]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/ksm.c
dddd9a650eae3afa52a3676b405bc13b3a0a5e94
[mirror_ubuntu-zesty-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
130 * @list: linked into migrate_nodes, pending placement in the proper node tree
131 * @hlist: hlist head of rmap_items using this ksm page
132 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
133 * @chain_prune_time: time of the last full garbage collection
134 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
135 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
136 */
137 struct stable_node {
138 union {
139 struct rb_node node; /* when node of stable tree */
140 struct { /* when listed for migration */
141 struct list_head *head;
142 struct {
143 struct hlist_node hlist_dup;
144 struct list_head list;
145 };
146 };
147 };
148 struct hlist_head hlist;
149 union {
150 unsigned long kpfn;
151 unsigned long chain_prune_time;
152 };
153 /*
154 * STABLE_NODE_CHAIN can be any negative number in
155 * rmap_hlist_len negative range, but better not -1 to be able
156 * to reliably detect underflows.
157 */
158 #define STABLE_NODE_CHAIN -1024
159 int rmap_hlist_len;
160 #ifdef CONFIG_NUMA
161 int nid;
162 #endif
163 };
164
165 /**
166 * struct rmap_item - reverse mapping item for virtual addresses
167 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
168 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
169 * @nid: NUMA node id of unstable tree in which linked (may not match page)
170 * @mm: the memory structure this rmap_item is pointing into
171 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
172 * @oldchecksum: previous checksum of the page at that virtual address
173 * @node: rb node of this rmap_item in the unstable tree
174 * @head: pointer to stable_node heading this list in the stable tree
175 * @hlist: link into hlist of rmap_items hanging off that stable_node
176 */
177 struct rmap_item {
178 struct rmap_item *rmap_list;
179 union {
180 struct anon_vma *anon_vma; /* when stable */
181 #ifdef CONFIG_NUMA
182 int nid; /* when node of unstable tree */
183 #endif
184 };
185 struct mm_struct *mm;
186 unsigned long address; /* + low bits used for flags below */
187 unsigned int oldchecksum; /* when unstable */
188 union {
189 struct rb_node node; /* when node of unstable tree */
190 struct { /* when listed from stable tree */
191 struct stable_node *head;
192 struct hlist_node hlist;
193 };
194 };
195 };
196
197 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
198 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
199 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
200
201 /* The stable and unstable tree heads */
202 static struct rb_root one_stable_tree[1] = { RB_ROOT };
203 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
204 static struct rb_root *root_stable_tree = one_stable_tree;
205 static struct rb_root *root_unstable_tree = one_unstable_tree;
206
207 /* Recently migrated nodes of stable tree, pending proper placement */
208 static LIST_HEAD(migrate_nodes);
209 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
210
211 #define MM_SLOTS_HASH_BITS 10
212 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
213
214 static struct mm_slot ksm_mm_head = {
215 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
216 };
217 static struct ksm_scan ksm_scan = {
218 .mm_slot = &ksm_mm_head,
219 };
220
221 static struct kmem_cache *rmap_item_cache;
222 static struct kmem_cache *stable_node_cache;
223 static struct kmem_cache *mm_slot_cache;
224
225 /* The number of nodes in the stable tree */
226 static unsigned long ksm_pages_shared;
227
228 /* The number of page slots additionally sharing those nodes */
229 static unsigned long ksm_pages_sharing;
230
231 /* The number of nodes in the unstable tree */
232 static unsigned long ksm_pages_unshared;
233
234 /* The number of rmap_items in use: to calculate pages_volatile */
235 static unsigned long ksm_rmap_items;
236
237 /* The number of stable_node chains */
238 static unsigned long ksm_stable_node_chains;
239
240 /* The number of stable_node dups linked to the stable_node chains */
241 static unsigned long ksm_stable_node_dups;
242
243 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
244 static int ksm_stable_node_chains_prune_millisecs = 2000;
245
246 /* Maximum number of page slots sharing a stable node */
247 static int ksm_max_page_sharing = 256;
248
249 /* Number of pages ksmd should scan in one batch */
250 static unsigned int ksm_thread_pages_to_scan = 100;
251
252 /* Milliseconds ksmd should sleep between batches */
253 static unsigned int ksm_thread_sleep_millisecs = 20;
254
255 /* Checksum of an empty (zeroed) page */
256 static unsigned int zero_checksum __read_mostly;
257
258 /* Whether to merge empty (zeroed) pages with actual zero pages */
259 static bool ksm_use_zero_pages __read_mostly;
260
261 #ifdef CONFIG_NUMA
262 /* Zeroed when merging across nodes is not allowed */
263 static unsigned int ksm_merge_across_nodes = 1;
264 static int ksm_nr_node_ids = 1;
265 #else
266 #define ksm_merge_across_nodes 1U
267 #define ksm_nr_node_ids 1
268 #endif
269
270 #define KSM_RUN_STOP 0
271 #define KSM_RUN_MERGE 1
272 #define KSM_RUN_UNMERGE 2
273 #define KSM_RUN_OFFLINE 4
274 static unsigned long ksm_run = KSM_RUN_STOP;
275 static void wait_while_offlining(void);
276
277 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
278 static DEFINE_MUTEX(ksm_thread_mutex);
279 static DEFINE_SPINLOCK(ksm_mmlist_lock);
280
281 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
282 sizeof(struct __struct), __alignof__(struct __struct),\
283 (__flags), NULL)
284
285 static int __init ksm_slab_init(void)
286 {
287 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
288 if (!rmap_item_cache)
289 goto out;
290
291 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
292 if (!stable_node_cache)
293 goto out_free1;
294
295 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
296 if (!mm_slot_cache)
297 goto out_free2;
298
299 return 0;
300
301 out_free2:
302 kmem_cache_destroy(stable_node_cache);
303 out_free1:
304 kmem_cache_destroy(rmap_item_cache);
305 out:
306 return -ENOMEM;
307 }
308
309 static void __init ksm_slab_free(void)
310 {
311 kmem_cache_destroy(mm_slot_cache);
312 kmem_cache_destroy(stable_node_cache);
313 kmem_cache_destroy(rmap_item_cache);
314 mm_slot_cache = NULL;
315 }
316
317 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
318 {
319 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
320 }
321
322 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
323 {
324 return dup->head == STABLE_NODE_DUP_HEAD;
325 }
326
327 static inline void stable_node_chain_add_dup(struct stable_node *dup,
328 struct stable_node *chain)
329 {
330 VM_BUG_ON(is_stable_node_dup(dup));
331 dup->head = STABLE_NODE_DUP_HEAD;
332 VM_BUG_ON(!is_stable_node_chain(chain));
333 hlist_add_head(&dup->hlist_dup, &chain->hlist);
334 ksm_stable_node_dups++;
335 }
336
337 static inline void __stable_node_dup_del(struct stable_node *dup)
338 {
339 VM_BUG_ON(!is_stable_node_dup(dup));
340 hlist_del(&dup->hlist_dup);
341 ksm_stable_node_dups--;
342 }
343
344 static inline void stable_node_dup_del(struct stable_node *dup)
345 {
346 VM_BUG_ON(is_stable_node_chain(dup));
347 if (is_stable_node_dup(dup))
348 __stable_node_dup_del(dup);
349 else
350 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
351 #ifdef CONFIG_DEBUG_VM
352 dup->head = NULL;
353 #endif
354 }
355
356 static inline struct rmap_item *alloc_rmap_item(void)
357 {
358 struct rmap_item *rmap_item;
359
360 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
361 __GFP_NORETRY | __GFP_NOWARN);
362 if (rmap_item)
363 ksm_rmap_items++;
364 return rmap_item;
365 }
366
367 static inline void free_rmap_item(struct rmap_item *rmap_item)
368 {
369 ksm_rmap_items--;
370 rmap_item->mm = NULL; /* debug safety */
371 kmem_cache_free(rmap_item_cache, rmap_item);
372 }
373
374 static inline struct stable_node *alloc_stable_node(void)
375 {
376 /*
377 * The allocation can take too long with GFP_KERNEL when memory is under
378 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
379 * grants access to memory reserves, helping to avoid this problem.
380 */
381 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
382 }
383
384 static inline void free_stable_node(struct stable_node *stable_node)
385 {
386 VM_BUG_ON(stable_node->rmap_hlist_len &&
387 !is_stable_node_chain(stable_node));
388 kmem_cache_free(stable_node_cache, stable_node);
389 }
390
391 static inline struct mm_slot *alloc_mm_slot(void)
392 {
393 if (!mm_slot_cache) /* initialization failed */
394 return NULL;
395 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
396 }
397
398 static inline void free_mm_slot(struct mm_slot *mm_slot)
399 {
400 kmem_cache_free(mm_slot_cache, mm_slot);
401 }
402
403 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
404 {
405 struct mm_slot *slot;
406
407 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
408 if (slot->mm == mm)
409 return slot;
410
411 return NULL;
412 }
413
414 static void insert_to_mm_slots_hash(struct mm_struct *mm,
415 struct mm_slot *mm_slot)
416 {
417 mm_slot->mm = mm;
418 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
419 }
420
421 /*
422 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
423 * page tables after it has passed through ksm_exit() - which, if necessary,
424 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
425 * a special flag: they can just back out as soon as mm_users goes to zero.
426 * ksm_test_exit() is used throughout to make this test for exit: in some
427 * places for correctness, in some places just to avoid unnecessary work.
428 */
429 static inline bool ksm_test_exit(struct mm_struct *mm)
430 {
431 return atomic_read(&mm->mm_users) == 0;
432 }
433
434 /*
435 * We use break_ksm to break COW on a ksm page: it's a stripped down
436 *
437 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
438 * put_page(page);
439 *
440 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
441 * in case the application has unmapped and remapped mm,addr meanwhile.
442 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
443 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
444 *
445 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
446 * of the process that owns 'vma'. We also do not want to enforce
447 * protection keys here anyway.
448 */
449 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
450 {
451 struct page *page;
452 int ret = 0;
453
454 do {
455 cond_resched();
456 page = follow_page(vma, addr,
457 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
458 if (IS_ERR_OR_NULL(page))
459 break;
460 if (PageKsm(page))
461 ret = handle_mm_fault(vma, addr,
462 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
463 else
464 ret = VM_FAULT_WRITE;
465 put_page(page);
466 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
467 /*
468 * We must loop because handle_mm_fault() may back out if there's
469 * any difficulty e.g. if pte accessed bit gets updated concurrently.
470 *
471 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
472 * COW has been broken, even if the vma does not permit VM_WRITE;
473 * but note that a concurrent fault might break PageKsm for us.
474 *
475 * VM_FAULT_SIGBUS could occur if we race with truncation of the
476 * backing file, which also invalidates anonymous pages: that's
477 * okay, that truncation will have unmapped the PageKsm for us.
478 *
479 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
480 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
481 * current task has TIF_MEMDIE set, and will be OOM killed on return
482 * to user; and ksmd, having no mm, would never be chosen for that.
483 *
484 * But if the mm is in a limited mem_cgroup, then the fault may fail
485 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
486 * even ksmd can fail in this way - though it's usually breaking ksm
487 * just to undo a merge it made a moment before, so unlikely to oom.
488 *
489 * That's a pity: we might therefore have more kernel pages allocated
490 * than we're counting as nodes in the stable tree; but ksm_do_scan
491 * will retry to break_cow on each pass, so should recover the page
492 * in due course. The important thing is to not let VM_MERGEABLE
493 * be cleared while any such pages might remain in the area.
