node) {
751 stable_node = rb_entry(root_stable_tree[nid].rb_node,
752 struct stable_node, node);
753 if (remove_stable_node(stable_node)) {
754 err = -EBUSY;
755 break; /* proceed to next nid */
756 }
757 cond_resched();
758 }
759 }
760 list_for_each_safe(this, next, &migrate_nodes) {
761 stable_node = list_entry(this, struct stable_node, list);
762 if (remove_stable_node(stable_node))
763 err = -EBUSY;
764 cond_resched();
765 }
766 return err;
767 }
768
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771 struct mm_slot *mm_slot;
772 struct mm_struct *mm;
773 struct vm_area_struct *vma;
774 int err = 0;
775
776 spin_lock(&ksm_mmlist_lock);
777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778 struct mm_slot, mm_list);
779 spin_unlock(&ksm_mmlist_lock);
780
781 for (mm_slot = ksm_scan.mm_slot;
782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783 mm = mm_slot->mm;
784 down_read(&mm->mmap_sem);
785 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786 if (ksm_test_exit(mm))
787 break;
788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 continue;
790 err = unmerge_ksm_pages(vma,
791 vma->vm_start, vma->vm_end);
792 if (err)
793 goto error;
794 }
795
796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797
798 spin_lock(&ksm_mmlist_lock);
799 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
800 struct mm_slot, mm_list);
801 if (ksm_test_exit(mm)) {
802 hash_del(&mm_slot->link);
803 list_del(&mm_slot->mm_list);
804 spin_unlock(&ksm_mmlist_lock);
805
806 free_mm_slot(mm_slot);
807 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
808 up_read(&mm->mmap_sem);
809 mmdrop(mm);
810 } else {
811 spin_unlock(&ksm_mmlist_lock);
812 up_read(&mm->mmap_sem);
813 }
814 }
815
816 /* Clean up stable nodes, but don't worry if some are still busy */
817 remove_all_stable_nodes();
818 ksm_scan.seqnr = 0;
819 return 0;
820
821 error:
822 up_read(&mm->mmap_sem);
823 spin_lock(&ksm_mmlist_lock);
824 ksm_scan.mm_slot = &ksm_mm_head;
825 spin_unlock(&ksm_mmlist_lock);
826 return err;
827 }
828 #endif /* CONFIG_SYSFS */
829
830 static u32 calc_checksum(struct page *page)
831 {
832 u32 checksum;
833 void *addr = kmap_atomic(page);
834 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
835 kunmap_atomic(addr);
836 return checksum;
837 }
838
839 static int memcmp_pages(struct page *page1, struct page *page2)
840 {
841 char *addr1, *addr2;
842 int ret;
843
844 addr1 = kmap_atomic(page1);
845 addr2 = kmap_atomic(page2);
846 ret = memcmp(addr1, addr2, PAGE_SIZE);
847 kunmap_atomic(addr2);
848 kunmap_atomic(addr1);
849 return ret;
850 }
851
852 static inline int pages_identical(struct page *page1, struct page *page2)
853 {
854 return !memcmp_pages(page1, page2);
855 }
856
857 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
858 pte_t *orig_pte)
859 {
860 struct mm_struct *mm = vma->vm_mm;
861 unsigned long addr;
862 pte_t *ptep;
863 spinlock_t *ptl;
864 int swapped;
865 int err = -EFAULT;
866 unsigned long mmun_start; /* For mmu_notifiers */
867 unsigned long mmun_end; /* For mmu_notifiers */
868
869 addr = page_address_in_vma(page, vma);
870 if (addr == -EFAULT)
871 goto out;
872
873 BUG_ON(PageTransCompound(page));
874
875 mmun_start = addr;
876 mmun_end = addr + PAGE_SIZE;
877 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
878
879 ptep = page_check_address(page, mm, addr, &ptl, 0);
880 if (!ptep)
881 goto out_mn;
882
883 if (pte_write(*ptep) || pte_dirty(*ptep)) {
884 pte_t entry;
885
886 swapped = PageSwapCache(page);
887 flush_cache_page(vma, addr, page_to_pfn(page));
888 /*
889 * Ok this is tricky, when get_user_pages_fast() run it doesn't
890 * take any lock, therefore the check that we are going to make
891 * with the pagecount against the mapcount is racey and
892 * O_DIRECT can happen right after the check.
893 * So we clear the pte and flush the tlb before the check
894 * this assure us that no O_DIRECT can happen after the check
895 * or in the middle of the check.
896 */
897 entry = ptep_clear_flush_notify(vma, addr, ptep);
898 /*
899 * Check that no O_DIRECT or similar I/O is in progress on the
900 * page
901 */
902 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
903 set_pte_at(mm, addr, ptep, entry);
904 goto out_unlock;
905 }
906 if (pte_dirty(entry))
907 set_page_dirty(page);
908 entry = pte_mkclean(pte_wrprotect(entry));
909 set_pte_at_notify(mm, addr, ptep, entry);
910 }
911 *orig_pte = *ptep;
912 err = 0;
913
914 out_unlock:
915 pte_unmap_unlock(ptep, ptl);
916 out_mn:
917 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
918 out:
919 return err;
920 }
921
922 /**
923 * replace_page - replace page in vma by new ksm page
924 * @vma: vma that holds the pte pointing to page
925 * @page: the page we are replacing by kpage
926 * @kpage: the ksm page we replace page by
927 * @orig_pte: the original value of the pte
928 *
929 * Returns 0 on success, -EFAULT on failure.
930 */
931 static int replace_page(struct vm_area_struct *vma, struct page *page,
932 struct page *kpage, pte_t orig_pte)
933 {
934 struct mm_struct *mm = vma->vm_mm;
935 pmd_t *pmd;
936 pte_t *ptep;
937 spinlock_t *ptl;
938 unsigned long addr;
939 int err = -EFAULT;
940 unsigned long mmun_start; /* For mmu_notifiers */
941 unsigned long mmun_end; /* For mmu_notifiers */
942
943 addr = page_address_in_vma(page, vma);
944 if (addr == -EFAULT)
945 goto out;
946
947 pmd = mm_find_pmd(mm, addr);
948 if (!pmd)
949 goto out;
950
951 mmun_start = addr;
952 mmun_end = addr + PAGE_SIZE;
953 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
954
955 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
956 if (!pte_same(*ptep, orig_pte)) {
957 pte_unmap_unlock(ptep, ptl);
958 goto out_mn;
959 }
960
961 get_page(kpage);
962 page_add_anon_rmap(kpage, vma, addr);
963
964 flush_cache_page(vma, addr, pte_pfn(*ptep));
965 ptep_clear_flush_notify(vma, addr, ptep);
966 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
967
968 page_remove_rmap(page);
969 if (!page_mapped(page))
970 try_to_free_swap(page);
971 put_page(page);
972
973 pte_unmap_unlock(ptep, ptl);
974 err = 0;
975 out_mn:
976 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
977 out:
978 return err;
979 }
980
981 static int page_trans_compound_anon_split(struct page *page)
982 {
983 int ret = 0;
984 struct page *transhuge_head = page_trans_compound_anon(page);
985 if (transhuge_head) {
986 /* Get the reference on the head to split it. */
987 if (get_page_unless_zero(transhuge_head)) {
988 /*
989 * Recheck we got the reference while the head
990 * was still anonymous.
