]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/ksm.c
arm64: dts: qcom: sc7180: Remove cros-pd-update on Trogdor
[mirror_ubuntu-jammy-kernel.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x) (x)
47 #define DO_NUMA(x) do { (x); } while (0)
48 #else
49 #define NUMA(x) (0)
50 #define DO_NUMA(x) do { } while (0)
51 #endif
52
53 /**
54 * DOC: Overview
55 *
56 * A few notes about the KSM scanning process,
57 * to make it easier to understand the data structures below:
58 *
59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
60 * contents into a data structure that holds pointers to the pages' locations.
61 *
62 * Since the contents of the pages may change at any moment, KSM cannot just
63 * insert the pages into a normal sorted tree and expect it to find anything.
64 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 *
66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67 * by their contents. Because each such page is write-protected, searching on
68 * this tree is fully assured to be working (except when pages are unmapped),
69 * and therefore this tree is called the stable tree.
70 *
71 * The stable tree node includes information required for reverse
72 * mapping from a KSM page to virtual addresses that map this page.
73 *
74 * In order to avoid large latencies of the rmap walks on KSM pages,
75 * KSM maintains two types of nodes in the stable tree:
76 *
77 * * the regular nodes that keep the reverse mapping structures in a
78 * linked list
79 * * the "chains" that link nodes ("dups") that represent the same
80 * write protected memory content, but each "dup" corresponds to a
81 * different KSM page copy of that content
82 *
83 * Internally, the regular nodes, "dups" and "chains" are represented
84 * using the same struct stable_node structure.
85 *
86 * In addition to the stable tree, KSM uses a second data structure called the
87 * unstable tree: this tree holds pointers to pages which have been found to
88 * be "unchanged for a period of time". The unstable tree sorts these pages
89 * by their contents, but since they are not write-protected, KSM cannot rely
90 * upon the unstable tree to work correctly - the unstable tree is liable to
91 * be corrupted as its contents are modified, and so it is called unstable.
92 *
93 * KSM solves this problem by several techniques:
94 *
95 * 1) The unstable tree is flushed every time KSM completes scanning all
96 * memory areas, and then the tree is rebuilt again from the beginning.
97 * 2) KSM will only insert into the unstable tree, pages whose hash value
98 * has not changed since the previous scan of all memory areas.
99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100 * colors of the nodes and not on their contents, assuring that even when
101 * the tree gets "corrupted" it won't get out of balance, so scanning time
102 * remains the same (also, searching and inserting nodes in an rbtree uses
103 * the same algorithm, so we have no overhead when we flush and rebuild).
104 * 4) KSM never flushes the stable tree, which means that even if it were to
105 * take 10 attempts to find a page in the unstable tree, once it is found,
106 * it is secured in the stable tree. (When we scan a new page, we first
107 * compare it against the stable tree, and then against the unstable tree.)
108 *
109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110 * stable trees and multiple unstable trees: one of each for each NUMA node.
111 */
112
113 /**
114 * struct mm_slot - ksm information per mm that is being scanned
115 * @link: link to the mm_slots hash list
116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118 * @mm: the mm that this information is valid for
119 */
120 struct mm_slot {
121 struct hlist_node link;
122 struct list_head mm_list;
123 struct rmap_item *rmap_list;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct ksm_scan - cursor for scanning
129 * @mm_slot: the current mm_slot we are scanning
130 * @address: the next address inside that to be scanned
131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
132 * @seqnr: count of completed full scans (needed when removing unstable node)
133 *
134 * There is only the one ksm_scan instance of this cursor structure.
135 */
136 struct ksm_scan {
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 struct rmap_item **rmap_list;
140 unsigned long seqnr;
141 };
142
143 /**
144 * struct stable_node - node of the stable rbtree
145 * @node: rb node of this ksm page in the stable tree
146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148 * @list: linked into migrate_nodes, pending placement in the proper node tree
149 * @hlist: hlist head of rmap_items using this ksm page
150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151 * @chain_prune_time: time of the last full garbage collection
152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154 */
155 struct stable_node {
156 union {
157 struct rb_node node; /* when node of stable tree */
158 struct { /* when listed for migration */
159 struct list_head *head;
160 struct {
161 struct hlist_node hlist_dup;
162 struct list_head list;
163 };
164 };
165 };
166 struct hlist_head hlist;
167 union {
168 unsigned long kpfn;
169 unsigned long chain_prune_time;
170 };
171 /*
172 * STABLE_NODE_CHAIN can be any negative number in
173 * rmap_hlist_len negative range, but better not -1 to be able
174 * to reliably detect underflows.
175 */
176 #define STABLE_NODE_CHAIN -1024
177 int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 int nid;
180 #endif
181 };
182
183 /**
184 * struct rmap_item - reverse mapping item for virtual addresses
185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
188 * @mm: the memory structure this rmap_item is pointing into
189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190 * @oldchecksum: previous checksum of the page at that virtual address
191 * @node: rb node of this rmap_item in the unstable tree
192 * @head: pointer to stable_node heading this list in the stable tree
193 * @hlist: link into hlist of rmap_items hanging off that stable_node
194 */
195 struct rmap_item {
196 struct rmap_item *rmap_list;
197 union {
198 struct anon_vma *anon_vma; /* when stable */
199 #ifdef CONFIG_NUMA
200 int nid; /* when node of unstable tree */
201 #endif
202 };
203 struct mm_struct *mm;
204 unsigned long address; /* + low bits used for flags below */
205 unsigned int oldchecksum; /* when unstable */
206 union {
207 struct rb_node node; /* when node of unstable tree */
208 struct { /* when listed from stable tree */
209 struct stable_node *head;
210 struct hlist_node hlist;
211 };
212 };
213 };
214
215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
218
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231
232 static struct mm_slot ksm_mm_head = {
233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236 .mm_slot = &ksm_mm_head,
237 };
238
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static int ksm_stable_node_chains_prune_millisecs = 2000;
263
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes 1U
285 #define ksm_nr_node_ids 1
286 #endif
287
288 #define KSM_RUN_STOP 0
289 #define KSM_RUN_MERGE 1
290 #define KSM_RUN_UNMERGE 2
291 #define KSM_RUN_OFFLINE 4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 sizeof(struct __struct), __alignof__(struct __struct),\
302 (__flags), NULL)
303
304 static int __init ksm_slab_init(void)
305 {
306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 if (!rmap_item_cache)
308 goto out;
309
310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 if (!stable_node_cache)
312 goto out_free1;
313
314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 if (!mm_slot_cache)
316 goto out_free2;
317
318 return 0;
319
320 out_free2:
321 kmem_cache_destroy(stable_node_cache);
322 out_free1:
323 kmem_cache_destroy(rmap_item_cache);
324 out:
325 return -ENOMEM;
326 }
327
328 static void __init ksm_slab_free(void)
329 {
330 kmem_cache_destroy(mm_slot_cache);
331 kmem_cache_destroy(stable_node_cache);
332 kmem_cache_destroy(rmap_item_cache);
333 mm_slot_cache = NULL;
334 }
335
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343 return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 struct stable_node *chain)
348 {
349 VM_BUG_ON(is_stable_node_dup(dup));
350 dup->head = STABLE_NODE_DUP_HEAD;
351 VM_BUG_ON(!is_stable_node_chain(chain));
352 hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 ksm_stable_node_dups++;
354 }
355
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358 VM_BUG_ON(!is_stable_node_dup(dup));
359 hlist_del(&dup->hlist_dup);
360 ksm_stable_node_dups--;
361 }
362
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365 VM_BUG_ON(is_stable_node_chain(dup));
366 if (is_stable_node_dup(dup))
367 __stable_node_dup_del(dup);
368 else
369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371 dup->head = NULL;
372 #endif
373 }
374
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377 struct rmap_item *rmap_item;
378
379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 __GFP_NORETRY | __GFP_NOWARN);
381 if (rmap_item)
382 ksm_rmap_items++;
383 return rmap_item;
384 }
385
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388 ksm_rmap_items--;
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395 /*
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
399 */
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
407 kmem_cache_free(stable_node_cache, stable_node);
408 }
409
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412 if (!mm_slot_cache) /* initialization failed */
413 return NULL;
414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419 kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424 struct mm_slot *slot;
425
426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427 if (slot->mm == mm)
428 return slot;
429
430 return NULL;
431 }
432
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 struct mm_slot *mm_slot)
435 {
436 mm_slot->mm = mm;
437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439
440 /*
441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442 * page tables after it has passed through ksm_exit() - which, if necessary,
443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
444 * a special flag: they can just back out as soon as mm_users goes to zero.
445 * ksm_test_exit() is used throughout to make this test for exit: in some
446 * places for correctness, in some places just to avoid unnecessary work.
447 */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450 return atomic_read(&mm->mm_users) == 0;
451 }
452
453 /*
454 * We use break_ksm to break COW on a ksm page: it's a stripped down
455 *
456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457 * put_page(page);
458 *
459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460 * in case the application has unmapped and remapped mm,addr meanwhile.
461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
462 * mmap of /dev/mem, where we would not want to touch it.
463 *
464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465 * of the process that owns 'vma'. We also do not want to enforce
466 * protection keys here anyway.
467 */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470 struct page *page;
471 vm_fault_t ret = 0;
472
473 do {
474 cond_resched();
475 page = follow_page(vma, addr,
476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477 if (IS_ERR_OR_NULL(page))
478 break;
479 if (PageKsm(page))
480 ret = handle_mm_fault(vma, addr,
481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482 NULL);
483 else
484 ret = VM_FAULT_WRITE;
485 put_page(page);
486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487 /*
488 * We must loop because handle_mm_fault() may back out if there's
489 * any difficulty e.g. if pte accessed bit gets updated concurrently.
490 *
491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492 * COW has been broken, even if the vma does not permit VM_WRITE;
493 * but note that a concurrent fault might break PageKsm for us.
494 *
495 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 * backing file, which also invalidates anonymous pages: that's
497 * okay, that truncation will have unmapped the PageKsm for us.
498 *
499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 * to user; and ksmd, having no mm, would never be chosen for that.
503 *
504 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 * even ksmd can fail in this way - though it's usually breaking ksm
507 * just to undo a merge it made a moment before, so unlikely to oom.
508 *
509 * That's a pity: we might therefore have more kernel pages allocated
510 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 * will retry to break_cow on each pass, so should recover the page
512 * in due course. The important thing is to not let VM_MERGEABLE
513 * be cleared while any such pages might remain in the area.
514 */
515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 unsigned long addr)
520 {
521 struct vm_area_struct *vma;
522 if (ksm_test_exit(mm))
523 return NULL;
524 vma = find_vma(mm, addr);
525 if (!vma || vma->vm_start > addr)
526 return NULL;
527 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
528 return NULL;
529 return vma;
530 }
531
532 static void break_cow(struct rmap_item *rmap_item)
533 {
534 struct mm_struct *mm = rmap_item->mm;
535 unsigned long addr = rmap_item->address;
536 struct vm_area_struct *vma;
537
538 /*
539 * It is not an accident that whenever we want to break COW
540 * to undo, we also need to drop a reference to the anon_vma.
541 */
542 put_anon_vma(rmap_item->anon_vma);
543
544 mmap_read_lock(mm);
545 vma = find_mergeable_vma(mm, addr);
546 if (vma)
547 break_ksm(vma, addr);
548 mmap_read_unlock(mm);
549 }
550
551 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
552 {
553 struct mm_struct *mm = rmap_item->mm;
554 unsigned long addr = rmap_item->address;
555 struct vm_area_struct *vma;
556 struct page *page;
557
558 mmap_read_lock(mm);
559 vma = find_mergeable_vma(mm, addr);
560 if (!vma)
561 goto out;
562
563 page = follow_page(vma, addr, FOLL_GET);
564 if (IS_ERR_OR_NULL(page))
565 goto out;
566 if (PageAnon(page)) {
567 flush_anon_page(vma, page, addr);
568 flush_dcache_page(page);
569 } else {
570 put_page(page);
571 out:
572 page = NULL;
573 }
574 mmap_read_unlock(mm);
575 return page;
576 }
577
578 /*
579 * This helper is used for getting right index into array of tree roots.