494 */
495 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
496 }
497
498 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
499 unsigned long addr)
500 {
501 struct vm_area_struct *vma;
502 if (ksm_test_exit(mm))
503 return NULL;
504 vma = find_vma(mm, addr);
505 if (!vma || vma->vm_start > addr)
506 return NULL;
507 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
508 return NULL;
509 return vma;
510 }
511
512 static void break_cow(struct rmap_item *rmap_item)
513 {
514 struct mm_struct *mm = rmap_item->mm;
515 unsigned long addr = rmap_item->address;
516 struct vm_area_struct *vma;
517
518 /*
519 * It is not an accident that whenever we want to break COW
520 * to undo, we also need to drop a reference to the anon_vma.
521 */
522 put_anon_vma(rmap_item->anon_vma);
523
524 down_read(&mm->mmap_sem);
525 vma = find_mergeable_vma(mm, addr);
526 if (vma)
527 break_ksm(vma, addr);
528 up_read(&mm->mmap_sem);
529 }
530
531 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
532 {
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
535 struct vm_area_struct *vma;
536 struct page *page;
537
538 down_read(&mm->mmap_sem);
539 vma = find_mergeable_vma(mm, addr);
540 if (!vma)
541 goto out;
542
543 page = follow_page(vma, addr, FOLL_GET);
544 if (IS_ERR_OR_NULL(page))
545 goto out;
546 if (PageAnon(page)) {
547 flush_anon_page(vma, page, addr);
548 flush_dcache_page(page);
549 } else {
550 put_page(page);
551 out:
552 page = NULL;
553 }
554 up_read(&mm->mmap_sem);
555 return page;
556 }
557
558 /*
559 * This helper is used for getting right index into array of tree roots.
560 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
561 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
562 * every node has its own stable and unstable tree.
563 */
564 static inline int get_kpfn_nid(unsigned long kpfn)
565 {
566 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
567 }
568
569 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
570 struct rb_root *root)
571 {
572 struct stable_node *chain = alloc_stable_node();
573 VM_BUG_ON(is_stable_node_chain(dup));
574 if (likely(chain)) {
575 INIT_HLIST_HEAD(&chain->hlist);
576 chain->chain_prune_time = jiffies;
577 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
578 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
579 chain->nid = -1; /* debug */
580 #endif
581 ksm_stable_node_chains++;
582
583 /*
584 * Put the stable node chain in the first dimension of
585 * the stable tree and at the same time remove the old
586 * stable node.
587 */
588 rb_replace_node(&dup->node, &chain->node, root);
589
590 /*
591 * Move the old stable node to the second dimension
592 * queued in the hlist_dup. The invariant is that all
593 * dup stable_nodes in the chain->hlist point to pages
594 * that are wrprotected and have the exact same
595 * content.
596 */
597 stable_node_chain_add_dup(dup, chain);
598 }
599 return chain;
600 }
601
602 static inline void free_stable_node_chain(struct stable_node *chain,
603 struct rb_root *root)
604 {
605 rb_erase(&chain->node, root);
606 free_stable_node(chain);
607 ksm_stable_node_chains--;
608 }
609
610 static void remove_node_from_stable_tree(struct stable_node *stable_node)
611 {
612 struct rmap_item *rmap_item;
613
614 /* check it's not STABLE_NODE_CHAIN or negative */
615 BUG_ON(stable_node->rmap_hlist_len < 0);
616
617 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
618 if (rmap_item->hlist.next)
619 ksm_pages_sharing--;
620 else
621 ksm_pages_shared--;
622 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
623 stable_node->rmap_hlist_len--;
624 put_anon_vma(rmap_item->anon_vma);
625 rmap_item->address &= PAGE_MASK;
626 cond_resched();
627 }
628
629 /*
630 * We need the second aligned pointer of the migrate_nodes
631 * list_head to stay clear from the rb_parent_color union
632 * (aligned and different than any node) and also different
633 * from &migrate_nodes. This will verify that future list.h changes
634 * don't break STABLE_NODE_DUP_HEAD.
635 */
636 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
637 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
638 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
639 #endif
640
641 if (stable_node->head == &migrate_nodes)
642 list_del(&stable_node->list);
643 else
644 stable_node_dup_del(stable_node);
645 free_stable_node(stable_node);
646 }
647
648 /*
649 * get_ksm_page: checks if the page indicated by the stable node
650 * is still its ksm page, despite having held no reference to it.
651 * In which case we can trust the content of the page, and it
652 * returns the gotten page; but if the page has now been zapped,
653 * remove the stale node from the stable tree and return NULL.
654 * But beware, the stable node's page might be being migrated.
655 *
656 * You would expect the stable_node to hold a reference to the ksm page.
657 * But if it increments the page's count, swapping out has to wait for
658 * ksmd to come around again before it can free the page, which may take
659 * seconds or even minutes: much too unresponsive. So instead we use a
660 * "keyhole reference": access to the ksm page from the stable node peeps
661 * out through its keyhole to see if that page still holds the right key,
662 * pointing back to this stable node. This relies on freeing a PageAnon
663 * page to reset its page->mapping to NULL, and relies on no other use of
664 * a page to put something that might look like our key in page->mapping.
665 * is on its way to being freed; but it is an anomaly to bear in mind.
666 */
667 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
668 {
669 struct page *page;
670 void *expected_mapping;
671 unsigned long kpfn;
672
673 expected_mapping = (void *)((unsigned long)stable_node |
674 PAGE_MAPPING_KSM);
675 again:
676 kpfn = READ_ONCE(stable_node->kpfn);
677 page = pfn_to_page(kpfn);
678
679 /*
680 * page is computed from kpfn, so on most architectures reading
681 * page->mapping is naturally ordered after reading node->kpfn,
682 * but on Alpha we need to be more careful.
683 */
684 smp_read_barrier_depends();
685 if (READ_ONCE(page->mapping) != expected_mapping)
686 goto stale;
687
688 /*
689 * We cannot do anything with the page while its refcount is 0.
690 * Usually 0 means free, or tail of a higher-order page: in which
691 * case this node is no longer referenced, and should be freed;
692 * however, it might mean that the page is under page_freeze_refs().
693 * The __remove_mapping() case is easy, again the node is now stale;
694 * but if page is swapcache in migrate_page_move_mapping(), it might
695 * still be our page, in which case it's essential to keep the node.
696 */
697 while (!get_page_unless_zero(page)) {
698 /*
699 * Another check for page->mapping != expected_mapping would
700 * work here too. We have chosen the !PageSwapCache test to
701 * optimize the common case, when the page is or is about to
702 * be freed: PageSwapCache is cleared (under spin_lock_irq)
703 * in the freeze_refs section of __remove_mapping(); but Anon
704 * page->mapping reset to NULL later, in free_pages_prepare().
705 */
706 if (!PageSwapCache(page))
707 goto stale;
708 cpu_relax();
709 }
710
711 if (READ_ONCE(page->mapping) != expected_mapping) {
712 put_page(page);
713 goto stale;
714 }
715
716 if (lock_it) {
717 lock_page(page);
718 if (READ_ONCE(page->mapping) != expected_mapping) {
719 unlock_page(page);
720 put_page(page);
721 goto stale;
722 }
723 }
724 return page;
725
726 stale:
727 /*
728 * We come here from above when page->mapping or !PageSwapCache
729 * suggests that the node is stale; but it might be under migration.
730 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
731 * before checking whether node->kpfn has been changed.
732 */
733 smp_rmb();
734 if (READ_ONCE(stable_node->kpfn) != kpfn)
735 goto again;
736 remove_node_from_stable_tree(stable_node);
737 return NULL;
738 }
739
740 /*
741 * Removing rmap_item from stable or unstable tree.
742 * This function will clean the information from the stable/unstable tree.
743 */
744 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
745 {
746 if (rmap_item->address & STABLE_FLAG) {
747 struct stable_node *stable_node;
748 struct page *page;
749
750 stable_node = rmap_item->head;
751 page = get_ksm_page(stable_node, true);
752 if (!page)
753 goto out;
754
755 hlist_del(&rmap_item->hlist);
756 unlock_page(page);
757 put_page(page);
758
759 if (!hlist_empty(&stable_node->hlist))
760 ksm_pages_sharing--;
761 else
762 ksm_pages_shared--;
763 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
764 stable_node->rmap_hlist_len--;
765
766 put_anon_vma(rmap_item->anon_vma);
767 rmap_item->address &= PAGE_MASK;
768
769 } else if (rmap_item->address & UNSTABLE_FLAG) {
770 unsigned char age;
771 /*
772 * Usually ksmd can and must skip the rb_erase, because
773 * root_unstable_tree was already reset to RB_ROOT.
774 * But be careful when an mm is exiting: do the rb_erase
775 * if this rmap_item was inserted by this scan, rather
776 * than left over from before.
777 */
778 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
779 BUG_ON(age > 1);
780 if (!age)
781 rb_erase(&rmap_item->node,
782 root_unstable_tree + NUMA(rmap_item->nid));
783 ksm_pages_unshared--;
784 rmap_item->address &= PAGE_MASK;
785 }
786 out:
787 cond_resched(); /* we're called from many long loops */
788 }
789
790 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
791 struct rmap_item **rmap_list)
792 {
793 while (*rmap_list) {
794 struct rmap_item *rmap_item = *rmap_list;
795 *rmap_list = rmap_item->rmap_list;
796 remove_rmap_item_from_tree(rmap_item);
797 free_rmap_item(rmap_item);
798 }
799 }
800
801 /*
802 * Though it's very tempting to unmerge rmap_items from stable tree rather
803 * than check every pte of a given vma, the locking doesn't quite work for
804 * that - an rmap_item is assigned to the stable tree after inserting ksm
805 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
806 * rmap_items from parent to child at fork time (so as not to waste time
807 * if exit comes before the next scan reaches it).
808 *
809 * Similarly, although we'd like to remove rmap_items (so updating counts
810 * and freeing memory) when unmerging an area, it's easier to leave that
811 * to the next pass of ksmd - consider, for example, how ksmd might be
812 * in cmp_and_merge_page on one of the rmap_items we would be removing.
813 */
814 static int unmerge_ksm_pages(struct vm_area_struct *vma,
815 unsigned long start, unsigned long end)
816 {
817 unsigned long addr;
818 int err = 0;
819
820 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
821 if (ksm_test_exit(vma->vm_mm))
822 break;
823 if (signal_pending(current))
824 err = -ERESTARTSYS;
825 else
826 err = break_ksm(vma, addr);
827 }
828 return err;
829 }
830
831 #ifdef CONFIG_SYSFS
832 /*
833 * Only called through the sysfs control interface:
834 */
835 static int remove_stable_node(struct stable_node *stable_node)
836 {
837 struct page *page;
838 int err;
839
840 page = get_ksm_page(stable_node, true);
841 if (!page) {
842 /*
843 * get_ksm_page did remove_node_from_stable_tree itself.
844 */
845 return 0;
846 }
847
848 if (WARN_ON_ONCE(page_mapped(page))) {
849 /*
850 * This should not happen: but if it does, just refuse to let
851 * merge_across_nodes be switched - there is no need to panic.
852 */
853 err = -EBUSY;
854 } else {
855 /*
856 * The stable node did not yet appear stale to get_ksm_page(),
857 * since that allows for an unmapped ksm page to be recognized
858 * right up until it is freed; but the node is safe to remove.
859 * This page might be in a pagevec waiting to be freed,
860 * or it might be PageSwapCache (perhaps under writeback),
861 * or it might have been removed from swapcache a moment ago.