991 */
992 if (PageAnon(transhuge_head))
993 ret = split_huge_page(transhuge_head);
994 else
995 /*
996 * Retry later if split_huge_page run
997 * from under us.
998 */
999 ret = 1;
1000 put_page(transhuge_head);
1001 } else
1002 /* Retry later if split_huge_page run from under us. */
1003 ret = 1;
1004 }
1005 return ret;
1006 }
1007
1008 /*
1009 * try_to_merge_one_page - take two pages and merge them into one
1010 * @vma: the vma that holds the pte pointing to page
1011 * @page: the PageAnon page that we want to replace with kpage
1012 * @kpage: the PageKsm page that we want to map instead of page,
1013 * or NULL the first time when we want to use page as kpage.
1014 *
1015 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1016 */
1017 static int try_to_merge_one_page(struct vm_area_struct *vma,
1018 struct page *page, struct page *kpage)
1019 {
1020 pte_t orig_pte = __pte(0);
1021 int err = -EFAULT;
1022
1023 if (page == kpage) /* ksm page forked */
1024 return 0;
1025
1026 if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1027 goto out;
1028 BUG_ON(PageTransCompound(page));
1029 if (!PageAnon(page))
1030 goto out;
1031
1032 /*
1033 * We need the page lock to read a stable PageSwapCache in
1034 * write_protect_page(). We use trylock_page() instead of
1035 * lock_page() because we don't want to wait here - we
1036 * prefer to continue scanning and merging different pages,
1037 * then come back to this page when it is unlocked.
1038 */
1039 if (!trylock_page(page))
1040 goto out;
1041 /*
1042 * If this anonymous page is mapped only here, its pte may need
1043 * to be write-protected. If it's mapped elsewhere, all of its
1044 * ptes are necessarily already write-protected. But in either
1045 * case, we need to lock and check page_count is not raised.
1046 */
1047 if (write_protect_page(vma, page, &orig_pte) == 0) {
1048 if (!kpage) {
1049 /*
1050 * While we hold page lock, upgrade page from
1051 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1052 * stable_tree_insert() will update stable_node.
1053 */
1054 set_page_stable_node(page, NULL);
1055 mark_page_accessed(page);
1056 err = 0;
1057 } else if (pages_identical(page, kpage))
1058 err = replace_page(vma, page, kpage, orig_pte);
1059 }
1060
1061 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1062 munlock_vma_page(page);
1063 if (!PageMlocked(kpage)) {
1064 unlock_page(page);
1065 lock_page(kpage);
1066 mlock_vma_page(kpage);
1067 page = kpage; /* for final unlock */
1068 }
1069 }
1070
1071 unlock_page(page);
1072 out:
1073 return err;
1074 }
1075
1076 /*
1077 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1078 * but no new kernel page is allocated: kpage must already be a ksm page.
1079 *
1080 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1081 */
1082 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1083 struct page *page, struct page *kpage)
1084 {
1085 struct mm_struct *mm = rmap_item->mm;
1086 struct vm_area_struct *vma;
1087 int err = -EFAULT;
1088
1089 down_read(&mm->mmap_sem);
1090 vma = find_mergeable_vma(mm, rmap_item->address);
1091 if (!vma)
1092 goto out;
1093
1094 err = try_to_merge_one_page(vma, page, kpage);
1095 if (err)
1096 goto out;
1097
1098 /* Unstable nid is in union with stable anon_vma: remove first */
1099 remove_rmap_item_from_tree(rmap_item);
1100
1101 /* Must get reference to anon_vma while still holding mmap_sem */
1102 rmap_item->anon_vma = vma->anon_vma;
1103 get_anon_vma(vma->anon_vma);
1104 out:
1105 up_read(&mm->mmap_sem);
1106 return err;
1107 }
1108
1109 /*
1110 * try_to_merge_two_pages - take two identical pages and prepare them
1111 * to be merged into one page.
1112 *
1113 * This function returns the kpage if we successfully merged two identical
1114 * pages into one ksm page, NULL otherwise.
1115 *
1116 * Note that this function upgrades page to ksm page: if one of the pages
1117 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1118 */
1119 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1120 struct page *page,
1121 struct rmap_item *tree_rmap_item,
1122 struct page *tree_page)
1123 {
1124 int err;
1125
1126 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1127 if (!err) {
1128 err = try_to_merge_with_ksm_page(tree_rmap_item,
1129 tree_page, page);
1130 /*
1131 * If that fails, we have a ksm page with only one pte
1132 * pointing to it: so break it.
1133 */
1134 if (err)
1135 break_cow(rmap_item);
1136 }
1137 return err ? NULL : page;
1138 }
1139
1140 /*
1141 * stable_tree_search - search for page inside the stable tree
1142 *
1143 * This function checks if there is a page inside the stable tree
1144 * with identical content to the page that we are scanning right now.
1145 *
1146 * This function returns the stable tree node of identical content if found,
1147 * NULL otherwise.
1148 */
1149 static struct page *stable_tree_search(struct page *page)
1150 {
1151 int nid;
1152 struct rb_root *root;
1153 struct rb_node **new;
1154 struct rb_node *parent;
1155 struct stable_node *stable_node;
1156 struct stable_node *page_node;
1157
1158 page_node = page_stable_node(page);
1159 if (page_node && page_node->head != &migrate_nodes) {
1160 /* ksm page forked */
1161 get_page(page);
1162 return page;
1163 }
1164
1165 nid = get_kpfn_nid(page_to_pfn(page));
1166 root = root_stable_tree + nid;
1167 again:
1168 new = &root->rb_node;
1169 parent = NULL;
1170
1171 while (*new) {
1172 struct page *tree_page;
1173 int ret;
1174
1175 cond_resched();
1176 stable_node = rb_entry(*new, struct stable_node, node);
1177 tree_page = get_ksm_page(stable_node, false);
1178 if (!tree_page) {
1179 /*
1180 * If we walked over a stale stable_node,
1181 * get_ksm_page() will call rb_erase() and it
1182 * may rebalance the tree from under us. So
1183 * restart the search from scratch. Returning
1184 * NULL would be safe too, but we'd generate
1185 * false negative insertions just because some
1186 * stable_node was stale.
