]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/ksm.c
afs: Fix VNOVOL handling in address rotation
[mirror_ubuntu-bionic-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 */
96
97 /**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
103 */
104 struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
107 struct rmap_item *rmap_list;
108 struct mm_struct *mm;
109 };
110
111 /**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120 struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
123 struct rmap_item **rmap_list;
124 unsigned long seqnr;
125 };
126
127 /**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138 */
139 struct stable_node {
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
148 };
149 };
150 struct hlist_head hlist;
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160 #define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 int nid;
164 #endif
165 };
166
167 /**
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
178 */
179 struct rmap_item {
180 struct rmap_item *rmap_list;
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183 #ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185 #endif
186 };
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
189 unsigned int oldchecksum; /* when unstable */
190 union {
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
196 };
197 };
198
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
202
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree[1] = { RB_ROOT };
205 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
206 static struct rb_root *root_stable_tree = one_stable_tree;
207 static struct rb_root *root_unstable_tree = one_unstable_tree;
208
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
212
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
215
216 static struct mm_slot ksm_mm_head = {
217 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
218 };
219 static struct ksm_scan ksm_scan = {
220 .mm_slot = &ksm_mm_head,
221 };
222
223 static struct kmem_cache *rmap_item_cache;
224 static struct kmem_cache *stable_node_cache;
225 static struct kmem_cache *mm_slot_cache;
226
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared;
229
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing;
232
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared;
235
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items;
238
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains;
241
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups;
244
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs = 2000;
247
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing = 256;
250
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan = 100;
253
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs = 20;
256
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly;
259
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly;
262
263 #ifdef CONFIG_NUMA
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes = 1;
266 static int ksm_nr_node_ids = 1;
267 #else
268 #define ksm_merge_across_nodes 1U
269 #define ksm_nr_node_ids 1
270 #endif
271
272 #define KSM_RUN_STOP 0
273 #define KSM_RUN_MERGE 1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run = KSM_RUN_STOP;
277 static void wait_while_offlining(void);
278
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
280 static DEFINE_MUTEX(ksm_thread_mutex);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock);
282
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
285 (__flags), NULL)
286
287 static int __init ksm_slab_init(void)
288 {
289 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
290 if (!rmap_item_cache)
291 goto out;
292
293 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
294 if (!stable_node_cache)
295 goto out_free1;
296
297 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
298 if (!mm_slot_cache)
299 goto out_free2;
300
301 return 0;
302
303 out_free2:
304 kmem_cache_destroy(stable_node_cache);
305 out_free1:
306 kmem_cache_destroy(rmap_item_cache);
307 out:
308 return -ENOMEM;
309 }
310
311 static void __init ksm_slab_free(void)
312 {
313 kmem_cache_destroy(mm_slot_cache);
314 kmem_cache_destroy(stable_node_cache);
315 kmem_cache_destroy(rmap_item_cache);
316 mm_slot_cache = NULL;
317 }
318
319 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
320 {
321 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
322 }
323
324 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
325 {
326 return dup->head == STABLE_NODE_DUP_HEAD;
327 }
328
329 static inline void stable_node_chain_add_dup(struct stable_node *dup,
330 struct stable_node *chain)
331 {
332 VM_BUG_ON(is_stable_node_dup(dup));
333 dup->head = STABLE_NODE_DUP_HEAD;
334 VM_BUG_ON(!is_stable_node_chain(chain));
335 hlist_add_head(&dup->hlist_dup, &chain->hlist);
336 ksm_stable_node_dups++;
337 }
338
339 static inline void __stable_node_dup_del(struct stable_node *dup)
340 {
341 VM_BUG_ON(!is_stable_node_dup(dup));
342 hlist_del(&dup->hlist_dup);
343 ksm_stable_node_dups--;
344 }
345
346 static inline void stable_node_dup_del(struct stable_node *dup)
347 {
348 VM_BUG_ON(is_stable_node_chain(dup));
349 if (is_stable_node_dup(dup))
350 __stable_node_dup_del(dup);
351 else
352 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
353 #ifdef CONFIG_DEBUG_VM
354 dup->head = NULL;
355 #endif
356 }
357
358 static inline struct rmap_item *alloc_rmap_item(void)
359 {
360 struct rmap_item *rmap_item;
361
362 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
363 __GFP_NORETRY | __GFP_NOWARN);
364 if (rmap_item)
365 ksm_rmap_items++;
366 return rmap_item;
367 }
368
369 static inline void free_rmap_item(struct rmap_item *rmap_item)
370 {
371 ksm_rmap_items--;
372 rmap_item->mm = NULL; /* debug safety */
373 kmem_cache_free(rmap_item_cache, rmap_item);
374 }
375
376 static inline struct stable_node *alloc_stable_node(void)
377 {
378 /*
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
382 */
383 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
384 }
385
386 static inline void free_stable_node(struct stable_node *stable_node)
387 {
388 VM_BUG_ON(stable_node->rmap_hlist_len &&
389 !is_stable_node_chain(stable_node));
390 kmem_cache_free(stable_node_cache, stable_node);
391 }
392
393 static inline struct mm_slot *alloc_mm_slot(void)
394 {
395 if (!mm_slot_cache) /* initialization failed */
396 return NULL;
397 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
398 }
399
400 static inline void free_mm_slot(struct mm_slot *mm_slot)
401 {
402 kmem_cache_free(mm_slot_cache, mm_slot);
403 }
404
405 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
406 {
407 struct mm_slot *slot;
408
409 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
410 if (slot->mm == mm)
411 return slot;
412
413 return NULL;
414 }
415
416 static void insert_to_mm_slots_hash(struct mm_struct *mm,
417 struct mm_slot *mm_slot)
418 {
419 mm_slot->mm = mm;
420 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
421 }
422
423 /*
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
430 */
431 static inline bool ksm_test_exit(struct mm_struct *mm)
432 {
433 return atomic_read(&mm->mm_users) == 0;
434 }
435
436 /*
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
438 *
439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
440 * put_page(page);
441 *
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
446 *
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
450 */
451 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
452 {
453 struct page *page;
454 int ret = 0;
455
456 do {
457 cond_resched();
458 page = follow_page(vma, addr,
459 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
460 if (IS_ERR_OR_NULL(page))
461 break;
462 if (PageKsm(page))
463 ret = handle_mm_fault(vma, addr,
464 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
465 else
466 ret = VM_FAULT_WRITE;
467 put_page(page);
468 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
469 /*
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
472 *
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
476 *
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
480 *
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
485 *
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
490 *
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
496 */
497 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
498 }
499
500 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
501 unsigned long addr)
502 {
503 struct vm_area_struct *vma;
504 if (ksm_test_exit(mm))
505 return NULL;
506 vma = find_vma(mm, addr);
507 if (!vma || vma->vm_start > addr)
508 return NULL;
509 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
510 return NULL;
511 return vma;
512 }
513
514 static void break_cow(struct rmap_item *rmap_item)
515 {
516 struct mm_struct *mm = rmap_item->mm;
517 unsigned long addr = rmap_item->address;
518 struct vm_area_struct *vma;
519
520 /*
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
523 */
524 put_anon_vma(rmap_item->anon_vma);
525
526 down_read(&mm->mmap_sem);
527 vma = find_mergeable_vma(mm, addr);
528 if (vma)
529 break_ksm(vma, addr);
530 up_read(&mm->mmap_sem);
531 }
532
533 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
534 {
535 struct mm_struct *mm = rmap_item->mm;
536 unsigned long addr = rmap_item->address;
537 struct vm_area_struct *vma;
538 struct page *page;
539
540 down_read(&mm->mmap_sem);
541 vma = find_mergeable_vma(mm, addr);
542 if (!vma)
543 goto out;
544
545 page = follow_page(vma, addr, FOLL_GET);
546 if (IS_ERR_OR_NULL(page))
547 goto out;
548 if (PageAnon(page)) {
549 flush_anon_page(vma, page, addr);
550 flush_dcache_page(page);
551 } else {
552 put_page(page);
553 out:
554 page = NULL;
555 }
556 up_read(&mm->mmap_sem);
557 return page;
558 }
559
560 /*
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
565 */
566 static inline int get_kpfn_nid(unsigned long kpfn)
567 {
568 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
569 }
570
571 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
572 struct rb_root *root)
573 {
574 struct stable_node *chain = alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup));
576 if (likely(chain)) {
577 INIT_HLIST_HEAD(&chain->hlist);
578 chain->chain_prune_time = jiffies;
579 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain->nid = -1; /* debug */
582 #endif
583 ksm_stable_node_chains++;
584
585 /*
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
588 * stable node.
589 */
590 rb_replace_node(&dup->node, &chain->node, root);
591
592 /*
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
597 * content.
598 */
599 stable_node_chain_add_dup(dup, chain);
600 }
601 return chain;
602 }
603
604 static inline void free_stable_node_chain(struct stable_node *chain,
605 struct rb_root *root)
606 {
607 rb_erase(&chain->node, root);
608 free_stable_node(chain);
609 ksm_stable_node_chains--;
610 }
611
612 static void remove_node_from_stable_tree(struct stable_node *stable_node)
613 {
614 struct rmap_item *rmap_item;
615
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node->rmap_hlist_len < 0);
618
619 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
620 if (rmap_item->hlist.next)
621 ksm_pages_sharing--;
622 else
623 ksm_pages_shared--;
624 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
625 stable_node->rmap_hlist_len--;
626 put_anon_vma(rmap_item->anon_vma);
627 rmap_item->address &= PAGE_MASK;
628 cond_resched();
629 }
630
631 /*
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
637 */
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
641 #endif
642
643 if (stable_node->head == &migrate_nodes)
644 list_del(&stable_node->list);
645 else
646 stable_node_dup_del(stable_node);
647 free_stable_node(stable_node);
648 }
649
650 /*
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
656 * But beware, the stable node's page might be being migrated.
657 *
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
667 * is on its way to being freed; but it is an anomaly to bear in mind.
668 */
669 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
670 {
671 struct page *page;
672 void *expected_mapping;
673 unsigned long kpfn;
674
675 expected_mapping = (void *)((unsigned long)stable_node |
676 PAGE_MAPPING_KSM);
677 again:
678 kpfn = READ_ONCE(stable_node->kpfn);
679 page = pfn_to_page(kpfn);
680
681 /*
682 * page is computed from kpfn, so on most architectures reading
683 * page->mapping is naturally ordered after reading node->kpfn,
684 * but on Alpha we need to be more careful.
685 */
686 smp_read_barrier_depends();
687 if (READ_ONCE(page->mapping) != expected_mapping)
688 goto stale;
689
690 /*
691 * We cannot do anything with the page while its refcount is 0.
692 * Usually 0 means free, or tail of a higher-order page: in which
693 * case this node is no longer referenced, and should be freed;
694 * however, it might mean that the page is under page_freeze_refs().
695 * The __remove_mapping() case is easy, again the node is now stale;
696 * but if page is swapcache in migrate_page_move_mapping(), it might
697 * still be our page, in which case it's essential to keep the node.
