]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/ksm.c
btrfs: cleaner_kthread() doesn't need explicit freeze
[mirror_ubuntu-artful-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
147 };
148
149 /**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179 };
180
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 #ifdef CONFIG_NUMA
227 /* Zeroed when merging across nodes is not allowed */
228 static unsigned int ksm_merge_across_nodes = 1;
229 static int ksm_nr_node_ids = 1;
230 #else
231 #define ksm_merge_across_nodes 1U
232 #define ksm_nr_node_ids 1
233 #endif
234
235 #define KSM_RUN_STOP 0
236 #define KSM_RUN_MERGE 1
237 #define KSM_RUN_UNMERGE 2
238 #define KSM_RUN_OFFLINE 4
239 static unsigned long ksm_run = KSM_RUN_STOP;
240 static void wait_while_offlining(void);
241
242 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
243 static DEFINE_MUTEX(ksm_thread_mutex);
244 static DEFINE_SPINLOCK(ksm_mmlist_lock);
245
246 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
247 sizeof(struct __struct), __alignof__(struct __struct),\
248 (__flags), NULL)
249
250 static int __init ksm_slab_init(void)
251 {
252 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
253 if (!rmap_item_cache)
254 goto out;
255
256 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
257 if (!stable_node_cache)
258 goto out_free1;
259
260 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
261 if (!mm_slot_cache)
262 goto out_free2;
263
264 return 0;
265
266 out_free2:
267 kmem_cache_destroy(stable_node_cache);
268 out_free1:
269 kmem_cache_destroy(rmap_item_cache);
270 out:
271 return -ENOMEM;
272 }
273
274 static void __init ksm_slab_free(void)
275 {
276 kmem_cache_destroy(mm_slot_cache);
277 kmem_cache_destroy(stable_node_cache);
278 kmem_cache_destroy(rmap_item_cache);
279 mm_slot_cache = NULL;
280 }
281
282 static inline struct rmap_item *alloc_rmap_item(void)
283 {
284 struct rmap_item *rmap_item;
285
286 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
287 if (rmap_item)
288 ksm_rmap_items++;
289 return rmap_item;
290 }
291
292 static inline void free_rmap_item(struct rmap_item *rmap_item)
293 {
294 ksm_rmap_items--;
295 rmap_item->mm = NULL; /* debug safety */
296 kmem_cache_free(rmap_item_cache, rmap_item);
297 }
298
299 static inline struct stable_node *alloc_stable_node(void)
300 {
301 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
302 }
303
304 static inline void free_stable_node(struct stable_node *stable_node)
305 {
306 kmem_cache_free(stable_node_cache, stable_node);
307 }
308
309 static inline struct mm_slot *alloc_mm_slot(void)
310 {
311 if (!mm_slot_cache) /* initialization failed */
312 return NULL;
313 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
314 }
315
316 static inline void free_mm_slot(struct mm_slot *mm_slot)
317 {
318 kmem_cache_free(mm_slot_cache, mm_slot);
319 }
320
321 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
322 {
323 struct mm_slot *slot;
324
325 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
326 if (slot->mm == mm)
327 return slot;
328
329 return NULL;
330 }
331
332 static void insert_to_mm_slots_hash(struct mm_struct *mm,
333 struct mm_slot *mm_slot)
334 {
335 mm_slot->mm = mm;
336 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
337 }
338
339 /*
340 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
341 * page tables after it has passed through ksm_exit() - which, if necessary,
342 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
343 * a special flag: they can just back out as soon as mm_users goes to zero.
344 * ksm_test_exit() is used throughout to make this test for exit: in some
345 * places for correctness, in some places just to avoid unnecessary work.
346 */
347 static inline bool ksm_test_exit(struct mm_struct *mm)
348 {
349 return atomic_read(&mm->mm_users) == 0;
350 }
351
352 /*
353 * We use break_ksm to break COW on a ksm page: it's a stripped down
354 *
355 * if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
356 * put_page(page);
357 *
358 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
359 * in case the application has unmapped and remapped mm,addr meanwhile.
360 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
361 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
362 */
363 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
364 {
365 struct page *page;
366 int ret = 0;
367
368 do {
369 cond_resched();
370 page = follow_page(vma, addr, FOLL_GET | FOLL_MIGRATION);
371 if (IS_ERR_OR_NULL(page))
372 break;
373 if (PageKsm(page))
374 ret = handle_mm_fault(vma->vm_mm, vma, addr,
375 FAULT_FLAG_WRITE);
376 else
377 ret = VM_FAULT_WRITE;
378 put_page(page);
379 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
380 /*
381 * We must loop because handle_mm_fault() may back out if there's
382 * any difficulty e.g. if pte accessed bit gets updated concurrently.
383 *
384 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
385 * COW has been broken, even if the vma does not permit VM_WRITE;
386 * but note that a concurrent fault might break PageKsm for us.
387 *
388 * VM_FAULT_SIGBUS could occur if we race with truncation of the
389 * backing file, which also invalidates anonymous pages: that's
390 * okay, that truncation will have unmapped the PageKsm for us.
391 *
392 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
393 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
394 * current task has TIF_MEMDIE set, and will be OOM killed on return
395 * to user; and ksmd, having no mm, would never be chosen for that.
396 *
397 * But if the mm is in a limited mem_cgroup, then the fault may fail
398 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
399 * even ksmd can fail in this way - though it's usually breaking ksm
400 * just to undo a merge it made a moment before, so unlikely to oom.
401 *
402 * That's a pity: we might therefore have more kernel pages allocated
403 * than we're counting as nodes in the stable tree; but ksm_do_scan
404 * will retry to break_cow on each pass, so should recover the page
405 * in due course. The important thing is to not let VM_MERGEABLE
406 * be cleared while any such pages might remain in the area.
407 */
408 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
409 }
410
411 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
412 unsigned long addr)
413 {
414 struct vm_area_struct *vma;
415 if (ksm_test_exit(mm))
416 return NULL;
417 vma = find_vma(mm, addr);
418 if (!vma || vma->vm_start > addr)
419 return NULL;
420 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
421 return NULL;
422 return vma;
423 }
424
425 static void break_cow(struct rmap_item *rmap_item)
426 {
427 struct mm_struct *mm = rmap_item->mm;
428 unsigned long addr = rmap_item->address;
429 struct vm_area_struct *vma;
430
431 /*
432 * It is not an accident that whenever we want to break COW
433 * to undo, we also need to drop a reference to the anon_vma.
434 */
435 put_anon_vma(rmap_item->anon_vma);
436
437 down_read(&mm->mmap_sem);
438 vma = find_mergeable_vma(mm, addr);
439 if (vma)
440 break_ksm(vma, addr);
441 up_read(&mm->mmap_sem);
442 }
443
444 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
445 {
446 struct mm_struct *mm = rmap_item->mm;
447 unsigned long addr = rmap_item->address;
448 struct vm_area_struct *vma;
449 struct page *page;
450
451 down_read(&mm->mmap_sem);
452 vma = find_mergeable_vma(mm, addr);
453 if (!vma)
454 goto out;
455
456 page = follow_page(vma, addr, FOLL_GET);
457 if (IS_ERR_OR_NULL(page))
458 goto out;
459 if (PageAnon(page)) {
460 flush_anon_page(vma, page, addr);
461 flush_dcache_page(page);
462 } else {
463 put_page(page);
464 out:
465 page = NULL;
466 }
467 up_read(&mm->mmap_sem);
468 return page;
469 }
470
471 /*
472 * This helper is used for getting right index into array of tree roots.
473 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
474 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
475 * every node has its own stable and unstable tree.
476 */
477 static inline int get_kpfn_nid(unsigned long kpfn)
478 {
479 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
480 }
481
482 static void remove_node_from_stable_tree(struct stable_node *stable_node)
483 {
484 struct rmap_item *rmap_item;
485
486 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
487 if (rmap_item->hlist.next)
488 ksm_pages_sharing--;
489 else
490 ksm_pages_shared--;
491 put_anon_vma(rmap_item->anon_vma);
492 rmap_item->address &= PAGE_MASK;
493 cond_resched();
494 }
495
496 if (stable_node->head == &migrate_nodes)
497 list_del(&stable_node->list);
498 else
499 rb_erase(&stable_node->node,
500 root_stable_tree + NUMA(stable_node->nid));
501 free_stable_node(stable_node);
502 }
503
504 /*
505 * get_ksm_page: checks if the page indicated by the stable node
506 * is still its ksm page, despite having held no reference to it.