1187 */
1188 goto again;
1189 }
1190
1191 ret = memcmp_pages(page, tree_page);
1192 put_page(tree_page);
1193
1194 parent = *new;
1195 if (ret < 0)
1196 new = &parent->rb_left;
1197 else if (ret > 0)
1198 new = &parent->rb_right;
1199 else {
1200 /*
1201 * Lock and unlock the stable_node's page (which
1202 * might already have been migrated) so that page
1203 * migration is sure to notice its raised count.
1204 * It would be more elegant to return stable_node
1205 * than kpage, but that involves more changes.
1206 */
1207 tree_page = get_ksm_page(stable_node, true);
1208 if (tree_page) {
1209 unlock_page(tree_page);
1210 if (get_kpfn_nid(stable_node->kpfn) !=
1211 NUMA(stable_node->nid)) {
1212 put_page(tree_page);
1213 goto replace;
1214 }
1215 return tree_page;
1216 }
1217 /*
1218 * There is now a place for page_node, but the tree may
1219 * have been rebalanced, so re-evaluate parent and new.
1220 */
1221 if (page_node)
1222 goto again;
1223 return NULL;
1224 }
1225 }
1226
1227 if (!page_node)
1228 return NULL;
1229
1230 list_del(&page_node->list);
1231 DO_NUMA(page_node->nid = nid);
1232 rb_link_node(&page_node->node, parent, new);
1233 rb_insert_color(&page_node->node, root);
1234 get_page(page);
1235 return page;
1236
1237 replace:
1238 if (page_node) {
1239 list_del(&page_node->list);
1240 DO_NUMA(page_node->nid = nid);
1241 rb_replace_node(&stable_node->node, &page_node->node, root);
1242 get_page(page);
1243 } else {
1244 rb_erase(&stable_node->node, root);
1245 page = NULL;
1246 }
1247 stable_node->head = &migrate_nodes;
1248 list_add(&stable_node->list, stable_node->head);
1249 return page;
1250 }
1251
1252 /*
1253 * stable_tree_insert - insert stable tree node pointing to new ksm page
1254 * into the stable tree.
1255 *
1256 * This function returns the stable tree node just allocated on success,
1257 * NULL otherwise.
1258 */
1259 static struct stable_node *stable_tree_insert(struct page *kpage)
1260 {
1261 int nid;
1262 unsigned long kpfn;
1263 struct rb_root *root;
1264 struct rb_node **new;
1265 struct rb_node *parent;
1266 struct stable_node *stable_node;
1267
1268 kpfn = page_to_pfn(kpage);
1269 nid = get_kpfn_nid(kpfn);
1270 root = root_stable_tree + nid;
1271 again:
1272 parent = NULL;
1273 new = &root->rb_node;
1274
1275 while (*new) {
1276 struct page *tree_page;
1277 int ret;
1278
1279 cond_resched();
1280 stable_node = rb_entry(*new, struct stable_node, node);
1281 tree_page = get_ksm_page(stable_node, false);
1282 if (!tree_page) {
1283 /*
1284 * If we walked over a stale stable_node,
1285 * get_ksm_page() will call rb_erase() and it
1286 * may rebalance the tree from under us. So
1287 * restart the search from scratch. Returning
1288 * NULL would be safe too, but we'd generate
1289 * false negative insertions just because some
1290 * stable_node was stale.
1291 */
1292 goto again;
1293 }
1294
1295 ret = memcmp_pages(kpage, tree_page);
1296 put_page(tree_page);
1297
1298 parent = *new;
1299 if (ret < 0)
1300 new = &parent->rb_left;
1301 else if (ret > 0)
1302 new = &parent->rb_right;
1303 else {
1304 /*
1305 * It is not a bug that stable_tree_search() didn't
1306 * find this node: because at that time our page was
1307 * not yet write-protected, so may have changed since.
1308 */
1309 return NULL;
1310 }
1311 }
1312
1313 stable_node = alloc_stable_node();
1314 if (!stable_node)
1315 return NULL;
1316
1317 INIT_HLIST_HEAD(&stable_node->hlist);
1318 stable_node->kpfn = kpfn;
1319 set_page_stable_node(kpage, stable_node);
1320 DO_NUMA(stable_node->nid = nid);
1321 rb_link_node(&stable_node->node, parent, new);
1322 rb_insert_color(&stable_node->node, root);
1323
1324 return stable_node;
1325 }
1326
1327 /*
1328 * unstable_tree_search_insert - search for identical page,
1329 * else insert rmap_item into the unstable tree.
1330 *
1331 * This function searches for a page in the unstable tree identical to the
1332 * page currently being scanned; and if no identical page is found in the
1333 * tree, we insert rmap_item as a new object into the unstable tree.
1334 *
1335 * This function returns pointer to rmap_item found to be identical
1336 * to the currently scanned page, NULL otherwise.
1337 *
1338 * This function does both searching and inserting, because they share
1339 * the same walking algorithm in an rbtree.
1340 */
1341 static
1342 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1343 struct page *page,
1344 struct page **tree_pagep)
1345 {
1346 struct rb_node **new;
1347 struct rb_root *root;
1348 struct rb_node *parent = NULL;
1349 int nid;
1350
1351 nid = get_kpfn_nid(page_to_pfn(page));
1352 root = root_unstable_tree + nid;
1353 new = &root->rb_node;
1354
1355 while (*new) {
1356 struct rmap_item *tree_rmap_item;
1357 struct page *tree_page;
1358 int ret;
1359
1360 cond_resched();
1361 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1362 tree_page = get_mergeable_page(tree_rmap_item);
1363 if (!tree_page)
1364 return NULL;
1365
1366 /*
1367 * Don't substitute a ksm page for a forked page.
