]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/ksm.c
mm: replace all open encodings for NUMA_NO_NODE
[mirror_ubuntu-jammy-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x) (x)
48 #define DO_NUMA(x) do { (x); } while (0)
49 #else
50 #define NUMA(x) (0)
51 #define DO_NUMA(x) do { } while (0)
52 #endif
53
54 /**
55 * DOC: Overview
56 *
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
59 *
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
62 *
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
66 *
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
71 *
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
74 *
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
77 *
78 * * the regular nodes that keep the reverse mapping structures in a
79 * linked list
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
83 *
84 * Internally, the regular nodes, "dups" and "chains" are represented
85 * using the same :c:type:`struct stable_node` structure.
86 *
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
93 *
94 * KSM solves this problem by several techniques:
95 *
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
109 *
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
112 */
113
114 /**
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119 * @mm: the mm that this information is valid for
120 */
121 struct mm_slot {
122 struct hlist_node link;
123 struct list_head mm_list;
124 struct rmap_item *rmap_list;
125 struct mm_struct *mm;
126 };
127
128 /**
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
133 * @seqnr: count of completed full scans (needed when removing unstable node)
134 *
135 * There is only the one ksm_scan instance of this cursor structure.
136 */
137 struct ksm_scan {
138 struct mm_slot *mm_slot;
139 unsigned long address;
140 struct rmap_item **rmap_list;
141 unsigned long seqnr;
142 };
143
144 /**
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149 * @list: linked into migrate_nodes, pending placement in the proper node tree
150 * @hlist: hlist head of rmap_items using this ksm page
151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155 */
156 struct stable_node {
157 union {
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
161 struct {
162 struct hlist_node hlist_dup;
163 struct list_head list;
164 };
165 };
166 };
167 struct hlist_head hlist;
168 union {
169 unsigned long kpfn;
170 unsigned long chain_prune_time;
171 };
172 /*
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
176 */
177 #define STABLE_NODE_CHAIN -1024
178 int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180 int nid;
181 #endif
182 };
183
184 /**
185 * struct rmap_item - reverse mapping item for virtual addresses
186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
195 */
196 struct rmap_item {
197 struct rmap_item *rmap_list;
198 union {
199 struct anon_vma *anon_vma; /* when stable */
200 #ifdef CONFIG_NUMA
201 int nid; /* when node of unstable tree */
202 #endif
203 };
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
206 unsigned int oldchecksum; /* when unstable */
207 union {
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
212 };
213 };
214 };
215
216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
219 #define KSM_FLAG_MASK (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220 /* to mask all the flags */
221
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234
235 static struct mm_slot ksm_mm_head = {
236 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239 .mm_slot = &ksm_mm_head,
240 };
241
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes 1U
288 #define ksm_nr_node_ids 1
289 #endif
290
291 #define KSM_RUN_STOP 0
292 #define KSM_RUN_MERGE 1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
300 static DEFINE_MUTEX(ksm_thread_mutex);
301 static DEFINE_SPINLOCK(ksm_mmlist_lock);
302
303 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
304 sizeof(struct __struct), __alignof__(struct __struct),\
305 (__flags), NULL)
306
307 static int __init ksm_slab_init(void)
308 {
309 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
310 if (!rmap_item_cache)
311 goto out;
312
313 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
314 if (!stable_node_cache)
315 goto out_free1;
316
317 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
318 if (!mm_slot_cache)
319 goto out_free2;
320
321 return 0;
322
323 out_free2:
324 kmem_cache_destroy(stable_node_cache);
325 out_free1:
326 kmem_cache_destroy(rmap_item_cache);
327 out:
328 return -ENOMEM;
329 }
330
331 static void __init ksm_slab_free(void)
332 {
333 kmem_cache_destroy(mm_slot_cache);
334 kmem_cache_destroy(stable_node_cache);
335 kmem_cache_destroy(rmap_item_cache);
336 mm_slot_cache = NULL;
337 }
338
339 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
340 {
341 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 }
343
344 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
345 {
346 return dup->head == STABLE_NODE_DUP_HEAD;
347 }
348
349 static inline void stable_node_chain_add_dup(struct stable_node *dup,
350 struct stable_node *chain)
351 {
352 VM_BUG_ON(is_stable_node_dup(dup));
353 dup->head = STABLE_NODE_DUP_HEAD;
354 VM_BUG_ON(!is_stable_node_chain(chain));
355 hlist_add_head(&dup->hlist_dup, &chain->hlist);
356 ksm_stable_node_dups++;
357 }
358
359 static inline void __stable_node_dup_del(struct stable_node *dup)
360 {
361 VM_BUG_ON(!is_stable_node_dup(dup));
362 hlist_del(&dup->hlist_dup);
363 ksm_stable_node_dups--;
364 }
365
366 static inline void stable_node_dup_del(struct stable_node *dup)
367 {
368 VM_BUG_ON(is_stable_node_chain(dup));
369 if (is_stable_node_dup(dup))
370 __stable_node_dup_del(dup);
371 else
372 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
373 #ifdef CONFIG_DEBUG_VM
374 dup->head = NULL;
375 #endif
376 }
377
378 static inline struct rmap_item *alloc_rmap_item(void)
379 {
380 struct rmap_item *rmap_item;
381
382 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
383 __GFP_NORETRY | __GFP_NOWARN);
384 if (rmap_item)
385 ksm_rmap_items++;
386 return rmap_item;
387 }
388
389 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 {
391 ksm_rmap_items--;
392 rmap_item->mm = NULL; /* debug safety */
393 kmem_cache_free(rmap_item_cache, rmap_item);
394 }
395
396 static inline struct stable_node *alloc_stable_node(void)
397 {
398 /*
399 * The allocation can take too long with GFP_KERNEL when memory is under
400 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
401 * grants access to memory reserves, helping to avoid this problem.
402 */
403 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 }
405
406 static inline void free_stable_node(struct stable_node *stable_node)
407 {
408 VM_BUG_ON(stable_node->rmap_hlist_len &&
409 !is_stable_node_chain(stable_node));
410 kmem_cache_free(stable_node_cache, stable_node);
411 }
412
413 static inline struct mm_slot *alloc_mm_slot(void)
414 {
415 if (!mm_slot_cache) /* initialization failed */
416 return NULL;
417 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 }
419
420 static inline void free_mm_slot(struct mm_slot *mm_slot)
421 {
422 kmem_cache_free(mm_slot_cache, mm_slot);
423 }
424
425 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
426 {
427 struct mm_slot *slot;
428
429 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
430 if (slot->mm == mm)
431 return slot;
432
433 return NULL;
434 }
435
436 static void insert_to_mm_slots_hash(struct mm_struct *mm,
437 struct mm_slot *mm_slot)
438 {
439 mm_slot->mm = mm;
440 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
441 }
442
443 /*
444 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
445 * page tables after it has passed through ksm_exit() - which, if necessary,
446 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
447 * a special flag: they can just back out as soon as mm_users goes to zero.
448 * ksm_test_exit() is used throughout to make this test for exit: in some
449 * places for correctness, in some places just to avoid unnecessary work.
450 */
451 static inline bool ksm_test_exit(struct mm_struct *mm)
452 {
453 return atomic_read(&mm->mm_users) == 0;
454 }
455
456 /*
457 * We use break_ksm to break COW on a ksm page: it's a stripped down
458 *
459 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
460 * put_page(page);
461 *
462 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
463 * in case the application has unmapped and remapped mm,addr meanwhile.
464 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
465 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
466 *
467 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
468 * of the process that owns 'vma'. We also do not want to enforce
469 * protection keys here anyway.
470 */
471 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
472 {
473 struct page *page;
474 vm_fault_t ret = 0;
475
476 do {
477 cond_resched();
478 page = follow_page(vma, addr,
479 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
480 if (IS_ERR_OR_NULL(page))
481 break;
482 if (PageKsm(page))
483 ret = handle_mm_fault(vma, addr,
484 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
485 else
486 ret = VM_FAULT_WRITE;
487 put_page(page);
488 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489 /*
490 * We must loop because handle_mm_fault() may back out if there's
491 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 *
493 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
494 * COW has been broken, even if the vma does not permit VM_WRITE;
495 * but note that a concurrent fault might break PageKsm for us.
496 *
497 * VM_FAULT_SIGBUS could occur if we race with truncation of the
498 * backing file, which also invalidates anonymous pages: that's
499 * okay, that truncation will have unmapped the PageKsm for us.
500 *
501 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
502 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
503 * current task has TIF_MEMDIE set, and will be OOM killed on return
504 * to user; and ksmd, having no mm, would never be chosen for that.
505 *
506 * But if the mm is in a limited mem_cgroup, then the fault may fail
507 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
508 * even ksmd can fail in this way - though it's usually breaking ksm
509 * just to undo a merge it made a moment before, so unlikely to oom.
510 *
511 * That's a pity: we might therefore have more kernel pages allocated
512 * than we're counting as nodes in the stable tree; but ksm_do_scan
513 * will retry to break_cow on each pass, so should recover the page
514 * in due course. The important thing is to not let VM_MERGEABLE
515 * be cleared while any such pages might remain in the area.
516 */
517 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
518 }
519
520 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
521 unsigned long addr)
522 {
523 struct vm_area_struct *vma;
524 if (ksm_test_exit(mm))
525 return NULL;
526 vma = find_vma(mm, addr);
527 if (!vma || vma->vm_start > addr)
528 return NULL;
529 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
530 return NULL;
531 return vma;
532 }
533
534 static void break_cow(struct rmap_item *rmap_item)
535 {
536 struct mm_struct *mm = rmap_item->mm;
537 unsigned long addr = rmap_item->address;
538 struct vm_area_struct *vma;
539
540 /*
541 * It is not an accident that whenever we want to break COW
542 * to undo, we also need to drop a reference to the anon_vma.
543 */
544 put_anon_vma(rmap_item->anon_vma);
545
546 down_read(&mm->mmap_sem);
547 vma = find_mergeable_vma(mm, addr);
548 if (vma)
549 break_ksm(vma, addr);
550 up_read(&mm->mmap_sem);
551 }
552
553 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
554 {
555 struct mm_struct *mm = rmap_item->mm;
556 unsigned long addr = rmap_item->address;
557 struct vm_area_struct *vma;
558 struct page *page;
559
560 down_read(&mm->mmap_sem);
561 vma = find_mergeable_vma(mm, addr);
562 if (!vma)
563 goto out;
564
565 page = follow_page(vma, addr, FOLL_GET);
566 if (IS_ERR_OR_NULL(page))
567 goto out;
568 if (PageAnon(page)) {
569 flush_anon_page(vma, page, addr);
570 flush_dcache_page(page);
571 } else {
572 put_page(page);
573 out:
574 page = NULL;
575 }
576 up_read(&mm->mmap_sem);
577 return page;
578 }
579
580 /*
581 * This helper is used for getting right index into array of tree roots.
582 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
583 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
584 * every node has its own stable and unstable tree.
585 */
586 static inline int get_kpfn_nid(unsigned long kpfn)
587 {
588 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
589 }
590
591 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
592 struct rb_root *root)
593 {
594 struct stable_node *chain = alloc_stable_node();
595 VM_BUG_ON(is_stable_node_chain(dup));
596 if (likely(chain)) {
597 INIT_HLIST_HEAD(&chain->hlist);
598 chain->chain_prune_time = jiffies;
599 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
600 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
601 chain->nid = NUMA_NO_NODE; /* debug */
602 #endif
603 ksm_stable_node_chains++;
604
605 /*
606 * Put the stable node chain in the first dimension of
607 * the stable tree and at the same time remove the old
608 * stable node.
609 */
610 rb_replace_node(&dup->node, &chain->node, root);
611
612 /*
613 * Move the old stable node to the second dimension
614 * queued in the hlist_dup. The invariant is that all
615 * dup stable_nodes in the chain->hlist point to pages
616 * that are wrprotected and have the exact same
617 * content.
