]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/ksm.c
Merge tag 'mediatek-drm-fixes-6.0' of https://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-kernels.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /**
55 * DOC: Overview
56 *
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
85 * using the same struct stable_node structure.
86 *
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
112 */
113
114 /**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119 * @mm: the mm that this information is valid for
120 */
121 struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
124 struct rmap_item *rmap_list;
125 struct mm_struct *mm;
126 };
127
128 /**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137 struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
140 struct rmap_item **rmap_list;
141 unsigned long seqnr;
142 };
143
144 /**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149 * @list: linked into migrate_nodes, pending placement in the proper node tree
150 * @hlist: hlist head of rmap_items using this ksm page
151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155 */
156 struct stable_node {
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
165 };
166 };
167 struct hlist_head hlist;
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177 #define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 int nid;
181 #endif
182 };
183
184 /**
185 * struct rmap_item - reverse mapping item for virtual addresses
186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
195 */
196 struct rmap_item {
197 struct rmap_item *rmap_list;
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200 #ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202 #endif
203 };
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
206 unsigned int oldchecksum; /* when unstable */
207 union {
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
213 };
214 };
215
216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
219
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
225
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232
233 static struct mm_slot ksm_mm_head = {
234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235 };
236 static struct ksm_scan ksm_scan = {
237 .mm_slot = &ksm_mm_head,
238 };
239
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
243
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
246
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
249
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
252
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
255
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
258
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
261
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
264
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
267
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
270
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
273
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
276
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
279
280 #ifdef CONFIG_NUMA
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
284 #else
285 #define ksm_merge_across_nodes 1U
286 #define ksm_nr_node_ids 1
287 #endif
288
289 #define KSM_RUN_STOP 0
290 #define KSM_RUN_MERGE 1
291 #define KSM_RUN_UNMERGE 2
292 #define KSM_RUN_OFFLINE 4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
295
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
298 static DEFINE_MUTEX(ksm_thread_mutex);
299 static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 sizeof(struct __struct), __alignof__(struct __struct),\
303 (__flags), NULL)
304
305 static int __init ksm_slab_init(void)
306 {
307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 if (!rmap_item_cache)
309 goto out;
310
311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 if (!stable_node_cache)
313 goto out_free1;
314
315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316 if (!mm_slot_cache)
317 goto out_free2;
318
319 return 0;
320
321 out_free2:
322 kmem_cache_destroy(stable_node_cache);
323 out_free1:
324 kmem_cache_destroy(rmap_item_cache);
325 out:
326 return -ENOMEM;
327 }
328
329 static void __init ksm_slab_free(void)
330 {
331 kmem_cache_destroy(mm_slot_cache);
332 kmem_cache_destroy(stable_node_cache);
333 kmem_cache_destroy(rmap_item_cache);
334 mm_slot_cache = NULL;
335 }
336
337 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338 {
339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340 }
341
342 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343 {
344 return dup->head == STABLE_NODE_DUP_HEAD;
345 }
346
347 static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 struct stable_node *chain)
349 {
350 VM_BUG_ON(is_stable_node_dup(dup));
351 dup->head = STABLE_NODE_DUP_HEAD;
352 VM_BUG_ON(!is_stable_node_chain(chain));
353 hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 ksm_stable_node_dups++;
355 }
356
357 static inline void __stable_node_dup_del(struct stable_node *dup)
358 {
359 VM_BUG_ON(!is_stable_node_dup(dup));
360 hlist_del(&dup->hlist_dup);
361 ksm_stable_node_dups--;
362 }
363
364 static inline void stable_node_dup_del(struct stable_node *dup)
365 {
366 VM_BUG_ON(is_stable_node_chain(dup));
367 if (is_stable_node_dup(dup))
368 __stable_node_dup_del(dup);
369 else
370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371 #ifdef CONFIG_DEBUG_VM
372 dup->head = NULL;
373 #endif
374 }
375
376 static inline struct rmap_item *alloc_rmap_item(void)
377 {
378 struct rmap_item *rmap_item;
379
380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 __GFP_NORETRY | __GFP_NOWARN);
382 if (rmap_item)
383 ksm_rmap_items++;
384 return rmap_item;
385 }
386
387 static inline void free_rmap_item(struct rmap_item *rmap_item)
388 {
389 ksm_rmap_items--;
390 rmap_item->mm = NULL; /* debug safety */
391 kmem_cache_free(rmap_item_cache, rmap_item);
392 }
393
394 static inline struct stable_node *alloc_stable_node(void)
395 {
396 /*
397 * The allocation can take too long with GFP_KERNEL when memory is under
398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
399 * grants access to memory reserves, helping to avoid this problem.
400 */
401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
402 }
403
404 static inline void free_stable_node(struct stable_node *stable_node)
405 {
406 VM_BUG_ON(stable_node->rmap_hlist_len &&
407 !is_stable_node_chain(stable_node));
408 kmem_cache_free(stable_node_cache, stable_node);
409 }
410
411 static inline struct mm_slot *alloc_mm_slot(void)
412 {
413 if (!mm_slot_cache) /* initialization failed */
414 return NULL;
415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416 }
417
418 static inline void free_mm_slot(struct mm_slot *mm_slot)
419 {
420 kmem_cache_free(mm_slot_cache, mm_slot);
421 }
422
423 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424 {
425 struct mm_slot *slot;
426
427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
428 if (slot->mm == mm)
429 return slot;
430
431 return NULL;
432 }
433
434 static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 struct mm_slot *mm_slot)
436 {
437 mm_slot->mm = mm;
438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
439 }
440
441 /*
442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443 * page tables after it has passed through ksm_exit() - which, if necessary,
444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
445 * a special flag: they can just back out as soon as mm_users goes to zero.
446 * ksm_test_exit() is used throughout to make this test for exit: in some
447 * places for correctness, in some places just to avoid unnecessary work.
448 */
449 static inline bool ksm_test_exit(struct mm_struct *mm)
450 {
451 return atomic_read(&mm->mm_users) == 0;
452 }
453
454 /*
455 * We use break_ksm to break COW on a ksm page: it's a stripped down
456 *
457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
458 * put_page(page);
459 *
460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
463 * mmap of /dev/mem, where we would not want to touch it.
464 *
465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
468 */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471 struct page *page;
472 vm_fault_t ret = 0;
473
474 do {
475 cond_resched();
476 page = follow_page(vma, addr,
477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
478 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
479 break;
480 if (PageKsm(page))
481 ret = handle_mm_fault(vma, addr,
482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483 NULL);
484 else
485 ret = VM_FAULT_WRITE;
486 put_page(page);
487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488 /*
489 * We must loop because handle_mm_fault() may back out if there's
490 * any difficulty e.g. if pte accessed bit gets updated concurrently.
491 *
492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 * COW has been broken, even if the vma does not permit VM_WRITE;
494 * but note that a concurrent fault might break PageKsm for us.
495 *
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
499 *
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
504 *
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
509 *
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
515 */
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520 unsigned long addr)
521 {
522 struct vm_area_struct *vma;
523 if (ksm_test_exit(mm))
524 return NULL;
525 vma = vma_lookup(mm, addr);
526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527 return NULL;
528 return vma;
529 }
530
531 static void break_cow(struct rmap_item *rmap_item)
532 {
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
535 struct vm_area_struct *vma;
536
537 /*
538 * It is not an accident that whenever we want to break COW
539 * to undo, we also need to drop a reference to the anon_vma.
540 */
541 put_anon_vma(rmap_item->anon_vma);
542
543 mmap_read_lock(mm);
544 vma = find_mergeable_vma(mm, addr);
545 if (vma)
546 break_ksm(vma, addr);
547 mmap_read_unlock(mm);
548 }
549
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551 {
552 struct mm_struct *mm = rmap_item->mm;
553 unsigned long addr = rmap_item->address;
554 struct vm_area_struct *vma;
555 struct page *page;
556
557 mmap_read_lock(mm);
558 vma = find_mergeable_vma(mm, addr);
559 if (!vma)
560 goto out;
561
562 page = follow_page(vma, addr, FOLL_GET);
563 if (IS_ERR_OR_NULL(page) || is_zone_device_page(page))
564 goto out;
565 if (PageAnon(page)) {
566 flush_anon_page(vma, page, addr);
567 flush_dcache_page(page);
568 } else {
569 put_page(page);
570 out:
571 page = NULL;
572 }
573 mmap_read_unlock(mm);
574 return page;
575 }
576
577 /*
578 * This helper is used for getting right index into array of tree roots.
579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581 * every node has its own stable and unstable tree.
582 */
583 static inline int get_kpfn_nid(unsigned long kpfn)
584 {
585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586 }
587
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 struct rb_root *root)
590 {
591 struct stable_node *chain = alloc_stable_node();
592 VM_BUG_ON(is_stable_node_chain(dup));
593 if (likely(chain)) {
594 INIT_HLIST_HEAD(&chain->hlist);
595 chain->chain_prune_time = jiffies;
596 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598 chain->nid = NUMA_NO_NODE; /* debug */
599 #endif
600 ksm_stable_node_chains++;
601
602 /*
603 * Put the stable node chain in the first dimension of
604 * the stable tree and at the same time remove the old
605 * stable node.
606 */
607 rb_replace_node(&dup->node, &chain->node, root);
608
609 /*
610 * Move the old stable node to the second dimension
611 * queued in the hlist_dup. The invariant is that all
612 * dup stable_nodes in the chain->hlist point to pages
613 * that are write protected and have the exact same
614 * content.
615 */
616 stable_node_chain_add_dup(dup, chain);
617 }
618 return chain;
619 }
620
621 static inline void free_stable_node_chain(struct stable_node *chain,
622 struct rb_root *root)
623 {
624 rb_erase(&chain->node, root);
625 free_stable_node(chain);
626 ksm_stable_node_chains--;
627 }
628
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
630 {
631 struct rmap_item *rmap_item;
632
633 /* check it's not STABLE_NODE_CHAIN or negative */
634 BUG_ON(stable_node->rmap_hlist_len < 0);
635
636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637 if (rmap_item->hlist.next)
638 ksm_pages_sharing--;
639 else
640 ksm_pages_shared--;
641
642 rmap_item->mm->ksm_merging_pages--;
643
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
646 put_anon_vma(rmap_item->anon_vma);
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
649 }
650
651 /*
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 */
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660
661 if (stable_node->head == &migrate_nodes)
662 list_del(&stable_node->list);
663 else
664 stable_node_dup_del(stable_node);
665 free_stable_node(stable_node);
666 }
667
668 enum get_ksm_page_flags {
669 GET_KSM_PAGE_NOLOCK,
670 GET_KSM_PAGE_LOCK,
671 GET_KSM_PAGE_TRYLOCK
672 };
673
674 /*
675 * get_ksm_page: checks if the page indicated by the stable node
676 * is still its ksm page, despite having held no reference to it.
677 * In which case we can trust the content of the page, and it
678 * returns the gotten page; but if the page has now been zapped,
679 * remove the stale node from the stable tree and return NULL.
680 * But beware, the stable node's page might be being migrated.
681 *
682 * You would expect the stable_node to hold a reference to the ksm page.
683 * But if it increments the page's count, swapping out has to wait for
684 * ksmd to come around again before it can free the page, which may take
685 * seconds or even minutes: much too unresponsive. So instead we use a
686 * "keyhole reference": access to the ksm page from the stable node peeps
687 * out through its keyhole to see if that page still holds the right key,
688 * pointing back to this stable node. This relies on freeing a PageAnon
689 * page to reset its page->mapping to NULL, and relies on no other use of
690 * a page to put something that might look like our key in page->mapping.