580 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
581 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
582 * every node has its own stable and unstable tree.
583 */
584 static inline int get_kpfn_nid(unsigned long kpfn)
585 {
586 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
587 }
588
589 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
590 struct rb_root *root)
591 {
592 struct stable_node *chain = alloc_stable_node();
593 VM_BUG_ON(is_stable_node_chain(dup));
594 if (likely(chain)) {
595 INIT_HLIST_HEAD(&chain->hlist);
596 chain->chain_prune_time = jiffies;
597 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
598 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
599 chain->nid = NUMA_NO_NODE; /* debug */
600 #endif
601 ksm_stable_node_chains++;
602
603 /*
604 * Put the stable node chain in the first dimension of
605 * the stable tree and at the same time remove the old
606 * stable node.
607 */
608 rb_replace_node(&dup->node, &chain->node, root);
609
610 /*
611 * Move the old stable node to the second dimension
612 * queued in the hlist_dup. The invariant is that all
613 * dup stable_nodes in the chain->hlist point to pages
614 * that are write protected and have the exact same
615 * content.
616 */
617 stable_node_chain_add_dup(dup, chain);
618 }
619 return chain;
620 }
621
622 static inline void free_stable_node_chain(struct stable_node *chain,
623 struct rb_root *root)
624 {
625 rb_erase(&chain->node, root);
626 free_stable_node(chain);
627 ksm_stable_node_chains--;
628 }
629
630 static void remove_node_from_stable_tree(struct stable_node *stable_node)
631 {
632 struct rmap_item *rmap_item;
633
634 /* check it's not STABLE_NODE_CHAIN or negative */
635 BUG_ON(stable_node->rmap_hlist_len < 0);
636
637 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
638 if (rmap_item->hlist.next)
639 ksm_pages_sharing--;
640 else
641 ksm_pages_shared--;
642 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
643 stable_node->rmap_hlist_len--;
644 put_anon_vma(rmap_item->anon_vma);
645 rmap_item->address &= PAGE_MASK;
646 cond_resched();
647 }
648
649 /*
650 * We need the second aligned pointer of the migrate_nodes
651 * list_head to stay clear from the rb_parent_color union
652 * (aligned and different than any node) and also different
653 * from &migrate_nodes. This will verify that future list.h changes
654 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
655 */
656 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
657 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659 #endif
660
661 if (stable_node->head == &migrate_nodes)
662 list_del(&stable_node->list);
663 else
664 stable_node_dup_del(stable_node);
665 free_stable_node(stable_node);
666 }
667
668 enum get_ksm_page_flags {
669 GET_KSM_PAGE_NOLOCK,
670 GET_KSM_PAGE_LOCK,
671 GET_KSM_PAGE_TRYLOCK
672 };
673
674 /*
675 * get_ksm_page: checks if the page indicated by the stable node
676 * is still its ksm page, despite having held no reference to it.
677 * In which case we can trust the content of the page, and it
678 * returns the gotten page; but if the page has now been zapped,
679 * remove the stale node from the stable tree and return NULL.
680 * But beware, the stable node's page might be being migrated.
681 *
682 * You would expect the stable_node to hold a reference to the ksm page.
683 * But if it increments the page's count, swapping out has to wait for
684 * ksmd to come around again before it can free the page, which may take
685 * seconds or even minutes: much too unresponsive. So instead we use a
686 * "keyhole reference": access to the ksm page from the stable node peeps
687 * out through its keyhole to see if that page still holds the right key,
688 * pointing back to this stable node. This relies on freeing a PageAnon
689 * page to reset its page->mapping to NULL, and relies on no other use of
690 * a page to put something that might look like our key in page->mapping.
691 * is on its way to being freed; but it is an anomaly to bear in mind.
692 */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694 enum get_ksm_page_flags flags)
695 {
696 struct page *page;
697 void *expected_mapping;
698 unsigned long kpfn;
699
700 expected_mapping = (void *)((unsigned long)stable_node |
701 PAGE_MAPPING_KSM);
702 again:
703 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704 page = pfn_to_page(kpfn);
705 if (READ_ONCE(page->mapping) != expected_mapping)
706 goto stale;
707
708 /*
709 * We cannot do anything with the page while its refcount is 0.
710 * Usually 0 means free, or tail of a higher-order page: in which
711 * case this node is no longer referenced, and should be freed;
712 * however, it might mean that the page is under page_ref_freeze().
713 * The __remove_mapping() case is easy, again the node is now stale;
714 * the same is in reuse_ksm_page() case; but if page is swapcache
715 * in migrate_page_move_mapping(), it might still be our page,
716 * in which case it's essential to keep the node.
717 */
718 while (!get_page_unless_zero(page)) {
719 /*
720 * Another check for page->mapping != expected_mapping would
721 * work here too. We have chosen the !PageSwapCache test to
722 * optimize the common case, when the page is or is about to
723 * be freed: PageSwapCache is cleared (under spin_lock_irq)
724 * in the ref_freeze section of __remove_mapping(); but Anon
725 * page->mapping reset to NULL later, in free_pages_prepare().
726 */
727 if (!PageSwapCache(page))
728 goto stale;
729 cpu_relax();
730 }
731
732 if (READ_ONCE(page->mapping) != expected_mapping) {
733 put_page(page);
734 goto stale;
735 }
736
737 if (flags == GET_KSM_PAGE_TRYLOCK) {
738 if (!trylock_page(page)) {
739 put_page(page);
740 return ERR_PTR(-EBUSY);
741 }
742 } else if (flags == GET_KSM_PAGE_LOCK)
743 lock_page(page);
744
745 if (flags != GET_KSM_PAGE_NOLOCK) {
746 if (READ_ONCE(page->mapping) != expected_mapping) {
747 unlock_page(page);
748 put_page(page);
749 goto stale;
750 }
751 }
752 return page;
753
754 stale:
755 /*
756 * We come here from above when page->mapping or !PageSwapCache
757 * suggests that the node is stale; but it might be under migration.
758 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
759 * before checking whether node->kpfn has been changed.
760 */
761 smp_rmb();
762 if (READ_ONCE(stable_node->kpfn) != kpfn)
763 goto again;
764 remove_node_from_stable_tree(stable_node);
765 return NULL;
766 }
767
768 /*
769 * Removing rmap_item from stable or unstable tree.
770 * This function will clean the information from the stable/unstable tree.
771 */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774 if (rmap_item->address & STABLE_FLAG) {
775 struct stable_node *stable_node;
776 struct page *page;
777
778 stable_node = rmap_item->head;
779 page = get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
780 if (!page)
781 goto out;
782
783 hlist_del(&rmap_item->hlist);
784 put_page(page);
785
786 if (!hlist_empty(&stable_node->hlist))
787 ksm_pages_sharing--;
788 else
789 ksm_pages_shared--;
790 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
791 stable_node->rmap_hlist_len--;
792
793 put_anon_vma(rmap_item->anon_vma);
794 rmap_item->head = NULL;
795 rmap_item->address &= PAGE_MASK;
796
797 } else if (rmap_item->address & UNSTABLE_FLAG) {
798 unsigned char age;
799 /*
800 * Usually ksmd can and must skip the rb_erase, because
801 * root_unstable_tree was already reset to RB_ROOT.
802 * But be careful when an mm is exiting: do the rb_erase
803 * if this rmap_item was inserted by this scan, rather
804 * than left over from before.
805 */
806 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
807 BUG_ON(age > 1);
808 if (!age)
809 rb_erase(&rmap_item->node,
810 root_unstable_tree + NUMA(rmap_item->nid));
811 ksm_pages_unshared--;
812 rmap_item->address &= PAGE_MASK;
813 }
814 out:
815 cond_resched(); /* we're called from many long loops */
816 }
817
818 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
819 {
820 while (*rmap_list) {
821 struct rmap_item *rmap_item = *rmap_list;
822 *rmap_list = rmap_item->rmap_list;
823 remove_rmap_item_from_tree(rmap_item);
824 free_rmap_item(rmap_item);
825 }
826 }
827
828 /*
829 * Though it's very tempting to unmerge rmap_items from stable tree rather
830 * than check every pte of a given vma, the locking doesn't quite work for
831 * that - an rmap_item is assigned to the stable tree after inserting ksm
832 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
833 * rmap_items from parent to child at fork time (so as not to waste time
834 * if exit comes before the next scan reaches it).
835 *
836 * Similarly, although we'd like to remove rmap_items (so updating counts
837 * and freeing memory) when unmerging an area, it's easier to leave that
838 * to the next pass of ksmd - consider, for example, how ksmd might be
839 * in cmp_and_merge_page on one of the rmap_items we would be removing.
840 */
841 static int unmerge_ksm_pages(struct vm_area_struct *vma,
842 unsigned long start, unsigned long end)
843 {
844 unsigned long addr;
845 int err = 0;
846
847 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
848 if (ksm_test_exit(vma->vm_mm))
849 break;
850 if (signal_pending(current))
851 err = -ERESTARTSYS;
852 else
853 err = break_ksm(vma, addr);
854 }
855 return err;
856 }
857
858 static inline struct stable_node *page_stable_node(struct page *page)
859 {
860 return PageKsm(page) ? page_rmapping(page) : NULL;
861 }
862
863 static inline void set_page_stable_node(struct page *page,
864 struct stable_node *stable_node)
865 {
866 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
867 }
868
869 #ifdef CONFIG_SYSFS
870 /*
871 * Only called through the sysfs control interface:
872 */
873 static int remove_stable_node(struct stable_node *stable_node)
874 {
875 struct page *page;
876 int err;
877
878 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
879 if (!page) {
880 /*
881 * get_ksm_page did remove_node_from_stable_tree itself.
882 */
883 return 0;
884 }
885
886 /*
887 * Page could be still mapped if this races with __mmput() running in
888 * between ksm_exit() and exit_mmap(). Just refuse to let
889 * merge_across_nodes/max_page_sharing be switched.
890 */
891 err = -EBUSY;
892 if (!page_mapped(page)) {
893 /*
894 * The stable node did not yet appear stale to get_ksm_page(),
895 * since that allows for an unmapped ksm page to be recognized
896 * right up until it is freed; but the node is safe to remove.
897 * This page might be in a pagevec waiting to be freed,
898 * or it might be PageSwapCache (perhaps under writeback),
899 * or it might have been removed from swapcache a moment ago.