618 */
619 stable_node_chain_add_dup(dup, chain);
620 }
621 return chain;
622 }
623
624 static inline void free_stable_node_chain(struct stable_node *chain,
625 struct rb_root *root)
626 {
627 rb_erase(&chain->node, root);
628 free_stable_node(chain);
629 ksm_stable_node_chains--;
630 }
631
632 static void remove_node_from_stable_tree(struct stable_node *stable_node)
633 {
634 struct rmap_item *rmap_item;
635
636 /* check it's not STABLE_NODE_CHAIN or negative */
637 BUG_ON(stable_node->rmap_hlist_len < 0);
638
639 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
640 if (rmap_item->hlist.next)
641 ksm_pages_sharing--;
642 else
643 ksm_pages_shared--;
644 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
645 stable_node->rmap_hlist_len--;
646 put_anon_vma(rmap_item->anon_vma);
647 rmap_item->address &= PAGE_MASK;
648 cond_resched();
649 }
650
651 /*
652 * We need the second aligned pointer of the migrate_nodes
653 * list_head to stay clear from the rb_parent_color union
654 * (aligned and different than any node) and also different
655 * from &migrate_nodes. This will verify that future list.h changes
656 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
657 */
658 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
659 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
660 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
661 #endif
662
663 if (stable_node->head == &migrate_nodes)
664 list_del(&stable_node->list);
665 else
666 stable_node_dup_del(stable_node);
667 free_stable_node(stable_node);
668 }
669
670 /*
671 * get_ksm_page: checks if the page indicated by the stable node
672 * is still its ksm page, despite having held no reference to it.
673 * In which case we can trust the content of the page, and it
674 * returns the gotten page; but if the page has now been zapped,
675 * remove the stale node from the stable tree and return NULL.
676 * But beware, the stable node's page might be being migrated.
677 *
678 * You would expect the stable_node to hold a reference to the ksm page.
679 * But if it increments the page's count, swapping out has to wait for
680 * ksmd to come around again before it can free the page, which may take
681 * seconds or even minutes: much too unresponsive. So instead we use a
682 * "keyhole reference": access to the ksm page from the stable node peeps
683 * out through its keyhole to see if that page still holds the right key,
684 * pointing back to this stable node. This relies on freeing a PageAnon
685 * page to reset its page->mapping to NULL, and relies on no other use of
686 * a page to put something that might look like our key in page->mapping.
687 * is on its way to being freed; but it is an anomaly to bear in mind.
688 */
689 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
690 {
691 struct page *page;
692 void *expected_mapping;
693 unsigned long kpfn;
694
695 expected_mapping = (void *)((unsigned long)stable_node |
696 PAGE_MAPPING_KSM);
697 again:
698 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
699 page = pfn_to_page(kpfn);
700 if (READ_ONCE(page->mapping) != expected_mapping)
701 goto stale;
702
703 /*
704 * We cannot do anything with the page while its refcount is 0.
705 * Usually 0 means free, or tail of a higher-order page: in which
706 * case this node is no longer referenced, and should be freed;
707 * however, it might mean that the page is under page_ref_freeze().
708 * The __remove_mapping() case is easy, again the node is now stale;
709 * but if page is swapcache in migrate_page_move_mapping(), it might
710 * still be our page, in which case it's essential to keep the node.
711 */
712 while (!get_page_unless_zero(page)) {
713 /*
714 * Another check for page->mapping != expected_mapping would
715 * work here too. We have chosen the !PageSwapCache test to
716 * optimize the common case, when the page is or is about to
717 * be freed: PageSwapCache is cleared (under spin_lock_irq)
718 * in the ref_freeze section of __remove_mapping(); but Anon
719 * page->mapping reset to NULL later, in free_pages_prepare().
720 */
721 if (!PageSwapCache(page))
722 goto stale;
723 cpu_relax();
724 }
725
726 if (READ_ONCE(page->mapping) != expected_mapping) {
727 put_page(page);
728 goto stale;
729 }
730
731 if (lock_it) {
732 lock_page(page);
733 if (READ_ONCE(page->mapping) != expected_mapping) {
734 unlock_page(page);
735 put_page(page);
736 goto stale;
737 }
738 }
739 return page;
740
741 stale:
742 /*
743 * We come here from above when page->mapping or !PageSwapCache
744 * suggests that the node is stale; but it might be under migration.
745 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
746 * before checking whether node->kpfn has been changed.
747 */
748 smp_rmb();
749 if (READ_ONCE(stable_node->kpfn) != kpfn)
750 goto again;
751 remove_node_from_stable_tree(stable_node);
752 return NULL;
753 }
754
755 /*
756 * Removing rmap_item from stable or unstable tree.
757 * This function will clean the information from the stable/unstable tree.
758 */
759 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
760 {
761 if (rmap_item->address & STABLE_FLAG) {
762 struct stable_node *stable_node;
763 struct page *page;
764
765 stable_node = rmap_item->head;
766 page = get_ksm_page(stable_node, true);
767 if (!page)
768 goto out;
769
770 hlist_del(&rmap_item->hlist);
771 unlock_page(page);
772 put_page(page);
773
774 if (!hlist_empty(&stable_node->hlist))
775 ksm_pages_sharing--;
776 else
777 ksm_pages_shared--;
778 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
779 stable_node->rmap_hlist_len--;
780
781 put_anon_vma(rmap_item->anon_vma);
782 rmap_item->address &= PAGE_MASK;
783
784 } else if (rmap_item->address & UNSTABLE_FLAG) {
785 unsigned char age;
786 /*
787 * Usually ksmd can and must skip the rb_erase, because
788 * root_unstable_tree was already reset to RB_ROOT.
789 * But be careful when an mm is exiting: do the rb_erase
790 * if this rmap_item was inserted by this scan, rather
791 * than left over from before.
792 */
793 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
794 BUG_ON(age > 1);
795 if (!age)
796 rb_erase(&rmap_item->node,
797 root_unstable_tree + NUMA(rmap_item->nid));
798 ksm_pages_unshared--;
799 rmap_item->address &= PAGE_MASK;
800 }
801 out:
802 cond_resched(); /* we're called from many long loops */
803 }
804
805 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
806 struct rmap_item **rmap_list)
807 {
808 while (*rmap_list) {
809 struct rmap_item *rmap_item = *rmap_list;
810 *rmap_list = rmap_item->rmap_list;
811 remove_rmap_item_from_tree(rmap_item);
812 free_rmap_item(rmap_item);
813 }
814 }
815
816 /*
817 * Though it's very tempting to unmerge rmap_items from stable tree rather
818 * than check every pte of a given vma, the locking doesn't quite work for
819 * that - an rmap_item is assigned to the stable tree after inserting ksm
820 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
821 * rmap_items from parent to child at fork time (so as not to waste time
822 * if exit comes before the next scan reaches it).
823 *
824 * Similarly, although we'd like to remove rmap_items (so updating counts
825 * and freeing memory) when unmerging an area, it's easier to leave that
826 * to the next pass of ksmd - consider, for example, how ksmd might be
827 * in cmp_and_merge_page on one of the rmap_items we would be removing.
828 */
829 static int unmerge_ksm_pages(struct vm_area_struct *vma,
830 unsigned long start, unsigned long end)
831 {
832 unsigned long addr;
833 int err = 0;
834
835 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
836 if (ksm_test_exit(vma->vm_mm))
837 break;
838 if (signal_pending(current))
839 err = -ERESTARTSYS;
840 else
841 err = break_ksm(vma, addr);
842 }
843 return err;
844 }
845
846 static inline struct stable_node *page_stable_node(struct page *page)
847 {
848 return PageKsm(page) ? page_rmapping(page) : NULL;
849 }
850
851 static inline void set_page_stable_node(struct page *page,
852 struct stable_node *stable_node)
853 {
854 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
855 }
856
857 #ifdef CONFIG_SYSFS
858 /*
859 * Only called through the sysfs control interface:
860 */
861 static int remove_stable_node(struct stable_node *stable_node)
862 {
863 struct page *page;
864 int err;
865
866 page = get_ksm_page(stable_node, true);
867 if (!page) {
868 /*
869 * get_ksm_page did remove_node_from_stable_tree itself.
870 */
871 return 0;
872 }
873
874 if (WARN_ON_ONCE(page_mapped(page))) {
875 /*
876 * This should not happen: but if it does, just refuse to let
877 * merge_across_nodes be switched - there is no need to panic.
878 */
879 err = -EBUSY;
880 } else {
881 /*
882 * The stable node did not yet appear stale to get_ksm_page(),
883 * since that allows for an unmapped ksm page to be recognized
884 * right up until it is freed; but the node is safe to remove.
885 * This page might be in a pagevec waiting to be freed,
886 * or it might be PageSwapCache (perhaps under writeback),
887 * or it might have been removed from swapcache a moment ago.
888 */
889 set_page_stable_node(page, NULL);
890 remove_node_from_stable_tree(stable_node);
891 err = 0;
892 }
893
894 unlock_page(page);
895 put_page(page);
896 return err;
897 }
898
899 static int remove_stable_node_chain(struct stable_node *stable_node,
900 struct rb_root *root)
901 {
902 struct stable_node *dup;
903 struct hlist_node *hlist_safe;
904
905 if (!is_stable_node_chain(stable_node)) {
906 VM_BUG_ON(is_stable_node_dup(stable_node));
907 if (remove_stable_node(stable_node))
908 return true;
909 else
910 return false;
911 }
912
913 hlist_for_each_entry_safe(dup, hlist_safe,
914 &stable_node->hlist, hlist_dup) {
915 VM_BUG_ON(!is_stable_node_dup(dup));
916 if (remove_stable_node(dup))
917 return true;
918 }
919 BUG_ON(!hlist_empty(&stable_node->hlist));
920 free_stable_node_chain(stable_node, root);
921 return false;
922 }
923
924 static int remove_all_stable_nodes(void)
925 {
926 struct stable_node *stable_node, *next;
927 int nid;
928 int err = 0;
929
930 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
931 while (root_stable_tree[nid].rb_node) {
932 stable_node = rb_entry(root_stable_tree[nid].rb_node,
933 struct stable_node, node);
934 if (remove_stable_node_chain(stable_node,
935 root_stable_tree + nid)) {
936 err = -EBUSY;
937 break; /* proceed to next nid */
938 }
939 cond_resched();
940 }
941 }
942 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
943 if (remove_stable_node(stable_node))
944 err = -EBUSY;
945 cond_resched();
946 }
947 return err;
948 }
949
950 static int unmerge_and_remove_all_rmap_items(void)
951 {
952 struct mm_slot *mm_slot;
953 struct mm_struct *mm;
954 struct vm_area_struct *vma;
955 int err = 0;
956
957 spin_lock(&ksm_mmlist_lock);
958 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
959 struct mm_slot, mm_list);
960 spin_unlock(&ksm_mmlist_lock);
961
962 for (mm_slot = ksm_scan.mm_slot;
963 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
964 mm = mm_slot->mm;
965 down_read(&mm->mmap_sem);
966 for (vma = mm->mmap; vma; vma = vma->vm_next) {
967 if (ksm_test_exit(mm))
968 break;
969 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
970 continue;
971 err = unmerge_ksm_pages(vma,
972 vma->vm_start, vma->vm_end);
973 if (err)
974 goto error;
975 }
976
977 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
978 up_read(&mm->mmap_sem);
979
980 spin_lock(&ksm_mmlist_lock);
981 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
982 struct mm_slot, mm_list);
983 if (ksm_test_exit(mm)) {
984 hash_del(&mm_slot->link);
985 list_del(&mm_slot->mm_list);
986 spin_unlock(&ksm_mmlist_lock);
987
988 free_mm_slot(mm_slot);
989 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
990 mmdrop(mm);
991 } else
992 spin_unlock(&ksm_mmlist_lock);
993 }
994
995 /* Clean up stable nodes, but don't worry if some are still busy */
996 remove_all_stable_nodes();
997 ksm_scan.seqnr = 0;
998 return 0;
999
1000 error:
1001 up_read(&mm->mmap_sem);
1002 spin_lock(&ksm_mmlist_lock);
1003 ksm_scan.mm_slot = &ksm_mm_head;
1004 spin_unlock(&ksm_mmlist_lock);
1005 return err;
1006 }
1007 #endif /* CONFIG_SYSFS */
1008
1009 static u32 calc_checksum(struct page *page)
1010 {
1011 u32 checksum;
1012 void *addr = kmap_atomic(page);
1013 checksum = xxhash(addr, PAGE_SIZE, 0);
1014 kunmap_atomic(addr);
1015 return checksum;
1016 }
1017
1018 static int memcmp_pages(struct page *page1, struct page *page2)
1019 {
1020 char *addr1, *addr2;
1021 int ret;
1022
1023 addr1 = kmap_atomic(page1);
1024 addr2 = kmap_atomic(page2);
1025 ret = memcmp(addr1, addr2, PAGE_SIZE);
1026 kunmap_atomic(addr2);
1027 kunmap_atomic(addr1);
1028 return ret;
1029 }
1030
1031 static inline int pages_identical(struct page *page1, struct page *page2)
1032 {
1033 return !memcmp_pages(page1, page2);
1034 }
1035
1036 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1037 pte_t *orig_pte)
1038 {
1039 struct mm_struct *mm = vma->vm_mm;
1040 struct page_vma_mapped_walk pvmw = {
1041 .page = page,
1042 .vma = vma,
1043 };
1044 int swapped;
1045 int err = -EFAULT;
1046 struct mmu_notifier_range range;
1047
1048 pvmw.address = page_address_in_vma(page, vma);
1049 if (pvmw.address == -EFAULT)
1050 goto out;
1051
1052 BUG_ON(PageTransCompound(page));
1053
1054 mmu_notifier_range_init(&range, mm, pvmw.address,
1055 pvmw.address + PAGE_SIZE);
1056 mmu_notifier_invalidate_range_start(&range);
1057
1058 if (!page_vma_mapped_walk(&pvmw))
1059 goto out_mn;
1060 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1061 goto out_unlock;
1062
1063 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1064 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1065 mm_tlb_flush_pending(mm)) {
1066 pte_t entry;
1067
1068 swapped = PageSwapCache(page);
1069 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1070 /*
1071 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1072 * take any lock, therefore the check that we are going to make
1073 * with the pagecount against the mapcount is racey and
1074 * O_DIRECT can happen right after the check.
