]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/ksm.c
mm: add new mmget() helper
[mirror_ubuntu-artful-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
147 };
148
149 /**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179 };
180
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 /* Checksum of an empty (zeroed) page */
227 static unsigned int zero_checksum __read_mostly;
228
229 /* Whether to merge empty (zeroed) pages with actual zero pages */
230 static bool ksm_use_zero_pages __read_mostly;
231
232 #ifdef CONFIG_NUMA
233 /* Zeroed when merging across nodes is not allowed */
234 static unsigned int ksm_merge_across_nodes = 1;
235 static int ksm_nr_node_ids = 1;
236 #else
237 #define ksm_merge_across_nodes 1U
238 #define ksm_nr_node_ids 1
239 #endif
240
241 #define KSM_RUN_STOP 0
242 #define KSM_RUN_MERGE 1
243 #define KSM_RUN_UNMERGE 2
244 #define KSM_RUN_OFFLINE 4
245 static unsigned long ksm_run = KSM_RUN_STOP;
246 static void wait_while_offlining(void);
247
248 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
249 static DEFINE_MUTEX(ksm_thread_mutex);
250 static DEFINE_SPINLOCK(ksm_mmlist_lock);
251
252 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
253 sizeof(struct __struct), __alignof__(struct __struct),\
254 (__flags), NULL)
255
256 static int __init ksm_slab_init(void)
257 {
258 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
259 if (!rmap_item_cache)
260 goto out;
261
262 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
263 if (!stable_node_cache)
264 goto out_free1;
265
266 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
267 if (!mm_slot_cache)
268 goto out_free2;
269
270 return 0;
271
272 out_free2:
273 kmem_cache_destroy(stable_node_cache);
274 out_free1:
275 kmem_cache_destroy(rmap_item_cache);
276 out:
277 return -ENOMEM;
278 }
279
280 static void __init ksm_slab_free(void)
281 {
282 kmem_cache_destroy(mm_slot_cache);
283 kmem_cache_destroy(stable_node_cache);
284 kmem_cache_destroy(rmap_item_cache);
285 mm_slot_cache = NULL;
286 }
287
288 static inline struct rmap_item *alloc_rmap_item(void)
289 {
290 struct rmap_item *rmap_item;
291
292 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
293 __GFP_NORETRY | __GFP_NOWARN);
294 if (rmap_item)
295 ksm_rmap_items++;
296 return rmap_item;
297 }
298
299 static inline void free_rmap_item(struct rmap_item *rmap_item)
300 {
301 ksm_rmap_items--;
302 rmap_item->mm = NULL; /* debug safety */
303 kmem_cache_free(rmap_item_cache, rmap_item);
304 }
305
306 static inline struct stable_node *alloc_stable_node(void)
307 {
308 /*
309 * The allocation can take too long with GFP_KERNEL when memory is under
310 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
311 * grants access to memory reserves, helping to avoid this problem.
312 */
313 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
314 }
315
316 static inline void free_stable_node(struct stable_node *stable_node)
317 {
318 kmem_cache_free(stable_node_cache, stable_node);
319 }
320
321 static inline struct mm_slot *alloc_mm_slot(void)
322 {
323 if (!mm_slot_cache) /* initialization failed */
324 return NULL;
325 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
326 }
327
328 static inline void free_mm_slot(struct mm_slot *mm_slot)
329 {
330 kmem_cache_free(mm_slot_cache, mm_slot);
331 }
332
333 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
334 {
335 struct mm_slot *slot;
336
337 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
338 if (slot->mm == mm)
339 return slot;
340
341 return NULL;
342 }
343
344 static void insert_to_mm_slots_hash(struct mm_struct *mm,
345 struct mm_slot *mm_slot)
346 {
347 mm_slot->mm = mm;
348 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
349 }
350
351 /*
352 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
353 * page tables after it has passed through ksm_exit() - which, if necessary,
354 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
355 * a special flag: they can just back out as soon as mm_users goes to zero.
356 * ksm_test_exit() is used throughout to make this test for exit: in some
357 * places for correctness, in some places just to avoid unnecessary work.
358 */
359 static inline bool ksm_test_exit(struct mm_struct *mm)
360 {
361 return atomic_read(&mm->mm_users) == 0;
362 }
363
364 /*
365 * We use break_ksm to break COW on a ksm page: it's a stripped down
366 *
367 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
368 * put_page(page);
369 *
370 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
371 * in case the application has unmapped and remapped mm,addr meanwhile.
372 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
373 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
374 *
375 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
376 * of the process that owns 'vma'. We also do not want to enforce
377 * protection keys here anyway.
378 */
379 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
380 {
381 struct page *page;
382 int ret = 0;
383
384 do {
385 cond_resched();
386 page = follow_page(vma, addr,
387 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
388 if (IS_ERR_OR_NULL(page))
389 break;
390 if (PageKsm(page))
391 ret = handle_mm_fault(vma, addr,
392 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
393 else
394 ret = VM_FAULT_WRITE;
395 put_page(page);
396 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
397 /*
398 * We must loop because handle_mm_fault() may back out if there's
399 * any difficulty e.g. if pte accessed bit gets updated concurrently.
400 *
401 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
402 * COW has been broken, even if the vma does not permit VM_WRITE;
403 * but note that a concurrent fault might break PageKsm for us.
404 *
405 * VM_FAULT_SIGBUS could occur if we race with truncation of the
406 * backing file, which also invalidates anonymous pages: that's
407 * okay, that truncation will have unmapped the PageKsm for us.
408 *
409 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
410 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
411 * current task has TIF_MEMDIE set, and will be OOM killed on return
412 * to user; and ksmd, having no mm, would never be chosen for that.
413 *
414 * But if the mm is in a limited mem_cgroup, then the fault may fail
415 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
416 * even ksmd can fail in this way - though it's usually breaking ksm
417 * just to undo a merge it made a moment before, so unlikely to oom.
418 *
419 * That's a pity: we might therefore have more kernel pages allocated
420 * than we're counting as nodes in the stable tree; but ksm_do_scan
421 * will retry to break_cow on each pass, so should recover the page
422 * in due course. The important thing is to not let VM_MERGEABLE
423 * be cleared while any such pages might remain in the area.
424 */
425 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
426 }
427
428 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
429 unsigned long addr)
430 {
431 struct vm_area_struct *vma;
432 if (ksm_test_exit(mm))
433 return NULL;
434 vma = find_vma(mm, addr);
435 if (!vma || vma->vm_start > addr)
436 return NULL;
437 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
438 return NULL;
439 return vma;
440 }
441
442 static void break_cow(struct rmap_item *rmap_item)
443 {
444 struct mm_struct *mm = rmap_item->mm;
445 unsigned long addr = rmap_item->address;
446 struct vm_area_struct *vma;
447
448 /*
449 * It is not an accident that whenever we want to break COW
450 * to undo, we also need to drop a reference to the anon_vma.
451 */
452 put_anon_vma(rmap_item->anon_vma);
453
454 down_read(&mm->mmap_sem);
455 vma = find_mergeable_vma(mm, addr);
456 if (vma)
457 break_ksm(vma, addr);
458 up_read(&mm->mmap_sem);
459 }
460
461 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
462 {
463 struct mm_struct *mm = rmap_item->mm;
464 unsigned long addr = rmap_item->address;
465 struct vm_area_struct *vma;
466 struct page *page;
467
468 down_read(&mm->mmap_sem);
469 vma = find_mergeable_vma(mm, addr);
470 if (!vma)
471 goto out;
472
473 page = follow_page(vma, addr, FOLL_GET);
474 if (IS_ERR_OR_NULL(page))
475 goto out;
476 if (PageAnon(page)) {
477 flush_anon_page(vma, page, addr);
478 flush_dcache_page(page);
479 } else {
480 put_page(page);
481 out:
482 page = NULL;
483 }
484 up_read(&mm->mmap_sem);
485 return page;
486 }
487
488 /*
489 * This helper is used for getting right index into array of tree roots.
490 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
491 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
492 * every node has its own stable and unstable tree.
493 */
494 static inline int get_kpfn_nid(unsigned long kpfn)
495 {
496 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
497 }
498
499 static void remove_node_from_stable_tree(struct stable_node *stable_node)
500 {
501 struct rmap_item *rmap_item;
502
503 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
504 if (rmap_item->hlist.next)
505 ksm_pages_sharing--;
506 else
507 ksm_pages_shared--;
508 put_anon_vma(rmap_item->anon_vma);
509 rmap_item->address &= PAGE_MASK;
510 cond_resched();
511 }
512
513 if (stable_node->head == &migrate_nodes)
514 list_del(&stable_node->list);
515 else
516 rb_erase(&stable_node->node,
517 root_stable_tree + NUMA(stable_node->nid));
518 free_stable_node(stable_node);
519 }
520
521 /*
522 * get_ksm_page: checks if the page indicated by the stable node
523 * is still its ksm page, despite having held no reference to it.