691 * is on its way to being freed; but it is an anomaly to bear in mind.
692 */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694 enum get_ksm_page_flags flags)
695 {
696 struct page *page;
697 void *expected_mapping;
698 unsigned long kpfn;
699
700 expected_mapping = (void *)((unsigned long)stable_node |
701 PAGE_MAPPING_KSM);
702 again:
703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704 page = pfn_to_page(kpfn);
705 if (READ_ONCE(page->mapping) != expected_mapping)
706 goto stale;
707
708 /*
709 * We cannot do anything with the page while its refcount is 0.
710 * Usually 0 means free, or tail of a higher-order page: in which
711 * case this node is no longer referenced, and should be freed;
712 * however, it might mean that the page is under page_ref_freeze().
713 * The __remove_mapping() case is easy, again the node is now stale;
714 * the same is in reuse_ksm_page() case; but if page is swapcache
715 * in folio_migrate_mapping(), it might still be our page,
716 * in which case it's essential to keep the node.
717 */
718 while (!get_page_unless_zero(page)) {
719 /*
720 * Another check for page->mapping != expected_mapping would
721 * work here too. We have chosen the !PageSwapCache test to
722 * optimize the common case, when the page is or is about to
723 * be freed: PageSwapCache is cleared (under spin_lock_irq)
724 * in the ref_freeze section of __remove_mapping(); but Anon
725 * page->mapping reset to NULL later, in free_pages_prepare().
726 */
727 if (!PageSwapCache(page))
728 goto stale;
729 cpu_relax();
730 }
731
732 if (READ_ONCE(page->mapping) != expected_mapping) {
733 put_page(page);
734 goto stale;
735 }
736
737 if (flags == GET_KSM_PAGE_TRYLOCK) {
738 if (!trylock_page(page)) {
739 put_page(page);
740 return ERR_PTR(-EBUSY);
741 }
742 } else if (flags == GET_KSM_PAGE_LOCK)
743 lock_page(page);
744
745 if (flags != GET_KSM_PAGE_NOLOCK) {
746 if (READ_ONCE(page->mapping) != expected_mapping) {
747 unlock_page(page);
748 put_page(page);
749 goto stale;
750 }
751 }
752 return page;
753
754 stale:
755 /*
756 * We come here from above when page->mapping or !PageSwapCache
757 * suggests that the node is stale; but it might be under migration.
758 * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
759 * before checking whether node->kpfn has been changed.
760 */
761 smp_rmb();
762 if (READ_ONCE(stable_node->kpfn) != kpfn)
763 goto again;
764 remove_node_from_stable_tree(stable_node);
765 return NULL;
766 }
767
768 /*
769 * Removing rmap_item from stable or unstable tree.
770 * This function will clean the information from the stable/unstable tree.
771 */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774 if (rmap_item->address & STABLE_FLAG) {
775 struct stable_node *stable_node;
776 struct page *page;
777
778 stable_node = rmap_item->head;
779 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
780 if (!page)
781 goto out;
782
783 hlist_del(&rmap_item->hlist);
784 unlock_page(page);
785 put_page(page);
786
787 if (!hlist_empty(&stable_node->hlist))
788 ksm_pages_sharing--;
789 else
790 ksm_pages_shared--;
791
792 rmap_item->mm->ksm_merging_pages--;
793
794 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
795 stable_node->rmap_hlist_len--;
796
797 put_anon_vma(rmap_item->anon_vma);
798 rmap_item->head = NULL;
799 rmap_item->address &= PAGE_MASK;
800
801 } else if (rmap_item->address & UNSTABLE_FLAG) {
802 unsigned char age;
803 /*
804 * Usually ksmd can and must skip the rb_erase, because
805 * root_unstable_tree was already reset to RB_ROOT.
806 * But be careful when an mm is exiting: do the rb_erase
807 * if this rmap_item was inserted by this scan, rather
808 * than left over from before.
809 */
810 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
811 BUG_ON(age > 1);
812 if (!age)
813 rb_erase(&rmap_item->node,
814 root_unstable_tree + NUMA(rmap_item->nid));
815 ksm_pages_unshared--;
816 rmap_item->address &= PAGE_MASK;
817 }
818 out:
819 cond_resched(); /* we're called from many long loops */
820 }
821
822 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
823 {
824 while (*rmap_list) {
825 struct rmap_item *rmap_item = *rmap_list;
826 *rmap_list = rmap_item->rmap_list;
827 remove_rmap_item_from_tree(rmap_item);
828 free_rmap_item(rmap_item);
829 }
830 }
831
832 /*
833 * Though it's very tempting to unmerge rmap_items from stable tree rather
834 * than check every pte of a given vma, the locking doesn't quite work for
835 * that - an rmap_item is assigned to the stable tree after inserting ksm
836 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
837 * rmap_items from parent to child at fork time (so as not to waste time
838 * if exit comes before the next scan reaches it).
839 *
840 * Similarly, although we'd like to remove rmap_items (so updating counts
841 * and freeing memory) when unmerging an area, it's easier to leave that
842 * to the next pass of ksmd - consider, for example, how ksmd might be
843 * in cmp_and_merge_page on one of the rmap_items we would be removing.
844 */
845 static int unmerge_ksm_pages(struct vm_area_struct *vma,
846 unsigned long start, unsigned long end)
847 {
848 unsigned long addr;
849 int err = 0;
850
851 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
852 if (ksm_test_exit(vma->vm_mm))
853 break;
854 if (signal_pending(current))
855 err = -ERESTARTSYS;
856 else
857 err = break_ksm(vma, addr);
858 }
859 return err;
860 }
861
862 static inline struct stable_node *folio_stable_node(struct folio *folio)
863 {
864 return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
865 }
866
867 static inline struct stable_node *page_stable_node(struct page *page)
868 {
869 return folio_stable_node(page_folio(page));
870 }
871
872 static inline void set_page_stable_node(struct page *page,
873 struct stable_node *stable_node)
874 {
875 VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
876 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
877 }
878
879 #ifdef CONFIG_SYSFS
880 /*
881 * Only called through the sysfs control interface:
882 */
883 static int remove_stable_node(struct stable_node *stable_node)
884 {
885 struct page *page;
886 int err;
887
888 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
889 if (!page) {
890 /*
891 * get_ksm_page did remove_node_from_stable_tree itself.
892 */
893 return 0;
894 }
895
896 /*
897 * Page could be still mapped if this races with __mmput() running in
898 * between ksm_exit() and exit_mmap(). Just refuse to let
899 * merge_across_nodes/max_page_sharing be switched.
900 */
901 err = -EBUSY;
902 if (!page_mapped(page)) {
903 /*
904 * The stable node did not yet appear stale to get_ksm_page(),
905 * since that allows for an unmapped ksm page to be recognized
906 * right up until it is freed; but the node is safe to remove.
907 * This page might be in a pagevec waiting to be freed,
908 * or it might be PageSwapCache (perhaps under writeback),
909 * or it might have been removed from swapcache a moment ago.
910 */
911 set_page_stable_node(page, NULL);
912 remove_node_from_stable_tree(stable_node);
913 err = 0;
914 }
915
916 unlock_page(page);
917 put_page(page);
918 return err;
919 }
920
921 static int remove_stable_node_chain(struct stable_node *stable_node,
922 struct rb_root *root)
923 {
924 struct stable_node *dup;
925 struct hlist_node *hlist_safe;
926
927 if (!is_stable_node_chain(stable_node)) {
928 VM_BUG_ON(is_stable_node_dup(stable_node));
929 if (remove_stable_node(stable_node))
930 return true;
931 else
932 return false;
933 }
934
935 hlist_for_each_entry_safe(dup, hlist_safe,
936 &stable_node->hlist, hlist_dup) {
937 VM_BUG_ON(!is_stable_node_dup(dup));
938 if (remove_stable_node(dup))
939 return true;
940 }
941 BUG_ON(!hlist_empty(&stable_node->hlist));
942 free_stable_node_chain(stable_node, root);
943 return false;
944 }
945
946 static int remove_all_stable_nodes(void)
947 {
948 struct stable_node *stable_node, *next;
949 int nid;
950 int err = 0;
951
952 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
953 while (root_stable_tree[nid].rb_node) {
954 stable_node = rb_entry(root_stable_tree[nid].rb_node,
955 struct stable_node, node);
956 if (remove_stable_node_chain(stable_node,
957 root_stable_tree + nid)) {
958 err = -EBUSY;
959 break; /* proceed to next nid */
960 }
961 cond_resched();
962 }
963 }
964 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
965 if (remove_stable_node(stable_node))
966 err = -EBUSY;
967 cond_resched();
968 }
969 return err;
970 }
971
972 static int unmerge_and_remove_all_rmap_items(void)
973 {
974 struct mm_slot *mm_slot;
975 struct mm_struct *mm;
976 struct vm_area_struct *vma;
977 int err = 0;
978
979 spin_lock(&ksm_mmlist_lock);
980 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
981 struct mm_slot, mm_list);
982 spin_unlock(&ksm_mmlist_lock);
983
984 for (mm_slot = ksm_scan.mm_slot;
985 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
986 mm = mm_slot->mm;
987 mmap_read_lock(mm);
988 for (vma = mm->mmap; vma; vma = vma->vm_next) {
989 if (ksm_test_exit(mm))
990 break;
991 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
992 continue;
993 err = unmerge_ksm_pages(vma,
994 vma->vm_start, vma->vm_end);
995 if (err)
996 goto error;
997 }
998
999 remove_trailing_rmap_items(&mm_slot->rmap_list);
1000 mmap_read_unlock(mm);
1001
1002 spin_lock(&ksm_mmlist_lock);
1003 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
1004 struct mm_slot, mm_list);
1005 if (ksm_test_exit(mm)) {
1006 hash_del(&mm_slot->link);
1007 list_del(&mm_slot->mm_list);
1008 spin_unlock(&ksm_mmlist_lock);
1009
1010 free_mm_slot(mm_slot);
1011 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1012 mmdrop(mm);
1013 } else
1014 spin_unlock(&ksm_mmlist_lock);
1015 }
1016
1017 /* Clean up stable nodes, but don't worry if some are still busy */
1018 remove_all_stable_nodes();
1019 ksm_scan.seqnr = 0;
1020 return 0;
1021
1022 error:
1023 mmap_read_unlock(mm);
1024 spin_lock(&ksm_mmlist_lock);
1025 ksm_scan.mm_slot = &ksm_mm_head;
1026 spin_unlock(&ksm_mmlist_lock);
1027 return err;
1028 }
1029 #endif /* CONFIG_SYSFS */
1030
1031 static u32 calc_checksum(struct page *page)
1032 {
1033 u32 checksum;
1034 void *addr = kmap_atomic(page);
1035 checksum = xxhash(addr, PAGE_SIZE, 0);
1036 kunmap_atomic(addr);
1037 return checksum;
1038 }
1039
1040 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1041 pte_t *orig_pte)
1042 {
1043 struct mm_struct *mm = vma->vm_mm;
1044 DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1045 int swapped;
1046 int err = -EFAULT;
1047 struct mmu_notifier_range range;
1048 bool anon_exclusive;
1049
1050 pvmw.address = page_address_in_vma(page, vma);
1051 if (pvmw.address == -EFAULT)
1052 goto out;
1053
1054 BUG_ON(PageTransCompound(page));
1055
1056 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1057 pvmw.address,
1058 pvmw.address + PAGE_SIZE);
1059 mmu_notifier_invalidate_range_start(&range);
1060
1061 if (!page_vma_mapped_walk(&pvmw))
1062 goto out_mn;
1063 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1064 goto out_unlock;
1065
1066 anon_exclusive = PageAnonExclusive(page);
1067 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1068 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1069 anon_exclusive || mm_tlb_flush_pending(mm)) {
1070 pte_t entry;
1071
1072 swapped = PageSwapCache(page);
1073 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1074 /*
1075 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1076 * take any lock, therefore the check that we are going to make
1077 * with the pagecount against the mapcount is racy and
1078 * O_DIRECT can happen right after the check.
