]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/ksm.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /*
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
57 *
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
60 *
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
64 *
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
69 *
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
76 *
77 * KSM solves this problem by several techniques:
78 *
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
92 *
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
95 */
96
97 /**
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
103 */
104 struct mm_slot {
105 struct hlist_node link;
106 struct list_head mm_list;
107 struct rmap_item *rmap_list;
108 struct mm_struct *mm;
109 };
110
111 /**
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
117 *
118 * There is only the one ksm_scan instance of this cursor structure.
119 */
120 struct ksm_scan {
121 struct mm_slot *mm_slot;
122 unsigned long address;
123 struct rmap_item **rmap_list;
124 unsigned long seqnr;
125 };
126
127 /**
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
138 */
139 struct stable_node {
140 union {
141 struct rb_node node; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head *head;
144 struct {
145 struct hlist_node hlist_dup;
146 struct list_head list;
147 };
148 };
149 };
150 struct hlist_head hlist;
151 union {
152 unsigned long kpfn;
153 unsigned long chain_prune_time;
154 };
155 /*
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
159 */
160 #define STABLE_NODE_CHAIN -1024
161 int rmap_hlist_len;
162 #ifdef CONFIG_NUMA
163 int nid;
164 #endif
165 };
166
167 /**
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
178 */
179 struct rmap_item {
180 struct rmap_item *rmap_list;
181 union {
182 struct anon_vma *anon_vma; /* when stable */
183 #ifdef CONFIG_NUMA
184 int nid; /* when node of unstable tree */
185 #endif
186 };
187 struct mm_struct *mm;
188 unsigned long address; /* + low bits used for flags below */
189 unsigned int oldchecksum; /* when unstable */
190 union {
191 struct rb_node node; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node *head;
194 struct hlist_node hlist;
195 };
196 };
197 };
198
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
202 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
203 /* to mask all the flags */
204
205 /* The stable and unstable tree heads */
206 static struct rb_root one_stable_tree[1] = { RB_ROOT };
207 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
208 static struct rb_root *root_stable_tree = one_stable_tree;
209 static struct rb_root *root_unstable_tree = one_unstable_tree;
210
211 /* Recently migrated nodes of stable tree, pending proper placement */
212 static LIST_HEAD(migrate_nodes);
213 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
214
215 #define MM_SLOTS_HASH_BITS 10
216 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
217
218 static struct mm_slot ksm_mm_head = {
219 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
220 };
221 static struct ksm_scan ksm_scan = {
222 .mm_slot = &ksm_mm_head,
223 };
224
225 static struct kmem_cache *rmap_item_cache;
226 static struct kmem_cache *stable_node_cache;
227 static struct kmem_cache *mm_slot_cache;
228
229 /* The number of nodes in the stable tree */
230 static unsigned long ksm_pages_shared;
231
232 /* The number of page slots additionally sharing those nodes */
233 static unsigned long ksm_pages_sharing;
234
235 /* The number of nodes in the unstable tree */
236 static unsigned long ksm_pages_unshared;
237
238 /* The number of rmap_items in use: to calculate pages_volatile */
239 static unsigned long ksm_rmap_items;
240
241 /* The number of stable_node chains */
242 static unsigned long ksm_stable_node_chains;
243
244 /* The number of stable_node dups linked to the stable_node chains */
245 static unsigned long ksm_stable_node_dups;
246
247 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
248 static int ksm_stable_node_chains_prune_millisecs = 2000;
249
250 /* Maximum number of page slots sharing a stable node */
251 static int ksm_max_page_sharing = 256;
252
253 /* Number of pages ksmd should scan in one batch */
254 static unsigned int ksm_thread_pages_to_scan = 100;
255
256 /* Milliseconds ksmd should sleep between batches */
257 static unsigned int ksm_thread_sleep_millisecs = 20;
258
259 /* Checksum of an empty (zeroed) page */
260 static unsigned int zero_checksum __read_mostly;
261
262 /* Whether to merge empty (zeroed) pages with actual zero pages */
263 static bool ksm_use_zero_pages __read_mostly;
264
265 #ifdef CONFIG_NUMA
266 /* Zeroed when merging across nodes is not allowed */
267 static unsigned int ksm_merge_across_nodes = 1;
268 static int ksm_nr_node_ids = 1;
269 #else
270 #define ksm_merge_across_nodes 1U
271 #define ksm_nr_node_ids 1
272 #endif
273
274 #define KSM_RUN_STOP 0
275 #define KSM_RUN_MERGE 1
276 #define KSM_RUN_UNMERGE 2
277 #define KSM_RUN_OFFLINE 4
278 static unsigned long ksm_run = KSM_RUN_STOP;
279 static void wait_while_offlining(void);
280
281 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
282 static DEFINE_MUTEX(ksm_thread_mutex);
283 static DEFINE_SPINLOCK(ksm_mmlist_lock);
284
285 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
286 sizeof(struct __struct), __alignof__(struct __struct),\
287 (__flags), NULL)
288
289 static int __init ksm_slab_init(void)
290 {
291 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
292 if (!rmap_item_cache)
293 goto out;
294
295 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
296 if (!stable_node_cache)
297 goto out_free1;
298
299 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
300 if (!mm_slot_cache)
301 goto out_free2;
302
303 return 0;
304
305 out_free2:
306 kmem_cache_destroy(stable_node_cache);
307 out_free1:
308 kmem_cache_destroy(rmap_item_cache);
309 out:
310 return -ENOMEM;
311 }
312
313 static void __init ksm_slab_free(void)
314 {
315 kmem_cache_destroy(mm_slot_cache);
316 kmem_cache_destroy(stable_node_cache);
317 kmem_cache_destroy(rmap_item_cache);
318 mm_slot_cache = NULL;
319 }
320
321 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
322 {
323 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
324 }
325
326 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
327 {
328 return dup->head == STABLE_NODE_DUP_HEAD;
329 }
330
331 static inline void stable_node_chain_add_dup(struct stable_node *dup,
332 struct stable_node *chain)
333 {
334 VM_BUG_ON(is_stable_node_dup(dup));
335 dup->head = STABLE_NODE_DUP_HEAD;
336 VM_BUG_ON(!is_stable_node_chain(chain));
337 hlist_add_head(&dup->hlist_dup, &chain->hlist);
338 ksm_stable_node_dups++;
339 }
340
341 static inline void __stable_node_dup_del(struct stable_node *dup)
342 {
343 VM_BUG_ON(!is_stable_node_dup(dup));
344 hlist_del(&dup->hlist_dup);
345 ksm_stable_node_dups--;
346 }
347
348 static inline void stable_node_dup_del(struct stable_node *dup)
349 {
350 VM_BUG_ON(is_stable_node_chain(dup));
351 if (is_stable_node_dup(dup))
352 __stable_node_dup_del(dup);
353 else
354 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
355 #ifdef CONFIG_DEBUG_VM
356 dup->head = NULL;
357 #endif
358 }
359
360 static inline struct rmap_item *alloc_rmap_item(void)
361 {
362 struct rmap_item *rmap_item;
363
364 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
365 __GFP_NORETRY | __GFP_NOWARN);
366 if (rmap_item)
367 ksm_rmap_items++;
368 return rmap_item;
369 }
370
371 static inline void free_rmap_item(struct rmap_item *rmap_item)
372 {
373 ksm_rmap_items--;
374 rmap_item->mm = NULL; /* debug safety */
375 kmem_cache_free(rmap_item_cache, rmap_item);
376 }
377
378 static inline struct stable_node *alloc_stable_node(void)
379 {
380 /*
381 * The allocation can take too long with GFP_KERNEL when memory is under
382 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
383 * grants access to memory reserves, helping to avoid this problem.
384 */
385 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
386 }
387
388 static inline void free_stable_node(struct stable_node *stable_node)
389 {
390 VM_BUG_ON(stable_node->rmap_hlist_len &&
391 !is_stable_node_chain(stable_node));
392 kmem_cache_free(stable_node_cache, stable_node);
393 }
394
395 static inline struct mm_slot *alloc_mm_slot(void)
396 {
397 if (!mm_slot_cache) /* initialization failed */
398 return NULL;
399 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
400 }
401
402 static inline void free_mm_slot(struct mm_slot *mm_slot)
403 {
404 kmem_cache_free(mm_slot_cache, mm_slot);
405 }
406
407 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
408 {
409 struct mm_slot *slot;
410
411 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
412 if (slot->mm == mm)
413 return slot;
414
415 return NULL;
416 }
417
418 static void insert_to_mm_slots_hash(struct mm_struct *mm,
419 struct mm_slot *mm_slot)
420 {
421 mm_slot->mm = mm;
422 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
423 }
424
425 /*
426 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
427 * page tables after it has passed through ksm_exit() - which, if necessary,
428 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
429 * a special flag: they can just back out as soon as mm_users goes to zero.
430 * ksm_test_exit() is used throughout to make this test for exit: in some
431 * places for correctness, in some places just to avoid unnecessary work.
432 */
433 static inline bool ksm_test_exit(struct mm_struct *mm)
434 {
435 return atomic_read(&mm->mm_users) == 0;
436 }
437
438 /*
439 * We use break_ksm to break COW on a ksm page: it's a stripped down
440 *
441 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
442 * put_page(page);
443 *
444 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
445 * in case the application has unmapped and remapped mm,addr meanwhile.
446 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
447 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
448 *
449 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
450 * of the process that owns 'vma'. We also do not want to enforce
451 * protection keys here anyway.
452 */
453 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
454 {
455 struct page *page;
456 int ret = 0;
457
458 do {
459 cond_resched();
460 page = follow_page(vma, addr,
461 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
462 if (IS_ERR_OR_NULL(page))
463 break;
464 if (PageKsm(page))
465 ret = handle_mm_fault(vma, addr,
466 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
467 else
468 ret = VM_FAULT_WRITE;
469 put_page(page);
470 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
471 /*
472 * We must loop because handle_mm_fault() may back out if there's
473 * any difficulty e.g. if pte accessed bit gets updated concurrently.
474 *
475 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
476 * COW has been broken, even if the vma does not permit VM_WRITE;
477 * but note that a concurrent fault might break PageKsm for us.
478 *
479 * VM_FAULT_SIGBUS could occur if we race with truncation of the
480 * backing file, which also invalidates anonymous pages: that's
481 * okay, that truncation will have unmapped the PageKsm for us.
482 *
483 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
484 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
485 * current task has TIF_MEMDIE set, and will be OOM killed on return
486 * to user; and ksmd, having no mm, would never be chosen for that.
487 *
488 * But if the mm is in a limited mem_cgroup, then the fault may fail
489 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
490 * even ksmd can fail in this way - though it's usually breaking ksm
491 * just to undo a merge it made a moment before, so unlikely to oom.
492 *
493 * That's a pity: we might therefore have more kernel pages allocated
494 * than we're counting as nodes in the stable tree; but ksm_do_scan
495 * will retry to break_cow on each pass, so should recover the page
496 * in due course. The important thing is to not let VM_MERGEABLE
497 * be cleared while any such pages might remain in the area.
498 */
499 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
500 }
501
502 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
503 unsigned long addr)
504 {
505 struct vm_area_struct *vma;
506 if (ksm_test_exit(mm))
507 return NULL;
508 vma = find_vma(mm, addr);
509 if (!vma || vma->vm_start > addr)
510 return NULL;
511 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
512 return NULL;
513 return vma;
514 }
515
516 static void break_cow(struct rmap_item *rmap_item)
517 {
518 struct mm_struct *mm = rmap_item->mm;
519 unsigned long addr = rmap_item->address;
520 struct vm_area_struct *vma;
521
522 /*
523 * It is not an accident that whenever we want to break COW
524 * to undo, we also need to drop a reference to the anon_vma.