524 * In which case we can trust the content of the page, and it
525 * returns the gotten page; but if the page has now been zapped,
526 * remove the stale node from the stable tree and return NULL.
527 * But beware, the stable node's page might be being migrated.
528 *
529 * You would expect the stable_node to hold a reference to the ksm page.
530 * But if it increments the page's count, swapping out has to wait for
531 * ksmd to come around again before it can free the page, which may take
532 * seconds or even minutes: much too unresponsive. So instead we use a
533 * "keyhole reference": access to the ksm page from the stable node peeps
534 * out through its keyhole to see if that page still holds the right key,
535 * pointing back to this stable node. This relies on freeing a PageAnon
536 * page to reset its page->mapping to NULL, and relies on no other use of
537 * a page to put something that might look like our key in page->mapping.
538 * is on its way to being freed; but it is an anomaly to bear in mind.
539 */
540 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
541 {
542 struct page *page;
543 void *expected_mapping;
544 unsigned long kpfn;
545
546 expected_mapping = (void *)((unsigned long)stable_node |
547 PAGE_MAPPING_KSM);
548 again:
549 kpfn = READ_ONCE(stable_node->kpfn);
550 page = pfn_to_page(kpfn);
551
552 /*
553 * page is computed from kpfn, so on most architectures reading
554 * page->mapping is naturally ordered after reading node->kpfn,
555 * but on Alpha we need to be more careful.
556 */
557 smp_read_barrier_depends();
558 if (READ_ONCE(page->mapping) != expected_mapping)
559 goto stale;
560
561 /*
562 * We cannot do anything with the page while its refcount is 0.
563 * Usually 0 means free, or tail of a higher-order page: in which
564 * case this node is no longer referenced, and should be freed;
565 * however, it might mean that the page is under page_freeze_refs().
566 * The __remove_mapping() case is easy, again the node is now stale;
567 * but if page is swapcache in migrate_page_move_mapping(), it might
568 * still be our page, in which case it's essential to keep the node.
569 */
570 while (!get_page_unless_zero(page)) {
571 /*
572 * Another check for page->mapping != expected_mapping would
573 * work here too. We have chosen the !PageSwapCache test to
574 * optimize the common case, when the page is or is about to
575 * be freed: PageSwapCache is cleared (under spin_lock_irq)
576 * in the freeze_refs section of __remove_mapping(); but Anon
577 * page->mapping reset to NULL later, in free_pages_prepare().
578 */
579 if (!PageSwapCache(page))
580 goto stale;
581 cpu_relax();
582 }
583
584 if (READ_ONCE(page->mapping) != expected_mapping) {
585 put_page(page);
586 goto stale;
587 }
588
589 if (lock_it) {
590 lock_page(page);
591 if (READ_ONCE(page->mapping) != expected_mapping) {
592 unlock_page(page);
593 put_page(page);
594 goto stale;
595 }
596 }
597 return page;
598
599 stale:
600 /*
601 * We come here from above when page->mapping or !PageSwapCache
602 * suggests that the node is stale; but it might be under migration.
603 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
604 * before checking whether node->kpfn has been changed.
605 */
606 smp_rmb();
607 if (READ_ONCE(stable_node->kpfn) != kpfn)
608 goto again;
609 remove_node_from_stable_tree(stable_node);
610 return NULL;
611 }
612
613 /*
614 * Removing rmap_item from stable or unstable tree.
615 * This function will clean the information from the stable/unstable tree.
616 */
617 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
618 {
619 if (rmap_item->address & STABLE_FLAG) {
620 struct stable_node *stable_node;
621 struct page *page;
622
623 stable_node = rmap_item->head;
624 page = get_ksm_page(stable_node, true);
625 if (!page)
626 goto out;
627
628 hlist_del(&rmap_item->hlist);
629 unlock_page(page);
630 put_page(page);
631
632 if (!hlist_empty(&stable_node->hlist))
633 ksm_pages_sharing--;
634 else
635 ksm_pages_shared--;
636
637 put_anon_vma(rmap_item->anon_vma);
638 rmap_item->address &= PAGE_MASK;
639
640 } else if (rmap_item->address & UNSTABLE_FLAG) {
641 unsigned char age;
642 /*
643 * Usually ksmd can and must skip the rb_erase, because
644 * root_unstable_tree was already reset to RB_ROOT.
645 * But be careful when an mm is exiting: do the rb_erase
646 * if this rmap_item was inserted by this scan, rather
647 * than left over from before.
648 */
649 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
650 BUG_ON(age > 1);
651 if (!age)
652 rb_erase(&rmap_item->node,
653 root_unstable_tree + NUMA(rmap_item->nid));
654 ksm_pages_unshared--;
655 rmap_item->address &= PAGE_MASK;
656 }
657 out:
658 cond_resched(); /* we're called from many long loops */
659 }
660
661 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
662 struct rmap_item **rmap_list)
663 {
664 while (*rmap_list) {
665 struct rmap_item *rmap_item = *rmap_list;
666 *rmap_list = rmap_item->rmap_list;
667 remove_rmap_item_from_tree(rmap_item);
668 free_rmap_item(rmap_item);
669 }
670 }
671
672 /*
673 * Though it's very tempting to unmerge rmap_items from stable tree rather
674 * than check every pte of a given vma, the locking doesn't quite work for
675 * that - an rmap_item is assigned to the stable tree after inserting ksm
676 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
677 * rmap_items from parent to child at fork time (so as not to waste time
678 * if exit comes before the next scan reaches it).
679 *
680 * Similarly, although we'd like to remove rmap_items (so updating counts
681 * and freeing memory) when unmerging an area, it's easier to leave that
682 * to the next pass of ksmd - consider, for example, how ksmd might be
683 * in cmp_and_merge_page on one of the rmap_items we would be removing.
684 */
685 static int unmerge_ksm_pages(struct vm_area_struct *vma,
686 unsigned long start, unsigned long end)
687 {
688 unsigned long addr;
689 int err = 0;
690
691 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
692 if (ksm_test_exit(vma->vm_mm))
693 break;
694 if (signal_pending(current))
695 err = -ERESTARTSYS;
696 else
697 err = break_ksm(vma, addr);
698 }
699 return err;
700 }
701
702 #ifdef CONFIG_SYSFS
703 /*
704 * Only called through the sysfs control interface:
705 */
706 static int remove_stable_node(struct stable_node *stable_node)
707 {
708 struct page *page;
709 int err;
710
711 page = get_ksm_page(stable_node, true);
712 if (!page) {
713 /*
714 * get_ksm_page did remove_node_from_stable_tree itself.
715 */
716 return 0;
717 }
718
719 if (WARN_ON_ONCE(page_mapped(page))) {
720 /*
721 * This should not happen: but if it does, just refuse to let
722 * merge_across_nodes be switched - there is no need to panic.
723 */
724 err = -EBUSY;
725 } else {
726 /*
727 * The stable node did not yet appear stale to get_ksm_page(),
728 * since that allows for an unmapped ksm page to be recognized
729 * right up until it is freed; but the node is safe to remove.
730 * This page might be in a pagevec waiting to be freed,
731 * or it might be PageSwapCache (perhaps under writeback),
732 * or it might have been removed from swapcache a moment ago.