1079 * So we clear the pte and flush the tlb before the check
1080 * this assure us that no O_DIRECT can happen after the check
1081 * or in the middle of the check.
1082 *
1083 * No need to notify as we are downgrading page table to read
1084 * only not changing it to point to a new page.
1085 *
1086 * See Documentation/mm/mmu_notifier.rst
1087 */
1088 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1089 /*
1090 * Check that no O_DIRECT or similar I/O is in progress on the
1091 * page
1092 */
1093 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1094 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1095 goto out_unlock;
1096 }
1097
1098 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1099 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1100 goto out_unlock;
1101 }
1102
1103 if (pte_dirty(entry))
1104 set_page_dirty(page);
1105
1106 if (pte_protnone(entry))
1107 entry = pte_mkclean(pte_clear_savedwrite(entry));
1108 else
1109 entry = pte_mkclean(pte_wrprotect(entry));
1110 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1111 }
1112 *orig_pte = *pvmw.pte;
1113 err = 0;
1114
1115 out_unlock:
1116 page_vma_mapped_walk_done(&pvmw);
1117 out_mn:
1118 mmu_notifier_invalidate_range_end(&range);
1119 out:
1120 return err;
1121 }
1122
1123 /**
1124 * replace_page - replace page in vma by new ksm page
1125 * @vma: vma that holds the pte pointing to page
1126 * @page: the page we are replacing by kpage
1127 * @kpage: the ksm page we replace page by
1128 * @orig_pte: the original value of the pte
1129 *
1130 * Returns 0 on success, -EFAULT on failure.
1131 */
1132 static int replace_page(struct vm_area_struct *vma, struct page *page,
1133 struct page *kpage, pte_t orig_pte)
1134 {
1135 struct mm_struct *mm = vma->vm_mm;
1136 pmd_t *pmd;
1137 pte_t *ptep;
1138 pte_t newpte;
1139 spinlock_t *ptl;
1140 unsigned long addr;
1141 int err = -EFAULT;
1142 struct mmu_notifier_range range;
1143
1144 addr = page_address_in_vma(page, vma);
1145 if (addr == -EFAULT)
1146 goto out;
1147
1148 pmd = mm_find_pmd(mm, addr);
1149 if (!pmd)
1150 goto out;
1151
1152 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1153 addr + PAGE_SIZE);
1154 mmu_notifier_invalidate_range_start(&range);
1155
1156 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1157 if (!pte_same(*ptep, orig_pte)) {
1158 pte_unmap_unlock(ptep, ptl);
1159 goto out_mn;
1160 }
1161 VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1162 VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1163
1164 /*
1165 * No need to check ksm_use_zero_pages here: we can only have a
1166 * zero_page here if ksm_use_zero_pages was enabled already.
1167 */
1168 if (!is_zero_pfn(page_to_pfn(kpage))) {
1169 get_page(kpage);
1170 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1171 newpte = mk_pte(kpage, vma->vm_page_prot);
1172 } else {
1173 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1174 vma->vm_page_prot));
1175 /*
1176 * We're replacing an anonymous page with a zero page, which is
1177 * not anonymous. We need to do proper accounting otherwise we
1178 * will get wrong values in /proc, and a BUG message in dmesg
1179 * when tearing down the mm.
1180 */
1181 dec_mm_counter(mm, MM_ANONPAGES);
1182 }
1183
1184 flush_cache_page(vma, addr, pte_pfn(*ptep));
1185 /*
1186 * No need to notify as we are replacing a read only page with another
1187 * read only page with the same content.
1188 *
1189 * See Documentation/mm/mmu_notifier.rst
1190 */
1191 ptep_clear_flush(vma, addr, ptep);
1192 set_pte_at_notify(mm, addr, ptep, newpte);
1193
1194 page_remove_rmap(page, vma, false);
1195 if (!page_mapped(page))
1196 try_to_free_swap(page);
1197 put_page(page);
1198
1199 pte_unmap_unlock(ptep, ptl);
1200 err = 0;
1201 out_mn:
1202 mmu_notifier_invalidate_range_end(&range);
1203 out:
1204 return err;
1205 }
1206
1207 /*
1208 * try_to_merge_one_page - take two pages and merge them into one
1209 * @vma: the vma that holds the pte pointing to page
1210 * @page: the PageAnon page that we want to replace with kpage
1211 * @kpage: the PageKsm page that we want to map instead of page,
1212 * or NULL the first time when we want to use page as kpage.
1213 *
1214 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1215 */
1216 static int try_to_merge_one_page(struct vm_area_struct *vma,
1217 struct page *page, struct page *kpage)
1218 {
1219 pte_t orig_pte = __pte(0);
1220 int err = -EFAULT;
1221
1222 if (page == kpage) /* ksm page forked */
1223 return 0;
1224
1225 if (!PageAnon(page))
1226 goto out;
1227
1228 /*
1229 * We need the page lock to read a stable PageSwapCache in
1230 * write_protect_page(). We use trylock_page() instead of
1231 * lock_page() because we don't want to wait here - we
1232 * prefer to continue scanning and merging different pages,
1233 * then come back to this page when it is unlocked.
1234 */
1235 if (!trylock_page(page))
1236 goto out;
1237
1238 if (PageTransCompound(page)) {
1239 if (split_huge_page(page))
1240 goto out_unlock;
1241 }
1242
1243 /*
1244 * If this anonymous page is mapped only here, its pte may need
1245 * to be write-protected. If it's mapped elsewhere, all of its
1246 * ptes are necessarily already write-protected. But in either
1247 * case, we need to lock and check page_count is not raised.
1248 */
1249 if (write_protect_page(vma, page, &orig_pte) == 0) {
1250 if (!kpage) {
1251 /*
1252 * While we hold page lock, upgrade page from
1253 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1254 * stable_tree_insert() will update stable_node.
1255 */
1256 set_page_stable_node(page, NULL);
1257 mark_page_accessed(page);
1258 /*
1259 * Page reclaim just frees a clean page with no dirty
1260 * ptes: make sure that the ksm page would be swapped.
1261 */
1262 if (!PageDirty(page))
1263 SetPageDirty(page);
1264 err = 0;
1265 } else if (pages_identical(page, kpage))
1266 err = replace_page(vma, page, kpage, orig_pte);
1267 }
1268
1269 out_unlock:
1270 unlock_page(page);
1271 out:
1272 return err;
1273 }
1274
1275 /*
1276 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1277 * but no new kernel page is allocated: kpage must already be a ksm page.
1278 *
1279 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1280 */
1281 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1282 struct page *page, struct page *kpage)
1283 {
1284 struct mm_struct *mm = rmap_item->mm;
1285 struct vm_area_struct *vma;
1286 int err = -EFAULT;
1287
1288 mmap_read_lock(mm);
1289 vma = find_mergeable_vma(mm, rmap_item->address);
1290 if (!vma)
1291 goto out;
1292
1293 err = try_to_merge_one_page(vma, page, kpage);
1294 if (err)
1295 goto out;
1296
1297 /* Unstable nid is in union with stable anon_vma: remove first */
1298 remove_rmap_item_from_tree(rmap_item);
1299
1300 /* Must get reference to anon_vma while still holding mmap_lock */
1301 rmap_item->anon_vma = vma->anon_vma;
1302 get_anon_vma(vma->anon_vma);
1303 out:
1304 mmap_read_unlock(mm);
1305 return err;
1306 }
1307
1308 /*
1309 * try_to_merge_two_pages - take two identical pages and prepare them
1310 * to be merged into one page.
1311 *
1312 * This function returns the kpage if we successfully merged two identical
1313 * pages into one ksm page, NULL otherwise.
1314 *
1315 * Note that this function upgrades page to ksm page: if one of the pages
1316 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1317 */
1318 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1319 struct page *page,
1320 struct rmap_item *tree_rmap_item,
1321 struct page *tree_page)
1322 {
1323 int err;
1324
1325 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1326 if (!err) {
1327 err = try_to_merge_with_ksm_page(tree_rmap_item,
1328 tree_page, page);
1329 /*
1330 * If that fails, we have a ksm page with only one pte
1331 * pointing to it: so break it.
1332 */
1333 if (err)
1334 break_cow(rmap_item);
1335 }
1336 return err ? NULL : page;
1337 }
1338
1339 static __always_inline
1340 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1341 {
1342 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1343 /*
1344 * Check that at least one mapping still exists, otherwise
1345 * there's no much point to merge and share with this
1346 * stable_node, as the underlying tree_page of the other
1347 * sharer is going to be freed soon.
1348 */
1349 return stable_node->rmap_hlist_len &&
1350 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1351 }
1352
1353 static __always_inline
1354 bool is_page_sharing_candidate(struct stable_node *stable_node)
1355 {
1356 return __is_page_sharing_candidate(stable_node, 0);
1357 }
1358
1359 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1360 struct stable_node **_stable_node,
1361 struct rb_root *root,
1362 bool prune_stale_stable_nodes)
1363 {
1364 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1365 struct hlist_node *hlist_safe;
1366 struct page *_tree_page, *tree_page = NULL;
1367 int nr = 0;
1368 int found_rmap_hlist_len;
1369
1370 if (!prune_stale_stable_nodes ||
1371 time_before(jiffies, stable_node->chain_prune_time +
1372 msecs_to_jiffies(
1373 ksm_stable_node_chains_prune_millisecs)))
1374 prune_stale_stable_nodes = false;
1375 else
1376 stable_node->chain_prune_time = jiffies;
1377
1378 hlist_for_each_entry_safe(dup, hlist_safe,
1379 &stable_node->hlist, hlist_dup) {
1380 cond_resched();
1381 /*
1382 * We must walk all stable_node_dup to prune the stale
1383 * stable nodes during lookup.
1384 *
1385 * get_ksm_page can drop the nodes from the
1386 * stable_node->hlist if they point to freed pages
1387 * (that's why we do a _safe walk). The "dup"
1388 * stable_node parameter itself will be freed from
1389 * under us if it returns NULL.
1390 */
1391 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1392 if (!_tree_page)
1393 continue;
1394 nr += 1;
1395 if (is_page_sharing_candidate(dup)) {
1396 if (!found ||
1397 dup->rmap_hlist_len > found_rmap_hlist_len) {
1398 if (found)
1399 put_page(tree_page);
1400 found = dup;
1401 found_rmap_hlist_len = found->rmap_hlist_len;
1402 tree_page = _tree_page;
1403
1404 /* skip put_page for found dup */
1405 if (!prune_stale_stable_nodes)
1406 break;
1407 continue;
1408 }
1409 }
1410 put_page(_tree_page);
1411 }
1412
1413 if (found) {
1414 /*
1415 * nr is counting all dups in the chain only if
1416 * prune_stale_stable_nodes is true, otherwise we may
1417 * break the loop at nr == 1 even if there are
1418 * multiple entries.
1419 */
1420 if (prune_stale_stable_nodes && nr == 1) {
1421 /*
1422 * If there's not just one entry it would
1423 * corrupt memory, better BUG_ON. In KSM
1424 * context with no lock held it's not even
1425 * fatal.
