]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/ksm.c
mm, ksm: convert write_protect_page() to use page_vma_mapped_walk()
[mirror_ubuntu-zesty-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @list: linked into migrate_nodes, pending placement in the proper node tree
130 * @hlist: hlist head of rmap_items using this ksm page
131 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
132 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
133 */
134 struct stable_node {
135 union {
136 struct rb_node node; /* when node of stable tree */
137 struct { /* when listed for migration */
138 struct list_head *head;
139 struct list_head list;
140 };
141 };
142 struct hlist_head hlist;
143 unsigned long kpfn;
144 #ifdef CONFIG_NUMA
145 int nid;
146 #endif
147 };
148
149 /**
150 * struct rmap_item - reverse mapping item for virtual addresses
151 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
152 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
153 * @nid: NUMA node id of unstable tree in which linked (may not match page)
154 * @mm: the memory structure this rmap_item is pointing into
155 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
156 * @oldchecksum: previous checksum of the page at that virtual address
157 * @node: rb node of this rmap_item in the unstable tree
158 * @head: pointer to stable_node heading this list in the stable tree
159 * @hlist: link into hlist of rmap_items hanging off that stable_node
160 */
161 struct rmap_item {
162 struct rmap_item *rmap_list;
163 union {
164 struct anon_vma *anon_vma; /* when stable */
165 #ifdef CONFIG_NUMA
166 int nid; /* when node of unstable tree */
167 #endif
168 };
169 struct mm_struct *mm;
170 unsigned long address; /* + low bits used for flags below */
171 unsigned int oldchecksum; /* when unstable */
172 union {
173 struct rb_node node; /* when node of unstable tree */
174 struct { /* when listed from stable tree */
175 struct stable_node *head;
176 struct hlist_node hlist;
177 };
178 };
179 };
180
181 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
182 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
183 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
184
185 /* The stable and unstable tree heads */
186 static struct rb_root one_stable_tree[1] = { RB_ROOT };
187 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
188 static struct rb_root *root_stable_tree = one_stable_tree;
189 static struct rb_root *root_unstable_tree = one_unstable_tree;
190
191 /* Recently migrated nodes of stable tree, pending proper placement */
192 static LIST_HEAD(migrate_nodes);
193
194 #define MM_SLOTS_HASH_BITS 10
195 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
196
197 static struct mm_slot ksm_mm_head = {
198 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
199 };
200 static struct ksm_scan ksm_scan = {
201 .mm_slot = &ksm_mm_head,
202 };
203
204 static struct kmem_cache *rmap_item_cache;
205 static struct kmem_cache *stable_node_cache;
206 static struct kmem_cache *mm_slot_cache;
207
208 /* The number of nodes in the stable tree */
209 static unsigned long ksm_pages_shared;
210
211 /* The number of page slots additionally sharing those nodes */
212 static unsigned long ksm_pages_sharing;
213
214 /* The number of nodes in the unstable tree */
215 static unsigned long ksm_pages_unshared;
216
217 /* The number of rmap_items in use: to calculate pages_volatile */
218 static unsigned long ksm_rmap_items;
219
220 /* Number of pages ksmd should scan in one batch */
221 static unsigned int ksm_thread_pages_to_scan = 100;
222
223 /* Milliseconds ksmd should sleep between batches */
224 static unsigned int ksm_thread_sleep_millisecs = 20;
225
226 /* Checksum of an empty (zeroed) page */
227 static unsigned int zero_checksum __read_mostly;
228
229 /* Whether to merge empty (zeroed) pages with actual zero pages */
230 static bool ksm_use_zero_pages __read_mostly;
231
232 #ifdef CONFIG_NUMA
233 /* Zeroed when merging across nodes is not allowed */
234 static unsigned int ksm_merge_across_nodes = 1;
235 static int ksm_nr_node_ids = 1;
236 #else
237 #define ksm_merge_across_nodes 1U
238 #define ksm_nr_node_ids 1
239 #endif
240
241 #define KSM_RUN_STOP 0
242 #define KSM_RUN_MERGE 1
243 #define KSM_RUN_UNMERGE 2
244 #define KSM_RUN_OFFLINE 4
245 static unsigned long ksm_run = KSM_RUN_STOP;
246 static void wait_while_offlining(void);
247
248 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