1075 * So we clear the pte and flush the tlb before the check
1076 * this assure us that no O_DIRECT can happen after the check
1077 * or in the middle of the check.
1078 *
1079 * No need to notify as we are downgrading page table to read
1080 * only not changing it to point to a new page.
1081 *
1082 * See Documentation/vm/mmu_notifier.rst
1083 */
1084 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1085 /*
1086 * Check that no O_DIRECT or similar I/O is in progress on the
1087 * page
1088 */
1089 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1090 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1091 goto out_unlock;
1092 }
1093 if (pte_dirty(entry))
1094 set_page_dirty(page);
1095
1096 if (pte_protnone(entry))
1097 entry = pte_mkclean(pte_clear_savedwrite(entry));
1098 else
1099 entry = pte_mkclean(pte_wrprotect(entry));
1100 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1101 }
1102 *orig_pte = *pvmw.pte;
1103 err = 0;
1104
1105 out_unlock:
1106 page_vma_mapped_walk_done(&pvmw);
1107 out_mn:
1108 mmu_notifier_invalidate_range_end(&range);
1109 out:
1110 return err;
1111 }
1112
1113 /**
1114 * replace_page - replace page in vma by new ksm page
1115 * @vma: vma that holds the pte pointing to page
1116 * @page: the page we are replacing by kpage
1117 * @kpage: the ksm page we replace page by
1118 * @orig_pte: the original value of the pte
1119 *
1120 * Returns 0 on success, -EFAULT on failure.
1121 */
1122 static int replace_page(struct vm_area_struct *vma, struct page *page,
1123 struct page *kpage, pte_t orig_pte)
1124 {
1125 struct mm_struct *mm = vma->vm_mm;
1126 pmd_t *pmd;
1127 pte_t *ptep;
1128 pte_t newpte;
1129 spinlock_t *ptl;
1130 unsigned long addr;
1131 int err = -EFAULT;
1132 struct mmu_notifier_range range;
1133
1134 addr = page_address_in_vma(page, vma);
1135 if (addr == -EFAULT)
1136 goto out;
1137
1138 pmd = mm_find_pmd(mm, addr);
1139 if (!pmd)
1140 goto out;
1141
1142 mmu_notifier_range_init(&range, mm, addr, addr + PAGE_SIZE);
1143 mmu_notifier_invalidate_range_start(&range);
1144
1145 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1146 if (!pte_same(*ptep, orig_pte)) {
1147 pte_unmap_unlock(ptep, ptl);
1148 goto out_mn;
1149 }
1150
1151 /*
1152 * No need to check ksm_use_zero_pages here: we can only have a
1153 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1154 */
1155 if (!is_zero_pfn(page_to_pfn(kpage))) {
1156 get_page(kpage);
1157 page_add_anon_rmap(kpage, vma, addr, false);
1158 newpte = mk_pte(kpage, vma->vm_page_prot);
1159 } else {
1160 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1161 vma->vm_page_prot));
1162 /*
1163 * We're replacing an anonymous page with a zero page, which is
1164 * not anonymous. We need to do proper accounting otherwise we
1165 * will get wrong values in /proc, and a BUG message in dmesg
1166 * when tearing down the mm.
1167 */
1168 dec_mm_counter(mm, MM_ANONPAGES);
1169 }
1170
1171 flush_cache_page(vma, addr, pte_pfn(*ptep));
1172 /*
1173 * No need to notify as we are replacing a read only page with another
1174 * read only page with the same content.
1175 *
1176 * See Documentation/vm/mmu_notifier.rst
1177 */
1178 ptep_clear_flush(vma, addr, ptep);
1179 set_pte_at_notify(mm, addr, ptep, newpte);
1180
1181 page_remove_rmap(page, false);
1182 if (!page_mapped(page))
1183 try_to_free_swap(page);
1184 put_page(page);
1185
1186 pte_unmap_unlock(ptep, ptl);
1187 err = 0;
1188 out_mn:
1189 mmu_notifier_invalidate_range_end(&range);
1190 out:
1191 return err;
1192 }
1193
1194 /*
1195 * try_to_merge_one_page - take two pages and merge them into one
1196 * @vma: the vma that holds the pte pointing to page
1197 * @page: the PageAnon page that we want to replace with kpage
1198 * @kpage: the PageKsm page that we want to map instead of page,
1199 * or NULL the first time when we want to use page as kpage.
1200 *
1201 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1202 */
1203 static int try_to_merge_one_page(struct vm_area_struct *vma,
1204 struct page *page, struct page *kpage)
1205 {
1206 pte_t orig_pte = __pte(0);
1207 int err = -EFAULT;
1208
1209 if (page == kpage) /* ksm page forked */
1210 return 0;
1211
1212 if (!PageAnon(page))
1213 goto out;
1214
1215 /*
1216 * We need the page lock to read a stable PageSwapCache in
1217 * write_protect_page(). We use trylock_page() instead of
1218 * lock_page() because we don't want to wait here - we
1219 * prefer to continue scanning and merging different pages,
1220 * then come back to this page when it is unlocked.
1221 */
1222 if (!trylock_page(page))
1223 goto out;
1224
1225 if (PageTransCompound(page)) {
1226 if (split_huge_page(page))
1227 goto out_unlock;
1228 }
1229
1230 /*
1231 * If this anonymous page is mapped only here, its pte may need
1232 * to be write-protected. If it's mapped elsewhere, all of its
1233 * ptes are necessarily already write-protected. But in either
1234 * case, we need to lock and check page_count is not raised.
1235 */
1236 if (write_protect_page(vma, page, &orig_pte) == 0) {
1237 if (!kpage) {
1238 /*
1239 * While we hold page lock, upgrade page from
1240 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1241 * stable_tree_insert() will update stable_node.
1242 */
1243 set_page_stable_node(page, NULL);
1244 mark_page_accessed(page);
1245 /*
1246 * Page reclaim just frees a clean page with no dirty
1247 * ptes: make sure that the ksm page would be swapped.
1248 */
1249 if (!PageDirty(page))
1250 SetPageDirty(page);
1251 err = 0;
1252 } else if (pages_identical(page, kpage))
1253 err = replace_page(vma, page, kpage, orig_pte);
1254 }
1255
1256 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1257 munlock_vma_page(page);
1258 if (!PageMlocked(kpage)) {
1259 unlock_page(page);
1260 lock_page(kpage);
1261 mlock_vma_page(kpage);
1262 page = kpage; /* for final unlock */
1263 }
1264 }
1265
1266 out_unlock:
1267 unlock_page(page);
1268 out:
1269 return err;
1270 }
1271
1272 /*
1273 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1274 * but no new kernel page is allocated: kpage must already be a ksm page.
1275 *
1276 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1277 */
1278 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1279 struct page *page, struct page *kpage)
1280 {
1281 struct mm_struct *mm = rmap_item->mm;
1282 struct vm_area_struct *vma;
1283 int err = -EFAULT;
1284
1285 down_read(&mm->mmap_sem);
1286 vma = find_mergeable_vma(mm, rmap_item->address);
1287 if (!vma)
1288 goto out;
1289
1290 err = try_to_merge_one_page(vma, page, kpage);
1291 if (err)
1292 goto out;
1293
1294 /* Unstable nid is in union with stable anon_vma: remove first */
1295 remove_rmap_item_from_tree(rmap_item);
1296
1297 /* Must get reference to anon_vma while still holding mmap_sem */
1298 rmap_item->anon_vma = vma->anon_vma;
1299 get_anon_vma(vma->anon_vma);
1300 out:
1301 up_read(&mm->mmap_sem);
1302 return err;
1303 }
1304
1305 /*
1306 * try_to_merge_two_pages - take two identical pages and prepare them
1307 * to be merged into one page.
1308 *
1309 * This function returns the kpage if we successfully merged two identical
1310 * pages into one ksm page, NULL otherwise.
1311 *
1312 * Note that this function upgrades page to ksm page: if one of the pages
1313 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1314 */
1315 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1316 struct page *page,
1317 struct rmap_item *tree_rmap_item,
1318 struct page *tree_page)
1319 {
1320 int err;
1321
1322 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1323 if (!err) {
1324 err = try_to_merge_with_ksm_page(tree_rmap_item,
1325 tree_page, page);
1326 /*
1327 * If that fails, we have a ksm page with only one pte
1328 * pointing to it: so break it.
1329 */
1330 if (err)
1331 break_cow(rmap_item);
1332 }
1333 return err ? NULL : page;
1334 }
1335
1336 static __always_inline
1337 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1338 {
1339 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1340 /*
1341 * Check that at least one mapping still exists, otherwise
1342 * there's no much point to merge and share with this
1343 * stable_node, as the underlying tree_page of the other
1344 * sharer is going to be freed soon.
1345 */
1346 return stable_node->rmap_hlist_len &&
1347 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1348 }
1349
1350 static __always_inline
1351 bool is_page_sharing_candidate(struct stable_node *stable_node)
1352 {
1353 return __is_page_sharing_candidate(stable_node, 0);
1354 }
1355
1356 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1357 struct stable_node **_stable_node,
1358 struct rb_root *root,
1359 bool prune_stale_stable_nodes)
1360 {
1361 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1362 struct hlist_node *hlist_safe;
1363 struct page *_tree_page, *tree_page = NULL;
1364 int nr = 0;
1365 int found_rmap_hlist_len;
1366
1367 if (!prune_stale_stable_nodes ||
1368 time_before(jiffies, stable_node->chain_prune_time +
1369 msecs_to_jiffies(
1370 ksm_stable_node_chains_prune_millisecs)))
1371 prune_stale_stable_nodes = false;
1372 else
1373 stable_node->chain_prune_time = jiffies;
1374
1375 hlist_for_each_entry_safe(dup, hlist_safe,
1376 &stable_node->hlist, hlist_dup) {
1377 cond_resched();
1378 /*
1379 * We must walk all stable_node_dup to prune the stale
1380 * stable nodes during lookup.