1426 */
1427 BUG_ON(stable_node->hlist.first->next);
1428
1429 /*
1430 * There's just one entry and it is below the
1431 * deduplication limit so drop the chain.
1432 */
1433 rb_replace_node(&stable_node->node, &found->node,
1434 root);
1435 free_stable_node(stable_node);
1436 ksm_stable_node_chains--;
1437 ksm_stable_node_dups--;
1438 /*
1439 * NOTE: the caller depends on the stable_node
1440 * to be equal to stable_node_dup if the chain
1441 * was collapsed.
1442 */
1443 *_stable_node = found;
1444 /*
1445 * Just for robustness, as stable_node is
1446 * otherwise left as a stable pointer, the
1447 * compiler shall optimize it away at build
1448 * time.
1449 */
1450 stable_node = NULL;
1451 } else if (stable_node->hlist.first != &found->hlist_dup &&
1452 __is_page_sharing_candidate(found, 1)) {
1453 /*
1454 * If the found stable_node dup can accept one
1455 * more future merge (in addition to the one
1456 * that is underway) and is not at the head of
1457 * the chain, put it there so next search will
1458 * be quicker in the !prune_stale_stable_nodes
1459 * case.
1460 *
1461 * NOTE: it would be inaccurate to use nr > 1
1462 * instead of checking the hlist.first pointer
1463 * directly, because in the
1464 * prune_stale_stable_nodes case "nr" isn't
1465 * the position of the found dup in the chain,
1466 * but the total number of dups in the chain.
1467 */
1468 hlist_del(&found->hlist_dup);
1469 hlist_add_head(&found->hlist_dup,
1470 &stable_node->hlist);
1471 }
1472 }
1473
1474 *_stable_node_dup = found;
1475 return tree_page;
1476 }
1477
1478 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1479 struct rb_root *root)
1480 {
1481 if (!is_stable_node_chain(stable_node))
1482 return stable_node;
1483 if (hlist_empty(&stable_node->hlist)) {
1484 free_stable_node_chain(stable_node, root);
1485 return NULL;
1486 }
1487 return hlist_entry(stable_node->hlist.first,
1488 typeof(*stable_node), hlist_dup);
1489 }
1490
1491 /*
1492 * Like for get_ksm_page, this function can free the *_stable_node and
1493 * *_stable_node_dup if the returned tree_page is NULL.
1494 *
1495 * It can also free and overwrite *_stable_node with the found
1496 * stable_node_dup if the chain is collapsed (in which case
1497 * *_stable_node will be equal to *_stable_node_dup like if the chain
1498 * never existed). It's up to the caller to verify tree_page is not
1499 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1500 *
1501 * *_stable_node_dup is really a second output parameter of this
1502 * function and will be overwritten in all cases, the caller doesn't
1503 * need to initialize it.
1504 */
1505 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1506 struct stable_node **_stable_node,
1507 struct rb_root *root,
1508 bool prune_stale_stable_nodes)
1509 {
1510 struct stable_node *stable_node = *_stable_node;
1511 if (!is_stable_node_chain(stable_node)) {
1512 if (is_page_sharing_candidate(stable_node)) {
1513 *_stable_node_dup = stable_node;
1514 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1515 }
1516 /*
1517 * _stable_node_dup set to NULL means the stable_node
1518 * reached the ksm_max_page_sharing limit.
1519 */
1520 *_stable_node_dup = NULL;
1521 return NULL;
1522 }
1523 return stable_node_dup(_stable_node_dup, _stable_node, root,
1524 prune_stale_stable_nodes);
1525 }
1526
1527 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1528 struct stable_node **s_n,
1529 struct rb_root *root)
1530 {
1531 return __stable_node_chain(s_n_d, s_n, root, true);
1532 }
1533
1534 static __always_inline struct page *chain(struct stable_node **s_n_d,
1535 struct stable_node *s_n,
1536 struct rb_root *root)
1537 {
1538 struct stable_node *old_stable_node = s_n;
1539 struct page *tree_page;
1540
1541 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1542 /* not pruning dups so s_n cannot have changed */
1543 VM_BUG_ON(s_n != old_stable_node);
1544 return tree_page;
1545 }
1546
1547 /*
1548 * stable_tree_search - search for page inside the stable tree
1549 *
1550 * This function checks if there is a page inside the stable tree
1551 * with identical content to the page that we are scanning right now.
1552 *
1553 * This function returns the stable tree node of identical content if found,
1554 * NULL otherwise.
1555 */
1556 static struct page *stable_tree_search(struct page *page)
1557 {
1558 int nid;
1559 struct rb_root *root;
1560 struct rb_node **new;
1561 struct rb_node *parent;
1562 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1563 struct stable_node *page_node;
1564
1565 page_node = page_stable_node(page);
1566 if (page_node && page_node->head != &migrate_nodes) {
1567 /* ksm page forked */
1568 get_page(page);
1569 return page;
1570 }
1571
1572 nid = get_kpfn_nid(page_to_pfn(page));
1573 root = root_stable_tree + nid;
1574 again:
1575 new = &root->rb_node;
1576 parent = NULL;
1577
1578 while (*new) {
1579 struct page *tree_page;
1580 int ret;
1581
1582 cond_resched();
1583 stable_node = rb_entry(*new, struct stable_node, node);
1584 stable_node_any = NULL;
1585 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1586 /*
1587 * NOTE: stable_node may have been freed by
1588 * chain_prune() if the returned stable_node_dup is
1589 * not NULL. stable_node_dup may have been inserted in
1590 * the rbtree instead as a regular stable_node (in
1591 * order to collapse the stable_node chain if a single
1592 * stable_node dup was found in it). In such case the
1593 * stable_node is overwritten by the callee to point
1594 * to the stable_node_dup that was collapsed in the
1595 * stable rbtree and stable_node will be equal to
1596 * stable_node_dup like if the chain never existed.
1597 */
1598 if (!stable_node_dup) {
1599 /*
1600 * Either all stable_node dups were full in
1601 * this stable_node chain, or this chain was
1602 * empty and should be rb_erased.
1603 */
1604 stable_node_any = stable_node_dup_any(stable_node,
1605 root);
1606 if (!stable_node_any) {
1607 /* rb_erase just run */
1608 goto again;
1609 }
1610 /*
1611 * Take any of the stable_node dups page of
1612 * this stable_node chain to let the tree walk
1613 * continue. All KSM pages belonging to the
1614 * stable_node dups in a stable_node chain
1615 * have the same content and they're
1616 * write protected at all times. Any will work
1617 * fine to continue the walk.
1618 */
1619 tree_page = get_ksm_page(stable_node_any,
1620 GET_KSM_PAGE_NOLOCK);
1621 }
1622 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1623 if (!tree_page) {
1624 /*
1625 * If we walked over a stale stable_node,
1626 * get_ksm_page() will call rb_erase() and it
1627 * may rebalance the tree from under us. So
1628 * restart the search from scratch. Returning
1629 * NULL would be safe too, but we'd generate
1630 * false negative insertions just because some
1631 * stable_node was stale.
1632 */
1633 goto again;
1634 }
1635
1636 ret = memcmp_pages(page, tree_page);
1637 put_page(tree_page);
1638
1639 parent = *new;
1640 if (ret < 0)
1641 new = &parent->rb_left;
1642 else if (ret > 0)
1643 new = &parent->rb_right;
1644 else {
1645 if (page_node) {
1646 VM_BUG_ON(page_node->head != &migrate_nodes);
1647 /*
1648 * Test if the migrated page should be merged
1649 * into a stable node dup. If the mapcount is
1650 * 1 we can migrate it with another KSM page
1651 * without adding it to the chain.
1652 */
1653 if (page_mapcount(page) > 1)
1654 goto chain_append;
1655 }
1656
1657 if (!stable_node_dup) {
1658 /*
1659 * If the stable_node is a chain and
1660 * we got a payload match in memcmp
1661 * but we cannot merge the scanned
1662 * page in any of the existing
1663 * stable_node dups because they're
1664 * all full, we need to wait the
1665 * scanned page to find itself a match
1666 * in the unstable tree to create a
1667 * brand new KSM page to add later to
1668 * the dups of this stable_node.
1669 */
1670 return NULL;
1671 }
1672
1673 /*
1674 * Lock and unlock the stable_node's page (which
1675 * might already have been migrated) so that page
1676 * migration is sure to notice its raised count.
1677 * It would be more elegant to return stable_node
1678 * than kpage, but that involves more changes.
1679 */
1680 tree_page = get_ksm_page(stable_node_dup,
1681 GET_KSM_PAGE_TRYLOCK);
1682
1683 if (PTR_ERR(tree_page) == -EBUSY)
1684 return ERR_PTR(-EBUSY);
1685
1686 if (unlikely(!tree_page))
1687 /*
1688 * The tree may have been rebalanced,
1689 * so re-evaluate parent and new.
1690 */
1691 goto again;
1692 unlock_page(tree_page);
1693
1694 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1695 NUMA(stable_node_dup->nid)) {
1696 put_page(tree_page);
1697 goto replace;
1698 }
1699 return tree_page;
1700 }
1701 }
1702
1703 if (!page_node)
1704 return NULL;
1705
1706 list_del(&page_node->list);
1707 DO_NUMA(page_node->nid = nid);
1708 rb_link_node(&page_node->node, parent, new);
1709 rb_insert_color(&page_node->node, root);
1710 out:
1711 if (is_page_sharing_candidate(page_node)) {
1712 get_page(page);
1713 return page;
1714 } else
1715 return NULL;
1716
1717 replace:
1718 /*
1719 * If stable_node was a chain and chain_prune collapsed it,
1720 * stable_node has been updated to be the new regular
1721 * stable_node. A collapse of the chain is indistinguishable
1722 * from the case there was no chain in the stable
1723 * rbtree. Otherwise stable_node is the chain and
1724 * stable_node_dup is the dup to replace.
1725 */
1726 if (stable_node_dup == stable_node) {
1727 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1728 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1729 /* there is no chain */
1730 if (page_node) {
1731 VM_BUG_ON(page_node->head != &migrate_nodes);
1732 list_del(&page_node->list);
1733 DO_NUMA(page_node->nid = nid);
1734 rb_replace_node(&stable_node_dup->node,
1735 &page_node->node,
1736 root);
1737 if (is_page_sharing_candidate(page_node))
1738 get_page(page);
1739 else
1740 page = NULL;
1741 } else {
1742 rb_erase(&stable_node_dup->node, root);
1743 page = NULL;
1744 }
1745 } else {
1746 VM_BUG_ON(!is_stable_node_chain(stable_node));
1747 __stable_node_dup_del(stable_node_dup);
1748 if (page_node) {
1749 VM_BUG_ON(page_node->head != &migrate_nodes);
1750 list_del(&page_node->list);
1751 DO_NUMA(page_node->nid = nid);
1752 stable_node_chain_add_dup(page_node, stable_node);
1753 if (is_page_sharing_candidate(page_node))
1754 get_page(page);
1755 else
1756 page = NULL;
1757 } else {
1758 page = NULL;
1759 }
1760 }
1761 stable_node_dup->head = &migrate_nodes;
1762 list_add(&stable_node_dup->list, stable_node_dup->head);
1763 return page;
1764
1765 chain_append:
1766 /* stable_node_dup could be null if it reached the limit */
1767 if (!stable_node_dup)
1768 stable_node_dup = stable_node_any;
1769 /*
1770 * If stable_node was a chain and chain_prune collapsed it,
1771 * stable_node has been updated to be the new regular
1772 * stable_node. A collapse of the chain is indistinguishable
1773 * from the case there was no chain in the stable
1774 * rbtree. Otherwise stable_node is the chain and
1775 * stable_node_dup is the dup to replace.