1368 */
1369 if (page == tree_page) {
1370 put_page(tree_page);
1371 return NULL;
1372 }
1373
1374 ret = memcmp_pages(page, tree_page);
1375
1376 parent = *new;
1377 if (ret < 0) {
1378 put_page(tree_page);
1379 new = &parent->rb_left;
1380 } else if (ret > 0) {
1381 put_page(tree_page);
1382 new = &parent->rb_right;
1383 } else if (!ksm_merge_across_nodes &&
1384 page_to_nid(tree_page) != nid) {
1385 /*
1386 * If tree_page has been migrated to another NUMA node,
1387 * it will be flushed out and put in the right unstable
1388 * tree next time: only merge with it when across_nodes.
1389 */
1390 put_page(tree_page);
1391 return NULL;
1392 } else {
1393 *tree_pagep = tree_page;
1394 return tree_rmap_item;
1395 }
1396 }
1397
1398 rmap_item->address |= UNSTABLE_FLAG;
1399 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1400 DO_NUMA(rmap_item->nid = nid);
1401 rb_link_node(&rmap_item->node, parent, new);
1402 rb_insert_color(&rmap_item->node, root);
1403
1404 ksm_pages_unshared++;
1405 return NULL;
1406 }
1407
1408 /*
1409 * stable_tree_append - add another rmap_item to the linked list of
1410 * rmap_items hanging off a given node of the stable tree, all sharing
1411 * the same ksm page.
1412 */
1413 static void stable_tree_append(struct rmap_item *rmap_item,
1414 struct stable_node *stable_node)
1415 {
1416 rmap_item->head = stable_node;
1417 rmap_item->address |= STABLE_FLAG;
1418 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1419
1420 if (rmap_item->hlist.next)
1421 ksm_pages_sharing++;
1422 else
1423 ksm_pages_shared++;
1424 }
1425
1426 /*
1427 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1428 * if not, compare checksum to previous and if it's the same, see if page can
1429 * be inserted into the unstable tree, or merged with a page already there and
1430 * both transferred to the stable tree.
1431 *
1432 * @page: the page that we are searching identical page to.
1433 * @rmap_item: the reverse mapping into the virtual address of this page
1434 */
1435 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1436 {
1437 struct rmap_item *tree_rmap_item;
1438 struct page *tree_page = NULL;
1439 struct stable_node *stable_node;
1440 struct page *kpage;
1441 unsigned int checksum;
1442 int err;
1443
1444 stable_node = page_stable_node(page);
1445 if (stable_node) {
1446 if (stable_node->head != &migrate_nodes &&
1447 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1448 rb_erase(&stable_node->node,
1449 root_stable_tree + NUMA(stable_node->nid));
1450 stable_node->head = &migrate_nodes;
1451 list_add(&stable_node->list, stable_node->head);
1452 }
1453 if (stable_node->head != &migrate_nodes &&
1454 rmap_item->head == stable_node)
1455 return;
1456 }
1457
1458 /* We first start with searching the page inside the stable tree */
1459 kpage = stable_tree_search(page);
1460 if (kpage == page && rmap_item->head == stable_node) {
1461 put_page(kpage);
1462 return;
1463 }
1464
1465 remove_rmap_item_from_tree(rmap_item);
1466
1467 if (kpage) {
1468 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1469 if (!err) {
1470 /*
1471 * The page was successfully merged:
1472 * add its rmap_item to the stable tree.
1473 */
1474 lock_page(kpage);
1475 stable_tree_append(rmap_item, page_stable_node(kpage));
1476 unlock_page(kpage);
1477 }
1478 put_page(kpage);
1479 return;
1480 }
1481
1482 /*
1483 * If the hash value of the page has changed from the last time
1484 * we calculated it, this page is changing frequently: therefore we
1485 * don't want to insert it in the unstable tree, and we don't want
1486 * to waste our time searching for something identical to it there.
1487 */
1488 checksum = calc_checksum(page);
1489 if (rmap_item->oldchecksum != checksum) {
1490 rmap_item->oldchecksum = checksum;
1491 return;
1492 }
1493
1494 tree_rmap_item =
1495 unstable_tree_search_insert(rmap_item, page, &tree_page);
1496 if (tree_rmap_item) {
1497 kpage = try_to_merge_two_pages(rmap_item, page,
1498 tree_rmap_item, tree_page);
1499 put_page(tree_page);
1500 if (kpage) {
1501 /*
1502 * The pages were successfully merged: insert new
1503 * node in the stable tree and add both rmap_items.
1504 */
1505 lock_page(kpage);
1506 stable_node = stable_tree_insert(kpage);
1507 if (stable_node) {
1508 stable_tree_append(tree_rmap_item, stable_node);
1509 stable_tree_append(rmap_item, stable_node);
1510 }
1511 unlock_page(kpage);
1512
1513 /*
1514 * If we fail to insert the page into the stable tree,
1515 * we will have 2 virtual addresses that are pointing
1516 * to a ksm page left outside the stable tree,
1517 * in which case we need to break_cow on both.
1518 */
1519 if (!stable_node) {
1520 break_cow(tree_rmap_item);
1521 break_cow(rmap_item);
1522 }
1523 }
1524 }
1525 }
1526
1527 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1528 struct rmap_item **rmap_list,
1529 unsigned long addr)
1530 {
1531 struct rmap_item *rmap_item;
1532
1533 while (*rmap_list) {
1534 rmap_item = *rmap_list;
1535 if ((rmap_item->address & PAGE_MASK) == addr)
1536 return rmap_item;
1537 if (rmap_item->address > addr)
1538 break;
1539 *rmap_list = rmap_item->rmap_list;
1540 remove_rmap_item_from_tree(rmap_item);
1541 free_rmap_item(rmap_item);
1542 }
1543
1544 rmap_item = alloc_rmap_item();
1545 if (rmap_item) {
1546 /* It has already been zeroed */
1547 rmap_item->mm = mm_slot->mm;
1548 rmap_item->address = addr;
1549 rmap_item->rmap_list = *rmap_list;
1550 *rmap_list = rmap_item;
1551 }
1552 return rmap_item;
1553 }
1554
1555 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1556 {
1557 struct mm_struct *mm;
1558 struct mm_slot *slot;
1559 struct vm_area_struct *vma;
1560 struct rmap_item *rmap_item;
1561 int nid;
1562
1563 if (list_empty(&ksm_mm_head.mm_list))
1564 return NULL;
1565
1566 slot = ksm_scan.mm_slot;
1567 if (slot == &ksm_mm_head) {
1568 /*
1569 * A number of pages can hang around indefinitely on per-cpu
1570 * pagevecs, raised page count preventing write_protect_page
1571 * from merging them. Though it doesn't really matter much,
1572 * it is puzzling to see some stuck in pages_volatile until
1573 * other activity jostles them out, and they also prevented
1574 * LTP's KSM test from succeeding deterministically; so drain
1575 * them here (here rather than on entry to ksm_do_scan(),
1576 * so we don't IPI too often when pages_to_scan is set low).