249 static DEFINE_MUTEX(ksm_thread_mutex);
250 static DEFINE_SPINLOCK(ksm_mmlist_lock);
251
252 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
253 sizeof(struct __struct), __alignof__(struct __struct),\
254 (__flags), NULL)
255
256 static int __init ksm_slab_init(void)
257 {
258 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
259 if (!rmap_item_cache)
260 goto out;
261
262 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
263 if (!stable_node_cache)
264 goto out_free1;
265
266 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
267 if (!mm_slot_cache)
268 goto out_free2;
269
270 return 0;
271
272 out_free2:
273 kmem_cache_destroy(stable_node_cache);
274 out_free1:
275 kmem_cache_destroy(rmap_item_cache);
276 out:
277 return -ENOMEM;
278 }
279
280 static void __init ksm_slab_free(void)
281 {
282 kmem_cache_destroy(mm_slot_cache);
283 kmem_cache_destroy(stable_node_cache);
284 kmem_cache_destroy(rmap_item_cache);
285 mm_slot_cache = NULL;
286 }
287
288 static inline struct rmap_item *alloc_rmap_item(void)
289 {
290 struct rmap_item *rmap_item;
291
292 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
293 __GFP_NORETRY | __GFP_NOWARN);
294 if (rmap_item)
295 ksm_rmap_items++;
296 return rmap_item;
297 }
298
299 static inline void free_rmap_item(struct rmap_item *rmap_item)
300 {
301 ksm_rmap_items--;
302 rmap_item->mm = NULL; /* debug safety */
303 kmem_cache_free(rmap_item_cache, rmap_item);
304 }
305
306 static inline struct stable_node *alloc_stable_node(void)
307 {
308 /*
309 * The allocation can take too long with GFP_KERNEL when memory is under
310 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
311 * grants access to memory reserves, helping to avoid this problem.
312 */
313 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
314 }
315
316 static inline void free_stable_node(struct stable_node *stable_node)
317 {
318 kmem_cache_free(stable_node_cache, stable_node);
319 }
320
321 static inline struct mm_slot *alloc_mm_slot(void)
322 {
323 if (!mm_slot_cache) /* initialization failed */
324 return NULL;
325 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
326 }
327
328 static inline void free_mm_slot(struct mm_slot *mm_slot)
329 {
330 kmem_cache_free(mm_slot_cache, mm_slot);
331 }
332
333 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
334 {
335 struct mm_slot *slot;
336
337 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
338 if (slot->mm == mm)
339 return slot;
340
341 return NULL;
342 }
343
344 static void insert_to_mm_slots_hash(struct mm_struct *mm,
345 struct mm_slot *mm_slot)
346 {
347 mm_slot->mm = mm;
348 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
349 }
350
351 /*
352 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
353 * page tables after it has passed through ksm_exit() - which, if necessary,
354 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
355 * a special flag: they can just back out as soon as mm_users goes to zero.
356 * ksm_test_exit() is used throughout to make this test for exit: in some
357 * places for correctness, in some places just to avoid unnecessary work.
358 */
359 static inline bool ksm_test_exit(struct mm_struct *mm)
360 {
361 return atomic_read(&mm->mm_users) == 0;
362 }
363
364 /*
365 * We use break_ksm to break COW on a ksm page: it's a stripped down
366 *
367 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
368 * put_page(page);
369 *
370 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
371 * in case the application has unmapped and remapped mm,addr meanwhile.
372 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
373 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
374 *
375 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
376 * of the process that owns 'vma'. We also do not want to enforce
377 * protection keys here anyway.
378 */
379 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
380 {
381 struct page *page;
382 int ret = 0;
383
384 do {
385 cond_resched();
386 page = follow_page(vma, addr,
387 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
388 if (IS_ERR_OR_NULL(page))
389 break;
390 if (PageKsm(page))
391 ret = handle_mm_fault(vma, addr,
392 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
393 else
394 ret = VM_FAULT_WRITE;
395 put_page(page);
396 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
397 /*
398 * We must loop because handle_mm_fault() may back out if there's
399 * any difficulty e.g. if pte accessed bit gets updated concurrently.