733 */
734 set_page_stable_node(page, NULL);
735 remove_node_from_stable_tree(stable_node);
736 err = 0;
737 }
738
739 unlock_page(page);
740 put_page(page);
741 return err;
742 }
743
744 static int remove_all_stable_nodes(void)
745 {
746 struct stable_node *stable_node, *next;
747 int nid;
748 int err = 0;
749
750 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751 while (root_stable_tree[nid].rb_node) {
752 stable_node = rb_entry(root_stable_tree[nid].rb_node,
753 struct stable_node, node);
754 if (remove_stable_node(stable_node)) {
755 err = -EBUSY;
756 break; /* proceed to next nid */
757 }
758 cond_resched();
759 }
760 }
761 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
762 if (remove_stable_node(stable_node))
763 err = -EBUSY;
764 cond_resched();
765 }
766 return err;
767 }
768
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771 struct mm_slot *mm_slot;
772 struct mm_struct *mm;
773 struct vm_area_struct *vma;
774 int err = 0;
775
776 spin_lock(&ksm_mmlist_lock);
777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778 struct mm_slot, mm_list);
779 spin_unlock(&ksm_mmlist_lock);
780
781 for (mm_slot = ksm_scan.mm_slot;
782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783 mm = mm_slot->mm;
784 down_read(&mm->mmap_sem);
785 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786 if (ksm_test_exit(mm))
787 break;
788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 continue;
790 err = unmerge_ksm_pages(vma,
791 vma->vm_start, vma->vm_end);
792 if (err)
793 goto error;
794 }
795
796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797 up_read(&mm->mmap_sem);
798
799 spin_lock(&ksm_mmlist_lock);
800 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801 struct mm_slot, mm_list);
802 if (ksm_test_exit(mm)) {
803 hash_del(&mm_slot->link);
804 list_del(&mm_slot->mm_list);
805 spin_unlock(&ksm_mmlist_lock);
806
807 free_mm_slot(mm_slot);
808 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809 mmdrop(mm);
810 } else
811 spin_unlock(&ksm_mmlist_lock);
812 }
813
814 /* Clean up stable nodes, but don't worry if some are still busy */
815 remove_all_stable_nodes();
816 ksm_scan.seqnr = 0;
817 return 0;
818
819 error:
820 up_read(&mm->mmap_sem);
821 spin_lock(&ksm_mmlist_lock);
822 ksm_scan.mm_slot = &ksm_mm_head;
823 spin_unlock(&ksm_mmlist_lock);
824 return err;
825 }
826 #endif /* CONFIG_SYSFS */
827
828 static u32 calc_checksum(struct page *page)
829 {
830 u32 checksum;
831 void *addr = kmap_atomic(page);
832 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
833 kunmap_atomic(addr);
834 return checksum;
835 }
836
837 static int memcmp_pages(struct page *page1, struct page *page2)
838 {
839 char *addr1, *addr2;
840 int ret;
841
842 addr1 = kmap_atomic(page1);
843 addr2 = kmap_atomic(page2);
844 ret = memcmp(addr1, addr2, PAGE_SIZE);
845 kunmap_atomic(addr2);
846 kunmap_atomic(addr1);
847 return ret;
848 }
849
850 static inline int pages_identical(struct page *page1, struct page *page2)
851 {
852 return !memcmp_pages(page1, page2);
853 }
854
855 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856 pte_t *orig_pte)
857 {
858 struct mm_struct *mm = vma->vm_mm;
859 struct page_vma_mapped_walk pvmw = {
860 .page = page,
861 .vma = vma,
862 };
863 int swapped;
864 int err = -EFAULT;
865 unsigned long mmun_start; /* For mmu_notifiers */
866 unsigned long mmun_end; /* For mmu_notifiers */
867
868 pvmw.address = page_address_in_vma(page, vma);
869 if (pvmw.address == -EFAULT)
870 goto out;
871
872 BUG_ON(PageTransCompound(page));
873
874 mmun_start = pvmw.address;
875 mmun_end = pvmw.address + PAGE_SIZE;
876 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877
878 if (!page_vma_mapped_walk(&pvmw))
879 goto out_mn;
880 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
881 goto out_unlock;
882
883 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
884 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte))) {
885 pte_t entry;
886
887 swapped = PageSwapCache(page);
888 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
889 /*
890 * Ok this is tricky, when get_user_pages_fast() run it doesn't
891 * take any lock, therefore the check that we are going to make
892 * with the pagecount against the mapcount is racey and
893 * O_DIRECT can happen right after the check.
894 * So we clear the pte and flush the tlb before the check
895 * this assure us that no O_DIRECT can happen after the check
896 * or in the middle of the check.
897 */
898 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
899 /*
900 * Check that no O_DIRECT or similar I/O is in progress on the
901 * page
902 */
903 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
904 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
905 goto out_unlock;
906 }
907 if (pte_dirty(entry))
908 set_page_dirty(page);
909
910 if (pte_protnone(entry))
911 entry = pte_mkclean(pte_clear_savedwrite(entry));
912 else
913 entry = pte_mkclean(pte_wrprotect(entry));
914 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
915 }
916 *orig_pte = *pvmw.pte;
917 err = 0;
918
919 out_unlock:
920 page_vma_mapped_walk_done(&pvmw);
921 out_mn:
922 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
923 out:
924 return err;
925 }
926
927 /**
928 * replace_page - replace page in vma by new ksm page
929 * @vma: vma that holds the pte pointing to page
930 * @page: the page we are replacing by kpage
931 * @kpage: the ksm page we replace page by
932 * @orig_pte: the original value of the pte
933 *
934 * Returns 0 on success, -EFAULT on failure.
935 */
936 static int replace_page(struct vm_area_struct *vma, struct page *page,
937 struct page *kpage, pte_t orig_pte)
938 {
939 struct mm_struct *mm = vma->vm_mm;
940 pmd_t *pmd;
941 pte_t *ptep;
942 pte_t newpte;
943 spinlock_t *ptl;
944 unsigned long addr;
945 int err = -EFAULT;
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
948
949 addr = page_address_in_vma(page, vma);
950 if (addr == -EFAULT)
951 goto out;
952
953 pmd = mm_find_pmd(mm, addr);
954 if (!pmd)
955 goto out;
956
957 mmun_start = addr;
958 mmun_end = addr + PAGE_SIZE;
959 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
960
961 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
962 if (!pte_same(*ptep, orig_pte)) {
963 pte_unmap_unlock(ptep, ptl);
964 goto out_mn;
965 }
966
967 /*
968 * No need to check ksm_use_zero_pages here: we can only have a
969 * zero_page here if ksm_use_zero_pages was enabled alreaady.
970 */
971 if (!is_zero_pfn(page_to_pfn(kpage))) {
972 get_page(kpage);
973 page_add_anon_rmap(kpage, vma, addr, false);
974 newpte = mk_pte(kpage, vma->vm_page_prot);
975 } else {
976 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
977 vma->vm_page_prot));
978 }
979
980 flush_cache_page(vma, addr, pte_pfn(*ptep));
981 ptep_clear_flush_notify(vma, addr, ptep);
982 set_pte_at_notify(mm, addr, ptep, newpte);
983
984 page_remove_rmap(page, false);
985 if (!page_mapped(page))
986 try_to_free_swap(page);
987 put_page(page);
988
989 pte_unmap_unlock(ptep, ptl);
990 err = 0;
991 out_mn:
992 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
993 out:
994 return err;
995 }
996
997 /*
998 * try_to_merge_one_page - take two pages and merge them into one
999 * @vma: the vma that holds the pte pointing to page
1000 * @page: the PageAnon page that we want to replace with kpage
1001 * @kpage: the PageKsm page that we want to map instead of page,
1002 * or NULL the first time when we want to use page as kpage.
1003 *
1004 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1005 */
1006 static int try_to_merge_one_page(struct vm_area_struct *vma,
1007 struct page *page, struct page *kpage)
1008 {
1009 pte_t orig_pte = __pte(0);
1010 int err = -EFAULT;
1011
1012 if (page == kpage) /* ksm page forked */
1013 return 0;
1014
1015 if (!PageAnon(page))
1016 goto out;
1017
1018 /*
1019 * We need the page lock to read a stable PageSwapCache in
1020 * write_protect_page(). We use trylock_page() instead of
1021 * lock_page() because we don't want to wait here - we
1022 * prefer to continue scanning and merging different pages,
1023 * then come back to this page when it is unlocked.
1024 */
1025 if (!trylock_page(page))
1026 goto out;
1027
1028 if (PageTransCompound(page)) {
1029 err = split_huge_page(page);
1030 if (err)
1031 goto out_unlock;
1032 }
1033
1034 /*
1035 * If this anonymous page is mapped only here, its pte may need
1036 * to be write-protected. If it's mapped elsewhere, all of its
1037 * ptes are necessarily already write-protected. But in either
1038 * case, we need to lock and check page_count is not raised.
1039 */
1040 if (write_protect_page(vma, page, &orig_pte) == 0) {
1041 if (!kpage) {
1042 /*
1043 * While we hold page lock, upgrade page from
1044 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1045 * stable_tree_insert() will update stable_node.
1046 */
1047 set_page_stable_node(page, NULL);
1048 mark_page_accessed(page);
1049 /*
1050 * Page reclaim just frees a clean page with no dirty
1051 * ptes: make sure that the ksm page would be swapped.
1052 */
1053 if (!PageDirty(page))
1054 SetPageDirty(page);
1055 err = 0;
1056 } else if (pages_identical(page, kpage))
1057 err = replace_page(vma, page, kpage, orig_pte);
1058 }
1059
1060 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1061 munlock_vma_page(page);
1062 if (!PageMlocked(kpage)) {
1063 unlock_page(page);
1064 lock_page(kpage);
1065 mlock_vma_page(kpage);
1066 page = kpage; /* for final unlock */
1067 }
1068 }
1069
1070 out_unlock:
1071 unlock_page(page);
1072 out:
1073 return err;
1074 }
1075
1076 /*
1077 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1078 * but no new kernel page is allocated: kpage must already be a ksm page.