1577 */
1578 lru_add_drain_all();
1579
1580 /*
1581 * Whereas stale stable_nodes on the stable_tree itself
1582 * get pruned in the regular course of stable_tree_search(),
1583 * those moved out to the migrate_nodes list can accumulate:
1584 * so prune them once before each full scan.
1585 */
1586 if (!ksm_merge_across_nodes) {
1587 struct stable_node *stable_node;
1588 struct list_head *this, *next;
1589 struct page *page;
1590
1591 list_for_each_safe(this, next, &migrate_nodes) {
1592 stable_node = list_entry(this,
1593 struct stable_node, list);
1594 page = get_ksm_page(stable_node, false);
1595 if (page)
1596 put_page(page);
1597 cond_resched();
1598 }
1599 }
1600
1601 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1602 root_unstable_tree[nid] = RB_ROOT;
1603
1604 spin_lock(&ksm_mmlist_lock);
1605 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1606 ksm_scan.mm_slot = slot;
1607 spin_unlock(&ksm_mmlist_lock);
1608 /*
1609 * Although we tested list_empty() above, a racing __ksm_exit
1610 * of the last mm on the list may have removed it since then.
1611 */
1612 if (slot == &ksm_mm_head)
1613 return NULL;
1614 next_mm:
1615 ksm_scan.address = 0;
1616 ksm_scan.rmap_list = &slot->rmap_list;
1617 }
1618
1619 mm = slot->mm;
1620 down_read(&mm->mmap_sem);
1621 if (ksm_test_exit(mm))
1622 vma = NULL;
1623 else
1624 vma = find_vma(mm, ksm_scan.address);
1625
1626 for (; vma; vma = vma->vm_next) {
1627 if (!(vma->vm_flags & VM_MERGEABLE))
1628 continue;
1629 if (ksm_scan.address < vma->vm_start)
1630 ksm_scan.address = vma->vm_start;
1631 if (!vma->anon_vma)
1632 ksm_scan.address = vma->vm_end;
1633
1634 while (ksm_scan.address < vma->vm_end) {
1635 if (ksm_test_exit(mm))
1636 break;
1637 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1638 if (IS_ERR_OR_NULL(*page)) {
1639 ksm_scan.address += PAGE_SIZE;
1640 cond_resched();
1641 continue;
1642 }
1643 if (PageAnon(*page) ||
1644 page_trans_compound_anon(*page)) {
1645 flush_anon_page(vma, *page, ksm_scan.address);
1646 flush_dcache_page(*page);
1647 rmap_item = get_next_rmap_item(slot,
1648 ksm_scan.rmap_list, ksm_scan.address);
1649 if (rmap_item) {
1650 ksm_scan.rmap_list =
1651 &rmap_item->rmap_list;
1652 ksm_scan.address += PAGE_SIZE;
1653 } else
1654 put_page(*page);
1655 up_read(&mm->mmap_sem);
1656 return rmap_item;
1657 }
1658 put_page(*page);
1659 ksm_scan.address += PAGE_SIZE;
1660 cond_resched();
1661 }
1662 }
1663
1664 if (ksm_test_exit(mm)) {
1665 ksm_scan.address = 0;
1666 ksm_scan.rmap_list = &slot->rmap_list;
1667 }
1668 /*
1669 * Nuke all the rmap_items that are above this current rmap:
1670 * because there were no VM_MERGEABLE vmas with such addresses.
1671 */
1672 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1673
1674 spin_lock(&ksm_mmlist_lock);
1675 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1676 struct mm_slot, mm_list);
1677 if (ksm_scan.address == 0) {
1678 /*
1679 * We've completed a full scan of all vmas, holding mmap_sem
1680 * throughout, and found no VM_MERGEABLE: so do the same as
1681 * __ksm_exit does to remove this mm from all our lists now.
1682 * This applies either when cleaning up after __ksm_exit
1683 * (but beware: we can reach here even before __ksm_exit),
1684 * or when all VM_MERGEABLE areas have been unmapped (and
1685 * mmap_sem then protects against race with MADV_MERGEABLE).
1686 */
1687 hash_del(&slot->link);
1688 list_del(&slot->mm_list);
1689 spin_unlock(&ksm_mmlist_lock);
1690
1691 free_mm_slot(slot);
1692 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1693 up_read(&mm->mmap_sem);
1694 mmdrop(mm);
1695 } else {
1696 spin_unlock(&ksm_mmlist_lock);
1697 up_read(&mm->mmap_sem);
1698 }
1699
1700 /* Repeat until we've completed scanning the whole list */
1701 slot = ksm_scan.mm_slot;
1702 if (slot != &ksm_mm_head)
1703 goto next_mm;
1704
1705 ksm_scan.seqnr++;
1706 return NULL;
1707 }
1708
1709 /**
1710 * ksm_do_scan - the ksm scanner main worker function.
1711 * @scan_npages - number of pages we want to scan before we return.
1712 */
1713 static void ksm_do_scan(unsigned int scan_npages)
1714 {
1715 struct rmap_item *rmap_item;
1716 struct page *uninitialized_var(page);
1717
1718 while (scan_npages-- && likely(!freezing(current))) {
1719 cond_resched();
1720 rmap_item = scan_get_next_rmap_item(&page);
1721 if (!rmap_item)
1722 return;
1723 cmp_and_merge_page(page, rmap_item);
1724 put_page(page);
1725 }
1726 }
1727
1728 static int ksmd_should_run(void)
1729 {
1730 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1731 }
1732
1733 static int ksm_scan_thread(void *nothing)
1734 {
1735 set_freezable();
1736 set_user_nice(current, 5);
1737
1738 while (!kthread_should_stop()) {
1739 mutex_lock(&ksm_thread_mutex);
1740 wait_while_offlining();
1741 if (ksmd_should_run())
1742 ksm_do_scan(ksm_thread_pages_to_scan);
1743 mutex_unlock(&ksm_thread_mutex);
1744
1745 try_to_freeze();
1746
1747 if (ksmd_should_run()) {
1748 schedule_timeout_interruptible(
1749 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1750 } else {
1751 wait_event_freezable(ksm_thread_wait,
1752 ksmd_should_run() || kthread_should_stop());
1753 }
1754 }
1755 return 0;
1756 }
1757
1758 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1759 unsigned long end, int advice, unsigned long *vm_flags)
1760 {
1761 struct mm_struct *mm = vma->vm_mm;
1762 int err;
1763
1764 switch (advice) {
1765 case MADV_MERGEABLE:
1766 /*
1767 * Be somewhat over-protective for now!