400 *
401 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
402 * COW has been broken, even if the vma does not permit VM_WRITE;
403 * but note that a concurrent fault might break PageKsm for us.
404 *
405 * VM_FAULT_SIGBUS could occur if we race with truncation of the
406 * backing file, which also invalidates anonymous pages: that's
407 * okay, that truncation will have unmapped the PageKsm for us.
408 *
409 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
410 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
411 * current task has TIF_MEMDIE set, and will be OOM killed on return
412 * to user; and ksmd, having no mm, would never be chosen for that.
413 *
414 * But if the mm is in a limited mem_cgroup, then the fault may fail
415 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
416 * even ksmd can fail in this way - though it's usually breaking ksm
417 * just to undo a merge it made a moment before, so unlikely to oom.
418 *
419 * That's a pity: we might therefore have more kernel pages allocated
420 * than we're counting as nodes in the stable tree; but ksm_do_scan
421 * will retry to break_cow on each pass, so should recover the page
422 * in due course. The important thing is to not let VM_MERGEABLE
423 * be cleared while any such pages might remain in the area.
424 */
425 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
426 }
427
428 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
429 unsigned long addr)
430 {
431 struct vm_area_struct *vma;
432 if (ksm_test_exit(mm))
433 return NULL;
434 vma = find_vma(mm, addr);
435 if (!vma || vma->vm_start > addr)
436 return NULL;
437 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
438 return NULL;
439 return vma;
440 }
441
442 static void break_cow(struct rmap_item *rmap_item)
443 {
444 struct mm_struct *mm = rmap_item->mm;
445 unsigned long addr = rmap_item->address;
446 struct vm_area_struct *vma;
447
448 /*
449 * It is not an accident that whenever we want to break COW
450 * to undo, we also need to drop a reference to the anon_vma.
451 */
452 put_anon_vma(rmap_item->anon_vma);
453
454 down_read(&mm->mmap_sem);
455 vma = find_mergeable_vma(mm, addr);
456 if (vma)
457 break_ksm(vma, addr);
458 up_read(&mm->mmap_sem);
459 }
460
461 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
462 {
463 struct mm_struct *mm = rmap_item->mm;
464 unsigned long addr = rmap_item->address;
465 struct vm_area_struct *vma;
466 struct page *page;
467
468 down_read(&mm->mmap_sem);
469 vma = find_mergeable_vma(mm, addr);
470 if (!vma)
471 goto out;
472
473 page = follow_page(vma, addr, FOLL_GET);
474 if (IS_ERR_OR_NULL(page))
475 goto out;
476 if (PageAnon(page)) {
477 flush_anon_page(vma, page, addr);
478 flush_dcache_page(page);
479 } else {
480 put_page(page);
481 out:
482 page = NULL;
483 }
484 up_read(&mm->mmap_sem);
485 return page;
486 }
487
488 /*
489 * This helper is used for getting right index into array of tree roots.
490 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
491 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
492 * every node has its own stable and unstable tree.
493 */
494 static inline int get_kpfn_nid(unsigned long kpfn)
495 {
496 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
497 }
498
499 static void remove_node_from_stable_tree(struct stable_node *stable_node)
500 {
501 struct rmap_item *rmap_item;
502
503 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
504 if (rmap_item->hlist.next)
505 ksm_pages_sharing--;
506 else
507 ksm_pages_shared--;
508 put_anon_vma(rmap_item->anon_vma);
509 rmap_item->address &= PAGE_MASK;
510 cond_resched();
511 }
512
513 if (stable_node->head == &migrate_nodes)
514 list_del(&stable_node->list);
515 else
516 rb_erase(&stable_node->node,
517 root_stable_tree + NUMA(stable_node->nid));
518 free_stable_node(stable_node);
519 }
520
521 /*
522 * get_ksm_page: checks if the page indicated by the stable node
523 * is still its ksm page, despite having held no reference to it.
524 * In which case we can trust the content of the page, and it
525 * returns the gotten page; but if the page has now been zapped,
526 * remove the stale node from the stable tree and return NULL.
527 * But beware, the stable node's page might be being migrated.
528 *
529 * You would expect the stable_node to hold a reference to the ksm page.