698 */
699 while (!get_page_unless_zero(page)) {
700 /*
701 * Another check for page->mapping != expected_mapping would
702 * work here too. We have chosen the !PageSwapCache test to
703 * optimize the common case, when the page is or is about to
704 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 * in the freeze_refs section of __remove_mapping(); but Anon
706 * page->mapping reset to NULL later, in free_pages_prepare().
707 */
708 if (!PageSwapCache(page))
709 goto stale;
710 cpu_relax();
711 }
712
713 if (READ_ONCE(page->mapping) != expected_mapping) {
714 put_page(page);
715 goto stale;
716 }
717
718 if (lock_it) {
719 lock_page(page);
720 if (READ_ONCE(page->mapping) != expected_mapping) {
721 unlock_page(page);
722 put_page(page);
723 goto stale;
724 }
725 }
726 return page;
727
728 stale:
729 /*
730 * We come here from above when page->mapping or !PageSwapCache
731 * suggests that the node is stale; but it might be under migration.
732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 * before checking whether node->kpfn has been changed.
734 */
735 smp_rmb();
736 if (READ_ONCE(stable_node->kpfn) != kpfn)
737 goto again;
738 remove_node_from_stable_tree(stable_node);
739 return NULL;
740 }
741
742 /*
743 * Removing rmap_item from stable or unstable tree.
744 * This function will clean the information from the stable/unstable tree.
745 */
746 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
747 {
748 if (rmap_item->address & STABLE_FLAG) {
749 struct stable_node *stable_node;
750 struct page *page;
751
752 stable_node = rmap_item->head;
753 page = get_ksm_page(stable_node, true);
754 if (!page)
755 goto out;
756
757 hlist_del(&rmap_item->hlist);
758 unlock_page(page);
759 put_page(page);
760
761 if (!hlist_empty(&stable_node->hlist))
762 ksm_pages_sharing--;
763 else
764 ksm_pages_shared--;
765 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
766 stable_node->rmap_hlist_len--;
767
768 put_anon_vma(rmap_item->anon_vma);
769 rmap_item->address &= PAGE_MASK;
770
771 } else if (rmap_item->address & UNSTABLE_FLAG) {
772 unsigned char age;
773 /*
774 * Usually ksmd can and must skip the rb_erase, because
775 * root_unstable_tree was already reset to RB_ROOT.
776 * But be careful when an mm is exiting: do the rb_erase
777 * if this rmap_item was inserted by this scan, rather
778 * than left over from before.
779 */
780 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
781 BUG_ON(age > 1);
782 if (!age)
783 rb_erase(&rmap_item->node,
784 root_unstable_tree + NUMA(rmap_item->nid));
785 ksm_pages_unshared--;
786 rmap_item->address &= PAGE_MASK;
787 }
788 out:
789 cond_resched(); /* we're called from many long loops */
790 }
791
792 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
793 struct rmap_item **rmap_list)
794 {
795 while (*rmap_list) {
796 struct rmap_item *rmap_item = *rmap_list;
797 *rmap_list = rmap_item->rmap_list;
798 remove_rmap_item_from_tree(rmap_item);
799 free_rmap_item(rmap_item);
800 }
801 }
802
803 /*
804 * Though it's very tempting to unmerge rmap_items from stable tree rather
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
810 *
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
815 */
816 static int unmerge_ksm_pages(struct vm_area_struct *vma,
817 unsigned long start, unsigned long end)
818 {
819 unsigned long addr;
820 int err = 0;
821
822 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
823 if (ksm_test_exit(vma->vm_mm))
824 break;
825 if (signal_pending(current))
826 err = -ERESTARTSYS;
827 else
828 err = break_ksm(vma, addr);
829 }
830 return err;
831 }
832
833 #ifdef CONFIG_SYSFS
834 /*
835 * Only called through the sysfs control interface:
836 */
837 static int remove_stable_node(struct stable_node *stable_node)
838 {
839 struct page *page;
840 int err;
841
842 page = get_ksm_page(stable_node, true);
843 if (!page) {
844 /*
845 * get_ksm_page did remove_node_from_stable_tree itself.
846 */
847 return 0;
848 }
849
850 if (WARN_ON_ONCE(page_mapped(page))) {
851 /*
852 * This should not happen: but if it does, just refuse to let
853 * merge_across_nodes be switched - there is no need to panic.
854 */
855 err = -EBUSY;
856 } else {
857 /*
858 * The stable node did not yet appear stale to get_ksm_page(),
859 * since that allows for an unmapped ksm page to be recognized
860 * right up until it is freed; but the node is safe to remove.
861 * This page might be in a pagevec waiting to be freed,
862 * or it might be PageSwapCache (perhaps under writeback),
863 * or it might have been removed from swapcache a moment ago.
864 */
865 set_page_stable_node(page, NULL);
866 remove_node_from_stable_tree(stable_node);
867 err = 0;
868 }
869
870 unlock_page(page);
871 put_page(page);
872 return err;
873 }
874
875 static int remove_stable_node_chain(struct stable_node *stable_node,
876 struct rb_root *root)
877 {
878 struct stable_node *dup;
879 struct hlist_node *hlist_safe;
880
881 if (!is_stable_node_chain(stable_node)) {
882 VM_BUG_ON(is_stable_node_dup(stable_node));
883 if (remove_stable_node(stable_node))
884 return true;
885 else
886 return false;
887 }
888
889 hlist_for_each_entry_safe(dup, hlist_safe,
890 &stable_node->hlist, hlist_dup) {
891 VM_BUG_ON(!is_stable_node_dup(dup));
892 if (remove_stable_node(dup))
893 return true;
894 }
895 BUG_ON(!hlist_empty(&stable_node->hlist));
896 free_stable_node_chain(stable_node, root);
897 return false;
898 }
899
900 static int remove_all_stable_nodes(void)
901 {
902 struct stable_node *stable_node, *next;
903 int nid;
904 int err = 0;
905
906 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
907 while (root_stable_tree[nid].rb_node) {
908 stable_node = rb_entry(root_stable_tree[nid].rb_node,
909 struct stable_node, node);
910 if (remove_stable_node_chain(stable_node,
911 root_stable_tree + nid)) {
912 err = -EBUSY;
913 break; /* proceed to next nid */
914 }
915 cond_resched();
916 }
917 }
918 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
919 if (remove_stable_node(stable_node))
920 err = -EBUSY;
921 cond_resched();
922 }
923 return err;
924 }
925
926 static int unmerge_and_remove_all_rmap_items(void)
927 {
928 struct mm_slot *mm_slot;
929 struct mm_struct *mm;
930 struct vm_area_struct *vma;
931 int err = 0;
932
933 spin_lock(&ksm_mmlist_lock);
934 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
935 struct mm_slot, mm_list);
936 spin_unlock(&ksm_mmlist_lock);
937
938 for (mm_slot = ksm_scan.mm_slot;
939 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
940 mm = mm_slot->mm;
941 down_read(&mm->mmap_sem);
942 for (vma = mm->mmap; vma; vma = vma->vm_next) {
943 if (ksm_test_exit(mm))
944 break;
945 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
946 continue;
947 err = unmerge_ksm_pages(vma,
948 vma->vm_start, vma->vm_end);
949 if (err)
950 goto error;
951 }
952
953 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
954 up_read(&mm->mmap_sem);
955
956 spin_lock(&ksm_mmlist_lock);
957 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
958 struct mm_slot, mm_list);
959 if (ksm_test_exit(mm)) {
960 hash_del(&mm_slot->link);
961 list_del(&mm_slot->mm_list);
962 spin_unlock(&ksm_mmlist_lock);
963
964 free_mm_slot(mm_slot);
965 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
966 mmdrop(mm);
967 } else
968 spin_unlock(&ksm_mmlist_lock);
969 }
970
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
973 ksm_scan.seqnr = 0;
974 return 0;
975
976 error:
977 up_read(&mm->mmap_sem);
978 spin_lock(&ksm_mmlist_lock);
979 ksm_scan.mm_slot = &ksm_mm_head;
980 spin_unlock(&ksm_mmlist_lock);
981 return err;
982 }
983 #endif /* CONFIG_SYSFS */
984
985 static u32 calc_checksum(struct page *page)
986 {
987 u32 checksum;
988 void *addr = kmap_atomic(page);
989 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
990 kunmap_atomic(addr);
991 return checksum;
992 }
993
994 static int memcmp_pages(struct page *page1, struct page *page2)
995 {
996 char *addr1, *addr2;
997 int ret;
998
999 addr1 = kmap_atomic(page1);
1000 addr2 = kmap_atomic(page2);
1001 ret = memcmp(addr1, addr2, PAGE_SIZE);
1002 kunmap_atomic(addr2);
1003 kunmap_atomic(addr1);
1004 return ret;
1005 }
1006
1007 static inline int pages_identical(struct page *page1, struct page *page2)
1008 {
1009 return !memcmp_pages(page1, page2);
1010 }
1011
1012 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1013 pte_t *orig_pte)
1014 {
1015 struct mm_struct *mm = vma->vm_mm;
1016 struct page_vma_mapped_walk pvmw = {
1017 .page = page,
1018 .vma = vma,
1019 };
1020 int swapped;
1021 int err = -EFAULT;
1022 unsigned long mmun_start; /* For mmu_notifiers */
1023 unsigned long mmun_end; /* For mmu_notifiers */
1024
1025 pvmw.address = page_address_in_vma(page, vma);
1026 if (pvmw.address == -EFAULT)
1027 goto out;
1028
1029 BUG_ON(PageTransCompound(page));
1030
1031 mmun_start = pvmw.address;
1032 mmun_end = pvmw.address + PAGE_SIZE;
1033 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1034
1035 if (!page_vma_mapped_walk(&pvmw))
1036 goto out_mn;
1037 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1038 goto out_unlock;
1039
1040 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1041 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1042 mm_tlb_flush_pending(mm)) {
1043 pte_t entry;
1044
1045 swapped = PageSwapCache(page);
1046 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1047 /*
1048 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1049 * take any lock, therefore the check that we are going to make
1050 * with the pagecount against the mapcount is racey and
1051 * O_DIRECT can happen right after the check.
1052 * So we clear the pte and flush the tlb before the check
1053 * this assure us that no O_DIRECT can happen after the check
1054 * or in the middle of the check.
1055 *
1056 * No need to notify as we are downgrading page table to read
1057 * only not changing it to point to a new page.
1058 *
1059 * See Documentation/vm/mmu_notifier.txt
1060 */
1061 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1062 /*
1063 * Check that no O_DIRECT or similar I/O is in progress on the
1064 * page
1065 */
1066 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1067 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1068 goto out_unlock;
1069 }
1070 if (pte_dirty(entry))
1071 set_page_dirty(page);
1072
1073 if (pte_protnone(entry))
1074 entry = pte_mkclean(pte_clear_savedwrite(entry));
1075 else
1076 entry = pte_mkclean(pte_wrprotect(entry));
1077 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1078 }
1079 *orig_pte = *pvmw.pte;
1080 err = 0;
1081
1082 out_unlock:
1083 page_vma_mapped_walk_done(&pvmw);
1084 out_mn:
1085 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1086 out:
1087 return err;
1088 }
1089
1090 /**
1091 * replace_page - replace page in vma by new ksm page
1092 * @vma: vma that holds the pte pointing to page
1093 * @page: the page we are replacing by kpage
1094 * @kpage: the ksm page we replace page by
1095 * @orig_pte: the original value of the pte
1096 *
1097 * Returns 0 on success, -EFAULT on failure.