1776 */
1777 if (stable_node_dup == stable_node) {
1778 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1779 /* chain is missing so create it */
1780 stable_node = alloc_stable_node_chain(stable_node_dup,
1781 root);
1782 if (!stable_node)
1783 return NULL;
1784 }
1785 /*
1786 * Add this stable_node dup that was
1787 * migrated to the stable_node chain
1788 * of the current nid for this page
1789 * content.
1790 */
1791 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1792 VM_BUG_ON(page_node->head != &migrate_nodes);
1793 list_del(&page_node->list);
1794 DO_NUMA(page_node->nid = nid);
1795 stable_node_chain_add_dup(page_node, stable_node);
1796 goto out;
1797 }
1798
1799 /*
1800 * stable_tree_insert - insert stable tree node pointing to new ksm page
1801 * into the stable tree.
1802 *
1803 * This function returns the stable tree node just allocated on success,
1804 * NULL otherwise.
1805 */
1806 static struct stable_node *stable_tree_insert(struct page *kpage)
1807 {
1808 int nid;
1809 unsigned long kpfn;
1810 struct rb_root *root;
1811 struct rb_node **new;
1812 struct rb_node *parent;
1813 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1814 bool need_chain = false;
1815
1816 kpfn = page_to_pfn(kpage);
1817 nid = get_kpfn_nid(kpfn);
1818 root = root_stable_tree + nid;
1819 again:
1820 parent = NULL;
1821 new = &root->rb_node;
1822
1823 while (*new) {
1824 struct page *tree_page;
1825 int ret;
1826
1827 cond_resched();
1828 stable_node = rb_entry(*new, struct stable_node, node);
1829 stable_node_any = NULL;
1830 tree_page = chain(&stable_node_dup, stable_node, root);
1831 if (!stable_node_dup) {
1832 /*
1833 * Either all stable_node dups were full in
1834 * this stable_node chain, or this chain was
1835 * empty and should be rb_erased.
1836 */
1837 stable_node_any = stable_node_dup_any(stable_node,
1838 root);
1839 if (!stable_node_any) {
1840 /* rb_erase just run */
1841 goto again;
1842 }
1843 /*
1844 * Take any of the stable_node dups page of
1845 * this stable_node chain to let the tree walk
1846 * continue. All KSM pages belonging to the
1847 * stable_node dups in a stable_node chain
1848 * have the same content and they're
1849 * write protected at all times. Any will work
1850 * fine to continue the walk.
1851 */
1852 tree_page = get_ksm_page(stable_node_any,
1853 GET_KSM_PAGE_NOLOCK);
1854 }
1855 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1856 if (!tree_page) {
1857 /*
1858 * If we walked over a stale stable_node,
1859 * get_ksm_page() will call rb_erase() and it
1860 * may rebalance the tree from under us. So
1861 * restart the search from scratch. Returning
1862 * NULL would be safe too, but we'd generate
1863 * false negative insertions just because some
1864 * stable_node was stale.
1865 */
1866 goto again;
1867 }
1868
1869 ret = memcmp_pages(kpage, tree_page);
1870 put_page(tree_page);
1871
1872 parent = *new;
1873 if (ret < 0)
1874 new = &parent->rb_left;
1875 else if (ret > 0)
1876 new = &parent->rb_right;
1877 else {
1878 need_chain = true;
1879 break;
1880 }
1881 }
1882
1883 stable_node_dup = alloc_stable_node();
1884 if (!stable_node_dup)
1885 return NULL;
1886
1887 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1888 stable_node_dup->kpfn = kpfn;
1889 set_page_stable_node(kpage, stable_node_dup);
1890 stable_node_dup->rmap_hlist_len = 0;
1891 DO_NUMA(stable_node_dup->nid = nid);
1892 if (!need_chain) {
1893 rb_link_node(&stable_node_dup->node, parent, new);
1894 rb_insert_color(&stable_node_dup->node, root);
1895 } else {
1896 if (!is_stable_node_chain(stable_node)) {
1897 struct stable_node *orig = stable_node;
1898 /* chain is missing so create it */
1899 stable_node = alloc_stable_node_chain(orig, root);
1900 if (!stable_node) {
1901 free_stable_node(stable_node_dup);
1902 return NULL;
1903 }
1904 }
1905 stable_node_chain_add_dup(stable_node_dup, stable_node);
1906 }
1907
1908 return stable_node_dup;
1909 }
1910
1911 /*
1912 * unstable_tree_search_insert - search for identical page,
1913 * else insert rmap_item into the unstable tree.
1914 *
1915 * This function searches for a page in the unstable tree identical to the
1916 * page currently being scanned; and if no identical page is found in the
1917 * tree, we insert rmap_item as a new object into the unstable tree.
1918 *
1919 * This function returns pointer to rmap_item found to be identical
1920 * to the currently scanned page, NULL otherwise.
1921 *
1922 * This function does both searching and inserting, because they share
1923 * the same walking algorithm in an rbtree.
1924 */
1925 static
1926 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1927 struct page *page,
1928 struct page **tree_pagep)
1929 {
1930 struct rb_node **new;
1931 struct rb_root *root;
1932 struct rb_node *parent = NULL;
1933 int nid;
1934
1935 nid = get_kpfn_nid(page_to_pfn(page));
1936 root = root_unstable_tree + nid;
1937 new = &root->rb_node;
1938
1939 while (*new) {
1940 struct rmap_item *tree_rmap_item;
1941 struct page *tree_page;
1942 int ret;
1943
1944 cond_resched();
1945 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1946 tree_page = get_mergeable_page(tree_rmap_item);
1947 if (!tree_page)
1948 return NULL;
1949
1950 /*
1951 * Don't substitute a ksm page for a forked page.
1952 */
1953 if (page == tree_page) {
1954 put_page(tree_page);
1955 return NULL;
1956 }
1957
1958 ret = memcmp_pages(page, tree_page);
1959
1960 parent = *new;
1961 if (ret < 0) {
1962 put_page(tree_page);
1963 new = &parent->rb_left;
1964 } else if (ret > 0) {
1965 put_page(tree_page);
1966 new = &parent->rb_right;
1967 } else if (!ksm_merge_across_nodes &&
1968 page_to_nid(tree_page) != nid) {
1969 /*
1970 * If tree_page has been migrated to another NUMA node,
1971 * it will be flushed out and put in the right unstable
1972 * tree next time: only merge with it when across_nodes.
1973 */
1974 put_page(tree_page);
1975 return NULL;
1976 } else {
1977 *tree_pagep = tree_page;
1978 return tree_rmap_item;
1979 }
1980 }
1981
1982 rmap_item->address |= UNSTABLE_FLAG;
1983 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1984 DO_NUMA(rmap_item->nid = nid);
1985 rb_link_node(&rmap_item->node, parent, new);
1986 rb_insert_color(&rmap_item->node, root);
1987
1988 ksm_pages_unshared++;
1989 return NULL;
1990 }
1991
1992 /*
1993 * stable_tree_append - add another rmap_item to the linked list of
1994 * rmap_items hanging off a given node of the stable tree, all sharing
1995 * the same ksm page.
1996 */
1997 static void stable_tree_append(struct rmap_item *rmap_item,
1998 struct stable_node *stable_node,
1999 bool max_page_sharing_bypass)
2000 {
2001 /*
2002 * rmap won't find this mapping if we don't insert the
2003 * rmap_item in the right stable_node
2004 * duplicate. page_migration could break later if rmap breaks,
2005 * so we can as well crash here. We really need to check for
2006 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2007 * for other negative values as an underflow if detected here
2008 * for the first time (and not when decreasing rmap_hlist_len)
2009 * would be sign of memory corruption in the stable_node.
2010 */
2011 BUG_ON(stable_node->rmap_hlist_len < 0);
2012
2013 stable_node->rmap_hlist_len++;
2014 if (!max_page_sharing_bypass)
2015 /* possibly non fatal but unexpected overflow, only warn */
2016 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2017 ksm_max_page_sharing);
2018
2019 rmap_item->head = stable_node;
2020 rmap_item->address |= STABLE_FLAG;
2021 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2022
2023 if (rmap_item->hlist.next)
2024 ksm_pages_sharing++;
2025 else
2026 ksm_pages_shared++;
2027
2028 rmap_item->mm->ksm_merging_pages++;
2029 }
2030
2031 /*
2032 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2033 * if not, compare checksum to previous and if it's the same, see if page can
2034 * be inserted into the unstable tree, or merged with a page already there and
2035 * both transferred to the stable tree.
2036 *
2037 * @page: the page that we are searching identical page to.
2038 * @rmap_item: the reverse mapping into the virtual address of this page
2039 */
2040 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2041 {
2042 struct mm_struct *mm = rmap_item->mm;
2043 struct rmap_item *tree_rmap_item;
2044 struct page *tree_page = NULL;
2045 struct stable_node *stable_node;
2046 struct page *kpage;
2047 unsigned int checksum;
2048 int err;
2049 bool max_page_sharing_bypass = false;
2050
2051 stable_node = page_stable_node(page);
2052 if (stable_node) {
2053 if (stable_node->head != &migrate_nodes &&
2054 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2055 NUMA(stable_node->nid)) {
2056 stable_node_dup_del(stable_node);
2057 stable_node->head = &migrate_nodes;
2058 list_add(&stable_node->list, stable_node->head);
2059 }
2060 if (stable_node->head != &migrate_nodes &&
2061 rmap_item->head == stable_node)
2062 return;
2063 /*
2064 * If it's a KSM fork, allow it to go over the sharing limit
2065 * without warnings.
2066 */
2067 if (!is_page_sharing_candidate(stable_node))
2068 max_page_sharing_bypass = true;
2069 }
2070
2071 /* We first start with searching the page inside the stable tree */
2072 kpage = stable_tree_search(page);
2073 if (kpage == page && rmap_item->head == stable_node) {
2074 put_page(kpage);
2075 return;
2076 }
2077
2078 remove_rmap_item_from_tree(rmap_item);
2079
2080 if (kpage) {
2081 if (PTR_ERR(kpage) == -EBUSY)
2082 return;
2083
2084 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2085 if (!err) {
2086 /*
2087 * The page was successfully merged:
2088 * add its rmap_item to the stable tree.
2089 */
2090 lock_page(kpage);
2091 stable_tree_append(rmap_item, page_stable_node(kpage),
2092 max_page_sharing_bypass);
2093 unlock_page(kpage);
2094 }
2095 put_page(kpage);
2096 return;
2097 }
2098
2099 /*
2100 * If the hash value of the page has changed from the last time
2101 * we calculated it, this page is changing frequently: therefore we
2102 * don't want to insert it in the unstable tree, and we don't want
2103 * to waste our time searching for something identical to it there.
2104 */
2105 checksum = calc_checksum(page);
2106 if (rmap_item->oldchecksum != checksum) {
2107 rmap_item->oldchecksum = checksum;
2108 return;
2109 }
2110
2111 /*
2112 * Same checksum as an empty page. We attempt to merge it with the
2113 * appropriate zero page if the user enabled this via sysfs.
2114 */
2115 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2116 struct vm_area_struct *vma;
2117
2118 mmap_read_lock(mm);
2119 vma = find_mergeable_vma(mm, rmap_item->address);
2120 if (vma) {
2121 err = try_to_merge_one_page(vma, page,
2122 ZERO_PAGE(rmap_item->address));
2123 } else {
2124 /*
2125 * If the vma is out of date, we do not need to
2126 * continue.