1381 *
1382 * get_ksm_page can drop the nodes from the
1383 * stable_node->hlist if they point to freed pages
1384 * (that's why we do a _safe walk). The "dup"
1385 * stable_node parameter itself will be freed from
1386 * under us if it returns NULL.
1387 */
1388 _tree_page = get_ksm_page(dup, false);
1389 if (!_tree_page)
1390 continue;
1391 nr += 1;
1392 if (is_page_sharing_candidate(dup)) {
1393 if (!found ||
1394 dup->rmap_hlist_len > found_rmap_hlist_len) {
1395 if (found)
1396 put_page(tree_page);
1397 found = dup;
1398 found_rmap_hlist_len = found->rmap_hlist_len;
1399 tree_page = _tree_page;
1400
1401 /* skip put_page for found dup */
1402 if (!prune_stale_stable_nodes)
1403 break;
1404 continue;
1405 }
1406 }
1407 put_page(_tree_page);
1408 }
1409
1410 if (found) {
1411 /*
1412 * nr is counting all dups in the chain only if
1413 * prune_stale_stable_nodes is true, otherwise we may
1414 * break the loop at nr == 1 even if there are
1415 * multiple entries.
1416 */
1417 if (prune_stale_stable_nodes && nr == 1) {
1418 /*
1419 * If there's not just one entry it would
1420 * corrupt memory, better BUG_ON. In KSM
1421 * context with no lock held it's not even
1422 * fatal.
1423 */
1424 BUG_ON(stable_node->hlist.first->next);
1425
1426 /*
1427 * There's just one entry and it is below the
1428 * deduplication limit so drop the chain.
1429 */
1430 rb_replace_node(&stable_node->node, &found->node,
1431 root);
1432 free_stable_node(stable_node);
1433 ksm_stable_node_chains--;
1434 ksm_stable_node_dups--;
1435 /*
1436 * NOTE: the caller depends on the stable_node
1437 * to be equal to stable_node_dup if the chain
1438 * was collapsed.
1439 */
1440 *_stable_node = found;
1441 /*
1442 * Just for robustneess as stable_node is
1443 * otherwise left as a stable pointer, the
1444 * compiler shall optimize it away at build
1445 * time.
1446 */
1447 stable_node = NULL;
1448 } else if (stable_node->hlist.first != &found->hlist_dup &&
1449 __is_page_sharing_candidate(found, 1)) {
1450 /*
1451 * If the found stable_node dup can accept one
1452 * more future merge (in addition to the one
1453 * that is underway) and is not at the head of
1454 * the chain, put it there so next search will
1455 * be quicker in the !prune_stale_stable_nodes
1456 * case.
1457 *
1458 * NOTE: it would be inaccurate to use nr > 1
1459 * instead of checking the hlist.first pointer
1460 * directly, because in the
1461 * prune_stale_stable_nodes case "nr" isn't
1462 * the position of the found dup in the chain,
1463 * but the total number of dups in the chain.
1464 */
1465 hlist_del(&found->hlist_dup);
1466 hlist_add_head(&found->hlist_dup,
1467 &stable_node->hlist);
1468 }
1469 }
1470
1471 *_stable_node_dup = found;
1472 return tree_page;
1473 }
1474
1475 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1476 struct rb_root *root)
1477 {
1478 if (!is_stable_node_chain(stable_node))
1479 return stable_node;
1480 if (hlist_empty(&stable_node->hlist)) {
1481 free_stable_node_chain(stable_node, root);
1482 return NULL;
1483 }
1484 return hlist_entry(stable_node->hlist.first,
1485 typeof(*stable_node), hlist_dup);
1486 }
1487
1488 /*
1489 * Like for get_ksm_page, this function can free the *_stable_node and
1490 * *_stable_node_dup if the returned tree_page is NULL.
1491 *
1492 * It can also free and overwrite *_stable_node with the found
1493 * stable_node_dup if the chain is collapsed (in which case
1494 * *_stable_node will be equal to *_stable_node_dup like if the chain
1495 * never existed). It's up to the caller to verify tree_page is not
1496 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1497 *
1498 * *_stable_node_dup is really a second output parameter of this
1499 * function and will be overwritten in all cases, the caller doesn't
1500 * need to initialize it.
1501 */
1502 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1503 struct stable_node **_stable_node,
1504 struct rb_root *root,
1505 bool prune_stale_stable_nodes)
1506 {
1507 struct stable_node *stable_node = *_stable_node;
1508 if (!is_stable_node_chain(stable_node)) {
1509 if (is_page_sharing_candidate(stable_node)) {
1510 *_stable_node_dup = stable_node;
1511 return get_ksm_page(stable_node, false);
1512 }
1513 /*
1514 * _stable_node_dup set to NULL means the stable_node
1515 * reached the ksm_max_page_sharing limit.
1516 */
1517 *_stable_node_dup = NULL;
1518 return NULL;
1519 }
1520 return stable_node_dup(_stable_node_dup, _stable_node, root,
1521 prune_stale_stable_nodes);
1522 }
1523
1524 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1525 struct stable_node **s_n,
1526 struct rb_root *root)
1527 {
1528 return __stable_node_chain(s_n_d, s_n, root, true);
1529 }
1530
1531 static __always_inline struct page *chain(struct stable_node **s_n_d,
1532 struct stable_node *s_n,
1533 struct rb_root *root)
1534 {
1535 struct stable_node *old_stable_node = s_n;
1536 struct page *tree_page;
1537
1538 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1539 /* not pruning dups so s_n cannot have changed */
1540 VM_BUG_ON(s_n != old_stable_node);
1541 return tree_page;
1542 }
1543
1544 /*
1545 * stable_tree_search - search for page inside the stable tree
1546 *
1547 * This function checks if there is a page inside the stable tree
1548 * with identical content to the page that we are scanning right now.
1549 *
1550 * This function returns the stable tree node of identical content if found,
1551 * NULL otherwise.
1552 */
1553 static struct page *stable_tree_search(struct page *page)
1554 {
1555 int nid;
1556 struct rb_root *root;
1557 struct rb_node **new;
1558 struct rb_node *parent;
1559 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1560 struct stable_node *page_node;
1561
1562 page_node = page_stable_node(page);
1563 if (page_node && page_node->head != &migrate_nodes) {
1564 /* ksm page forked */
1565 get_page(page);
1566 return page;
1567 }
1568
1569 nid = get_kpfn_nid(page_to_pfn(page));
1570 root = root_stable_tree + nid;
1571 again:
1572 new = &root->rb_node;
1573 parent = NULL;
1574
1575 while (*new) {
1576 struct page *tree_page;
1577 int ret;
1578
1579 cond_resched();
1580 stable_node = rb_entry(*new, struct stable_node, node);
1581 stable_node_any = NULL;
1582 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1583 /*
1584 * NOTE: stable_node may have been freed by
1585 * chain_prune() if the returned stable_node_dup is
1586 * not NULL. stable_node_dup may have been inserted in
1587 * the rbtree instead as a regular stable_node (in
1588 * order to collapse the stable_node chain if a single
1589 * stable_node dup was found in it). In such case the
1590 * stable_node is overwritten by the calleee to point
1591 * to the stable_node_dup that was collapsed in the
1592 * stable rbtree and stable_node will be equal to
1593 * stable_node_dup like if the chain never existed.
1594 */
1595 if (!stable_node_dup) {
1596 /*
1597 * Either all stable_node dups were full in
1598 * this stable_node chain, or this chain was
1599 * empty and should be rb_erased.
1600 */
1601 stable_node_any = stable_node_dup_any(stable_node,
1602 root);
1603 if (!stable_node_any) {
1604 /* rb_erase just run */
1605 goto again;
1606 }
1607 /*
1608 * Take any of the stable_node dups page of
1609 * this stable_node chain to let the tree walk
1610 * continue. All KSM pages belonging to the
1611 * stable_node dups in a stable_node chain
1612 * have the same content and they're
1613 * wrprotected at all times. Any will work
1614 * fine to continue the walk.
1615 */
1616 tree_page = get_ksm_page(stable_node_any, false);
1617 }
1618 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1619 if (!tree_page) {
1620 /*
1621 * If we walked over a stale stable_node,
1622 * get_ksm_page() will call rb_erase() and it
1623 * may rebalance the tree from under us. So
1624 * restart the search from scratch. Returning
1625 * NULL would be safe too, but we'd generate
1626 * false negative insertions just because some
1627 * stable_node was stale.
1628 */
1629 goto again;
1630 }
1631
1632 ret = memcmp_pages(page, tree_page);
1633 put_page(tree_page);
1634
1635 parent = *new;
1636 if (ret < 0)
1637 new = &parent->rb_left;
1638 else if (ret > 0)
1639 new = &parent->rb_right;
1640 else {
1641 if (page_node) {
1642 VM_BUG_ON(page_node->head != &migrate_nodes);
1643 /*
1644 * Test if the migrated page should be merged
1645 * into a stable node dup. If the mapcount is
1646 * 1 we can migrate it with another KSM page
1647 * without adding it to the chain.
1648 */
1649 if (page_mapcount(page) > 1)
1650 goto chain_append;
1651 }
1652
1653 if (!stable_node_dup) {
1654 /*
1655 * If the stable_node is a chain and
1656 * we got a payload match in memcmp
1657 * but we cannot merge the scanned
1658 * page in any of the existing
1659 * stable_node dups because they're
1660 * all full, we need to wait the
1661 * scanned page to find itself a match
1662 * in the unstable tree to create a
1663 * brand new KSM page to add later to
1664 * the dups of this stable_node.
1665 */
1666 return NULL;
1667 }
1668
1669 /*
1670 * Lock and unlock the stable_node's page (which
1671 * might already have been migrated) so that page
1672 * migration is sure to notice its raised count.
1673 * It would be more elegant to return stable_node
1674 * than kpage, but that involves more changes.
1675 */
1676 tree_page = get_ksm_page(stable_node_dup, true);
1677 if (unlikely(!tree_page))
1678 /*
1679 * The tree may have been rebalanced,
1680 * so re-evaluate parent and new.
1681 */
1682 goto again;
1683 unlock_page(tree_page);
1684
1685 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1686 NUMA(stable_node_dup->nid)) {
1687 put_page(tree_page);
1688 goto replace;
1689 }
1690 return tree_page;
1691 }
1692 }
1693
1694 if (!page_node)
1695 return NULL;
1696
1697 list_del(&page_node->list);
1698 DO_NUMA(page_node->nid = nid);
1699 rb_link_node(&page_node->node, parent, new);
1700 rb_insert_color(&page_node->node, root);
1701 out:
1702 if (is_page_sharing_candidate(page_node)) {
1703 get_page(page);
1704 return page;
1705 } else
1706 return NULL;
1707
1708 replace:
1709 /*
1710 * If stable_node was a chain and chain_prune collapsed it,
1711 * stable_node has been updated to be the new regular
1712 * stable_node. A collapse of the chain is indistinguishable
1713 * from the case there was no chain in the stable
1714 * rbtree. Otherwise stable_node is the chain and
1715 * stable_node_dup is the dup to replace.