1098 */
1099 static int replace_page(struct vm_area_struct *vma, struct page *page,
1100 struct page *kpage, pte_t orig_pte)
1101 {
1102 struct mm_struct *mm = vma->vm_mm;
1103 pmd_t *pmd;
1104 pte_t *ptep;
1105 pte_t newpte;
1106 spinlock_t *ptl;
1107 unsigned long addr;
1108 int err = -EFAULT;
1109 unsigned long mmun_start; /* For mmu_notifiers */
1110 unsigned long mmun_end; /* For mmu_notifiers */
1111
1112 addr = page_address_in_vma(page, vma);
1113 if (addr == -EFAULT)
1114 goto out;
1115
1116 pmd = mm_find_pmd(mm, addr);
1117 if (!pmd)
1118 goto out;
1119
1120 mmun_start = addr;
1121 mmun_end = addr + PAGE_SIZE;
1122 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1123
1124 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1125 if (!pte_same(*ptep, orig_pte)) {
1126 pte_unmap_unlock(ptep, ptl);
1127 goto out_mn;
1128 }
1129
1130 /*
1131 * No need to check ksm_use_zero_pages here: we can only have a
1132 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1133 */
1134 if (!is_zero_pfn(page_to_pfn(kpage))) {
1135 get_page(kpage);
1136 page_add_anon_rmap(kpage, vma, addr, false);
1137 newpte = mk_pte(kpage, vma->vm_page_prot);
1138 } else {
1139 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1140 vma->vm_page_prot));
1141 /*
1142 * We're replacing an anonymous page with a zero page, which is
1143 * not anonymous. We need to do proper accounting otherwise we
1144 * will get wrong values in /proc, and a BUG message in dmesg
1145 * when tearing down the mm.
1146 */
1147 dec_mm_counter(mm, MM_ANONPAGES);
1148 }
1149
1150 flush_cache_page(vma, addr, pte_pfn(*ptep));
1151 /*
1152 * No need to notify as we are replacing a read only page with another
1153 * read only page with the same content.
1154 *
1155 * See Documentation/vm/mmu_notifier.txt
1156 */
1157 ptep_clear_flush(vma, addr, ptep);
1158 set_pte_at_notify(mm, addr, ptep, newpte);
1159
1160 page_remove_rmap(page, false);
1161 if (!page_mapped(page))
1162 try_to_free_swap(page);
1163 put_page(page);
1164
1165 pte_unmap_unlock(ptep, ptl);
1166 err = 0;
1167 out_mn:
1168 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1169 out:
1170 return err;
1171 }
1172
1173 /*
1174 * try_to_merge_one_page - take two pages and merge them into one
1175 * @vma: the vma that holds the pte pointing to page
1176 * @page: the PageAnon page that we want to replace with kpage
1177 * @kpage: the PageKsm page that we want to map instead of page,
1178 * or NULL the first time when we want to use page as kpage.
1179 *
1180 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1181 */
1182 static int try_to_merge_one_page(struct vm_area_struct *vma,
1183 struct page *page, struct page *kpage)
1184 {
1185 pte_t orig_pte = __pte(0);
1186 int err = -EFAULT;
1187
1188 if (page == kpage) /* ksm page forked */
1189 return 0;
1190
1191 if (!PageAnon(page))
1192 goto out;
1193
1194 /*
1195 * We need the page lock to read a stable PageSwapCache in
1196 * write_protect_page(). We use trylock_page() instead of
1197 * lock_page() because we don't want to wait here - we
1198 * prefer to continue scanning and merging different pages,
1199 * then come back to this page when it is unlocked.
1200 */
1201 if (!trylock_page(page))
1202 goto out;
1203
1204 if (PageTransCompound(page)) {
1205 if (split_huge_page(page))
1206 goto out_unlock;
1207 }
1208
1209 /*
1210 * If this anonymous page is mapped only here, its pte may need
1211 * to be write-protected. If it's mapped elsewhere, all of its
1212 * ptes are necessarily already write-protected. But in either
1213 * case, we need to lock and check page_count is not raised.
1214 */
1215 if (write_protect_page(vma, page, &orig_pte) == 0) {
1216 if (!kpage) {
1217 /*
1218 * While we hold page lock, upgrade page from
1219 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1220 * stable_tree_insert() will update stable_node.
1221 */
1222 set_page_stable_node(page, NULL);
1223 mark_page_accessed(page);
1224 /*
1225 * Page reclaim just frees a clean page with no dirty
1226 * ptes: make sure that the ksm page would be swapped.
1227 */
1228 if (!PageDirty(page))
1229 SetPageDirty(page);
1230 err = 0;
1231 } else if (pages_identical(page, kpage))
1232 err = replace_page(vma, page, kpage, orig_pte);
1233 }
1234
1235 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1236 munlock_vma_page(page);
1237 if (!PageMlocked(kpage)) {
1238 unlock_page(page);
1239 lock_page(kpage);
1240 mlock_vma_page(kpage);
1241 page = kpage; /* for final unlock */
1242 }
1243 }
1244
1245 out_unlock:
1246 unlock_page(page);
1247 out:
1248 return err;
1249 }
1250
1251 /*
1252 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1253 * but no new kernel page is allocated: kpage must already be a ksm page.
1254 *
1255 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1256 */
1257 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1258 struct page *page, struct page *kpage)
1259 {
1260 struct mm_struct *mm = rmap_item->mm;
1261 struct vm_area_struct *vma;
1262 int err = -EFAULT;
1263
1264 down_read(&mm->mmap_sem);
1265 vma = find_mergeable_vma(mm, rmap_item->address);
1266 if (!vma)
1267 goto out;
1268
1269 err = try_to_merge_one_page(vma, page, kpage);
1270 if (err)
1271 goto out;
1272
1273 /* Unstable nid is in union with stable anon_vma: remove first */
1274 remove_rmap_item_from_tree(rmap_item);
1275
1276 /* Must get reference to anon_vma while still holding mmap_sem */
1277 rmap_item->anon_vma = vma->anon_vma;
1278 get_anon_vma(vma->anon_vma);
1279 out:
1280 up_read(&mm->mmap_sem);
1281 return err;
1282 }
1283
1284 /*
1285 * try_to_merge_two_pages - take two identical pages and prepare them
1286 * to be merged into one page.
1287 *
1288 * This function returns the kpage if we successfully merged two identical
1289 * pages into one ksm page, NULL otherwise.
1290 *
1291 * Note that this function upgrades page to ksm page: if one of the pages
1292 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1293 */
1294 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1295 struct page *page,
1296 struct rmap_item *tree_rmap_item,
1297 struct page *tree_page)
1298 {
1299 int err;
1300
1301 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1302 if (!err) {
1303 err = try_to_merge_with_ksm_page(tree_rmap_item,
1304 tree_page, page);
1305 /*
1306 * If that fails, we have a ksm page with only one pte
1307 * pointing to it: so break it.
1308 */
1309 if (err)
1310 break_cow(rmap_item);
1311 }
1312 return err ? NULL : page;
1313 }
1314
1315 static __always_inline
1316 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1317 {
1318 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1319 /*
1320 * Check that at least one mapping still exists, otherwise
1321 * there's no much point to merge and share with this
1322 * stable_node, as the underlying tree_page of the other
1323 * sharer is going to be freed soon.
1324 */
1325 return stable_node->rmap_hlist_len &&
1326 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1327 }
1328
1329 static __always_inline
1330 bool is_page_sharing_candidate(struct stable_node *stable_node)
1331 {
1332 return __is_page_sharing_candidate(stable_node, 0);
1333 }
1334
1335 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1336 struct stable_node **_stable_node,
1337 struct rb_root *root,
1338 bool prune_stale_stable_nodes)
1339 {
1340 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1341 struct hlist_node *hlist_safe;
1342 struct page *_tree_page, *tree_page = NULL;
1343 int nr = 0;
1344 int found_rmap_hlist_len;
1345
1346 if (!prune_stale_stable_nodes ||
1347 time_before(jiffies, stable_node->chain_prune_time +
1348 msecs_to_jiffies(
1349 ksm_stable_node_chains_prune_millisecs)))
1350 prune_stale_stable_nodes = false;
1351 else
1352 stable_node->chain_prune_time = jiffies;
1353
1354 hlist_for_each_entry_safe(dup, hlist_safe,
1355 &stable_node->hlist, hlist_dup) {
1356 cond_resched();
1357 /*
1358 * We must walk all stable_node_dup to prune the stale
1359 * stable nodes during lookup.
1360 *
1361 * get_ksm_page can drop the nodes from the
1362 * stable_node->hlist if they point to freed pages
1363 * (that's why we do a _safe walk). The "dup"
1364 * stable_node parameter itself will be freed from
1365 * under us if it returns NULL.
1366 */
1367 _tree_page = get_ksm_page(dup, false);
1368 if (!_tree_page)
1369 continue;
1370 nr += 1;
1371 if (is_page_sharing_candidate(dup)) {
1372 if (!found ||
1373 dup->rmap_hlist_len > found_rmap_hlist_len) {
1374 if (found)
1375 put_page(tree_page);
1376 found = dup;
1377 found_rmap_hlist_len = found->rmap_hlist_len;
1378 tree_page = _tree_page;
1379
1380 /* skip put_page for found dup */
1381 if (!prune_stale_stable_nodes)
1382 break;
1383 continue;
1384 }
1385 }
1386 put_page(_tree_page);
1387 }
1388
1389 if (found) {
1390 /*
1391 * nr is counting all dups in the chain only if
1392 * prune_stale_stable_nodes is true, otherwise we may
1393 * break the loop at nr == 1 even if there are
1394 * multiple entries.
1395 */
1396 if (prune_stale_stable_nodes && nr == 1) {
1397 /*
1398 * If there's not just one entry it would
1399 * corrupt memory, better BUG_ON. In KSM
1400 * context with no lock held it's not even
1401 * fatal.
1402 */
1403 BUG_ON(stable_node->hlist.first->next);
1404
1405 /*
1406 * There's just one entry and it is below the
1407 * deduplication limit so drop the chain.
1408 */
1409 rb_replace_node(&stable_node->node, &found->node,
1410 root);
1411 free_stable_node(stable_node);
1412 ksm_stable_node_chains--;
1413 ksm_stable_node_dups--;
1414 /*
1415 * NOTE: the caller depends on the stable_node
1416 * to be equal to stable_node_dup if the chain
1417 * was collapsed.
1418 */
1419 *_stable_node = found;
1420 /*
1421 * Just for robustneess as stable_node is
1422 * otherwise left as a stable pointer, the
1423 * compiler shall optimize it away at build
1424 * time.
1425 */
1426 stable_node = NULL;
1427 } else if (stable_node->hlist.first != &found->hlist_dup &&
1428 __is_page_sharing_candidate(found, 1)) {
1429 /*
1430 * If the found stable_node dup can accept one
1431 * more future merge (in addition to the one
1432 * that is underway) and is not at the head of
1433 * the chain, put it there so next search will
1434 * be quicker in the !prune_stale_stable_nodes
1435 * case.