507 * In which case we can trust the content of the page, and it
508 * returns the gotten page; but if the page has now been zapped,
509 * remove the stale node from the stable tree and return NULL.
510 * But beware, the stable node's page might be being migrated.
511 *
512 * You would expect the stable_node to hold a reference to the ksm page.
513 * But if it increments the page's count, swapping out has to wait for
514 * ksmd to come around again before it can free the page, which may take
515 * seconds or even minutes: much too unresponsive. So instead we use a
516 * "keyhole reference": access to the ksm page from the stable node peeps
517 * out through its keyhole to see if that page still holds the right key,
518 * pointing back to this stable node. This relies on freeing a PageAnon
519 * page to reset its page->mapping to NULL, and relies on no other use of
520 * a page to put something that might look like our key in page->mapping.
521 * is on its way to being freed; but it is an anomaly to bear in mind.
522 */
523 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
524 {
525 struct page *page;
526 void *expected_mapping;
527 unsigned long kpfn;
528
529 expected_mapping = (void *)stable_node +
530 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
531 again:
532 kpfn = READ_ONCE(stable_node->kpfn);
533 page = pfn_to_page(kpfn);
534
535 /*
536 * page is computed from kpfn, so on most architectures reading
537 * page->mapping is naturally ordered after reading node->kpfn,
538 * but on Alpha we need to be more careful.
539 */
540 smp_read_barrier_depends();
541 if (READ_ONCE(page->mapping) != expected_mapping)
542 goto stale;
543
544 /*
545 * We cannot do anything with the page while its refcount is 0.
546 * Usually 0 means free, or tail of a higher-order page: in which
547 * case this node is no longer referenced, and should be freed;
548 * however, it might mean that the page is under page_freeze_refs().
549 * The __remove_mapping() case is easy, again the node is now stale;
550 * but if page is swapcache in migrate_page_move_mapping(), it might
551 * still be our page, in which case it's essential to keep the node.
552 */
553 while (!get_page_unless_zero(page)) {
554 /*
555 * Another check for page->mapping != expected_mapping would
556 * work here too. We have chosen the !PageSwapCache test to
557 * optimize the common case, when the page is or is about to
558 * be freed: PageSwapCache is cleared (under spin_lock_irq)
559 * in the freeze_refs section of __remove_mapping(); but Anon
560 * page->mapping reset to NULL later, in free_pages_prepare().
561 */
562 if (!PageSwapCache(page))
563 goto stale;
564 cpu_relax();
565 }
566
567 if (READ_ONCE(page->mapping) != expected_mapping) {
568 put_page(page);
569 goto stale;
570 }
571
572 if (lock_it) {
573 lock_page(page);
574 if (READ_ONCE(page->mapping) != expected_mapping) {
575 unlock_page(page);
576 put_page(page);
577 goto stale;
578 }
579 }
580 return page;
581
582 stale:
583 /*
584 * We come here from above when page->mapping or !PageSwapCache
585 * suggests that the node is stale; but it might be under migration.
586 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
587 * before checking whether node->kpfn has been changed.
588 */
589 smp_rmb();
590 if (READ_ONCE(stable_node->kpfn) != kpfn)
591 goto again;
592 remove_node_from_stable_tree(stable_node);
593 return NULL;
594 }
595
596 /*
597 * Removing rmap_item from stable or unstable tree.
598 * This function will clean the information from the stable/unstable tree.
599 */
600 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
601 {
602 if (rmap_item->address & STABLE_FLAG) {
603 struct stable_node *stable_node;
604 struct page *page;
605
606 stable_node = rmap_item->head;
607 page = get_ksm_page(stable_node, true);
608 if (!page)
609 goto out;
610
611 hlist_del(&rmap_item->hlist);
612 unlock_page(page);
613 put_page(page);
614
615 if (!hlist_empty(&stable_node->hlist))
616 ksm_pages_sharing--;
617 else
618 ksm_pages_shared--;
619
620 put_anon_vma(rmap_item->anon_vma);
621 rmap_item->address &= PAGE_MASK;
622
623 } else if (rmap_item->address & UNSTABLE_FLAG) {
624 unsigned char age;
625 /*
626 * Usually ksmd can and must skip the rb_erase, because
627 * root_unstable_tree was already reset to RB_ROOT.
628 * But be careful when an mm is exiting: do the rb_erase
629 * if this rmap_item was inserted by this scan, rather
630 * than left over from before.
631 */
632 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
633 BUG_ON(age > 1);
634 if (!age)
635 rb_erase(&rmap_item->node,
636 root_unstable_tree + NUMA(rmap_item->nid));
637 ksm_pages_unshared--;
638 rmap_item->address &= PAGE_MASK;
639 }
640 out:
641 cond_resched(); /* we're called from many long loops */
642 }
643
644 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
645 struct rmap_item **rmap_list)
646 {
647 while (*rmap_list) {
648 struct rmap_item *rmap_item = *rmap_list;
649 *rmap_list = rmap_item->rmap_list;
650 remove_rmap_item_from_tree(rmap_item);
651 free_rmap_item(rmap_item);
652 }
653 }
654
655 /*
656 * Though it's very tempting to unmerge rmap_items from stable tree rather
657 * than check every pte of a given vma, the locking doesn't quite work for
658 * that - an rmap_item is assigned to the stable tree after inserting ksm
659 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
660 * rmap_items from parent to child at fork time (so as not to waste time
661 * if exit comes before the next scan reaches it).
662 *
663 * Similarly, although we'd like to remove rmap_items (so updating counts
664 * and freeing memory) when unmerging an area, it's easier to leave that
665 * to the next pass of ksmd - consider, for example, how ksmd might be
666 * in cmp_and_merge_page on one of the rmap_items we would be removing.
667 */
668 static int unmerge_ksm_pages(struct vm_area_struct *vma,
669 unsigned long start, unsigned long end)
670 {
671 unsigned long addr;
672 int err = 0;
673
674 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
675 if (ksm_test_exit(vma->vm_mm))
676 break;
677 if (signal_pending(current))
678 err = -ERESTARTSYS;
679 else
680 err = break_ksm(vma, addr);
681 }
682 return err;
683 }
684
685 #ifdef CONFIG_SYSFS
686 /*
687 * Only called through the sysfs control interface:
688 */
689 static int remove_stable_node(struct stable_node *stable_node)
690 {
691 struct page *page;
692 int err;
693
694 page = get_ksm_page(stable_node, true);
695 if (!page) {
696 /*
697 * get_ksm_page did remove_node_from_stable_tree itself.
698 */
699 return 0;
700 }
701
702 if (WARN_ON_ONCE(page_mapped(page))) {
703 /*
704 * This should not happen: but if it does, just refuse to let
705 * merge_across_nodes be switched - there is no need to panic.
706 */
707 err = -EBUSY;
708 } else {
709 /*
710 * The stable node did not yet appear stale to get_ksm_page(),
711 * since that allows for an unmapped ksm page to be recognized
712 * right up until it is freed; but the node is safe to remove.
713 * This page might be in a pagevec waiting to be freed,
714 * or it might be PageSwapCache (perhaps under writeback),
715 * or it might have been removed from swapcache a moment ago.