862 */
863 set_page_stable_node(page, NULL);
864 remove_node_from_stable_tree(stable_node);
865 err = 0;
866 }
867
868 unlock_page(page);
869 put_page(page);
870 return err;
871 }
872
873 static int remove_stable_node_chain(struct stable_node *stable_node,
874 struct rb_root *root)
875 {
876 struct stable_node *dup;
877 struct hlist_node *hlist_safe;
878
879 if (!is_stable_node_chain(stable_node)) {
880 VM_BUG_ON(is_stable_node_dup(stable_node));
881 if (remove_stable_node(stable_node))
882 return true;
883 else
884 return false;
885 }
886
887 hlist_for_each_entry_safe(dup, hlist_safe,
888 &stable_node->hlist, hlist_dup) {
889 VM_BUG_ON(!is_stable_node_dup(dup));
890 if (remove_stable_node(dup))
891 return true;
892 }
893 BUG_ON(!hlist_empty(&stable_node->hlist));
894 free_stable_node_chain(stable_node, root);
895 return false;
896 }
897
898 static int remove_all_stable_nodes(void)
899 {
900 struct stable_node *stable_node, *next;
901 int nid;
902 int err = 0;
903
904 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
905 while (root_stable_tree[nid].rb_node) {
906 stable_node = rb_entry(root_stable_tree[nid].rb_node,
907 struct stable_node, node);
908 if (remove_stable_node_chain(stable_node,
909 root_stable_tree + nid)) {
910 err = -EBUSY;
911 break; /* proceed to next nid */
912 }
913 cond_resched();
914 }
915 }
916 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
917 if (remove_stable_node(stable_node))
918 err = -EBUSY;
919 cond_resched();
920 }
921 return err;
922 }
923
924 static int unmerge_and_remove_all_rmap_items(void)
925 {
926 struct mm_slot *mm_slot;
927 struct mm_struct *mm;
928 struct vm_area_struct *vma;
929 int err = 0;
930
931 spin_lock(&ksm_mmlist_lock);
932 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
933 struct mm_slot, mm_list);
934 spin_unlock(&ksm_mmlist_lock);
935
936 for (mm_slot = ksm_scan.mm_slot;
937 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
938 mm = mm_slot->mm;
939 down_read(&mm->mmap_sem);
940 for (vma = mm->mmap; vma; vma = vma->vm_next) {
941 if (ksm_test_exit(mm))
942 break;
943 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
944 continue;
945 err = unmerge_ksm_pages(vma,
946 vma->vm_start, vma->vm_end);
947 if (err)
948 goto error;
949 }
950
951 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
952 up_read(&mm->mmap_sem);
953
954 spin_lock(&ksm_mmlist_lock);
955 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
956 struct mm_slot, mm_list);
957 if (ksm_test_exit(mm)) {
958 hash_del(&mm_slot->link);
959 list_del(&mm_slot->mm_list);
960 spin_unlock(&ksm_mmlist_lock);
961
962 free_mm_slot(mm_slot);
963 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
964 mmdrop(mm);
965 } else
966 spin_unlock(&ksm_mmlist_lock);
967 }
968
969 /* Clean up stable nodes, but don't worry if some are still busy */
970 remove_all_stable_nodes();
971 ksm_scan.seqnr = 0;
972 return 0;
973
974 error:
975 up_read(&mm->mmap_sem);
976 spin_lock(&ksm_mmlist_lock);
977 ksm_scan.mm_slot = &ksm_mm_head;
978 spin_unlock(&ksm_mmlist_lock);
979 return err;
980 }
981 #endif /* CONFIG_SYSFS */
982
983 static u32 calc_checksum(struct page *page)
984 {
985 u32 checksum;
986 void *addr = kmap_atomic(page);
987 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
988 kunmap_atomic(addr);
989 return checksum;
990 }
991
992 static int memcmp_pages(struct page *page1, struct page *page2)
993 {
994 char *addr1, *addr2;
995 int ret;
996
997 addr1 = kmap_atomic(page1);
998 addr2 = kmap_atomic(page2);
999 ret = memcmp(addr1, addr2, PAGE_SIZE);
1000 kunmap_atomic(addr2);
1001 kunmap_atomic(addr1);
1002 return ret;
1003 }
1004
1005 static inline int pages_identical(struct page *page1, struct page *page2)
1006 {
1007 return !memcmp_pages(page1, page2);
1008 }
1009
1010 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1011 pte_t *orig_pte)
1012 {
1013 struct mm_struct *mm = vma->vm_mm;
1014 unsigned long addr;
1015 pte_t *ptep;
1016 spinlock_t *ptl;
1017 int swapped;
1018 int err = -EFAULT;
1019 unsigned long mmun_start; /* For mmu_notifiers */
1020 unsigned long mmun_end; /* For mmu_notifiers */
1021
1022 addr = page_address_in_vma(page, vma);
1023 if (addr == -EFAULT)
1024 goto out;
1025
1026 BUG_ON(PageTransCompound(page));
1027
1028 mmun_start = addr;
1029 mmun_end = addr + PAGE_SIZE;
1030 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1031
1032 ptep = page_check_address(page, mm, addr, &ptl, 0);
1033 if (!ptep)
1034 goto out_mn;
1035
1036 if (pte_write(*ptep) || pte_dirty(*ptep) ||
1037 (pte_protnone(*ptep) && pte_savedwrite(*ptep))) {
1038 pte_t entry;
1039
1040 swapped = PageSwapCache(page);
1041 flush_cache_page(vma, addr, page_to_pfn(page));
1042 /*
1043 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1044 * take any lock, therefore the check that we are going to make
1045 * with the pagecount against the mapcount is racey and
1046 * O_DIRECT can happen right after the check.
1047 * So we clear the pte and flush the tlb before the check
1048 * this assure us that no O_DIRECT can happen after the check
1049 * or in the middle of the check.
1050 */
1051 entry = ptep_clear_flush_notify(vma, addr, ptep);
1052 /*
1053 * Check that no O_DIRECT or similar I/O is in progress on the
1054 * page
1055 */
1056 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1057 set_pte_at(mm, addr, ptep, entry);
1058 goto out_unlock;
1059 }
1060 if (pte_dirty(entry))
1061 set_page_dirty(page);
1062
1063 if (pte_protnone(entry))
1064 entry = pte_mkclean(pte_clear_savedwrite(entry));
1065 else
1066 entry = pte_mkclean(pte_wrprotect(entry));
1067 set_pte_at_notify(mm, addr, ptep, entry);
1068 }
1069 *orig_pte = *ptep;
1070 err = 0;
1071
1072 out_unlock:
1073 pte_unmap_unlock(ptep, ptl);
1074 out_mn:
1075 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1076 out:
1077 return err;
1078 }
1079
1080 /**
1081 * replace_page - replace page in vma by new ksm page
1082 * @vma: vma that holds the pte pointing to page
1083 * @page: the page we are replacing by kpage
1084 * @kpage: the ksm page we replace page by
1085 * @orig_pte: the original value of the pte
1086 *
1087 * Returns 0 on success, -EFAULT on failure.
1088 */
1089 static int replace_page(struct vm_area_struct *vma, struct page *page,
1090 struct page *kpage, pte_t orig_pte)
1091 {
1092 struct mm_struct *mm = vma->vm_mm;
1093 pmd_t *pmd;
1094 pte_t *ptep;
1095 pte_t newpte;
1096 spinlock_t *ptl;
1097 unsigned long addr;
1098 int err = -EFAULT;
1099 unsigned long mmun_start; /* For mmu_notifiers */
1100 unsigned long mmun_end; /* For mmu_notifiers */
1101
1102 addr = page_address_in_vma(page, vma);
1103 if (addr == -EFAULT)
1104 goto out;
1105
1106 pmd = mm_find_pmd(mm, addr);
1107 if (!pmd)
1108 goto out;
1109
1110 mmun_start = addr;
1111 mmun_end = addr + PAGE_SIZE;
1112 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1113
1114 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115 if (!pte_same(*ptep, orig_pte)) {
1116 pte_unmap_unlock(ptep, ptl);
1117 goto out_mn;
1118 }
1119
1120 /*
1121 * No need to check ksm_use_zero_pages here: we can only have a
1122 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1123 */
1124 if (!is_zero_pfn(page_to_pfn(kpage))) {
1125 get_page(kpage);
1126 page_add_anon_rmap(kpage, vma, addr, false);
1127 newpte = mk_pte(kpage, vma->vm_page_prot);
1128 } else {
1129 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1130 vma->vm_page_prot));
1131 }
1132
1133 flush_cache_page(vma, addr, pte_pfn(*ptep));
1134 ptep_clear_flush_notify(vma, addr, ptep);
1135 set_pte_at_notify(mm, addr, ptep, newpte);
1136
1137 page_remove_rmap(page, false);
1138 if (!page_mapped(page))
1139 try_to_free_swap(page);
1140 put_page(page);
1141
1142 pte_unmap_unlock(ptep, ptl);
1143 err = 0;
1144 out_mn:
1145 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1146 out:
1147 return err;
1148 }
1149
1150 /*
1151 * try_to_merge_one_page - take two pages and merge them into one
1152 * @vma: the vma that holds the pte pointing to page
1153 * @page: the PageAnon page that we want to replace with kpage
1154 * @kpage: the PageKsm page that we want to map instead of page,
1155 * or NULL the first time when we want to use page as kpage.
1156 *
1157 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1158 */
1159 static int try_to_merge_one_page(struct vm_area_struct *vma,
1160 struct page *page, struct page *kpage)
1161 {
1162 pte_t orig_pte = __pte(0);
1163 int err = -EFAULT;
1164
1165 if (page == kpage) /* ksm page forked */
1166 return 0;
1167
1168 if (!PageAnon(page))
1169 goto out;
1170
1171 /*
1172 * We need the page lock to read a stable PageSwapCache in
1173 * write_protect_page(). We use trylock_page() instead of
1174 * lock_page() because we don't want to wait here - we
1175 * prefer to continue scanning and merging different pages,
1176 * then come back to this page when it is unlocked.
1177 */
1178 if (!trylock_page(page))
1179 goto out;
1180
1181 if (PageTransCompound(page)) {
1182 err = split_huge_page(page);
1183 if (err)
1184 goto out_unlock;
1185 }
1186
1187 /*
1188 * If this anonymous page is mapped only here, its pte may need
1189 * to be write-protected. If it's mapped elsewhere, all of its
1190 * ptes are necessarily already write-protected. But in either
1191 * case, we need to lock and check page_count is not raised.
1192 */
1193 if (write_protect_page(vma, page, &orig_pte) == 0) {
1194 if (!kpage) {
1195 /*
1196 * While we hold page lock, upgrade page from
1197 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1198 * stable_tree_insert() will update stable_node.
1199 */
1200 set_page_stable_node(page, NULL);
1201 mark_page_accessed(page);
1202 /*
1203 * Page reclaim just frees a clean page with no dirty
1204 * ptes: make sure that the ksm page would be swapped.
1205 */
1206 if (!PageDirty(page))
1207 SetPageDirty(page);
1208 err = 0;
1209 } else if (pages_identical(page, kpage))
1210 err = replace_page(vma, page, kpage, orig_pte);
1211 }
1212
1213 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1214 munlock_vma_page(page);
1215 if (!PageMlocked(kpage)) {
1216 unlock_page(page);
1217 lock_page(kpage);
1218 mlock_vma_page(kpage);
1219 page = kpage; /* for final unlock */
1220 }
1221 }
1222
1223 out_unlock:
1224 unlock_page(page);
1225 out:
1226 return err;
1227 }
1228
1229 /*
1230 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1231 * but no new kernel page is allocated: kpage must already be a ksm page.
1232 *
1233 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1234 */
1235 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1236 struct page *page, struct page *kpage)
1237 {
1238 struct mm_struct *mm = rmap_item->mm;
1239 struct vm_area_struct *vma;
1240 int err = -EFAULT;
1241
1242 down_read(&mm->mmap_sem);
1243 vma = find_mergeable_vma(mm, rmap_item->address);
1244 if (!vma)
1245 goto out;
1246
1247 err = try_to_merge_one_page(vma, page, kpage);
1248 if (err)
1249 goto out;
1250
1251 /* Unstable nid is in union with stable anon_vma: remove first */
1252 remove_rmap_item_from_tree(rmap_item);
1253
1254 /* Must get reference to anon_vma while still holding mmap_sem */
1255 rmap_item->anon_vma = vma->anon_vma;
1256 get_anon_vma(vma->anon_vma);
1257 out:
1258 up_read(&mm->mmap_sem);
1259 return err;
1260 }
1261
1262 /*
1263 * try_to_merge_two_pages - take two identical pages and prepare them
1264 * to be merged into one page.