1436 *
1437 * NOTE: it would be inaccurate to use nr > 1
1438 * instead of checking the hlist.first pointer
1439 * directly, because in the
1440 * prune_stale_stable_nodes case "nr" isn't
1441 * the position of the found dup in the chain,
1442 * but the total number of dups in the chain.
1443 */
1444 hlist_del(&found->hlist_dup);
1445 hlist_add_head(&found->hlist_dup,
1446 &stable_node->hlist);
1447 }
1448 }
1449
1450 *_stable_node_dup = found;
1451 return tree_page;
1452 }
1453
1454 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1455 struct rb_root *root)
1456 {
1457 if (!is_stable_node_chain(stable_node))
1458 return stable_node;
1459 if (hlist_empty(&stable_node->hlist)) {
1460 free_stable_node_chain(stable_node, root);
1461 return NULL;
1462 }
1463 return hlist_entry(stable_node->hlist.first,
1464 typeof(*stable_node), hlist_dup);
1465 }
1466
1467 /*
1468 * Like for get_ksm_page, this function can free the *_stable_node and
1469 * *_stable_node_dup if the returned tree_page is NULL.
1470 *
1471 * It can also free and overwrite *_stable_node with the found
1472 * stable_node_dup if the chain is collapsed (in which case
1473 * *_stable_node will be equal to *_stable_node_dup like if the chain
1474 * never existed). It's up to the caller to verify tree_page is not
1475 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1476 *
1477 * *_stable_node_dup is really a second output parameter of this
1478 * function and will be overwritten in all cases, the caller doesn't
1479 * need to initialize it.
1480 */
1481 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1482 struct stable_node **_stable_node,
1483 struct rb_root *root,
1484 bool prune_stale_stable_nodes)
1485 {
1486 struct stable_node *stable_node = *_stable_node;
1487 if (!is_stable_node_chain(stable_node)) {
1488 if (is_page_sharing_candidate(stable_node)) {
1489 *_stable_node_dup = stable_node;
1490 return get_ksm_page(stable_node, false);
1491 }
1492 /*
1493 * _stable_node_dup set to NULL means the stable_node
1494 * reached the ksm_max_page_sharing limit.
1495 */
1496 *_stable_node_dup = NULL;
1497 return NULL;
1498 }
1499 return stable_node_dup(_stable_node_dup, _stable_node, root,
1500 prune_stale_stable_nodes);
1501 }
1502
1503 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1504 struct stable_node **s_n,
1505 struct rb_root *root)
1506 {
1507 return __stable_node_chain(s_n_d, s_n, root, true);
1508 }
1509
1510 static __always_inline struct page *chain(struct stable_node **s_n_d,
1511 struct stable_node *s_n,
1512 struct rb_root *root)
1513 {
1514 struct stable_node *old_stable_node = s_n;
1515 struct page *tree_page;
1516
1517 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1518 /* not pruning dups so s_n cannot have changed */
1519 VM_BUG_ON(s_n != old_stable_node);
1520 return tree_page;
1521 }
1522
1523 /*
1524 * stable_tree_search - search for page inside the stable tree
1525 *
1526 * This function checks if there is a page inside the stable tree
1527 * with identical content to the page that we are scanning right now.
1528 *
1529 * This function returns the stable tree node of identical content if found,
1530 * NULL otherwise.
1531 */
1532 static struct page *stable_tree_search(struct page *page)
1533 {
1534 int nid;
1535 struct rb_root *root;
1536 struct rb_node **new;
1537 struct rb_node *parent;
1538 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1539 struct stable_node *page_node;
1540
1541 page_node = page_stable_node(page);
1542 if (page_node && page_node->head != &migrate_nodes) {
1543 /* ksm page forked */
1544 get_page(page);
1545 return page;
1546 }
1547
1548 nid = get_kpfn_nid(page_to_pfn(page));
1549 root = root_stable_tree + nid;
1550 again:
1551 new = &root->rb_node;
1552 parent = NULL;
1553
1554 while (*new) {
1555 struct page *tree_page;
1556 int ret;
1557
1558 cond_resched();
1559 stable_node = rb_entry(*new, struct stable_node, node);
1560 stable_node_any = NULL;
1561 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1562 /*
1563 * NOTE: stable_node may have been freed by
1564 * chain_prune() if the returned stable_node_dup is
1565 * not NULL. stable_node_dup may have been inserted in
1566 * the rbtree instead as a regular stable_node (in
1567 * order to collapse the stable_node chain if a single
1568 * stable_node dup was found in it). In such case the
1569 * stable_node is overwritten by the calleee to point
1570 * to the stable_node_dup that was collapsed in the
1571 * stable rbtree and stable_node will be equal to
1572 * stable_node_dup like if the chain never existed.
1573 */
1574 if (!stable_node_dup) {
1575 /*
1576 * Either all stable_node dups were full in
1577 * this stable_node chain, or this chain was
1578 * empty and should be rb_erased.
1579 */
1580 stable_node_any = stable_node_dup_any(stable_node,
1581 root);
1582 if (!stable_node_any) {
1583 /* rb_erase just run */
1584 goto again;
1585 }
1586 /*
1587 * Take any of the stable_node dups page of
1588 * this stable_node chain to let the tree walk
1589 * continue. All KSM pages belonging to the
1590 * stable_node dups in a stable_node chain
1591 * have the same content and they're
1592 * wrprotected at all times. Any will work
1593 * fine to continue the walk.
1594 */
1595 tree_page = get_ksm_page(stable_node_any, false);
1596 }
1597 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1598 if (!tree_page) {
1599 /*
1600 * If we walked over a stale stable_node,
1601 * get_ksm_page() will call rb_erase() and it
1602 * may rebalance the tree from under us. So
1603 * restart the search from scratch. Returning
1604 * NULL would be safe too, but we'd generate
1605 * false negative insertions just because some
1606 * stable_node was stale.
1607 */
1608 goto again;
1609 }
1610
1611 ret = memcmp_pages(page, tree_page);
1612 put_page(tree_page);
1613
1614 parent = *new;
1615 if (ret < 0)
1616 new = &parent->rb_left;
1617 else if (ret > 0)
1618 new = &parent->rb_right;
1619 else {
1620 if (page_node) {
1621 VM_BUG_ON(page_node->head != &migrate_nodes);
1622 /*
1623 * Test if the migrated page should be merged
1624 * into a stable node dup. If the mapcount is
1625 * 1 we can migrate it with another KSM page
1626 * without adding it to the chain.
1627 */
1628 if (page_mapcount(page) > 1)
1629 goto chain_append;
1630 }
1631
1632 if (!stable_node_dup) {
1633 /*
1634 * If the stable_node is a chain and
1635 * we got a payload match in memcmp
1636 * but we cannot merge the scanned
1637 * page in any of the existing
1638 * stable_node dups because they're
1639 * all full, we need to wait the
1640 * scanned page to find itself a match
1641 * in the unstable tree to create a
1642 * brand new KSM page to add later to
1643 * the dups of this stable_node.
1644 */
1645 return NULL;
1646 }
1647
1648 /*
1649 * Lock and unlock the stable_node's page (which
1650 * might already have been migrated) so that page
1651 * migration is sure to notice its raised count.
1652 * It would be more elegant to return stable_node
1653 * than kpage, but that involves more changes.
1654 */
1655 tree_page = get_ksm_page(stable_node_dup, true);
1656 if (unlikely(!tree_page))
1657 /*
1658 * The tree may have been rebalanced,
1659 * so re-evaluate parent and new.
1660 */
1661 goto again;
1662 unlock_page(tree_page);
1663
1664 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1665 NUMA(stable_node_dup->nid)) {
1666 put_page(tree_page);
1667 goto replace;
1668 }
1669 return tree_page;
1670 }
1671 }
1672
1673 if (!page_node)
1674 return NULL;
1675
1676 list_del(&page_node->list);
1677 DO_NUMA(page_node->nid = nid);
1678 rb_link_node(&page_node->node, parent, new);
1679 rb_insert_color(&page_node->node, root);
1680 out:
1681 if (is_page_sharing_candidate(page_node)) {
1682 get_page(page);
1683 return page;
1684 } else
1685 return NULL;
1686
1687 replace:
1688 /*
1689 * If stable_node was a chain and chain_prune collapsed it,
1690 * stable_node has been updated to be the new regular
1691 * stable_node. A collapse of the chain is indistinguishable
1692 * from the case there was no chain in the stable
1693 * rbtree. Otherwise stable_node is the chain and
1694 * stable_node_dup is the dup to replace.
1695 */
1696 if (stable_node_dup == stable_node) {
1697 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1698 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1699 /* there is no chain */
1700 if (page_node) {
1701 VM_BUG_ON(page_node->head != &migrate_nodes);
1702 list_del(&page_node->list);
1703 DO_NUMA(page_node->nid = nid);
1704 rb_replace_node(&stable_node_dup->node,
1705 &page_node->node,
1706 root);
1707 if (is_page_sharing_candidate(page_node))
1708 get_page(page);
1709 else
1710 page = NULL;
1711 } else {
1712 rb_erase(&stable_node_dup->node, root);
1713 page = NULL;
1714 }
1715 } else {
1716 VM_BUG_ON(!is_stable_node_chain(stable_node));
1717 __stable_node_dup_del(stable_node_dup);
1718 if (page_node) {
1719 VM_BUG_ON(page_node->head != &migrate_nodes);
1720 list_del(&page_node->list);
1721 DO_NUMA(page_node->nid = nid);
1722 stable_node_chain_add_dup(page_node, stable_node);
1723 if (is_page_sharing_candidate(page_node))
1724 get_page(page);
1725 else
1726 page = NULL;
1727 } else {
1728 page = NULL;
1729 }
1730 }
1731 stable_node_dup->head = &migrate_nodes;
1732 list_add(&stable_node_dup->list, stable_node_dup->head);
1733 return page;
1734
1735 chain_append:
1736 /* stable_node_dup could be null if it reached the limit */
1737 if (!stable_node_dup)
1738 stable_node_dup = stable_node_any;
1739 /*
1740 * If stable_node was a chain and chain_prune collapsed it,
1741 * stable_node has been updated to be the new regular
1742 * stable_node. A collapse of the chain is indistinguishable
1743 * from the case there was no chain in the stable
1744 * rbtree. Otherwise stable_node is the chain and
1745 * stable_node_dup is the dup to replace.
1746 */
1747 if (stable_node_dup == stable_node) {
1748 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1749 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1750 /* chain is missing so create it */
1751 stable_node = alloc_stable_node_chain(stable_node_dup,
1752 root);
1753 if (!stable_node)
1754 return NULL;
1755 }
1756 /*
1757 * Add this stable_node dup that was
1758 * migrated to the stable_node chain
1759 * of the current nid for this page
1760 * content.
1761 */
1762 VM_BUG_ON(!is_stable_node_chain(stable_node));
1763 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1764 VM_BUG_ON(page_node->head != &migrate_nodes);
1765 list_del(&page_node->list);
1766 DO_NUMA(page_node->nid = nid);
1767 stable_node_chain_add_dup(page_node, stable_node);
1768 goto out;
1769 }
1770
1771 /*
1772 * stable_tree_insert - insert stable tree node pointing to new ksm page
1773 * into the stable tree.