900 */
901 set_page_stable_node(page, NULL);
902 remove_node_from_stable_tree(stable_node);
903 err = 0;
904 }
905
906 unlock_page(page);
907 put_page(page);
908 return err;
909 }
910
911 static int remove_stable_node_chain(struct stable_node *stable_node,
912 struct rb_root *root)
913 {
914 struct stable_node *dup;
915 struct hlist_node *hlist_safe;
916
917 if (!is_stable_node_chain(stable_node)) {
918 VM_BUG_ON(is_stable_node_dup(stable_node));
919 if (remove_stable_node(stable_node))
920 return true;
921 else
922 return false;
923 }
924
925 hlist_for_each_entry_safe(dup, hlist_safe,
926 &stable_node->hlist, hlist_dup) {
927 VM_BUG_ON(!is_stable_node_dup(dup));
928 if (remove_stable_node(dup))
929 return true;
930 }
931 BUG_ON(!hlist_empty(&stable_node->hlist));
932 free_stable_node_chain(stable_node, root);
933 return false;
934 }
935
936 static int remove_all_stable_nodes(void)
937 {
938 struct stable_node *stable_node, *next;
939 int nid;
940 int err = 0;
941
942 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
943 while (root_stable_tree[nid].rb_node) {
944 stable_node = rb_entry(root_stable_tree[nid].rb_node,
945 struct stable_node, node);
946 if (remove_stable_node_chain(stable_node,
947 root_stable_tree + nid)) {
948 err = -EBUSY;
949 break; /* proceed to next nid */
950 }
951 cond_resched();
952 }
953 }
954 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
955 if (remove_stable_node(stable_node))
956 err = -EBUSY;
957 cond_resched();
958 }
959 return err;
960 }
961
962 static int unmerge_and_remove_all_rmap_items(void)
963 {
964 struct mm_slot *mm_slot;
965 struct mm_struct *mm;
966 struct vm_area_struct *vma;
967 int err = 0;
968
969 spin_lock(&ksm_mmlist_lock);
970 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
971 struct mm_slot, mm_list);
972 spin_unlock(&ksm_mmlist_lock);
973
974 for (mm_slot = ksm_scan.mm_slot;
975 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
976 mm = mm_slot->mm;
977 mmap_read_lock(mm);
978 for (vma = mm->mmap; vma; vma = vma->vm_next) {
979 if (ksm_test_exit(mm))
980 break;
981 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
982 continue;
983 err = unmerge_ksm_pages(vma,
984 vma->vm_start, vma->vm_end);
985 if (err)
986 goto error;
987 }
988
989 remove_trailing_rmap_items(&mm_slot->rmap_list);
990 mmap_read_unlock(mm);
991
992 spin_lock(&ksm_mmlist_lock);
993 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
994 struct mm_slot, mm_list);
995 if (ksm_test_exit(mm)) {
996 hash_del(&mm_slot->link);
997 list_del(&mm_slot->mm_list);
998 spin_unlock(&ksm_mmlist_lock);
999
1000 free_mm_slot(mm_slot);
1001 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1002 mmdrop(mm);
1003 } else
1004 spin_unlock(&ksm_mmlist_lock);
1005 }
1006
1007 /* Clean up stable nodes, but don't worry if some are still busy */
1008 remove_all_stable_nodes();
1009 ksm_scan.seqnr = 0;
1010 return 0;
1011
1012 error:
1013 mmap_read_unlock(mm);
1014 spin_lock(&ksm_mmlist_lock);
1015 ksm_scan.mm_slot = &ksm_mm_head;
1016 spin_unlock(&ksm_mmlist_lock);
1017 return err;
1018 }
1019 #endif /* CONFIG_SYSFS */
1020
1021 static u32 calc_checksum(struct page *page)
1022 {
1023 u32 checksum;
1024 void *addr = kmap_atomic(page);
1025 checksum = xxhash(addr, PAGE_SIZE, 0);
1026 kunmap_atomic(addr);
1027 return checksum;
1028 }
1029
1030 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1031 pte_t *orig_pte)
1032 {
1033 struct mm_struct *mm = vma->vm_mm;
1034 struct page_vma_mapped_walk pvmw = {
1035 .page = page,
1036 .vma = vma,
1037 };
1038 int swapped;
1039 int err = -EFAULT;
1040 struct mmu_notifier_range range;
1041
1042 pvmw.address = page_address_in_vma(page, vma);
1043 if (pvmw.address == -EFAULT)
1044 goto out;
1045
1046 BUG_ON(PageTransCompound(page));
1047
1048 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1049 pvmw.address,
1050 pvmw.address + PAGE_SIZE);
1051 mmu_notifier_invalidate_range_start(&range);
1052
1053 if (!page_vma_mapped_walk(&pvmw))
1054 goto out_mn;
1055 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1056 goto out_unlock;
1057
1058 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1059 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1060 mm_tlb_flush_pending(mm)) {
1061 pte_t entry;
1062
1063 swapped = PageSwapCache(page);
1064 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1065 /*
1066 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1067 * take any lock, therefore the check that we are going to make
1068 * with the pagecount against the mapcount is racy and
1069 * O_DIRECT can happen right after the check.
1070 * So we clear the pte and flush the tlb before the check
1071 * this assure us that no O_DIRECT can happen after the check
1072 * or in the middle of the check.
1073 *
1074 * No need to notify as we are downgrading page table to read
1075 * only not changing it to point to a new page.
1076 *
1077 * See Documentation/vm/mmu_notifier.rst
1078 */
1079 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1080 /*
1081 * Check that no O_DIRECT or similar I/O is in progress on the
1082 * page
1083 */
1084 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1085 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1086 goto out_unlock;
1087 }
1088 if (pte_dirty(entry))
1089 set_page_dirty(page);
1090
1091 if (pte_protnone(entry))
1092 entry = pte_mkclean(pte_clear_savedwrite(entry));
1093 else
1094 entry = pte_mkclean(pte_wrprotect(entry));
1095 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1096 }
1097 *orig_pte = *pvmw.pte;
1098 err = 0;
1099
1100 out_unlock:
1101 page_vma_mapped_walk_done(&pvmw);
1102 out_mn:
1103 mmu_notifier_invalidate_range_end(&range);
1104 out:
1105 return err;
1106 }
1107
1108 /**
1109 * replace_page - replace page in vma by new ksm page
1110 * @vma: vma that holds the pte pointing to page
1111 * @page: the page we are replacing by kpage
1112 * @kpage: the ksm page we replace page by
1113 * @orig_pte: the original value of the pte
1114 *
1115 * Returns 0 on success, -EFAULT on failure.
1116 */
1117 static int replace_page(struct vm_area_struct *vma, struct page *page,
1118 struct page *kpage, pte_t orig_pte)
1119 {
1120 struct mm_struct *mm = vma->vm_mm;
1121 pmd_t *pmd;
1122 pte_t *ptep;
1123 pte_t newpte;
1124 spinlock_t *ptl;
1125 unsigned long addr;
1126 int err = -EFAULT;
1127 struct mmu_notifier_range range;
1128
1129 addr = page_address_in_vma(page, vma);
1130 if (addr == -EFAULT)
1131 goto out;
1132
1133 pmd = mm_find_pmd(mm, addr);
1134 if (!pmd)
1135 goto out;
1136
1137 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1138 addr + PAGE_SIZE);
1139 mmu_notifier_invalidate_range_start(&range);
1140
1141 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1142 if (!pte_same(*ptep, orig_pte)) {
1143 pte_unmap_unlock(ptep, ptl);
1144 goto out_mn;
1145 }
1146
1147 /*
1148 * No need to check ksm_use_zero_pages here: we can only have a
1149 * zero_page here if ksm_use_zero_pages was enabled already.
1150 */
1151 if (!is_zero_pfn(page_to_pfn(kpage))) {
1152 get_page(kpage);
1153 page_add_anon_rmap(kpage, vma, addr, false);
1154 newpte = mk_pte(kpage, vma->vm_page_prot);
1155 } else {
1156 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1157 vma->vm_page_prot));
1158 /*
1159 * We're replacing an anonymous page with a zero page, which is
1160 * not anonymous. We need to do proper accounting otherwise we
1161 * will get wrong values in /proc, and a BUG message in dmesg
1162 * when tearing down the mm.
1163 */
1164 dec_mm_counter(mm, MM_ANONPAGES);
1165 }
1166
1167 flush_cache_page(vma, addr, pte_pfn(*ptep));
1168 /*
1169 * No need to notify as we are replacing a read only page with another
1170 * read only page with the same content.
1171 *
1172 * See Documentation/vm/mmu_notifier.rst
1173 */
1174 ptep_clear_flush(vma, addr, ptep);
1175 set_pte_at_notify(mm, addr, ptep, newpte);
1176
1177 page_remove_rmap(page, false);
1178 if (!page_mapped(page))
1179 try_to_free_swap(page);
1180 put_page(page);
1181
1182 pte_unmap_unlock(ptep, ptl);
1183 err = 0;
1184 out_mn:
1185 mmu_notifier_invalidate_range_end(&range);
1186 out:
1187 return err;
1188 }
1189
1190 /*
1191 * try_to_merge_one_page - take two pages and merge them into one
1192 * @vma: the vma that holds the pte pointing to page
1193 * @page: the PageAnon page that we want to replace with kpage
1194 * @kpage: the PageKsm page that we want to map instead of page,
1195 * or NULL the first time when we want to use page as kpage.
1196 *
1197 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1198 */
1199 static int try_to_merge_one_page(struct vm_area_struct *vma,
1200 struct page *page, struct page *kpage)
1201 {
1202 pte_t orig_pte = __pte(0);
1203 int err = -EFAULT;
1204
1205 if (page == kpage) /* ksm page forked */
1206 return 0;
1207
1208 if (!PageAnon(page))
1209 goto out;
1210
1211 /*
1212 * We need the page lock to read a stable PageSwapCache in
1213 * write_protect_page(). We use trylock_page() instead of
1214 * lock_page() because we don't want to wait here - we
1215 * prefer to continue scanning and merging different pages,
1216 * then come back to this page when it is unlocked.
1217 */
1218 if (!trylock_page(page))
1219 goto out;
1220
1221 if (PageTransCompound(page)) {
1222 if (split_huge_page(page))
1223 goto out_unlock;
1224 }
1225
1226 /*
1227 * If this anonymous page is mapped only here, its pte may need
1228 * to be write-protected. If it's mapped elsewhere, all of its
1229 * ptes are necessarily already write-protected. But in either
1230 * case, we need to lock and check page_count is not raised.
1231 */
1232 if (write_protect_page(vma, page, &orig_pte) == 0) {
1233 if (!kpage) {
1234 /*
1235 * While we hold page lock, upgrade page from
1236 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1237 * stable_tree_insert() will update stable_node.
1238 */
1239 set_page_stable_node(page, NULL);
1240 mark_page_accessed(page);
1241 /*
1242 * Page reclaim just frees a clean page with no dirty
1243 * ptes: make sure that the ksm page would be swapped.
1244 */
1245 if (!PageDirty(page))
1246 SetPageDirty(page);
1247 err = 0;
1248 } else if (pages_identical(page, kpage))
1249 err = replace_page(vma, page, kpage, orig_pte);
1250 }
1251
1252 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1253 munlock_vma_page(page);
1254 if (!PageMlocked(kpage)) {
1255 unlock_page(page);
1256 lock_page(kpage);
1257 mlock_vma_page(kpage);
1258 page = kpage; /* for final unlock */
1259 }
1260 }
1261
1262 out_unlock:
1263 unlock_page(page);
1264 out:
1265 return err;
1266 }
1267
1268 /*
1269 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1270 * but no new kernel page is allocated: kpage must already be a ksm page.
1271 *
1272 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1273 */
1274 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1275 struct page *page, struct page *kpage)
1276 {
1277 struct mm_struct *mm = rmap_item->mm;
1278 struct vm_area_struct *vma;
1279 int err = -EFAULT;
1280
1281 mmap_read_lock(mm);
1282 vma = find_mergeable_vma(mm, rmap_item->address);
1283 if (!vma)
1284 goto out;
1285
1286 err = try_to_merge_one_page(vma, page, kpage);
1287 if (err)
1288 goto out;
1289
1290 /* Unstable nid is in union with stable anon_vma: remove first */
1291 remove_rmap_item_from_tree(rmap_item);
1292
1293 /* Must get reference to anon_vma while still holding mmap_lock */
1294 rmap_item->anon_vma = vma->anon_vma;
1295 get_anon_vma(vma->anon_vma);
1296 out:
1297 mmap_read_unlock(mm);
1298 return err;
1299 }
1300
1301 /*
1302 * try_to_merge_two_pages - take two identical pages and prepare them
1303 * to be merged into one page.
1304 *
1305 * This function returns the kpage if we successfully merged two identical
1306 * pages into one ksm page, NULL otherwise.
1307 *
1308 * Note that this function upgrades page to ksm page: if one of the pages
1309 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1310 */
1311 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1312 struct page *page,
1313 struct rmap_item *tree_rmap_item,
1314 struct page *tree_page)
1315 {
1316 int err;
1317
1318 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1319 if (!err) {
1320 err = try_to_merge_with_ksm_page(tree_rmap_item,
1321 tree_page, page);
1322 /*
1323 * If that fails, we have a ksm page with only one pte
1324 * pointing to it: so break it.
1325 */
1326 if (err)
1327 break_cow(rmap_item);
1328 }
1329 return err ? NULL : page;
1330 }
1331
1332 static __always_inline
1333 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1334 {
1335 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1336 /*
1337 * Check that at least one mapping still exists, otherwise
1338 * there's no much point to merge and share with this
1339 * stable_node, as the underlying tree_page of the other
1340 * sharer is going to be freed soon.