716 */
717 set_page_stable_node(page, NULL);
718 remove_node_from_stable_tree(stable_node);
719 err = 0;
720 }
721
722 unlock_page(page);
723 put_page(page);
724 return err;
725 }
726
727 static int remove_all_stable_nodes(void)
728 {
729 struct stable_node *stable_node, *next;
730 int nid;
731 int err = 0;
732
733 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
734 while (root_stable_tree[nid].rb_node) {
735 stable_node = rb_entry(root_stable_tree[nid].rb_node,
736 struct stable_node, node);
737 if (remove_stable_node(stable_node)) {
738 err = -EBUSY;
739 break; /* proceed to next nid */
740 }
741 cond_resched();
742 }
743 }
744 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
745 if (remove_stable_node(stable_node))
746 err = -EBUSY;
747 cond_resched();
748 }
749 return err;
750 }
751
752 static int unmerge_and_remove_all_rmap_items(void)
753 {
754 struct mm_slot *mm_slot;
755 struct mm_struct *mm;
756 struct vm_area_struct *vma;
757 int err = 0;
758
759 spin_lock(&ksm_mmlist_lock);
760 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
761 struct mm_slot, mm_list);
762 spin_unlock(&ksm_mmlist_lock);
763
764 for (mm_slot = ksm_scan.mm_slot;
765 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
766 mm = mm_slot->mm;
767 down_read(&mm->mmap_sem);
768 for (vma = mm->mmap; vma; vma = vma->vm_next) {
769 if (ksm_test_exit(mm))
770 break;
771 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
772 continue;
773 err = unmerge_ksm_pages(vma,
774 vma->vm_start, vma->vm_end);
775 if (err)
776 goto error;
777 }
778
779 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
780
781 spin_lock(&ksm_mmlist_lock);
782 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
783 struct mm_slot, mm_list);
784 if (ksm_test_exit(mm)) {
785 hash_del(&mm_slot->link);
786 list_del(&mm_slot->mm_list);
787 spin_unlock(&ksm_mmlist_lock);
788
789 free_mm_slot(mm_slot);
790 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
791 up_read(&mm->mmap_sem);
792 mmdrop(mm);
793 } else {
794 spin_unlock(&ksm_mmlist_lock);
795 up_read(&mm->mmap_sem);
796 }
797 }
798
799 /* Clean up stable nodes, but don't worry if some are still busy */
800 remove_all_stable_nodes();
801 ksm_scan.seqnr = 0;
802 return 0;
803
804 error:
805 up_read(&mm->mmap_sem);
806 spin_lock(&ksm_mmlist_lock);
807 ksm_scan.mm_slot = &ksm_mm_head;
808 spin_unlock(&ksm_mmlist_lock);
809 return err;
810 }
811 #endif /* CONFIG_SYSFS */
812
813 static u32 calc_checksum(struct page *page)
814 {
815 u32 checksum;
816 void *addr = kmap_atomic(page);
817 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
818 kunmap_atomic(addr);
819 return checksum;
820 }
821
822 static int memcmp_pages(struct page *page1, struct page *page2)
823 {
824 char *addr1, *addr2;
825 int ret;
826
827 addr1 = kmap_atomic(page1);
828 addr2 = kmap_atomic(page2);
829 ret = memcmp(addr1, addr2, PAGE_SIZE);
830 kunmap_atomic(addr2);
831 kunmap_atomic(addr1);
832 return ret;
833 }
834
835 static inline int pages_identical(struct page *page1, struct page *page2)
836 {
837 return !memcmp_pages(page1, page2);
838 }
839
840 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
841 pte_t *orig_pte)
842 {
843 struct mm_struct *mm = vma->vm_mm;
844 unsigned long addr;
845 pte_t *ptep;
846 spinlock_t *ptl;
847 int swapped;
848 int err = -EFAULT;
849 unsigned long mmun_start; /* For mmu_notifiers */
850 unsigned long mmun_end; /* For mmu_notifiers */
851
852 addr = page_address_in_vma(page, vma);
853 if (addr == -EFAULT)
854 goto out;
855
856 BUG_ON(PageTransCompound(page));
857
858 mmun_start = addr;
859 mmun_end = addr + PAGE_SIZE;
860 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
861
862 ptep = page_check_address(page, mm, addr, &ptl, 0);
863 if (!ptep)
864 goto out_mn;
865
866 if (pte_write(*ptep) || pte_dirty(*ptep)) {
867 pte_t entry;
868
869 swapped = PageSwapCache(page);
870 flush_cache_page(vma, addr, page_to_pfn(page));
871 /*
872 * Ok this is tricky, when get_user_pages_fast() run it doesn't
873 * take any lock, therefore the check that we are going to make
874 * with the pagecount against the mapcount is racey and
875 * O_DIRECT can happen right after the check.
876 * So we clear the pte and flush the tlb before the check
877 * this assure us that no O_DIRECT can happen after the check
878 * or in the middle of the check.
879 */
880 entry = ptep_clear_flush_notify(vma, addr, ptep);
881 /*
882 * Check that no O_DIRECT or similar I/O is in progress on the
883 * page
884 */
885 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
886 set_pte_at(mm, addr, ptep, entry);
887 goto out_unlock;
888 }
889 if (pte_dirty(entry))
890 set_page_dirty(page);
891 entry = pte_mkclean(pte_wrprotect(entry));
892 set_pte_at_notify(mm, addr, ptep, entry);
893 }
894 *orig_pte = *ptep;
895 err = 0;
896
897 out_unlock:
898 pte_unmap_unlock(ptep, ptl);
899 out_mn:
900 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
901 out:
902 return err;
903 }
904
905 /**
906 * replace_page - replace page in vma by new ksm page
907 * @vma: vma that holds the pte pointing to page
908 * @page: the page we are replacing by kpage
909 * @kpage: the ksm page we replace page by
910 * @orig_pte: the original value of the pte
911 *
912 * Returns 0 on success, -EFAULT on failure.
913 */
914 static int replace_page(struct vm_area_struct *vma, struct page *page,
915 struct page *kpage, pte_t orig_pte)
916 {
917 struct mm_struct *mm = vma->vm_mm;
918 pmd_t *pmd;
919 pte_t *ptep;
920 spinlock_t *ptl;
921 unsigned long addr;
922 int err = -EFAULT;
923 unsigned long mmun_start; /* For mmu_notifiers */
924 unsigned long mmun_end; /* For mmu_notifiers */
925
926 addr = page_address_in_vma(page, vma);
927 if (addr == -EFAULT)
928 goto out;
929
930 pmd = mm_find_pmd(mm, addr);
931 if (!pmd)
932 goto out;
933
934 mmun_start = addr;
935 mmun_end = addr + PAGE_SIZE;
936 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
937
938 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
939 if (!pte_same(*ptep, orig_pte)) {
940 pte_unmap_unlock(ptep, ptl);
941 goto out_mn;
942 }
943
944 get_page(kpage);
945 page_add_anon_rmap(kpage, vma, addr, false);
946
947 flush_cache_page(vma, addr, pte_pfn(*ptep));
948 ptep_clear_flush_notify(vma, addr, ptep);
949 set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
950
951 page_remove_rmap(page, false);
952 if (!page_mapped(page))
953 try_to_free_swap(page);
954 put_page(page);
955
956 pte_unmap_unlock(ptep, ptl);
957 err = 0;
958 out_mn:
959 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
960 out:
961 return err;
962 }
963
964 /*
965 * try_to_merge_one_page - take two pages and merge them into one
966 * @vma: the vma that holds the pte pointing to page
967 * @page: the PageAnon page that we want to replace with kpage
968 * @kpage: the PageKsm page that we want to map instead of page,
969 * or NULL the first time when we want to use page as kpage.
970 *
971 * This function returns 0 if the pages were merged, -EFAULT otherwise.
972 */
973 static int try_to_merge_one_page(struct vm_area_struct *vma,
974 struct page *page, struct page *kpage)
975 {
976 pte_t orig_pte = __pte(0);
977 int err = -EFAULT;
978
979 if (page == kpage) /* ksm page forked */
980 return 0;
981
982 if (!PageAnon(page))
983 goto out;
984
985 /*
986 * We need the page lock to read a stable PageSwapCache in
987 * write_protect_page(). We use trylock_page() instead of
988 * lock_page() because we don't want to wait here - we
989 * prefer to continue scanning and merging different pages,
990 * then come back to this page when it is unlocked.
991 */
992 if (!trylock_page(page))
993 goto out;
994
995 if (PageTransCompound(page)) {
996 err = split_huge_page(page);
997 if (err)
998 goto out_unlock;
999 }
1000
1001 /*
1002 * If this anonymous page is mapped only here, its pte may need
1003 * to be write-protected. If it's mapped elsewhere, all of its
1004 * ptes are necessarily already write-protected. But in either
1005 * case, we need to lock and check page_count is not raised.
1006 */
1007 if (write_protect_page(vma, page, &orig_pte) == 0) {
1008 if (!kpage) {
1009 /*
1010 * While we hold page lock, upgrade page from
1011 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1012 * stable_tree_insert() will update stable_node.
1013 */
1014 set_page_stable_node(page, NULL);
1015 mark_page_accessed(page);
1016 /*
1017 * Page reclaim just frees a clean page with no dirty
1018 * ptes: make sure that the ksm page would be swapped.