1716 */
1717 if (stable_node_dup == stable_node) {
1718 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1719 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1720 /* there is no chain */
1721 if (page_node) {
1722 VM_BUG_ON(page_node->head != &migrate_nodes);
1723 list_del(&page_node->list);
1724 DO_NUMA(page_node->nid = nid);
1725 rb_replace_node(&stable_node_dup->node,
1726 &page_node->node,
1727 root);
1728 if (is_page_sharing_candidate(page_node))
1729 get_page(page);
1730 else
1731 page = NULL;
1732 } else {
1733 rb_erase(&stable_node_dup->node, root);
1734 page = NULL;
1735 }
1736 } else {
1737 VM_BUG_ON(!is_stable_node_chain(stable_node));
1738 __stable_node_dup_del(stable_node_dup);
1739 if (page_node) {
1740 VM_BUG_ON(page_node->head != &migrate_nodes);
1741 list_del(&page_node->list);
1742 DO_NUMA(page_node->nid = nid);
1743 stable_node_chain_add_dup(page_node, stable_node);
1744 if (is_page_sharing_candidate(page_node))
1745 get_page(page);
1746 else
1747 page = NULL;
1748 } else {
1749 page = NULL;
1750 }
1751 }
1752 stable_node_dup->head = &migrate_nodes;
1753 list_add(&stable_node_dup->list, stable_node_dup->head);
1754 return page;
1755
1756 chain_append:
1757 /* stable_node_dup could be null if it reached the limit */
1758 if (!stable_node_dup)
1759 stable_node_dup = stable_node_any;
1760 /*
1761 * If stable_node was a chain and chain_prune collapsed it,
1762 * stable_node has been updated to be the new regular
1763 * stable_node. A collapse of the chain is indistinguishable
1764 * from the case there was no chain in the stable
1765 * rbtree. Otherwise stable_node is the chain and
1766 * stable_node_dup is the dup to replace.
1767 */
1768 if (stable_node_dup == stable_node) {
1769 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1770 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1771 /* chain is missing so create it */
1772 stable_node = alloc_stable_node_chain(stable_node_dup,
1773 root);
1774 if (!stable_node)
1775 return NULL;
1776 }
1777 /*
1778 * Add this stable_node dup that was
1779 * migrated to the stable_node chain
1780 * of the current nid for this page
1781 * content.
1782 */
1783 VM_BUG_ON(!is_stable_node_chain(stable_node));
1784 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1785 VM_BUG_ON(page_node->head != &migrate_nodes);
1786 list_del(&page_node->list);
1787 DO_NUMA(page_node->nid = nid);
1788 stable_node_chain_add_dup(page_node, stable_node);
1789 goto out;
1790 }
1791
1792 /*
1793 * stable_tree_insert - insert stable tree node pointing to new ksm page
1794 * into the stable tree.
1795 *
1796 * This function returns the stable tree node just allocated on success,
1797 * NULL otherwise.
1798 */
1799 static struct stable_node *stable_tree_insert(struct page *kpage)
1800 {
1801 int nid;
1802 unsigned long kpfn;
1803 struct rb_root *root;
1804 struct rb_node **new;
1805 struct rb_node *parent;
1806 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1807 bool need_chain = false;
1808
1809 kpfn = page_to_pfn(kpage);
1810 nid = get_kpfn_nid(kpfn);
1811 root = root_stable_tree + nid;
1812 again:
1813 parent = NULL;
1814 new = &root->rb_node;
1815
1816 while (*new) {
1817 struct page *tree_page;
1818 int ret;
1819
1820 cond_resched();
1821 stable_node = rb_entry(*new, struct stable_node, node);
1822 stable_node_any = NULL;
1823 tree_page = chain(&stable_node_dup, stable_node, root);
1824 if (!stable_node_dup) {
1825 /*
1826 * Either all stable_node dups were full in
1827 * this stable_node chain, or this chain was
1828 * empty and should be rb_erased.
1829 */
1830 stable_node_any = stable_node_dup_any(stable_node,
1831 root);
1832 if (!stable_node_any) {
1833 /* rb_erase just run */
1834 goto again;
1835 }
1836 /*
1837 * Take any of the stable_node dups page of
1838 * this stable_node chain to let the tree walk
1839 * continue. All KSM pages belonging to the
1840 * stable_node dups in a stable_node chain
1841 * have the same content and they're
1842 * wrprotected at all times. Any will work
1843 * fine to continue the walk.
1844 */
1845 tree_page = get_ksm_page(stable_node_any, false);
1846 }
1847 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1848 if (!tree_page) {
1849 /*
1850 * If we walked over a stale stable_node,
1851 * get_ksm_page() will call rb_erase() and it
1852 * may rebalance the tree from under us. So
1853 * restart the search from scratch. Returning
1854 * NULL would be safe too, but we'd generate
1855 * false negative insertions just because some
1856 * stable_node was stale.
1857 */
1858 goto again;
1859 }
1860
1861 ret = memcmp_pages(kpage, tree_page);
1862 put_page(tree_page);
1863
1864 parent = *new;
1865 if (ret < 0)
1866 new = &parent->rb_left;
1867 else if (ret > 0)
1868 new = &parent->rb_right;
1869 else {
1870 need_chain = true;
1871 break;
1872 }
1873 }
1874
1875 stable_node_dup = alloc_stable_node();
1876 if (!stable_node_dup)
1877 return NULL;
1878
1879 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1880 stable_node_dup->kpfn = kpfn;
1881 set_page_stable_node(kpage, stable_node_dup);
1882 stable_node_dup->rmap_hlist_len = 0;
1883 DO_NUMA(stable_node_dup->nid = nid);
1884 if (!need_chain) {
1885 rb_link_node(&stable_node_dup->node, parent, new);
1886 rb_insert_color(&stable_node_dup->node, root);
1887 } else {
1888 if (!is_stable_node_chain(stable_node)) {
1889 struct stable_node *orig = stable_node;
1890 /* chain is missing so create it */
1891 stable_node = alloc_stable_node_chain(orig, root);
1892 if (!stable_node) {
1893 free_stable_node(stable_node_dup);
1894 return NULL;
1895 }
1896 }
1897 stable_node_chain_add_dup(stable_node_dup, stable_node);
1898 }
1899
1900 return stable_node_dup;
1901 }
1902
1903 /*
1904 * unstable_tree_search_insert - search for identical page,
1905 * else insert rmap_item into the unstable tree.
1906 *
1907 * This function searches for a page in the unstable tree identical to the
1908 * page currently being scanned; and if no identical page is found in the
1909 * tree, we insert rmap_item as a new object into the unstable tree.
1910 *
1911 * This function returns pointer to rmap_item found to be identical
1912 * to the currently scanned page, NULL otherwise.
1913 *
1914 * This function does both searching and inserting, because they share
1915 * the same walking algorithm in an rbtree.
1916 */
1917 static
1918 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919 struct page *page,
1920 struct page **tree_pagep)
1921 {
1922 struct rb_node **new;
1923 struct rb_root *root;
1924 struct rb_node *parent = NULL;
1925 int nid;
1926
1927 nid = get_kpfn_nid(page_to_pfn(page));
1928 root = root_unstable_tree + nid;
1929 new = &root->rb_node;
1930
1931 while (*new) {
1932 struct rmap_item *tree_rmap_item;
1933 struct page *tree_page;
1934 int ret;
1935
1936 cond_resched();
1937 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1938 tree_page = get_mergeable_page(tree_rmap_item);
1939 if (!tree_page)
1940 return NULL;
1941
1942 /*
1943 * Don't substitute a ksm page for a forked page.
1944 */
1945 if (page == tree_page) {
1946 put_page(tree_page);
1947 return NULL;
1948 }
1949
1950 ret = memcmp_pages(page, tree_page);
1951
1952 parent = *new;
1953 if (ret < 0) {
1954 put_page(tree_page);
1955 new = &parent->rb_left;
1956 } else if (ret > 0) {
1957 put_page(tree_page);
1958 new = &parent->rb_right;
1959 } else if (!ksm_merge_across_nodes &&
1960 page_to_nid(tree_page) != nid) {
1961 /*
1962 * If tree_page has been migrated to another NUMA node,
1963 * it will be flushed out and put in the right unstable
1964 * tree next time: only merge with it when across_nodes.
1965 */
1966 put_page(tree_page);
1967 return NULL;
1968 } else {
1969 *tree_pagep = tree_page;
1970 return tree_rmap_item;
1971 }
1972 }
1973
1974 rmap_item->address |= UNSTABLE_FLAG;
1975 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1976 DO_NUMA(rmap_item->nid = nid);
1977 rb_link_node(&rmap_item->node, parent, new);
1978 rb_insert_color(&rmap_item->node, root);
1979
1980 ksm_pages_unshared++;
1981 return NULL;
1982 }
1983
1984 /*
1985 * stable_tree_append - add another rmap_item to the linked list of
1986 * rmap_items hanging off a given node of the stable tree, all sharing
1987 * the same ksm page.
1988 */
1989 static void stable_tree_append(struct rmap_item *rmap_item,
1990 struct stable_node *stable_node,
1991 bool max_page_sharing_bypass)
1992 {
1993 /*
1994 * rmap won't find this mapping if we don't insert the
1995 * rmap_item in the right stable_node
1996 * duplicate. page_migration could break later if rmap breaks,
1997 * so we can as well crash here. We really need to check for
1998 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1999 * for other negative values as an undeflow if detected here
2000 * for the first time (and not when decreasing rmap_hlist_len)
2001 * would be sign of memory corruption in the stable_node.
2002 */
2003 BUG_ON(stable_node->rmap_hlist_len < 0);
2004
2005 stable_node->rmap_hlist_len++;
2006 if (!max_page_sharing_bypass)
2007 /* possibly non fatal but unexpected overflow, only warn */
2008 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2009 ksm_max_page_sharing);
2010
2011 rmap_item->head = stable_node;
2012 rmap_item->address |= STABLE_FLAG;
2013 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2014
2015 if (rmap_item->hlist.next)
2016 ksm_pages_sharing++;
2017 else
2018 ksm_pages_shared++;
2019 }
2020
2021 /*
2022 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2023 * if not, compare checksum to previous and if it's the same, see if page can
2024 * be inserted into the unstable tree, or merged with a page already there and
2025 * both transferred to the stable tree.
2026 *
2027 * @page: the page that we are searching identical page to.
2028 * @rmap_item: the reverse mapping into the virtual address of this page
2029 */
2030 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031 {
2032 struct mm_struct *mm = rmap_item->mm;
2033 struct rmap_item *tree_rmap_item;
2034 struct page *tree_page = NULL;
2035 struct stable_node *stable_node;
2036 struct page *kpage;
2037 unsigned int checksum;
2038 int err;
2039 bool max_page_sharing_bypass = false;
2040
2041 stable_node = page_stable_node(page);
2042 if (stable_node) {
2043 if (stable_node->head != &migrate_nodes &&
2044 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2045 NUMA(stable_node->nid)) {
2046 stable_node_dup_del(stable_node);
2047 stable_node->head = &migrate_nodes;
2048 list_add(&stable_node->list, stable_node->head);
2049 }
2050 if (stable_node->head != &migrate_nodes &&
2051 rmap_item->head == stable_node)
2052 return;
2053 /*
2054 * If it's a KSM fork, allow it to go over the sharing limit
2055 * without warnings.
2056 */
2057 if (!is_page_sharing_candidate(stable_node))
2058 max_page_sharing_bypass = true;
2059 }
2060
2061 /* We first start with searching the page inside the stable tree */
2062 kpage = stable_tree_search(page);
2063 if (kpage == page && rmap_item->head == stable_node) {
2064 put_page(kpage);
2065 return;
2066 }
2067
2068 remove_rmap_item_from_tree(rmap_item);
2069
2070 if (kpage) {
2071 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2072 if (!err) {
2073 /*
2074 * The page was successfully merged:
2075 * add its rmap_item to the stable tree.