1079 *
1080 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1081 */
1082 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1083 struct page *page, struct page *kpage)
1084 {
1085 struct mm_struct *mm = rmap_item->mm;
1086 struct vm_area_struct *vma;
1087 int err = -EFAULT;
1088
1089 down_read(&mm->mmap_sem);
1090 vma = find_mergeable_vma(mm, rmap_item->address);
1091 if (!vma)
1092 goto out;
1093
1094 err = try_to_merge_one_page(vma, page, kpage);
1095 if (err)
1096 goto out;
1097
1098 /* Unstable nid is in union with stable anon_vma: remove first */
1099 remove_rmap_item_from_tree(rmap_item);
1100
1101 /* Must get reference to anon_vma while still holding mmap_sem */
1102 rmap_item->anon_vma = vma->anon_vma;
1103 get_anon_vma(vma->anon_vma);
1104 out:
1105 up_read(&mm->mmap_sem);
1106 return err;
1107 }
1108
1109 /*
1110 * try_to_merge_two_pages - take two identical pages and prepare them
1111 * to be merged into one page.
1112 *
1113 * This function returns the kpage if we successfully merged two identical
1114 * pages into one ksm page, NULL otherwise.
1115 *
1116 * Note that this function upgrades page to ksm page: if one of the pages
1117 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1118 */
1119 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1120 struct page *page,
1121 struct rmap_item *tree_rmap_item,
1122 struct page *tree_page)
1123 {
1124 int err;
1125
1126 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1127 if (!err) {
1128 err = try_to_merge_with_ksm_page(tree_rmap_item,
1129 tree_page, page);
1130 /*
1131 * If that fails, we have a ksm page with only one pte
1132 * pointing to it: so break it.
1133 */
1134 if (err)
1135 break_cow(rmap_item);
1136 }
1137 return err ? NULL : page;
1138 }
1139
1140 /*
1141 * stable_tree_search - search for page inside the stable tree
1142 *
1143 * This function checks if there is a page inside the stable tree
1144 * with identical content to the page that we are scanning right now.
1145 *
1146 * This function returns the stable tree node of identical content if found,
1147 * NULL otherwise.
1148 */
1149 static struct page *stable_tree_search(struct page *page)
1150 {
1151 int nid;
1152 struct rb_root *root;
1153 struct rb_node **new;
1154 struct rb_node *parent;
1155 struct stable_node *stable_node;
1156 struct stable_node *page_node;
1157
1158 page_node = page_stable_node(page);
1159 if (page_node && page_node->head != &migrate_nodes) {
1160 /* ksm page forked */
1161 get_page(page);
1162 return page;
1163 }
1164
1165 nid = get_kpfn_nid(page_to_pfn(page));
1166 root = root_stable_tree + nid;
1167 again:
1168 new = &root->rb_node;
1169 parent = NULL;
1170
1171 while (*new) {
1172 struct page *tree_page;
1173 int ret;
1174
1175 cond_resched();
1176 stable_node = rb_entry(*new, struct stable_node, node);
1177 tree_page = get_ksm_page(stable_node, false);
1178 if (!tree_page) {
1179 /*
1180 * If we walked over a stale stable_node,
1181 * get_ksm_page() will call rb_erase() and it
1182 * may rebalance the tree from under us. So
1183 * restart the search from scratch. Returning
1184 * NULL would be safe too, but we'd generate
1185 * false negative insertions just because some
1186 * stable_node was stale.
1187 */
1188 goto again;
1189 }
1190
1191 ret = memcmp_pages(page, tree_page);
1192 put_page(tree_page);
1193
1194 parent = *new;
1195 if (ret < 0)
1196 new = &parent->rb_left;
1197 else if (ret > 0)
1198 new = &parent->rb_right;
1199 else {
1200 /*
1201 * Lock and unlock the stable_node's page (which
1202 * might already have been migrated) so that page
1203 * migration is sure to notice its raised count.
1204 * It would be more elegant to return stable_node
1205 * than kpage, but that involves more changes.
1206 */
1207 tree_page = get_ksm_page(stable_node, true);
1208 if (tree_page) {
1209 unlock_page(tree_page);
1210 if (get_kpfn_nid(stable_node->kpfn) !=
1211 NUMA(stable_node->nid)) {
1212 put_page(tree_page);
1213 goto replace;
1214 }
1215 return tree_page;
1216 }
1217 /*
1218 * There is now a place for page_node, but the tree may
1219 * have been rebalanced, so re-evaluate parent and new.
1220 */
1221 if (page_node)
1222 goto again;
1223 return NULL;
1224 }
1225 }
1226
1227 if (!page_node)
1228 return NULL;
1229
1230 list_del(&page_node->list);
1231 DO_NUMA(page_node->nid = nid);
1232 rb_link_node(&page_node->node, parent, new);
1233 rb_insert_color(&page_node->node, root);
1234 get_page(page);
1235 return page;
1236
1237 replace:
1238 if (page_node) {
1239 list_del(&page_node->list);
1240 DO_NUMA(page_node->nid = nid);
1241 rb_replace_node(&stable_node->node, &page_node->node, root);
1242 get_page(page);
1243 } else {
1244 rb_erase(&stable_node->node, root);
1245 page = NULL;
1246 }
1247 stable_node->head = &migrate_nodes;
1248 list_add(&stable_node->list, stable_node->head);
1249 return page;
1250 }
1251
1252 /*
1253 * stable_tree_insert - insert stable tree node pointing to new ksm page
1254 * into the stable tree.
1255 *
1256 * This function returns the stable tree node just allocated on success,
1257 * NULL otherwise.
1258 */
1259 static struct stable_node *stable_tree_insert(struct page *kpage)
1260 {
1261 int nid;
1262 unsigned long kpfn;
1263 struct rb_root *root;
1264 struct rb_node **new;
1265 struct rb_node *parent;
1266 struct stable_node *stable_node;
1267
1268 kpfn = page_to_pfn(kpage);
1269 nid = get_kpfn_nid(kpfn);
1270 root = root_stable_tree + nid;
1271 again:
1272 parent = NULL;
1273 new = &root->rb_node;
1274
1275 while (*new) {
1276 struct page *tree_page;
1277 int ret;
1278
1279 cond_resched();
1280 stable_node = rb_entry(*new, struct stable_node, node);
1281 tree_page = get_ksm_page(stable_node, false);
1282 if (!tree_page) {
1283 /*
1284 * If we walked over a stale stable_node,
1285 * get_ksm_page() will call rb_erase() and it
1286 * may rebalance the tree from under us. So
1287 * restart the search from scratch. Returning
1288 * NULL would be safe too, but we'd generate
1289 * false negative insertions just because some
1290 * stable_node was stale.
1291 */
1292 goto again;
1293 }
1294
1295 ret = memcmp_pages(kpage, tree_page);
1296 put_page(tree_page);
1297
1298 parent = *new;
1299 if (ret < 0)
1300 new = &parent->rb_left;
1301 else if (ret > 0)
1302 new = &parent->rb_right;
1303 else {
1304 /*
1305 * It is not a bug that stable_tree_search() didn't
1306 * find this node: because at that time our page was
1307 * not yet write-protected, so may have changed since.
1308 */
1309 return NULL;
1310 }
1311 }
1312
1313 stable_node = alloc_stable_node();
1314 if (!stable_node)
1315 return NULL;
1316
1317 INIT_HLIST_HEAD(&stable_node->hlist);
1318 stable_node->kpfn = kpfn;
1319 set_page_stable_node(kpage, stable_node);
1320 DO_NUMA(stable_node->nid = nid);
1321 rb_link_node(&stable_node->node, parent, new);
1322 rb_insert_color(&stable_node->node, root);
1323
1324 return stable_node;
1325 }
1326
1327 /*
1328 * unstable_tree_search_insert - search for identical page,
1329 * else insert rmap_item into the unstable tree.
1330 *
1331 * This function searches for a page in the unstable tree identical to the
1332 * page currently being scanned; and if no identical page is found in the
1333 * tree, we insert rmap_item as a new object into the unstable tree.
1334 *
1335 * This function returns pointer to rmap_item found to be identical
1336 * to the currently scanned page, NULL otherwise.
1337 *
1338 * This function does both searching and inserting, because they share
1339 * the same walking algorithm in an rbtree.