1265 *
1266 * This function returns the kpage if we successfully merged two identical
1267 * pages into one ksm page, NULL otherwise.
1268 *
1269 * Note that this function upgrades page to ksm page: if one of the pages
1270 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1271 */
1272 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1273 struct page *page,
1274 struct rmap_item *tree_rmap_item,
1275 struct page *tree_page)
1276 {
1277 int err;
1278
1279 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1280 if (!err) {
1281 err = try_to_merge_with_ksm_page(tree_rmap_item,
1282 tree_page, page);
1283 /*
1284 * If that fails, we have a ksm page with only one pte
1285 * pointing to it: so break it.
1286 */
1287 if (err)
1288 break_cow(rmap_item);
1289 }
1290 return err ? NULL : page;
1291 }
1292
1293 static __always_inline
1294 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1295 {
1296 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1297 /*
1298 * Check that at least one mapping still exists, otherwise
1299 * there's no much point to merge and share with this
1300 * stable_node, as the underlying tree_page of the other
1301 * sharer is going to be freed soon.
1302 */
1303 return stable_node->rmap_hlist_len &&
1304 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1305 }
1306
1307 static __always_inline
1308 bool is_page_sharing_candidate(struct stable_node *stable_node)
1309 {
1310 return __is_page_sharing_candidate(stable_node, 0);
1311 }
1312
1313 static struct stable_node *stable_node_dup(struct stable_node **_stable_node,
1314 struct page **tree_page,
1315 struct rb_root *root,
1316 bool prune_stale_stable_nodes)
1317 {
1318 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1319 struct hlist_node *hlist_safe;
1320 struct page *_tree_page;
1321 int nr = 0;
1322 int found_rmap_hlist_len;
1323
1324 if (!prune_stale_stable_nodes ||
1325 time_before(jiffies, stable_node->chain_prune_time +
1326 msecs_to_jiffies(
1327 ksm_stable_node_chains_prune_millisecs)))
1328 prune_stale_stable_nodes = false;
1329 else
1330 stable_node->chain_prune_time = jiffies;
1331
1332 hlist_for_each_entry_safe(dup, hlist_safe,
1333 &stable_node->hlist, hlist_dup) {
1334 cond_resched();
1335 /*
1336 * We must walk all stable_node_dup to prune the stale
1337 * stable nodes during lookup.
1338 *
1339 * get_ksm_page can drop the nodes from the
1340 * stable_node->hlist if they point to freed pages
1341 * (that's why we do a _safe walk). The "dup"
1342 * stable_node parameter itself will be freed from
1343 * under us if it returns NULL.
1344 */
1345 _tree_page = get_ksm_page(dup, false);
1346 if (!_tree_page)
1347 continue;
1348 nr += 1;
1349 if (is_page_sharing_candidate(dup)) {
1350 if (!found ||
1351 dup->rmap_hlist_len > found_rmap_hlist_len) {
1352 if (found)
1353 put_page(*tree_page);
1354 found = dup;
1355 found_rmap_hlist_len = found->rmap_hlist_len;
1356 *tree_page = _tree_page;
1357
1358 if (!prune_stale_stable_nodes)
1359 break;
1360 /* skip put_page */
1361 continue;
1362 }
1363 }
1364 put_page(_tree_page);
1365 }
1366
1367 /*
1368 * nr is relevant only if prune_stale_stable_nodes is true,
1369 * otherwise we may break the loop at nr == 1 even if there
1370 * are multiple entries.
1371 */
1372 if (prune_stale_stable_nodes && found) {
1373 if (nr == 1) {
1374 /*
1375 * If there's not just one entry it would
1376 * corrupt memory, better BUG_ON. In KSM
1377 * context with no lock held it's not even
1378 * fatal.
1379 */
1380 BUG_ON(stable_node->hlist.first->next);
1381
1382 /*
1383 * There's just one entry and it is below the
1384 * deduplication limit so drop the chain.
1385 */
1386 rb_replace_node(&stable_node->node, &found->node,
1387 root);
1388 free_stable_node(stable_node);
1389 ksm_stable_node_chains--;
1390 ksm_stable_node_dups--;
1391 /*
1392 * NOTE: the caller depends on the
1393 * *_stable_node to become NULL if the chain
1394 * was collapsed. Enforce that if anything
1395 * uses a stale (freed) stable_node chain a
1396 * visible crash will materialize (instead of
1397 * an use after free).
1398 */
1399 *_stable_node = stable_node = NULL;
1400 } else if (__is_page_sharing_candidate(found, 1)) {
1401 /*
1402 * Refile our candidate at the head
1403 * after the prune if our candidate
1404 * can accept one more future sharing
1405 * in addition to the one underway.
1406 */
1407 hlist_del(&found->hlist_dup);
1408 hlist_add_head(&found->hlist_dup,
1409 &stable_node->hlist);
1410 }
1411 }
1412
1413 return found;
1414 }
1415
1416 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1417 struct rb_root *root)
1418 {
1419 if (!is_stable_node_chain(stable_node))
1420 return stable_node;
1421 if (hlist_empty(&stable_node->hlist)) {
1422 free_stable_node_chain(stable_node, root);
1423 return NULL;
1424 }
1425 return hlist_entry(stable_node->hlist.first,
1426 typeof(*stable_node), hlist_dup);
1427 }
1428
1429 static struct stable_node *__stable_node_chain(struct stable_node **_stable_node,
1430 struct page **tree_page,
1431 struct rb_root *root,
1432 bool prune_stale_stable_nodes)
1433 {
1434 struct stable_node *stable_node = *_stable_node;
1435 if (!is_stable_node_chain(stable_node)) {
1436 if (is_page_sharing_candidate(stable_node)) {
1437 *tree_page = get_ksm_page(stable_node, false);
1438 return stable_node;
1439 }
1440 return NULL;
1441 }
1442 return stable_node_dup(_stable_node, tree_page, root,
1443 prune_stale_stable_nodes);
1444 }
1445
1446 static __always_inline struct stable_node *chain_prune(struct stable_node **s_n,
1447 struct page **t_p,
1448 struct rb_root *root)
1449 {
1450 return __stable_node_chain(s_n, t_p, root, true);
1451 }
1452
1453 static __always_inline struct stable_node *chain(struct stable_node *s_n,
1454 struct page **t_p,
1455 struct rb_root *root)
1456 {
1457 return __stable_node_chain(&s_n, t_p, root, false);
1458 }
1459
1460 /*
1461 * stable_tree_search - search for page inside the stable tree
1462 *
1463 * This function checks if there is a page inside the stable tree
1464 * with identical content to the page that we are scanning right now.
1465 *
1466 * This function returns the stable tree node of identical content if found,
1467 * NULL otherwise.
1468 */
1469 static struct page *stable_tree_search(struct page *page)
1470 {
1471 int nid;
1472 struct rb_root *root;
1473 struct rb_node **new;
1474 struct rb_node *parent;
1475 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1476 struct stable_node *page_node;
1477
1478 page_node = page_stable_node(page);
1479 if (page_node && page_node->head != &migrate_nodes) {
1480 /* ksm page forked */
1481 get_page(page);
1482 return page;
1483 }
1484
1485 nid = get_kpfn_nid(page_to_pfn(page));
1486 root = root_stable_tree + nid;
1487 again:
1488 new = &root->rb_node;
1489 parent = NULL;
1490
1491 while (*new) {
1492 struct page *tree_page;
1493 int ret;
1494
1495 cond_resched();
1496 stable_node = rb_entry(*new, struct stable_node, node);
1497 stable_node_any = NULL;
1498 stable_node_dup = chain_prune(&stable_node, &tree_page, root);
1499 /*
1500 * NOTE: stable_node may have been freed by
1501 * chain_prune() if the returned stable_node_dup is
1502 * not NULL. stable_node_dup may have been inserted in
1503 * the rbtree instead as a regular stable_node (in
1504 * order to collapse the stable_node chain if a single
1505 * stable_node dup was found in it).
1506 */
1507 if (!stable_node_dup) {
1508 /*
1509 * Either all stable_node dups were full in
1510 * this stable_node chain, or this chain was
1511 * empty and should be rb_erased.
1512 */
1513 stable_node_any = stable_node_dup_any(stable_node,
1514 root);
1515 if (!stable_node_any) {
1516 /* rb_erase just run */
1517 goto again;
1518 }
1519 /*
1520 * Take any of the stable_node dups page of
1521 * this stable_node chain to let the tree walk
1522 * continue. All KSM pages belonging to the
1523 * stable_node dups in a stable_node chain
1524 * have the same content and they're
1525 * wrprotected at all times. Any will work
1526 * fine to continue the walk.
1527 */
1528 tree_page = get_ksm_page(stable_node_any, false);
1529 }
1530 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1531 if (!tree_page) {
1532 /*
1533 * If we walked over a stale stable_node,
1534 * get_ksm_page() will call rb_erase() and it
1535 * may rebalance the tree from under us. So
1536 * restart the search from scratch. Returning
1537 * NULL would be safe too, but we'd generate
1538 * false negative insertions just because some
1539 * stable_node was stale.
1540 */
1541 goto again;
1542 }
1543
1544 ret = memcmp_pages(page, tree_page);
1545 put_page(tree_page);
1546
1547 parent = *new;
1548 if (ret < 0)
1549 new = &parent->rb_left;
1550 else if (ret > 0)
1551 new = &parent->rb_right;
1552 else {
1553 if (page_node) {
1554 VM_BUG_ON(page_node->head != &migrate_nodes);
1555 /*
1556 * Test if the migrated page should be merged
1557 * into a stable node dup. If the mapcount is
1558 * 1 we can migrate it with another KSM page
1559 * without adding it to the chain.
1560 */
1561 if (page_mapcount(page) > 1)
1562 goto chain_append;
1563 }
1564
1565 if (!stable_node_dup) {
1566 /*
1567 * If the stable_node is a chain and
1568 * we got a payload match in memcmp
1569 * but we cannot merge the scanned
1570 * page in any of the existing
1571 * stable_node dups because they're
1572 * all full, we need to wait the
1573 * scanned page to find itself a match
1574 * in the unstable tree to create a
1575 * brand new KSM page to add later to
1576 * the dups of this stable_node.
1577 */
1578 return NULL;
1579 }
1580
1581 /*
1582 * Lock and unlock the stable_node's page (which
1583 * might already have been migrated) so that page
1584 * migration is sure to notice its raised count.
1585 * It would be more elegant to return stable_node
1586 * than kpage, but that involves more changes.
1587 */
1588 tree_page = get_ksm_page(stable_node_dup, true);
1589 if (unlikely(!tree_page))
1590 /*
1591 * The tree may have been rebalanced,
1592 * so re-evaluate parent and new.