525 */
526 put_anon_vma(rmap_item->anon_vma);
527
528 down_read(&mm->mmap_sem);
529 vma = find_mergeable_vma(mm, addr);
530 if (vma)
531 break_ksm(vma, addr);
532 up_read(&mm->mmap_sem);
533 }
534
535 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
536 {
537 struct mm_struct *mm = rmap_item->mm;
538 unsigned long addr = rmap_item->address;
539 struct vm_area_struct *vma;
540 struct page *page;
541
542 down_read(&mm->mmap_sem);
543 vma = find_mergeable_vma(mm, addr);
544 if (!vma)
545 goto out;
546
547 page = follow_page(vma, addr, FOLL_GET);
548 if (IS_ERR_OR_NULL(page))
549 goto out;
550 if (PageAnon(page)) {
551 flush_anon_page(vma, page, addr);
552 flush_dcache_page(page);
553 } else {
554 put_page(page);
555 out:
556 page = NULL;
557 }
558 up_read(&mm->mmap_sem);
559 return page;
560 }
561
562 /*
563 * This helper is used for getting right index into array of tree roots.
564 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
565 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
566 * every node has its own stable and unstable tree.
567 */
568 static inline int get_kpfn_nid(unsigned long kpfn)
569 {
570 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
571 }
572
573 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
574 struct rb_root *root)
575 {
576 struct stable_node *chain = alloc_stable_node();
577 VM_BUG_ON(is_stable_node_chain(dup));
578 if (likely(chain)) {
579 INIT_HLIST_HEAD(&chain->hlist);
580 chain->chain_prune_time = jiffies;
581 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
582 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
583 chain->nid = -1; /* debug */
584 #endif
585 ksm_stable_node_chains++;
586
587 /*
588 * Put the stable node chain in the first dimension of
589 * the stable tree and at the same time remove the old
590 * stable node.
591 */
592 rb_replace_node(&dup->node, &chain->node, root);
593
594 /*
595 * Move the old stable node to the second dimension
596 * queued in the hlist_dup. The invariant is that all
597 * dup stable_nodes in the chain->hlist point to pages
598 * that are wrprotected and have the exact same
599 * content.
600 */
601 stable_node_chain_add_dup(dup, chain);
602 }
603 return chain;
604 }
605
606 static inline void free_stable_node_chain(struct stable_node *chain,
607 struct rb_root *root)
608 {
609 rb_erase(&chain->node, root);
610 free_stable_node(chain);
611 ksm_stable_node_chains--;
612 }
613
614 static void remove_node_from_stable_tree(struct stable_node *stable_node)
615 {
616 struct rmap_item *rmap_item;
617
618 /* check it's not STABLE_NODE_CHAIN or negative */
619 BUG_ON(stable_node->rmap_hlist_len < 0);
620
621 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
622 if (rmap_item->hlist.next)
623 ksm_pages_sharing--;
624 else
625 ksm_pages_shared--;
626 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
627 stable_node->rmap_hlist_len--;
628 put_anon_vma(rmap_item->anon_vma);
629 rmap_item->address &= PAGE_MASK;
630 cond_resched();
631 }
632
633 /*
634 * We need the second aligned pointer of the migrate_nodes
635 * list_head to stay clear from the rb_parent_color union
636 * (aligned and different than any node) and also different
637 * from &migrate_nodes. This will verify that future list.h changes
638 * don't break STABLE_NODE_DUP_HEAD.
639 */
640 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
641 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
642 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
643 #endif
644
645 if (stable_node->head == &migrate_nodes)
646 list_del(&stable_node->list);
647 else
648 stable_node_dup_del(stable_node);
649 free_stable_node(stable_node);
650 }
651
652 /*
653 * get_ksm_page: checks if the page indicated by the stable node
654 * is still its ksm page, despite having held no reference to it.
655 * In which case we can trust the content of the page, and it
656 * returns the gotten page; but if the page has now been zapped,
657 * remove the stale node from the stable tree and return NULL.
658 * But beware, the stable node's page might be being migrated.
659 *
660 * You would expect the stable_node to hold a reference to the ksm page.
661 * But if it increments the page's count, swapping out has to wait for
662 * ksmd to come around again before it can free the page, which may take
663 * seconds or even minutes: much too unresponsive. So instead we use a
664 * "keyhole reference": access to the ksm page from the stable node peeps
665 * out through its keyhole to see if that page still holds the right key,
666 * pointing back to this stable node. This relies on freeing a PageAnon
667 * page to reset its page->mapping to NULL, and relies on no other use of
668 * a page to put something that might look like our key in page->mapping.
669 * is on its way to being freed; but it is an anomaly to bear in mind.
670 */
671 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
672 {
673 struct page *page;
674 void *expected_mapping;
675 unsigned long kpfn;
676
677 expected_mapping = (void *)((unsigned long)stable_node |
678 PAGE_MAPPING_KSM);
679 again:
680 kpfn = READ_ONCE(stable_node->kpfn);
681 page = pfn_to_page(kpfn);
682
683 /*
684 * page is computed from kpfn, so on most architectures reading
685 * page->mapping is naturally ordered after reading node->kpfn,
686 * but on Alpha we need to be more careful.
687 */
688 smp_read_barrier_depends();
689 if (READ_ONCE(page->mapping) != expected_mapping)
690 goto stale;
691
692 /*
693 * We cannot do anything with the page while its refcount is 0.
694 * Usually 0 means free, or tail of a higher-order page: in which
695 * case this node is no longer referenced, and should be freed;
696 * however, it might mean that the page is under page_freeze_refs().
697 * The __remove_mapping() case is easy, again the node is now stale;
698 * but if page is swapcache in migrate_page_move_mapping(), it might
699 * still be our page, in which case it's essential to keep the node.
700 */
701 while (!get_page_unless_zero(page)) {
702 /*
703 * Another check for page->mapping != expected_mapping would
704 * work here too. We have chosen the !PageSwapCache test to
705 * optimize the common case, when the page is or is about to
706 * be freed: PageSwapCache is cleared (under spin_lock_irq)
707 * in the freeze_refs section of __remove_mapping(); but Anon
708 * page->mapping reset to NULL later, in free_pages_prepare().
709 */
710 if (!PageSwapCache(page))
711 goto stale;
712 cpu_relax();
713 }
714
715 if (READ_ONCE(page->mapping) != expected_mapping) {
716 put_page(page);
717 goto stale;
718 }
719
720 if (lock_it) {
721 lock_page(page);
722 if (READ_ONCE(page->mapping) != expected_mapping) {
723 unlock_page(page);
724 put_page(page);
725 goto stale;
726 }
727 }
728 return page;
729
730 stale:
731 /*
732 * We come here from above when page->mapping or !PageSwapCache
733 * suggests that the node is stale; but it might be under migration.
734 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
735 * before checking whether node->kpfn has been changed.
736 */
737 smp_rmb();
738 if (READ_ONCE(stable_node->kpfn) != kpfn)
739 goto again;
740 remove_node_from_stable_tree(stable_node);
741 return NULL;
742 }
743
744 /*
745 * Removing rmap_item from stable or unstable tree.
746 * This function will clean the information from the stable/unstable tree.
747 */
748 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
749 {
750 if (rmap_item->address & STABLE_FLAG) {
751 struct stable_node *stable_node;
752 struct page *page;
753
754 stable_node = rmap_item->head;
755 page = get_ksm_page(stable_node, true);
756 if (!page)
757 goto out;
758
759 hlist_del(&rmap_item->hlist);
760 unlock_page(page);
761 put_page(page);
762
763 if (!hlist_empty(&stable_node->hlist))
764 ksm_pages_sharing--;
765 else
766 ksm_pages_shared--;
767 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
768 stable_node->rmap_hlist_len--;
769
770 put_anon_vma(rmap_item->anon_vma);
771 rmap_item->address &= PAGE_MASK;
772
773 } else if (rmap_item->address & UNSTABLE_FLAG) {
774 unsigned char age;
775 /*
776 * Usually ksmd can and must skip the rb_erase, because
777 * root_unstable_tree was already reset to RB_ROOT.
778 * But be careful when an mm is exiting: do the rb_erase
779 * if this rmap_item was inserted by this scan, rather
780 * than left over from before.
781 */
782 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
783 BUG_ON(age > 1);
784 if (!age)
785 rb_erase(&rmap_item->node,
786 root_unstable_tree + NUMA(rmap_item->nid));
787 ksm_pages_unshared--;
788 rmap_item->address &= PAGE_MASK;
789 }
790 out:
791 cond_resched(); /* we're called from many long loops */
792 }
793
794 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
795 struct rmap_item **rmap_list)
796 {
797 while (*rmap_list) {
798 struct rmap_item *rmap_item = *rmap_list;
799 *rmap_list = rmap_item->rmap_list;
800 remove_rmap_item_from_tree(rmap_item);
801 free_rmap_item(rmap_item);
802 }
803 }
804
805 /*
806 * Though it's very tempting to unmerge rmap_items from stable tree rather
807 * than check every pte of a given vma, the locking doesn't quite work for
808 * that - an rmap_item is assigned to the stable tree after inserting ksm
809 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
810 * rmap_items from parent to child at fork time (so as not to waste time
811 * if exit comes before the next scan reaches it).
812 *
813 * Similarly, although we'd like to remove rmap_items (so updating counts
814 * and freeing memory) when unmerging an area, it's easier to leave that
815 * to the next pass of ksmd - consider, for example, how ksmd might be
816 * in cmp_and_merge_page on one of the rmap_items we would be removing.
817 */
818 static int unmerge_ksm_pages(struct vm_area_struct *vma,
819 unsigned long start, unsigned long end)
820 {
821 unsigned long addr;
822 int err = 0;
823
824 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
825 if (ksm_test_exit(vma->vm_mm))
826 break;
827 if (signal_pending(current))
828 err = -ERESTARTSYS;
829 else
830 err = break_ksm(vma, addr);
831 }
832 return err;
833 }
834
835 #ifdef CONFIG_SYSFS
836 /*
837 * Only called through the sysfs control interface:
838 */
839 static int remove_stable_node(struct stable_node *stable_node)
840 {
841 struct page *page;
842 int err;
843
844 page = get_ksm_page(stable_node, true);
845 if (!page) {
846 /*
847 * get_ksm_page did remove_node_from_stable_tree itself.
848 */
849 return 0;
850 }
851
852 /*
853 * Page could be still mapped if this races with __mmput() running in
854 * between ksm_exit() and exit_mmap(). Just refuse to let
855 * merge_across_nodes/max_page_sharing be switched.
856 */
857 err = -EBUSY;
858 if (!page_mapped(page)) {
859 /*
860 * The stable node did not yet appear stale to get_ksm_page(),
861 * since that allows for an unmapped ksm page to be recognized
862 * right up until it is freed; but the node is safe to remove.
863 * This page might be in a pagevec waiting to be freed,
864 * or it might be PageSwapCache (perhaps under writeback),
865 * or it might have been removed from swapcache a moment ago.