1774 *
1775 * This function returns the stable tree node just allocated on success,
1776 * NULL otherwise.
1777 */
1778 static struct stable_node *stable_tree_insert(struct page *kpage)
1779 {
1780 int nid;
1781 unsigned long kpfn;
1782 struct rb_root *root;
1783 struct rb_node **new;
1784 struct rb_node *parent;
1785 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1786 bool need_chain = false;
1787
1788 kpfn = page_to_pfn(kpage);
1789 nid = get_kpfn_nid(kpfn);
1790 root = root_stable_tree + nid;
1791 again:
1792 parent = NULL;
1793 new = &root->rb_node;
1794
1795 while (*new) {
1796 struct page *tree_page;
1797 int ret;
1798
1799 cond_resched();
1800 stable_node = rb_entry(*new, struct stable_node, node);
1801 stable_node_any = NULL;
1802 tree_page = chain(&stable_node_dup, stable_node, root);
1803 if (!stable_node_dup) {
1804 /*
1805 * Either all stable_node dups were full in
1806 * this stable_node chain, or this chain was
1807 * empty and should be rb_erased.
1808 */
1809 stable_node_any = stable_node_dup_any(stable_node,
1810 root);
1811 if (!stable_node_any) {
1812 /* rb_erase just run */
1813 goto again;
1814 }
1815 /*
1816 * Take any of the stable_node dups page of
1817 * this stable_node chain to let the tree walk
1818 * continue. All KSM pages belonging to the
1819 * stable_node dups in a stable_node chain
1820 * have the same content and they're
1821 * wrprotected at all times. Any will work
1822 * fine to continue the walk.
1823 */
1824 tree_page = get_ksm_page(stable_node_any, false);
1825 }
1826 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1827 if (!tree_page) {
1828 /*
1829 * If we walked over a stale stable_node,
1830 * get_ksm_page() will call rb_erase() and it
1831 * may rebalance the tree from under us. So
1832 * restart the search from scratch. Returning
1833 * NULL would be safe too, but we'd generate
1834 * false negative insertions just because some
1835 * stable_node was stale.
1836 */
1837 goto again;
1838 }
1839
1840 ret = memcmp_pages(kpage, tree_page);
1841 put_page(tree_page);
1842
1843 parent = *new;
1844 if (ret < 0)
1845 new = &parent->rb_left;
1846 else if (ret > 0)
1847 new = &parent->rb_right;
1848 else {
1849 need_chain = true;
1850 break;
1851 }
1852 }
1853
1854 stable_node_dup = alloc_stable_node();
1855 if (!stable_node_dup)
1856 return NULL;
1857
1858 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1859 stable_node_dup->kpfn = kpfn;
1860 set_page_stable_node(kpage, stable_node_dup);
1861 stable_node_dup->rmap_hlist_len = 0;
1862 DO_NUMA(stable_node_dup->nid = nid);
1863 if (!need_chain) {
1864 rb_link_node(&stable_node_dup->node, parent, new);
1865 rb_insert_color(&stable_node_dup->node, root);
1866 } else {
1867 if (!is_stable_node_chain(stable_node)) {
1868 struct stable_node *orig = stable_node;
1869 /* chain is missing so create it */
1870 stable_node = alloc_stable_node_chain(orig, root);
1871 if (!stable_node) {
1872 free_stable_node(stable_node_dup);
1873 return NULL;
1874 }
1875 }
1876 stable_node_chain_add_dup(stable_node_dup, stable_node);
1877 }
1878
1879 return stable_node_dup;
1880 }
1881
1882 /*
1883 * unstable_tree_search_insert - search for identical page,
1884 * else insert rmap_item into the unstable tree.
1885 *
1886 * This function searches for a page in the unstable tree identical to the
1887 * page currently being scanned; and if no identical page is found in the
1888 * tree, we insert rmap_item as a new object into the unstable tree.
1889 *
1890 * This function returns pointer to rmap_item found to be identical
1891 * to the currently scanned page, NULL otherwise.
1892 *
1893 * This function does both searching and inserting, because they share
1894 * the same walking algorithm in an rbtree.
1895 */
1896 static
1897 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1898 struct page *page,
1899 struct page **tree_pagep)
1900 {
1901 struct rb_node **new;
1902 struct rb_root *root;
1903 struct rb_node *parent = NULL;
1904 int nid;
1905
1906 nid = get_kpfn_nid(page_to_pfn(page));
1907 root = root_unstable_tree + nid;
1908 new = &root->rb_node;
1909
1910 while (*new) {
1911 struct rmap_item *tree_rmap_item;
1912 struct page *tree_page;
1913 int ret;
1914
1915 cond_resched();
1916 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1917 tree_page = get_mergeable_page(tree_rmap_item);
1918 if (!tree_page)
1919 return NULL;
1920
1921 /*
1922 * Don't substitute a ksm page for a forked page.
1923 */
1924 if (page == tree_page) {
1925 put_page(tree_page);
1926 return NULL;
1927 }
1928
1929 ret = memcmp_pages(page, tree_page);
1930
1931 parent = *new;
1932 if (ret < 0) {
1933 put_page(tree_page);
1934 new = &parent->rb_left;
1935 } else if (ret > 0) {
1936 put_page(tree_page);
1937 new = &parent->rb_right;
1938 } else if (!ksm_merge_across_nodes &&
1939 page_to_nid(tree_page) != nid) {
1940 /*
1941 * If tree_page has been migrated to another NUMA node,
1942 * it will be flushed out and put in the right unstable
1943 * tree next time: only merge with it when across_nodes.
1944 */
1945 put_page(tree_page);
1946 return NULL;
1947 } else {
1948 *tree_pagep = tree_page;
1949 return tree_rmap_item;
1950 }
1951 }
1952
1953 rmap_item->address |= UNSTABLE_FLAG;
1954 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1955 DO_NUMA(rmap_item->nid = nid);
1956 rb_link_node(&rmap_item->node, parent, new);
1957 rb_insert_color(&rmap_item->node, root);
1958
1959 ksm_pages_unshared++;
1960 return NULL;
1961 }
1962
1963 /*
1964 * stable_tree_append - add another rmap_item to the linked list of
1965 * rmap_items hanging off a given node of the stable tree, all sharing
1966 * the same ksm page.
1967 */
1968 static void stable_tree_append(struct rmap_item *rmap_item,
1969 struct stable_node *stable_node,
1970 bool max_page_sharing_bypass)
1971 {
1972 /*
1973 * rmap won't find this mapping if we don't insert the
1974 * rmap_item in the right stable_node
1975 * duplicate. page_migration could break later if rmap breaks,
1976 * so we can as well crash here. We really need to check for
1977 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1978 * for other negative values as an undeflow if detected here
1979 * for the first time (and not when decreasing rmap_hlist_len)
1980 * would be sign of memory corruption in the stable_node.
1981 */
1982 BUG_ON(stable_node->rmap_hlist_len < 0);
1983
1984 stable_node->rmap_hlist_len++;
1985 if (!max_page_sharing_bypass)
1986 /* possibly non fatal but unexpected overflow, only warn */
1987 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1988 ksm_max_page_sharing);
1989
1990 rmap_item->head = stable_node;
1991 rmap_item->address |= STABLE_FLAG;
1992 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1993
1994 if (rmap_item->hlist.next)
1995 ksm_pages_sharing++;
1996 else
1997 ksm_pages_shared++;
1998 }
1999
2000 /*
2001 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2002 * if not, compare checksum to previous and if it's the same, see if page can
2003 * be inserted into the unstable tree, or merged with a page already there and
2004 * both transferred to the stable tree.
2005 *
2006 * @page: the page that we are searching identical page to.
2007 * @rmap_item: the reverse mapping into the virtual address of this page
2008 */
2009 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2010 {
2011 struct mm_struct *mm = rmap_item->mm;
2012 struct rmap_item *tree_rmap_item;
2013 struct page *tree_page = NULL;
2014 struct stable_node *stable_node;
2015 struct page *kpage;
2016 unsigned int checksum;
2017 int err;
2018 bool max_page_sharing_bypass = false;
2019
2020 stable_node = page_stable_node(page);
2021 if (stable_node) {
2022 if (stable_node->head != &migrate_nodes &&
2023 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2024 NUMA(stable_node->nid)) {
2025 stable_node_dup_del(stable_node);
2026 stable_node->head = &migrate_nodes;
2027 list_add(&stable_node->list, stable_node->head);
2028 }
2029 if (stable_node->head != &migrate_nodes &&
2030 rmap_item->head == stable_node)
2031 return;
2032 /*
2033 * If it's a KSM fork, allow it to go over the sharing limit
2034 * without warnings.
2035 */
2036 if (!is_page_sharing_candidate(stable_node))
2037 max_page_sharing_bypass = true;
2038 }
2039
2040 /* We first start with searching the page inside the stable tree */
2041 kpage = stable_tree_search(page);
2042 if (kpage == page && rmap_item->head == stable_node) {
2043 put_page(kpage);
2044 return;
2045 }
2046
2047 remove_rmap_item_from_tree(rmap_item);
2048
2049 if (kpage) {
2050 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2051 if (!err) {
2052 /*
2053 * The page was successfully merged:
2054 * add its rmap_item to the stable tree.
2055 */
2056 lock_page(kpage);
2057 stable_tree_append(rmap_item, page_stable_node(kpage),
2058 max_page_sharing_bypass);
2059 unlock_page(kpage);
2060 }
2061 put_page(kpage);
2062 return;
2063 }
2064
2065 /*
2066 * If the hash value of the page has changed from the last time
2067 * we calculated it, this page is changing frequently: therefore we
2068 * don't want to insert it in the unstable tree, and we don't want
2069 * to waste our time searching for something identical to it there.
2070 */
2071 checksum = calc_checksum(page);
2072 if (rmap_item->oldchecksum != checksum) {
2073 rmap_item->oldchecksum = checksum;
2074 return;
2075 }
2076
2077 /*
2078 * Same checksum as an empty page. We attempt to merge it with the
2079 * appropriate zero page if the user enabled this via sysfs.
2080 */
2081 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2082 struct vm_area_struct *vma;
2083
2084 down_read(&mm->mmap_sem);
2085 vma = find_mergeable_vma(mm, rmap_item->address);
2086 err = try_to_merge_one_page(vma, page,
2087 ZERO_PAGE(rmap_item->address));
2088 up_read(&mm->mmap_sem);
2089 /*
2090 * In case of failure, the page was not really empty, so we
2091 * need to continue. Otherwise we're done.
2092 */
2093 if (!err)
2094 return;
2095 }
2096 tree_rmap_item =
2097 unstable_tree_search_insert(rmap_item, page, &tree_page);
2098 if (tree_rmap_item) {
2099 bool split;
2100
2101 kpage = try_to_merge_two_pages(rmap_item, page,
2102 tree_rmap_item, tree_page);
2103 /*
2104 * If both pages we tried to merge belong to the same compound
2105 * page, then we actually ended up increasing the reference
2106 * count of the same compound page twice, and split_huge_page
2107 * failed.
2108 * Here we set a flag if that happened, and we use it later to
2109 * try split_huge_page again. Since we call put_page right
2110 * afterwards, the reference count will be correct and
2111 * split_huge_page should succeed.