1019 */
1020 if (!PageDirty(page))
1021 SetPageDirty(page);
1022 err = 0;
1023 } else if (pages_identical(page, kpage))
1024 err = replace_page(vma, page, kpage, orig_pte);
1025 }
1026
1027 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1028 munlock_vma_page(page);
1029 if (!PageMlocked(kpage)) {
1030 unlock_page(page);
1031 lock_page(kpage);
1032 mlock_vma_page(kpage);
1033 page = kpage; /* for final unlock */
1034 }
1035 }
1036
1037 out_unlock:
1038 unlock_page(page);
1039 out:
1040 return err;
1041 }
1042
1043 /*
1044 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1045 * but no new kernel page is allocated: kpage must already be a ksm page.
1046 *
1047 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1048 */
1049 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1050 struct page *page, struct page *kpage)
1051 {
1052 struct mm_struct *mm = rmap_item->mm;
1053 struct vm_area_struct *vma;
1054 int err = -EFAULT;
1055
1056 down_read(&mm->mmap_sem);
1057 vma = find_mergeable_vma(mm, rmap_item->address);
1058 if (!vma)
1059 goto out;
1060
1061 err = try_to_merge_one_page(vma, page, kpage);
1062 if (err)
1063 goto out;
1064
1065 /* Unstable nid is in union with stable anon_vma: remove first */
1066 remove_rmap_item_from_tree(rmap_item);
1067
1068 /* Must get reference to anon_vma while still holding mmap_sem */
1069 rmap_item->anon_vma = vma->anon_vma;
1070 get_anon_vma(vma->anon_vma);
1071 out:
1072 up_read(&mm->mmap_sem);
1073 return err;
1074 }
1075
1076 /*
1077 * try_to_merge_two_pages - take two identical pages and prepare them
1078 * to be merged into one page.
1079 *
1080 * This function returns the kpage if we successfully merged two identical
1081 * pages into one ksm page, NULL otherwise.
1082 *
1083 * Note that this function upgrades page to ksm page: if one of the pages
1084 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1085 */
1086 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1087 struct page *page,
1088 struct rmap_item *tree_rmap_item,
1089 struct page *tree_page)
1090 {
1091 int err;
1092
1093 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1094 if (!err) {
1095 err = try_to_merge_with_ksm_page(tree_rmap_item,
1096 tree_page, page);
1097 /*
1098 * If that fails, we have a ksm page with only one pte
1099 * pointing to it: so break it.
1100 */
1101 if (err)
1102 break_cow(rmap_item);
1103 }
1104 return err ? NULL : page;
1105 }
1106
1107 /*
1108 * stable_tree_search - search for page inside the stable tree
1109 *
1110 * This function checks if there is a page inside the stable tree
1111 * with identical content to the page that we are scanning right now.
1112 *
1113 * This function returns the stable tree node of identical content if found,
1114 * NULL otherwise.
1115 */
1116 static struct page *stable_tree_search(struct page *page)
1117 {
1118 int nid;
1119 struct rb_root *root;
1120 struct rb_node **new;
1121 struct rb_node *parent;
1122 struct stable_node *stable_node;
1123 struct stable_node *page_node;
1124
1125 page_node = page_stable_node(page);
1126 if (page_node && page_node->head != &migrate_nodes) {
1127 /* ksm page forked */
1128 get_page(page);
1129 return page;
1130 }
1131
1132 nid = get_kpfn_nid(page_to_pfn(page));
1133 root = root_stable_tree + nid;
1134 again:
1135 new = &root->rb_node;
1136 parent = NULL;
1137
1138 while (*new) {
1139 struct page *tree_page;
1140 int ret;
1141
1142 cond_resched();
1143 stable_node = rb_entry(*new, struct stable_node, node);
1144 tree_page = get_ksm_page(stable_node, false);
1145 if (!tree_page) {
1146 /*
1147 * If we walked over a stale stable_node,
1148 * get_ksm_page() will call rb_erase() and it
1149 * may rebalance the tree from under us. So
1150 * restart the search from scratch. Returning
1151 * NULL would be safe too, but we'd generate
1152 * false negative insertions just because some
1153 * stable_node was stale.
1154 */
1155 goto again;
1156 }
1157
1158 ret = memcmp_pages(page, tree_page);
1159 put_page(tree_page);
1160
1161 parent = *new;
1162 if (ret < 0)
1163 new = &parent->rb_left;
1164 else if (ret > 0)
1165 new = &parent->rb_right;
1166 else {
1167 /*
1168 * Lock and unlock the stable_node's page (which
1169 * might already have been migrated) so that page
1170 * migration is sure to notice its raised count.
1171 * It would be more elegant to return stable_node
1172 * than kpage, but that involves more changes.
1173 */
1174 tree_page = get_ksm_page(stable_node, true);
1175 if (tree_page) {
1176 unlock_page(tree_page);
1177 if (get_kpfn_nid(stable_node->kpfn) !=
1178 NUMA(stable_node->nid)) {
1179 put_page(tree_page);
1180 goto replace;
1181 }
1182 return tree_page;
1183 }
1184 /*
1185 * There is now a place for page_node, but the tree may
1186 * have been rebalanced, so re-evaluate parent and new.
1187 */
1188 if (page_node)
1189 goto again;
1190 return NULL;
1191 }
1192 }
1193
1194 if (!page_node)
1195 return NULL;
1196
1197 list_del(&page_node->list);
1198 DO_NUMA(page_node->nid = nid);
1199 rb_link_node(&page_node->node, parent, new);
1200 rb_insert_color(&page_node->node, root);
1201 get_page(page);
1202 return page;
1203
1204 replace:
1205 if (page_node) {
1206 list_del(&page_node->list);
1207 DO_NUMA(page_node->nid = nid);
1208 rb_replace_node(&stable_node->node, &page_node->node, root);
1209 get_page(page);
1210 } else {
1211 rb_erase(&stable_node->node, root);
1212 page = NULL;
1213 }
1214 stable_node->head = &migrate_nodes;
1215 list_add(&stable_node->list, stable_node->head);
1216 return page;
1217 }
1218
1219 /*
1220 * stable_tree_insert - insert stable tree node pointing to new ksm page
1221 * into the stable tree.
1222 *
1223 * This function returns the stable tree node just allocated on success,
1224 * NULL otherwise.
1225 */
1226 static struct stable_node *stable_tree_insert(struct page *kpage)
1227 {
1228 int nid;
1229 unsigned long kpfn;
1230 struct rb_root *root;
1231 struct rb_node **new;
1232 struct rb_node *parent;
1233 struct stable_node *stable_node;
1234
1235 kpfn = page_to_pfn(kpage);
1236 nid = get_kpfn_nid(kpfn);
1237 root = root_stable_tree + nid;
1238 again:
1239 parent = NULL;
1240 new = &root->rb_node;
1241
1242 while (*new) {
1243 struct page *tree_page;
1244 int ret;
1245
1246 cond_resched();
1247 stable_node = rb_entry(*new, struct stable_node, node);
1248 tree_page = get_ksm_page(stable_node, false);
1249 if (!tree_page) {
1250 /*
1251 * If we walked over a stale stable_node,
1252 * get_ksm_page() will call rb_erase() and it
1253 * may rebalance the tree from under us. So
1254 * restart the search from scratch. Returning
1255 * NULL would be safe too, but we'd generate
1256 * false negative insertions just because some
1257 * stable_node was stale.
1258 */
1259 goto again;
1260 }
1261
1262 ret = memcmp_pages(kpage, tree_page);
1263 put_page(tree_page);
1264
1265 parent = *new;
1266 if (ret < 0)
1267 new = &parent->rb_left;
1268 else if (ret > 0)
1269 new = &parent->rb_right;
1270 else {
1271 /*
1272 * It is not a bug that stable_tree_search() didn't
1273 * find this node: because at that time our page was
1274 * not yet write-protected, so may have changed since.
1275 */
1276 return NULL;
1277 }
1278 }
1279
1280 stable_node = alloc_stable_node();
1281 if (!stable_node)
1282 return NULL;
1283
1284 INIT_HLIST_HEAD(&stable_node->hlist);
1285 stable_node->kpfn = kpfn;
1286 set_page_stable_node(kpage, stable_node);
1287 DO_NUMA(stable_node->nid = nid);
1288 rb_link_node(&stable_node->node, parent, new);
1289 rb_insert_color(&stable_node->node, root);
1290
1291 return stable_node;
1292 }
1293
1294 /*
1295 * unstable_tree_search_insert - search for identical page,
1296 * else insert rmap_item into the unstable tree.