866 */
867 set_page_stable_node(page, NULL);
868 remove_node_from_stable_tree(stable_node);
869 err = 0;
870 }
871
872 unlock_page(page);
873 put_page(page);
874 return err;
875 }
876
877 static int remove_stable_node_chain(struct stable_node *stable_node,
878 struct rb_root *root)
879 {
880 struct stable_node *dup;
881 struct hlist_node *hlist_safe;
882
883 if (!is_stable_node_chain(stable_node)) {
884 VM_BUG_ON(is_stable_node_dup(stable_node));
885 if (remove_stable_node(stable_node))
886 return true;
887 else
888 return false;
889 }
890
891 hlist_for_each_entry_safe(dup, hlist_safe,
892 &stable_node->hlist, hlist_dup) {
893 VM_BUG_ON(!is_stable_node_dup(dup));
894 if (remove_stable_node(dup))
895 return true;
896 }
897 BUG_ON(!hlist_empty(&stable_node->hlist));
898 free_stable_node_chain(stable_node, root);
899 return false;
900 }
901
902 static int remove_all_stable_nodes(void)
903 {
904 struct stable_node *stable_node, *next;
905 int nid;
906 int err = 0;
907
908 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
909 while (root_stable_tree[nid].rb_node) {
910 stable_node = rb_entry(root_stable_tree[nid].rb_node,
911 struct stable_node, node);
912 if (remove_stable_node_chain(stable_node,
913 root_stable_tree + nid)) {
914 err = -EBUSY;
915 break; /* proceed to next nid */
916 }
917 cond_resched();
918 }
919 }
920 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
921 if (remove_stable_node(stable_node))
922 err = -EBUSY;
923 cond_resched();
924 }
925 return err;
926 }
927
928 static int unmerge_and_remove_all_rmap_items(void)
929 {
930 struct mm_slot *mm_slot;
931 struct mm_struct *mm;
932 struct vm_area_struct *vma;
933 int err = 0;
934
935 spin_lock(&ksm_mmlist_lock);
936 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
937 struct mm_slot, mm_list);
938 spin_unlock(&ksm_mmlist_lock);
939
940 for (mm_slot = ksm_scan.mm_slot;
941 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
942 mm = mm_slot->mm;
943 down_read(&mm->mmap_sem);
944 for (vma = mm->mmap; vma; vma = vma->vm_next) {
945 if (ksm_test_exit(mm))
946 break;
947 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
948 continue;
949 err = unmerge_ksm_pages(vma,
950 vma->vm_start, vma->vm_end);
951 if (err)
952 goto error;
953 }
954
955 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
956 up_read(&mm->mmap_sem);
957
958 spin_lock(&ksm_mmlist_lock);
959 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
960 struct mm_slot, mm_list);
961 if (ksm_test_exit(mm)) {
962 hash_del(&mm_slot->link);
963 list_del(&mm_slot->mm_list);
964 spin_unlock(&ksm_mmlist_lock);
965
966 free_mm_slot(mm_slot);
967 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
968 mmdrop(mm);
969 } else
970 spin_unlock(&ksm_mmlist_lock);
971 }
972
973 /* Clean up stable nodes, but don't worry if some are still busy */
974 remove_all_stable_nodes();
975 ksm_scan.seqnr = 0;
976 return 0;
977
978 error:
979 up_read(&mm->mmap_sem);
980 spin_lock(&ksm_mmlist_lock);
981 ksm_scan.mm_slot = &ksm_mm_head;
982 spin_unlock(&ksm_mmlist_lock);
983 return err;
984 }
985 #endif /* CONFIG_SYSFS */
986
987 static u32 calc_checksum(struct page *page)
988 {
989 u32 checksum;
990 void *addr = kmap_atomic(page);
991 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
992 kunmap_atomic(addr);
993 return checksum;
994 }
995
996 static int memcmp_pages(struct page *page1, struct page *page2)
997 {
998 char *addr1, *addr2;
999 int ret;
1000
1001 addr1 = kmap_atomic(page1);
1002 addr2 = kmap_atomic(page2);
1003 ret = memcmp(addr1, addr2, PAGE_SIZE);
1004 kunmap_atomic(addr2);
1005 kunmap_atomic(addr1);
1006 return ret;
1007 }
1008
1009 static inline int pages_identical(struct page *page1, struct page *page2)
1010 {
1011 return !memcmp_pages(page1, page2);
1012 }
1013
1014 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1015 pte_t *orig_pte)
1016 {
1017 struct mm_struct *mm = vma->vm_mm;
1018 struct page_vma_mapped_walk pvmw = {
1019 .page = page,
1020 .vma = vma,
1021 };
1022 int swapped;
1023 int err = -EFAULT;
1024 unsigned long mmun_start; /* For mmu_notifiers */
1025 unsigned long mmun_end; /* For mmu_notifiers */
1026
1027 pvmw.address = page_address_in_vma(page, vma);
1028 if (pvmw.address == -EFAULT)
1029 goto out;
1030
1031 BUG_ON(PageTransCompound(page));
1032
1033 mmun_start = pvmw.address;
1034 mmun_end = pvmw.address + PAGE_SIZE;
1035 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1036
1037 if (!page_vma_mapped_walk(&pvmw))
1038 goto out_mn;
1039 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1040 goto out_unlock;
1041
1042 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1043 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1044 mm_tlb_flush_pending(mm)) {
1045 pte_t entry;
1046
1047 swapped = PageSwapCache(page);
1048 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1049 /*
1050 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1051 * take any lock, therefore the check that we are going to make
1052 * with the pagecount against the mapcount is racey and
1053 * O_DIRECT can happen right after the check.
1054 * So we clear the pte and flush the tlb before the check
1055 * this assure us that no O_DIRECT can happen after the check
1056 * or in the middle of the check.
1057 *
1058 * No need to notify as we are downgrading page table to read
1059 * only not changing it to point to a new page.
1060 *
1061 * See Documentation/vm/mmu_notifier.txt
1062 */
1063 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1064 /*
1065 * Check that no O_DIRECT or similar I/O is in progress on the
1066 * page
1067 */
1068 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1069 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1070 goto out_unlock;
1071 }
1072 if (pte_dirty(entry))
1073 set_page_dirty(page);
1074
1075 if (pte_protnone(entry))
1076 entry = pte_mkclean(pte_clear_savedwrite(entry));
1077 else
1078 entry = pte_mkclean(pte_wrprotect(entry));
1079 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1080 }
1081 *orig_pte = *pvmw.pte;
1082 err = 0;
1083
1084 out_unlock:
1085 page_vma_mapped_walk_done(&pvmw);
1086 out_mn:
1087 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1088 out:
1089 return err;
1090 }
1091
1092 /**
1093 * replace_page - replace page in vma by new ksm page
1094 * @vma: vma that holds the pte pointing to page
1095 * @page: the page we are replacing by kpage
1096 * @kpage: the ksm page we replace page by
1097 * @orig_pte: the original value of the pte
1098 *
1099 * Returns 0 on success, -EFAULT on failure.
1100 */
1101 static int replace_page(struct vm_area_struct *vma, struct page *page,
1102 struct page *kpage, pte_t orig_pte)
1103 {
1104 struct mm_struct *mm = vma->vm_mm;
1105 pmd_t *pmd;
1106 pte_t *ptep;
1107 pte_t newpte;
1108 spinlock_t *ptl;
1109 unsigned long addr;
1110 int err = -EFAULT;
1111 unsigned long mmun_start; /* For mmu_notifiers */
1112 unsigned long mmun_end; /* For mmu_notifiers */
1113
1114 addr = page_address_in_vma(page, vma);
1115 if (addr == -EFAULT)
1116 goto out;
1117
1118 pmd = mm_find_pmd(mm, addr);
1119 if (!pmd)
1120 goto out;
1121
1122 mmun_start = addr;
1123 mmun_end = addr + PAGE_SIZE;
1124 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1125
1126 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1127 if (!pte_same(*ptep, orig_pte)) {
1128 pte_unmap_unlock(ptep, ptl);
1129 goto out_mn;
1130 }
1131
1132 /*
1133 * No need to check ksm_use_zero_pages here: we can only have a
1134 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1135 */
1136 if (!is_zero_pfn(page_to_pfn(kpage))) {
1137 get_page(kpage);
1138 page_add_anon_rmap(kpage, vma, addr, false);
1139 newpte = mk_pte(kpage, vma->vm_page_prot);
1140 } else {
1141 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1142 vma->vm_page_prot));
1143 /*
1144 * We're replacing an anonymous page with a zero page, which is
1145 * not anonymous. We need to do proper accounting otherwise we
1146 * will get wrong values in /proc, and a BUG message in dmesg
1147 * when tearing down the mm.
1148 */
1149 dec_mm_counter(mm, MM_ANONPAGES);
1150 }
1151
1152 flush_cache_page(vma, addr, pte_pfn(*ptep));
1153 /*
1154 * No need to notify as we are replacing a read only page with another
1155 * read only page with the same content.
1156 *
1157 * See Documentation/vm/mmu_notifier.txt
1158 */
1159 ptep_clear_flush(vma, addr, ptep);
1160 set_pte_at_notify(mm, addr, ptep, newpte);
1161
1162 page_remove_rmap(page, false);
1163 if (!page_mapped(page))
1164 try_to_free_swap(page);
1165 put_page(page);
1166
1167 pte_unmap_unlock(ptep, ptl);
1168 err = 0;
1169 out_mn:
1170 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1171 out:
1172 return err;
1173 }
1174
1175 /*
1176 * try_to_merge_one_page - take two pages and merge them into one
1177 * @vma: the vma that holds the pte pointing to page
1178 * @page: the PageAnon page that we want to replace with kpage
1179 * @kpage: the PageKsm page that we want to map instead of page,
1180 * or NULL the first time when we want to use page as kpage.
1181 *
1182 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1183 */
1184 static int try_to_merge_one_page(struct vm_area_struct *vma,
1185 struct page *page, struct page *kpage)
1186 {
1187 pte_t orig_pte = __pte(0);
1188 int err = -EFAULT;
1189
1190 if (page == kpage) /* ksm page forked */
1191 return 0;
1192
1193 if (!PageAnon(page))
1194 goto out;
1195
1196 /*
1197 * We need the page lock to read a stable PageSwapCache in
1198 * write_protect_page(). We use trylock_page() instead of
1199 * lock_page() because we don't want to wait here - we
1200 * prefer to continue scanning and merging different pages,
1201 * then come back to this page when it is unlocked.
1202 */
1203 if (!trylock_page(page))
1204 goto out;
1205
1206 if (PageTransCompound(page)) {
1207 if (split_huge_page(page))
1208 goto out_unlock;
1209 }
1210
1211 /*
1212 * If this anonymous page is mapped only here, its pte may need
1213 * to be write-protected. If it's mapped elsewhere, all of its
1214 * ptes are necessarily already write-protected. But in either
1215 * case, we need to lock and check page_count is not raised.
1216 */
1217 if (write_protect_page(vma, page, &orig_pte) == 0) {
1218 if (!kpage) {
1219 /*
1220 * While we hold page lock, upgrade page from
1221 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1222 * stable_tree_insert() will update stable_node.
1223 */
1224 set_page_stable_node(page, NULL);
1225 mark_page_accessed(page);
1226 /*
1227 * Page reclaim just frees a clean page with no dirty
1228 * ptes: make sure that the ksm page would be swapped.
1229 */
1230 if (!PageDirty(page))
1231 SetPageDirty(page);
1232 err = 0;
1233 } else if (pages_identical(page, kpage))
1234 err = replace_page(vma, page, kpage, orig_pte);
1235 }
1236
1237 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1238 munlock_vma_page(page);
1239 if (!PageMlocked(kpage)) {
1240 unlock_page(page);
1241 lock_page(kpage);
1242 mlock_vma_page(kpage);
1243 page = kpage; /* for final unlock */
1244 }
1245 }
1246
1247 out_unlock:
1248 unlock_page(page);
1249 out:
1250 return err;
1251 }
1252
1253 /*
1254 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1255 * but no new kernel page is allocated: kpage must already be a ksm page.
1256 *
1257 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1258 */
1259 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1260 struct page *page, struct page *kpage)
1261 {
1262 struct mm_struct *mm = rmap_item->mm;
1263 struct vm_area_struct *vma;
1264 int err = -EFAULT;
1265
1266 down_read(&mm->mmap_sem);
1267 vma = find_mergeable_vma(mm, rmap_item->address);
1268 if (!vma)
1269 goto out;
1270
1271 err = try_to_merge_one_page(vma, page, kpage);
1272 if (err)
1273 goto out;
1274
1275 /* Unstable nid is in union with stable anon_vma: remove first */
1276 remove_rmap_item_from_tree(rmap_item);
1277
1278 /* Must get reference to anon_vma while still holding mmap_sem */
1279 rmap_item->anon_vma = vma->anon_vma;
1280 get_anon_vma(vma->anon_vma);
1281 out:
1282 up_read(&mm->mmap_sem);
1283 return err;
1284 }
1285
1286 /*
1287 * try_to_merge_two_pages - take two identical pages and prepare them
1288 * to be merged into one page.
1289 *
1290 * This function returns the kpage if we successfully merged two identical
1291 * pages into one ksm page, NULL otherwise.
1292 *
1293 * Note that this function upgrades page to ksm page: if one of the pages
1294 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1295 */
1296 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1297 struct page *page,
1298 struct rmap_item *tree_rmap_item,
1299 struct page *tree_page)
1300 {
1301 int err;
1302
1303 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1304 if (!err) {
1305 err = try_to_merge_with_ksm_page(tree_rmap_item,
1306 tree_page, page);
1307 /*
1308 * If that fails, we have a ksm page with only one pte
1309 * pointing to it: so break it.