1593 */
1594 goto again;
1595 unlock_page(tree_page);
1596
1597 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1598 NUMA(stable_node_dup->nid)) {
1599 put_page(tree_page);
1600 goto replace;
1601 }
1602 return tree_page;
1603 }
1604 }
1605
1606 if (!page_node)
1607 return NULL;
1608
1609 list_del(&page_node->list);
1610 DO_NUMA(page_node->nid = nid);
1611 rb_link_node(&page_node->node, parent, new);
1612 rb_insert_color(&page_node->node, root);
1613 out:
1614 if (is_page_sharing_candidate(page_node)) {
1615 get_page(page);
1616 return page;
1617 } else
1618 return NULL;
1619
1620 replace:
1621 /*
1622 * If stable_node was a chain and chain_prune collapsed it,
1623 * stable_node will be NULL here. In that case the
1624 * stable_node_dup is the regular stable_node that has
1625 * replaced the chain. If stable_node is not NULL and equal to
1626 * stable_node_dup there was no chain and stable_node_dup is
1627 * the regular stable_node in the stable rbtree. Otherwise
1628 * stable_node is the chain and stable_node_dup is the dup to
1629 * replace.
1630 */
1631 if (!stable_node || stable_node_dup == stable_node) {
1632 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1633 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1634 /* there is no chain */
1635 if (page_node) {
1636 VM_BUG_ON(page_node->head != &migrate_nodes);
1637 list_del(&page_node->list);
1638 DO_NUMA(page_node->nid = nid);
1639 rb_replace_node(&stable_node_dup->node,
1640 &page_node->node,
1641 root);
1642 if (is_page_sharing_candidate(page_node))
1643 get_page(page);
1644 else
1645 page = NULL;
1646 } else {
1647 rb_erase(&stable_node_dup->node, root);
1648 page = NULL;
1649 }
1650 } else {
1651 VM_BUG_ON(!is_stable_node_chain(stable_node));
1652 __stable_node_dup_del(stable_node_dup);
1653 if (page_node) {
1654 VM_BUG_ON(page_node->head != &migrate_nodes);
1655 list_del(&page_node->list);
1656 DO_NUMA(page_node->nid = nid);
1657 stable_node_chain_add_dup(page_node, stable_node);
1658 if (is_page_sharing_candidate(page_node))
1659 get_page(page);
1660 else
1661 page = NULL;
1662 } else {
1663 page = NULL;
1664 }
1665 }
1666 stable_node_dup->head = &migrate_nodes;
1667 list_add(&stable_node_dup->list, stable_node_dup->head);
1668 return page;
1669
1670 chain_append:
1671 /* stable_node_dup could be null if it reached the limit */
1672 if (!stable_node_dup)
1673 stable_node_dup = stable_node_any;
1674 /*
1675 * If stable_node was a chain and chain_prune collapsed it,
1676 * stable_node will be NULL here. In that case the
1677 * stable_node_dup is the regular stable_node that has
1678 * replaced the chain. If stable_node is not NULL and equal to
1679 * stable_node_dup there was no chain and stable_node_dup is
1680 * the regular stable_node in the stable rbtree.
1681 */
1682 if (!stable_node || stable_node_dup == stable_node) {
1683 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1684 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1685 /* chain is missing so create it */
1686 stable_node = alloc_stable_node_chain(stable_node_dup,
1687 root);
1688 if (!stable_node)
1689 return NULL;
1690 }
1691 /*
1692 * Add this stable_node dup that was
1693 * migrated to the stable_node chain
1694 * of the current nid for this page
1695 * content.
1696 */
1697 VM_BUG_ON(!is_stable_node_chain(stable_node));
1698 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1699 VM_BUG_ON(page_node->head != &migrate_nodes);
1700 list_del(&page_node->list);
1701 DO_NUMA(page_node->nid = nid);
1702 stable_node_chain_add_dup(page_node, stable_node);
1703 goto out;
1704 }
1705
1706 /*
1707 * stable_tree_insert - insert stable tree node pointing to new ksm page
1708 * into the stable tree.
1709 *
1710 * This function returns the stable tree node just allocated on success,
1711 * NULL otherwise.
1712 */
1713 static struct stable_node *stable_tree_insert(struct page *kpage)
1714 {
1715 int nid;
1716 unsigned long kpfn;
1717 struct rb_root *root;
1718 struct rb_node **new;
1719 struct rb_node *parent;
1720 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1721 bool need_chain = false;
1722
1723 kpfn = page_to_pfn(kpage);
1724 nid = get_kpfn_nid(kpfn);
1725 root = root_stable_tree + nid;
1726 again:
1727 parent = NULL;
1728 new = &root->rb_node;
1729
1730 while (*new) {
1731 struct page *tree_page;
1732 int ret;
1733
1734 cond_resched();
1735 stable_node = rb_entry(*new, struct stable_node, node);
1736 stable_node_any = NULL;
1737 stable_node_dup = chain(stable_node, &tree_page, root);
1738 if (!stable_node_dup) {
1739 /*
1740 * Either all stable_node dups were full in
1741 * this stable_node chain, or this chain was
1742 * empty and should be rb_erased.
1743 */
1744 stable_node_any = stable_node_dup_any(stable_node,
1745 root);
1746 if (!stable_node_any) {
1747 /* rb_erase just run */
1748 goto again;
1749 }
1750 /*
1751 * Take any of the stable_node dups page of
1752 * this stable_node chain to let the tree walk
1753 * continue. All KSM pages belonging to the
1754 * stable_node dups in a stable_node chain
1755 * have the same content and they're
1756 * wrprotected at all times. Any will work
1757 * fine to continue the walk.
1758 */
1759 tree_page = get_ksm_page(stable_node_any, false);
1760 }
1761 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1762 if (!tree_page) {
1763 /*
1764 * If we walked over a stale stable_node,
1765 * get_ksm_page() will call rb_erase() and it
1766 * may rebalance the tree from under us. So
1767 * restart the search from scratch. Returning
1768 * NULL would be safe too, but we'd generate
1769 * false negative insertions just because some
1770 * stable_node was stale.
1771 */
1772 goto again;
1773 }
1774
1775 ret = memcmp_pages(kpage, tree_page);
1776 put_page(tree_page);
1777
1778 parent = *new;
1779 if (ret < 0)
1780 new = &parent->rb_left;
1781 else if (ret > 0)
1782 new = &parent->rb_right;
1783 else {
1784 need_chain = true;
1785 break;
1786 }
1787 }
1788
1789 stable_node_dup = alloc_stable_node();
1790 if (!stable_node_dup)
1791 return NULL;
1792
1793 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1794 stable_node_dup->kpfn = kpfn;
1795 set_page_stable_node(kpage, stable_node_dup);
1796 stable_node_dup->rmap_hlist_len = 0;
1797 DO_NUMA(stable_node_dup->nid = nid);
1798 if (!need_chain) {
1799 rb_link_node(&stable_node_dup->node, parent, new);
1800 rb_insert_color(&stable_node_dup->node, root);
1801 } else {
1802 if (!is_stable_node_chain(stable_node)) {
1803 struct stable_node *orig = stable_node;
1804 /* chain is missing so create it */
1805 stable_node = alloc_stable_node_chain(orig, root);
1806 if (!stable_node) {
1807 free_stable_node(stable_node_dup);
1808 return NULL;
1809 }
1810 }
1811 stable_node_chain_add_dup(stable_node_dup, stable_node);
1812 }
1813
1814 return stable_node_dup;
1815 }
1816
1817 /*
1818 * unstable_tree_search_insert - search for identical page,
1819 * else insert rmap_item into the unstable tree.
1820 *
1821 * This function searches for a page in the unstable tree identical to the
1822 * page currently being scanned; and if no identical page is found in the
1823 * tree, we insert rmap_item as a new object into the unstable tree.
1824 *
1825 * This function returns pointer to rmap_item found to be identical
1826 * to the currently scanned page, NULL otherwise.
1827 *
1828 * This function does both searching and inserting, because they share
1829 * the same walking algorithm in an rbtree.
1830 */
1831 static
1832 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1833 struct page *page,
1834 struct page **tree_pagep)
1835 {
1836 struct rb_node **new;
1837 struct rb_root *root;
1838 struct rb_node *parent = NULL;
1839 int nid;
1840
1841 nid = get_kpfn_nid(page_to_pfn(page));
1842 root = root_unstable_tree + nid;
1843 new = &root->rb_node;
1844
1845 while (*new) {
1846 struct rmap_item *tree_rmap_item;
1847 struct page *tree_page;
1848 int ret;
1849
1850 cond_resched();
1851 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1852 tree_page = get_mergeable_page(tree_rmap_item);
1853 if (!tree_page)
1854 return NULL;
1855
1856 /*
1857 * Don't substitute a ksm page for a forked page.
1858 */
1859 if (page == tree_page) {
1860 put_page(tree_page);
1861 return NULL;
1862 }
1863
1864 ret = memcmp_pages(page, tree_page);
1865
1866 parent = *new;
1867 if (ret < 0) {
1868 put_page(tree_page);
1869 new = &parent->rb_left;
1870 } else if (ret > 0) {
1871 put_page(tree_page);
1872 new = &parent->rb_right;
1873 } else if (!ksm_merge_across_nodes &&
1874 page_to_nid(tree_page) != nid) {
1875 /*
1876 * If tree_page has been migrated to another NUMA node,
1877 * it will be flushed out and put in the right unstable
1878 * tree next time: only merge with it when across_nodes.
1879 */
1880 put_page(tree_page);
1881 return NULL;
1882 } else {
1883 *tree_pagep = tree_page;
1884 return tree_rmap_item;
1885 }
1886 }
1887
1888 rmap_item->address |= UNSTABLE_FLAG;
1889 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1890 DO_NUMA(rmap_item->nid = nid);
1891 rb_link_node(&rmap_item->node, parent, new);
1892 rb_insert_color(&rmap_item->node, root);
1893
1894 ksm_pages_unshared++;
1895 return NULL;
1896 }
1897
1898 /*
1899 * stable_tree_append - add another rmap_item to the linked list of
1900 * rmap_items hanging off a given node of the stable tree, all sharing
1901 * the same ksm page.
1902 */
1903 static void stable_tree_append(struct rmap_item *rmap_item,
1904 struct stable_node *stable_node,
1905 bool max_page_sharing_bypass)
1906 {
1907 /*
1908 * rmap won't find this mapping if we don't insert the
1909 * rmap_item in the right stable_node
1910 * duplicate. page_migration could break later if rmap breaks,
1911 * so we can as well crash here. We really need to check for
1912 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1913 * for other negative values as an undeflow if detected here
1914 * for the first time (and not when decreasing rmap_hlist_len)
1915 * would be sign of memory corruption in the stable_node.
1916 */
1917 BUG_ON(stable_node->rmap_hlist_len < 0);
1918
1919 stable_node->rmap_hlist_len++;
1920 if (!max_page_sharing_bypass)
1921 /* possibly non fatal but unexpected overflow, only warn */
1922 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1923 ksm_max_page_sharing);
1924
1925 rmap_item->head = stable_node;
1926 rmap_item->address |= STABLE_FLAG;
1927 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1928
1929 if (rmap_item->hlist.next)
1930 ksm_pages_sharing++;
1931 else
1932 ksm_pages_shared++;
1933 }
1934
1935 /*
1936 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1937 * if not, compare checksum to previous and if it's the same, see if page can
1938 * be inserted into the unstable tree, or merged with a page already there and
1939 * both transferred to the stable tree.
1940 *
1941 * @page: the page that we are searching identical page to.
1942 * @rmap_item: the reverse mapping into the virtual address of this page
1943 */
1944 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1945 {
1946 struct rmap_item *tree_rmap_item;
1947 struct page *tree_page = NULL;
1948 struct stable_node *stable_node;
1949 struct page *kpage;
1950 unsigned int checksum;
1951 int err;
1952 bool max_page_sharing_bypass = false;
1953
1954 stable_node = page_stable_node(page);
1955 if (stable_node) {
1956 if (stable_node->head != &migrate_nodes &&
1957 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
1958 NUMA(stable_node->nid)) {
1959 stable_node_dup_del(stable_node);
1960 stable_node->head = &migrate_nodes;
1961 list_add(&stable_node->list, stable_node->head);
1962 }
1963 if (stable_node->head != &migrate_nodes &&
1964 rmap_item->head == stable_node)
1965 return;
1966 /*
1967 * If it's a KSM fork, allow it to go over the sharing limit
1968 * without warnings.