1297 *
1298 * This function searches for a page in the unstable tree identical to the
1299 * page currently being scanned; and if no identical page is found in the
1300 * tree, we insert rmap_item as a new object into the unstable tree.
1301 *
1302 * This function returns pointer to rmap_item found to be identical
1303 * to the currently scanned page, NULL otherwise.
1304 *
1305 * This function does both searching and inserting, because they share
1306 * the same walking algorithm in an rbtree.
1307 */
1308 static
1309 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1310 struct page *page,
1311 struct page **tree_pagep)
1312 {
1313 struct rb_node **new;
1314 struct rb_root *root;
1315 struct rb_node *parent = NULL;
1316 int nid;
1317
1318 nid = get_kpfn_nid(page_to_pfn(page));
1319 root = root_unstable_tree + nid;
1320 new = &root->rb_node;
1321
1322 while (*new) {
1323 struct rmap_item *tree_rmap_item;
1324 struct page *tree_page;
1325 int ret;
1326
1327 cond_resched();
1328 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1329 tree_page = get_mergeable_page(tree_rmap_item);
1330 if (!tree_page)
1331 return NULL;
1332
1333 /*
1334 * Don't substitute a ksm page for a forked page.
1335 */
1336 if (page == tree_page) {
1337 put_page(tree_page);
1338 return NULL;
1339 }
1340
1341 ret = memcmp_pages(page, tree_page);
1342
1343 parent = *new;
1344 if (ret < 0) {
1345 put_page(tree_page);
1346 new = &parent->rb_left;
1347 } else if (ret > 0) {
1348 put_page(tree_page);
1349 new = &parent->rb_right;
1350 } else if (!ksm_merge_across_nodes &&
1351 page_to_nid(tree_page) != nid) {
1352 /*
1353 * If tree_page has been migrated to another NUMA node,
1354 * it will be flushed out and put in the right unstable
1355 * tree next time: only merge with it when across_nodes.
1356 */
1357 put_page(tree_page);
1358 return NULL;
1359 } else {
1360 *tree_pagep = tree_page;
1361 return tree_rmap_item;
1362 }
1363 }
1364
1365 rmap_item->address |= UNSTABLE_FLAG;
1366 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1367 DO_NUMA(rmap_item->nid = nid);
1368 rb_link_node(&rmap_item->node, parent, new);
1369 rb_insert_color(&rmap_item->node, root);
1370
1371 ksm_pages_unshared++;
1372 return NULL;
1373 }
1374
1375 /*
1376 * stable_tree_append - add another rmap_item to the linked list of
1377 * rmap_items hanging off a given node of the stable tree, all sharing
1378 * the same ksm page.
1379 */
1380 static void stable_tree_append(struct rmap_item *rmap_item,
1381 struct stable_node *stable_node)
1382 {
1383 rmap_item->head = stable_node;
1384 rmap_item->address |= STABLE_FLAG;
1385 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1386
1387 if (rmap_item->hlist.next)
1388 ksm_pages_sharing++;
1389 else
1390 ksm_pages_shared++;
1391 }
1392
1393 /*
1394 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1395 * if not, compare checksum to previous and if it's the same, see if page can
1396 * be inserted into the unstable tree, or merged with a page already there and
1397 * both transferred to the stable tree.
1398 *
1399 * @page: the page that we are searching identical page to.
1400 * @rmap_item: the reverse mapping into the virtual address of this page
1401 */
1402 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1403 {
1404 struct rmap_item *tree_rmap_item;
1405 struct page *tree_page = NULL;
1406 struct stable_node *stable_node;
1407 struct page *kpage;
1408 unsigned int checksum;
1409 int err;
1410
1411 stable_node = page_stable_node(page);
1412 if (stable_node) {
1413 if (stable_node->head != &migrate_nodes &&
1414 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1415 rb_erase(&stable_node->node,
1416 root_stable_tree + NUMA(stable_node->nid));
1417 stable_node->head = &migrate_nodes;
1418 list_add(&stable_node->list, stable_node->head);
1419 }
1420 if (stable_node->head != &migrate_nodes &&
1421 rmap_item->head == stable_node)
1422 return;
1423 }
1424
1425 /* We first start with searching the page inside the stable tree */
1426 kpage = stable_tree_search(page);
1427 if (kpage == page && rmap_item->head == stable_node) {
1428 put_page(kpage);
1429 return;
1430 }
1431
1432 remove_rmap_item_from_tree(rmap_item);
1433
1434 if (kpage) {
1435 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1436 if (!err) {
1437 /*
1438 * The page was successfully merged:
1439 * add its rmap_item to the stable tree.
1440 */
1441 lock_page(kpage);
1442 stable_tree_append(rmap_item, page_stable_node(kpage));
1443 unlock_page(kpage);
1444 }
1445 put_page(kpage);
1446 return;
1447 }
1448
1449 /*
1450 * If the hash value of the page has changed from the last time
1451 * we calculated it, this page is changing frequently: therefore we
1452 * don't want to insert it in the unstable tree, and we don't want
1453 * to waste our time searching for something identical to it there.
1454 */
1455 checksum = calc_checksum(page);
1456 if (rmap_item->oldchecksum != checksum) {
1457 rmap_item->oldchecksum = checksum;
1458 return;
1459 }
1460
1461 tree_rmap_item =
1462 unstable_tree_search_insert(rmap_item, page, &tree_page);
1463 if (tree_rmap_item) {
1464 kpage = try_to_merge_two_pages(rmap_item, page,
1465 tree_rmap_item, tree_page);
1466 put_page(tree_page);
1467 if (kpage) {
1468 /*
1469 * The pages were successfully merged: insert new
1470 * node in the stable tree and add both rmap_items.
1471 */
1472 lock_page(kpage);
1473 stable_node = stable_tree_insert(kpage);
1474 if (stable_node) {
1475 stable_tree_append(tree_rmap_item, stable_node);
1476 stable_tree_append(rmap_item, stable_node);
1477 }
1478 unlock_page(kpage);
1479
1480 /*
1481 * If we fail to insert the page into the stable tree,
1482 * we will have 2 virtual addresses that are pointing
1483 * to a ksm page left outside the stable tree,
1484 * in which case we need to break_cow on both.
1485 */
1486 if (!stable_node) {
1487 break_cow(tree_rmap_item);
1488 break_cow(rmap_item);
1489 }
1490 }
1491 }
1492 }
1493
1494 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1495 struct rmap_item **rmap_list,
1496 unsigned long addr)
1497 {
1498 struct rmap_item *rmap_item;
1499
1500 while (*rmap_list) {
1501 rmap_item = *rmap_list;
1502 if ((rmap_item->address & PAGE_MASK) == addr)
1503 return rmap_item;
1504 if (rmap_item->address > addr)
1505 break;
1506 *rmap_list = rmap_item->rmap_list;
1507 remove_rmap_item_from_tree(rmap_item);
1508 free_rmap_item(rmap_item);
1509 }
1510
1511 rmap_item = alloc_rmap_item();
1512 if (rmap_item) {
1513 /* It has already been zeroed */
1514 rmap_item->mm = mm_slot->mm;
1515 rmap_item->address = addr;
1516 rmap_item->rmap_list = *rmap_list;
1517 *rmap_list = rmap_item;
1518 }
1519 return rmap_item;
1520 }
1521
1522 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1523 {
1524 struct mm_struct *mm;
1525 struct mm_slot *slot;
1526 struct vm_area_struct *vma;
1527 struct rmap_item *rmap_item;
1528 int nid;
1529
1530 if (list_empty(&ksm_mm_head.mm_list))
1531 return NULL;
1532
1533 slot = ksm_scan.mm_slot;
1534 if (slot == &ksm_mm_head) {
1535 /*
1536 * A number of pages can hang around indefinitely on per-cpu
1537 * pagevecs, raised page count preventing write_protect_page
1538 * from merging them. Though it doesn't really matter much,
1539 * it is puzzling to see some stuck in pages_volatile until
1540 * other activity jostles them out, and they also prevented
1541 * LTP's KSM test from succeeding deterministically; so drain
1542 * them here (here rather than on entry to ksm_do_scan(),
1543 * so we don't IPI too often when pages_to_scan is set low).
1544 */
1545 lru_add_drain_all();
1546
1547 /*
1548 * Whereas stale stable_nodes on the stable_tree itself
1549 * get pruned in the regular course of stable_tree_search(),
1550 * those moved out to the migrate_nodes list can accumulate:
1551 * so prune them once before each full scan.