2112 */
2113 split = PageTransCompound(page)
2114 && compound_head(page) == compound_head(tree_page);
2115 put_page(tree_page);
2116 if (kpage) {
2117 /*
2118 * The pages were successfully merged: insert new
2119 * node in the stable tree and add both rmap_items.
2120 */
2121 lock_page(kpage);
2122 stable_node = stable_tree_insert(kpage);
2123 if (stable_node) {
2124 stable_tree_append(tree_rmap_item, stable_node,
2125 false);
2126 stable_tree_append(rmap_item, stable_node,
2127 false);
2128 }
2129 unlock_page(kpage);
2130
2131 /*
2132 * If we fail to insert the page into the stable tree,
2133 * we will have 2 virtual addresses that are pointing
2134 * to a ksm page left outside the stable tree,
2135 * in which case we need to break_cow on both.
2136 */
2137 if (!stable_node) {
2138 break_cow(tree_rmap_item);
2139 break_cow(rmap_item);
2140 }
2141 } else if (split) {
2142 /*
2143 * We are here if we tried to merge two pages and
2144 * failed because they both belonged to the same
2145 * compound page. We will split the page now, but no
2146 * merging will take place.
2147 * We do not want to add the cost of a full lock; if
2148 * the page is locked, it is better to skip it and
2149 * perhaps try again later.
2150 */
2151 if (!trylock_page(page))
2152 return;
2153 split_huge_page(page);
2154 unlock_page(page);
2155 }
2156 }
2157 }
2158
2159 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2160 struct rmap_item **rmap_list,
2161 unsigned long addr)
2162 {
2163 struct rmap_item *rmap_item;
2164
2165 while (*rmap_list) {
2166 rmap_item = *rmap_list;
2167 if ((rmap_item->address & PAGE_MASK) == addr)
2168 return rmap_item;
2169 if (rmap_item->address > addr)
2170 break;
2171 *rmap_list = rmap_item->rmap_list;
2172 remove_rmap_item_from_tree(rmap_item);
2173 free_rmap_item(rmap_item);
2174 }
2175
2176 rmap_item = alloc_rmap_item();
2177 if (rmap_item) {
2178 /* It has already been zeroed */
2179 rmap_item->mm = mm_slot->mm;
2180 rmap_item->address = addr;
2181 rmap_item->rmap_list = *rmap_list;
2182 *rmap_list = rmap_item;
2183 }
2184 return rmap_item;
2185 }
2186
2187 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2188 {
2189 struct mm_struct *mm;
2190 struct mm_slot *slot;
2191 struct vm_area_struct *vma;
2192 struct rmap_item *rmap_item;
2193 int nid;
2194
2195 if (list_empty(&ksm_mm_head.mm_list))
2196 return NULL;
2197
2198 slot = ksm_scan.mm_slot;
2199 if (slot == &ksm_mm_head) {
2200 /*
2201 * A number of pages can hang around indefinitely on per-cpu
2202 * pagevecs, raised page count preventing write_protect_page
2203 * from merging them. Though it doesn't really matter much,
2204 * it is puzzling to see some stuck in pages_volatile until
2205 * other activity jostles them out, and they also prevented
2206 * LTP's KSM test from succeeding deterministically; so drain
2207 * them here (here rather than on entry to ksm_do_scan(),
2208 * so we don't IPI too often when pages_to_scan is set low).
2209 */
2210 lru_add_drain_all();
2211
2212 /*
2213 * Whereas stale stable_nodes on the stable_tree itself
2214 * get pruned in the regular course of stable_tree_search(),
2215 * those moved out to the migrate_nodes list can accumulate:
2216 * so prune them once before each full scan.
2217 */
2218 if (!ksm_merge_across_nodes) {
2219 struct stable_node *stable_node, *next;
2220 struct page *page;
2221
2222 list_for_each_entry_safe(stable_node, next,
2223 &migrate_nodes, list) {
2224 page = get_ksm_page(stable_node, false);
2225 if (page)
2226 put_page(page);
2227 cond_resched();
2228 }
2229 }
2230
2231 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2232 root_unstable_tree[nid] = RB_ROOT;
2233
2234 spin_lock(&ksm_mmlist_lock);
2235 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2236 ksm_scan.mm_slot = slot;
2237 spin_unlock(&ksm_mmlist_lock);
2238 /*
2239 * Although we tested list_empty() above, a racing __ksm_exit
2240 * of the last mm on the list may have removed it since then.
2241 */
2242 if (slot == &ksm_mm_head)
2243 return NULL;
2244 next_mm:
2245 ksm_scan.address = 0;
2246 ksm_scan.rmap_list = &slot->rmap_list;
2247 }
2248
2249 mm = slot->mm;
2250 down_read(&mm->mmap_sem);
2251 if (ksm_test_exit(mm))
2252 vma = NULL;
2253 else
2254 vma = find_vma(mm, ksm_scan.address);
2255
2256 for (; vma; vma = vma->vm_next) {
2257 if (!(vma->vm_flags & VM_MERGEABLE))
2258 continue;
2259 if (ksm_scan.address < vma->vm_start)
2260 ksm_scan.address = vma->vm_start;
2261 if (!vma->anon_vma)
2262 ksm_scan.address = vma->vm_end;
2263
2264 while (ksm_scan.address < vma->vm_end) {
2265 if (ksm_test_exit(mm))
2266 break;
2267 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2268 if (IS_ERR_OR_NULL(*page)) {
2269 ksm_scan.address += PAGE_SIZE;
2270 cond_resched();
2271 continue;
2272 }
2273 if (PageAnon(*page)) {
2274 flush_anon_page(vma, *page, ksm_scan.address);
2275 flush_dcache_page(*page);
2276 rmap_item = get_next_rmap_item(slot,
2277 ksm_scan.rmap_list, ksm_scan.address);
2278 if (rmap_item) {
2279 ksm_scan.rmap_list =
2280 &rmap_item->rmap_list;
2281 ksm_scan.address += PAGE_SIZE;
2282 } else
2283 put_page(*page);
2284 up_read(&mm->mmap_sem);
2285 return rmap_item;
2286 }
2287 put_page(*page);
2288 ksm_scan.address += PAGE_SIZE;
2289 cond_resched();
2290 }
2291 }
2292
2293 if (ksm_test_exit(mm)) {
2294 ksm_scan.address = 0;
2295 ksm_scan.rmap_list = &slot->rmap_list;
2296 }
2297 /*
2298 * Nuke all the rmap_items that are above this current rmap:
2299 * because there were no VM_MERGEABLE vmas with such addresses.
2300 */
2301 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2302
2303 spin_lock(&ksm_mmlist_lock);
2304 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2305 struct mm_slot, mm_list);
2306 if (ksm_scan.address == 0) {
2307 /*
2308 * We've completed a full scan of all vmas, holding mmap_sem
2309 * throughout, and found no VM_MERGEABLE: so do the same as
2310 * __ksm_exit does to remove this mm from all our lists now.
2311 * This applies either when cleaning up after __ksm_exit
2312 * (but beware: we can reach here even before __ksm_exit),
2313 * or when all VM_MERGEABLE areas have been unmapped (and
2314 * mmap_sem then protects against race with MADV_MERGEABLE).
2315 */
2316 hash_del(&slot->link);
2317 list_del(&slot->mm_list);
2318 spin_unlock(&ksm_mmlist_lock);
2319
2320 free_mm_slot(slot);
2321 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2322 up_read(&mm->mmap_sem);
2323 mmdrop(mm);
2324 } else {
2325 up_read(&mm->mmap_sem);
2326 /*
2327 * up_read(&mm->mmap_sem) first because after
2328 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2329 * already have been freed under us by __ksm_exit()
2330 * because the "mm_slot" is still hashed and
2331 * ksm_scan.mm_slot doesn't point to it anymore.
2332 */
2333 spin_unlock(&ksm_mmlist_lock);
2334 }
2335
2336 /* Repeat until we've completed scanning the whole list */
2337 slot = ksm_scan.mm_slot;
2338 if (slot != &ksm_mm_head)
2339 goto next_mm;
2340
2341 ksm_scan.seqnr++;
2342 return NULL;
2343 }
2344
2345 /**
2346 * ksm_do_scan - the ksm scanner main worker function.
2347 * @scan_npages - number of pages we want to scan before we return.
2348 */
2349 static void ksm_do_scan(unsigned int scan_npages)
2350 {
2351 struct rmap_item *rmap_item;
2352 struct page *uninitialized_var(page);
2353
2354 while (scan_npages-- && likely(!freezing(current))) {
2355 cond_resched();
2356 rmap_item = scan_get_next_rmap_item(&page);
2357 if (!rmap_item)
2358 return;
2359 cmp_and_merge_page(page, rmap_item);
2360 put_page(page);
2361 }
2362 }
2363
2364 static int ksmd_should_run(void)
2365 {
2366 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2367 }
2368
2369 static int ksm_scan_thread(void *nothing)
2370 {
2371 set_freezable();
2372 set_user_nice(current, 5);
2373
2374 while (!kthread_should_stop()) {
2375 mutex_lock(&ksm_thread_mutex);
2376 wait_while_offlining();
2377 if (ksmd_should_run())
2378 ksm_do_scan(ksm_thread_pages_to_scan);
2379 mutex_unlock(&ksm_thread_mutex);
2380
2381 try_to_freeze();
2382
2383 if (ksmd_should_run()) {
2384 if (ksm_thread_sleep_millisecs >= 1000)
2385 schedule_timeout_interruptible(
2386 msecs_to_jiffies(round_jiffies_relative(ksm_thread_sleep_millisecs)));
2387 else
2388 schedule_timeout_interruptible(
2389 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2390 } else {
2391 wait_event_freezable(ksm_thread_wait,
2392 ksmd_should_run() || kthread_should_stop());
2393 }
2394 }
2395 return 0;
2396 }
2397
2398 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2399 unsigned long end, int advice, unsigned long *vm_flags)
2400 {
2401 struct mm_struct *mm = vma->vm_mm;
2402 int err;
2403
2404 switch (advice) {
2405 case MADV_MERGEABLE:
2406 /*
2407 * Be somewhat over-protective for now!
2408 */
2409 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2410 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2411 VM_HUGETLB | VM_MIXEDMAP))
2412 return 0; /* just ignore the advice */
2413
2414 #ifdef VM_SAO
2415 if (*vm_flags & VM_SAO)
2416 return 0;
2417 #endif
2418
2419 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2420 err = __ksm_enter(mm);
2421 if (err)
2422 return err;
2423 }
2424
2425 *vm_flags |= VM_MERGEABLE;
2426 break;
2427
2428 case MADV_UNMERGEABLE:
2429 if (!(*vm_flags & VM_MERGEABLE))
2430 return 0; /* just ignore the advice */
2431
2432 if (vma->anon_vma) {
2433 err = unmerge_ksm_pages(vma, start, end);
2434 if (err)
2435 return err;
2436 }
2437
2438 *vm_flags &= ~VM_MERGEABLE;
2439 break;
2440 }
2441
2442 return 0;
2443 }
2444
2445 int __ksm_enter(struct mm_struct *mm)
2446 {
2447 struct mm_slot *mm_slot;
2448 int needs_wakeup;
2449
2450 mm_slot = alloc_mm_slot();
2451 if (!mm_slot)
2452 return -ENOMEM;
2453
2454 /* Check ksm_run too? Would need tighter locking */
2455 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2456
2457 spin_lock(&ksm_mmlist_lock);
2458 insert_to_mm_slots_hash(mm, mm_slot);
2459 /*
2460 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2461 * insert just behind the scanning cursor, to let the area settle
2462 * down a little; when fork is followed by immediate exec, we don't
2463 * want ksmd to waste time setting up and tearing down an rmap_list.