1340 */
1341 static
1342 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1343 struct page *page,
1344 struct page **tree_pagep)
1345 {
1346 struct rb_node **new;
1347 struct rb_root *root;
1348 struct rb_node *parent = NULL;
1349 int nid;
1350
1351 nid = get_kpfn_nid(page_to_pfn(page));
1352 root = root_unstable_tree + nid;
1353 new = &root->rb_node;
1354
1355 while (*new) {
1356 struct rmap_item *tree_rmap_item;
1357 struct page *tree_page;
1358 int ret;
1359
1360 cond_resched();
1361 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1362 tree_page = get_mergeable_page(tree_rmap_item);
1363 if (!tree_page)
1364 return NULL;
1365
1366 /*
1367 * Don't substitute a ksm page for a forked page.
1368 */
1369 if (page == tree_page) {
1370 put_page(tree_page);
1371 return NULL;
1372 }
1373
1374 ret = memcmp_pages(page, tree_page);
1375
1376 parent = *new;
1377 if (ret < 0) {
1378 put_page(tree_page);
1379 new = &parent->rb_left;
1380 } else if (ret > 0) {
1381 put_page(tree_page);
1382 new = &parent->rb_right;
1383 } else if (!ksm_merge_across_nodes &&
1384 page_to_nid(tree_page) != nid) {
1385 /*
1386 * If tree_page has been migrated to another NUMA node,
1387 * it will be flushed out and put in the right unstable
1388 * tree next time: only merge with it when across_nodes.
1389 */
1390 put_page(tree_page);
1391 return NULL;
1392 } else {
1393 *tree_pagep = tree_page;
1394 return tree_rmap_item;
1395 }
1396 }
1397
1398 rmap_item->address |= UNSTABLE_FLAG;
1399 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1400 DO_NUMA(rmap_item->nid = nid);
1401 rb_link_node(&rmap_item->node, parent, new);
1402 rb_insert_color(&rmap_item->node, root);
1403
1404 ksm_pages_unshared++;
1405 return NULL;
1406 }
1407
1408 /*
1409 * stable_tree_append - add another rmap_item to the linked list of
1410 * rmap_items hanging off a given node of the stable tree, all sharing
1411 * the same ksm page.
1412 */
1413 static void stable_tree_append(struct rmap_item *rmap_item,
1414 struct stable_node *stable_node)
1415 {
1416 rmap_item->head = stable_node;
1417 rmap_item->address |= STABLE_FLAG;
1418 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1419
1420 if (rmap_item->hlist.next)
1421 ksm_pages_sharing++;
1422 else
1423 ksm_pages_shared++;
1424 }
1425
1426 /*
1427 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1428 * if not, compare checksum to previous and if it's the same, see if page can
1429 * be inserted into the unstable tree, or merged with a page already there and
1430 * both transferred to the stable tree.
1431 *
1432 * @page: the page that we are searching identical page to.
1433 * @rmap_item: the reverse mapping into the virtual address of this page
1434 */
1435 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1436 {
1437 struct rmap_item *tree_rmap_item;
1438 struct page *tree_page = NULL;
1439 struct stable_node *stable_node;
1440 struct page *kpage;
1441 unsigned int checksum;
1442 int err;
1443
1444 stable_node = page_stable_node(page);
1445 if (stable_node) {
1446 if (stable_node->head != &migrate_nodes &&
1447 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1448 rb_erase(&stable_node->node,
1449 root_stable_tree + NUMA(stable_node->nid));
1450 stable_node->head = &migrate_nodes;
1451 list_add(&stable_node->list, stable_node->head);
1452 }
1453 if (stable_node->head != &migrate_nodes &&
1454 rmap_item->head == stable_node)
1455 return;
1456 }
1457
1458 /* We first start with searching the page inside the stable tree */
1459 kpage = stable_tree_search(page);
1460 if (kpage == page && rmap_item->head == stable_node) {
1461 put_page(kpage);
1462 return;
1463 }
1464
1465 remove_rmap_item_from_tree(rmap_item);
1466
1467 if (kpage) {
1468 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1469 if (!err) {
1470 /*
1471 * The page was successfully merged:
1472 * add its rmap_item to the stable tree.
1473 */
1474 lock_page(kpage);
1475 stable_tree_append(rmap_item, page_stable_node(kpage));
1476 unlock_page(kpage);
1477 }
1478 put_page(kpage);
1479 return;
1480 }
1481
1482 /*
1483 * If the hash value of the page has changed from the last time
1484 * we calculated it, this page is changing frequently: therefore we
1485 * don't want to insert it in the unstable tree, and we don't want
1486 * to waste our time searching for something identical to it there.
1487 */
1488 checksum = calc_checksum(page);
1489 if (rmap_item->oldchecksum != checksum) {
1490 rmap_item->oldchecksum = checksum;
1491 return;
1492 }
1493
1494 /*
1495 * Same checksum as an empty page. We attempt to merge it with the
1496 * appropriate zero page if the user enabled this via sysfs.
1497 */
1498 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1499 struct vm_area_struct *vma;
1500
1501 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1502 err = try_to_merge_one_page(vma, page,
1503 ZERO_PAGE(rmap_item->address));
1504 /*
1505 * In case of failure, the page was not really empty, so we
1506 * need to continue. Otherwise we're done.
1507 */
1508 if (!err)
1509 return;
1510 }
1511 tree_rmap_item =
1512 unstable_tree_search_insert(rmap_item, page, &tree_page);
1513 if (tree_rmap_item) {
1514 kpage = try_to_merge_two_pages(rmap_item, page,
1515 tree_rmap_item, tree_page);
1516 put_page(tree_page);
1517 if (kpage) {
1518 /*
1519 * The pages were successfully merged: insert new
1520 * node in the stable tree and add both rmap_items.
1521 */
1522 lock_page(kpage);
1523 stable_node = stable_tree_insert(kpage);
1524 if (stable_node) {
1525 stable_tree_append(tree_rmap_item, stable_node);
1526 stable_tree_append(rmap_item, stable_node);
1527 }
1528 unlock_page(kpage);
1529
1530 /*
1531 * If we fail to insert the page into the stable tree,
1532 * we will have 2 virtual addresses that are pointing
1533 * to a ksm page left outside the stable tree,
1534 * in which case we need to break_cow on both.
1535 */
1536 if (!stable_node) {
1537 break_cow(tree_rmap_item);
1538 break_cow(rmap_item);
1539 }
1540 }
1541 }
1542 }
1543
1544 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1545 struct rmap_item **rmap_list,
1546 unsigned long addr)
1547 {
1548 struct rmap_item *rmap_item;
1549
1550 while (*rmap_list) {
1551 rmap_item = *rmap_list;
1552 if ((rmap_item->address & PAGE_MASK) == addr)
1553 return rmap_item;
1554 if (rmap_item->address > addr)
1555 break;
1556 *rmap_list = rmap_item->rmap_list;
1557 remove_rmap_item_from_tree(rmap_item);
1558 free_rmap_item(rmap_item);
1559 }
1560
1561 rmap_item = alloc_rmap_item();
1562 if (rmap_item) {
1563 /* It has already been zeroed */
1564 rmap_item->mm = mm_slot->mm;
1565 rmap_item->address = addr;
1566 rmap_item->rmap_list = *rmap_list;
1567 *rmap_list = rmap_item;
1568 }
1569 return rmap_item;
1570 }
1571
1572 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1573 {
1574 struct mm_struct *mm;
1575 struct mm_slot *slot;
1576 struct vm_area_struct *vma;
1577 struct rmap_item *rmap_item;
1578 int nid;
1579
1580 if (list_empty(&ksm_mm_head.mm_list))
1581 return NULL;
1582
1583 slot = ksm_scan.mm_slot;
1584 if (slot == &ksm_mm_head) {
1585 /*
1586 * A number of pages can hang around indefinitely on per-cpu
1587 * pagevecs, raised page count preventing write_protect_page
1588 * from merging them. Though it doesn't really matter much,
1589 * it is puzzling to see some stuck in pages_volatile until
1590 * other activity jostles them out, and they also prevented
1591 * LTP's KSM test from succeeding deterministically; so drain
1592 * them here (here rather than on entry to ksm_do_scan(),
1593 * so we don't IPI too often when pages_to_scan is set low).
1594 */
1595 lru_add_drain_all();
1596
1597 /*
1598 * Whereas stale stable_nodes on the stable_tree itself
1599 * get pruned in the regular course of stable_tree_search(),
1600 * those moved out to the migrate_nodes list can accumulate:
1601 * so prune them once before each full scan.