1552 */
1553 if (!ksm_merge_across_nodes) {
1554 struct stable_node *stable_node, *next;
1555 struct page *page;
1556
1557 list_for_each_entry_safe(stable_node, next,
1558 &migrate_nodes, list) {
1559 page = get_ksm_page(stable_node, false);
1560 if (page)
1561 put_page(page);
1562 cond_resched();
1563 }
1564 }
1565
1566 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1567 root_unstable_tree[nid] = RB_ROOT;
1568
1569 spin_lock(&ksm_mmlist_lock);
1570 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1571 ksm_scan.mm_slot = slot;
1572 spin_unlock(&ksm_mmlist_lock);
1573 /*
1574 * Although we tested list_empty() above, a racing __ksm_exit
1575 * of the last mm on the list may have removed it since then.
1576 */
1577 if (slot == &ksm_mm_head)
1578 return NULL;
1579 next_mm:
1580 ksm_scan.address = 0;
1581 ksm_scan.rmap_list = &slot->rmap_list;
1582 }
1583
1584 mm = slot->mm;
1585 down_read(&mm->mmap_sem);
1586 if (ksm_test_exit(mm))
1587 vma = NULL;
1588 else
1589 vma = find_vma(mm, ksm_scan.address);
1590
1591 for (; vma; vma = vma->vm_next) {
1592 if (!(vma->vm_flags & VM_MERGEABLE))
1593 continue;
1594 if (ksm_scan.address < vma->vm_start)
1595 ksm_scan.address = vma->vm_start;
1596 if (!vma->anon_vma)
1597 ksm_scan.address = vma->vm_end;
1598
1599 while (ksm_scan.address < vma->vm_end) {
1600 if (ksm_test_exit(mm))
1601 break;
1602 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1603 if (IS_ERR_OR_NULL(*page)) {
1604 ksm_scan.address += PAGE_SIZE;
1605 cond_resched();
1606 continue;
1607 }
1608 if (PageAnon(*page)) {
1609 flush_anon_page(vma, *page, ksm_scan.address);
1610 flush_dcache_page(*page);
1611 rmap_item = get_next_rmap_item(slot,
1612 ksm_scan.rmap_list, ksm_scan.address);
1613 if (rmap_item) {
1614 ksm_scan.rmap_list =
1615 &rmap_item->rmap_list;
1616 ksm_scan.address += PAGE_SIZE;
1617 } else
1618 put_page(*page);
1619 up_read(&mm->mmap_sem);
1620 return rmap_item;
1621 }
1622 put_page(*page);
1623 ksm_scan.address += PAGE_SIZE;
1624 cond_resched();
1625 }
1626 }
1627
1628 if (ksm_test_exit(mm)) {
1629 ksm_scan.address = 0;
1630 ksm_scan.rmap_list = &slot->rmap_list;
1631 }
1632 /*
1633 * Nuke all the rmap_items that are above this current rmap:
1634 * because there were no VM_MERGEABLE vmas with such addresses.
1635 */
1636 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1637
1638 spin_lock(&ksm_mmlist_lock);
1639 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1640 struct mm_slot, mm_list);
1641 if (ksm_scan.address == 0) {
1642 /*
1643 * We've completed a full scan of all vmas, holding mmap_sem
1644 * throughout, and found no VM_MERGEABLE: so do the same as
1645 * __ksm_exit does to remove this mm from all our lists now.
1646 * This applies either when cleaning up after __ksm_exit
1647 * (but beware: we can reach here even before __ksm_exit),
1648 * or when all VM_MERGEABLE areas have been unmapped (and
1649 * mmap_sem then protects against race with MADV_MERGEABLE).
1650 */
1651 hash_del(&slot->link);
1652 list_del(&slot->mm_list);
1653 spin_unlock(&ksm_mmlist_lock);
1654
1655 free_mm_slot(slot);
1656 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1657 up_read(&mm->mmap_sem);
1658 mmdrop(mm);
1659 } else {
1660 spin_unlock(&ksm_mmlist_lock);
1661 up_read(&mm->mmap_sem);
1662 }
1663
1664 /* Repeat until we've completed scanning the whole list */
1665 slot = ksm_scan.mm_slot;
1666 if (slot != &ksm_mm_head)
1667 goto next_mm;
1668
1669 ksm_scan.seqnr++;
1670 return NULL;
1671 }
1672
1673 /**
1674 * ksm_do_scan - the ksm scanner main worker function.
1675 * @scan_npages - number of pages we want to scan before we return.
1676 */
1677 static void ksm_do_scan(unsigned int scan_npages)
1678 {
1679 struct rmap_item *rmap_item;
1680 struct page *uninitialized_var(page);
1681
1682 while (scan_npages-- && likely(!freezing(current))) {
1683 cond_resched();
1684 rmap_item = scan_get_next_rmap_item(&page);
1685 if (!rmap_item)
1686 return;
1687 cmp_and_merge_page(page, rmap_item);
1688 put_page(page);
1689 }
1690 }
1691
1692 static int ksmd_should_run(void)
1693 {
1694 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1695 }
1696
1697 static int ksm_scan_thread(void *nothing)
1698 {
1699 set_freezable();
1700 set_user_nice(current, 5);
1701
1702 while (!kthread_should_stop()) {
1703 mutex_lock(&ksm_thread_mutex);
1704 wait_while_offlining();
1705 if (ksmd_should_run())
1706 ksm_do_scan(ksm_thread_pages_to_scan);
1707 mutex_unlock(&ksm_thread_mutex);
1708
1709 try_to_freeze();
1710
1711 if (ksmd_should_run()) {
1712 schedule_timeout_interruptible(
1713 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1714 } else {
1715 wait_event_freezable(ksm_thread_wait,
1716 ksmd_should_run() || kthread_should_stop());
1717 }
1718 }
1719 return 0;
1720 }
1721
1722 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1723 unsigned long end, int advice, unsigned long *vm_flags)
1724 {
1725 struct mm_struct *mm = vma->vm_mm;
1726 int err;
1727
1728 switch (advice) {
1729 case MADV_MERGEABLE:
1730 /*
1731 * Be somewhat over-protective for now!
1732 */
1733 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1734 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1735 VM_HUGETLB | VM_MIXEDMAP))
1736 return 0; /* just ignore the advice */
1737
1738 #ifdef VM_SAO
1739 if (*vm_flags & VM_SAO)
1740 return 0;
1741 #endif
1742
1743 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1744 err = __ksm_enter(mm);
1745 if (err)
1746 return err;
1747 }
1748
1749 *vm_flags |= VM_MERGEABLE;
1750 break;
1751
1752 case MADV_UNMERGEABLE:
1753 if (!(*vm_flags & VM_MERGEABLE))
1754 return 0; /* just ignore the advice */
1755
1756 if (vma->anon_vma) {
1757 err = unmerge_ksm_pages(vma, start, end);
1758 if (err)
1759 return err;
1760 }
1761
1762 *vm_flags &= ~VM_MERGEABLE;
1763 break;
1764 }
1765
1766 return 0;
1767 }
1768
1769 int __ksm_enter(struct mm_struct *mm)
1770 {
1771 struct mm_slot *mm_slot;
1772 int needs_wakeup;
1773
1774 mm_slot = alloc_mm_slot();
1775 if (!mm_slot)
1776 return -ENOMEM;
1777
1778 /* Check ksm_run too? Would need tighter locking */
1779 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1780
1781 spin_lock(&ksm_mmlist_lock);
1782 insert_to_mm_slots_hash(mm, mm_slot);
1783 /*
1784 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1785 * insert just behind the scanning cursor, to let the area settle
1786 * down a little; when fork is followed by immediate exec, we don't
1787 * want ksmd to waste time setting up and tearing down an rmap_list.
1788 *
1789 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1790 * scanning cursor, otherwise KSM pages in newly forked mms will be
1791 * missed: then we might as well insert at the end of the list.
1792 */
1793 if (ksm_run & KSM_RUN_UNMERGE)
1794 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1795 else
1796 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1797 spin_unlock(&ksm_mmlist_lock);
1798
1799 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1800 atomic_inc(&mm->mm_count);
1801
1802 if (needs_wakeup)
1803 wake_up_interruptible(&ksm_thread_wait);
1804
1805 return 0;
1806 }
1807
1808 void __ksm_exit(struct mm_struct *mm)
1809 {
1810 struct mm_slot *mm_slot;
1811 int easy_to_free = 0;
1812
1813 /*
1814 * This process is exiting: if it's straightforward (as is the
1815 * case when ksmd was never running), free mm_slot immediately.