1310 */
1311 if (err)
1312 break_cow(rmap_item);
1313 }
1314 return err ? NULL : page;
1315 }
1316
1317 static __always_inline
1318 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1319 {
1320 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1321 /*
1322 * Check that at least one mapping still exists, otherwise
1323 * there's no much point to merge and share with this
1324 * stable_node, as the underlying tree_page of the other
1325 * sharer is going to be freed soon.
1326 */
1327 return stable_node->rmap_hlist_len &&
1328 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1329 }
1330
1331 static __always_inline
1332 bool is_page_sharing_candidate(struct stable_node *stable_node)
1333 {
1334 return __is_page_sharing_candidate(stable_node, 0);
1335 }
1336
1337 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1338 struct stable_node **_stable_node,
1339 struct rb_root *root,
1340 bool prune_stale_stable_nodes)
1341 {
1342 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1343 struct hlist_node *hlist_safe;
1344 struct page *_tree_page, *tree_page = NULL;
1345 int nr = 0;
1346 int found_rmap_hlist_len;
1347
1348 if (!prune_stale_stable_nodes ||
1349 time_before(jiffies, stable_node->chain_prune_time +
1350 msecs_to_jiffies(
1351 ksm_stable_node_chains_prune_millisecs)))
1352 prune_stale_stable_nodes = false;
1353 else
1354 stable_node->chain_prune_time = jiffies;
1355
1356 hlist_for_each_entry_safe(dup, hlist_safe,
1357 &stable_node->hlist, hlist_dup) {
1358 cond_resched();
1359 /*
1360 * We must walk all stable_node_dup to prune the stale
1361 * stable nodes during lookup.
1362 *
1363 * get_ksm_page can drop the nodes from the
1364 * stable_node->hlist if they point to freed pages
1365 * (that's why we do a _safe walk). The "dup"
1366 * stable_node parameter itself will be freed from
1367 * under us if it returns NULL.
1368 */
1369 _tree_page = get_ksm_page(dup, false);
1370 if (!_tree_page)
1371 continue;
1372 nr += 1;
1373 if (is_page_sharing_candidate(dup)) {
1374 if (!found ||
1375 dup->rmap_hlist_len > found_rmap_hlist_len) {
1376 if (found)
1377 put_page(tree_page);
1378 found = dup;
1379 found_rmap_hlist_len = found->rmap_hlist_len;
1380 tree_page = _tree_page;
1381
1382 /* skip put_page for found dup */
1383 if (!prune_stale_stable_nodes)
1384 break;
1385 continue;
1386 }
1387 }
1388 put_page(_tree_page);
1389 }
1390
1391 if (found) {
1392 /*
1393 * nr is counting all dups in the chain only if
1394 * prune_stale_stable_nodes is true, otherwise we may
1395 * break the loop at nr == 1 even if there are
1396 * multiple entries.
1397 */
1398 if (prune_stale_stable_nodes && nr == 1) {
1399 /*
1400 * If there's not just one entry it would
1401 * corrupt memory, better BUG_ON. In KSM
1402 * context with no lock held it's not even
1403 * fatal.
1404 */
1405 BUG_ON(stable_node->hlist.first->next);
1406
1407 /*
1408 * There's just one entry and it is below the
1409 * deduplication limit so drop the chain.
1410 */
1411 rb_replace_node(&stable_node->node, &found->node,
1412 root);
1413 free_stable_node(stable_node);
1414 ksm_stable_node_chains--;
1415 ksm_stable_node_dups--;
1416 /*
1417 * NOTE: the caller depends on the stable_node
1418 * to be equal to stable_node_dup if the chain
1419 * was collapsed.
1420 */
1421 *_stable_node = found;
1422 /*
1423 * Just for robustneess as stable_node is
1424 * otherwise left as a stable pointer, the
1425 * compiler shall optimize it away at build
1426 * time.
1427 */
1428 stable_node = NULL;
1429 } else if (stable_node->hlist.first != &found->hlist_dup &&
1430 __is_page_sharing_candidate(found, 1)) {
1431 /*
1432 * If the found stable_node dup can accept one
1433 * more future merge (in addition to the one
1434 * that is underway) and is not at the head of
1435 * the chain, put it there so next search will
1436 * be quicker in the !prune_stale_stable_nodes
1437 * case.
1438 *
1439 * NOTE: it would be inaccurate to use nr > 1
1440 * instead of checking the hlist.first pointer
1441 * directly, because in the
1442 * prune_stale_stable_nodes case "nr" isn't
1443 * the position of the found dup in the chain,
1444 * but the total number of dups in the chain.
1445 */
1446 hlist_del(&found->hlist_dup);
1447 hlist_add_head(&found->hlist_dup,
1448 &stable_node->hlist);
1449 }
1450 }
1451
1452 *_stable_node_dup = found;
1453 return tree_page;
1454 }
1455
1456 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1457 struct rb_root *root)
1458 {
1459 if (!is_stable_node_chain(stable_node))
1460 return stable_node;
1461 if (hlist_empty(&stable_node->hlist)) {
1462 free_stable_node_chain(stable_node, root);
1463 return NULL;
1464 }
1465 return hlist_entry(stable_node->hlist.first,
1466 typeof(*stable_node), hlist_dup);
1467 }
1468
1469 /*
1470 * Like for get_ksm_page, this function can free the *_stable_node and
1471 * *_stable_node_dup if the returned tree_page is NULL.
1472 *
1473 * It can also free and overwrite *_stable_node with the found
1474 * stable_node_dup if the chain is collapsed (in which case
1475 * *_stable_node will be equal to *_stable_node_dup like if the chain
1476 * never existed). It's up to the caller to verify tree_page is not
1477 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1478 *
1479 * *_stable_node_dup is really a second output parameter of this
1480 * function and will be overwritten in all cases, the caller doesn't
1481 * need to initialize it.
1482 */
1483 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1484 struct stable_node **_stable_node,
1485 struct rb_root *root,
1486 bool prune_stale_stable_nodes)
1487 {
1488 struct stable_node *stable_node = *_stable_node;
1489 if (!is_stable_node_chain(stable_node)) {
1490 if (is_page_sharing_candidate(stable_node)) {
1491 *_stable_node_dup = stable_node;
1492 return get_ksm_page(stable_node, false);
1493 }
1494 /*
1495 * _stable_node_dup set to NULL means the stable_node
1496 * reached the ksm_max_page_sharing limit.
1497 */
1498 *_stable_node_dup = NULL;
1499 return NULL;
1500 }
1501 return stable_node_dup(_stable_node_dup, _stable_node, root,
1502 prune_stale_stable_nodes);
1503 }
1504
1505 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1506 struct stable_node **s_n,
1507 struct rb_root *root)
1508 {
1509 return __stable_node_chain(s_n_d, s_n, root, true);
1510 }
1511
1512 static __always_inline struct page *chain(struct stable_node **s_n_d,
1513 struct stable_node *s_n,
1514 struct rb_root *root)
1515 {
1516 struct stable_node *old_stable_node = s_n;
1517 struct page *tree_page;
1518
1519 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1520 /* not pruning dups so s_n cannot have changed */
1521 VM_BUG_ON(s_n != old_stable_node);
1522 return tree_page;
1523 }
1524
1525 /*
1526 * stable_tree_search - search for page inside the stable tree
1527 *
1528 * This function checks if there is a page inside the stable tree
1529 * with identical content to the page that we are scanning right now.
1530 *
1531 * This function returns the stable tree node of identical content if found,
1532 * NULL otherwise.
1533 */
1534 static struct page *stable_tree_search(struct page *page)
1535 {
1536 int nid;
1537 struct rb_root *root;
1538 struct rb_node **new;
1539 struct rb_node *parent;
1540 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1541 struct stable_node *page_node;
1542
1543 page_node = page_stable_node(page);
1544 if (page_node && page_node->head != &migrate_nodes) {
1545 /* ksm page forked */
1546 get_page(page);
1547 return page;
1548 }
1549
1550 nid = get_kpfn_nid(page_to_pfn(page));
1551 root = root_stable_tree + nid;
1552 again:
1553 new = &root->rb_node;
1554 parent = NULL;
1555
1556 while (*new) {
1557 struct page *tree_page;
1558 int ret;
1559
1560 cond_resched();
1561 stable_node = rb_entry(*new, struct stable_node, node);
1562 stable_node_any = NULL;
1563 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1564 /*
1565 * NOTE: stable_node may have been freed by
1566 * chain_prune() if the returned stable_node_dup is
1567 * not NULL. stable_node_dup may have been inserted in
1568 * the rbtree instead as a regular stable_node (in
1569 * order to collapse the stable_node chain if a single
1570 * stable_node dup was found in it). In such case the
1571 * stable_node is overwritten by the calleee to point
1572 * to the stable_node_dup that was collapsed in the
1573 * stable rbtree and stable_node will be equal to
1574 * stable_node_dup like if the chain never existed.
1575 */
1576 if (!stable_node_dup) {
1577 /*
1578 * Either all stable_node dups were full in
1579 * this stable_node chain, or this chain was
1580 * empty and should be rb_erased.
1581 */
1582 stable_node_any = stable_node_dup_any(stable_node,
1583 root);
1584 if (!stable_node_any) {
1585 /* rb_erase just run */
1586 goto again;
1587 }
1588 /*
1589 * Take any of the stable_node dups page of
1590 * this stable_node chain to let the tree walk
1591 * continue. All KSM pages belonging to the
1592 * stable_node dups in a stable_node chain
1593 * have the same content and they're
1594 * wrprotected at all times. Any will work
1595 * fine to continue the walk.
1596 */
1597 tree_page = get_ksm_page(stable_node_any, false);
1598 }
1599 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1600 if (!tree_page) {
1601 /*
1602 * If we walked over a stale stable_node,
1603 * get_ksm_page() will call rb_erase() and it
1604 * may rebalance the tree from under us. So
1605 * restart the search from scratch. Returning
1606 * NULL would be safe too, but we'd generate
1607 * false negative insertions just because some
1608 * stable_node was stale.
1609 */
1610 goto again;
1611 }
1612
1613 ret = memcmp_pages(page, tree_page);
1614 put_page(tree_page);
1615
1616 parent = *new;
1617 if (ret < 0)
1618 new = &parent->rb_left;
1619 else if (ret > 0)
1620 new = &parent->rb_right;
1621 else {
1622 if (page_node) {
1623 VM_BUG_ON(page_node->head != &migrate_nodes);
1624 /*
1625 * Test if the migrated page should be merged
1626 * into a stable node dup. If the mapcount is
1627 * 1 we can migrate it with another KSM page
1628 * without adding it to the chain.
1629 */
1630 if (page_mapcount(page) > 1)
1631 goto chain_append;
1632 }
1633
1634 if (!stable_node_dup) {
1635 /*
1636 * If the stable_node is a chain and
1637 * we got a payload match in memcmp
1638 * but we cannot merge the scanned
1639 * page in any of the existing
1640 * stable_node dups because they're
1641 * all full, we need to wait the
1642 * scanned page to find itself a match
1643 * in the unstable tree to create a
1644 * brand new KSM page to add later to
1645 * the dups of this stable_node.
1646 */
1647 return NULL;
1648 }
1649
1650 /*
1651 * Lock and unlock the stable_node's page (which
1652 * might already have been migrated) so that page
1653 * migration is sure to notice its raised count.
1654 * It would be more elegant to return stable_node
1655 * than kpage, but that involves more changes.
1656 */
1657 tree_page = get_ksm_page(stable_node_dup, true);
1658 if (unlikely(!tree_page))
1659 /*
1660 * The tree may have been rebalanced,
1661 * so re-evaluate parent and new.