1602 */
1603 if (!ksm_merge_across_nodes) {
1604 struct stable_node *stable_node, *next;
1605 struct page *page;
1606
1607 list_for_each_entry_safe(stable_node, next,
1608 &migrate_nodes, list) {
1609 page = get_ksm_page(stable_node, false);
1610 if (page)
1611 put_page(page);
1612 cond_resched();
1613 }
1614 }
1615
1616 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1617 root_unstable_tree[nid] = RB_ROOT;
1618
1619 spin_lock(&ksm_mmlist_lock);
1620 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1621 ksm_scan.mm_slot = slot;
1622 spin_unlock(&ksm_mmlist_lock);
1623 /*
1624 * Although we tested list_empty() above, a racing __ksm_exit
1625 * of the last mm on the list may have removed it since then.
1626 */
1627 if (slot == &ksm_mm_head)
1628 return NULL;
1629 next_mm:
1630 ksm_scan.address = 0;
1631 ksm_scan.rmap_list = &slot->rmap_list;
1632 }
1633
1634 mm = slot->mm;
1635 down_read(&mm->mmap_sem);
1636 if (ksm_test_exit(mm))
1637 vma = NULL;
1638 else
1639 vma = find_vma(mm, ksm_scan.address);
1640
1641 for (; vma; vma = vma->vm_next) {
1642 if (!(vma->vm_flags & VM_MERGEABLE))
1643 continue;
1644 if (ksm_scan.address < vma->vm_start)
1645 ksm_scan.address = vma->vm_start;
1646 if (!vma->anon_vma)
1647 ksm_scan.address = vma->vm_end;
1648
1649 while (ksm_scan.address < vma->vm_end) {
1650 if (ksm_test_exit(mm))
1651 break;
1652 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1653 if (IS_ERR_OR_NULL(*page)) {
1654 ksm_scan.address += PAGE_SIZE;
1655 cond_resched();
1656 continue;
1657 }
1658 if (PageAnon(*page)) {
1659 flush_anon_page(vma, *page, ksm_scan.address);
1660 flush_dcache_page(*page);
1661 rmap_item = get_next_rmap_item(slot,
1662 ksm_scan.rmap_list, ksm_scan.address);
1663 if (rmap_item) {
1664 ksm_scan.rmap_list =
1665 &rmap_item->rmap_list;
1666 ksm_scan.address += PAGE_SIZE;
1667 } else
1668 put_page(*page);
1669 up_read(&mm->mmap_sem);
1670 return rmap_item;
1671 }
1672 put_page(*page);
1673 ksm_scan.address += PAGE_SIZE;
1674 cond_resched();
1675 }
1676 }
1677
1678 if (ksm_test_exit(mm)) {
1679 ksm_scan.address = 0;
1680 ksm_scan.rmap_list = &slot->rmap_list;
1681 }
1682 /*
1683 * Nuke all the rmap_items that are above this current rmap:
1684 * because there were no VM_MERGEABLE vmas with such addresses.
1685 */
1686 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1687
1688 spin_lock(&ksm_mmlist_lock);
1689 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1690 struct mm_slot, mm_list);
1691 if (ksm_scan.address == 0) {
1692 /*
1693 * We've completed a full scan of all vmas, holding mmap_sem
1694 * throughout, and found no VM_MERGEABLE: so do the same as
1695 * __ksm_exit does to remove this mm from all our lists now.
1696 * This applies either when cleaning up after __ksm_exit
1697 * (but beware: we can reach here even before __ksm_exit),
1698 * or when all VM_MERGEABLE areas have been unmapped (and
1699 * mmap_sem then protects against race with MADV_MERGEABLE).
1700 */
1701 hash_del(&slot->link);
1702 list_del(&slot->mm_list);
1703 spin_unlock(&ksm_mmlist_lock);
1704
1705 free_mm_slot(slot);
1706 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1707 up_read(&mm->mmap_sem);
1708 mmdrop(mm);
1709 } else {
1710 up_read(&mm->mmap_sem);
1711 /*
1712 * up_read(&mm->mmap_sem) first because after
1713 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1714 * already have been freed under us by __ksm_exit()
1715 * because the "mm_slot" is still hashed and
1716 * ksm_scan.mm_slot doesn't point to it anymore.
1717 */
1718 spin_unlock(&ksm_mmlist_lock);
1719 }
1720
1721 /* Repeat until we've completed scanning the whole list */
1722 slot = ksm_scan.mm_slot;
1723 if (slot != &ksm_mm_head)
1724 goto next_mm;
1725
1726 ksm_scan.seqnr++;
1727 return NULL;
1728 }
1729
1730 /**
1731 * ksm_do_scan - the ksm scanner main worker function.
1732 * @scan_npages - number of pages we want to scan before we return.
1733 */
1734 static void ksm_do_scan(unsigned int scan_npages)
1735 {
1736 struct rmap_item *rmap_item;
1737 struct page *uninitialized_var(page);
1738
1739 while (scan_npages-- && likely(!freezing(current))) {
1740 cond_resched();
1741 rmap_item = scan_get_next_rmap_item(&page);
1742 if (!rmap_item)
1743 return;
1744 cmp_and_merge_page(page, rmap_item);
1745 put_page(page);
1746 }
1747 }
1748
1749 static int ksmd_should_run(void)
1750 {
1751 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1752 }
1753
1754 static int ksm_scan_thread(void *nothing)
1755 {
1756 set_freezable();
1757 set_user_nice(current, 5);
1758
1759 while (!kthread_should_stop()) {
1760 mutex_lock(&ksm_thread_mutex);
1761 wait_while_offlining();
1762 if (ksmd_should_run())
1763 ksm_do_scan(ksm_thread_pages_to_scan);
1764 mutex_unlock(&ksm_thread_mutex);
1765
1766 try_to_freeze();
1767
1768 if (ksmd_should_run()) {
1769 schedule_timeout_interruptible(
1770 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1771 } else {
1772 wait_event_freezable(ksm_thread_wait,
1773 ksmd_should_run() || kthread_should_stop());
1774 }
1775 }
1776 return 0;
1777 }
1778
1779 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1780 unsigned long end, int advice, unsigned long *vm_flags)
1781 {
1782 struct mm_struct *mm = vma->vm_mm;
1783 int err;
1784
1785 switch (advice) {
1786 case MADV_MERGEABLE:
1787 /*
1788 * Be somewhat over-protective for now!
1789 */
1790 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1791 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1792 VM_HUGETLB | VM_MIXEDMAP))
1793 return 0; /* just ignore the advice */
1794
1795 #ifdef VM_SAO
1796 if (*vm_flags & VM_SAO)
1797 return 0;
1798 #endif
1799
1800 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1801 err = __ksm_enter(mm);
1802 if (err)
1803 return err;
1804 }
1805
1806 *vm_flags |= VM_MERGEABLE;
1807 break;
1808
1809 case MADV_UNMERGEABLE:
1810 if (!(*vm_flags & VM_MERGEABLE))
1811 return 0; /* just ignore the advice */
1812
1813 if (vma->anon_vma) {
1814 err = unmerge_ksm_pages(vma, start, end);
1815 if (err)
1816 return err;
1817 }
1818
1819 *vm_flags &= ~VM_MERGEABLE;
1820 break;
1821 }
1822
1823 return 0;
1824 }
1825
1826 int __ksm_enter(struct mm_struct *mm)
1827 {
1828 struct mm_slot *mm_slot;
1829 int needs_wakeup;
1830
1831 mm_slot = alloc_mm_slot();
1832 if (!mm_slot)
1833 return -ENOMEM;
1834
1835 /* Check ksm_run too? Would need tighter locking */
1836 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1837
1838 spin_lock(&ksm_mmlist_lock);
1839 insert_to_mm_slots_hash(mm, mm_slot);
1840 /*
1841 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1842 * insert just behind the scanning cursor, to let the area settle
1843 * down a little; when fork is followed by immediate exec, we don't
1844 * want ksmd to waste time setting up and tearing down an rmap_list.
1845 *
1846 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1847 * scanning cursor, otherwise KSM pages in newly forked mms will be
1848 * missed: then we might as well insert at the end of the list.
1849 */
1850 if (ksm_run & KSM_RUN_UNMERGE)
1851 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1852 else
1853 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1854 spin_unlock(&ksm_mmlist_lock);
1855
1856 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1857 mmgrab(mm);
1858
1859 if (needs_wakeup)
1860 wake_up_interruptible(&ksm_thread_wait);
1861
1862 return 0;
1863 }
1864
1865 void __ksm_exit(struct mm_struct *mm)
1866 {
1867 struct mm_slot *mm_slot;
1868 int easy_to_free = 0;
1869
1870 /*
1871 * This process is exiting: if it's straightforward (as is the
1872 * case when ksmd was never running), free mm_slot immediately.