530 * But if it increments the page's count, swapping out has to wait for
531 * ksmd to come around again before it can free the page, which may take
532 * seconds or even minutes: much too unresponsive. So instead we use a
533 * "keyhole reference": access to the ksm page from the stable node peeps
534 * out through its keyhole to see if that page still holds the right key,
535 * pointing back to this stable node. This relies on freeing a PageAnon
536 * page to reset its page->mapping to NULL, and relies on no other use of
537 * a page to put something that might look like our key in page->mapping.
538 * is on its way to being freed; but it is an anomaly to bear in mind.
539 */
540 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
541 {
542 struct page *page;
543 void *expected_mapping;
544 unsigned long kpfn;
545
546 expected_mapping = (void *)((unsigned long)stable_node |
547 PAGE_MAPPING_KSM);
548 again:
549 kpfn = READ_ONCE(stable_node->kpfn);
550 page = pfn_to_page(kpfn);
551
552 /*
553 * page is computed from kpfn, so on most architectures reading
554 * page->mapping is naturally ordered after reading node->kpfn,
555 * but on Alpha we need to be more careful.
556 */
557 smp_read_barrier_depends();
558 if (READ_ONCE(page->mapping) != expected_mapping)
559 goto stale;
560
561 /*
562 * We cannot do anything with the page while its refcount is 0.
563 * Usually 0 means free, or tail of a higher-order page: in which
564 * case this node is no longer referenced, and should be freed;
565 * however, it might mean that the page is under page_freeze_refs().
566 * The __remove_mapping() case is easy, again the node is now stale;
567 * but if page is swapcache in migrate_page_move_mapping(), it might
568 * still be our page, in which case it's essential to keep the node.
569 */
570 while (!get_page_unless_zero(page)) {
571 /*
572 * Another check for page->mapping != expected_mapping would
573 * work here too. We have chosen the !PageSwapCache test to
574 * optimize the common case, when the page is or is about to
575 * be freed: PageSwapCache is cleared (under spin_lock_irq)
576 * in the freeze_refs section of __remove_mapping(); but Anon
577 * page->mapping reset to NULL later, in free_pages_prepare().
578 */
579 if (!PageSwapCache(page))
580 goto stale;
581 cpu_relax();
582 }
583
584 if (READ_ONCE(page->mapping) != expected_mapping) {
585 put_page(page);
586 goto stale;
587 }
588
589 if (lock_it) {
590 lock_page(page);
591 if (READ_ONCE(page->mapping) != expected_mapping) {
592 unlock_page(page);
593 put_page(page);
594 goto stale;
595 }
596 }
597 return page;
598
599 stale:
600 /*
601 * We come here from above when page->mapping or !PageSwapCache
602 * suggests that the node is stale; but it might be under migration.
603 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
604 * before checking whether node->kpfn has been changed.
605 */
606 smp_rmb();
607 if (READ_ONCE(stable_node->kpfn) != kpfn)
608 goto again;
609 remove_node_from_stable_tree(stable_node);
610 return NULL;
611 }
612
613 /*
614 * Removing rmap_item from stable or unstable tree.
615 * This function will clean the information from the stable/unstable tree.
616 */
617 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
618 {
619 if (rmap_item->address & STABLE_FLAG) {
620 struct stable_node *stable_node;
621 struct page *page;
622
623 stable_node = rmap_item->head;
624 page = get_ksm_page(stable_node, true);
625 if (!page)
626 goto out;
627
628 hlist_del(&rmap_item->hlist);
629 unlock_page(page);
630 put_page(page);
631
632 if (!hlist_empty(&stable_node->hlist))
633 ksm_pages_sharing--;
634 else
635 ksm_pages_shared--;
636
637 put_anon_vma(rmap_item->anon_vma);
638 rmap_item->address &= PAGE_MASK;
639
640 } else if (rmap_item->address & UNSTABLE_FLAG) {
641 unsigned char age;
642 /*
643 * Usually ksmd can and must skip the rb_erase, because
644 * root_unstable_tree was already reset to RB_ROOT.
645 * But be careful when an mm is exiting: do the rb_erase
646 * if this rmap_item was inserted by this scan, rather
647 * than left over from before.