1768 */
1769 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1770 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1771 VM_HUGETLB | VM_MIXEDMAP))
1772 return 0; /* just ignore the advice */
1773
1774 #ifdef VM_SAO
1775 if (*vm_flags & VM_SAO)
1776 return 0;
1777 #endif
1778
1779 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1780 err = __ksm_enter(mm);
1781 if (err)
1782 return err;
1783 }
1784
1785 *vm_flags |= VM_MERGEABLE;
1786 break;
1787
1788 case MADV_UNMERGEABLE:
1789 if (!(*vm_flags & VM_MERGEABLE))
1790 return 0; /* just ignore the advice */
1791
1792 if (vma->anon_vma) {
1793 err = unmerge_ksm_pages(vma, start, end);
1794 if (err)
1795 return err;
1796 }
1797
1798 *vm_flags &= ~VM_MERGEABLE;
1799 break;
1800 }
1801
1802 return 0;
1803 }
1804
1805 int __ksm_enter(struct mm_struct *mm)
1806 {
1807 struct mm_slot *mm_slot;
1808 int needs_wakeup;
1809
1810 mm_slot = alloc_mm_slot();
1811 if (!mm_slot)
1812 return -ENOMEM;
1813
1814 /* Check ksm_run too? Would need tighter locking */
1815 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1816
1817 spin_lock(&ksm_mmlist_lock);
1818 insert_to_mm_slots_hash(mm, mm_slot);
1819 /*
1820 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1821 * insert just behind the scanning cursor, to let the area settle
1822 * down a little; when fork is followed by immediate exec, we don't
1823 * want ksmd to waste time setting up and tearing down an rmap_list.
1824 *
1825 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1826 * scanning cursor, otherwise KSM pages in newly forked mms will be
1827 * missed: then we might as well insert at the end of the list.
1828 */
1829 if (ksm_run & KSM_RUN_UNMERGE)
1830 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1831 else
1832 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1833 spin_unlock(&ksm_mmlist_lock);
1834
1835 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1836 atomic_inc(&mm->mm_count);
1837
1838 if (needs_wakeup)
1839 wake_up_interruptible(&ksm_thread_wait);
1840
1841 return 0;
1842 }
1843
1844 void __ksm_exit(struct mm_struct *mm)
1845 {
1846 struct mm_slot *mm_slot;
1847 int easy_to_free = 0;
1848
1849 /*
1850 * This process is exiting: if it's straightforward (as is the
1851 * case when ksmd was never running), free mm_slot immediately.
1852 * But if it's at the cursor or has rmap_items linked to it, use
1853 * mmap_sem to synchronize with any break_cows before pagetables
1854 * are freed, and leave the mm_slot on the list for ksmd to free.
1855 * Beware: ksm may already have noticed it exiting and freed the slot.
1856 */
1857
1858 spin_lock(&ksm_mmlist_lock);
1859 mm_slot = get_mm_slot(mm);
1860 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1861 if (!mm_slot->rmap_list) {
1862 hash_del(&mm_slot->link);
1863 list_del(&mm_slot->mm_list);
1864 easy_to_free = 1;
1865 } else {
1866 list_move(&mm_slot->mm_list,
1867 &ksm_scan.mm_slot->mm_list);
1868 }
1869 }
1870 spin_unlock(&ksm_mmlist_lock);
1871
1872 if (easy_to_free) {
1873 free_mm_slot(mm_slot);
1874 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1875 mmdrop(mm);
1876 } else if (mm_slot) {
1877 down_write(&mm->mmap_sem);
1878 up_write(&mm->mmap_sem);
1879 }
1880 }
1881
1882 struct page *ksm_might_need_to_copy(struct page *page,
1883 struct vm_area_struct *vma, unsigned long address)
1884 {
1885 struct anon_vma *anon_vma = page_anon_vma(page);
1886 struct page *new_page;
1887
1888 if (PageKsm(page)) {
1889 if (page_stable_node(page) &&
1890 !(ksm_run & KSM_RUN_UNMERGE))
1891 return page; /* no need to copy it */
1892 } else if (!anon_vma) {
1893 return page; /* no need to copy it */
1894 } else if (anon_vma->root == vma->anon_vma->root &&
1895 page->index == linear_page_index(vma, address)) {
1896 return page; /* still no need to copy it */
1897 }
1898 if (!PageUptodate(page))
1899 return page; /* let do_swap_page report the error */
1900
1901 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1902 if (new_page) {
1903 copy_user_highpage(new_page, page, address, vma);
1904
1905 SetPageDirty(new_page);
1906 __SetPageUptodate(new_page);
1907 __set_page_locked(new_page);
1908 }
1909
1910 return new_page;
1911 }
1912
1913 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1914 {
1915 struct stable_node *stable_node;
1916 struct rmap_item *rmap_item;
1917 int ret = SWAP_AGAIN;
1918 int search_new_forks = 0;
1919
1920 VM_BUG_ON_PAGE(!PageKsm(page), page);
1921
1922 /*
1923 * Rely on the page lock to protect against concurrent modifications
1924 * to that page's node of the stable tree.
1925 */
1926 VM_BUG_ON_PAGE(!PageLocked(page), page);
1927
1928 stable_node = page_stable_node(page);
1929 if (!stable_node)
1930 return ret;
1931 again:
1932 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1933 struct anon_vma *anon_vma = rmap_item->anon_vma;
1934 struct anon_vma_chain *vmac;
1935 struct vm_area_struct *vma;
1936
1937 cond_resched();
1938 anon_vma_lock_read(anon_vma);
1939 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1940 0, ULONG_MAX) {
1941 cond_resched();
1942 vma = vmac->vma;
1943 if (rmap_item->address < vma->vm_start ||
1944 rmap_item->address >= vma->vm_end)
1945 continue;
1946 /*
1947 * Initially we examine only the vma which covers this
1948 * rmap_item; but later, if there is still work to do,
1949 * we examine covering vmas in other mms: in case they
1950 * were forked from the original since ksmd passed.