1873 * But if it's at the cursor or has rmap_items linked to it, use
1874 * mmap_sem to synchronize with any break_cows before pagetables
1875 * are freed, and leave the mm_slot on the list for ksmd to free.
1876 * Beware: ksm may already have noticed it exiting and freed the slot.
1877 */
1878
1879 spin_lock(&ksm_mmlist_lock);
1880 mm_slot = get_mm_slot(mm);
1881 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1882 if (!mm_slot->rmap_list) {
1883 hash_del(&mm_slot->link);
1884 list_del(&mm_slot->mm_list);
1885 easy_to_free = 1;
1886 } else {
1887 list_move(&mm_slot->mm_list,
1888 &ksm_scan.mm_slot->mm_list);
1889 }
1890 }
1891 spin_unlock(&ksm_mmlist_lock);
1892
1893 if (easy_to_free) {
1894 free_mm_slot(mm_slot);
1895 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1896 mmdrop(mm);
1897 } else if (mm_slot) {
1898 down_write(&mm->mmap_sem);
1899 up_write(&mm->mmap_sem);
1900 }
1901 }
1902
1903 struct page *ksm_might_need_to_copy(struct page *page,
1904 struct vm_area_struct *vma, unsigned long address)
1905 {
1906 struct anon_vma *anon_vma = page_anon_vma(page);
1907 struct page *new_page;
1908
1909 if (PageKsm(page)) {
1910 if (page_stable_node(page) &&
1911 !(ksm_run & KSM_RUN_UNMERGE))
1912 return page; /* no need to copy it */
1913 } else if (!anon_vma) {
1914 return page; /* no need to copy it */
1915 } else if (anon_vma->root == vma->anon_vma->root &&
1916 page->index == linear_page_index(vma, address)) {
1917 return page; /* still no need to copy it */
1918 }
1919 if (!PageUptodate(page))
1920 return page; /* let do_swap_page report the error */
1921
1922 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1923 if (new_page) {
1924 copy_user_highpage(new_page, page, address, vma);
1925
1926 SetPageDirty(new_page);
1927 __SetPageUptodate(new_page);
1928 __SetPageLocked(new_page);
1929 }
1930
1931 return new_page;
1932 }
1933
1934 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1935 {
1936 struct stable_node *stable_node;
1937 struct rmap_item *rmap_item;
1938 int ret = SWAP_AGAIN;
1939 int search_new_forks = 0;
1940
1941 VM_BUG_ON_PAGE(!PageKsm(page), page);
1942
1943 /*
1944 * Rely on the page lock to protect against concurrent modifications
1945 * to that page's node of the stable tree.
1946 */
1947 VM_BUG_ON_PAGE(!PageLocked(page), page);
1948
1949 stable_node = page_stable_node(page);
1950 if (!stable_node)
1951 return ret;
1952 again:
1953 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1954 struct anon_vma *anon_vma = rmap_item->anon_vma;
1955 struct anon_vma_chain *vmac;
1956 struct vm_area_struct *vma;
1957
1958 cond_resched();
1959 anon_vma_lock_read(anon_vma);
1960 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1961 0, ULONG_MAX) {
1962 cond_resched();
1963 vma = vmac->vma;
1964 if (rmap_item->address < vma->vm_start ||
1965 rmap_item->address >= vma->vm_end)
1966 continue;
1967 /*
1968 * Initially we examine only the vma which covers this
1969 * rmap_item; but later, if there is still work to do,
1970 * we examine covering vmas in other mms: in case they
1971 * were forked from the original since ksmd passed.
1972 */
1973 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1974 continue;
1975
1976 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1977 continue;
1978
1979 ret = rwc->rmap_one(page, vma,
1980 rmap_item->address, rwc->arg);
1981 if (ret != SWAP_AGAIN) {
1982 anon_vma_unlock_read(anon_vma);
1983 goto out;
1984 }
1985 if (rwc->done && rwc->done(page)) {
1986 anon_vma_unlock_read(anon_vma);
1987 goto out;
1988 }
1989 }
1990 anon_vma_unlock_read(anon_vma);
1991 }
1992 if (!search_new_forks++)
1993 goto again;
1994 out:
1995 return ret;
1996 }
1997
1998 #ifdef CONFIG_MIGRATION
1999 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2000 {
2001 struct stable_node *stable_node;
2002
2003 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2004 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2005 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2006
2007 stable_node = page_stable_node(newpage);
2008 if (stable_node) {
2009 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2010 stable_node->kpfn = page_to_pfn(newpage);
2011 /*
2012 * newpage->mapping was set in advance; now we need smp_wmb()
2013 * to make sure that the new stable_node->kpfn is visible
2014 * to get_ksm_page() before it can see that oldpage->mapping
2015 * has gone stale (or that PageSwapCache has been cleared).
2016 */
2017 smp_wmb();
2018 set_page_stable_node(oldpage, NULL);
2019 }
2020 }
2021 #endif /* CONFIG_MIGRATION */
2022
2023 #ifdef CONFIG_MEMORY_HOTREMOVE
2024 static void wait_while_offlining(void)
2025 {
2026 while (ksm_run & KSM_RUN_OFFLINE) {
2027 mutex_unlock(&ksm_thread_mutex);
2028 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2029 TASK_UNINTERRUPTIBLE);
2030 mutex_lock(&ksm_thread_mutex);
2031 }
2032 }
2033
2034 static void ksm_check_stable_tree(unsigned long start_pfn,
2035 unsigned long end_pfn)
2036 {
2037 struct stable_node *stable_node, *next;
2038 struct rb_node *node;
2039 int nid;
2040
2041 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2042 node = rb_first(root_stable_tree + nid);
2043 while (node) {
2044 stable_node = rb_entry(node, struct stable_node, node);
2045 if (stable_node->kpfn >= start_pfn &&
2046 stable_node->kpfn < end_pfn) {
2047 /*
2048 * Don't get_ksm_page, page has already gone:
2049 * which is why we keep kpfn instead of page*
2050 */
2051 remove_node_from_stable_tree(stable_node);
2052 node = rb_first(root_stable_tree + nid);
2053 } else
2054 node = rb_next(node);
2055 cond_resched();
2056 }
2057 }
2058 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2059 if (stable_node->kpfn >= start_pfn &&
2060 stable_node->kpfn < end_pfn)
2061 remove_node_from_stable_tree(stable_node);
2062 cond_resched();
2063 }
2064 }
2065
2066 static int ksm_memory_callback(struct notifier_block *self,
2067 unsigned long action, void *arg)
2068 {
2069 struct memory_notify *mn = arg;
2070
2071 switch (action) {
2072 case MEM_GOING_OFFLINE:
2073 /*
2074 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2075 * and remove_all_stable_nodes() while memory is going offline:
2076 * it is unsafe for them to touch the stable tree at this time.
2077 * But unmerge_ksm_pages(), rmap lookups and other entry points
2078 * which do not need the ksm_thread_mutex are all safe.
2079 */
2080 mutex_lock(&ksm_thread_mutex);
2081 ksm_run |= KSM_RUN_OFFLINE;
2082 mutex_unlock(&ksm_thread_mutex);
2083 break;
2084
2085 case MEM_OFFLINE:
2086 /*
2087 * Most of the work is done by page migration; but there might
2088 * be a few stable_nodes left over, still pointing to struct
2089 * pages which have been offlined: prune those from the tree,
2090 * otherwise get_ksm_page() might later try to access a
2091 * non-existent struct page.