648 */
649 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
650 BUG_ON(age > 1);
651 if (!age)
652 rb_erase(&rmap_item->node,
653 root_unstable_tree + NUMA(rmap_item->nid));
654 ksm_pages_unshared--;
655 rmap_item->address &= PAGE_MASK;
656 }
657 out:
658 cond_resched(); /* we're called from many long loops */
659 }
660
661 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
662 struct rmap_item **rmap_list)
663 {
664 while (*rmap_list) {
665 struct rmap_item *rmap_item = *rmap_list;
666 *rmap_list = rmap_item->rmap_list;
667 remove_rmap_item_from_tree(rmap_item);
668 free_rmap_item(rmap_item);
669 }
670 }
671
672 /*
673 * Though it's very tempting to unmerge rmap_items from stable tree rather
674 * than check every pte of a given vma, the locking doesn't quite work for
675 * that - an rmap_item is assigned to the stable tree after inserting ksm
676 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
677 * rmap_items from parent to child at fork time (so as not to waste time
678 * if exit comes before the next scan reaches it).
679 *
680 * Similarly, although we'd like to remove rmap_items (so updating counts
681 * and freeing memory) when unmerging an area, it's easier to leave that
682 * to the next pass of ksmd - consider, for example, how ksmd might be
683 * in cmp_and_merge_page on one of the rmap_items we would be removing.
684 */
685 static int unmerge_ksm_pages(struct vm_area_struct *vma,
686 unsigned long start, unsigned long end)
687 {
688 unsigned long addr;
689 int err = 0;
690
691 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
692 if (ksm_test_exit(vma->vm_mm))
693 break;
694 if (signal_pending(current))
695 err = -ERESTARTSYS;
696 else
697 err = break_ksm(vma, addr);
698 }
699 return err;
700 }
701
702 #ifdef CONFIG_SYSFS
703 /*
704 * Only called through the sysfs control interface:
705 */
706 static int remove_stable_node(struct stable_node *stable_node)
707 {
708 struct page *page;
709 int err;
710
711 page = get_ksm_page(stable_node, true);
712 if (!page) {
713 /*
714 * get_ksm_page did remove_node_from_stable_tree itself.
715 */
716 return 0;
717 }
718
719 if (WARN_ON_ONCE(page_mapped(page))) {
720 /*
721 * This should not happen: but if it does, just refuse to let
722 * merge_across_nodes be switched - there is no need to panic.
723 */
724 err = -EBUSY;
725 } else {
726 /*
727 * The stable node did not yet appear stale to get_ksm_page(),
728 * since that allows for an unmapped ksm page to be recognized
729 * right up until it is freed; but the node is safe to remove.
730 * This page might be in a pagevec waiting to be freed,
731 * or it might be PageSwapCache (perhaps under writeback),
732 * or it might have been removed from swapcache a moment ago.
733 */
734 set_page_stable_node(page, NULL);
735 remove_node_from_stable_tree(stable_node);
736 err = 0;
737 }
738
739 unlock_page(page);
740 put_page(page);
741 return err;
742 }
743
744 static int remove_all_stable_nodes(void)
745 {
746 struct stable_node *stable_node, *next;
747 int nid;
748 int err = 0;
749
750 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
751 while (root_stable_tree[nid].rb_node) {
752 stable_node = rb_entry(root_stable_tree[nid].rb_node,
753 struct stable_node, node);
754 if (remove_stable_node(stable_node)) {
755 err = -EBUSY;
756 break; /* proceed to next nid */
757 }
758 cond_resched();
759 }
760 }
761 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
762 if (remove_stable_node(stable_node))
763 err = -EBUSY;
764 cond_resched();
765 }
766 return err;
767 }
768
769 static int unmerge_and_remove_all_rmap_items(void)
770 {
771 struct mm_slot *mm_slot;
772 struct mm_struct *mm;
773 struct vm_area_struct *vma;
774 int err = 0;
775
776 spin_lock(&ksm_mmlist_lock);
777 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
778 struct mm_slot, mm_list);
779 spin_unlock(&ksm_mmlist_lock);
780
781 for (mm_slot = ksm_scan.mm_slot;