1341 */
1342 return stable_node->rmap_hlist_len &&
1343 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1344 }
1345
1346 static __always_inline
1347 bool is_page_sharing_candidate(struct stable_node *stable_node)
1348 {
1349 return __is_page_sharing_candidate(stable_node, 0);
1350 }
1351
1352 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1353 struct stable_node **_stable_node,
1354 struct rb_root *root,
1355 bool prune_stale_stable_nodes)
1356 {
1357 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1358 struct hlist_node *hlist_safe;
1359 struct page *_tree_page, *tree_page = NULL;
1360 int nr = 0;
1361 int found_rmap_hlist_len;
1362
1363 if (!prune_stale_stable_nodes ||
1364 time_before(jiffies, stable_node->chain_prune_time +
1365 msecs_to_jiffies(
1366 ksm_stable_node_chains_prune_millisecs)))
1367 prune_stale_stable_nodes = false;
1368 else
1369 stable_node->chain_prune_time = jiffies;
1370
1371 hlist_for_each_entry_safe(dup, hlist_safe,
1372 &stable_node->hlist, hlist_dup) {
1373 cond_resched();
1374 /*
1375 * We must walk all stable_node_dup to prune the stale
1376 * stable nodes during lookup.
1377 *
1378 * get_ksm_page can drop the nodes from the
1379 * stable_node->hlist if they point to freed pages
1380 * (that's why we do a _safe walk). The "dup"
1381 * stable_node parameter itself will be freed from
1382 * under us if it returns NULL.
1383 */
1384 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1385 if (!_tree_page)
1386 continue;
1387 nr += 1;
1388 if (is_page_sharing_candidate(dup)) {
1389 if (!found ||
1390 dup->rmap_hlist_len > found_rmap_hlist_len) {
1391 if (found)
1392 put_page(tree_page);
1393 found = dup;
1394 found_rmap_hlist_len = found->rmap_hlist_len;
1395 tree_page = _tree_page;
1396
1397 /* skip put_page for found dup */
1398 if (!prune_stale_stable_nodes)
1399 break;
1400 continue;
1401 }
1402 }
1403 put_page(_tree_page);
1404 }
1405
1406 if (found) {
1407 /*
1408 * nr is counting all dups in the chain only if
1409 * prune_stale_stable_nodes is true, otherwise we may
1410 * break the loop at nr == 1 even if there are
1411 * multiple entries.
1412 */
1413 if (prune_stale_stable_nodes && nr == 1) {
1414 /*
1415 * If there's not just one entry it would
1416 * corrupt memory, better BUG_ON. In KSM
1417 * context with no lock held it's not even
1418 * fatal.
1419 */
1420 BUG_ON(stable_node->hlist.first->next);
1421
1422 /*
1423 * There's just one entry and it is below the
1424 * deduplication limit so drop the chain.
1425 */
1426 rb_replace_node(&stable_node->node, &found->node,
1427 root);
1428 free_stable_node(stable_node);
1429 ksm_stable_node_chains--;
1430 ksm_stable_node_dups--;
1431 /*
1432 * NOTE: the caller depends on the stable_node
1433 * to be equal to stable_node_dup if the chain
1434 * was collapsed.
1435 */
1436 *_stable_node = found;
1437 /*
1438 * Just for robustness, as stable_node is
1439 * otherwise left as a stable pointer, the
1440 * compiler shall optimize it away at build
1441 * time.
1442 */
1443 stable_node = NULL;
1444 } else if (stable_node->hlist.first != &found->hlist_dup &&
1445 __is_page_sharing_candidate(found, 1)) {
1446 /*
1447 * If the found stable_node dup can accept one
1448 * more future merge (in addition to the one
1449 * that is underway) and is not at the head of
1450 * the chain, put it there so next search will
1451 * be quicker in the !prune_stale_stable_nodes
1452 * case.
1453 *
1454 * NOTE: it would be inaccurate to use nr > 1
1455 * instead of checking the hlist.first pointer
1456 * directly, because in the
1457 * prune_stale_stable_nodes case "nr" isn't
1458 * the position of the found dup in the chain,
1459 * but the total number of dups in the chain.
1460 */
1461 hlist_del(&found->hlist_dup);
1462 hlist_add_head(&found->hlist_dup,
1463 &stable_node->hlist);
1464 }
1465 }
1466
1467 *_stable_node_dup = found;
1468 return tree_page;
1469 }
1470
1471 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1472 struct rb_root *root)
1473 {
1474 if (!is_stable_node_chain(stable_node))
1475 return stable_node;
1476 if (hlist_empty(&stable_node->hlist)) {
1477 free_stable_node_chain(stable_node, root);
1478 return NULL;
1479 }
1480 return hlist_entry(stable_node->hlist.first,
1481 typeof(*stable_node), hlist_dup);
1482 }
1483
1484 /*
1485 * Like for get_ksm_page, this function can free the *_stable_node and
1486 * *_stable_node_dup if the returned tree_page is NULL.
1487 *
1488 * It can also free and overwrite *_stable_node with the found
1489 * stable_node_dup if the chain is collapsed (in which case
1490 * *_stable_node will be equal to *_stable_node_dup like if the chain
1491 * never existed). It's up to the caller to verify tree_page is not
1492 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1493 *
1494 * *_stable_node_dup is really a second output parameter of this
1495 * function and will be overwritten in all cases, the caller doesn't
1496 * need to initialize it.
1497 */
1498 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1499 struct stable_node **_stable_node,
1500 struct rb_root *root,
1501 bool prune_stale_stable_nodes)
1502 {
1503 struct stable_node *stable_node = *_stable_node;
1504 if (!is_stable_node_chain(stable_node)) {
1505 if (is_page_sharing_candidate(stable_node)) {
1506 *_stable_node_dup = stable_node;
1507 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1508 }
1509 /*
1510 * _stable_node_dup set to NULL means the stable_node
1511 * reached the ksm_max_page_sharing limit.
1512 */
1513 *_stable_node_dup = NULL;
1514 return NULL;
1515 }
1516 return stable_node_dup(_stable_node_dup, _stable_node, root,
1517 prune_stale_stable_nodes);
1518 }
1519
1520 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1521 struct stable_node **s_n,
1522 struct rb_root *root)
1523 {
1524 return __stable_node_chain(s_n_d, s_n, root, true);
1525 }
1526
1527 static __always_inline struct page *chain(struct stable_node **s_n_d,
1528 struct stable_node *s_n,
1529 struct rb_root *root)
1530 {
1531 struct stable_node *old_stable_node = s_n;
1532 struct page *tree_page;
1533
1534 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1535 /* not pruning dups so s_n cannot have changed */
1536 VM_BUG_ON(s_n != old_stable_node);
1537 return tree_page;
1538 }
1539
1540 /*
1541 * stable_tree_search - search for page inside the stable tree
1542 *
1543 * This function checks if there is a page inside the stable tree
1544 * with identical content to the page that we are scanning right now.
1545 *
1546 * This function returns the stable tree node of identical content if found,
1547 * NULL otherwise.
1548 */
1549 static struct page *stable_tree_search(struct page *page)
1550 {
1551 int nid;
1552 struct rb_root *root;
1553 struct rb_node **new;
1554 struct rb_node *parent;
1555 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1556 struct stable_node *page_node;
1557
1558 page_node = page_stable_node(page);
1559 if (page_node && page_node->head != &migrate_nodes) {
1560 /* ksm page forked */
1561 get_page(page);
1562 return page;
1563 }
1564
1565 nid = get_kpfn_nid(page_to_pfn(page));
1566 root = root_stable_tree + nid;
1567 again:
1568 new = &root->rb_node;
1569 parent = NULL;
1570
1571 while (*new) {
1572 struct page *tree_page;
1573 int ret;
1574
1575 cond_resched();
1576 stable_node = rb_entry(*new, struct stable_node, node);
1577 stable_node_any = NULL;
1578 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1579 /*
1580 * NOTE: stable_node may have been freed by
1581 * chain_prune() if the returned stable_node_dup is
1582 * not NULL. stable_node_dup may have been inserted in
1583 * the rbtree instead as a regular stable_node (in
1584 * order to collapse the stable_node chain if a single
1585 * stable_node dup was found in it). In such case the
1586 * stable_node is overwritten by the calleee to point
1587 * to the stable_node_dup that was collapsed in the
1588 * stable rbtree and stable_node will be equal to
1589 * stable_node_dup like if the chain never existed.
1590 */
1591 if (!stable_node_dup) {
1592 /*
1593 * Either all stable_node dups were full in
1594 * this stable_node chain, or this chain was
1595 * empty and should be rb_erased.
1596 */
1597 stable_node_any = stable_node_dup_any(stable_node,
1598 root);
1599 if (!stable_node_any) {
1600 /* rb_erase just run */
1601 goto again;
1602 }
1603 /*
1604 * Take any of the stable_node dups page of
1605 * this stable_node chain to let the tree walk
1606 * continue. All KSM pages belonging to the
1607 * stable_node dups in a stable_node chain
1608 * have the same content and they're
1609 * write protected at all times. Any will work
1610 * fine to continue the walk.
1611 */
1612 tree_page = get_ksm_page(stable_node_any,
1613 GET_KSM_PAGE_NOLOCK);
1614 }
1615 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1616 if (!tree_page) {
1617 /*
1618 * If we walked over a stale stable_node,
1619 * get_ksm_page() will call rb_erase() and it
1620 * may rebalance the tree from under us. So
1621 * restart the search from scratch. Returning
1622 * NULL would be safe too, but we'd generate
1623 * false negative insertions just because some
1624 * stable_node was stale.
1625 */
1626 goto again;
1627 }
1628
1629 ret = memcmp_pages(page, tree_page);
1630 put_page(tree_page);
1631
1632 parent = *new;
1633 if (ret < 0)
1634 new = &parent->rb_left;
1635 else if (ret > 0)
1636 new = &parent->rb_right;
1637 else {
1638 if (page_node) {
1639 VM_BUG_ON(page_node->head != &migrate_nodes);
1640 /*
1641 * Test if the migrated page should be merged
1642 * into a stable node dup. If the mapcount is
1643 * 1 we can migrate it with another KSM page
1644 * without adding it to the chain.
1645 */
1646 if (page_mapcount(page) > 1)
1647 goto chain_append;
1648 }
1649
1650 if (!stable_node_dup) {
1651 /*
1652 * If the stable_node is a chain and
1653 * we got a payload match in memcmp
1654 * but we cannot merge the scanned
1655 * page in any of the existing
1656 * stable_node dups because they're
1657 * all full, we need to wait the
1658 * scanned page to find itself a match
1659 * in the unstable tree to create a
1660 * brand new KSM page to add later to
1661 * the dups of this stable_node.
1662 */
1663 return NULL;
1664 }
1665
1666 /*
1667 * Lock and unlock the stable_node's page (which
1668 * might already have been migrated) so that page
1669 * migration is sure to notice its raised count.
1670 * It would be more elegant to return stable_node
1671 * than kpage, but that involves more changes.
1672 */
1673 tree_page = get_ksm_page(stable_node_dup,
1674 GET_KSM_PAGE_TRYLOCK);
1675
1676 if (PTR_ERR(tree_page) == -EBUSY)
1677 return ERR_PTR(-EBUSY);
1678
1679 if (unlikely(!tree_page))
1680 /*
1681 * The tree may have been rebalanced,
1682 * so re-evaluate parent and new.
1683 */
1684 goto again;
1685 unlock_page(tree_page);
1686
1687 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1688 NUMA(stable_node_dup->nid)) {
1689 put_page(tree_page);
1690 goto replace;
1691 }
1692 return tree_page;
1693 }
1694 }
1695
1696 if (!page_node)
1697 return NULL;
1698
1699 list_del(&page_node->list);
1700 DO_NUMA(page_node->nid = nid);
1701 rb_link_node(&page_node->node, parent, new);
1702 rb_insert_color(&page_node->node, root);
1703 out:
1704 if (is_page_sharing_candidate(page_node)) {
1705 get_page(page);
1706 return page;
1707 } else
1708 return NULL;
1709
1710 replace:
1711 /*
1712 * If stable_node was a chain and chain_prune collapsed it,
1713 * stable_node has been updated to be the new regular
1714 * stable_node. A collapse of the chain is indistinguishable
1715 * from the case there was no chain in the stable
1716 * rbtree. Otherwise stable_node is the chain and
1717 * stable_node_dup is the dup to replace.