1816 * But if it's at the cursor or has rmap_items linked to it, use
1817 * mmap_sem to synchronize with any break_cows before pagetables
1818 * are freed, and leave the mm_slot on the list for ksmd to free.
1819 * Beware: ksm may already have noticed it exiting and freed the slot.
1820 */
1821
1822 spin_lock(&ksm_mmlist_lock);
1823 mm_slot = get_mm_slot(mm);
1824 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1825 if (!mm_slot->rmap_list) {
1826 hash_del(&mm_slot->link);
1827 list_del(&mm_slot->mm_list);
1828 easy_to_free = 1;
1829 } else {
1830 list_move(&mm_slot->mm_list,
1831 &ksm_scan.mm_slot->mm_list);
1832 }
1833 }
1834 spin_unlock(&ksm_mmlist_lock);
1835
1836 if (easy_to_free) {
1837 free_mm_slot(mm_slot);
1838 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1839 mmdrop(mm);
1840 } else if (mm_slot) {
1841 down_write(&mm->mmap_sem);
1842 up_write(&mm->mmap_sem);
1843 }
1844 }
1845
1846 struct page *ksm_might_need_to_copy(struct page *page,
1847 struct vm_area_struct *vma, unsigned long address)
1848 {
1849 struct anon_vma *anon_vma = page_anon_vma(page);
1850 struct page *new_page;
1851
1852 if (PageKsm(page)) {
1853 if (page_stable_node(page) &&
1854 !(ksm_run & KSM_RUN_UNMERGE))
1855 return page; /* no need to copy it */
1856 } else if (!anon_vma) {
1857 return page; /* no need to copy it */
1858 } else if (anon_vma->root == vma->anon_vma->root &&
1859 page->index == linear_page_index(vma, address)) {
1860 return page; /* still no need to copy it */
1861 }
1862 if (!PageUptodate(page))
1863 return page; /* let do_swap_page report the error */
1864
1865 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1866 if (new_page) {
1867 copy_user_highpage(new_page, page, address, vma);
1868
1869 SetPageDirty(new_page);
1870 __SetPageUptodate(new_page);
1871 __SetPageLocked(new_page);
1872 }
1873
1874 return new_page;
1875 }
1876
1877 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1878 {
1879 struct stable_node *stable_node;
1880 struct rmap_item *rmap_item;
1881 int ret = SWAP_AGAIN;
1882 int search_new_forks = 0;
1883
1884 VM_BUG_ON_PAGE(!PageKsm(page), page);
1885
1886 /*
1887 * Rely on the page lock to protect against concurrent modifications
1888 * to that page's node of the stable tree.
1889 */
1890 VM_BUG_ON_PAGE(!PageLocked(page), page);
1891
1892 stable_node = page_stable_node(page);
1893 if (!stable_node)
1894 return ret;
1895 again:
1896 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1897 struct anon_vma *anon_vma = rmap_item->anon_vma;
1898 struct anon_vma_chain *vmac;
1899 struct vm_area_struct *vma;
1900
1901 cond_resched();
1902 anon_vma_lock_read(anon_vma);
1903 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1904 0, ULONG_MAX) {
1905 cond_resched();
1906 vma = vmac->vma;
1907 if (rmap_item->address < vma->vm_start ||
1908 rmap_item->address >= vma->vm_end)
1909 continue;
1910 /*
1911 * Initially we examine only the vma which covers this
1912 * rmap_item; but later, if there is still work to do,
1913 * we examine covering vmas in other mms: in case they
1914 * were forked from the original since ksmd passed.
1915 */
1916 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1917 continue;
1918
1919 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1920 continue;
1921
1922 ret = rwc->rmap_one(page, vma,
1923 rmap_item->address, rwc->arg);
1924 if (ret != SWAP_AGAIN) {
1925 anon_vma_unlock_read(anon_vma);
1926 goto out;
1927 }
1928 if (rwc->done && rwc->done(page)) {
1929 anon_vma_unlock_read(anon_vma);
1930 goto out;
1931 }
1932 }
1933 anon_vma_unlock_read(anon_vma);
1934 }
1935 if (!search_new_forks++)
1936 goto again;
1937 out:
1938 return ret;
1939 }
1940
1941 #ifdef CONFIG_MIGRATION
1942 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1943 {
1944 struct stable_node *stable_node;
1945
1946 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
1947 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
1948 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
1949
1950 stable_node = page_stable_node(newpage);
1951 if (stable_node) {
1952 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
1953 stable_node->kpfn = page_to_pfn(newpage);
1954 /*
1955 * newpage->mapping was set in advance; now we need smp_wmb()
1956 * to make sure that the new stable_node->kpfn is visible
1957 * to get_ksm_page() before it can see that oldpage->mapping
1958 * has gone stale (or that PageSwapCache has been cleared).
1959 */
1960 smp_wmb();
1961 set_page_stable_node(oldpage, NULL);
1962 }
1963 }
1964 #endif /* CONFIG_MIGRATION */
1965
1966 #ifdef CONFIG_MEMORY_HOTREMOVE
1967 static void wait_while_offlining(void)
1968 {
1969 while (ksm_run & KSM_RUN_OFFLINE) {
1970 mutex_unlock(&ksm_thread_mutex);
1971 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
1972 TASK_UNINTERRUPTIBLE);
1973 mutex_lock(&ksm_thread_mutex);
1974 }
1975 }
1976
1977 static void ksm_check_stable_tree(unsigned long start_pfn,
1978 unsigned long end_pfn)
1979 {
1980 struct stable_node *stable_node, *next;
1981 struct rb_node *node;
1982 int nid;
1983
1984 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
1985 node = rb_first(root_stable_tree + nid);
1986 while (node) {
1987 stable_node = rb_entry(node, struct stable_node, node);
1988 if (stable_node->kpfn >= start_pfn &&
1989 stable_node->kpfn < end_pfn) {
1990 /*
1991 * Don't get_ksm_page, page has already gone:
1992 * which is why we keep kpfn instead of page*
1993 */
1994 remove_node_from_stable_tree(stable_node);
1995 node = rb_first(root_stable_tree + nid);
1996 } else
1997 node = rb_next(node);
1998 cond_resched();
1999 }
2000 }
2001 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2002 if (stable_node->kpfn >= start_pfn &&
2003 stable_node->kpfn < end_pfn)
2004 remove_node_from_stable_tree(stable_node);
2005 cond_resched();
2006 }
2007 }
2008
2009 static int ksm_memory_callback(struct notifier_block *self,
2010 unsigned long action, void *arg)
2011 {
2012 struct memory_notify *mn = arg;
2013
2014 switch (action) {
2015 case MEM_GOING_OFFLINE:
2016 /*
2017 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2018 * and remove_all_stable_nodes() while memory is going offline:
2019 * it is unsafe for them to touch the stable tree at this time.
2020 * But unmerge_ksm_pages(), rmap lookups and other entry points
2021 * which do not need the ksm_thread_mutex are all safe.
2022 */
2023 mutex_lock(&ksm_thread_mutex);
2024 ksm_run |= KSM_RUN_OFFLINE;
2025 mutex_unlock(&ksm_thread_mutex);
2026 break;
2027
2028 case MEM_OFFLINE:
2029 /*
2030 * Most of the work is done by page migration; but there might
2031 * be a few stable_nodes left over, still pointing to struct
2032 * pages which have been offlined: prune those from the tree,
2033 * otherwise get_ksm_page() might later try to access a
2034 * non-existent struct page.