1662 */
1663 goto again;
1664 unlock_page(tree_page);
1665
1666 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1667 NUMA(stable_node_dup->nid)) {
1668 put_page(tree_page);
1669 goto replace;
1670 }
1671 return tree_page;
1672 }
1673 }
1674
1675 if (!page_node)
1676 return NULL;
1677
1678 list_del(&page_node->list);
1679 DO_NUMA(page_node->nid = nid);
1680 rb_link_node(&page_node->node, parent, new);
1681 rb_insert_color(&page_node->node, root);
1682 out:
1683 if (is_page_sharing_candidate(page_node)) {
1684 get_page(page);
1685 return page;
1686 } else
1687 return NULL;
1688
1689 replace:
1690 /*
1691 * If stable_node was a chain and chain_prune collapsed it,
1692 * stable_node has been updated to be the new regular
1693 * stable_node. A collapse of the chain is indistinguishable
1694 * from the case there was no chain in the stable
1695 * rbtree. Otherwise stable_node is the chain and
1696 * stable_node_dup is the dup to replace.
1697 */
1698 if (stable_node_dup == stable_node) {
1699 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1700 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1701 /* there is no chain */
1702 if (page_node) {
1703 VM_BUG_ON(page_node->head != &migrate_nodes);
1704 list_del(&page_node->list);
1705 DO_NUMA(page_node->nid = nid);
1706 rb_replace_node(&stable_node_dup->node,
1707 &page_node->node,
1708 root);
1709 if (is_page_sharing_candidate(page_node))
1710 get_page(page);
1711 else
1712 page = NULL;
1713 } else {
1714 rb_erase(&stable_node_dup->node, root);
1715 page = NULL;
1716 }
1717 } else {
1718 VM_BUG_ON(!is_stable_node_chain(stable_node));
1719 __stable_node_dup_del(stable_node_dup);
1720 if (page_node) {
1721 VM_BUG_ON(page_node->head != &migrate_nodes);
1722 list_del(&page_node->list);
1723 DO_NUMA(page_node->nid = nid);
1724 stable_node_chain_add_dup(page_node, stable_node);
1725 if (is_page_sharing_candidate(page_node))
1726 get_page(page);
1727 else
1728 page = NULL;
1729 } else {
1730 page = NULL;
1731 }
1732 }
1733 stable_node_dup->head = &migrate_nodes;
1734 list_add(&stable_node_dup->list, stable_node_dup->head);
1735 return page;
1736
1737 chain_append:
1738 /* stable_node_dup could be null if it reached the limit */
1739 if (!stable_node_dup)
1740 stable_node_dup = stable_node_any;
1741 /*
1742 * If stable_node was a chain and chain_prune collapsed it,
1743 * stable_node has been updated to be the new regular
1744 * stable_node. A collapse of the chain is indistinguishable
1745 * from the case there was no chain in the stable
1746 * rbtree. Otherwise stable_node is the chain and
1747 * stable_node_dup is the dup to replace.
1748 */
1749 if (stable_node_dup == stable_node) {
1750 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1751 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1752 /* chain is missing so create it */
1753 stable_node = alloc_stable_node_chain(stable_node_dup,
1754 root);
1755 if (!stable_node)
1756 return NULL;
1757 }
1758 /*
1759 * Add this stable_node dup that was
1760 * migrated to the stable_node chain
1761 * of the current nid for this page
1762 * content.
1763 */
1764 VM_BUG_ON(!is_stable_node_chain(stable_node));
1765 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1766 VM_BUG_ON(page_node->head != &migrate_nodes);
1767 list_del(&page_node->list);
1768 DO_NUMA(page_node->nid = nid);
1769 stable_node_chain_add_dup(page_node, stable_node);
1770 goto out;
1771 }
1772
1773 /*
1774 * stable_tree_insert - insert stable tree node pointing to new ksm page
1775 * into the stable tree.
1776 *
1777 * This function returns the stable tree node just allocated on success,
1778 * NULL otherwise.
1779 */
1780 static struct stable_node *stable_tree_insert(struct page *kpage)
1781 {
1782 int nid;
1783 unsigned long kpfn;
1784 struct rb_root *root;
1785 struct rb_node **new;
1786 struct rb_node *parent;
1787 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1788 bool need_chain = false;
1789
1790 kpfn = page_to_pfn(kpage);
1791 nid = get_kpfn_nid(kpfn);
1792 root = root_stable_tree + nid;
1793 again:
1794 parent = NULL;
1795 new = &root->rb_node;
1796
1797 while (*new) {
1798 struct page *tree_page;
1799 int ret;
1800
1801 cond_resched();
1802 stable_node = rb_entry(*new, struct stable_node, node);
1803 stable_node_any = NULL;
1804 tree_page = chain(&stable_node_dup, stable_node, root);
1805 if (!stable_node_dup) {
1806 /*
1807 * Either all stable_node dups were full in
1808 * this stable_node chain, or this chain was
1809 * empty and should be rb_erased.
1810 */
1811 stable_node_any = stable_node_dup_any(stable_node,
1812 root);
1813 if (!stable_node_any) {
1814 /* rb_erase just run */
1815 goto again;
1816 }
1817 /*
1818 * Take any of the stable_node dups page of
1819 * this stable_node chain to let the tree walk
1820 * continue. All KSM pages belonging to the
1821 * stable_node dups in a stable_node chain
1822 * have the same content and they're
1823 * wrprotected at all times. Any will work
1824 * fine to continue the walk.
1825 */
1826 tree_page = get_ksm_page(stable_node_any, false);
1827 }
1828 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1829 if (!tree_page) {
1830 /*
1831 * If we walked over a stale stable_node,
1832 * get_ksm_page() will call rb_erase() and it
1833 * may rebalance the tree from under us. So
1834 * restart the search from scratch. Returning
1835 * NULL would be safe too, but we'd generate
1836 * false negative insertions just because some
1837 * stable_node was stale.
1838 */
1839 goto again;
1840 }
1841
1842 ret = memcmp_pages(kpage, tree_page);
1843 put_page(tree_page);
1844
1845 parent = *new;
1846 if (ret < 0)
1847 new = &parent->rb_left;
1848 else if (ret > 0)
1849 new = &parent->rb_right;
1850 else {
1851 need_chain = true;
1852 break;
1853 }
1854 }
1855
1856 stable_node_dup = alloc_stable_node();
1857 if (!stable_node_dup)
1858 return NULL;
1859
1860 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1861 stable_node_dup->kpfn = kpfn;
1862 set_page_stable_node(kpage, stable_node_dup);
1863 stable_node_dup->rmap_hlist_len = 0;
1864 DO_NUMA(stable_node_dup->nid = nid);
1865 if (!need_chain) {
1866 rb_link_node(&stable_node_dup->node, parent, new);
1867 rb_insert_color(&stable_node_dup->node, root);
1868 } else {
1869 if (!is_stable_node_chain(stable_node)) {
1870 struct stable_node *orig = stable_node;
1871 /* chain is missing so create it */
1872 stable_node = alloc_stable_node_chain(orig, root);
1873 if (!stable_node) {
1874 free_stable_node(stable_node_dup);
1875 return NULL;
1876 }
1877 }
1878 stable_node_chain_add_dup(stable_node_dup, stable_node);
1879 }
1880
1881 return stable_node_dup;
1882 }
1883
1884 /*
1885 * unstable_tree_search_insert - search for identical page,
1886 * else insert rmap_item into the unstable tree.
1887 *
1888 * This function searches for a page in the unstable tree identical to the
1889 * page currently being scanned; and if no identical page is found in the
1890 * tree, we insert rmap_item as a new object into the unstable tree.
1891 *
1892 * This function returns pointer to rmap_item found to be identical
1893 * to the currently scanned page, NULL otherwise.
1894 *
1895 * This function does both searching and inserting, because they share
1896 * the same walking algorithm in an rbtree.
1897 */
1898 static
1899 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1900 struct page *page,
1901 struct page **tree_pagep)
1902 {
1903 struct rb_node **new;
1904 struct rb_root *root;
1905 struct rb_node *parent = NULL;
1906 int nid;
1907
1908 nid = get_kpfn_nid(page_to_pfn(page));
1909 root = root_unstable_tree + nid;
1910 new = &root->rb_node;
1911
1912 while (*new) {
1913 struct rmap_item *tree_rmap_item;
1914 struct page *tree_page;
1915 int ret;
1916
1917 cond_resched();
1918 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1919 tree_page = get_mergeable_page(tree_rmap_item);
1920 if (!tree_page)
1921 return NULL;
1922
1923 /*
1924 * Don't substitute a ksm page for a forked page.
1925 */
1926 if (page == tree_page) {
1927 put_page(tree_page);
1928 return NULL;
1929 }
1930
1931 ret = memcmp_pages(page, tree_page);
1932
1933 parent = *new;
1934 if (ret < 0) {
1935 put_page(tree_page);
1936 new = &parent->rb_left;
1937 } else if (ret > 0) {
1938 put_page(tree_page);
1939 new = &parent->rb_right;
1940 } else if (!ksm_merge_across_nodes &&
1941 page_to_nid(tree_page) != nid) {
1942 /*
1943 * If tree_page has been migrated to another NUMA node,
1944 * it will be flushed out and put in the right unstable
1945 * tree next time: only merge with it when across_nodes.
1946 */
1947 put_page(tree_page);
1948 return NULL;
1949 } else {
1950 *tree_pagep = tree_page;
1951 return tree_rmap_item;
1952 }
1953 }
1954
1955 rmap_item->address |= UNSTABLE_FLAG;
1956 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1957 DO_NUMA(rmap_item->nid = nid);
1958 rb_link_node(&rmap_item->node, parent, new);
1959 rb_insert_color(&rmap_item->node, root);
1960
1961 ksm_pages_unshared++;
1962 return NULL;
1963 }
1964
1965 /*
1966 * stable_tree_append - add another rmap_item to the linked list of
1967 * rmap_items hanging off a given node of the stable tree, all sharing
1968 * the same ksm page.
1969 */
1970 static void stable_tree_append(struct rmap_item *rmap_item,
1971 struct stable_node *stable_node,
1972 bool max_page_sharing_bypass)
1973 {
1974 /*
1975 * rmap won't find this mapping if we don't insert the
1976 * rmap_item in the right stable_node
1977 * duplicate. page_migration could break later if rmap breaks,
1978 * so we can as well crash here. We really need to check for
1979 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1980 * for other negative values as an undeflow if detected here
1981 * for the first time (and not when decreasing rmap_hlist_len)
1982 * would be sign of memory corruption in the stable_node.
1983 */
1984 BUG_ON(stable_node->rmap_hlist_len < 0);
1985
1986 stable_node->rmap_hlist_len++;
1987 if (!max_page_sharing_bypass)
1988 /* possibly non fatal but unexpected overflow, only warn */
1989 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1990 ksm_max_page_sharing);
1991
1992 rmap_item->head = stable_node;
1993 rmap_item->address |= STABLE_FLAG;
1994 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1995
1996 if (rmap_item->hlist.next)
1997 ksm_pages_sharing++;
1998 else
1999 ksm_pages_shared++;
2000 }
2001
2002 /*
2003 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2004 * if not, compare checksum to previous and if it's the same, see if page can
2005 * be inserted into the unstable tree, or merged with a page already there and
2006 * both transferred to the stable tree.
2007 *
2008 * @page: the page that we are searching identical page to.
2009 * @rmap_item: the reverse mapping into the virtual address of this page
2010 */
2011 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2012 {
2013 struct mm_struct *mm = rmap_item->mm;
2014 struct rmap_item *tree_rmap_item;
2015 struct page *tree_page = NULL;
2016 struct stable_node *stable_node;
2017 struct page *kpage;
2018 unsigned int checksum;
2019 int err;
2020 bool max_page_sharing_bypass = false;
2021
2022 stable_node = page_stable_node(page);
2023 if (stable_node) {
2024 if (stable_node->head != &migrate_nodes &&
2025 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2026 NUMA(stable_node->nid)) {
2027 stable_node_dup_del(stable_node);
2028 stable_node->head = &migrate_nodes;
2029 list_add(&stable_node->list, stable_node->head);
2030 }
2031 if (stable_node->head != &migrate_nodes &&
2032 rmap_item->head == stable_node)
2033 return;
2034 /*
2035 * If it's a KSM fork, allow it to go over the sharing limit
2036 * without warnings.