2464 *
2465 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2466 * scanning cursor, otherwise KSM pages in newly forked mms will be
2467 * missed: then we might as well insert at the end of the list.
2468 */
2469 if (ksm_run & KSM_RUN_UNMERGE)
2470 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2471 else
2472 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2473 spin_unlock(&ksm_mmlist_lock);
2474
2475 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2476 mmgrab(mm);
2477
2478 if (needs_wakeup)
2479 wake_up_interruptible(&ksm_thread_wait);
2480
2481 return 0;
2482 }
2483
2484 void __ksm_exit(struct mm_struct *mm)
2485 {
2486 struct mm_slot *mm_slot;
2487 int easy_to_free = 0;
2488
2489 /*
2490 * This process is exiting: if it's straightforward (as is the
2491 * case when ksmd was never running), free mm_slot immediately.
2492 * But if it's at the cursor or has rmap_items linked to it, use
2493 * mmap_sem to synchronize with any break_cows before pagetables
2494 * are freed, and leave the mm_slot on the list for ksmd to free.
2495 * Beware: ksm may already have noticed it exiting and freed the slot.
2496 */
2497
2498 spin_lock(&ksm_mmlist_lock);
2499 mm_slot = get_mm_slot(mm);
2500 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2501 if (!mm_slot->rmap_list) {
2502 hash_del(&mm_slot->link);
2503 list_del(&mm_slot->mm_list);
2504 easy_to_free = 1;
2505 } else {
2506 list_move(&mm_slot->mm_list,
2507 &ksm_scan.mm_slot->mm_list);
2508 }
2509 }
2510 spin_unlock(&ksm_mmlist_lock);
2511
2512 if (easy_to_free) {
2513 free_mm_slot(mm_slot);
2514 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2515 mmdrop(mm);
2516 } else if (mm_slot) {
2517 down_write(&mm->mmap_sem);
2518 up_write(&mm->mmap_sem);
2519 }
2520 }
2521
2522 struct page *ksm_might_need_to_copy(struct page *page,
2523 struct vm_area_struct *vma, unsigned long address)
2524 {
2525 struct anon_vma *anon_vma = page_anon_vma(page);
2526 struct page *new_page;
2527
2528 if (PageKsm(page)) {
2529 if (page_stable_node(page) &&
2530 !(ksm_run & KSM_RUN_UNMERGE))
2531 return page; /* no need to copy it */
2532 } else if (!anon_vma) {
2533 return page; /* no need to copy it */
2534 } else if (anon_vma->root == vma->anon_vma->root &&
2535 page->index == linear_page_index(vma, address)) {
2536 return page; /* still no need to copy it */
2537 }
2538 if (!PageUptodate(page))
2539 return page; /* let do_swap_page report the error */
2540
2541 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2542 if (new_page) {
2543 copy_user_highpage(new_page, page, address, vma);
2544
2545 SetPageDirty(new_page);
2546 __SetPageUptodate(new_page);
2547 __SetPageLocked(new_page);
2548 }
2549
2550 return new_page;
2551 }
2552
2553 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2554 {
2555 struct stable_node *stable_node;
2556 struct rmap_item *rmap_item;
2557 int search_new_forks = 0;
2558
2559 VM_BUG_ON_PAGE(!PageKsm(page), page);
2560
2561 /*
2562 * Rely on the page lock to protect against concurrent modifications
2563 * to that page's node of the stable tree.
2564 */
2565 VM_BUG_ON_PAGE(!PageLocked(page), page);
2566
2567 stable_node = page_stable_node(page);
2568 if (!stable_node)
2569 return;
2570 again:
2571 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2572 struct anon_vma *anon_vma = rmap_item->anon_vma;
2573 struct anon_vma_chain *vmac;
2574 struct vm_area_struct *vma;
2575
2576 cond_resched();
2577 anon_vma_lock_read(anon_vma);
2578 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2579 0, ULONG_MAX) {
2580 cond_resched();
2581 vma = vmac->vma;
2582 if (rmap_item->address < vma->vm_start ||
2583 rmap_item->address >= vma->vm_end)
2584 continue;
2585 /*
2586 * Initially we examine only the vma which covers this
2587 * rmap_item; but later, if there is still work to do,
2588 * we examine covering vmas in other mms: in case they
2589 * were forked from the original since ksmd passed.
2590 */
2591 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2592 continue;
2593
2594 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2595 continue;
2596
2597 if (!rwc->rmap_one(page, vma,
2598 rmap_item->address, rwc->arg)) {
2599 anon_vma_unlock_read(anon_vma);
2600 return;
2601 }
2602 if (rwc->done && rwc->done(page)) {
2603 anon_vma_unlock_read(anon_vma);
2604 return;
2605 }
2606 }
2607 anon_vma_unlock_read(anon_vma);
2608 }
2609 if (!search_new_forks++)
2610 goto again;
2611 }
2612
2613 #ifdef CONFIG_MIGRATION
2614 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2615 {
2616 struct stable_node *stable_node;
2617
2618 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2619 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2620 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2621
2622 stable_node = page_stable_node(newpage);
2623 if (stable_node) {
2624 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2625 stable_node->kpfn = page_to_pfn(newpage);
2626 /*
2627 * newpage->mapping was set in advance; now we need smp_wmb()
2628 * to make sure that the new stable_node->kpfn is visible
2629 * to get_ksm_page() before it can see that oldpage->mapping
2630 * has gone stale (or that PageSwapCache has been cleared).
2631 */
2632 smp_wmb();
2633 set_page_stable_node(oldpage, NULL);
2634 }
2635 }
2636 #endif /* CONFIG_MIGRATION */
2637
2638 #ifdef CONFIG_MEMORY_HOTREMOVE
2639 static void wait_while_offlining(void)
2640 {
2641 while (ksm_run & KSM_RUN_OFFLINE) {
2642 mutex_unlock(&ksm_thread_mutex);
2643 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2644 TASK_UNINTERRUPTIBLE);
2645 mutex_lock(&ksm_thread_mutex);
2646 }
2647 }
2648
2649 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2650 unsigned long start_pfn,
2651 unsigned long end_pfn)
2652 {
2653 if (stable_node->kpfn >= start_pfn &&
2654 stable_node->kpfn < end_pfn) {
2655 /*
2656 * Don't get_ksm_page, page has already gone:
2657 * which is why we keep kpfn instead of page*
2658 */
2659 remove_node_from_stable_tree(stable_node);
2660 return true;
2661 }
2662 return false;
2663 }
2664
2665 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2666 unsigned long start_pfn,
2667 unsigned long end_pfn,
2668 struct rb_root *root)
2669 {
2670 struct stable_node *dup;
2671 struct hlist_node *hlist_safe;
2672
2673 if (!is_stable_node_chain(stable_node)) {
2674 VM_BUG_ON(is_stable_node_dup(stable_node));
2675 return stable_node_dup_remove_range(stable_node, start_pfn,
2676 end_pfn);
2677 }
2678
2679 hlist_for_each_entry_safe(dup, hlist_safe,
2680 &stable_node->hlist, hlist_dup) {
2681 VM_BUG_ON(!is_stable_node_dup(dup));
2682 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2683 }
2684 if (hlist_empty(&stable_node->hlist)) {
2685 free_stable_node_chain(stable_node, root);
2686 return true; /* notify caller that tree was rebalanced */
2687 } else
2688 return false;
2689 }
2690
2691 static void ksm_check_stable_tree(unsigned long start_pfn,
2692 unsigned long end_pfn)
2693 {
2694 struct stable_node *stable_node, *next;
2695 struct rb_node *node;
2696 int nid;
2697
2698 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2699 node = rb_first(root_stable_tree + nid);
2700 while (node) {
2701 stable_node = rb_entry(node, struct stable_node, node);
2702 if (stable_node_chain_remove_range(stable_node,
2703 start_pfn, end_pfn,
2704 root_stable_tree +
2705 nid))
2706 node = rb_first(root_stable_tree + nid);
2707 else
2708 node = rb_next(node);
2709 cond_resched();
2710 }
2711 }
2712 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2713 if (stable_node->kpfn >= start_pfn &&
2714 stable_node->kpfn < end_pfn)
2715 remove_node_from_stable_tree(stable_node);
2716 cond_resched();
2717 }
2718 }
2719
2720 static int ksm_memory_callback(struct notifier_block *self,
2721 unsigned long action, void *arg)
2722 {
2723 struct memory_notify *mn = arg;
2724
2725 switch (action) {
2726 case MEM_GOING_OFFLINE:
2727 /*
2728 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2729 * and remove_all_stable_nodes() while memory is going offline:
2730 * it is unsafe for them to touch the stable tree at this time.
2731 * But unmerge_ksm_pages(), rmap lookups and other entry points
2732 * which do not need the ksm_thread_mutex are all safe.
2733 */
2734 mutex_lock(&ksm_thread_mutex);
2735 ksm_run |= KSM_RUN_OFFLINE;
2736 mutex_unlock(&ksm_thread_mutex);
2737 break;
2738
2739 case MEM_OFFLINE:
2740 /*
2741 * Most of the work is done by page migration; but there might
2742 * be a few stable_nodes left over, still pointing to struct
2743 * pages which have been offlined: prune those from the tree,
2744 * otherwise get_ksm_page() might later try to access a
2745 * non-existent struct page.