2076 */
2077 lock_page(kpage);
2078 stable_tree_append(rmap_item, page_stable_node(kpage),
2079 max_page_sharing_bypass);
2080 unlock_page(kpage);
2081 }
2082 put_page(kpage);
2083 return;
2084 }
2085
2086 /*
2087 * If the hash value of the page has changed from the last time
2088 * we calculated it, this page is changing frequently: therefore we
2089 * don't want to insert it in the unstable tree, and we don't want
2090 * to waste our time searching for something identical to it there.
2091 */
2092 checksum = calc_checksum(page);
2093 if (rmap_item->oldchecksum != checksum) {
2094 rmap_item->oldchecksum = checksum;
2095 return;
2096 }
2097
2098 /*
2099 * Same checksum as an empty page. We attempt to merge it with the
2100 * appropriate zero page if the user enabled this via sysfs.
2101 */
2102 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2103 struct vm_area_struct *vma;
2104
2105 down_read(&mm->mmap_sem);
2106 vma = find_mergeable_vma(mm, rmap_item->address);
2107 err = try_to_merge_one_page(vma, page,
2108 ZERO_PAGE(rmap_item->address));
2109 up_read(&mm->mmap_sem);
2110 /*
2111 * In case of failure, the page was not really empty, so we
2112 * need to continue. Otherwise we're done.
2113 */
2114 if (!err)
2115 return;
2116 }
2117 tree_rmap_item =
2118 unstable_tree_search_insert(rmap_item, page, &tree_page);
2119 if (tree_rmap_item) {
2120 bool split;
2121
2122 kpage = try_to_merge_two_pages(rmap_item, page,
2123 tree_rmap_item, tree_page);
2124 /*
2125 * If both pages we tried to merge belong to the same compound
2126 * page, then we actually ended up increasing the reference
2127 * count of the same compound page twice, and split_huge_page
2128 * failed.
2129 * Here we set a flag if that happened, and we use it later to
2130 * try split_huge_page again. Since we call put_page right
2131 * afterwards, the reference count will be correct and
2132 * split_huge_page should succeed.
2133 */
2134 split = PageTransCompound(page)
2135 && compound_head(page) == compound_head(tree_page);
2136 put_page(tree_page);
2137 if (kpage) {
2138 /*
2139 * The pages were successfully merged: insert new
2140 * node in the stable tree and add both rmap_items.
2141 */
2142 lock_page(kpage);
2143 stable_node = stable_tree_insert(kpage);
2144 if (stable_node) {
2145 stable_tree_append(tree_rmap_item, stable_node,
2146 false);
2147 stable_tree_append(rmap_item, stable_node,
2148 false);
2149 }
2150 unlock_page(kpage);
2151
2152 /*
2153 * If we fail to insert the page into the stable tree,
2154 * we will have 2 virtual addresses that are pointing
2155 * to a ksm page left outside the stable tree,
2156 * in which case we need to break_cow on both.
2157 */
2158 if (!stable_node) {
2159 break_cow(tree_rmap_item);
2160 break_cow(rmap_item);
2161 }
2162 } else if (split) {
2163 /*
2164 * We are here if we tried to merge two pages and
2165 * failed because they both belonged to the same
2166 * compound page. We will split the page now, but no
2167 * merging will take place.
2168 * We do not want to add the cost of a full lock; if
2169 * the page is locked, it is better to skip it and
2170 * perhaps try again later.
2171 */
2172 if (!trylock_page(page))
2173 return;
2174 split_huge_page(page);
2175 unlock_page(page);
2176 }
2177 }
2178 }
2179
2180 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2181 struct rmap_item **rmap_list,
2182 unsigned long addr)
2183 {
2184 struct rmap_item *rmap_item;
2185
2186 while (*rmap_list) {
2187 rmap_item = *rmap_list;
2188 if ((rmap_item->address & PAGE_MASK) == addr)
2189 return rmap_item;
2190 if (rmap_item->address > addr)
2191 break;
2192 *rmap_list = rmap_item->rmap_list;
2193 remove_rmap_item_from_tree(rmap_item);
2194 free_rmap_item(rmap_item);
2195 }
2196
2197 rmap_item = alloc_rmap_item();
2198 if (rmap_item) {
2199 /* It has already been zeroed */
2200 rmap_item->mm = mm_slot->mm;
2201 rmap_item->address = addr;
2202 rmap_item->rmap_list = *rmap_list;
2203 *rmap_list = rmap_item;
2204 }
2205 return rmap_item;
2206 }
2207
2208 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2209 {
2210 struct mm_struct *mm;
2211 struct mm_slot *slot;
2212 struct vm_area_struct *vma;
2213 struct rmap_item *rmap_item;
2214 int nid;
2215
2216 if (list_empty(&ksm_mm_head.mm_list))
2217 return NULL;
2218
2219 slot = ksm_scan.mm_slot;
2220 if (slot == &ksm_mm_head) {
2221 /*
2222 * A number of pages can hang around indefinitely on per-cpu
2223 * pagevecs, raised page count preventing write_protect_page
2224 * from merging them. Though it doesn't really matter much,
2225 * it is puzzling to see some stuck in pages_volatile until
2226 * other activity jostles them out, and they also prevented
2227 * LTP's KSM test from succeeding deterministically; so drain
2228 * them here (here rather than on entry to ksm_do_scan(),
2229 * so we don't IPI too often when pages_to_scan is set low).
2230 */
2231 lru_add_drain_all();
2232
2233 /*
2234 * Whereas stale stable_nodes on the stable_tree itself
2235 * get pruned in the regular course of stable_tree_search(),
2236 * those moved out to the migrate_nodes list can accumulate:
2237 * so prune them once before each full scan.
2238 */
2239 if (!ksm_merge_across_nodes) {
2240 struct stable_node *stable_node, *next;
2241 struct page *page;
2242
2243 list_for_each_entry_safe(stable_node, next,
2244 &migrate_nodes, list) {
2245 page = get_ksm_page(stable_node, false);
2246 if (page)
2247 put_page(page);
2248 cond_resched();
2249 }
2250 }
2251
2252 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2253 root_unstable_tree[nid] = RB_ROOT;
2254
2255 spin_lock(&ksm_mmlist_lock);
2256 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2257 ksm_scan.mm_slot = slot;
2258 spin_unlock(&ksm_mmlist_lock);
2259 /*
2260 * Although we tested list_empty() above, a racing __ksm_exit
2261 * of the last mm on the list may have removed it since then.
2262 */
2263 if (slot == &ksm_mm_head)
2264 return NULL;
2265 next_mm:
2266 ksm_scan.address = 0;
2267 ksm_scan.rmap_list = &slot->rmap_list;
2268 }
2269
2270 mm = slot->mm;
2271 down_read(&mm->mmap_sem);
2272 if (ksm_test_exit(mm))
2273 vma = NULL;
2274 else
2275 vma = find_vma(mm, ksm_scan.address);
2276
2277 for (; vma; vma = vma->vm_next) {
2278 if (!(vma->vm_flags & VM_MERGEABLE))
2279 continue;
2280 if (ksm_scan.address < vma->vm_start)
2281 ksm_scan.address = vma->vm_start;
2282 if (!vma->anon_vma)
2283 ksm_scan.address = vma->vm_end;
2284
2285 while (ksm_scan.address < vma->vm_end) {
2286 if (ksm_test_exit(mm))
2287 break;
2288 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2289 if (IS_ERR_OR_NULL(*page)) {
2290 ksm_scan.address += PAGE_SIZE;
2291 cond_resched();
2292 continue;
2293 }
2294 if (PageAnon(*page)) {
2295 flush_anon_page(vma, *page, ksm_scan.address);
2296 flush_dcache_page(*page);
2297 rmap_item = get_next_rmap_item(slot,
2298 ksm_scan.rmap_list, ksm_scan.address);
2299 if (rmap_item) {
2300 ksm_scan.rmap_list =
2301 &rmap_item->rmap_list;
2302 ksm_scan.address += PAGE_SIZE;
2303 } else
2304 put_page(*page);
2305 up_read(&mm->mmap_sem);
2306 return rmap_item;
2307 }
2308 put_page(*page);
2309 ksm_scan.address += PAGE_SIZE;
2310 cond_resched();
2311 }
2312 }
2313
2314 if (ksm_test_exit(mm)) {
2315 ksm_scan.address = 0;
2316 ksm_scan.rmap_list = &slot->rmap_list;
2317 }
2318 /*
2319 * Nuke all the rmap_items that are above this current rmap:
2320 * because there were no VM_MERGEABLE vmas with such addresses.
2321 */
2322 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2323
2324 spin_lock(&ksm_mmlist_lock);
2325 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2326 struct mm_slot, mm_list);
2327 if (ksm_scan.address == 0) {
2328 /*
2329 * We've completed a full scan of all vmas, holding mmap_sem
2330 * throughout, and found no VM_MERGEABLE: so do the same as
2331 * __ksm_exit does to remove this mm from all our lists now.
2332 * This applies either when cleaning up after __ksm_exit
2333 * (but beware: we can reach here even before __ksm_exit),
2334 * or when all VM_MERGEABLE areas have been unmapped (and
2335 * mmap_sem then protects against race with MADV_MERGEABLE).
2336 */
2337 hash_del(&slot->link);
2338 list_del(&slot->mm_list);
2339 spin_unlock(&ksm_mmlist_lock);
2340
2341 free_mm_slot(slot);
2342 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2343 up_read(&mm->mmap_sem);
2344 mmdrop(mm);
2345 } else {
2346 up_read(&mm->mmap_sem);
2347 /*
2348 * up_read(&mm->mmap_sem) first because after
2349 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2350 * already have been freed under us by __ksm_exit()
2351 * because the "mm_slot" is still hashed and
2352 * ksm_scan.mm_slot doesn't point to it anymore.
2353 */
2354 spin_unlock(&ksm_mmlist_lock);
2355 }
2356
2357 /* Repeat until we've completed scanning the whole list */
2358 slot = ksm_scan.mm_slot;
2359 if (slot != &ksm_mm_head)
2360 goto next_mm;
2361
2362 ksm_scan.seqnr++;
2363 return NULL;
2364 }
2365
2366 /**
2367 * ksm_do_scan - the ksm scanner main worker function.
2368 * @scan_npages: number of pages we want to scan before we return.
2369 */
2370 static void ksm_do_scan(unsigned int scan_npages)
2371 {
2372 struct rmap_item *rmap_item;
2373 struct page *uninitialized_var(page);
2374
2375 while (scan_npages-- && likely(!freezing(current))) {
2376 cond_resched();
2377 rmap_item = scan_get_next_rmap_item(&page);
2378 if (!rmap_item)
2379 return;
2380 cmp_and_merge_page(page, rmap_item);
2381 put_page(page);
2382 }
2383 }
2384
2385 static int ksmd_should_run(void)
2386 {
2387 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2388 }
2389
2390 static int ksm_scan_thread(void *nothing)
2391 {
2392 unsigned int sleep_ms;
2393
2394 set_freezable();
2395 set_user_nice(current, 5);
2396
2397 while (!kthread_should_stop()) {
2398 mutex_lock(&ksm_thread_mutex);
2399 wait_while_offlining();
2400 if (ksmd_should_run())
2401 ksm_do_scan(ksm_thread_pages_to_scan);
2402 mutex_unlock(&ksm_thread_mutex);
2403
2404 try_to_freeze();
2405
2406 if (ksmd_should_run()) {
2407 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2408 wait_event_interruptible_timeout(ksm_iter_wait,
2409 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2410 msecs_to_jiffies(sleep_ms));
2411 } else {
2412 wait_event_freezable(ksm_thread_wait,
2413 ksmd_should_run() || kthread_should_stop());
2414 }
2415 }
2416 return 0;
2417 }
2418
2419 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2420 unsigned long end, int advice, unsigned long *vm_flags)
2421 {
2422 struct mm_struct *mm = vma->vm_mm;
2423 int err;
2424
2425 switch (advice) {
2426 case MADV_MERGEABLE:
2427 /*
2428 * Be somewhat over-protective for now!