2037 */
2038 if (!is_page_sharing_candidate(stable_node))
2039 max_page_sharing_bypass = true;
2040 }
2041
2042 /* We first start with searching the page inside the stable tree */
2043 kpage = stable_tree_search(page);
2044 if (kpage == page && rmap_item->head == stable_node) {
2045 put_page(kpage);
2046 return;
2047 }
2048
2049 remove_rmap_item_from_tree(rmap_item);
2050
2051 if (kpage) {
2052 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2053 if (!err) {
2054 /*
2055 * The page was successfully merged:
2056 * add its rmap_item to the stable tree.
2057 */
2058 lock_page(kpage);
2059 stable_tree_append(rmap_item, page_stable_node(kpage),
2060 max_page_sharing_bypass);
2061 unlock_page(kpage);
2062 }
2063 put_page(kpage);
2064 return;
2065 }
2066
2067 /*
2068 * If the hash value of the page has changed from the last time
2069 * we calculated it, this page is changing frequently: therefore we
2070 * don't want to insert it in the unstable tree, and we don't want
2071 * to waste our time searching for something identical to it there.
2072 */
2073 checksum = calc_checksum(page);
2074 if (rmap_item->oldchecksum != checksum) {
2075 rmap_item->oldchecksum = checksum;
2076 return;
2077 }
2078
2079 /*
2080 * Same checksum as an empty page. We attempt to merge it with the
2081 * appropriate zero page if the user enabled this via sysfs.
2082 */
2083 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2084 struct vm_area_struct *vma;
2085
2086 down_read(&mm->mmap_sem);
2087 vma = find_mergeable_vma(mm, rmap_item->address);
2088 err = try_to_merge_one_page(vma, page,
2089 ZERO_PAGE(rmap_item->address));
2090 up_read(&mm->mmap_sem);
2091 /*
2092 * In case of failure, the page was not really empty, so we
2093 * need to continue. Otherwise we're done.
2094 */
2095 if (!err)
2096 return;
2097 }
2098 tree_rmap_item =
2099 unstable_tree_search_insert(rmap_item, page, &tree_page);
2100 if (tree_rmap_item) {
2101 bool split;
2102
2103 kpage = try_to_merge_two_pages(rmap_item, page,
2104 tree_rmap_item, tree_page);
2105 /*
2106 * If both pages we tried to merge belong to the same compound
2107 * page, then we actually ended up increasing the reference
2108 * count of the same compound page twice, and split_huge_page
2109 * failed.
2110 * Here we set a flag if that happened, and we use it later to
2111 * try split_huge_page again. Since we call put_page right
2112 * afterwards, the reference count will be correct and
2113 * split_huge_page should succeed.
2114 */
2115 split = PageTransCompound(page)
2116 && compound_head(page) == compound_head(tree_page);
2117 put_page(tree_page);
2118 if (kpage) {
2119 /*
2120 * The pages were successfully merged: insert new
2121 * node in the stable tree and add both rmap_items.
2122 */
2123 lock_page(kpage);
2124 stable_node = stable_tree_insert(kpage);
2125 if (stable_node) {
2126 stable_tree_append(tree_rmap_item, stable_node,
2127 false);
2128 stable_tree_append(rmap_item, stable_node,
2129 false);
2130 }
2131 unlock_page(kpage);
2132
2133 /*
2134 * If we fail to insert the page into the stable tree,
2135 * we will have 2 virtual addresses that are pointing
2136 * to a ksm page left outside the stable tree,
2137 * in which case we need to break_cow on both.
2138 */
2139 if (!stable_node) {
2140 break_cow(tree_rmap_item);
2141 break_cow(rmap_item);
2142 }
2143 } else if (split) {
2144 /*
2145 * We are here if we tried to merge two pages and
2146 * failed because they both belonged to the same
2147 * compound page. We will split the page now, but no
2148 * merging will take place.
2149 * We do not want to add the cost of a full lock; if
2150 * the page is locked, it is better to skip it and
2151 * perhaps try again later.
2152 */
2153 if (!trylock_page(page))
2154 return;
2155 split_huge_page(page);
2156 unlock_page(page);
2157 }
2158 }
2159 }
2160
2161 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2162 struct rmap_item **rmap_list,
2163 unsigned long addr)
2164 {
2165 struct rmap_item *rmap_item;
2166
2167 while (*rmap_list) {
2168 rmap_item = *rmap_list;
2169 if ((rmap_item->address & PAGE_MASK) == addr)
2170 return rmap_item;
2171 if (rmap_item->address > addr)
2172 break;
2173 *rmap_list = rmap_item->rmap_list;
2174 remove_rmap_item_from_tree(rmap_item);
2175 free_rmap_item(rmap_item);
2176 }
2177
2178 rmap_item = alloc_rmap_item();
2179 if (rmap_item) {
2180 /* It has already been zeroed */
2181 rmap_item->mm = mm_slot->mm;
2182 rmap_item->address = addr;
2183 rmap_item->rmap_list = *rmap_list;
2184 *rmap_list = rmap_item;
2185 }
2186 return rmap_item;
2187 }
2188
2189 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2190 {
2191 struct mm_struct *mm;
2192 struct mm_slot *slot;
2193 struct vm_area_struct *vma;
2194 struct rmap_item *rmap_item;
2195 int nid;
2196
2197 if (list_empty(&ksm_mm_head.mm_list))
2198 return NULL;
2199
2200 slot = ksm_scan.mm_slot;
2201 if (slot == &ksm_mm_head) {
2202 /*
2203 * A number of pages can hang around indefinitely on per-cpu
2204 * pagevecs, raised page count preventing write_protect_page
2205 * from merging them. Though it doesn't really matter much,
2206 * it is puzzling to see some stuck in pages_volatile until
2207 * other activity jostles them out, and they also prevented
2208 * LTP's KSM test from succeeding deterministically; so drain
2209 * them here (here rather than on entry to ksm_do_scan(),
2210 * so we don't IPI too often when pages_to_scan is set low).
2211 */
2212 lru_add_drain_all();
2213
2214 /*
2215 * Whereas stale stable_nodes on the stable_tree itself
2216 * get pruned in the regular course of stable_tree_search(),
2217 * those moved out to the migrate_nodes list can accumulate:
2218 * so prune them once before each full scan.
2219 */
2220 if (!ksm_merge_across_nodes) {
2221 struct stable_node *stable_node, *next;
2222 struct page *page;
2223
2224 list_for_each_entry_safe(stable_node, next,
2225 &migrate_nodes, list) {
2226 page = get_ksm_page(stable_node, false);
2227 if (page)
2228 put_page(page);
2229 cond_resched();
2230 }
2231 }
2232
2233 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2234 root_unstable_tree[nid] = RB_ROOT;
2235
2236 spin_lock(&ksm_mmlist_lock);
2237 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2238 ksm_scan.mm_slot = slot;
2239 spin_unlock(&ksm_mmlist_lock);
2240 /*
2241 * Although we tested list_empty() above, a racing __ksm_exit
2242 * of the last mm on the list may have removed it since then.
2243 */
2244 if (slot == &ksm_mm_head)
2245 return NULL;
2246 next_mm:
2247 ksm_scan.address = 0;
2248 ksm_scan.rmap_list = &slot->rmap_list;
2249 }
2250
2251 mm = slot->mm;
2252 down_read(&mm->mmap_sem);
2253 if (ksm_test_exit(mm))
2254 vma = NULL;
2255 else
2256 vma = find_vma(mm, ksm_scan.address);
2257
2258 for (; vma; vma = vma->vm_next) {
2259 if (!(vma->vm_flags & VM_MERGEABLE))
2260 continue;
2261 if (ksm_scan.address < vma->vm_start)
2262 ksm_scan.address = vma->vm_start;
2263 if (!vma->anon_vma)
2264 ksm_scan.address = vma->vm_end;
2265
2266 while (ksm_scan.address < vma->vm_end) {
2267 if (ksm_test_exit(mm))
2268 break;
2269 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2270 if (IS_ERR_OR_NULL(*page)) {
2271 ksm_scan.address += PAGE_SIZE;
2272 cond_resched();
2273 continue;
2274 }
2275 if (PageAnon(*page)) {
2276 flush_anon_page(vma, *page, ksm_scan.address);
2277 flush_dcache_page(*page);
2278 rmap_item = get_next_rmap_item(slot,
2279 ksm_scan.rmap_list, ksm_scan.address);
2280 if (rmap_item) {
2281 ksm_scan.rmap_list =
2282 &rmap_item->rmap_list;
2283 ksm_scan.address += PAGE_SIZE;
2284 } else
2285 put_page(*page);
2286 up_read(&mm->mmap_sem);
2287 return rmap_item;
2288 }
2289 put_page(*page);
2290 ksm_scan.address += PAGE_SIZE;
2291 cond_resched();
2292 }
2293 }
2294
2295 if (ksm_test_exit(mm)) {
2296 ksm_scan.address = 0;
2297 ksm_scan.rmap_list = &slot->rmap_list;
2298 }
2299 /*
2300 * Nuke all the rmap_items that are above this current rmap:
2301 * because there were no VM_MERGEABLE vmas with such addresses.
2302 */
2303 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2304
2305 spin_lock(&ksm_mmlist_lock);
2306 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2307 struct mm_slot, mm_list);
2308 if (ksm_scan.address == 0) {
2309 /*
2310 * We've completed a full scan of all vmas, holding mmap_sem
2311 * throughout, and found no VM_MERGEABLE: so do the same as
2312 * __ksm_exit does to remove this mm from all our lists now.
2313 * This applies either when cleaning up after __ksm_exit
2314 * (but beware: we can reach here even before __ksm_exit),
2315 * or when all VM_MERGEABLE areas have been unmapped (and
2316 * mmap_sem then protects against race with MADV_MERGEABLE).
2317 */
2318 hash_del(&slot->link);
2319 list_del(&slot->mm_list);
2320 spin_unlock(&ksm_mmlist_lock);
2321
2322 free_mm_slot(slot);
2323 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2324 up_read(&mm->mmap_sem);
2325 mmdrop(mm);
2326 } else {
2327 up_read(&mm->mmap_sem);
2328 /*
2329 * up_read(&mm->mmap_sem) first because after
2330 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2331 * already have been freed under us by __ksm_exit()
2332 * because the "mm_slot" is still hashed and
2333 * ksm_scan.mm_slot doesn't point to it anymore.
2334 */
2335 spin_unlock(&ksm_mmlist_lock);
2336 }
2337
2338 /* Repeat until we've completed scanning the whole list */
2339 slot = ksm_scan.mm_slot;
2340 if (slot != &ksm_mm_head)
2341 goto next_mm;
2342
2343 ksm_scan.seqnr++;
2344 return NULL;
2345 }
2346
2347 /**
2348 * ksm_do_scan - the ksm scanner main worker function.
2349 * @scan_npages - number of pages we want to scan before we return.
2350 */
2351 static void ksm_do_scan(unsigned int scan_npages)
2352 {
2353 struct rmap_item *rmap_item;
2354 struct page *uninitialized_var(page);
2355
2356 while (scan_npages-- && likely(!freezing(current))) {
2357 cond_resched();
2358 rmap_item = scan_get_next_rmap_item(&page);
2359 if (!rmap_item)
2360 return;
2361 cmp_and_merge_page(page, rmap_item);
2362 put_page(page);
2363 }
2364 }
2365
2366 static int ksmd_should_run(void)
2367 {
2368 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2369 }
2370
2371 static int ksm_scan_thread(void *nothing)
2372 {
2373 set_freezable();
2374 set_user_nice(current, 5);
2375
2376 while (!kthread_should_stop()) {
2377 mutex_lock(&ksm_thread_mutex);
2378 wait_while_offlining();
2379 if (ksmd_should_run())
2380 ksm_do_scan(ksm_thread_pages_to_scan);
2381 mutex_unlock(&ksm_thread_mutex);
2382
2383 try_to_freeze();
2384
2385 if (ksmd_should_run()) {
2386 if (ksm_thread_sleep_millisecs >= 1000)
2387 schedule_timeout_interruptible(
2388 msecs_to_jiffies(round_jiffies_relative(ksm_thread_sleep_millisecs)));
2389 else
2390 schedule_timeout_interruptible(
2391 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2392 } else {
2393 wait_event_freezable(ksm_thread_wait,
2394 ksmd_should_run() || kthread_should_stop());
2395 }
2396 }
2397 return 0;
2398 }
2399
2400 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2401 unsigned long end, int advice, unsigned long *vm_flags)
2402 {
2403 struct mm_struct *mm = vma->vm_mm;
2404 int err;
2405
2406 switch (advice) {
2407 case MADV_MERGEABLE:
2408 /*
2409 * Be somewhat over-protective for now!