1969 */
1970 if (!is_page_sharing_candidate(stable_node))
1971 max_page_sharing_bypass = true;
1972 }
1973
1974 /* We first start with searching the page inside the stable tree */
1975 kpage = stable_tree_search(page);
1976 if (kpage == page && rmap_item->head == stable_node) {
1977 put_page(kpage);
1978 return;
1979 }
1980
1981 remove_rmap_item_from_tree(rmap_item);
1982
1983 if (kpage) {
1984 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1985 if (!err) {
1986 /*
1987 * The page was successfully merged:
1988 * add its rmap_item to the stable tree.
1989 */
1990 lock_page(kpage);
1991 stable_tree_append(rmap_item, page_stable_node(kpage),
1992 max_page_sharing_bypass);
1993 unlock_page(kpage);
1994 }
1995 put_page(kpage);
1996 return;
1997 }
1998
1999 /*
2000 * If the hash value of the page has changed from the last time
2001 * we calculated it, this page is changing frequently: therefore we
2002 * don't want to insert it in the unstable tree, and we don't want
2003 * to waste our time searching for something identical to it there.
2004 */
2005 checksum = calc_checksum(page);
2006 if (rmap_item->oldchecksum != checksum) {
2007 rmap_item->oldchecksum = checksum;
2008 return;
2009 }
2010
2011 /*
2012 * Same checksum as an empty page. We attempt to merge it with the
2013 * appropriate zero page if the user enabled this via sysfs.
2014 */
2015 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2016 struct vm_area_struct *vma;
2017
2018 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
2019 err = try_to_merge_one_page(vma, page,
2020 ZERO_PAGE(rmap_item->address));
2021 /*
2022 * In case of failure, the page was not really empty, so we
2023 * need to continue. Otherwise we're done.
2024 */
2025 if (!err)
2026 return;
2027 }
2028 tree_rmap_item =
2029 unstable_tree_search_insert(rmap_item, page, &tree_page);
2030 if (tree_rmap_item) {
2031 kpage = try_to_merge_two_pages(rmap_item, page,
2032 tree_rmap_item, tree_page);
2033 put_page(tree_page);
2034 if (kpage) {
2035 /*
2036 * The pages were successfully merged: insert new
2037 * node in the stable tree and add both rmap_items.
2038 */
2039 lock_page(kpage);
2040 stable_node = stable_tree_insert(kpage);
2041 if (stable_node) {
2042 stable_tree_append(tree_rmap_item, stable_node,
2043 false);
2044 stable_tree_append(rmap_item, stable_node,
2045 false);
2046 }
2047 unlock_page(kpage);
2048
2049 /*
2050 * If we fail to insert the page into the stable tree,
2051 * we will have 2 virtual addresses that are pointing
2052 * to a ksm page left outside the stable tree,
2053 * in which case we need to break_cow on both.
2054 */
2055 if (!stable_node) {
2056 break_cow(tree_rmap_item);
2057 break_cow(rmap_item);
2058 }
2059 }
2060 }
2061 }
2062
2063 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2064 struct rmap_item **rmap_list,
2065 unsigned long addr)
2066 {
2067 struct rmap_item *rmap_item;
2068
2069 while (*rmap_list) {
2070 rmap_item = *rmap_list;
2071 if ((rmap_item->address & PAGE_MASK) == addr)
2072 return rmap_item;
2073 if (rmap_item->address > addr)
2074 break;
2075 *rmap_list = rmap_item->rmap_list;
2076 remove_rmap_item_from_tree(rmap_item);
2077 free_rmap_item(rmap_item);
2078 }
2079
2080 rmap_item = alloc_rmap_item();
2081 if (rmap_item) {
2082 /* It has already been zeroed */
2083 rmap_item->mm = mm_slot->mm;
2084 rmap_item->address = addr;
2085 rmap_item->rmap_list = *rmap_list;
2086 *rmap_list = rmap_item;
2087 }
2088 return rmap_item;
2089 }
2090
2091 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2092 {
2093 struct mm_struct *mm;
2094 struct mm_slot *slot;
2095 struct vm_area_struct *vma;
2096 struct rmap_item *rmap_item;
2097 int nid;
2098
2099 if (list_empty(&ksm_mm_head.mm_list))
2100 return NULL;
2101
2102 slot = ksm_scan.mm_slot;
2103 if (slot == &ksm_mm_head) {
2104 /*
2105 * A number of pages can hang around indefinitely on per-cpu
2106 * pagevecs, raised page count preventing write_protect_page
2107 * from merging them. Though it doesn't really matter much,
2108 * it is puzzling to see some stuck in pages_volatile until
2109 * other activity jostles them out, and they also prevented
2110 * LTP's KSM test from succeeding deterministically; so drain
2111 * them here (here rather than on entry to ksm_do_scan(),
2112 * so we don't IPI too often when pages_to_scan is set low).
2113 */
2114 lru_add_drain_all();
2115
2116 /*
2117 * Whereas stale stable_nodes on the stable_tree itself
2118 * get pruned in the regular course of stable_tree_search(),
2119 * those moved out to the migrate_nodes list can accumulate:
2120 * so prune them once before each full scan.
2121 */
2122 if (!ksm_merge_across_nodes) {
2123 struct stable_node *stable_node, *next;
2124 struct page *page;
2125
2126 list_for_each_entry_safe(stable_node, next,
2127 &migrate_nodes, list) {
2128 page = get_ksm_page(stable_node, false);
2129 if (page)
2130 put_page(page);
2131 cond_resched();
2132 }
2133 }
2134
2135 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2136 root_unstable_tree[nid] = RB_ROOT;
2137
2138 spin_lock(&ksm_mmlist_lock);
2139 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2140 ksm_scan.mm_slot = slot;
2141 spin_unlock(&ksm_mmlist_lock);
2142 /*
2143 * Although we tested list_empty() above, a racing __ksm_exit
2144 * of the last mm on the list may have removed it since then.
2145 */
2146 if (slot == &ksm_mm_head)
2147 return NULL;
2148 next_mm:
2149 ksm_scan.address = 0;
2150 ksm_scan.rmap_list = &slot->rmap_list;
2151 }
2152
2153 mm = slot->mm;
2154 down_read(&mm->mmap_sem);
2155 if (ksm_test_exit(mm))
2156 vma = NULL;
2157 else
2158 vma = find_vma(mm, ksm_scan.address);
2159
2160 for (; vma; vma = vma->vm_next) {
2161 if (!(vma->vm_flags & VM_MERGEABLE))
2162 continue;
2163 if (ksm_scan.address < vma->vm_start)
2164 ksm_scan.address = vma->vm_start;
2165 if (!vma->anon_vma)
2166 ksm_scan.address = vma->vm_end;
2167
2168 while (ksm_scan.address < vma->vm_end) {
2169 if (ksm_test_exit(mm))
2170 break;
2171 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2172 if (IS_ERR_OR_NULL(*page)) {
2173 ksm_scan.address += PAGE_SIZE;
2174 cond_resched();
2175 continue;
2176 }
2177 if (PageAnon(*page)) {
2178 flush_anon_page(vma, *page, ksm_scan.address);
2179 flush_dcache_page(*page);
2180 rmap_item = get_next_rmap_item(slot,
2181 ksm_scan.rmap_list, ksm_scan.address);
2182 if (rmap_item) {
2183 ksm_scan.rmap_list =
2184 &rmap_item->rmap_list;
2185 ksm_scan.address += PAGE_SIZE;
2186 } else
2187 put_page(*page);
2188 up_read(&mm->mmap_sem);
2189 return rmap_item;
2190 }
2191 put_page(*page);
2192 ksm_scan.address += PAGE_SIZE;
2193 cond_resched();
2194 }
2195 }
2196
2197 if (ksm_test_exit(mm)) {
2198 ksm_scan.address = 0;
2199 ksm_scan.rmap_list = &slot->rmap_list;
2200 }
2201 /*
2202 * Nuke all the rmap_items that are above this current rmap:
2203 * because there were no VM_MERGEABLE vmas with such addresses.
2204 */
2205 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2206
2207 spin_lock(&ksm_mmlist_lock);
2208 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2209 struct mm_slot, mm_list);
2210 if (ksm_scan.address == 0) {
2211 /*
2212 * We've completed a full scan of all vmas, holding mmap_sem
2213 * throughout, and found no VM_MERGEABLE: so do the same as
2214 * __ksm_exit does to remove this mm from all our lists now.
2215 * This applies either when cleaning up after __ksm_exit
2216 * (but beware: we can reach here even before __ksm_exit),
2217 * or when all VM_MERGEABLE areas have been unmapped (and
2218 * mmap_sem then protects against race with MADV_MERGEABLE).
2219 */
2220 hash_del(&slot->link);
2221 list_del(&slot->mm_list);
2222 spin_unlock(&ksm_mmlist_lock);
2223
2224 free_mm_slot(slot);
2225 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2226 up_read(&mm->mmap_sem);
2227 mmdrop(mm);
2228 } else {
2229 up_read(&mm->mmap_sem);
2230 /*
2231 * up_read(&mm->mmap_sem) first because after
2232 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2233 * already have been freed under us by __ksm_exit()
2234 * because the "mm_slot" is still hashed and
2235 * ksm_scan.mm_slot doesn't point to it anymore.
2236 */
2237 spin_unlock(&ksm_mmlist_lock);
2238 }
2239
2240 /* Repeat until we've completed scanning the whole list */
2241 slot = ksm_scan.mm_slot;
2242 if (slot != &ksm_mm_head)
2243 goto next_mm;
2244
2245 ksm_scan.seqnr++;
2246 return NULL;
2247 }
2248
2249 /**
2250 * ksm_do_scan - the ksm scanner main worker function.
2251 * @scan_npages - number of pages we want to scan before we return.
2252 */
2253 static void ksm_do_scan(unsigned int scan_npages)
2254 {
2255 struct rmap_item *rmap_item;
2256 struct page *uninitialized_var(page);
2257
2258 while (scan_npages-- && likely(!freezing(current))) {
2259 cond_resched();
2260 rmap_item = scan_get_next_rmap_item(&page);
2261 if (!rmap_item)
2262 return;
2263 cmp_and_merge_page(page, rmap_item);
2264 put_page(page);
2265 }
2266 }
2267
2268 static int ksmd_should_run(void)
2269 {
2270 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2271 }
2272
2273 static int ksm_scan_thread(void *nothing)
2274 {
2275 set_freezable();
2276 set_user_nice(current, 5);
2277
2278 while (!kthread_should_stop()) {
2279 mutex_lock(&ksm_thread_mutex);
2280 wait_while_offlining();
2281 if (ksmd_should_run())
2282 ksm_do_scan(ksm_thread_pages_to_scan);
2283 mutex_unlock(&ksm_thread_mutex);
2284
2285 try_to_freeze();
2286
2287 if (ksmd_should_run()) {
2288 if (ksm_thread_sleep_millisecs >= 1000)
2289 schedule_timeout_interruptible(
2290 msecs_to_jiffies(round_jiffies_relative(ksm_thread_sleep_millisecs)));
2291 else
2292 schedule_timeout_interruptible(
2293 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2294 } else {
2295 wait_event_freezable(ksm_thread_wait,
2296 ksmd_should_run() || kthread_should_stop());
2297 }
2298 }
2299 return 0;
2300 }
2301
2302 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2303 unsigned long end, int advice, unsigned long *vm_flags)
2304 {
2305 struct mm_struct *mm = vma->vm_mm;
2306 int err;
2307
2308 switch (advice) {
2309 case MADV_MERGEABLE:
2310 /*
2311 * Be somewhat over-protective for now!