2127 */
2128 err = 0;
2129 }
2130 mmap_read_unlock(mm);
2131 /*
2132 * In case of failure, the page was not really empty, so we
2133 * need to continue. Otherwise we're done.
2134 */
2135 if (!err)
2136 return;
2137 }
2138 tree_rmap_item =
2139 unstable_tree_search_insert(rmap_item, page, &tree_page);
2140 if (tree_rmap_item) {
2141 bool split;
2142
2143 kpage = try_to_merge_two_pages(rmap_item, page,
2144 tree_rmap_item, tree_page);
2145 /*
2146 * If both pages we tried to merge belong to the same compound
2147 * page, then we actually ended up increasing the reference
2148 * count of the same compound page twice, and split_huge_page
2149 * failed.
2150 * Here we set a flag if that happened, and we use it later to
2151 * try split_huge_page again. Since we call put_page right
2152 * afterwards, the reference count will be correct and
2153 * split_huge_page should succeed.
2154 */
2155 split = PageTransCompound(page)
2156 && compound_head(page) == compound_head(tree_page);
2157 put_page(tree_page);
2158 if (kpage) {
2159 /*
2160 * The pages were successfully merged: insert new
2161 * node in the stable tree and add both rmap_items.
2162 */
2163 lock_page(kpage);
2164 stable_node = stable_tree_insert(kpage);
2165 if (stable_node) {
2166 stable_tree_append(tree_rmap_item, stable_node,
2167 false);
2168 stable_tree_append(rmap_item, stable_node,
2169 false);
2170 }
2171 unlock_page(kpage);
2172
2173 /*
2174 * If we fail to insert the page into the stable tree,
2175 * we will have 2 virtual addresses that are pointing
2176 * to a ksm page left outside the stable tree,
2177 * in which case we need to break_cow on both.
2178 */
2179 if (!stable_node) {
2180 break_cow(tree_rmap_item);
2181 break_cow(rmap_item);
2182 }
2183 } else if (split) {
2184 /*
2185 * We are here if we tried to merge two pages and
2186 * failed because they both belonged to the same
2187 * compound page. We will split the page now, but no
2188 * merging will take place.
2189 * We do not want to add the cost of a full lock; if
2190 * the page is locked, it is better to skip it and
2191 * perhaps try again later.
2192 */
2193 if (!trylock_page(page))
2194 return;
2195 split_huge_page(page);
2196 unlock_page(page);
2197 }
2198 }
2199 }
2200
2201 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2202 struct rmap_item **rmap_list,
2203 unsigned long addr)
2204 {
2205 struct rmap_item *rmap_item;
2206
2207 while (*rmap_list) {
2208 rmap_item = *rmap_list;
2209 if ((rmap_item->address & PAGE_MASK) == addr)
2210 return rmap_item;
2211 if (rmap_item->address > addr)
2212 break;
2213 *rmap_list = rmap_item->rmap_list;
2214 remove_rmap_item_from_tree(rmap_item);
2215 free_rmap_item(rmap_item);
2216 }
2217
2218 rmap_item = alloc_rmap_item();
2219 if (rmap_item) {
2220 /* It has already been zeroed */
2221 rmap_item->mm = mm_slot->mm;
2222 rmap_item->address = addr;
2223 rmap_item->rmap_list = *rmap_list;
2224 *rmap_list = rmap_item;
2225 }
2226 return rmap_item;
2227 }
2228
2229 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2230 {
2231 struct mm_struct *mm;
2232 struct mm_slot *slot;
2233 struct vm_area_struct *vma;
2234 struct rmap_item *rmap_item;
2235 int nid;
2236
2237 if (list_empty(&ksm_mm_head.mm_list))
2238 return NULL;
2239
2240 slot = ksm_scan.mm_slot;
2241 if (slot == &ksm_mm_head) {
2242 /*
2243 * A number of pages can hang around indefinitely on per-cpu
2244 * pagevecs, raised page count preventing write_protect_page
2245 * from merging them. Though it doesn't really matter much,
2246 * it is puzzling to see some stuck in pages_volatile until
2247 * other activity jostles them out, and they also prevented
2248 * LTP's KSM test from succeeding deterministically; so drain
2249 * them here (here rather than on entry to ksm_do_scan(),
2250 * so we don't IPI too often when pages_to_scan is set low).
2251 */
2252 lru_add_drain_all();
2253
2254 /*
2255 * Whereas stale stable_nodes on the stable_tree itself
2256 * get pruned in the regular course of stable_tree_search(),
2257 * those moved out to the migrate_nodes list can accumulate:
2258 * so prune them once before each full scan.
2259 */
2260 if (!ksm_merge_across_nodes) {
2261 struct stable_node *stable_node, *next;
2262 struct page *page;
2263
2264 list_for_each_entry_safe(stable_node, next,
2265 &migrate_nodes, list) {
2266 page = get_ksm_page(stable_node,
2267 GET_KSM_PAGE_NOLOCK);
2268 if (page)
2269 put_page(page);
2270 cond_resched();
2271 }
2272 }
2273
2274 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2275 root_unstable_tree[nid] = RB_ROOT;
2276
2277 spin_lock(&ksm_mmlist_lock);
2278 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2279 ksm_scan.mm_slot = slot;
2280 spin_unlock(&ksm_mmlist_lock);
2281 /*
2282 * Although we tested list_empty() above, a racing __ksm_exit
2283 * of the last mm on the list may have removed it since then.
2284 */
2285 if (slot == &ksm_mm_head)
2286 return NULL;
2287 next_mm:
2288 ksm_scan.address = 0;
2289 ksm_scan.rmap_list = &slot->rmap_list;
2290 }
2291
2292 mm = slot->mm;
2293 mmap_read_lock(mm);
2294 if (ksm_test_exit(mm))
2295 vma = NULL;
2296 else
2297 vma = find_vma(mm, ksm_scan.address);
2298
2299 for (; vma; vma = vma->vm_next) {
2300 if (!(vma->vm_flags & VM_MERGEABLE))
2301 continue;
2302 if (ksm_scan.address < vma->vm_start)
2303 ksm_scan.address = vma->vm_start;
2304 if (!vma->anon_vma)
2305 ksm_scan.address = vma->vm_end;
2306
2307 while (ksm_scan.address < vma->vm_end) {
2308 if (ksm_test_exit(mm))
2309 break;
2310 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2311 if (IS_ERR_OR_NULL(*page) || is_zone_device_page(*page)) {
2312 ksm_scan.address += PAGE_SIZE;
2313 cond_resched();
2314 continue;
2315 }
2316 if (PageAnon(*page)) {
2317 flush_anon_page(vma, *page, ksm_scan.address);
2318 flush_dcache_page(*page);
2319 rmap_item = get_next_rmap_item(slot,
2320 ksm_scan.rmap_list, ksm_scan.address);
2321 if (rmap_item) {
2322 ksm_scan.rmap_list =
2323 &rmap_item->rmap_list;
2324 ksm_scan.address += PAGE_SIZE;
2325 } else
2326 put_page(*page);
2327 mmap_read_unlock(mm);
2328 return rmap_item;
2329 }
2330 put_page(*page);
2331 ksm_scan.address += PAGE_SIZE;
2332 cond_resched();
2333 }
2334 }
2335
2336 if (ksm_test_exit(mm)) {
2337 ksm_scan.address = 0;
2338 ksm_scan.rmap_list = &slot->rmap_list;
2339 }
2340 /*
2341 * Nuke all the rmap_items that are above this current rmap:
2342 * because there were no VM_MERGEABLE vmas with such addresses.
2343 */
2344 remove_trailing_rmap_items(ksm_scan.rmap_list);
2345
2346 spin_lock(&ksm_mmlist_lock);
2347 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2348 struct mm_slot, mm_list);
2349 if (ksm_scan.address == 0) {
2350 /*
2351 * We've completed a full scan of all vmas, holding mmap_lock
2352 * throughout, and found no VM_MERGEABLE: so do the same as
2353 * __ksm_exit does to remove this mm from all our lists now.
2354 * This applies either when cleaning up after __ksm_exit
2355 * (but beware: we can reach here even before __ksm_exit),
2356 * or when all VM_MERGEABLE areas have been unmapped (and
2357 * mmap_lock then protects against race with MADV_MERGEABLE).
2358 */
2359 hash_del(&slot->link);
2360 list_del(&slot->mm_list);
2361 spin_unlock(&ksm_mmlist_lock);
2362
2363 free_mm_slot(slot);
2364 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2365 mmap_read_unlock(mm);
2366 mmdrop(mm);
2367 } else {
2368 mmap_read_unlock(mm);
2369 /*
2370 * mmap_read_unlock(mm) first because after
2371 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2372 * already have been freed under us by __ksm_exit()
2373 * because the "mm_slot" is still hashed and
2374 * ksm_scan.mm_slot doesn't point to it anymore.
2375 */
2376 spin_unlock(&ksm_mmlist_lock);
2377 }
2378
2379 /* Repeat until we've completed scanning the whole list */
2380 slot = ksm_scan.mm_slot;
2381 if (slot != &ksm_mm_head)
2382 goto next_mm;
2383
2384 ksm_scan.seqnr++;
2385 return NULL;
2386 }
2387
2388 /**
2389 * ksm_do_scan - the ksm scanner main worker function.
2390 * @scan_npages: number of pages we want to scan before we return.
2391 */
2392 static void ksm_do_scan(unsigned int scan_npages)
2393 {
2394 struct rmap_item *rmap_item;
2395 struct page *page;
2396
2397 while (scan_npages-- && likely(!freezing(current))) {
2398 cond_resched();
2399 rmap_item = scan_get_next_rmap_item(&page);
2400 if (!rmap_item)
2401 return;
2402 cmp_and_merge_page(page, rmap_item);
2403 put_page(page);
2404 }
2405 }
2406
2407 static int ksmd_should_run(void)
2408 {
2409 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2410 }
2411
2412 static int ksm_scan_thread(void *nothing)
2413 {
2414 unsigned int sleep_ms;
2415
2416 set_freezable();
2417 set_user_nice(current, 5);
2418
2419 while (!kthread_should_stop()) {
2420 mutex_lock(&ksm_thread_mutex);
2421 wait_while_offlining();
2422 if (ksmd_should_run())
2423 ksm_do_scan(ksm_thread_pages_to_scan);
2424 mutex_unlock(&ksm_thread_mutex);
2425
2426 try_to_freeze();
2427
2428 if (ksmd_should_run()) {
2429 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2430 wait_event_interruptible_timeout(ksm_iter_wait,
2431 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2432 msecs_to_jiffies(sleep_ms));
2433 } else {
2434 wait_event_freezable(ksm_thread_wait,
2435 ksmd_should_run() || kthread_should_stop());
2436 }
2437 }
2438 return 0;
2439 }
2440
2441 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2442 unsigned long end, int advice, unsigned long *vm_flags)
2443 {
2444 struct mm_struct *mm = vma->vm_mm;
2445 int err;
2446
2447 switch (advice) {
2448 case MADV_MERGEABLE:
2449 /*
2450 * Be somewhat over-protective for now!