1951 */
1952 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1953 continue;
1954
1955 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1956 continue;
1957
1958 ret = rwc->rmap_one(page, vma,
1959 rmap_item->address, rwc->arg);
1960 if (ret != SWAP_AGAIN) {
1961 anon_vma_unlock_read(anon_vma);
1962 goto out;
1963 }
1964 if (rwc->done && rwc->done(page)) {
1965 anon_vma_unlock_read(anon_vma);
1966 goto out;
1967 }
1968 }
1969 anon_vma_unlock_read(anon_vma);
1970 }
1971 if (!search_new_forks++)
1972 goto again;
1973 out:
1974 return ret;
1975 }
1976
1977 #ifdef CONFIG_MIGRATION
1978 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1979 {
1980 struct stable_node *stable_node;
1981
1982 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1983 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1984 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1985
1986 stable_node = page_stable_node(newpage);
1987 if (stable_node) {
1988 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1989 stable_node->kpfn = page_to_pfn(newpage);
1990 /*
1991 * newpage->mapping was set in advance; now we need smp_wmb()
1992 * to make sure that the new stable_node->kpfn is visible
1993 * to get_ksm_page() before it can see that oldpage->mapping
1994 * has gone stale (or that PageSwapCache has been cleared).
1995 */
1996 smp_wmb();
1997 set_page_stable_node(oldpage, NULL);
1998 }
1999 }
2000 #endif /* CONFIG_MIGRATION */
2001
2002 #ifdef CONFIG_MEMORY_HOTREMOVE
2003 static void wait_while_offlining(void)
2004 {
2005 while (ksm_run & KSM_RUN_OFFLINE) {
2006 mutex_unlock(&ksm_thread_mutex);
2007 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2008 TASK_UNINTERRUPTIBLE);
2009 mutex_lock(&ksm_thread_mutex);
2010 }
2011 }
2012
2013 static void ksm_check_stable_tree(unsigned long start_pfn,
2014 unsigned long end_pfn)
2015 {
2016 struct stable_node *stable_node;
2017 struct list_head *this, *next;
2018 struct rb_node *node;
2019 int nid;
2020
2021 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2022 node = rb_first(root_stable_tree + nid);
2023 while (node) {
2024 stable_node = rb_entry(node, struct stable_node, node);
2025 if (stable_node->kpfn >= start_pfn &&
2026 stable_node->kpfn < end_pfn) {
2027 /*
2028 * Don't get_ksm_page, page has already gone:
2029 * which is why we keep kpfn instead of page*
2030 */
2031 remove_node_from_stable_tree(stable_node);
2032 node = rb_first(root_stable_tree + nid);
2033 } else
2034 node = rb_next(node);
2035 cond_resched();
2036 }
2037 }
2038 list_for_each_safe(this, next, &migrate_nodes) {
2039 stable_node = list_entry(this, struct stable_node, list);
2040 if (stable_node->kpfn >= start_pfn &&
2041 stable_node->kpfn < end_pfn)
2042 remove_node_from_stable_tree(stable_node);
2043 cond_resched();
2044 }
2045 }
2046
2047 static int ksm_memory_callback(struct notifier_block *self,
2048 unsigned long action, void *arg)
2049 {
2050 struct memory_notify *mn = arg;
2051
2052 switch (action) {
2053 case MEM_GOING_OFFLINE:
2054 /*
2055 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2056 * and remove_all_stable_nodes() while memory is going offline:
2057 * it is unsafe for them to touch the stable tree at this time.
2058 * But unmerge_ksm_pages(), rmap lookups and other entry points
2059 * which do not need the ksm_thread_mutex are all safe.
2060 */
2061 mutex_lock(&ksm_thread_mutex);
2062 ksm_run |= KSM_RUN_OFFLINE;
2063 mutex_unlock(&ksm_thread_mutex);
2064 break;
2065
2066 case MEM_OFFLINE:
2067 /*
2068 * Most of the work is done by page migration; but there might
2069 * be a few stable_nodes left over, still pointing to struct
2070 * pages which have been offlined: prune those from the tree,
2071 * otherwise get_ksm_page() might later try to access a
2072 * non-existent struct page.
2073 */
2074 ksm_check_stable_tree(mn->start_pfn,
2075 mn->start_pfn + mn->nr_pages);
2076 /* fallthrough */
2077
2078 case MEM_CANCEL_OFFLINE:
2079 mutex_lock(&ksm_thread_mutex);
2080 ksm_run &= ~KSM_RUN_OFFLINE;
2081 mutex_unlock(&ksm_thread_mutex);
2082
2083 smp_mb(); /* wake_up_bit advises this */
2084 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2085 break;
2086 }
2087 return NOTIFY_OK;
2088 }
2089 #else
2090 static void wait_while_offlining(void)
2091 {
2092 }
2093 #endif /* CONFIG_MEMORY_HOTREMOVE */
2094
2095 #ifdef CONFIG_SYSFS
2096 /*
2097 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2098 */
2099
2100 #define KSM_ATTR_RO(_name) \
2101 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2102 #define KSM_ATTR(_name) \
2103 static struct kobj_attribute _name##_attr = \
2104 __ATTR(_name, 0644, _name##_show, _name##_store)
2105
2106 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2107 struct kobj_attribute *attr, char *buf)
2108 {
2109 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2110 }
2111
2112 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2113 struct kobj_attribute *attr,
2114 const char *buf, size_t count)
2115 {
2116 unsigned long msecs;
2117 int err;
2118
2119 err = kstrtoul(buf, 10, &msecs);
2120 if (err || msecs > UINT_MAX)
2121 return -EINVAL;
2122
2123 ksm_thread_sleep_millisecs = msecs;
2124
2125 return count;
2126 }
2127 KSM_ATTR(sleep_millisecs);
2128
2129 static ssize_t pages_to_scan_show(struct kobject *kobj,
2130 struct kobj_attribute *attr, char *buf)
2131 {
2132 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2133 }
2134
2135 static ssize_t pages_to_scan_store(struct kobject *kobj,
2136 struct kobj_attribute *attr,
2137 const char *buf, size_t count)
2138 {
2139 int err;
2140 unsigned long nr_pages;
2141
2142 err = kstrtoul(buf, 10, &nr_pages);
2143 if (err || nr_pages > UINT_MAX)
2144 return -EINVAL;
2145
2146 ksm_thread_pages_to_scan = nr_pages;
2147
2148 return count;
2149 }
2150 KSM_ATTR(pages_to_scan);
2151
2152 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2153 char *buf)
2154 {
2155 return sprintf(buf, "%lu\n", ksm_run);
2156 }
2157
2158 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2159 const char *buf, size_t count)
2160 {
2161 int err;
2162 unsigned long flags;
2163
2164 err = kstrtoul(buf, 10, &flags);
2165 if (err || flags > UINT_MAX)
2166 return -EINVAL;
2167 if (flags > KSM_RUN_UNMERGE)
2168 return -EINVAL;
2169
2170 /*
2171 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2172 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2173 * breaking COW to free the pages_shared (but leaves mm_slots
2174 * on the list for when ksmd may be set running again).