1718 */
1719 if (stable_node_dup == stable_node) {
1720 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1721 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1722 /* there is no chain */
1723 if (page_node) {
1724 VM_BUG_ON(page_node->head != &migrate_nodes);
1725 list_del(&page_node->list);
1726 DO_NUMA(page_node->nid = nid);
1727 rb_replace_node(&stable_node_dup->node,
1728 &page_node->node,
1729 root);
1730 if (is_page_sharing_candidate(page_node))
1731 get_page(page);
1732 else
1733 page = NULL;
1734 } else {
1735 rb_erase(&stable_node_dup->node, root);
1736 page = NULL;
1737 }
1738 } else {
1739 VM_BUG_ON(!is_stable_node_chain(stable_node));
1740 __stable_node_dup_del(stable_node_dup);
1741 if (page_node) {
1742 VM_BUG_ON(page_node->head != &migrate_nodes);
1743 list_del(&page_node->list);
1744 DO_NUMA(page_node->nid = nid);
1745 stable_node_chain_add_dup(page_node, stable_node);
1746 if (is_page_sharing_candidate(page_node))
1747 get_page(page);
1748 else
1749 page = NULL;
1750 } else {
1751 page = NULL;
1752 }
1753 }
1754 stable_node_dup->head = &migrate_nodes;
1755 list_add(&stable_node_dup->list, stable_node_dup->head);
1756 return page;
1757
1758 chain_append:
1759 /* stable_node_dup could be null if it reached the limit */
1760 if (!stable_node_dup)
1761 stable_node_dup = stable_node_any;
1762 /*
1763 * If stable_node was a chain and chain_prune collapsed it,
1764 * stable_node has been updated to be the new regular
1765 * stable_node. A collapse of the chain is indistinguishable
1766 * from the case there was no chain in the stable
1767 * rbtree. Otherwise stable_node is the chain and
1768 * stable_node_dup is the dup to replace.
1769 */
1770 if (stable_node_dup == stable_node) {
1771 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1772 /* chain is missing so create it */
1773 stable_node = alloc_stable_node_chain(stable_node_dup,
1774 root);
1775 if (!stable_node)
1776 return NULL;
1777 }
1778 /*
1779 * Add this stable_node dup that was
1780 * migrated to the stable_node chain
1781 * of the current nid for this page
1782 * content.
1783 */
1784 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1785 VM_BUG_ON(page_node->head != &migrate_nodes);
1786 list_del(&page_node->list);
1787 DO_NUMA(page_node->nid = nid);
1788 stable_node_chain_add_dup(page_node, stable_node);
1789 goto out;
1790 }
1791
1792 /*
1793 * stable_tree_insert - insert stable tree node pointing to new ksm page
1794 * into the stable tree.
1795 *
1796 * This function returns the stable tree node just allocated on success,
1797 * NULL otherwise.
1798 */
1799 static struct stable_node *stable_tree_insert(struct page *kpage)
1800 {
1801 int nid;
1802 unsigned long kpfn;
1803 struct rb_root *root;
1804 struct rb_node **new;
1805 struct rb_node *parent;
1806 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1807 bool need_chain = false;
1808
1809 kpfn = page_to_pfn(kpage);
1810 nid = get_kpfn_nid(kpfn);
1811 root = root_stable_tree + nid;
1812 again:
1813 parent = NULL;
1814 new = &root->rb_node;
1815
1816 while (*new) {
1817 struct page *tree_page;
1818 int ret;
1819
1820 cond_resched();
1821 stable_node = rb_entry(*new, struct stable_node, node);
1822 stable_node_any = NULL;
1823 tree_page = chain(&stable_node_dup, stable_node, root);
1824 if (!stable_node_dup) {
1825 /*
1826 * Either all stable_node dups were full in
1827 * this stable_node chain, or this chain was
1828 * empty and should be rb_erased.
1829 */
1830 stable_node_any = stable_node_dup_any(stable_node,
1831 root);
1832 if (!stable_node_any) {
1833 /* rb_erase just run */
1834 goto again;
1835 }
1836 /*
1837 * Take any of the stable_node dups page of
1838 * this stable_node chain to let the tree walk
1839 * continue. All KSM pages belonging to the
1840 * stable_node dups in a stable_node chain
1841 * have the same content and they're
1842 * write protected at all times. Any will work
1843 * fine to continue the walk.
1844 */
1845 tree_page = get_ksm_page(stable_node_any,
1846 GET_KSM_PAGE_NOLOCK);
1847 }
1848 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1849 if (!tree_page) {
1850 /*
1851 * If we walked over a stale stable_node,
1852 * get_ksm_page() will call rb_erase() and it
1853 * may rebalance the tree from under us. So
1854 * restart the search from scratch. Returning
1855 * NULL would be safe too, but we'd generate
1856 * false negative insertions just because some
1857 * stable_node was stale.
1858 */
1859 goto again;
1860 }
1861
1862 ret = memcmp_pages(kpage, tree_page);
1863 put_page(tree_page);
1864
1865 parent = *new;
1866 if (ret < 0)
1867 new = &parent->rb_left;
1868 else if (ret > 0)
1869 new = &parent->rb_right;
1870 else {
1871 need_chain = true;
1872 break;
1873 }
1874 }
1875
1876 stable_node_dup = alloc_stable_node();
1877 if (!stable_node_dup)
1878 return NULL;
1879
1880 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1881 stable_node_dup->kpfn = kpfn;
1882 set_page_stable_node(kpage, stable_node_dup);
1883 stable_node_dup->rmap_hlist_len = 0;
1884 DO_NUMA(stable_node_dup->nid = nid);
1885 if (!need_chain) {
1886 rb_link_node(&stable_node_dup->node, parent, new);
1887 rb_insert_color(&stable_node_dup->node, root);
1888 } else {
1889 if (!is_stable_node_chain(stable_node)) {
1890 struct stable_node *orig = stable_node;
1891 /* chain is missing so create it */
1892 stable_node = alloc_stable_node_chain(orig, root);
1893 if (!stable_node) {
1894 free_stable_node(stable_node_dup);
1895 return NULL;
1896 }
1897 }
1898 stable_node_chain_add_dup(stable_node_dup, stable_node);
1899 }
1900
1901 return stable_node_dup;
1902 }
1903
1904 /*
1905 * unstable_tree_search_insert - search for identical page,
1906 * else insert rmap_item into the unstable tree.
1907 *
1908 * This function searches for a page in the unstable tree identical to the
1909 * page currently being scanned; and if no identical page is found in the
1910 * tree, we insert rmap_item as a new object into the unstable tree.
1911 *
1912 * This function returns pointer to rmap_item found to be identical
1913 * to the currently scanned page, NULL otherwise.
1914 *
1915 * This function does both searching and inserting, because they share
1916 * the same walking algorithm in an rbtree.
1917 */
1918 static
1919 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1920 struct page *page,
1921 struct page **tree_pagep)
1922 {
1923 struct rb_node **new;
1924 struct rb_root *root;
1925 struct rb_node *parent = NULL;
1926 int nid;
1927
1928 nid = get_kpfn_nid(page_to_pfn(page));
1929 root = root_unstable_tree + nid;
1930 new = &root->rb_node;
1931
1932 while (*new) {
1933 struct rmap_item *tree_rmap_item;
1934 struct page *tree_page;
1935 int ret;
1936
1937 cond_resched();
1938 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1939 tree_page = get_mergeable_page(tree_rmap_item);
1940 if (!tree_page)
1941 return NULL;
1942
1943 /*
1944 * Don't substitute a ksm page for a forked page.
1945 */
1946 if (page == tree_page) {
1947 put_page(tree_page);
1948 return NULL;
1949 }
1950
1951 ret = memcmp_pages(page, tree_page);
1952
1953 parent = *new;
1954 if (ret < 0) {
1955 put_page(tree_page);
1956 new = &parent->rb_left;
1957 } else if (ret > 0) {
1958 put_page(tree_page);
1959 new = &parent->rb_right;
1960 } else if (!ksm_merge_across_nodes &&
1961 page_to_nid(tree_page) != nid) {
1962 /*
1963 * If tree_page has been migrated to another NUMA node,
1964 * it will be flushed out and put in the right unstable
1965 * tree next time: only merge with it when across_nodes.
1966 */
1967 put_page(tree_page);
1968 return NULL;
1969 } else {
1970 *tree_pagep = tree_page;
1971 return tree_rmap_item;
1972 }
1973 }
1974
1975 rmap_item->address |= UNSTABLE_FLAG;
1976 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1977 DO_NUMA(rmap_item->nid = nid);
1978 rb_link_node(&rmap_item->node, parent, new);
1979 rb_insert_color(&rmap_item->node, root);
1980
1981 ksm_pages_unshared++;
1982 return NULL;
1983 }
1984
1985 /*
1986 * stable_tree_append - add another rmap_item to the linked list of
1987 * rmap_items hanging off a given node of the stable tree, all sharing
1988 * the same ksm page.
1989 */
1990 static void stable_tree_append(struct rmap_item *rmap_item,
1991 struct stable_node *stable_node,
1992 bool max_page_sharing_bypass)
1993 {
1994 /*
1995 * rmap won't find this mapping if we don't insert the
1996 * rmap_item in the right stable_node
1997 * duplicate. page_migration could break later if rmap breaks,
1998 * so we can as well crash here. We really need to check for
1999 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2000 * for other negative values as an underflow if detected here
2001 * for the first time (and not when decreasing rmap_hlist_len)
2002 * would be sign of memory corruption in the stable_node.
2003 */
2004 BUG_ON(stable_node->rmap_hlist_len < 0);
2005
2006 stable_node->rmap_hlist_len++;
2007 if (!max_page_sharing_bypass)
2008 /* possibly non fatal but unexpected overflow, only warn */
2009 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2010 ksm_max_page_sharing);
2011
2012 rmap_item->head = stable_node;
2013 rmap_item->address |= STABLE_FLAG;
2014 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2015
2016 if (rmap_item->hlist.next)
2017 ksm_pages_sharing++;
2018 else
2019 ksm_pages_shared++;
2020 }
2021
2022 /*
2023 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2024 * if not, compare checksum to previous and if it's the same, see if page can
2025 * be inserted into the unstable tree, or merged with a page already there and
2026 * both transferred to the stable tree.
2027 *
2028 * @page: the page that we are searching identical page to.
2029 * @rmap_item: the reverse mapping into the virtual address of this page
2030 */
2031 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2032 {
2033 struct mm_struct *mm = rmap_item->mm;
2034 struct rmap_item *tree_rmap_item;
2035 struct page *tree_page = NULL;
2036 struct stable_node *stable_node;
2037 struct page *kpage;
2038 unsigned int checksum;
2039 int err;
2040 bool max_page_sharing_bypass = false;
2041
2042 stable_node = page_stable_node(page);
2043 if (stable_node) {
2044 if (stable_node->head != &migrate_nodes &&
2045 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2046 NUMA(stable_node->nid)) {
2047 stable_node_dup_del(stable_node);
2048 stable_node->head = &migrate_nodes;
2049 list_add(&stable_node->list, stable_node->head);
2050 }
2051 if (stable_node->head != &migrate_nodes &&
2052 rmap_item->head == stable_node)
2053 return;
2054 /*
2055 * If it's a KSM fork, allow it to go over the sharing limit
2056 * without warnings.
2057 */
2058 if (!is_page_sharing_candidate(stable_node))
2059 max_page_sharing_bypass = true;
2060 }
2061
2062 /* We first start with searching the page inside the stable tree */
2063 kpage = stable_tree_search(page);
2064 if (kpage == page && rmap_item->head == stable_node) {
2065 put_page(kpage);
2066 return;
2067 }
2068
2069 remove_rmap_item_from_tree(rmap_item);
2070
2071 if (kpage) {
2072 if (PTR_ERR(kpage) == -EBUSY)
2073 return;
2074
2075 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2076 if (!err) {
2077 /*
2078 * The page was successfully merged:
2079 * add its rmap_item to the stable tree.