2092 */
2093 ksm_check_stable_tree(mn->start_pfn,
2094 mn->start_pfn + mn->nr_pages);
2095 /* fallthrough */
2096
2097 case MEM_CANCEL_OFFLINE:
2098 mutex_lock(&ksm_thread_mutex);
2099 ksm_run &= ~KSM_RUN_OFFLINE;
2100 mutex_unlock(&ksm_thread_mutex);
2101
2102 smp_mb(); /* wake_up_bit advises this */
2103 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2104 break;
2105 }
2106 return NOTIFY_OK;
2107 }
2108 #else
2109 static void wait_while_offlining(void)
2110 {
2111 }
2112 #endif /* CONFIG_MEMORY_HOTREMOVE */
2113
2114 #ifdef CONFIG_SYSFS
2115 /*
2116 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2117 */
2118
2119 #define KSM_ATTR_RO(_name) \
2120 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2121 #define KSM_ATTR(_name) \
2122 static struct kobj_attribute _name##_attr = \
2123 __ATTR(_name, 0644, _name##_show, _name##_store)
2124
2125 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2126 struct kobj_attribute *attr, char *buf)
2127 {
2128 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2129 }
2130
2131 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2132 struct kobj_attribute *attr,
2133 const char *buf, size_t count)
2134 {
2135 unsigned long msecs;
2136 int err;
2137
2138 err = kstrtoul(buf, 10, &msecs);
2139 if (err || msecs > UINT_MAX)
2140 return -EINVAL;
2141
2142 ksm_thread_sleep_millisecs = msecs;
2143
2144 return count;
2145 }
2146 KSM_ATTR(sleep_millisecs);
2147
2148 static ssize_t pages_to_scan_show(struct kobject *kobj,
2149 struct kobj_attribute *attr, char *buf)
2150 {
2151 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2152 }
2153
2154 static ssize_t pages_to_scan_store(struct kobject *kobj,
2155 struct kobj_attribute *attr,
2156 const char *buf, size_t count)
2157 {
2158 int err;
2159 unsigned long nr_pages;
2160
2161 err = kstrtoul(buf, 10, &nr_pages);
2162 if (err || nr_pages > UINT_MAX)
2163 return -EINVAL;
2164
2165 ksm_thread_pages_to_scan = nr_pages;
2166
2167 return count;
2168 }
2169 KSM_ATTR(pages_to_scan);
2170
2171 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2172 char *buf)
2173 {
2174 return sprintf(buf, "%lu\n", ksm_run);
2175 }
2176
2177 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2178 const char *buf, size_t count)
2179 {
2180 int err;
2181 unsigned long flags;
2182
2183 err = kstrtoul(buf, 10, &flags);
2184 if (err || flags > UINT_MAX)
2185 return -EINVAL;
2186 if (flags > KSM_RUN_UNMERGE)
2187 return -EINVAL;
2188
2189 /*
2190 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2191 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2192 * breaking COW to free the pages_shared (but leaves mm_slots
2193 * on the list for when ksmd may be set running again).
2194 */
2195
2196 mutex_lock(&ksm_thread_mutex);
2197 wait_while_offlining();
2198 if (ksm_run != flags) {
2199 ksm_run = flags;
2200 if (flags & KSM_RUN_UNMERGE) {
2201 set_current_oom_origin();
2202 err = unmerge_and_remove_all_rmap_items();
2203 clear_current_oom_origin();
2204 if (err) {
2205 ksm_run = KSM_RUN_STOP;
2206 count = err;
2207 }
2208 }
2209 }
2210 mutex_unlock(&ksm_thread_mutex);
2211
2212 if (flags & KSM_RUN_MERGE)
2213 wake_up_interruptible(&ksm_thread_wait);
2214
2215 return count;
2216 }
2217 KSM_ATTR(run);
2218
2219 #ifdef CONFIG_NUMA
2220 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2221 struct kobj_attribute *attr, char *buf)
2222 {
2223 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2224 }
2225
2226 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2227 struct kobj_attribute *attr,
2228 const char *buf, size_t count)
2229 {
2230 int err;
2231 unsigned long knob;
2232
2233 err = kstrtoul(buf, 10, &knob);
2234 if (err)
2235 return err;
2236 if (knob > 1)
2237 return -EINVAL;
2238
2239 mutex_lock(&ksm_thread_mutex);
2240 wait_while_offlining();
2241 if (ksm_merge_across_nodes != knob) {
2242 if (ksm_pages_shared || remove_all_stable_nodes())
2243 err = -EBUSY;
2244 else if (root_stable_tree == one_stable_tree) {
2245 struct rb_root *buf;
2246 /*
2247 * This is the first time that we switch away from the
2248 * default of merging across nodes: must now allocate
2249 * a buffer to hold as many roots as may be needed.
2250 * Allocate stable and unstable together:
2251 * MAXSMP NODES_SHIFT 10 will use 16kB.
2252 */
2253 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2254 GFP_KERNEL);
2255 /* Let us assume that RB_ROOT is NULL is zero */
2256 if (!buf)
2257 err = -ENOMEM;
2258 else {
2259 root_stable_tree = buf;
2260 root_unstable_tree = buf + nr_node_ids;
2261 /* Stable tree is empty but not the unstable */
2262 root_unstable_tree[0] = one_unstable_tree[0];
2263 }
2264 }
2265 if (!err) {
2266 ksm_merge_across_nodes = knob;
2267 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2268 }
2269 }
2270 mutex_unlock(&ksm_thread_mutex);
2271
2272 return err ? err : count;
2273 }
2274 KSM_ATTR(merge_across_nodes);
2275 #endif
2276
2277 static ssize_t use_zero_pages_show(struct kobject *kobj,
2278 struct kobj_attribute *attr, char *buf)
2279 {
2280 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2281 }
2282 static ssize_t use_zero_pages_store(struct kobject *kobj,
2283 struct kobj_attribute *attr,
2284 const char *buf, size_t count)
2285 {
2286 int err;
2287 bool value;
2288
2289 err = kstrtobool(buf, &value);
2290 if (err)
2291 return -EINVAL;
2292
2293 ksm_use_zero_pages = value;
2294
2295 return count;
2296 }
2297 KSM_ATTR(use_zero_pages);
2298
2299 static ssize_t pages_shared_show(struct kobject *kobj,
2300 struct kobj_attribute *attr, char *buf)
2301 {
2302 return sprintf(buf, "%lu\n", ksm_pages_shared);
2303 }
2304 KSM_ATTR_RO(pages_shared);
2305
2306 static ssize_t pages_sharing_show(struct kobject *kobj,
2307 struct kobj_attribute *attr, char *buf)
2308 {
2309 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2310 }
2311 KSM_ATTR_RO(pages_sharing);
2312
2313 static ssize_t pages_unshared_show(struct kobject *kobj,
2314 struct kobj_attribute *attr, char *buf)
2315 {
2316 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2317 }
2318 KSM_ATTR_RO(pages_unshared);
2319
2320 static ssize_t pages_volatile_show(struct kobject *kobj,
2321 struct kobj_attribute *attr, char *buf)
2322 {
2323 long ksm_pages_volatile;
2324
2325 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2326 - ksm_pages_sharing - ksm_pages_unshared;
2327 /*
2328 * It was not worth any locking to calculate that statistic,
2329 * but it might therefore sometimes be negative: conceal that.
2330 */
2331 if (ksm_pages_volatile < 0)
2332 ksm_pages_volatile = 0;
2333 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2334 }
2335 KSM_ATTR_RO(pages_volatile);
2336
2337 static ssize_t full_scans_show(struct kobject *kobj,
2338 struct kobj_attribute *attr, char *buf)
2339 {
2340 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2341 }
2342 KSM_ATTR_RO(full_scans);
2343
2344 static struct attribute *ksm_attrs[] = {
2345 &sleep_millisecs_attr.attr,
2346 &pages_to_scan_attr.attr,
2347 &run_attr.attr,
2348 &pages_shared_attr.attr,
2349 &pages_sharing_attr.attr,
2350 &pages_unshared_attr.attr,
2351 &pages_volatile_attr.attr,
2352 &full_scans_attr.attr,
2353 #ifdef CONFIG_NUMA
2354 &merge_across_nodes_attr.attr,
2355 #endif
2356 &use_zero_pages_attr.attr,
2357 NULL,
2358 };
2359
2360 static struct attribute_group ksm_attr_group = {
2361 .attrs = ksm_attrs,
2362 .name = "ksm",
2363 };
2364 #endif /* CONFIG_SYSFS */
2365
2366 static int __init ksm_init(void)
2367 {
2368 struct task_struct *ksm_thread;
2369 int err;
2370
2371 /* The correct value depends on page size and endianness */
2372 zero_checksum = calc_checksum(ZERO_PAGE(0));
2373 /* Default to false for backwards compatibility */
2374 ksm_use_zero_pages = false;
2375
2376 err = ksm_slab_init();
2377 if (err)
2378 goto out;
2379
2380 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2381 if (IS_ERR(ksm_thread)) {
2382 pr_err("ksm: creating kthread failed\n");
2383 err = PTR_ERR(ksm_thread);
2384 goto out_free;
2385 }
2386
2387 #ifdef CONFIG_SYSFS
2388 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2389 if (err) {
2390 pr_err("ksm: register sysfs failed\n");
2391 kthread_stop(ksm_thread);
2392 goto out_free;
2393 }
2394 #else
2395 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2396
2397 #endif /* CONFIG_SYSFS */
2398
2399 #ifdef CONFIG_MEMORY_HOTREMOVE
2400 /* There is no significance to this priority 100 */
2401 hotplug_memory_notifier(ksm_memory_callback, 100);
2402 #endif
2403 return 0;
2404
2405 out_free:
2406 ksm_slab_free();
2407 out:
2408 return err;
2409 }
2410 subsys_initcall(ksm_init);