2410 */
2411 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2412 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2413 VM_HUGETLB | VM_MIXEDMAP))
2414 return 0; /* just ignore the advice */
2415
2416 #ifdef VM_SAO
2417 if (*vm_flags & VM_SAO)
2418 return 0;
2419 #endif
2420
2421 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2422 err = __ksm_enter(mm);
2423 if (err)
2424 return err;
2425 }
2426
2427 *vm_flags |= VM_MERGEABLE;
2428 break;
2429
2430 case MADV_UNMERGEABLE:
2431 if (!(*vm_flags & VM_MERGEABLE))
2432 return 0; /* just ignore the advice */
2433
2434 if (vma->anon_vma) {
2435 err = unmerge_ksm_pages(vma, start, end);
2436 if (err)
2437 return err;
2438 }
2439
2440 *vm_flags &= ~VM_MERGEABLE;
2441 break;
2442 }
2443
2444 return 0;
2445 }
2446
2447 int __ksm_enter(struct mm_struct *mm)
2448 {
2449 struct mm_slot *mm_slot;
2450 int needs_wakeup;
2451
2452 mm_slot = alloc_mm_slot();
2453 if (!mm_slot)
2454 return -ENOMEM;
2455
2456 /* Check ksm_run too? Would need tighter locking */
2457 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2458
2459 spin_lock(&ksm_mmlist_lock);
2460 insert_to_mm_slots_hash(mm, mm_slot);
2461 /*
2462 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2463 * insert just behind the scanning cursor, to let the area settle
2464 * down a little; when fork is followed by immediate exec, we don't
2465 * want ksmd to waste time setting up and tearing down an rmap_list.
2466 *
2467 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2468 * scanning cursor, otherwise KSM pages in newly forked mms will be
2469 * missed: then we might as well insert at the end of the list.
2470 */
2471 if (ksm_run & KSM_RUN_UNMERGE)
2472 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2473 else
2474 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2475 spin_unlock(&ksm_mmlist_lock);
2476
2477 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2478 mmgrab(mm);
2479
2480 if (needs_wakeup)
2481 wake_up_interruptible(&ksm_thread_wait);
2482
2483 return 0;
2484 }
2485
2486 void __ksm_exit(struct mm_struct *mm)
2487 {
2488 struct mm_slot *mm_slot;
2489 int easy_to_free = 0;
2490
2491 /*
2492 * This process is exiting: if it's straightforward (as is the
2493 * case when ksmd was never running), free mm_slot immediately.
2494 * But if it's at the cursor or has rmap_items linked to it, use
2495 * mmap_sem to synchronize with any break_cows before pagetables
2496 * are freed, and leave the mm_slot on the list for ksmd to free.
2497 * Beware: ksm may already have noticed it exiting and freed the slot.
2498 */
2499
2500 spin_lock(&ksm_mmlist_lock);
2501 mm_slot = get_mm_slot(mm);
2502 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2503 if (!mm_slot->rmap_list) {
2504 hash_del(&mm_slot->link);
2505 list_del(&mm_slot->mm_list);
2506 easy_to_free = 1;
2507 } else {
2508 list_move(&mm_slot->mm_list,
2509 &ksm_scan.mm_slot->mm_list);
2510 }
2511 }
2512 spin_unlock(&ksm_mmlist_lock);
2513
2514 if (easy_to_free) {
2515 free_mm_slot(mm_slot);
2516 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2517 mmdrop(mm);
2518 } else if (mm_slot) {
2519 down_write(&mm->mmap_sem);
2520 up_write(&mm->mmap_sem);
2521 }
2522 }
2523
2524 struct page *ksm_might_need_to_copy(struct page *page,
2525 struct vm_area_struct *vma, unsigned long address)
2526 {
2527 struct anon_vma *anon_vma = page_anon_vma(page);
2528 struct page *new_page;
2529
2530 if (PageKsm(page)) {
2531 if (page_stable_node(page) &&
2532 !(ksm_run & KSM_RUN_UNMERGE))
2533 return page; /* no need to copy it */
2534 } else if (!anon_vma) {
2535 return page; /* no need to copy it */
2536 } else if (anon_vma->root == vma->anon_vma->root &&
2537 page->index == linear_page_index(vma, address)) {
2538 return page; /* still no need to copy it */
2539 }
2540 if (!PageUptodate(page))
2541 return page; /* let do_swap_page report the error */
2542
2543 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2544 if (new_page) {
2545 copy_user_highpage(new_page, page, address, vma);
2546
2547 SetPageDirty(new_page);
2548 __SetPageUptodate(new_page);
2549 __SetPageLocked(new_page);
2550 }
2551
2552 return new_page;
2553 }
2554
2555 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2556 {
2557 struct stable_node *stable_node;
2558 struct rmap_item *rmap_item;
2559 int search_new_forks = 0;
2560
2561 VM_BUG_ON_PAGE(!PageKsm(page), page);
2562
2563 /*
2564 * Rely on the page lock to protect against concurrent modifications
2565 * to that page's node of the stable tree.
2566 */
2567 VM_BUG_ON_PAGE(!PageLocked(page), page);
2568
2569 stable_node = page_stable_node(page);
2570 if (!stable_node)
2571 return;
2572 again:
2573 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2574 struct anon_vma *anon_vma = rmap_item->anon_vma;
2575 struct anon_vma_chain *vmac;
2576 struct vm_area_struct *vma;
2577
2578 cond_resched();
2579 anon_vma_lock_read(anon_vma);
2580 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2581 0, ULONG_MAX) {
2582 unsigned long addr;
2583
2584 cond_resched();
2585 vma = vmac->vma;
2586
2587 /* Ignore the stable/unstable/sqnr flags */
2588 addr = rmap_item->address & ~KSM_FLAG_MASK;
2589
2590 if (addr < vma->vm_start || addr >= vma->vm_end)
2591 continue;
2592 /*
2593 * Initially we examine only the vma which covers this
2594 * rmap_item; but later, if there is still work to do,
2595 * we examine covering vmas in other mms: in case they
2596 * were forked from the original since ksmd passed.
2597 */
2598 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2599 continue;
2600
2601 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2602 continue;
2603
2604 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2605 anon_vma_unlock_read(anon_vma);
2606 return;
2607 }
2608 if (rwc->done && rwc->done(page)) {
2609 anon_vma_unlock_read(anon_vma);
2610 return;
2611 }
2612 }
2613 anon_vma_unlock_read(anon_vma);
2614 }
2615 if (!search_new_forks++)
2616 goto again;
2617 }
2618
2619 #ifdef CONFIG_MIGRATION
2620 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2621 {
2622 struct stable_node *stable_node;
2623
2624 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2625 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2626 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2627
2628 stable_node = page_stable_node(newpage);
2629 if (stable_node) {
2630 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2631 stable_node->kpfn = page_to_pfn(newpage);
2632 /*
2633 * newpage->mapping was set in advance; now we need smp_wmb()
2634 * to make sure that the new stable_node->kpfn is visible
2635 * to get_ksm_page() before it can see that oldpage->mapping
2636 * has gone stale (or that PageSwapCache has been cleared).
2637 */
2638 smp_wmb();
2639 set_page_stable_node(oldpage, NULL);
2640 }
2641 }
2642 #endif /* CONFIG_MIGRATION */
2643
2644 #ifdef CONFIG_MEMORY_HOTREMOVE
2645 static void wait_while_offlining(void)
2646 {
2647 while (ksm_run & KSM_RUN_OFFLINE) {
2648 mutex_unlock(&ksm_thread_mutex);
2649 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2650 TASK_UNINTERRUPTIBLE);
2651 mutex_lock(&ksm_thread_mutex);
2652 }
2653 }
2654
2655 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2656 unsigned long start_pfn,
2657 unsigned long end_pfn)
2658 {
2659 if (stable_node->kpfn >= start_pfn &&
2660 stable_node->kpfn < end_pfn) {
2661 /*
2662 * Don't get_ksm_page, page has already gone:
2663 * which is why we keep kpfn instead of page*
2664 */
2665 remove_node_from_stable_tree(stable_node);
2666 return true;
2667 }
2668 return false;
2669 }
2670
2671 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2672 unsigned long start_pfn,
2673 unsigned long end_pfn,
2674 struct rb_root *root)
2675 {
2676 struct stable_node *dup;
2677 struct hlist_node *hlist_safe;
2678
2679 if (!is_stable_node_chain(stable_node)) {
2680 VM_BUG_ON(is_stable_node_dup(stable_node));
2681 return stable_node_dup_remove_range(stable_node, start_pfn,
2682 end_pfn);
2683 }
2684
2685 hlist_for_each_entry_safe(dup, hlist_safe,
2686 &stable_node->hlist, hlist_dup) {
2687 VM_BUG_ON(!is_stable_node_dup(dup));
2688 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2689 }
2690 if (hlist_empty(&stable_node->hlist)) {
2691 free_stable_node_chain(stable_node, root);
2692 return true; /* notify caller that tree was rebalanced */
2693 } else
2694 return false;
2695 }
2696
2697 static void ksm_check_stable_tree(unsigned long start_pfn,
2698 unsigned long end_pfn)
2699 {
2700 struct stable_node *stable_node, *next;
2701 struct rb_node *node;
2702 int nid;
2703
2704 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2705 node = rb_first(root_stable_tree + nid);
2706 while (node) {
2707 stable_node = rb_entry(node, struct stable_node, node);
2708 if (stable_node_chain_remove_range(stable_node,
2709 start_pfn, end_pfn,
2710 root_stable_tree +
2711 nid))
2712 node = rb_first(root_stable_tree + nid);
2713 else
2714 node = rb_next(node);
2715 cond_resched();
2716 }
2717 }
2718 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2719 if (stable_node->kpfn >= start_pfn &&
2720 stable_node->kpfn < end_pfn)
2721 remove_node_from_stable_tree(stable_node);
2722 cond_resched();
2723 }
2724 }
2725
2726 static int ksm_memory_callback(struct notifier_block *self,
2727 unsigned long action, void *arg)
2728 {
2729 struct memory_notify *mn = arg;
2730
2731 switch (action) {
2732 case MEM_GOING_OFFLINE:
2733 /*
2734 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2735 * and remove_all_stable_nodes() while memory is going offline:
2736 * it is unsafe for them to touch the stable tree at this time.
2737 * But unmerge_ksm_pages(), rmap lookups and other entry points
2738 * which do not need the ksm_thread_mutex are all safe.
2739 */
2740 mutex_lock(&ksm_thread_mutex);
2741 ksm_run |= KSM_RUN_OFFLINE;
2742 mutex_unlock(&ksm_thread_mutex);
2743 break;
2744
2745 case MEM_OFFLINE:
2746 /*
2747 * Most of the work is done by page migration; but there might
2748 * be a few stable_nodes left over, still pointing to struct
2749 * pages which have been offlined: prune those from the tree,
2750 * otherwise get_ksm_page() might later try to access a
2751 * non-existent struct page.