2080 */
2081 lock_page(kpage);
2082 stable_tree_append(rmap_item, page_stable_node(kpage),
2083 max_page_sharing_bypass);
2084 unlock_page(kpage);
2085 }
2086 put_page(kpage);
2087 return;
2088 }
2089
2090 /*
2091 * If the hash value of the page has changed from the last time
2092 * we calculated it, this page is changing frequently: therefore we
2093 * don't want to insert it in the unstable tree, and we don't want
2094 * to waste our time searching for something identical to it there.
2095 */
2096 checksum = calc_checksum(page);
2097 if (rmap_item->oldchecksum != checksum) {
2098 rmap_item->oldchecksum = checksum;
2099 return;
2100 }
2101
2102 /*
2103 * Same checksum as an empty page. We attempt to merge it with the
2104 * appropriate zero page if the user enabled this via sysfs.
2105 */
2106 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2107 struct vm_area_struct *vma;
2108
2109 mmap_read_lock(mm);
2110 vma = find_mergeable_vma(mm, rmap_item->address);
2111 if (vma) {
2112 err = try_to_merge_one_page(vma, page,
2113 ZERO_PAGE(rmap_item->address));
2114 } else {
2115 /*
2116 * If the vma is out of date, we do not need to
2117 * continue.
2118 */
2119 err = 0;
2120 }
2121 mmap_read_unlock(mm);
2122 /*
2123 * In case of failure, the page was not really empty, so we
2124 * need to continue. Otherwise we're done.
2125 */
2126 if (!err)
2127 return;
2128 }
2129 tree_rmap_item =
2130 unstable_tree_search_insert(rmap_item, page, &tree_page);
2131 if (tree_rmap_item) {
2132 bool split;
2133
2134 kpage = try_to_merge_two_pages(rmap_item, page,
2135 tree_rmap_item, tree_page);
2136 /*
2137 * If both pages we tried to merge belong to the same compound
2138 * page, then we actually ended up increasing the reference
2139 * count of the same compound page twice, and split_huge_page
2140 * failed.
2141 * Here we set a flag if that happened, and we use it later to
2142 * try split_huge_page again. Since we call put_page right
2143 * afterwards, the reference count will be correct and
2144 * split_huge_page should succeed.
2145 */
2146 split = PageTransCompound(page)
2147 && compound_head(page) == compound_head(tree_page);
2148 put_page(tree_page);
2149 if (kpage) {
2150 /*
2151 * The pages were successfully merged: insert new
2152 * node in the stable tree and add both rmap_items.
2153 */
2154 lock_page(kpage);
2155 stable_node = stable_tree_insert(kpage);
2156 if (stable_node) {
2157 stable_tree_append(tree_rmap_item, stable_node,
2158 false);
2159 stable_tree_append(rmap_item, stable_node,
2160 false);
2161 }
2162 unlock_page(kpage);
2163
2164 /*
2165 * If we fail to insert the page into the stable tree,
2166 * we will have 2 virtual addresses that are pointing
2167 * to a ksm page left outside the stable tree,
2168 * in which case we need to break_cow on both.
2169 */
2170 if (!stable_node) {
2171 break_cow(tree_rmap_item);
2172 break_cow(rmap_item);
2173 }
2174 } else if (split) {
2175 /*
2176 * We are here if we tried to merge two pages and
2177 * failed because they both belonged to the same
2178 * compound page. We will split the page now, but no
2179 * merging will take place.
2180 * We do not want to add the cost of a full lock; if
2181 * the page is locked, it is better to skip it and
2182 * perhaps try again later.
2183 */
2184 if (!trylock_page(page))
2185 return;
2186 split_huge_page(page);
2187 unlock_page(page);
2188 }
2189 }
2190 }
2191
2192 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2193 struct rmap_item **rmap_list,
2194 unsigned long addr)
2195 {
2196 struct rmap_item *rmap_item;
2197
2198 while (*rmap_list) {
2199 rmap_item = *rmap_list;
2200 if ((rmap_item->address & PAGE_MASK) == addr)
2201 return rmap_item;
2202 if (rmap_item->address > addr)
2203 break;
2204 *rmap_list = rmap_item->rmap_list;
2205 remove_rmap_item_from_tree(rmap_item);
2206 free_rmap_item(rmap_item);
2207 }
2208
2209 rmap_item = alloc_rmap_item();
2210 if (rmap_item) {
2211 /* It has already been zeroed */
2212 rmap_item->mm = mm_slot->mm;
2213 rmap_item->address = addr;
2214 rmap_item->rmap_list = *rmap_list;
2215 *rmap_list = rmap_item;
2216 }
2217 return rmap_item;
2218 }
2219
2220 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2221 {
2222 struct mm_struct *mm;
2223 struct mm_slot *slot;
2224 struct vm_area_struct *vma;
2225 struct rmap_item *rmap_item;
2226 int nid;
2227
2228 if (list_empty(&ksm_mm_head.mm_list))
2229 return NULL;
2230
2231 slot = ksm_scan.mm_slot;
2232 if (slot == &ksm_mm_head) {
2233 /*
2234 * A number of pages can hang around indefinitely on per-cpu
2235 * pagevecs, raised page count preventing write_protect_page
2236 * from merging them. Though it doesn't really matter much,
2237 * it is puzzling to see some stuck in pages_volatile until
2238 * other activity jostles them out, and they also prevented
2239 * LTP's KSM test from succeeding deterministically; so drain
2240 * them here (here rather than on entry to ksm_do_scan(),
2241 * so we don't IPI too often when pages_to_scan is set low).
2242 */
2243 lru_add_drain_all();
2244
2245 /*
2246 * Whereas stale stable_nodes on the stable_tree itself
2247 * get pruned in the regular course of stable_tree_search(),
2248 * those moved out to the migrate_nodes list can accumulate:
2249 * so prune them once before each full scan.
2250 */
2251 if (!ksm_merge_across_nodes) {
2252 struct stable_node *stable_node, *next;
2253 struct page *page;
2254
2255 list_for_each_entry_safe(stable_node, next,
2256 &migrate_nodes, list) {
2257 page = get_ksm_page(stable_node,
2258 GET_KSM_PAGE_NOLOCK);
2259 if (page)
2260 put_page(page);
2261 cond_resched();
2262 }
2263 }
2264
2265 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2266 root_unstable_tree[nid] = RB_ROOT;
2267
2268 spin_lock(&ksm_mmlist_lock);
2269 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2270 ksm_scan.mm_slot = slot;
2271 spin_unlock(&ksm_mmlist_lock);
2272 /*
2273 * Although we tested list_empty() above, a racing __ksm_exit
2274 * of the last mm on the list may have removed it since then.
2275 */
2276 if (slot == &ksm_mm_head)
2277 return NULL;
2278 next_mm:
2279 ksm_scan.address = 0;
2280 ksm_scan.rmap_list = &slot->rmap_list;
2281 }
2282
2283 mm = slot->mm;
2284 mmap_read_lock(mm);
2285 if (ksm_test_exit(mm))
2286 vma = NULL;
2287 else
2288 vma = find_vma(mm, ksm_scan.address);
2289
2290 for (; vma; vma = vma->vm_next) {
2291 if (!(vma->vm_flags & VM_MERGEABLE))
2292 continue;
2293 if (ksm_scan.address < vma->vm_start)
2294 ksm_scan.address = vma->vm_start;
2295 if (!vma->anon_vma)
2296 ksm_scan.address = vma->vm_end;
2297
2298 while (ksm_scan.address < vma->vm_end) {
2299 if (ksm_test_exit(mm))
2300 break;
2301 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2302 if (IS_ERR_OR_NULL(*page)) {
2303 ksm_scan.address += PAGE_SIZE;
2304 cond_resched();
2305 continue;
2306 }
2307 if (PageAnon(*page)) {
2308 flush_anon_page(vma, *page, ksm_scan.address);
2309 flush_dcache_page(*page);
2310 rmap_item = get_next_rmap_item(slot,
2311 ksm_scan.rmap_list, ksm_scan.address);
2312 if (rmap_item) {
2313 ksm_scan.rmap_list =
2314 &rmap_item->rmap_list;
2315 ksm_scan.address += PAGE_SIZE;
2316 } else
2317 put_page(*page);
2318 mmap_read_unlock(mm);
2319 return rmap_item;
2320 }
2321 put_page(*page);
2322 ksm_scan.address += PAGE_SIZE;
2323 cond_resched();
2324 }
2325 }
2326
2327 if (ksm_test_exit(mm)) {
2328 ksm_scan.address = 0;
2329 ksm_scan.rmap_list = &slot->rmap_list;
2330 }
2331 /*
2332 * Nuke all the rmap_items that are above this current rmap:
2333 * because there were no VM_MERGEABLE vmas with such addresses.
2334 */
2335 remove_trailing_rmap_items(ksm_scan.rmap_list);
2336
2337 spin_lock(&ksm_mmlist_lock);
2338 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2339 struct mm_slot, mm_list);
2340 if (ksm_scan.address == 0) {
2341 /*
2342 * We've completed a full scan of all vmas, holding mmap_lock
2343 * throughout, and found no VM_MERGEABLE: so do the same as
2344 * __ksm_exit does to remove this mm from all our lists now.
2345 * This applies either when cleaning up after __ksm_exit
2346 * (but beware: we can reach here even before __ksm_exit),
2347 * or when all VM_MERGEABLE areas have been unmapped (and
2348 * mmap_lock then protects against race with MADV_MERGEABLE).
2349 */
2350 hash_del(&slot->link);
2351 list_del(&slot->mm_list);
2352 spin_unlock(&ksm_mmlist_lock);
2353
2354 free_mm_slot(slot);
2355 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2356 mmap_read_unlock(mm);
2357 mmdrop(mm);
2358 } else {
2359 mmap_read_unlock(mm);
2360 /*
2361 * mmap_read_unlock(mm) first because after
2362 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2363 * already have been freed under us by __ksm_exit()
2364 * because the "mm_slot" is still hashed and
2365 * ksm_scan.mm_slot doesn't point to it anymore.
2366 */
2367 spin_unlock(&ksm_mmlist_lock);
2368 }
2369
2370 /* Repeat until we've completed scanning the whole list */
2371 slot = ksm_scan.mm_slot;
2372 if (slot != &ksm_mm_head)
2373 goto next_mm;
2374
2375 ksm_scan.seqnr++;
2376 return NULL;
2377 }
2378
2379 /**
2380 * ksm_do_scan - the ksm scanner main worker function.
2381 * @scan_npages: number of pages we want to scan before we return.
2382 */
2383 static void ksm_do_scan(unsigned int scan_npages)
2384 {
2385 struct rmap_item *rmap_item;
2386 struct page *page;
2387
2388 while (scan_npages-- && likely(!freezing(current))) {
2389 cond_resched();
2390 rmap_item = scan_get_next_rmap_item(&page);
2391 if (!rmap_item)
2392 return;
2393 cmp_and_merge_page(page, rmap_item);
2394 put_page(page);
2395 }
2396 }
2397
2398 static int ksmd_should_run(void)
2399 {
2400 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2401 }
2402
2403 static int ksm_scan_thread(void *nothing)
2404 {
2405 unsigned int sleep_ms;
2406
2407 set_freezable();
2408 set_user_nice(current, 5);
2409
2410 while (!kthread_should_stop()) {
2411 mutex_lock(&ksm_thread_mutex);
2412 wait_while_offlining();
2413 if (ksmd_should_run())
2414 ksm_do_scan(ksm_thread_pages_to_scan);
2415 mutex_unlock(&ksm_thread_mutex);
2416
2417 try_to_freeze();
2418
2419 if (ksmd_should_run()) {
2420 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2421 wait_event_interruptible_timeout(ksm_iter_wait,
2422 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2423 msecs_to_jiffies(sleep_ms));
2424 } else {
2425 wait_event_freezable(ksm_thread_wait,
2426 ksmd_should_run() || kthread_should_stop());
2427 }
2428 }
2429 return 0;
2430 }
2431
2432 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2433 unsigned long end, int advice, unsigned long *vm_flags)
2434 {
2435 struct mm_struct *mm = vma->vm_mm;
2436 int err;
2437
2438 switch (advice) {
2439 case MADV_MERGEABLE:
2440 /*
2441 * Be somewhat over-protective for now!