2312 */
2313 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2314 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2315 VM_HUGETLB | VM_MIXEDMAP))
2316 return 0; /* just ignore the advice */
2317
2318 #ifdef VM_SAO
2319 if (*vm_flags & VM_SAO)
2320 return 0;
2321 #endif
2322
2323 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2324 err = __ksm_enter(mm);
2325 if (err)
2326 return err;
2327 }
2328
2329 *vm_flags |= VM_MERGEABLE;
2330 break;
2331
2332 case MADV_UNMERGEABLE:
2333 if (!(*vm_flags & VM_MERGEABLE))
2334 return 0; /* just ignore the advice */
2335
2336 if (vma->anon_vma) {
2337 err = unmerge_ksm_pages(vma, start, end);
2338 if (err)
2339 return err;
2340 }
2341
2342 *vm_flags &= ~VM_MERGEABLE;
2343 break;
2344 }
2345
2346 return 0;
2347 }
2348
2349 int __ksm_enter(struct mm_struct *mm)
2350 {
2351 struct mm_slot *mm_slot;
2352 int needs_wakeup;
2353
2354 mm_slot = alloc_mm_slot();
2355 if (!mm_slot)
2356 return -ENOMEM;
2357
2358 /* Check ksm_run too? Would need tighter locking */
2359 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2360
2361 spin_lock(&ksm_mmlist_lock);
2362 insert_to_mm_slots_hash(mm, mm_slot);
2363 /*
2364 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2365 * insert just behind the scanning cursor, to let the area settle
2366 * down a little; when fork is followed by immediate exec, we don't
2367 * want ksmd to waste time setting up and tearing down an rmap_list.
2368 *
2369 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2370 * scanning cursor, otherwise KSM pages in newly forked mms will be
2371 * missed: then we might as well insert at the end of the list.
2372 */
2373 if (ksm_run & KSM_RUN_UNMERGE)
2374 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2375 else
2376 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2377 spin_unlock(&ksm_mmlist_lock);
2378
2379 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2380 atomic_inc(&mm->mm_count);
2381
2382 if (needs_wakeup)
2383 wake_up_interruptible(&ksm_thread_wait);
2384
2385 return 0;
2386 }
2387
2388 void __ksm_exit(struct mm_struct *mm)
2389 {
2390 struct mm_slot *mm_slot;
2391 int easy_to_free = 0;
2392
2393 /*
2394 * This process is exiting: if it's straightforward (as is the
2395 * case when ksmd was never running), free mm_slot immediately.
2396 * But if it's at the cursor or has rmap_items linked to it, use
2397 * mmap_sem to synchronize with any break_cows before pagetables
2398 * are freed, and leave the mm_slot on the list for ksmd to free.
2399 * Beware: ksm may already have noticed it exiting and freed the slot.
2400 */
2401
2402 spin_lock(&ksm_mmlist_lock);
2403 mm_slot = get_mm_slot(mm);
2404 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2405 if (!mm_slot->rmap_list) {
2406 hash_del(&mm_slot->link);
2407 list_del(&mm_slot->mm_list);
2408 easy_to_free = 1;
2409 } else {
2410 list_move(&mm_slot->mm_list,
2411 &ksm_scan.mm_slot->mm_list);
2412 }
2413 }
2414 spin_unlock(&ksm_mmlist_lock);
2415
2416 if (easy_to_free) {
2417 free_mm_slot(mm_slot);
2418 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2419 mmdrop(mm);
2420 } else if (mm_slot) {
2421 down_write(&mm->mmap_sem);
2422 up_write(&mm->mmap_sem);
2423 }
2424 }
2425
2426 struct page *ksm_might_need_to_copy(struct page *page,
2427 struct vm_area_struct *vma, unsigned long address)
2428 {
2429 struct anon_vma *anon_vma = page_anon_vma(page);
2430 struct page *new_page;
2431
2432 if (PageKsm(page)) {
2433 if (page_stable_node(page) &&
2434 !(ksm_run & KSM_RUN_UNMERGE))
2435 return page; /* no need to copy it */
2436 } else if (!anon_vma) {
2437 return page; /* no need to copy it */
2438 } else if (anon_vma->root == vma->anon_vma->root &&
2439 page->index == linear_page_index(vma, address)) {
2440 return page; /* still no need to copy it */
2441 }
2442 if (!PageUptodate(page))
2443 return page; /* let do_swap_page report the error */
2444
2445 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2446 if (new_page) {
2447 copy_user_highpage(new_page, page, address, vma);
2448
2449 SetPageDirty(new_page);
2450 __SetPageUptodate(new_page);
2451 __SetPageLocked(new_page);
2452 }
2453
2454 return new_page;
2455 }
2456
2457 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2458 {
2459 struct stable_node *stable_node;
2460 struct rmap_item *rmap_item;
2461 int ret = SWAP_AGAIN;
2462 int search_new_forks = 0;
2463
2464 VM_BUG_ON_PAGE(!PageKsm(page), page);
2465
2466 /*
2467 * Rely on the page lock to protect against concurrent modifications
2468 * to that page's node of the stable tree.
2469 */
2470 VM_BUG_ON_PAGE(!PageLocked(page), page);
2471
2472 stable_node = page_stable_node(page);
2473 if (!stable_node)
2474 return ret;
2475 again:
2476 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2477 struct anon_vma *anon_vma = rmap_item->anon_vma;
2478 struct anon_vma_chain *vmac;
2479 struct vm_area_struct *vma;
2480
2481 cond_resched();
2482 anon_vma_lock_read(anon_vma);
2483 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2484 0, ULONG_MAX) {
2485 cond_resched();
2486 vma = vmac->vma;
2487 if (rmap_item->address < vma->vm_start ||
2488 rmap_item->address >= vma->vm_end)
2489 continue;
2490 /*
2491 * Initially we examine only the vma which covers this
2492 * rmap_item; but later, if there is still work to do,
2493 * we examine covering vmas in other mms: in case they
2494 * were forked from the original since ksmd passed.
2495 */
2496 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2497 continue;
2498
2499 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2500 continue;
2501
2502 ret = rwc->rmap_one(page, vma,
2503 rmap_item->address, rwc->arg);
2504 if (ret != SWAP_AGAIN) {
2505 anon_vma_unlock_read(anon_vma);
2506 goto out;
2507 }
2508 if (rwc->done && rwc->done(page)) {
2509 anon_vma_unlock_read(anon_vma);
2510 goto out;
2511 }
2512 }
2513 anon_vma_unlock_read(anon_vma);
2514 }
2515 if (!search_new_forks++)
2516 goto again;
2517 out:
2518 return ret;
2519 }
2520
2521 #ifdef CONFIG_MIGRATION
2522 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2523 {
2524 struct stable_node *stable_node;
2525
2526 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2527 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2528 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2529
2530 stable_node = page_stable_node(newpage);
2531 if (stable_node) {
2532 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2533 stable_node->kpfn = page_to_pfn(newpage);
2534 /*
2535 * newpage->mapping was set in advance; now we need smp_wmb()
2536 * to make sure that the new stable_node->kpfn is visible
2537 * to get_ksm_page() before it can see that oldpage->mapping
2538 * has gone stale (or that PageSwapCache has been cleared).
2539 */
2540 smp_wmb();
2541 set_page_stable_node(oldpage, NULL);
2542 }
2543 }
2544 #endif /* CONFIG_MIGRATION */
2545
2546 #ifdef CONFIG_MEMORY_HOTREMOVE
2547 static void wait_while_offlining(void)
2548 {
2549 while (ksm_run & KSM_RUN_OFFLINE) {
2550 mutex_unlock(&ksm_thread_mutex);
2551 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2552 TASK_UNINTERRUPTIBLE);
2553 mutex_lock(&ksm_thread_mutex);
2554 }
2555 }
2556
2557 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2558 unsigned long start_pfn,
2559 unsigned long end_pfn)
2560 {
2561 if (stable_node->kpfn >= start_pfn &&
2562 stable_node->kpfn < end_pfn) {
2563 /*
2564 * Don't get_ksm_page, page has already gone:
2565 * which is why we keep kpfn instead of page*
2566 */
2567 remove_node_from_stable_tree(stable_node);
2568 return true;
2569 }
2570 return false;
2571 }
2572
2573 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2574 unsigned long start_pfn,
2575 unsigned long end_pfn,
2576 struct rb_root *root)
2577 {
2578 struct stable_node *dup;
2579 struct hlist_node *hlist_safe;
2580
2581 if (!is_stable_node_chain(stable_node)) {
2582 VM_BUG_ON(is_stable_node_dup(stable_node));
2583 return stable_node_dup_remove_range(stable_node, start_pfn,
2584 end_pfn);
2585 }
2586
2587 hlist_for_each_entry_safe(dup, hlist_safe,
2588 &stable_node->hlist, hlist_dup) {
2589 VM_BUG_ON(!is_stable_node_dup(dup));
2590 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2591 }
2592 if (hlist_empty(&stable_node->hlist)) {
2593 free_stable_node_chain(stable_node, root);
2594 return true; /* notify caller that tree was rebalanced */
2595 } else
2596 return false;
2597 }
2598
2599 static void ksm_check_stable_tree(unsigned long start_pfn,
2600 unsigned long end_pfn)
2601 {
2602 struct stable_node *stable_node, *next;
2603 struct rb_node *node;
2604 int nid;
2605
2606 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2607 node = rb_first(root_stable_tree + nid);
2608 while (node) {
2609 stable_node = rb_entry(node, struct stable_node, node);
2610 if (stable_node_chain_remove_range(stable_node,
2611 start_pfn, end_pfn,
2612 root_stable_tree +
2613 nid))
2614 node = rb_first(root_stable_tree + nid);
2615 else
2616 node = rb_next(node);
2617 cond_resched();
2618 }
2619 }
2620 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2621 if (stable_node->kpfn >= start_pfn &&
2622 stable_node->kpfn < end_pfn)
2623 remove_node_from_stable_tree(stable_node);
2624 cond_resched();
2625 }
2626 }
2627
2628 static int ksm_memory_callback(struct notifier_block *self,
2629 unsigned long action, void *arg)
2630 {
2631 struct memory_notify *mn = arg;
2632
2633 switch (action) {
2634 case MEM_GOING_OFFLINE:
2635 /*
2636 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2637 * and remove_all_stable_nodes() while memory is going offline:
2638 * it is unsafe for them to touch the stable tree at this time.
2639 * But unmerge_ksm_pages(), rmap lookups and other entry points
2640 * which do not need the ksm_thread_mutex are all safe.
2641 */
2642 mutex_lock(&ksm_thread_mutex);
2643 ksm_run |= KSM_RUN_OFFLINE;
2644 mutex_unlock(&ksm_thread_mutex);
2645 break;
2646
2647 case MEM_OFFLINE:
2648 /*
2649 * Most of the work is done by page migration; but there might
2650 * be a few stable_nodes left over, still pointing to struct
2651 * pages which have been offlined: prune those from the tree,
2652 * otherwise get_ksm_page() might later try to access a
2653 * non-existent struct page.