2035 */
2036 ksm_check_stable_tree(mn->start_pfn,
2037 mn->start_pfn + mn->nr_pages);
2038 /* fallthrough */
2039
2040 case MEM_CANCEL_OFFLINE:
2041 mutex_lock(&ksm_thread_mutex);
2042 ksm_run &= ~KSM_RUN_OFFLINE;
2043 mutex_unlock(&ksm_thread_mutex);
2044
2045 smp_mb(); /* wake_up_bit advises this */
2046 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2047 break;
2048 }
2049 return NOTIFY_OK;
2050 }
2051 #else
2052 static void wait_while_offlining(void)
2053 {
2054 }
2055 #endif /* CONFIG_MEMORY_HOTREMOVE */
2056
2057 #ifdef CONFIG_SYSFS
2058 /*
2059 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2060 */
2061
2062 #define KSM_ATTR_RO(_name) \
2063 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2064 #define KSM_ATTR(_name) \
2065 static struct kobj_attribute _name##_attr = \
2066 __ATTR(_name, 0644, _name##_show, _name##_store)
2067
2068 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2069 struct kobj_attribute *attr, char *buf)
2070 {
2071 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2072 }
2073
2074 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2075 struct kobj_attribute *attr,
2076 const char *buf, size_t count)
2077 {
2078 unsigned long msecs;
2079 int err;
2080
2081 err = kstrtoul(buf, 10, &msecs);
2082 if (err || msecs > UINT_MAX)
2083 return -EINVAL;
2084
2085 ksm_thread_sleep_millisecs = msecs;
2086
2087 return count;
2088 }
2089 KSM_ATTR(sleep_millisecs);
2090
2091 static ssize_t pages_to_scan_show(struct kobject *kobj,
2092 struct kobj_attribute *attr, char *buf)
2093 {
2094 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2095 }
2096
2097 static ssize_t pages_to_scan_store(struct kobject *kobj,
2098 struct kobj_attribute *attr,
2099 const char *buf, size_t count)
2100 {
2101 int err;
2102 unsigned long nr_pages;
2103
2104 err = kstrtoul(buf, 10, &nr_pages);
2105 if (err || nr_pages > UINT_MAX)
2106 return -EINVAL;
2107
2108 ksm_thread_pages_to_scan = nr_pages;
2109
2110 return count;
2111 }
2112 KSM_ATTR(pages_to_scan);
2113
2114 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2115 char *buf)
2116 {
2117 return sprintf(buf, "%lu\n", ksm_run);
2118 }
2119
2120 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2121 const char *buf, size_t count)
2122 {
2123 int err;
2124 unsigned long flags;
2125
2126 err = kstrtoul(buf, 10, &flags);
2127 if (err || flags > UINT_MAX)
2128 return -EINVAL;
2129 if (flags > KSM_RUN_UNMERGE)
2130 return -EINVAL;
2131
2132 /*
2133 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2134 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2135 * breaking COW to free the pages_shared (but leaves mm_slots
2136 * on the list for when ksmd may be set running again).
2137 */
2138
2139 mutex_lock(&ksm_thread_mutex);
2140 wait_while_offlining();
2141 if (ksm_run != flags) {
2142 ksm_run = flags;
2143 if (flags & KSM_RUN_UNMERGE) {
2144 set_current_oom_origin();
2145 err = unmerge_and_remove_all_rmap_items();
2146 clear_current_oom_origin();
2147 if (err) {
2148 ksm_run = KSM_RUN_STOP;
2149 count = err;
2150 }
2151 }
2152 }
2153 mutex_unlock(&ksm_thread_mutex);
2154
2155 if (flags & KSM_RUN_MERGE)
2156 wake_up_interruptible(&ksm_thread_wait);
2157
2158 return count;
2159 }
2160 KSM_ATTR(run);
2161
2162 #ifdef CONFIG_NUMA
2163 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2164 struct kobj_attribute *attr, char *buf)
2165 {
2166 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2167 }
2168
2169 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2170 struct kobj_attribute *attr,
2171 const char *buf, size_t count)
2172 {
2173 int err;
2174 unsigned long knob;
2175
2176 err = kstrtoul(buf, 10, &knob);
2177 if (err)
2178 return err;
2179 if (knob > 1)
2180 return -EINVAL;
2181
2182 mutex_lock(&ksm_thread_mutex);
2183 wait_while_offlining();
2184 if (ksm_merge_across_nodes != knob) {
2185 if (ksm_pages_shared || remove_all_stable_nodes())
2186 err = -EBUSY;
2187 else if (root_stable_tree == one_stable_tree) {
2188 struct rb_root *buf;
2189 /*
2190 * This is the first time that we switch away from the
2191 * default of merging across nodes: must now allocate
2192 * a buffer to hold as many roots as may be needed.
2193 * Allocate stable and unstable together:
2194 * MAXSMP NODES_SHIFT 10 will use 16kB.
2195 */
2196 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2197 GFP_KERNEL);
2198 /* Let us assume that RB_ROOT is NULL is zero */
2199 if (!buf)
2200 err = -ENOMEM;
2201 else {
2202 root_stable_tree = buf;
2203 root_unstable_tree = buf + nr_node_ids;
2204 /* Stable tree is empty but not the unstable */
2205 root_unstable_tree[0] = one_unstable_tree[0];
2206 }
2207 }
2208 if (!err) {
2209 ksm_merge_across_nodes = knob;
2210 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2211 }
2212 }
2213 mutex_unlock(&ksm_thread_mutex);
2214
2215 return err ? err : count;
2216 }
2217 KSM_ATTR(merge_across_nodes);
2218 #endif
2219
2220 static ssize_t pages_shared_show(struct kobject *kobj,
2221 struct kobj_attribute *attr, char *buf)
2222 {
2223 return sprintf(buf, "%lu\n", ksm_pages_shared);
2224 }
2225 KSM_ATTR_RO(pages_shared);
2226
2227 static ssize_t pages_sharing_show(struct kobject *kobj,
2228 struct kobj_attribute *attr, char *buf)
2229 {
2230 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2231 }
2232 KSM_ATTR_RO(pages_sharing);
2233
2234 static ssize_t pages_unshared_show(struct kobject *kobj,
2235 struct kobj_attribute *attr, char *buf)
2236 {
2237 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2238 }
2239 KSM_ATTR_RO(pages_unshared);
2240
2241 static ssize_t pages_volatile_show(struct kobject *kobj,
2242 struct kobj_attribute *attr, char *buf)
2243 {
2244 long ksm_pages_volatile;
2245
2246 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2247 - ksm_pages_sharing - ksm_pages_unshared;
2248 /*
2249 * It was not worth any locking to calculate that statistic,
2250 * but it might therefore sometimes be negative: conceal that.
2251 */
2252 if (ksm_pages_volatile < 0)
2253 ksm_pages_volatile = 0;
2254 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2255 }
2256 KSM_ATTR_RO(pages_volatile);
2257
2258 static ssize_t full_scans_show(struct kobject *kobj,
2259 struct kobj_attribute *attr, char *buf)
2260 {
2261 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2262 }
2263 KSM_ATTR_RO(full_scans);
2264
2265 static struct attribute *ksm_attrs[] = {
2266 &sleep_millisecs_attr.attr,
2267 &pages_to_scan_attr.attr,
2268 &run_attr.attr,
2269 &pages_shared_attr.attr,
2270 &pages_sharing_attr.attr,
2271 &pages_unshared_attr.attr,
2272 &pages_volatile_attr.attr,
2273 &full_scans_attr.attr,
2274 #ifdef CONFIG_NUMA
2275 &merge_across_nodes_attr.attr,
2276 #endif
2277 NULL,
2278 };
2279
2280 static struct attribute_group ksm_attr_group = {
2281 .attrs = ksm_attrs,
2282 .name = "ksm",
2283 };
2284 #endif /* CONFIG_SYSFS */
2285
2286 static int __init ksm_init(void)
2287 {
2288 struct task_struct *ksm_thread;
2289 int err;
2290
2291 err = ksm_slab_init();
2292 if (err)
2293 goto out;
2294
2295 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2296 if (IS_ERR(ksm_thread)) {
2297 pr_err("ksm: creating kthread failed\n");
2298 err = PTR_ERR(ksm_thread);
2299 goto out_free;
2300 }
2301
2302 #ifdef CONFIG_SYSFS
2303 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2304 if (err) {
2305 pr_err("ksm: register sysfs failed\n");
2306 kthread_stop(ksm_thread);
2307 goto out_free;
2308 }
2309 #else
2310 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2311
2312 #endif /* CONFIG_SYSFS */
2313
2314 #ifdef CONFIG_MEMORY_HOTREMOVE
2315 /* There is no significance to this priority 100 */
2316 hotplug_memory_notifier(ksm_memory_callback, 100);
2317 #endif
2318 return 0;
2319
2320 out_free:
2321 ksm_slab_free();
2322 out:
2323 return err;
2324 }
2325 subsys_initcall(ksm_init);