2442 */
2443 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2444 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2445 VM_HUGETLB | VM_MIXEDMAP))
2446 return 0; /* just ignore the advice */
2447
2448 if (vma_is_dax(vma))
2449 return 0;
2450
2451 #ifdef VM_SAO
2452 if (*vm_flags & VM_SAO)
2453 return 0;
2454 #endif
2455 #ifdef VM_SPARC_ADI
2456 if (*vm_flags & VM_SPARC_ADI)
2457 return 0;
2458 #endif
2459
2460 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2461 err = __ksm_enter(mm);
2462 if (err)
2463 return err;
2464 }
2465
2466 *vm_flags |= VM_MERGEABLE;
2467 break;
2468
2469 case MADV_UNMERGEABLE:
2470 if (!(*vm_flags & VM_MERGEABLE))
2471 return 0; /* just ignore the advice */
2472
2473 if (vma->anon_vma) {
2474 err = unmerge_ksm_pages(vma, start, end);
2475 if (err)
2476 return err;
2477 }
2478
2479 *vm_flags &= ~VM_MERGEABLE;
2480 break;
2481 }
2482
2483 return 0;
2484 }
2485 EXPORT_SYMBOL_GPL(ksm_madvise);
2486
2487 int __ksm_enter(struct mm_struct *mm)
2488 {
2489 struct mm_slot *mm_slot;
2490 int needs_wakeup;
2491
2492 mm_slot = alloc_mm_slot();
2493 if (!mm_slot)
2494 return -ENOMEM;
2495
2496 /* Check ksm_run too? Would need tighter locking */
2497 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2498
2499 spin_lock(&ksm_mmlist_lock);
2500 insert_to_mm_slots_hash(mm, mm_slot);
2501 /*
2502 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2503 * insert just behind the scanning cursor, to let the area settle
2504 * down a little; when fork is followed by immediate exec, we don't
2505 * want ksmd to waste time setting up and tearing down an rmap_list.
2506 *
2507 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2508 * scanning cursor, otherwise KSM pages in newly forked mms will be
2509 * missed: then we might as well insert at the end of the list.
2510 */
2511 if (ksm_run & KSM_RUN_UNMERGE)
2512 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2513 else
2514 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2515 spin_unlock(&ksm_mmlist_lock);
2516
2517 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2518 mmgrab(mm);
2519
2520 if (needs_wakeup)
2521 wake_up_interruptible(&ksm_thread_wait);
2522
2523 return 0;
2524 }
2525
2526 void __ksm_exit(struct mm_struct *mm)
2527 {
2528 struct mm_slot *mm_slot;
2529 int easy_to_free = 0;
2530
2531 /*
2532 * This process is exiting: if it's straightforward (as is the
2533 * case when ksmd was never running), free mm_slot immediately.
2534 * But if it's at the cursor or has rmap_items linked to it, use
2535 * mmap_lock to synchronize with any break_cows before pagetables
2536 * are freed, and leave the mm_slot on the list for ksmd to free.
2537 * Beware: ksm may already have noticed it exiting and freed the slot.
2538 */
2539
2540 spin_lock(&ksm_mmlist_lock);
2541 mm_slot = get_mm_slot(mm);
2542 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2543 if (!mm_slot->rmap_list) {
2544 hash_del(&mm_slot->link);
2545 list_del(&mm_slot->mm_list);
2546 easy_to_free = 1;
2547 } else {
2548 list_move(&mm_slot->mm_list,
2549 &ksm_scan.mm_slot->mm_list);
2550 }
2551 }
2552 spin_unlock(&ksm_mmlist_lock);
2553
2554 if (easy_to_free) {
2555 free_mm_slot(mm_slot);
2556 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2557 mmdrop(mm);
2558 } else if (mm_slot) {
2559 mmap_write_lock(mm);
2560 mmap_write_unlock(mm);
2561 }
2562 }
2563
2564 struct page *ksm_might_need_to_copy(struct page *page,
2565 struct vm_area_struct *vma, unsigned long address)
2566 {
2567 struct anon_vma *anon_vma = page_anon_vma(page);
2568 struct page *new_page;
2569
2570 if (PageKsm(page)) {
2571 if (page_stable_node(page) &&
2572 !(ksm_run & KSM_RUN_UNMERGE))
2573 return page; /* no need to copy it */
2574 } else if (!anon_vma) {
2575 return page; /* no need to copy it */
2576 } else if (anon_vma->root == vma->anon_vma->root &&
2577 page->index == linear_page_index(vma, address)) {
2578 return page; /* still no need to copy it */
2579 }
2580 if (!PageUptodate(page))
2581 return page; /* let do_swap_page report the error */
2582
2583 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2584 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2585 put_page(new_page);
2586 new_page = NULL;
2587 }
2588 if (new_page) {
2589 copy_user_highpage(new_page, page, address, vma);
2590
2591 SetPageDirty(new_page);
2592 __SetPageUptodate(new_page);
2593 __SetPageLocked(new_page);
2594 }
2595
2596 return new_page;
2597 }
2598
2599 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2600 {
2601 struct stable_node *stable_node;
2602 struct rmap_item *rmap_item;
2603 int search_new_forks = 0;
2604
2605 VM_BUG_ON_PAGE(!PageKsm(page), page);
2606
2607 /*
2608 * Rely on the page lock to protect against concurrent modifications
2609 * to that page's node of the stable tree.
2610 */
2611 VM_BUG_ON_PAGE(!PageLocked(page), page);
2612
2613 stable_node = page_stable_node(page);
2614 if (!stable_node)
2615 return;
2616 again:
2617 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2618 struct anon_vma *anon_vma = rmap_item->anon_vma;
2619 struct anon_vma_chain *vmac;
2620 struct vm_area_struct *vma;
2621
2622 cond_resched();
2623 anon_vma_lock_read(anon_vma);
2624 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2625 0, ULONG_MAX) {
2626 unsigned long addr;
2627
2628 cond_resched();
2629 vma = vmac->vma;
2630
2631 /* Ignore the stable/unstable/sqnr flags */
2632 addr = rmap_item->address & PAGE_MASK;
2633
2634 if (addr < vma->vm_start || addr >= vma->vm_end)
2635 continue;
2636 /*
2637 * Initially we examine only the vma which covers this
2638 * rmap_item; but later, if there is still work to do,
2639 * we examine covering vmas in other mms: in case they
2640 * were forked from the original since ksmd passed.
2641 */
2642 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2643 continue;
2644
2645 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2646 continue;
2647
2648 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2649 anon_vma_unlock_read(anon_vma);
2650 return;
2651 }
2652 if (rwc->done && rwc->done(page)) {
2653 anon_vma_unlock_read(anon_vma);
2654 return;
2655 }
2656 }
2657 anon_vma_unlock_read(anon_vma);
2658 }
2659 if (!search_new_forks++)
2660 goto again;
2661 }
2662
2663 #ifdef CONFIG_MIGRATION
2664 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2665 {
2666 struct stable_node *stable_node;
2667
2668 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2669 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2670 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2671
2672 stable_node = page_stable_node(newpage);
2673 if (stable_node) {
2674 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2675 stable_node->kpfn = page_to_pfn(newpage);
2676 /*
2677 * newpage->mapping was set in advance; now we need smp_wmb()
2678 * to make sure that the new stable_node->kpfn is visible
2679 * to get_ksm_page() before it can see that oldpage->mapping
2680 * has gone stale (or that PageSwapCache has been cleared).
2681 */
2682 smp_wmb();
2683 set_page_stable_node(oldpage, NULL);
2684 }
2685 }
2686 #endif /* CONFIG_MIGRATION */
2687
2688 #ifdef CONFIG_MEMORY_HOTREMOVE
2689 static void wait_while_offlining(void)
2690 {
2691 while (ksm_run & KSM_RUN_OFFLINE) {
2692 mutex_unlock(&ksm_thread_mutex);
2693 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2694 TASK_UNINTERRUPTIBLE);
2695 mutex_lock(&ksm_thread_mutex);
2696 }
2697 }
2698
2699 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2700 unsigned long start_pfn,
2701 unsigned long end_pfn)
2702 {
2703 if (stable_node->kpfn >= start_pfn &&
2704 stable_node->kpfn < end_pfn) {
2705 /*
2706 * Don't get_ksm_page, page has already gone:
2707 * which is why we keep kpfn instead of page*
2708 */
2709 remove_node_from_stable_tree(stable_node);
2710 return true;
2711 }
2712 return false;
2713 }
2714
2715 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2716 unsigned long start_pfn,
2717 unsigned long end_pfn,
2718 struct rb_root *root)
2719 {
2720 struct stable_node *dup;
2721 struct hlist_node *hlist_safe;
2722
2723 if (!is_stable_node_chain(stable_node)) {
2724 VM_BUG_ON(is_stable_node_dup(stable_node));
2725 return stable_node_dup_remove_range(stable_node, start_pfn,
2726 end_pfn);
2727 }
2728
2729 hlist_for_each_entry_safe(dup, hlist_safe,
2730 &stable_node->hlist, hlist_dup) {
2731 VM_BUG_ON(!is_stable_node_dup(dup));
2732 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2733 }
2734 if (hlist_empty(&stable_node->hlist)) {
2735 free_stable_node_chain(stable_node, root);
2736 return true; /* notify caller that tree was rebalanced */
2737 } else
2738 return false;
2739 }
2740
2741 static void ksm_check_stable_tree(unsigned long start_pfn,
2742 unsigned long end_pfn)
2743 {
2744 struct stable_node *stable_node, *next;
2745 struct rb_node *node;
2746 int nid;
2747
2748 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2749 node = rb_first(root_stable_tree + nid);
2750 while (node) {
2751 stable_node = rb_entry(node, struct stable_node, node);
2752 if (stable_node_chain_remove_range(stable_node,
2753 start_pfn, end_pfn,
2754 root_stable_tree +
2755 nid))
2756 node = rb_first(root_stable_tree + nid);
2757 else
2758 node = rb_next(node);
2759 cond_resched();
2760 }
2761 }
2762 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2763 if (stable_node->kpfn >= start_pfn &&
2764 stable_node->kpfn < end_pfn)
2765 remove_node_from_stable_tree(stable_node);
2766 cond_resched();
2767 }
2768 }
2769
2770 static int ksm_memory_callback(struct notifier_block *self,
2771 unsigned long action, void *arg)
2772 {
2773 struct memory_notify *mn = arg;
2774
2775 switch (action) {
2776 case MEM_GOING_OFFLINE:
2777 /*
2778 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2779 * and remove_all_stable_nodes() while memory is going offline:
2780 * it is unsafe for them to touch the stable tree at this time.
2781 * But unmerge_ksm_pages(), rmap lookups and other entry points
2782 * which do not need the ksm_thread_mutex are all safe.
2783 */
2784 mutex_lock(&ksm_thread_mutex);
2785 ksm_run |= KSM_RUN_OFFLINE;
2786 mutex_unlock(&ksm_thread_mutex);
2787 break;
2788
2789 case MEM_OFFLINE:
2790 /*
2791 * Most of the work is done by page migration; but there might
2792 * be a few stable_nodes left over, still pointing to struct
2793 * pages which have been offlined: prune those from the tree,
2794 * otherwise get_ksm_page() might later try to access a
2795 * non-existent struct page.