2654 */
2655 ksm_check_stable_tree(mn->start_pfn,
2656 mn->start_pfn + mn->nr_pages);
2657 /* fallthrough */
2658
2659 case MEM_CANCEL_OFFLINE:
2660 mutex_lock(&ksm_thread_mutex);
2661 ksm_run &= ~KSM_RUN_OFFLINE;
2662 mutex_unlock(&ksm_thread_mutex);
2663
2664 smp_mb(); /* wake_up_bit advises this */
2665 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2666 break;
2667 }
2668 return NOTIFY_OK;
2669 }
2670 #else
2671 static void wait_while_offlining(void)
2672 {
2673 }
2674 #endif /* CONFIG_MEMORY_HOTREMOVE */
2675
2676 #ifdef CONFIG_SYSFS
2677 /*
2678 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2679 */
2680
2681 #define KSM_ATTR_RO(_name) \
2682 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2683 #define KSM_ATTR(_name) \
2684 static struct kobj_attribute _name##_attr = \
2685 __ATTR(_name, 0644, _name##_show, _name##_store)
2686
2687 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2688 struct kobj_attribute *attr, char *buf)
2689 {
2690 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2691 }
2692
2693 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2694 struct kobj_attribute *attr,
2695 const char *buf, size_t count)
2696 {
2697 unsigned long msecs;
2698 int err;
2699
2700 err = kstrtoul(buf, 10, &msecs);
2701 if (err || msecs > UINT_MAX)
2702 return -EINVAL;
2703
2704 ksm_thread_sleep_millisecs = msecs;
2705
2706 return count;
2707 }
2708 KSM_ATTR(sleep_millisecs);
2709
2710 static ssize_t pages_to_scan_show(struct kobject *kobj,
2711 struct kobj_attribute *attr, char *buf)
2712 {
2713 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2714 }
2715
2716 static ssize_t pages_to_scan_store(struct kobject *kobj,
2717 struct kobj_attribute *attr,
2718 const char *buf, size_t count)
2719 {
2720 int err;
2721 unsigned long nr_pages;
2722
2723 err = kstrtoul(buf, 10, &nr_pages);
2724 if (err || nr_pages > UINT_MAX)
2725 return -EINVAL;
2726
2727 ksm_thread_pages_to_scan = nr_pages;
2728
2729 return count;
2730 }
2731 KSM_ATTR(pages_to_scan);
2732
2733 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2734 char *buf)
2735 {
2736 return sprintf(buf, "%lu\n", ksm_run);
2737 }
2738
2739 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2740 const char *buf, size_t count)
2741 {
2742 int err;
2743 unsigned long flags;
2744
2745 err = kstrtoul(buf, 10, &flags);
2746 if (err || flags > UINT_MAX)
2747 return -EINVAL;
2748 if (flags > KSM_RUN_UNMERGE)
2749 return -EINVAL;
2750
2751 /*
2752 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2753 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2754 * breaking COW to free the pages_shared (but leaves mm_slots
2755 * on the list for when ksmd may be set running again).
2756 */
2757
2758 mutex_lock(&ksm_thread_mutex);
2759 wait_while_offlining();
2760 if (ksm_run != flags) {
2761 ksm_run = flags;
2762 if (flags & KSM_RUN_UNMERGE) {
2763 set_current_oom_origin();
2764 err = unmerge_and_remove_all_rmap_items();
2765 clear_current_oom_origin();
2766 if (err) {
2767 ksm_run = KSM_RUN_STOP;
2768 count = err;
2769 }
2770 }
2771 }
2772 mutex_unlock(&ksm_thread_mutex);
2773
2774 if (flags & KSM_RUN_MERGE)
2775 wake_up_interruptible(&ksm_thread_wait);
2776
2777 return count;
2778 }
2779 KSM_ATTR(run);
2780
2781 #ifdef CONFIG_NUMA
2782 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2783 struct kobj_attribute *attr, char *buf)
2784 {
2785 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2786 }
2787
2788 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2789 struct kobj_attribute *attr,
2790 const char *buf, size_t count)
2791 {
2792 int err;
2793 unsigned long knob;
2794
2795 err = kstrtoul(buf, 10, &knob);
2796 if (err)
2797 return err;
2798 if (knob > 1)
2799 return -EINVAL;
2800
2801 mutex_lock(&ksm_thread_mutex);
2802 wait_while_offlining();
2803 if (ksm_merge_across_nodes != knob) {
2804 if (ksm_pages_shared || remove_all_stable_nodes())
2805 err = -EBUSY;
2806 else if (root_stable_tree == one_stable_tree) {
2807 struct rb_root *buf;
2808 /*
2809 * This is the first time that we switch away from the
2810 * default of merging across nodes: must now allocate
2811 * a buffer to hold as many roots as may be needed.
2812 * Allocate stable and unstable together:
2813 * MAXSMP NODES_SHIFT 10 will use 16kB.
2814 */
2815 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2816 GFP_KERNEL);
2817 /* Let us assume that RB_ROOT is NULL is zero */
2818 if (!buf)
2819 err = -ENOMEM;
2820 else {
2821 root_stable_tree = buf;
2822 root_unstable_tree = buf + nr_node_ids;
2823 /* Stable tree is empty but not the unstable */
2824 root_unstable_tree[0] = one_unstable_tree[0];
2825 }
2826 }
2827 if (!err) {
2828 ksm_merge_across_nodes = knob;
2829 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2830 }
2831 }
2832 mutex_unlock(&ksm_thread_mutex);
2833
2834 return err ? err : count;
2835 }
2836 KSM_ATTR(merge_across_nodes);
2837 #endif
2838
2839 static ssize_t use_zero_pages_show(struct kobject *kobj,
2840 struct kobj_attribute *attr, char *buf)
2841 {
2842 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2843 }
2844 static ssize_t use_zero_pages_store(struct kobject *kobj,
2845 struct kobj_attribute *attr,
2846 const char *buf, size_t count)
2847 {
2848 int err;
2849 bool value;
2850
2851 err = kstrtobool(buf, &value);
2852 if (err)
2853 return -EINVAL;
2854
2855 ksm_use_zero_pages = value;
2856
2857 return count;
2858 }
2859 KSM_ATTR(use_zero_pages);
2860
2861 static ssize_t max_page_sharing_show(struct kobject *kobj,
2862 struct kobj_attribute *attr, char *buf)
2863 {
2864 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2865 }
2866
2867 static ssize_t max_page_sharing_store(struct kobject *kobj,
2868 struct kobj_attribute *attr,
2869 const char *buf, size_t count)
2870 {
2871 int err;
2872 int knob;
2873
2874 err = kstrtoint(buf, 10, &knob);
2875 if (err)
2876 return err;
2877 /*
2878 * When a KSM page is created it is shared by 2 mappings. This
2879 * being a signed comparison, it implicitly verifies it's not
2880 * negative.
2881 */
2882 if (knob < 2)
2883 return -EINVAL;
2884
2885 if (READ_ONCE(ksm_max_page_sharing) == knob)
2886 return count;
2887
2888 mutex_lock(&ksm_thread_mutex);
2889 wait_while_offlining();
2890 if (ksm_max_page_sharing != knob) {
2891 if (ksm_pages_shared || remove_all_stable_nodes())
2892 err = -EBUSY;
2893 else
2894 ksm_max_page_sharing = knob;
2895 }
2896 mutex_unlock(&ksm_thread_mutex);
2897
2898 return err ? err : count;
2899 }
2900 KSM_ATTR(max_page_sharing);
2901
2902 static ssize_t pages_shared_show(struct kobject *kobj,
2903 struct kobj_attribute *attr, char *buf)
2904 {
2905 return sprintf(buf, "%lu\n", ksm_pages_shared);
2906 }
2907 KSM_ATTR_RO(pages_shared);
2908
2909 static ssize_t pages_sharing_show(struct kobject *kobj,
2910 struct kobj_attribute *attr, char *buf)
2911 {
2912 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2913 }
2914 KSM_ATTR_RO(pages_sharing);
2915
2916 static ssize_t pages_unshared_show(struct kobject *kobj,
2917 struct kobj_attribute *attr, char *buf)
2918 {
2919 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2920 }
2921 KSM_ATTR_RO(pages_unshared);
2922
2923 static ssize_t pages_volatile_show(struct kobject *kobj,
2924 struct kobj_attribute *attr, char *buf)
2925 {
2926 long ksm_pages_volatile;
2927
2928 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2929 - ksm_pages_sharing - ksm_pages_unshared;
2930 /*
2931 * It was not worth any locking to calculate that statistic,
2932 * but it might therefore sometimes be negative: conceal that.
2933 */
2934 if (ksm_pages_volatile < 0)
2935 ksm_pages_volatile = 0;
2936 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2937 }
2938 KSM_ATTR_RO(pages_volatile);
2939
2940 static ssize_t stable_node_dups_show(struct kobject *kobj,
2941 struct kobj_attribute *attr, char *buf)
2942 {
2943 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2944 }
2945 KSM_ATTR_RO(stable_node_dups);
2946
2947 static ssize_t stable_node_chains_show(struct kobject *kobj,
2948 struct kobj_attribute *attr, char *buf)
2949 {
2950 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2951 }
2952 KSM_ATTR_RO(stable_node_chains);
2953
2954 static ssize_t
2955 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
2956 struct kobj_attribute *attr,
2957 char *buf)
2958 {
2959 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2960 }
2961
2962 static ssize_t
2963 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
2964 struct kobj_attribute *attr,
2965 const char *buf, size_t count)
2966 {
2967 unsigned long msecs;
2968 int err;
2969
2970 err = kstrtoul(buf, 10, &msecs);
2971 if (err || msecs > UINT_MAX)
2972 return -EINVAL;
2973
2974 ksm_stable_node_chains_prune_millisecs = msecs;
2975
2976 return count;
2977 }
2978 KSM_ATTR(stable_node_chains_prune_millisecs);
2979
2980 static ssize_t full_scans_show(struct kobject *kobj,
2981 struct kobj_attribute *attr, char *buf)
2982 {
2983 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2984 }
2985 KSM_ATTR_RO(full_scans);
2986
2987 static struct attribute *ksm_attrs[] = {
2988 &sleep_millisecs_attr.attr,
2989 &pages_to_scan_attr.attr,
2990 &run_attr.attr,
2991 &pages_shared_attr.attr,
2992 &pages_sharing_attr.attr,
2993 &pages_unshared_attr.attr,
2994 &pages_volatile_attr.attr,
2995 &full_scans_attr.attr,
2996 #ifdef CONFIG_NUMA
2997 &merge_across_nodes_attr.attr,
2998 #endif
2999 &max_page_sharing_attr.attr,
3000 &stable_node_chains_attr.attr,
3001 &stable_node_dups_attr.attr,
3002 &stable_node_chains_prune_millisecs_attr.attr,
3003 &use_zero_pages_attr.attr,
3004 NULL,
3005 };
3006
3007 static struct attribute_group ksm_attr_group = {
3008 .attrs = ksm_attrs,
3009 .name = "ksm",
3010 };
3011 #endif /* CONFIG_SYSFS */
3012
3013 static int __init ksm_init(void)
3014 {
3015 struct task_struct *ksm_thread;
3016 int err;
3017
3018 /* The correct value depends on page size and endianness */
3019 zero_checksum = calc_checksum(ZERO_PAGE(0));
3020 /* Default to false for backwards compatibility */
3021 ksm_use_zero_pages = false;
3022
3023 err = ksm_slab_init();
3024 if (err)
3025 goto out;
3026
3027 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3028 if (IS_ERR(ksm_thread)) {
3029 pr_err("ksm: creating kthread failed\n");
3030 err = PTR_ERR(ksm_thread);
3031 goto out_free;
3032 }
3033
3034 #ifdef CONFIG_SYSFS
3035 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3036 if (err) {
3037 pr_err("ksm: register sysfs failed\n");
3038 kthread_stop(ksm_thread);
3039 goto out_free;
3040 }
3041 #else
3042 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3043
3044 #endif /* CONFIG_SYSFS */
3045
3046 #ifdef CONFIG_MEMORY_HOTREMOVE
3047 /* There is no significance to this priority 100 */
3048 hotplug_memory_notifier(ksm_memory_callback, 100);
3049 #endif
3050 return 0;
3051
3052 out_free:
3053 ksm_slab_free();
3054 out:
3055 return err;
3056 }
3057 subsys_initcall(ksm_init);