2175 */
2176
2177 mutex_lock(&ksm_thread_mutex);
2178 wait_while_offlining();
2179 if (ksm_run != flags) {
2180 ksm_run = flags;
2181 if (flags & KSM_RUN_UNMERGE) {
2182 set_current_oom_origin();
2183 err = unmerge_and_remove_all_rmap_items();
2184 clear_current_oom_origin();
2185 if (err) {
2186 ksm_run = KSM_RUN_STOP;
2187 count = err;
2188 }
2189 }
2190 }
2191 mutex_unlock(&ksm_thread_mutex);
2192
2193 if (flags & KSM_RUN_MERGE)
2194 wake_up_interruptible(&ksm_thread_wait);
2195
2196 return count;
2197 }
2198 KSM_ATTR(run);
2199
2200 #ifdef CONFIG_NUMA
2201 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2202 struct kobj_attribute *attr, char *buf)
2203 {
2204 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2205 }
2206
2207 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2208 struct kobj_attribute *attr,
2209 const char *buf, size_t count)
2210 {
2211 int err;
2212 unsigned long knob;
2213
2214 err = kstrtoul(buf, 10, &knob);
2215 if (err)
2216 return err;
2217 if (knob > 1)
2218 return -EINVAL;
2219
2220 mutex_lock(&ksm_thread_mutex);
2221 wait_while_offlining();
2222 if (ksm_merge_across_nodes != knob) {
2223 if (ksm_pages_shared || remove_all_stable_nodes())
2224 err = -EBUSY;
2225 else if (root_stable_tree == one_stable_tree) {
2226 struct rb_root *buf;
2227 /*
2228 * This is the first time that we switch away from the
2229 * default of merging across nodes: must now allocate
2230 * a buffer to hold as many roots as may be needed.
2231 * Allocate stable and unstable together:
2232 * MAXSMP NODES_SHIFT 10 will use 16kB.
2233 */
2234 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2235 GFP_KERNEL);
2236 /* Let us assume that RB_ROOT is NULL is zero */
2237 if (!buf)
2238 err = -ENOMEM;
2239 else {
2240 root_stable_tree = buf;
2241 root_unstable_tree = buf + nr_node_ids;
2242 /* Stable tree is empty but not the unstable */
2243 root_unstable_tree[0] = one_unstable_tree[0];
2244 }
2245 }
2246 if (!err) {
2247 ksm_merge_across_nodes = knob;
2248 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2249 }
2250 }
2251 mutex_unlock(&ksm_thread_mutex);
2252
2253 return err ? err : count;
2254 }
2255 KSM_ATTR(merge_across_nodes);
2256 #endif
2257
2258 static ssize_t pages_shared_show(struct kobject *kobj,
2259 struct kobj_attribute *attr, char *buf)
2260 {
2261 return sprintf(buf, "%lu\n", ksm_pages_shared);
2262 }
2263 KSM_ATTR_RO(pages_shared);
2264
2265 static ssize_t pages_sharing_show(struct kobject *kobj,
2266 struct kobj_attribute *attr, char *buf)
2267 {
2268 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2269 }
2270 KSM_ATTR_RO(pages_sharing);
2271
2272 static ssize_t pages_unshared_show(struct kobject *kobj,
2273 struct kobj_attribute *attr, char *buf)
2274 {
2275 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2276 }
2277 KSM_ATTR_RO(pages_unshared);
2278
2279 static ssize_t pages_volatile_show(struct kobject *kobj,
2280 struct kobj_attribute *attr, char *buf)
2281 {
2282 long ksm_pages_volatile;
2283
2284 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2285 - ksm_pages_sharing - ksm_pages_unshared;
2286 /*
2287 * It was not worth any locking to calculate that statistic,
2288 * but it might therefore sometimes be negative: conceal that.
2289 */
2290 if (ksm_pages_volatile < 0)
2291 ksm_pages_volatile = 0;
2292 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2293 }
2294 KSM_ATTR_RO(pages_volatile);
2295
2296 static ssize_t full_scans_show(struct kobject *kobj,
2297 struct kobj_attribute *attr, char *buf)
2298 {
2299 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2300 }
2301 KSM_ATTR_RO(full_scans);
2302
2303 static struct attribute *ksm_attrs[] = {
2304 &sleep_millisecs_attr.attr,
2305 &pages_to_scan_attr.attr,
2306 &run_attr.attr,
2307 &pages_shared_attr.attr,
2308 &pages_sharing_attr.attr,
2309 &pages_unshared_attr.attr,
2310 &pages_volatile_attr.attr,
2311 &full_scans_attr.attr,
2312 #ifdef CONFIG_NUMA
2313 &merge_across_nodes_attr.attr,
2314 #endif
2315 NULL,
2316 };
2317
2318 static struct attribute_group ksm_attr_group = {
2319 .attrs = ksm_attrs,
2320 .name = "ksm",
2321 };
2322 #endif /* CONFIG_SYSFS */
2323
2324 static int __init ksm_init(void)
2325 {
2326 struct task_struct *ksm_thread;
2327 int err;
2328
2329 err = ksm_slab_init();
2330 if (err)
2331 goto out;
2332
2333 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2334 if (IS_ERR(ksm_thread)) {
2335 pr_err("ksm: creating kthread failed\n");
2336 err = PTR_ERR(ksm_thread);
2337 goto out_free;
2338 }
2339
2340 #ifdef CONFIG_SYSFS
2341 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2342 if (err) {
2343 pr_err("ksm: register sysfs failed\n");
2344 kthread_stop(ksm_thread);
2345 goto out_free;
2346 }
2347 #else
2348 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2349
2350 #endif /* CONFIG_SYSFS */
2351
2352 #ifdef CONFIG_MEMORY_HOTREMOVE
2353 /* There is no significance to this priority 100 */
2354 hotplug_memory_notifier(ksm_memory_callback, 100);
2355 #endif
2356 return 0;
2357
2358 out_free:
2359 ksm_slab_free();
2360 out:
2361 return err;
2362 }
2363 subsys_initcall(ksm_init);