2796 */
2797 ksm_check_stable_tree(mn->start_pfn,
2798 mn->start_pfn + mn->nr_pages);
2799 fallthrough;
2800 case MEM_CANCEL_OFFLINE:
2801 mutex_lock(&ksm_thread_mutex);
2802 ksm_run &= ~KSM_RUN_OFFLINE;
2803 mutex_unlock(&ksm_thread_mutex);
2804
2805 smp_mb(); /* wake_up_bit advises this */
2806 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2807 break;
2808 }
2809 return NOTIFY_OK;
2810 }
2811 #else
2812 static void wait_while_offlining(void)
2813 {
2814 }
2815 #endif /* CONFIG_MEMORY_HOTREMOVE */
2816
2817 #ifdef CONFIG_SYSFS
2818 /*
2819 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2820 */
2821
2822 #define KSM_ATTR_RO(_name) \
2823 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2824 #define KSM_ATTR(_name) \
2825 static struct kobj_attribute _name##_attr = \
2826 __ATTR(_name, 0644, _name##_show, _name##_store)
2827
2828 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2829 struct kobj_attribute *attr, char *buf)
2830 {
2831 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2832 }
2833
2834 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2835 struct kobj_attribute *attr,
2836 const char *buf, size_t count)
2837 {
2838 unsigned int msecs;
2839 int err;
2840
2841 err = kstrtouint(buf, 10, &msecs);
2842 if (err)
2843 return -EINVAL;
2844
2845 ksm_thread_sleep_millisecs = msecs;
2846 wake_up_interruptible(&ksm_iter_wait);
2847
2848 return count;
2849 }
2850 KSM_ATTR(sleep_millisecs);
2851
2852 static ssize_t pages_to_scan_show(struct kobject *kobj,
2853 struct kobj_attribute *attr, char *buf)
2854 {
2855 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2856 }
2857
2858 static ssize_t pages_to_scan_store(struct kobject *kobj,
2859 struct kobj_attribute *attr,
2860 const char *buf, size_t count)
2861 {
2862 unsigned int nr_pages;
2863 int err;
2864
2865 err = kstrtouint(buf, 10, &nr_pages);
2866 if (err)
2867 return -EINVAL;
2868
2869 ksm_thread_pages_to_scan = nr_pages;
2870
2871 return count;
2872 }
2873 KSM_ATTR(pages_to_scan);
2874
2875 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2876 char *buf)
2877 {
2878 return sysfs_emit(buf, "%lu\n", ksm_run);
2879 }
2880
2881 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2882 const char *buf, size_t count)
2883 {
2884 unsigned int flags;
2885 int err;
2886
2887 err = kstrtouint(buf, 10, &flags);
2888 if (err)
2889 return -EINVAL;
2890 if (flags > KSM_RUN_UNMERGE)
2891 return -EINVAL;
2892
2893 /*
2894 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2895 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2896 * breaking COW to free the pages_shared (but leaves mm_slots
2897 * on the list for when ksmd may be set running again).
2898 */
2899
2900 mutex_lock(&ksm_thread_mutex);
2901 wait_while_offlining();
2902 if (ksm_run != flags) {
2903 ksm_run = flags;
2904 if (flags & KSM_RUN_UNMERGE) {
2905 set_current_oom_origin();
2906 err = unmerge_and_remove_all_rmap_items();
2907 clear_current_oom_origin();
2908 if (err) {
2909 ksm_run = KSM_RUN_STOP;
2910 count = err;
2911 }
2912 }
2913 }
2914 mutex_unlock(&ksm_thread_mutex);
2915
2916 if (flags & KSM_RUN_MERGE)
2917 wake_up_interruptible(&ksm_thread_wait);
2918
2919 return count;
2920 }
2921 KSM_ATTR(run);
2922
2923 #ifdef CONFIG_NUMA
2924 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2925 struct kobj_attribute *attr, char *buf)
2926 {
2927 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2928 }
2929
2930 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2931 struct kobj_attribute *attr,
2932 const char *buf, size_t count)
2933 {
2934 int err;
2935 unsigned long knob;
2936
2937 err = kstrtoul(buf, 10, &knob);
2938 if (err)
2939 return err;
2940 if (knob > 1)
2941 return -EINVAL;
2942
2943 mutex_lock(&ksm_thread_mutex);
2944 wait_while_offlining();
2945 if (ksm_merge_across_nodes != knob) {
2946 if (ksm_pages_shared || remove_all_stable_nodes())
2947 err = -EBUSY;
2948 else if (root_stable_tree == one_stable_tree) {
2949 struct rb_root *buf;
2950 /*
2951 * This is the first time that we switch away from the
2952 * default of merging across nodes: must now allocate
2953 * a buffer to hold as many roots as may be needed.
2954 * Allocate stable and unstable together:
2955 * MAXSMP NODES_SHIFT 10 will use 16kB.
2956 */
2957 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2958 GFP_KERNEL);
2959 /* Let us assume that RB_ROOT is NULL is zero */
2960 if (!buf)
2961 err = -ENOMEM;
2962 else {
2963 root_stable_tree = buf;
2964 root_unstable_tree = buf + nr_node_ids;
2965 /* Stable tree is empty but not the unstable */
2966 root_unstable_tree[0] = one_unstable_tree[0];
2967 }
2968 }
2969 if (!err) {
2970 ksm_merge_across_nodes = knob;
2971 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2972 }
2973 }
2974 mutex_unlock(&ksm_thread_mutex);
2975
2976 return err ? err : count;
2977 }
2978 KSM_ATTR(merge_across_nodes);
2979 #endif
2980
2981 static ssize_t use_zero_pages_show(struct kobject *kobj,
2982 struct kobj_attribute *attr, char *buf)
2983 {
2984 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2985 }
2986 static ssize_t use_zero_pages_store(struct kobject *kobj,
2987 struct kobj_attribute *attr,
2988 const char *buf, size_t count)
2989 {
2990 int err;
2991 bool value;
2992
2993 err = kstrtobool(buf, &value);
2994 if (err)
2995 return -EINVAL;
2996
2997 ksm_use_zero_pages = value;
2998
2999 return count;
3000 }
3001 KSM_ATTR(use_zero_pages);
3002
3003 static ssize_t max_page_sharing_show(struct kobject *kobj,
3004 struct kobj_attribute *attr, char *buf)
3005 {
3006 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3007 }
3008
3009 static ssize_t max_page_sharing_store(struct kobject *kobj,
3010 struct kobj_attribute *attr,
3011 const char *buf, size_t count)
3012 {
3013 int err;
3014 int knob;
3015
3016 err = kstrtoint(buf, 10, &knob);
3017 if (err)
3018 return err;
3019 /*
3020 * When a KSM page is created it is shared by 2 mappings. This
3021 * being a signed comparison, it implicitly verifies it's not
3022 * negative.
3023 */
3024 if (knob < 2)
3025 return -EINVAL;
3026
3027 if (READ_ONCE(ksm_max_page_sharing) == knob)
3028 return count;
3029
3030 mutex_lock(&ksm_thread_mutex);
3031 wait_while_offlining();
3032 if (ksm_max_page_sharing != knob) {
3033 if (ksm_pages_shared || remove_all_stable_nodes())
3034 err = -EBUSY;
3035 else
3036 ksm_max_page_sharing = knob;
3037 }
3038 mutex_unlock(&ksm_thread_mutex);
3039
3040 return err ? err : count;
3041 }
3042 KSM_ATTR(max_page_sharing);
3043
3044 static ssize_t pages_shared_show(struct kobject *kobj,
3045 struct kobj_attribute *attr, char *buf)
3046 {
3047 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3048 }
3049 KSM_ATTR_RO(pages_shared);
3050
3051 static ssize_t pages_sharing_show(struct kobject *kobj,
3052 struct kobj_attribute *attr, char *buf)
3053 {
3054 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3055 }
3056 KSM_ATTR_RO(pages_sharing);
3057
3058 static ssize_t pages_unshared_show(struct kobject *kobj,
3059 struct kobj_attribute *attr, char *buf)
3060 {
3061 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3062 }
3063 KSM_ATTR_RO(pages_unshared);
3064
3065 static ssize_t pages_volatile_show(struct kobject *kobj,
3066 struct kobj_attribute *attr, char *buf)
3067 {
3068 long ksm_pages_volatile;
3069
3070 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3071 - ksm_pages_sharing - ksm_pages_unshared;
3072 /*
3073 * It was not worth any locking to calculate that statistic,
3074 * but it might therefore sometimes be negative: conceal that.
3075 */
3076 if (ksm_pages_volatile < 0)
3077 ksm_pages_volatile = 0;
3078 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3079 }
3080 KSM_ATTR_RO(pages_volatile);
3081
3082 static ssize_t stable_node_dups_show(struct kobject *kobj,
3083 struct kobj_attribute *attr, char *buf)
3084 {
3085 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3086 }
3087 KSM_ATTR_RO(stable_node_dups);
3088
3089 static ssize_t stable_node_chains_show(struct kobject *kobj,
3090 struct kobj_attribute *attr, char *buf)
3091 {
3092 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3093 }
3094 KSM_ATTR_RO(stable_node_chains);
3095
3096 static ssize_t
3097 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3098 struct kobj_attribute *attr,
3099 char *buf)
3100 {
3101 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3102 }
3103
3104 static ssize_t
3105 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3106 struct kobj_attribute *attr,
3107 const char *buf, size_t count)
3108 {
3109 unsigned long msecs;
3110 int err;
3111
3112 err = kstrtoul(buf, 10, &msecs);
3113 if (err || msecs > UINT_MAX)
3114 return -EINVAL;
3115
3116 ksm_stable_node_chains_prune_millisecs = msecs;
3117
3118 return count;
3119 }
3120 KSM_ATTR(stable_node_chains_prune_millisecs);
3121
3122 static ssize_t full_scans_show(struct kobject *kobj,
3123 struct kobj_attribute *attr, char *buf)
3124 {
3125 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3126 }
3127 KSM_ATTR_RO(full_scans);
3128
3129 static struct attribute *ksm_attrs[] = {
3130 &sleep_millisecs_attr.attr,
3131 &pages_to_scan_attr.attr,
3132 &run_attr.attr,
3133 &pages_shared_attr.attr,
3134 &pages_sharing_attr.attr,
3135 &pages_unshared_attr.attr,
3136 &pages_volatile_attr.attr,
3137 &full_scans_attr.attr,
3138 #ifdef CONFIG_NUMA
3139 &merge_across_nodes_attr.attr,
3140 #endif
3141 &max_page_sharing_attr.attr,
3142 &stable_node_chains_attr.attr,
3143 &stable_node_dups_attr.attr,
3144 &stable_node_chains_prune_millisecs_attr.attr,
3145 &use_zero_pages_attr.attr,
3146 NULL,
3147 };
3148
3149 static const struct attribute_group ksm_attr_group = {
3150 .attrs = ksm_attrs,
3151 .name = "ksm",
3152 };
3153 #endif /* CONFIG_SYSFS */
3154
3155 static int __init ksm_init(void)
3156 {
3157 struct task_struct *ksm_thread;
3158 int err;
3159
3160 /* The correct value depends on page size and endianness */
3161 zero_checksum = calc_checksum(ZERO_PAGE(0));
3162 /* Default to false for backwards compatibility */
3163 ksm_use_zero_pages = false;
3164
3165 err = ksm_slab_init();
3166 if (err)
3167 goto out;
3168
3169 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3170 if (IS_ERR(ksm_thread)) {
3171 pr_err("ksm: creating kthread failed\n");
3172 err = PTR_ERR(ksm_thread);
3173 goto out_free;
3174 }
3175
3176 #ifdef CONFIG_SYSFS
3177 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3178 if (err) {
3179 pr_err("ksm: register sysfs failed\n");
3180 kthread_stop(ksm_thread);
3181 goto out_free;
3182 }
3183 #else
3184 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3185
3186 #endif /* CONFIG_SYSFS */
3187
3188 #ifdef CONFIG_MEMORY_HOTREMOVE
3189 /* There is no significance to this priority 100 */
3190 hotplug_memory_notifier(ksm_memory_callback, 100);
3191 #endif
3192 return 0;
3193
3194 out_free:
3195 ksm_slab_free();
3196 out:
3197 return err;
3198 }
3199 subsys_initcall(ksm_init);