2451 */
2452 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2453 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2454 VM_HUGETLB | VM_MIXEDMAP))
2455 return 0; /* just ignore the advice */
2456
2457 if (vma_is_dax(vma))
2458 return 0;
2459
2460 #ifdef VM_SAO
2461 if (*vm_flags & VM_SAO)
2462 return 0;
2463 #endif
2464 #ifdef VM_SPARC_ADI
2465 if (*vm_flags & VM_SPARC_ADI)
2466 return 0;
2467 #endif
2468
2469 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2470 err = __ksm_enter(mm);
2471 if (err)
2472 return err;
2473 }
2474
2475 *vm_flags |= VM_MERGEABLE;
2476 break;
2477
2478 case MADV_UNMERGEABLE:
2479 if (!(*vm_flags & VM_MERGEABLE))
2480 return 0; /* just ignore the advice */
2481
2482 if (vma->anon_vma) {
2483 err = unmerge_ksm_pages(vma, start, end);
2484 if (err)
2485 return err;
2486 }
2487
2488 *vm_flags &= ~VM_MERGEABLE;
2489 break;
2490 }
2491
2492 return 0;
2493 }
2494 EXPORT_SYMBOL_GPL(ksm_madvise);
2495
2496 int __ksm_enter(struct mm_struct *mm)
2497 {
2498 struct mm_slot *mm_slot;
2499 int needs_wakeup;
2500
2501 mm_slot = alloc_mm_slot();
2502 if (!mm_slot)
2503 return -ENOMEM;
2504
2505 /* Check ksm_run too? Would need tighter locking */
2506 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2507
2508 spin_lock(&ksm_mmlist_lock);
2509 insert_to_mm_slots_hash(mm, mm_slot);
2510 /*
2511 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2512 * insert just behind the scanning cursor, to let the area settle
2513 * down a little; when fork is followed by immediate exec, we don't
2514 * want ksmd to waste time setting up and tearing down an rmap_list.
2515 *
2516 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2517 * scanning cursor, otherwise KSM pages in newly forked mms will be
2518 * missed: then we might as well insert at the end of the list.
2519 */
2520 if (ksm_run & KSM_RUN_UNMERGE)
2521 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2522 else
2523 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2524 spin_unlock(&ksm_mmlist_lock);
2525
2526 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2527 mmgrab(mm);
2528
2529 if (needs_wakeup)
2530 wake_up_interruptible(&ksm_thread_wait);
2531
2532 return 0;
2533 }
2534
2535 void __ksm_exit(struct mm_struct *mm)
2536 {
2537 struct mm_slot *mm_slot;
2538 int easy_to_free = 0;
2539
2540 /*
2541 * This process is exiting: if it's straightforward (as is the
2542 * case when ksmd was never running), free mm_slot immediately.
2543 * But if it's at the cursor or has rmap_items linked to it, use
2544 * mmap_lock to synchronize with any break_cows before pagetables
2545 * are freed, and leave the mm_slot on the list for ksmd to free.
2546 * Beware: ksm may already have noticed it exiting and freed the slot.
2547 */
2548
2549 spin_lock(&ksm_mmlist_lock);
2550 mm_slot = get_mm_slot(mm);
2551 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2552 if (!mm_slot->rmap_list) {
2553 hash_del(&mm_slot->link);
2554 list_del(&mm_slot->mm_list);
2555 easy_to_free = 1;
2556 } else {
2557 list_move(&mm_slot->mm_list,
2558 &ksm_scan.mm_slot->mm_list);
2559 }
2560 }
2561 spin_unlock(&ksm_mmlist_lock);
2562
2563 if (easy_to_free) {
2564 free_mm_slot(mm_slot);
2565 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2566 mmdrop(mm);
2567 } else if (mm_slot) {
2568 mmap_write_lock(mm);
2569 mmap_write_unlock(mm);
2570 }
2571 }
2572
2573 struct page *ksm_might_need_to_copy(struct page *page,
2574 struct vm_area_struct *vma, unsigned long address)
2575 {
2576 struct folio *folio = page_folio(page);
2577 struct anon_vma *anon_vma = folio_anon_vma(folio);
2578 struct page *new_page;
2579
2580 if (PageKsm(page)) {
2581 if (page_stable_node(page) &&
2582 !(ksm_run & KSM_RUN_UNMERGE))
2583 return page; /* no need to copy it */
2584 } else if (!anon_vma) {
2585 return page; /* no need to copy it */
2586 } else if (page->index == linear_page_index(vma, address) &&
2587 anon_vma->root == vma->anon_vma->root) {
2588 return page; /* still no need to copy it */
2589 }
2590 if (!PageUptodate(page))
2591 return page; /* let do_swap_page report the error */
2592
2593 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2594 if (new_page &&
2595 mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2596 put_page(new_page);
2597 new_page = NULL;
2598 }
2599 if (new_page) {
2600 copy_user_highpage(new_page, page, address, vma);
2601
2602 SetPageDirty(new_page);
2603 __SetPageUptodate(new_page);
2604 __SetPageLocked(new_page);
2605 #ifdef CONFIG_SWAP
2606 count_vm_event(KSM_SWPIN_COPY);
2607 #endif
2608 }
2609
2610 return new_page;
2611 }
2612
2613 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2614 {
2615 struct stable_node *stable_node;
2616 struct rmap_item *rmap_item;
2617 int search_new_forks = 0;
2618
2619 VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2620
2621 /*
2622 * Rely on the page lock to protect against concurrent modifications
2623 * to that page's node of the stable tree.
2624 */
2625 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2626
2627 stable_node = folio_stable_node(folio);
2628 if (!stable_node)
2629 return;
2630 again:
2631 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2632 struct anon_vma *anon_vma = rmap_item->anon_vma;
2633 struct anon_vma_chain *vmac;
2634 struct vm_area_struct *vma;
2635
2636 cond_resched();
2637 if (!anon_vma_trylock_read(anon_vma)) {
2638 if (rwc->try_lock) {
2639 rwc->contended = true;
2640 return;
2641 }
2642 anon_vma_lock_read(anon_vma);
2643 }
2644 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2645 0, ULONG_MAX) {
2646 unsigned long addr;
2647
2648 cond_resched();
2649 vma = vmac->vma;
2650
2651 /* Ignore the stable/unstable/sqnr flags */
2652 addr = rmap_item->address & PAGE_MASK;
2653
2654 if (addr < vma->vm_start || addr >= vma->vm_end)
2655 continue;
2656 /*
2657 * Initially we examine only the vma which covers this
2658 * rmap_item; but later, if there is still work to do,
2659 * we examine covering vmas in other mms: in case they
2660 * were forked from the original since ksmd passed.
2661 */
2662 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2663 continue;
2664
2665 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2666 continue;
2667
2668 if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2669 anon_vma_unlock_read(anon_vma);
2670 return;
2671 }
2672 if (rwc->done && rwc->done(folio)) {
2673 anon_vma_unlock_read(anon_vma);
2674 return;
2675 }
2676 }
2677 anon_vma_unlock_read(anon_vma);
2678 }
2679 if (!search_new_forks++)
2680 goto again;
2681 }
2682
2683 #ifdef CONFIG_MIGRATION
2684 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2685 {
2686 struct stable_node *stable_node;
2687
2688 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2689 VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2690 VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2691
2692 stable_node = folio_stable_node(folio);
2693 if (stable_node) {
2694 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2695 stable_node->kpfn = folio_pfn(newfolio);
2696 /*
2697 * newfolio->mapping was set in advance; now we need smp_wmb()
2698 * to make sure that the new stable_node->kpfn is visible
2699 * to get_ksm_page() before it can see that folio->mapping
2700 * has gone stale (or that folio_test_swapcache has been cleared).
2701 */
2702 smp_wmb();
2703 set_page_stable_node(&folio->page, NULL);
2704 }
2705 }
2706 #endif /* CONFIG_MIGRATION */
2707
2708 #ifdef CONFIG_MEMORY_HOTREMOVE
2709 static void wait_while_offlining(void)
2710 {
2711 while (ksm_run & KSM_RUN_OFFLINE) {
2712 mutex_unlock(&ksm_thread_mutex);
2713 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2714 TASK_UNINTERRUPTIBLE);
2715 mutex_lock(&ksm_thread_mutex);
2716 }
2717 }
2718
2719 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2720 unsigned long start_pfn,
2721 unsigned long end_pfn)
2722 {
2723 if (stable_node->kpfn >= start_pfn &&
2724 stable_node->kpfn < end_pfn) {
2725 /*
2726 * Don't get_ksm_page, page has already gone:
2727 * which is why we keep kpfn instead of page*
2728 */
2729 remove_node_from_stable_tree(stable_node);
2730 return true;
2731 }
2732 return false;
2733 }
2734
2735 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2736 unsigned long start_pfn,
2737 unsigned long end_pfn,
2738 struct rb_root *root)
2739 {
2740 struct stable_node *dup;
2741 struct hlist_node *hlist_safe;
2742
2743 if (!is_stable_node_chain(stable_node)) {
2744 VM_BUG_ON(is_stable_node_dup(stable_node));
2745 return stable_node_dup_remove_range(stable_node, start_pfn,
2746 end_pfn);
2747 }
2748
2749 hlist_for_each_entry_safe(dup, hlist_safe,
2750 &stable_node->hlist, hlist_dup) {
2751 VM_BUG_ON(!is_stable_node_dup(dup));
2752 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2753 }
2754 if (hlist_empty(&stable_node->hlist)) {
2755 free_stable_node_chain(stable_node, root);
2756 return true; /* notify caller that tree was rebalanced */
2757 } else
2758 return false;
2759 }
2760
2761 static void ksm_check_stable_tree(unsigned long start_pfn,
2762 unsigned long end_pfn)
2763 {
2764 struct stable_node *stable_node, *next;
2765 struct rb_node *node;
2766 int nid;
2767
2768 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2769 node = rb_first(root_stable_tree + nid);
2770 while (node) {
2771 stable_node = rb_entry(node, struct stable_node, node);
2772 if (stable_node_chain_remove_range(stable_node,
2773 start_pfn, end_pfn,
2774 root_stable_tree +
2775 nid))
2776 node = rb_first(root_stable_tree + nid);
2777 else
2778 node = rb_next(node);
2779 cond_resched();
2780 }
2781 }
2782 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2783 if (stable_node->kpfn >= start_pfn &&
2784 stable_node->kpfn < end_pfn)
2785 remove_node_from_stable_tree(stable_node);
2786 cond_resched();
2787 }
2788 }
2789
2790 static int ksm_memory_callback(struct notifier_block *self,
2791 unsigned long action, void *arg)
2792 {
2793 struct memory_notify *mn = arg;
2794
2795 switch (action) {
2796 case MEM_GOING_OFFLINE:
2797 /*
2798 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2799 * and remove_all_stable_nodes() while memory is going offline:
2800 * it is unsafe for them to touch the stable tree at this time.
2801 * But unmerge_ksm_pages(), rmap lookups and other entry points
2802 * which do not need the ksm_thread_mutex are all safe.
2803 */
2804 mutex_lock(&ksm_thread_mutex);
2805 ksm_run |= KSM_RUN_OFFLINE;
2806 mutex_unlock(&ksm_thread_mutex);
2807 break;
2808
2809 case MEM_OFFLINE:
2810 /*
2811 * Most of the work is done by page migration; but there might
2812 * be a few stable_nodes left over, still pointing to struct
2813 * pages which have been offlined: prune those from the tree,
2814 * otherwise get_ksm_page() might later try to access a
2815 * non-existent struct page.