2746 */
2747 ksm_check_stable_tree(mn->start_pfn,
2748 mn->start_pfn + mn->nr_pages);
2749 /* fallthrough */
2750
2751 case MEM_CANCEL_OFFLINE:
2752 mutex_lock(&ksm_thread_mutex);
2753 ksm_run &= ~KSM_RUN_OFFLINE;
2754 mutex_unlock(&ksm_thread_mutex);
2755
2756 smp_mb(); /* wake_up_bit advises this */
2757 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2758 break;
2759 }
2760 return NOTIFY_OK;
2761 }
2762 #else
2763 static void wait_while_offlining(void)
2764 {
2765 }
2766 #endif /* CONFIG_MEMORY_HOTREMOVE */
2767
2768 #ifdef CONFIG_SYSFS
2769 /*
2770 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2771 */
2772
2773 #define KSM_ATTR_RO(_name) \
2774 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2775 #define KSM_ATTR(_name) \
2776 static struct kobj_attribute _name##_attr = \
2777 __ATTR(_name, 0644, _name##_show, _name##_store)
2778
2779 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2780 struct kobj_attribute *attr, char *buf)
2781 {
2782 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2783 }
2784
2785 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2786 struct kobj_attribute *attr,
2787 const char *buf, size_t count)
2788 {
2789 unsigned long msecs;
2790 int err;
2791
2792 err = kstrtoul(buf, 10, &msecs);
2793 if (err || msecs > UINT_MAX)
2794 return -EINVAL;
2795
2796 ksm_thread_sleep_millisecs = msecs;
2797
2798 return count;
2799 }
2800 KSM_ATTR(sleep_millisecs);
2801
2802 static ssize_t pages_to_scan_show(struct kobject *kobj,
2803 struct kobj_attribute *attr, char *buf)
2804 {
2805 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2806 }
2807
2808 static ssize_t pages_to_scan_store(struct kobject *kobj,
2809 struct kobj_attribute *attr,
2810 const char *buf, size_t count)
2811 {
2812 int err;
2813 unsigned long nr_pages;
2814
2815 err = kstrtoul(buf, 10, &nr_pages);
2816 if (err || nr_pages > UINT_MAX)
2817 return -EINVAL;
2818
2819 ksm_thread_pages_to_scan = nr_pages;
2820
2821 return count;
2822 }
2823 KSM_ATTR(pages_to_scan);
2824
2825 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2826 char *buf)
2827 {
2828 return sprintf(buf, "%lu\n", ksm_run);
2829 }
2830
2831 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2832 const char *buf, size_t count)
2833 {
2834 int err;
2835 unsigned long flags;
2836
2837 err = kstrtoul(buf, 10, &flags);
2838 if (err || flags > UINT_MAX)
2839 return -EINVAL;
2840 if (flags > KSM_RUN_UNMERGE)
2841 return -EINVAL;
2842
2843 /*
2844 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2845 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2846 * breaking COW to free the pages_shared (but leaves mm_slots
2847 * on the list for when ksmd may be set running again).
2848 */
2849
2850 mutex_lock(&ksm_thread_mutex);
2851 wait_while_offlining();
2852 if (ksm_run != flags) {
2853 ksm_run = flags;
2854 if (flags & KSM_RUN_UNMERGE) {
2855 set_current_oom_origin();
2856 err = unmerge_and_remove_all_rmap_items();
2857 clear_current_oom_origin();
2858 if (err) {
2859 ksm_run = KSM_RUN_STOP;
2860 count = err;
2861 }
2862 }
2863 }
2864 mutex_unlock(&ksm_thread_mutex);
2865
2866 if (flags & KSM_RUN_MERGE)
2867 wake_up_interruptible(&ksm_thread_wait);
2868
2869 return count;
2870 }
2871 KSM_ATTR(run);
2872
2873 #ifdef CONFIG_NUMA
2874 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2875 struct kobj_attribute *attr, char *buf)
2876 {
2877 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2878 }
2879
2880 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2881 struct kobj_attribute *attr,
2882 const char *buf, size_t count)
2883 {
2884 int err;
2885 unsigned long knob;
2886
2887 err = kstrtoul(buf, 10, &knob);
2888 if (err)
2889 return err;
2890 if (knob > 1)
2891 return -EINVAL;
2892
2893 mutex_lock(&ksm_thread_mutex);
2894 wait_while_offlining();
2895 if (ksm_merge_across_nodes != knob) {
2896 if (ksm_pages_shared || remove_all_stable_nodes())
2897 err = -EBUSY;
2898 else if (root_stable_tree == one_stable_tree) {
2899 struct rb_root *buf;
2900 /*
2901 * This is the first time that we switch away from the
2902 * default of merging across nodes: must now allocate
2903 * a buffer to hold as many roots as may be needed.
2904 * Allocate stable and unstable together:
2905 * MAXSMP NODES_SHIFT 10 will use 16kB.
2906 */
2907 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2908 GFP_KERNEL);
2909 /* Let us assume that RB_ROOT is NULL is zero */
2910 if (!buf)
2911 err = -ENOMEM;
2912 else {
2913 root_stable_tree = buf;
2914 root_unstable_tree = buf + nr_node_ids;
2915 /* Stable tree is empty but not the unstable */
2916 root_unstable_tree[0] = one_unstable_tree[0];
2917 }
2918 }
2919 if (!err) {
2920 ksm_merge_across_nodes = knob;
2921 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2922 }
2923 }
2924 mutex_unlock(&ksm_thread_mutex);
2925
2926 return err ? err : count;
2927 }
2928 KSM_ATTR(merge_across_nodes);
2929 #endif
2930
2931 static ssize_t use_zero_pages_show(struct kobject *kobj,
2932 struct kobj_attribute *attr, char *buf)
2933 {
2934 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2935 }
2936 static ssize_t use_zero_pages_store(struct kobject *kobj,
2937 struct kobj_attribute *attr,
2938 const char *buf, size_t count)
2939 {
2940 int err;
2941 bool value;
2942
2943 err = kstrtobool(buf, &value);
2944 if (err)
2945 return -EINVAL;
2946
2947 ksm_use_zero_pages = value;
2948
2949 return count;
2950 }
2951 KSM_ATTR(use_zero_pages);
2952
2953 static ssize_t max_page_sharing_show(struct kobject *kobj,
2954 struct kobj_attribute *attr, char *buf)
2955 {
2956 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2957 }
2958
2959 static ssize_t max_page_sharing_store(struct kobject *kobj,
2960 struct kobj_attribute *attr,
2961 const char *buf, size_t count)
2962 {
2963 int err;
2964 int knob;
2965
2966 err = kstrtoint(buf, 10, &knob);
2967 if (err)
2968 return err;
2969 /*
2970 * When a KSM page is created it is shared by 2 mappings. This
2971 * being a signed comparison, it implicitly verifies it's not
2972 * negative.
2973 */
2974 if (knob < 2)
2975 return -EINVAL;
2976
2977 if (READ_ONCE(ksm_max_page_sharing) == knob)
2978 return count;
2979
2980 mutex_lock(&ksm_thread_mutex);
2981 wait_while_offlining();
2982 if (ksm_max_page_sharing != knob) {
2983 if (ksm_pages_shared || remove_all_stable_nodes())
2984 err = -EBUSY;
2985 else
2986 ksm_max_page_sharing = knob;
2987 }
2988 mutex_unlock(&ksm_thread_mutex);
2989
2990 return err ? err : count;
2991 }
2992 KSM_ATTR(max_page_sharing);
2993
2994 static ssize_t pages_shared_show(struct kobject *kobj,
2995 struct kobj_attribute *attr, char *buf)
2996 {
2997 return sprintf(buf, "%lu\n", ksm_pages_shared);
2998 }
2999 KSM_ATTR_RO(pages_shared);
3000
3001 static ssize_t pages_sharing_show(struct kobject *kobj,
3002 struct kobj_attribute *attr, char *buf)
3003 {
3004 return sprintf(buf, "%lu\n", ksm_pages_sharing);
3005 }
3006 KSM_ATTR_RO(pages_sharing);
3007
3008 static ssize_t pages_unshared_show(struct kobject *kobj,
3009 struct kobj_attribute *attr, char *buf)
3010 {
3011 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3012 }
3013 KSM_ATTR_RO(pages_unshared);
3014
3015 static ssize_t pages_volatile_show(struct kobject *kobj,
3016 struct kobj_attribute *attr, char *buf)
3017 {
3018 long ksm_pages_volatile;
3019
3020 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3021 - ksm_pages_sharing - ksm_pages_unshared;
3022 /*
3023 * It was not worth any locking to calculate that statistic,
3024 * but it might therefore sometimes be negative: conceal that.
3025 */
3026 if (ksm_pages_volatile < 0)
3027 ksm_pages_volatile = 0;
3028 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3029 }
3030 KSM_ATTR_RO(pages_volatile);
3031
3032 static ssize_t stable_node_dups_show(struct kobject *kobj,
3033 struct kobj_attribute *attr, char *buf)
3034 {
3035 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3036 }
3037 KSM_ATTR_RO(stable_node_dups);
3038
3039 static ssize_t stable_node_chains_show(struct kobject *kobj,
3040 struct kobj_attribute *attr, char *buf)
3041 {
3042 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3043 }
3044 KSM_ATTR_RO(stable_node_chains);
3045
3046 static ssize_t
3047 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3048 struct kobj_attribute *attr,
3049 char *buf)
3050 {
3051 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3052 }
3053
3054 static ssize_t
3055 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3056 struct kobj_attribute *attr,
3057 const char *buf, size_t count)
3058 {
3059 unsigned long msecs;
3060 int err;
3061
3062 err = kstrtoul(buf, 10, &msecs);
3063 if (err || msecs > UINT_MAX)
3064 return -EINVAL;
3065
3066 ksm_stable_node_chains_prune_millisecs = msecs;
3067
3068 return count;
3069 }
3070 KSM_ATTR(stable_node_chains_prune_millisecs);
3071
3072 static ssize_t full_scans_show(struct kobject *kobj,
3073 struct kobj_attribute *attr, char *buf)
3074 {
3075 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3076 }
3077 KSM_ATTR_RO(full_scans);
3078
3079 static struct attribute *ksm_attrs[] = {
3080 &sleep_millisecs_attr.attr,
3081 &pages_to_scan_attr.attr,
3082 &run_attr.attr,
3083 &pages_shared_attr.attr,
3084 &pages_sharing_attr.attr,
3085 &pages_unshared_attr.attr,
3086 &pages_volatile_attr.attr,
3087 &full_scans_attr.attr,
3088 #ifdef CONFIG_NUMA
3089 &merge_across_nodes_attr.attr,
3090 #endif
3091 &max_page_sharing_attr.attr,
3092 &stable_node_chains_attr.attr,
3093 &stable_node_dups_attr.attr,
3094 &stable_node_chains_prune_millisecs_attr.attr,
3095 &use_zero_pages_attr.attr,
3096 NULL,
3097 };
3098
3099 static const struct attribute_group ksm_attr_group = {
3100 .attrs = ksm_attrs,
3101 .name = "ksm",
3102 };
3103 #endif /* CONFIG_SYSFS */
3104
3105 static int __init ksm_init(void)
3106 {
3107 struct task_struct *ksm_thread;
3108 int err;
3109
3110 /* The correct value depends on page size and endianness */
3111 zero_checksum = calc_checksum(ZERO_PAGE(0));
3112 /* Default to false for backwards compatibility */
3113 ksm_use_zero_pages = false;
3114
3115 err = ksm_slab_init();
3116 if (err)
3117 goto out;
3118
3119 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3120 if (IS_ERR(ksm_thread)) {
3121 pr_err("ksm: creating kthread failed\n");
3122 err = PTR_ERR(ksm_thread);
3123 goto out_free;
3124 }
3125
3126 #ifdef CONFIG_SYSFS
3127 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3128 if (err) {
3129 pr_err("ksm: register sysfs failed\n");
3130 kthread_stop(ksm_thread);
3131 goto out_free;
3132 }
3133 #else
3134 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3135
3136 #endif /* CONFIG_SYSFS */
3137
3138 #ifdef CONFIG_MEMORY_HOTREMOVE
3139 /* There is no significance to this priority 100 */
3140 hotplug_memory_notifier(ksm_memory_callback, 100);
3141 #endif
3142 return 0;
3143
3144 out_free:
3145 ksm_slab_free();
3146 out:
3147 return err;
3148 }
3149 subsys_initcall(ksm_init);