2429 */
2430 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2431 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2432 VM_HUGETLB | VM_MIXEDMAP))
2433 return 0; /* just ignore the advice */
2434
2435 if (vma_is_dax(vma))
2436 return 0;
2437
2438 #ifdef VM_SAO
2439 if (*vm_flags & VM_SAO)
2440 return 0;
2441 #endif
2442 #ifdef VM_SPARC_ADI
2443 if (*vm_flags & VM_SPARC_ADI)
2444 return 0;
2445 #endif
2446
2447 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2448 err = __ksm_enter(mm);
2449 if (err)
2450 return err;
2451 }
2452
2453 *vm_flags |= VM_MERGEABLE;
2454 break;
2455
2456 case MADV_UNMERGEABLE:
2457 if (!(*vm_flags & VM_MERGEABLE))
2458 return 0; /* just ignore the advice */
2459
2460 if (vma->anon_vma) {
2461 err = unmerge_ksm_pages(vma, start, end);
2462 if (err)
2463 return err;
2464 }
2465
2466 *vm_flags &= ~VM_MERGEABLE;
2467 break;
2468 }
2469
2470 return 0;
2471 }
2472
2473 int __ksm_enter(struct mm_struct *mm)
2474 {
2475 struct mm_slot *mm_slot;
2476 int needs_wakeup;
2477
2478 mm_slot = alloc_mm_slot();
2479 if (!mm_slot)
2480 return -ENOMEM;
2481
2482 /* Check ksm_run too? Would need tighter locking */
2483 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2484
2485 spin_lock(&ksm_mmlist_lock);
2486 insert_to_mm_slots_hash(mm, mm_slot);
2487 /*
2488 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2489 * insert just behind the scanning cursor, to let the area settle
2490 * down a little; when fork is followed by immediate exec, we don't
2491 * want ksmd to waste time setting up and tearing down an rmap_list.
2492 *
2493 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2494 * scanning cursor, otherwise KSM pages in newly forked mms will be
2495 * missed: then we might as well insert at the end of the list.
2496 */
2497 if (ksm_run & KSM_RUN_UNMERGE)
2498 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2499 else
2500 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2501 spin_unlock(&ksm_mmlist_lock);
2502
2503 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2504 mmgrab(mm);
2505
2506 if (needs_wakeup)
2507 wake_up_interruptible(&ksm_thread_wait);
2508
2509 return 0;
2510 }
2511
2512 void __ksm_exit(struct mm_struct *mm)
2513 {
2514 struct mm_slot *mm_slot;
2515 int easy_to_free = 0;
2516
2517 /*
2518 * This process is exiting: if it's straightforward (as is the
2519 * case when ksmd was never running), free mm_slot immediately.
2520 * But if it's at the cursor or has rmap_items linked to it, use
2521 * mmap_sem to synchronize with any break_cows before pagetables
2522 * are freed, and leave the mm_slot on the list for ksmd to free.
2523 * Beware: ksm may already have noticed it exiting and freed the slot.
2524 */
2525
2526 spin_lock(&ksm_mmlist_lock);
2527 mm_slot = get_mm_slot(mm);
2528 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2529 if (!mm_slot->rmap_list) {
2530 hash_del(&mm_slot->link);
2531 list_del(&mm_slot->mm_list);
2532 easy_to_free = 1;
2533 } else {
2534 list_move(&mm_slot->mm_list,
2535 &ksm_scan.mm_slot->mm_list);
2536 }
2537 }
2538 spin_unlock(&ksm_mmlist_lock);
2539
2540 if (easy_to_free) {
2541 free_mm_slot(mm_slot);
2542 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2543 mmdrop(mm);
2544 } else if (mm_slot) {
2545 down_write(&mm->mmap_sem);
2546 up_write(&mm->mmap_sem);
2547 }
2548 }
2549
2550 struct page *ksm_might_need_to_copy(struct page *page,
2551 struct vm_area_struct *vma, unsigned long address)
2552 {
2553 struct anon_vma *anon_vma = page_anon_vma(page);
2554 struct page *new_page;
2555
2556 if (PageKsm(page)) {
2557 if (page_stable_node(page) &&
2558 !(ksm_run & KSM_RUN_UNMERGE))
2559 return page; /* no need to copy it */
2560 } else if (!anon_vma) {
2561 return page; /* no need to copy it */
2562 } else if (anon_vma->root == vma->anon_vma->root &&
2563 page->index == linear_page_index(vma, address)) {
2564 return page; /* still no need to copy it */
2565 }
2566 if (!PageUptodate(page))
2567 return page; /* let do_swap_page report the error */
2568
2569 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2570 if (new_page) {
2571 copy_user_highpage(new_page, page, address, vma);
2572
2573 SetPageDirty(new_page);
2574 __SetPageUptodate(new_page);
2575 __SetPageLocked(new_page);
2576 }
2577
2578 return new_page;
2579 }
2580
2581 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2582 {
2583 struct stable_node *stable_node;
2584 struct rmap_item *rmap_item;
2585 int search_new_forks = 0;
2586
2587 VM_BUG_ON_PAGE(!PageKsm(page), page);
2588
2589 /*
2590 * Rely on the page lock to protect against concurrent modifications
2591 * to that page's node of the stable tree.
2592 */
2593 VM_BUG_ON_PAGE(!PageLocked(page), page);
2594
2595 stable_node = page_stable_node(page);
2596 if (!stable_node)
2597 return;
2598 again:
2599 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2600 struct anon_vma *anon_vma = rmap_item->anon_vma;
2601 struct anon_vma_chain *vmac;
2602 struct vm_area_struct *vma;
2603
2604 cond_resched();
2605 anon_vma_lock_read(anon_vma);
2606 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2607 0, ULONG_MAX) {
2608 unsigned long addr;
2609
2610 cond_resched();
2611 vma = vmac->vma;
2612
2613 /* Ignore the stable/unstable/sqnr flags */
2614 addr = rmap_item->address & ~KSM_FLAG_MASK;
2615
2616 if (addr < vma->vm_start || addr >= vma->vm_end)
2617 continue;
2618 /*
2619 * Initially we examine only the vma which covers this
2620 * rmap_item; but later, if there is still work to do,
2621 * we examine covering vmas in other mms: in case they
2622 * were forked from the original since ksmd passed.
2623 */
2624 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2625 continue;
2626
2627 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2628 continue;
2629
2630 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2631 anon_vma_unlock_read(anon_vma);
2632 return;
2633 }
2634 if (rwc->done && rwc->done(page)) {
2635 anon_vma_unlock_read(anon_vma);
2636 return;
2637 }
2638 }
2639 anon_vma_unlock_read(anon_vma);
2640 }
2641 if (!search_new_forks++)
2642 goto again;
2643 }
2644
2645 #ifdef CONFIG_MIGRATION
2646 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2647 {
2648 struct stable_node *stable_node;
2649
2650 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2651 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2652 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2653
2654 stable_node = page_stable_node(newpage);
2655 if (stable_node) {
2656 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2657 stable_node->kpfn = page_to_pfn(newpage);
2658 /*
2659 * newpage->mapping was set in advance; now we need smp_wmb()
2660 * to make sure that the new stable_node->kpfn is visible
2661 * to get_ksm_page() before it can see that oldpage->mapping
2662 * has gone stale (or that PageSwapCache has been cleared).
2663 */
2664 smp_wmb();
2665 set_page_stable_node(oldpage, NULL);
2666 }
2667 }
2668 #endif /* CONFIG_MIGRATION */
2669
2670 #ifdef CONFIG_MEMORY_HOTREMOVE
2671 static void wait_while_offlining(void)
2672 {
2673 while (ksm_run & KSM_RUN_OFFLINE) {
2674 mutex_unlock(&ksm_thread_mutex);
2675 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2676 TASK_UNINTERRUPTIBLE);
2677 mutex_lock(&ksm_thread_mutex);
2678 }
2679 }
2680
2681 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2682 unsigned long start_pfn,
2683 unsigned long end_pfn)
2684 {
2685 if (stable_node->kpfn >= start_pfn &&
2686 stable_node->kpfn < end_pfn) {
2687 /*
2688 * Don't get_ksm_page, page has already gone:
2689 * which is why we keep kpfn instead of page*
2690 */
2691 remove_node_from_stable_tree(stable_node);
2692 return true;
2693 }
2694 return false;
2695 }
2696
2697 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2698 unsigned long start_pfn,
2699 unsigned long end_pfn,
2700 struct rb_root *root)
2701 {
2702 struct stable_node *dup;
2703 struct hlist_node *hlist_safe;
2704
2705 if (!is_stable_node_chain(stable_node)) {
2706 VM_BUG_ON(is_stable_node_dup(stable_node));
2707 return stable_node_dup_remove_range(stable_node, start_pfn,
2708 end_pfn);
2709 }
2710
2711 hlist_for_each_entry_safe(dup, hlist_safe,
2712 &stable_node->hlist, hlist_dup) {
2713 VM_BUG_ON(!is_stable_node_dup(dup));
2714 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2715 }
2716 if (hlist_empty(&stable_node->hlist)) {
2717 free_stable_node_chain(stable_node, root);
2718 return true; /* notify caller that tree was rebalanced */
2719 } else
2720 return false;
2721 }
2722
2723 static void ksm_check_stable_tree(unsigned long start_pfn,
2724 unsigned long end_pfn)
2725 {
2726 struct stable_node *stable_node, *next;
2727 struct rb_node *node;
2728 int nid;
2729
2730 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2731 node = rb_first(root_stable_tree + nid);
2732 while (node) {
2733 stable_node = rb_entry(node, struct stable_node, node);
2734 if (stable_node_chain_remove_range(stable_node,
2735 start_pfn, end_pfn,
2736 root_stable_tree +
2737 nid))
2738 node = rb_first(root_stable_tree + nid);
2739 else
2740 node = rb_next(node);
2741 cond_resched();
2742 }
2743 }
2744 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2745 if (stable_node->kpfn >= start_pfn &&
2746 stable_node->kpfn < end_pfn)
2747 remove_node_from_stable_tree(stable_node);
2748 cond_resched();
2749 }
2750 }
2751
2752 static int ksm_memory_callback(struct notifier_block *self,
2753 unsigned long action, void *arg)
2754 {
2755 struct memory_notify *mn = arg;
2756
2757 switch (action) {
2758 case MEM_GOING_OFFLINE:
2759 /*
2760 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2761 * and remove_all_stable_nodes() while memory is going offline:
2762 * it is unsafe for them to touch the stable tree at this time.
2763 * But unmerge_ksm_pages(), rmap lookups and other entry points
2764 * which do not need the ksm_thread_mutex are all safe.
2765 */
2766 mutex_lock(&ksm_thread_mutex);
2767 ksm_run |= KSM_RUN_OFFLINE;
2768 mutex_unlock(&ksm_thread_mutex);
2769 break;
2770
2771 case MEM_OFFLINE:
2772 /*
2773 * Most of the work is done by page migration; but there might
2774 * be a few stable_nodes left over, still pointing to struct
2775 * pages which have been offlined: prune those from the tree,
2776 * otherwise get_ksm_page() might later try to access a
2777 * non-existent struct page.