2816 */
2817 ksm_check_stable_tree(mn->start_pfn,
2818 mn->start_pfn + mn->nr_pages);
2819 fallthrough;
2820 case MEM_CANCEL_OFFLINE:
2821 mutex_lock(&ksm_thread_mutex);
2822 ksm_run &= ~KSM_RUN_OFFLINE;
2823 mutex_unlock(&ksm_thread_mutex);
2824
2825 smp_mb(); /* wake_up_bit advises this */
2826 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2827 break;
2828 }
2829 return NOTIFY_OK;
2830 }
2831 #else
2832 static void wait_while_offlining(void)
2833 {
2834 }
2835 #endif /* CONFIG_MEMORY_HOTREMOVE */
2836
2837 #ifdef CONFIG_SYSFS
2838 /*
2839 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2840 */
2841
2842 #define KSM_ATTR_RO(_name) \
2843 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2844 #define KSM_ATTR(_name) \
2845 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2846
2847 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2848 struct kobj_attribute *attr, char *buf)
2849 {
2850 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2851 }
2852
2853 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2854 struct kobj_attribute *attr,
2855 const char *buf, size_t count)
2856 {
2857 unsigned int msecs;
2858 int err;
2859
2860 err = kstrtouint(buf, 10, &msecs);
2861 if (err)
2862 return -EINVAL;
2863
2864 ksm_thread_sleep_millisecs = msecs;
2865 wake_up_interruptible(&ksm_iter_wait);
2866
2867 return count;
2868 }
2869 KSM_ATTR(sleep_millisecs);
2870
2871 static ssize_t pages_to_scan_show(struct kobject *kobj,
2872 struct kobj_attribute *attr, char *buf)
2873 {
2874 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2875 }
2876
2877 static ssize_t pages_to_scan_store(struct kobject *kobj,
2878 struct kobj_attribute *attr,
2879 const char *buf, size_t count)
2880 {
2881 unsigned int nr_pages;
2882 int err;
2883
2884 err = kstrtouint(buf, 10, &nr_pages);
2885 if (err)
2886 return -EINVAL;
2887
2888 ksm_thread_pages_to_scan = nr_pages;
2889
2890 return count;
2891 }
2892 KSM_ATTR(pages_to_scan);
2893
2894 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2895 char *buf)
2896 {
2897 return sysfs_emit(buf, "%lu\n", ksm_run);
2898 }
2899
2900 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2901 const char *buf, size_t count)
2902 {
2903 unsigned int flags;
2904 int err;
2905
2906 err = kstrtouint(buf, 10, &flags);
2907 if (err)
2908 return -EINVAL;
2909 if (flags > KSM_RUN_UNMERGE)
2910 return -EINVAL;
2911
2912 /*
2913 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2914 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2915 * breaking COW to free the pages_shared (but leaves mm_slots
2916 * on the list for when ksmd may be set running again).
2917 */
2918
2919 mutex_lock(&ksm_thread_mutex);
2920 wait_while_offlining();
2921 if (ksm_run != flags) {
2922 ksm_run = flags;
2923 if (flags & KSM_RUN_UNMERGE) {
2924 set_current_oom_origin();
2925 err = unmerge_and_remove_all_rmap_items();
2926 clear_current_oom_origin();
2927 if (err) {
2928 ksm_run = KSM_RUN_STOP;
2929 count = err;
2930 }
2931 }
2932 }
2933 mutex_unlock(&ksm_thread_mutex);
2934
2935 if (flags & KSM_RUN_MERGE)
2936 wake_up_interruptible(&ksm_thread_wait);
2937
2938 return count;
2939 }
2940 KSM_ATTR(run);
2941
2942 #ifdef CONFIG_NUMA
2943 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2944 struct kobj_attribute *attr, char *buf)
2945 {
2946 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2947 }
2948
2949 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2950 struct kobj_attribute *attr,
2951 const char *buf, size_t count)
2952 {
2953 int err;
2954 unsigned long knob;
2955
2956 err = kstrtoul(buf, 10, &knob);
2957 if (err)
2958 return err;
2959 if (knob > 1)
2960 return -EINVAL;
2961
2962 mutex_lock(&ksm_thread_mutex);
2963 wait_while_offlining();
2964 if (ksm_merge_across_nodes != knob) {
2965 if (ksm_pages_shared || remove_all_stable_nodes())
2966 err = -EBUSY;
2967 else if (root_stable_tree == one_stable_tree) {
2968 struct rb_root *buf;
2969 /*
2970 * This is the first time that we switch away from the
2971 * default of merging across nodes: must now allocate
2972 * a buffer to hold as many roots as may be needed.
2973 * Allocate stable and unstable together:
2974 * MAXSMP NODES_SHIFT 10 will use 16kB.
2975 */
2976 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2977 GFP_KERNEL);
2978 /* Let us assume that RB_ROOT is NULL is zero */
2979 if (!buf)
2980 err = -ENOMEM;
2981 else {
2982 root_stable_tree = buf;
2983 root_unstable_tree = buf + nr_node_ids;
2984 /* Stable tree is empty but not the unstable */
2985 root_unstable_tree[0] = one_unstable_tree[0];
2986 }
2987 }
2988 if (!err) {
2989 ksm_merge_across_nodes = knob;
2990 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2991 }
2992 }
2993 mutex_unlock(&ksm_thread_mutex);
2994
2995 return err ? err : count;
2996 }
2997 KSM_ATTR(merge_across_nodes);
2998 #endif
2999
3000 static ssize_t use_zero_pages_show(struct kobject *kobj,
3001 struct kobj_attribute *attr, char *buf)
3002 {
3003 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3004 }
3005 static ssize_t use_zero_pages_store(struct kobject *kobj,
3006 struct kobj_attribute *attr,
3007 const char *buf, size_t count)
3008 {
3009 int err;
3010 bool value;
3011
3012 err = kstrtobool(buf, &value);
3013 if (err)
3014 return -EINVAL;
3015
3016 ksm_use_zero_pages = value;
3017
3018 return count;
3019 }
3020 KSM_ATTR(use_zero_pages);
3021
3022 static ssize_t max_page_sharing_show(struct kobject *kobj,
3023 struct kobj_attribute *attr, char *buf)
3024 {
3025 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3026 }
3027
3028 static ssize_t max_page_sharing_store(struct kobject *kobj,
3029 struct kobj_attribute *attr,
3030 const char *buf, size_t count)
3031 {
3032 int err;
3033 int knob;
3034
3035 err = kstrtoint(buf, 10, &knob);
3036 if (err)
3037 return err;
3038 /*
3039 * When a KSM page is created it is shared by 2 mappings. This
3040 * being a signed comparison, it implicitly verifies it's not
3041 * negative.
3042 */
3043 if (knob < 2)
3044 return -EINVAL;
3045
3046 if (READ_ONCE(ksm_max_page_sharing) == knob)
3047 return count;
3048
3049 mutex_lock(&ksm_thread_mutex);
3050 wait_while_offlining();
3051 if (ksm_max_page_sharing != knob) {
3052 if (ksm_pages_shared || remove_all_stable_nodes())
3053 err = -EBUSY;
3054 else
3055 ksm_max_page_sharing = knob;
3056 }
3057 mutex_unlock(&ksm_thread_mutex);
3058
3059 return err ? err : count;
3060 }
3061 KSM_ATTR(max_page_sharing);
3062
3063 static ssize_t pages_shared_show(struct kobject *kobj,
3064 struct kobj_attribute *attr, char *buf)
3065 {
3066 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3067 }
3068 KSM_ATTR_RO(pages_shared);
3069
3070 static ssize_t pages_sharing_show(struct kobject *kobj,
3071 struct kobj_attribute *attr, char *buf)
3072 {
3073 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3074 }
3075 KSM_ATTR_RO(pages_sharing);
3076
3077 static ssize_t pages_unshared_show(struct kobject *kobj,
3078 struct kobj_attribute *attr, char *buf)
3079 {
3080 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3081 }
3082 KSM_ATTR_RO(pages_unshared);
3083
3084 static ssize_t pages_volatile_show(struct kobject *kobj,
3085 struct kobj_attribute *attr, char *buf)
3086 {
3087 long ksm_pages_volatile;
3088
3089 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3090 - ksm_pages_sharing - ksm_pages_unshared;
3091 /*
3092 * It was not worth any locking to calculate that statistic,
3093 * but it might therefore sometimes be negative: conceal that.
3094 */
3095 if (ksm_pages_volatile < 0)
3096 ksm_pages_volatile = 0;
3097 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3098 }
3099 KSM_ATTR_RO(pages_volatile);
3100
3101 static ssize_t stable_node_dups_show(struct kobject *kobj,
3102 struct kobj_attribute *attr, char *buf)
3103 {
3104 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3105 }
3106 KSM_ATTR_RO(stable_node_dups);
3107
3108 static ssize_t stable_node_chains_show(struct kobject *kobj,
3109 struct kobj_attribute *attr, char *buf)
3110 {
3111 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3112 }
3113 KSM_ATTR_RO(stable_node_chains);
3114
3115 static ssize_t
3116 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3117 struct kobj_attribute *attr,
3118 char *buf)
3119 {
3120 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3121 }
3122
3123 static ssize_t
3124 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3125 struct kobj_attribute *attr,
3126 const char *buf, size_t count)
3127 {
3128 unsigned int msecs;
3129 int err;
3130
3131 err = kstrtouint(buf, 10, &msecs);
3132 if (err)
3133 return -EINVAL;
3134
3135 ksm_stable_node_chains_prune_millisecs = msecs;
3136
3137 return count;
3138 }
3139 KSM_ATTR(stable_node_chains_prune_millisecs);
3140
3141 static ssize_t full_scans_show(struct kobject *kobj,
3142 struct kobj_attribute *attr, char *buf)
3143 {
3144 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3145 }
3146 KSM_ATTR_RO(full_scans);
3147
3148 static struct attribute *ksm_attrs[] = {
3149 &sleep_millisecs_attr.attr,
3150 &pages_to_scan_attr.attr,
3151 &run_attr.attr,
3152 &pages_shared_attr.attr,
3153 &pages_sharing_attr.attr,
3154 &pages_unshared_attr.attr,
3155 &pages_volatile_attr.attr,
3156 &full_scans_attr.attr,
3157 #ifdef CONFIG_NUMA
3158 &merge_across_nodes_attr.attr,
3159 #endif
3160 &max_page_sharing_attr.attr,
3161 &stable_node_chains_attr.attr,
3162 &stable_node_dups_attr.attr,
3163 &stable_node_chains_prune_millisecs_attr.attr,
3164 &use_zero_pages_attr.attr,
3165 NULL,
3166 };
3167
3168 static const struct attribute_group ksm_attr_group = {
3169 .attrs = ksm_attrs,
3170 .name = "ksm",
3171 };
3172 #endif /* CONFIG_SYSFS */
3173
3174 static int __init ksm_init(void)
3175 {
3176 struct task_struct *ksm_thread;
3177 int err;
3178
3179 /* The correct value depends on page size and endianness */
3180 zero_checksum = calc_checksum(ZERO_PAGE(0));
3181 /* Default to false for backwards compatibility */
3182 ksm_use_zero_pages = false;
3183
3184 err = ksm_slab_init();
3185 if (err)
3186 goto out;
3187
3188 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3189 if (IS_ERR(ksm_thread)) {
3190 pr_err("ksm: creating kthread failed\n");
3191 err = PTR_ERR(ksm_thread);
3192 goto out_free;
3193 }
3194
3195 #ifdef CONFIG_SYSFS
3196 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3197 if (err) {
3198 pr_err("ksm: register sysfs failed\n");
3199 kthread_stop(ksm_thread);
3200 goto out_free;
3201 }
3202 #else
3203 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3204
3205 #endif /* CONFIG_SYSFS */
3206
3207 #ifdef CONFIG_MEMORY_HOTREMOVE
3208 /* There is no significance to this priority 100 */
3209 hotplug_memory_notifier(ksm_memory_callback, 100);
3210 #endif
3211 return 0;
3212
3213 out_free:
3214 ksm_slab_free();
3215 out:
3216 return err;
3217 }
3218 subsys_initcall(ksm_init);