2752 */
2753 ksm_check_stable_tree(mn->start_pfn,
2754 mn->start_pfn + mn->nr_pages);
2755 /* fallthrough */
2756
2757 case MEM_CANCEL_OFFLINE:
2758 mutex_lock(&ksm_thread_mutex);
2759 ksm_run &= ~KSM_RUN_OFFLINE;
2760 mutex_unlock(&ksm_thread_mutex);
2761
2762 smp_mb(); /* wake_up_bit advises this */
2763 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2764 break;
2765 }
2766 return NOTIFY_OK;
2767 }
2768 #else
2769 static void wait_while_offlining(void)
2770 {
2771 }
2772 #endif /* CONFIG_MEMORY_HOTREMOVE */
2773
2774 #ifdef CONFIG_SYSFS
2775 /*
2776 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2777 */
2778
2779 #define KSM_ATTR_RO(_name) \
2780 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2781 #define KSM_ATTR(_name) \
2782 static struct kobj_attribute _name##_attr = \
2783 __ATTR(_name, 0644, _name##_show, _name##_store)
2784
2785 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2786 struct kobj_attribute *attr, char *buf)
2787 {
2788 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2789 }
2790
2791 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2792 struct kobj_attribute *attr,
2793 const char *buf, size_t count)
2794 {
2795 unsigned long msecs;
2796 int err;
2797
2798 err = kstrtoul(buf, 10, &msecs);
2799 if (err || msecs > UINT_MAX)
2800 return -EINVAL;
2801
2802 ksm_thread_sleep_millisecs = msecs;
2803
2804 return count;
2805 }
2806 KSM_ATTR(sleep_millisecs);
2807
2808 static ssize_t pages_to_scan_show(struct kobject *kobj,
2809 struct kobj_attribute *attr, char *buf)
2810 {
2811 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2812 }
2813
2814 static ssize_t pages_to_scan_store(struct kobject *kobj,
2815 struct kobj_attribute *attr,
2816 const char *buf, size_t count)
2817 {
2818 int err;
2819 unsigned long nr_pages;
2820
2821 err = kstrtoul(buf, 10, &nr_pages);
2822 if (err || nr_pages > UINT_MAX)
2823 return -EINVAL;
2824
2825 ksm_thread_pages_to_scan = nr_pages;
2826
2827 return count;
2828 }
2829 KSM_ATTR(pages_to_scan);
2830
2831 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2832 char *buf)
2833 {
2834 return sprintf(buf, "%lu\n", ksm_run);
2835 }
2836
2837 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2838 const char *buf, size_t count)
2839 {
2840 int err;
2841 unsigned long flags;
2842
2843 err = kstrtoul(buf, 10, &flags);
2844 if (err || flags > UINT_MAX)
2845 return -EINVAL;
2846 if (flags > KSM_RUN_UNMERGE)
2847 return -EINVAL;
2848
2849 /*
2850 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2851 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2852 * breaking COW to free the pages_shared (but leaves mm_slots
2853 * on the list for when ksmd may be set running again).
2854 */
2855
2856 mutex_lock(&ksm_thread_mutex);
2857 wait_while_offlining();
2858 if (ksm_run != flags) {
2859 ksm_run = flags;
2860 if (flags & KSM_RUN_UNMERGE) {
2861 set_current_oom_origin();
2862 err = unmerge_and_remove_all_rmap_items();
2863 clear_current_oom_origin();
2864 if (err) {
2865 ksm_run = KSM_RUN_STOP;
2866 count = err;
2867 }
2868 }
2869 }
2870 mutex_unlock(&ksm_thread_mutex);
2871
2872 if (flags & KSM_RUN_MERGE)
2873 wake_up_interruptible(&ksm_thread_wait);
2874
2875 return count;
2876 }
2877 KSM_ATTR(run);
2878
2879 #ifdef CONFIG_NUMA
2880 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2881 struct kobj_attribute *attr, char *buf)
2882 {
2883 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2884 }
2885
2886 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2887 struct kobj_attribute *attr,
2888 const char *buf, size_t count)
2889 {
2890 int err;
2891 unsigned long knob;
2892
2893 err = kstrtoul(buf, 10, &knob);
2894 if (err)
2895 return err;
2896 if (knob > 1)
2897 return -EINVAL;
2898
2899 mutex_lock(&ksm_thread_mutex);
2900 wait_while_offlining();
2901 if (ksm_merge_across_nodes != knob) {
2902 if (ksm_pages_shared || remove_all_stable_nodes())
2903 err = -EBUSY;
2904 else if (root_stable_tree == one_stable_tree) {
2905 struct rb_root *buf;
2906 /*
2907 * This is the first time that we switch away from the
2908 * default of merging across nodes: must now allocate
2909 * a buffer to hold as many roots as may be needed.
2910 * Allocate stable and unstable together:
2911 * MAXSMP NODES_SHIFT 10 will use 16kB.
2912 */
2913 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2914 GFP_KERNEL);
2915 /* Let us assume that RB_ROOT is NULL is zero */
2916 if (!buf)
2917 err = -ENOMEM;
2918 else {
2919 root_stable_tree = buf;
2920 root_unstable_tree = buf + nr_node_ids;
2921 /* Stable tree is empty but not the unstable */
2922 root_unstable_tree[0] = one_unstable_tree[0];
2923 }
2924 }
2925 if (!err) {
2926 ksm_merge_across_nodes = knob;
2927 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2928 }
2929 }
2930 mutex_unlock(&ksm_thread_mutex);
2931
2932 return err ? err : count;
2933 }
2934 KSM_ATTR(merge_across_nodes);
2935 #endif
2936
2937 static ssize_t use_zero_pages_show(struct kobject *kobj,
2938 struct kobj_attribute *attr, char *buf)
2939 {
2940 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2941 }
2942 static ssize_t use_zero_pages_store(struct kobject *kobj,
2943 struct kobj_attribute *attr,
2944 const char *buf, size_t count)
2945 {
2946 int err;
2947 bool value;
2948
2949 err = kstrtobool(buf, &value);
2950 if (err)
2951 return -EINVAL;
2952
2953 ksm_use_zero_pages = value;
2954
2955 return count;
2956 }
2957 KSM_ATTR(use_zero_pages);
2958
2959 static ssize_t max_page_sharing_show(struct kobject *kobj,
2960 struct kobj_attribute *attr, char *buf)
2961 {
2962 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2963 }
2964
2965 static ssize_t max_page_sharing_store(struct kobject *kobj,
2966 struct kobj_attribute *attr,
2967 const char *buf, size_t count)
2968 {
2969 int err;
2970 int knob;
2971
2972 err = kstrtoint(buf, 10, &knob);
2973 if (err)
2974 return err;
2975 /*
2976 * When a KSM page is created it is shared by 2 mappings. This
2977 * being a signed comparison, it implicitly verifies it's not
2978 * negative.
2979 */
2980 if (knob < 2)
2981 return -EINVAL;
2982
2983 if (READ_ONCE(ksm_max_page_sharing) == knob)
2984 return count;
2985
2986 mutex_lock(&ksm_thread_mutex);
2987 wait_while_offlining();
2988 if (ksm_max_page_sharing != knob) {
2989 if (ksm_pages_shared || remove_all_stable_nodes())
2990 err = -EBUSY;
2991 else
2992 ksm_max_page_sharing = knob;
2993 }
2994 mutex_unlock(&ksm_thread_mutex);
2995
2996 return err ? err : count;
2997 }
2998 KSM_ATTR(max_page_sharing);
2999
3000 static ssize_t pages_shared_show(struct kobject *kobj,
3001 struct kobj_attribute *attr, char *buf)
3002 {
3003 return sprintf(buf, "%lu\n", ksm_pages_shared);
3004 }
3005 KSM_ATTR_RO(pages_shared);
3006
3007 static ssize_t pages_sharing_show(struct kobject *kobj,
3008 struct kobj_attribute *attr, char *buf)
3009 {
3010 return sprintf(buf, "%lu\n", ksm_pages_sharing);
3011 }
3012 KSM_ATTR_RO(pages_sharing);
3013
3014 static ssize_t pages_unshared_show(struct kobject *kobj,
3015 struct kobj_attribute *attr, char *buf)
3016 {
3017 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3018 }
3019 KSM_ATTR_RO(pages_unshared);
3020
3021 static ssize_t pages_volatile_show(struct kobject *kobj,
3022 struct kobj_attribute *attr, char *buf)
3023 {
3024 long ksm_pages_volatile;
3025
3026 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3027 - ksm_pages_sharing - ksm_pages_unshared;
3028 /*
3029 * It was not worth any locking to calculate that statistic,
3030 * but it might therefore sometimes be negative: conceal that.
3031 */
3032 if (ksm_pages_volatile < 0)
3033 ksm_pages_volatile = 0;
3034 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3035 }
3036 KSM_ATTR_RO(pages_volatile);
3037
3038 static ssize_t stable_node_dups_show(struct kobject *kobj,
3039 struct kobj_attribute *attr, char *buf)
3040 {
3041 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3042 }
3043 KSM_ATTR_RO(stable_node_dups);
3044
3045 static ssize_t stable_node_chains_show(struct kobject *kobj,
3046 struct kobj_attribute *attr, char *buf)
3047 {
3048 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3049 }
3050 KSM_ATTR_RO(stable_node_chains);
3051
3052 static ssize_t
3053 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3054 struct kobj_attribute *attr,
3055 char *buf)
3056 {
3057 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3058 }
3059
3060 static ssize_t
3061 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3062 struct kobj_attribute *attr,
3063 const char *buf, size_t count)
3064 {
3065 unsigned long msecs;
3066 int err;
3067
3068 err = kstrtoul(buf, 10, &msecs);
3069 if (err || msecs > UINT_MAX)
3070 return -EINVAL;
3071
3072 ksm_stable_node_chains_prune_millisecs = msecs;
3073
3074 return count;
3075 }
3076 KSM_ATTR(stable_node_chains_prune_millisecs);
3077
3078 static ssize_t full_scans_show(struct kobject *kobj,
3079 struct kobj_attribute *attr, char *buf)
3080 {
3081 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3082 }
3083 KSM_ATTR_RO(full_scans);
3084
3085 static struct attribute *ksm_attrs[] = {
3086 &sleep_millisecs_attr.attr,
3087 &pages_to_scan_attr.attr,
3088 &run_attr.attr,
3089 &pages_shared_attr.attr,
3090 &pages_sharing_attr.attr,
3091 &pages_unshared_attr.attr,
3092 &pages_volatile_attr.attr,
3093 &full_scans_attr.attr,
3094 #ifdef CONFIG_NUMA
3095 &merge_across_nodes_attr.attr,
3096 #endif
3097 &max_page_sharing_attr.attr,
3098 &stable_node_chains_attr.attr,
3099 &stable_node_dups_attr.attr,
3100 &stable_node_chains_prune_millisecs_attr.attr,
3101 &use_zero_pages_attr.attr,
3102 NULL,
3103 };
3104
3105 static const struct attribute_group ksm_attr_group = {
3106 .attrs = ksm_attrs,
3107 .name = "ksm",
3108 };
3109 #endif /* CONFIG_SYSFS */
3110
3111 static int __init ksm_init(void)
3112 {
3113 struct task_struct *ksm_thread;
3114 int err;
3115
3116 /* The correct value depends on page size and endianness */
3117 zero_checksum = calc_checksum(ZERO_PAGE(0));
3118 /* Default to false for backwards compatibility */
3119 ksm_use_zero_pages = false;
3120
3121 err = ksm_slab_init();
3122 if (err)
3123 goto out;
3124
3125 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3126 if (IS_ERR(ksm_thread)) {
3127 pr_err("ksm: creating kthread failed\n");
3128 err = PTR_ERR(ksm_thread);
3129 goto out_free;
3130 }
3131
3132 #ifdef CONFIG_SYSFS
3133 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3134 if (err) {
3135 pr_err("ksm: register sysfs failed\n");
3136 kthread_stop(ksm_thread);
3137 goto out_free;
3138 }
3139 #else
3140 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3141
3142 #endif /* CONFIG_SYSFS */
3143
3144 #ifdef CONFIG_MEMORY_HOTREMOVE
3145 /* There is no significance to this priority 100 */
3146 hotplug_memory_notifier(ksm_memory_callback, 100);
3147 #endif
3148 return 0;
3149
3150 out_free:
3151 ksm_slab_free();
3152 out:
3153 return err;
3154 }
3155 subsys_initcall(ksm_init);