2778 */
2779 ksm_check_stable_tree(mn->start_pfn,
2780 mn->start_pfn + mn->nr_pages);
2781 /* fallthrough */
2782
2783 case MEM_CANCEL_OFFLINE:
2784 mutex_lock(&ksm_thread_mutex);
2785 ksm_run &= ~KSM_RUN_OFFLINE;
2786 mutex_unlock(&ksm_thread_mutex);
2787
2788 smp_mb(); /* wake_up_bit advises this */
2789 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2790 break;
2791 }
2792 return NOTIFY_OK;
2793 }
2794 #else
2795 static void wait_while_offlining(void)
2796 {
2797 }
2798 #endif /* CONFIG_MEMORY_HOTREMOVE */
2799
2800 #ifdef CONFIG_SYSFS
2801 /*
2802 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2803 */
2804
2805 #define KSM_ATTR_RO(_name) \
2806 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2807 #define KSM_ATTR(_name) \
2808 static struct kobj_attribute _name##_attr = \
2809 __ATTR(_name, 0644, _name##_show, _name##_store)
2810
2811 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2812 struct kobj_attribute *attr, char *buf)
2813 {
2814 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2815 }
2816
2817 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2818 struct kobj_attribute *attr,
2819 const char *buf, size_t count)
2820 {
2821 unsigned long msecs;
2822 int err;
2823
2824 err = kstrtoul(buf, 10, &msecs);
2825 if (err || msecs > UINT_MAX)
2826 return -EINVAL;
2827
2828 ksm_thread_sleep_millisecs = msecs;
2829 wake_up_interruptible(&ksm_iter_wait);
2830
2831 return count;
2832 }
2833 KSM_ATTR(sleep_millisecs);
2834
2835 static ssize_t pages_to_scan_show(struct kobject *kobj,
2836 struct kobj_attribute *attr, char *buf)
2837 {
2838 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2839 }
2840
2841 static ssize_t pages_to_scan_store(struct kobject *kobj,
2842 struct kobj_attribute *attr,
2843 const char *buf, size_t count)
2844 {
2845 int err;
2846 unsigned long nr_pages;
2847
2848 err = kstrtoul(buf, 10, &nr_pages);
2849 if (err || nr_pages > UINT_MAX)
2850 return -EINVAL;
2851
2852 ksm_thread_pages_to_scan = nr_pages;
2853
2854 return count;
2855 }
2856 KSM_ATTR(pages_to_scan);
2857
2858 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2859 char *buf)
2860 {
2861 return sprintf(buf, "%lu\n", ksm_run);
2862 }
2863
2864 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2865 const char *buf, size_t count)
2866 {
2867 int err;
2868 unsigned long flags;
2869
2870 err = kstrtoul(buf, 10, &flags);
2871 if (err || flags > UINT_MAX)
2872 return -EINVAL;
2873 if (flags > KSM_RUN_UNMERGE)
2874 return -EINVAL;
2875
2876 /*
2877 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2878 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2879 * breaking COW to free the pages_shared (but leaves mm_slots
2880 * on the list for when ksmd may be set running again).
2881 */
2882
2883 mutex_lock(&ksm_thread_mutex);
2884 wait_while_offlining();
2885 if (ksm_run != flags) {
2886 ksm_run = flags;
2887 if (flags & KSM_RUN_UNMERGE) {
2888 set_current_oom_origin();
2889 err = unmerge_and_remove_all_rmap_items();
2890 clear_current_oom_origin();
2891 if (err) {
2892 ksm_run = KSM_RUN_STOP;
2893 count = err;
2894 }
2895 }
2896 }
2897 mutex_unlock(&ksm_thread_mutex);
2898
2899 if (flags & KSM_RUN_MERGE)
2900 wake_up_interruptible(&ksm_thread_wait);
2901
2902 return count;
2903 }
2904 KSM_ATTR(run);
2905
2906 #ifdef CONFIG_NUMA
2907 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2908 struct kobj_attribute *attr, char *buf)
2909 {
2910 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2911 }
2912
2913 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2914 struct kobj_attribute *attr,
2915 const char *buf, size_t count)
2916 {
2917 int err;
2918 unsigned long knob;
2919
2920 err = kstrtoul(buf, 10, &knob);
2921 if (err)
2922 return err;
2923 if (knob > 1)
2924 return -EINVAL;
2925
2926 mutex_lock(&ksm_thread_mutex);
2927 wait_while_offlining();
2928 if (ksm_merge_across_nodes != knob) {
2929 if (ksm_pages_shared || remove_all_stable_nodes())
2930 err = -EBUSY;
2931 else if (root_stable_tree == one_stable_tree) {
2932 struct rb_root *buf;
2933 /*
2934 * This is the first time that we switch away from the
2935 * default of merging across nodes: must now allocate
2936 * a buffer to hold as many roots as may be needed.
2937 * Allocate stable and unstable together:
2938 * MAXSMP NODES_SHIFT 10 will use 16kB.
2939 */
2940 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2941 GFP_KERNEL);
2942 /* Let us assume that RB_ROOT is NULL is zero */
2943 if (!buf)
2944 err = -ENOMEM;
2945 else {
2946 root_stable_tree = buf;
2947 root_unstable_tree = buf + nr_node_ids;
2948 /* Stable tree is empty but not the unstable */
2949 root_unstable_tree[0] = one_unstable_tree[0];
2950 }
2951 }
2952 if (!err) {
2953 ksm_merge_across_nodes = knob;
2954 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2955 }
2956 }
2957 mutex_unlock(&ksm_thread_mutex);
2958
2959 return err ? err : count;
2960 }
2961 KSM_ATTR(merge_across_nodes);
2962 #endif
2963
2964 static ssize_t use_zero_pages_show(struct kobject *kobj,
2965 struct kobj_attribute *attr, char *buf)
2966 {
2967 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2968 }
2969 static ssize_t use_zero_pages_store(struct kobject *kobj,
2970 struct kobj_attribute *attr,
2971 const char *buf, size_t count)
2972 {
2973 int err;
2974 bool value;
2975
2976 err = kstrtobool(buf, &value);
2977 if (err)
2978 return -EINVAL;
2979
2980 ksm_use_zero_pages = value;
2981
2982 return count;
2983 }
2984 KSM_ATTR(use_zero_pages);
2985
2986 static ssize_t max_page_sharing_show(struct kobject *kobj,
2987 struct kobj_attribute *attr, char *buf)
2988 {
2989 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2990 }
2991
2992 static ssize_t max_page_sharing_store(struct kobject *kobj,
2993 struct kobj_attribute *attr,
2994 const char *buf, size_t count)
2995 {
2996 int err;
2997 int knob;
2998
2999 err = kstrtoint(buf, 10, &knob);
3000 if (err)
3001 return err;
3002 /*
3003 * When a KSM page is created it is shared by 2 mappings. This
3004 * being a signed comparison, it implicitly verifies it's not
3005 * negative.
3006 */
3007 if (knob < 2)
3008 return -EINVAL;
3009
3010 if (READ_ONCE(ksm_max_page_sharing) == knob)
3011 return count;
3012
3013 mutex_lock(&ksm_thread_mutex);
3014 wait_while_offlining();
3015 if (ksm_max_page_sharing != knob) {
3016 if (ksm_pages_shared || remove_all_stable_nodes())
3017 err = -EBUSY;
3018 else
3019 ksm_max_page_sharing = knob;
3020 }
3021 mutex_unlock(&ksm_thread_mutex);
3022
3023 return err ? err : count;
3024 }
3025 KSM_ATTR(max_page_sharing);
3026
3027 static ssize_t pages_shared_show(struct kobject *kobj,
3028 struct kobj_attribute *attr, char *buf)
3029 {
3030 return sprintf(buf, "%lu\n", ksm_pages_shared);
3031 }
3032 KSM_ATTR_RO(pages_shared);
3033
3034 static ssize_t pages_sharing_show(struct kobject *kobj,
3035 struct kobj_attribute *attr, char *buf)
3036 {
3037 return sprintf(buf, "%lu\n", ksm_pages_sharing);
3038 }
3039 KSM_ATTR_RO(pages_sharing);
3040
3041 static ssize_t pages_unshared_show(struct kobject *kobj,
3042 struct kobj_attribute *attr, char *buf)
3043 {
3044 return sprintf(buf, "%lu\n", ksm_pages_unshared);
3045 }
3046 KSM_ATTR_RO(pages_unshared);
3047
3048 static ssize_t pages_volatile_show(struct kobject *kobj,
3049 struct kobj_attribute *attr, char *buf)
3050 {
3051 long ksm_pages_volatile;
3052
3053 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3054 - ksm_pages_sharing - ksm_pages_unshared;
3055 /*
3056 * It was not worth any locking to calculate that statistic,
3057 * but it might therefore sometimes be negative: conceal that.
3058 */
3059 if (ksm_pages_volatile < 0)
3060 ksm_pages_volatile = 0;
3061 return sprintf(buf, "%ld\n", ksm_pages_volatile);
3062 }
3063 KSM_ATTR_RO(pages_volatile);
3064
3065 static ssize_t stable_node_dups_show(struct kobject *kobj,
3066 struct kobj_attribute *attr, char *buf)
3067 {
3068 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3069 }
3070 KSM_ATTR_RO(stable_node_dups);
3071
3072 static ssize_t stable_node_chains_show(struct kobject *kobj,
3073 struct kobj_attribute *attr, char *buf)
3074 {
3075 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3076 }
3077 KSM_ATTR_RO(stable_node_chains);
3078
3079 static ssize_t
3080 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3081 struct kobj_attribute *attr,
3082 char *buf)
3083 {
3084 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3085 }
3086
3087 static ssize_t
3088 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3089 struct kobj_attribute *attr,
3090 const char *buf, size_t count)
3091 {
3092 unsigned long msecs;
3093 int err;
3094
3095 err = kstrtoul(buf, 10, &msecs);
3096 if (err || msecs > UINT_MAX)
3097 return -EINVAL;
3098
3099 ksm_stable_node_chains_prune_millisecs = msecs;
3100
3101 return count;
3102 }
3103 KSM_ATTR(stable_node_chains_prune_millisecs);
3104
3105 static ssize_t full_scans_show(struct kobject *kobj,
3106 struct kobj_attribute *attr, char *buf)
3107 {
3108 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3109 }
3110 KSM_ATTR_RO(full_scans);
3111
3112 static struct attribute *ksm_attrs[] = {
3113 &sleep_millisecs_attr.attr,
3114 &pages_to_scan_attr.attr,
3115 &run_attr.attr,
3116 &pages_shared_attr.attr,
3117 &pages_sharing_attr.attr,
3118 &pages_unshared_attr.attr,
3119 &pages_volatile_attr.attr,
3120 &full_scans_attr.attr,
3121 #ifdef CONFIG_NUMA
3122 &merge_across_nodes_attr.attr,
3123 #endif
3124 &max_page_sharing_attr.attr,
3125 &stable_node_chains_attr.attr,
3126 &stable_node_dups_attr.attr,
3127 &stable_node_chains_prune_millisecs_attr.attr,
3128 &use_zero_pages_attr.attr,
3129 NULL,
3130 };
3131
3132 static const struct attribute_group ksm_attr_group = {
3133 .attrs = ksm_attrs,
3134 .name = "ksm",
3135 };
3136 #endif /* CONFIG_SYSFS */
3137
3138 static int __init ksm_init(void)
3139 {
3140 struct task_struct *ksm_thread;
3141 int err;
3142
3143 /* The correct value depends on page size and endianness */
3144 zero_checksum = calc_checksum(ZERO_PAGE(0));
3145 /* Default to false for backwards compatibility */
3146 ksm_use_zero_pages = false;
3147
3148 err = ksm_slab_init();
3149 if (err)
3150 goto out;
3151
3152 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3153 if (IS_ERR(ksm_thread)) {
3154 pr_err("ksm: creating kthread failed\n");
3155 err = PTR_ERR(ksm_thread);
3156 goto out_free;
3157 }
3158
3159 #ifdef CONFIG_SYSFS
3160 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3161 if (err) {
3162 pr_err("ksm: register sysfs failed\n");
3163 kthread_stop(ksm_thread);
3164 goto out_free;
3165 }
3166 #else
3167 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3168
3169 #endif /* CONFIG_SYSFS */
3170
3171 #ifdef CONFIG_MEMORY_HOTREMOVE
3172 /* There is no significance to this priority 100 */
3173 hotplug_memory_notifier(ksm_memory_callback, 100);
3174 #endif
3175 return 0;
3176
3177 out_free:
3178 ksm_slab_free();
3179 out:
3180 return err;
3181 }
3182 subsys_initcall(ksm_init);