782 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
783 mm = mm_slot->mm;
784 down_read(&mm->mmap_sem);
785 for (vma = mm->mmap; vma; vma = vma->vm_next) {
786 if (ksm_test_exit(mm))
787 break;
788 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
789 continue;
790 err = unmerge_ksm_pages(vma,
791 vma->vm_start, vma->vm_end);
792 if (err)
793 goto error;
794 }
795
796 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
797 up_read(&mm->mmap_sem);
798
799 spin_lock(&ksm_mmlist_lock);
800 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
801 struct mm_slot, mm_list);
802 if (ksm_test_exit(mm)) {
803 hash_del(&mm_slot->link);
804 list_del(&mm_slot->mm_list);
805 spin_unlock(&ksm_mmlist_lock);
806
807 free_mm_slot(mm_slot);
808 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
809 mmdrop(mm);
810 } else
811 spin_unlock(&ksm_mmlist_lock);
812 }
813
814 /* Clean up stable nodes, but don't worry if some are still busy */
815 remove_all_stable_nodes();
816 ksm_scan.seqnr = 0;
817 return 0;
818
819 error:
820 up_read(&mm->mmap_sem);
821 spin_lock(&ksm_mmlist_lock);
822 ksm_scan.mm_slot = &ksm_mm_head;
823 spin_unlock(&ksm_mmlist_lock);
824 return err;
825 }
826 #endif /* CONFIG_SYSFS */
827
828 static u32 calc_checksum(struct page *page)
829 {
830 u32 checksum;
831 void *addr = kmap_atomic(page);
832 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
833 kunmap_atomic(addr);
834 return checksum;
835 }
836
837 static int memcmp_pages(struct page *page1, struct page *page2)
838 {
839 char *addr1, *addr2;
840 int ret;
841
842 addr1 = kmap_atomic(page1);
843 addr2 = kmap_atomic(page2);
844 ret = memcmp(addr1, addr2, PAGE_SIZE);
845 kunmap_atomic(addr2);
846 kunmap_atomic(addr1);
847 return ret;
848 }
849
850 static inline int pages_identical(struct page *page1, struct page *page2)
851 {
852 return !memcmp_pages(page1, page2);
853 }
854
855 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
856 pte_t *orig_pte)
857 {
858 struct mm_struct *mm = vma->vm_mm;
859 struct page_vma_mapped_walk pvmw = {
860 .page = page,
861 .vma = vma,
862 };
863 int swapped;
864 int err = -EFAULT;
865 unsigned long mmun_start; /* For mmu_notifiers */
866 unsigned long mmun_end; /* For mmu_notifiers */
867
868 pvmw.address = page_address_in_vma(page, vma);
869 if (pvmw.address == -EFAULT)
870 goto out;
871
872 BUG_ON(PageTransCompound(page));
873
874 mmun_start = pvmw.address;
875 mmun_end = pvmw.address + PAGE_SIZE;
876 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
877
878 if (!page_vma_mapped_walk(&pvmw))
879 goto out_mn;
880 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
881 goto out_unlock;
882
883 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte)) {
884 pte_t entry;
885
886 swapped = PageSwapCache(page);
887 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
888 /*
889 * Ok this is tricky, when get_user_pages_fast() run it doesn't
890 * take any lock, therefore the check that we are going to make
891 * with the pagecount against the mapcount is racey and
892 * O_DIRECT can happen right after the check.
893 * So we clear the pte and flush the tlb before the check
894 * this assure us that no O_DIRECT can happen after the check
895 * or in the middle of the check.
896 */
897 entry = ptep_clear_flush_notify(vma, pvmw.address, pvmw.pte);
898 /*
899 * Check that no O_DIRECT or similar I/O is in progress on the
900 * page
901 */
902 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
903 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
904 goto out_unlock;
905 }
906 if (pte_dirty(entry))
907 set_page_dirty(page);
908 entry = pte_mkclean(pte_wrprotect(entry));
909 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
910 }
911 *orig_pte = *pvmw.pte;
912 err = 0;
913
914 out_unlock:
915 page_vma_mapped_walk_done(&pvmw);
916 out_mn:
917 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
918 out:
919 return err;
920 }
921
922 /**
923 * replace_page - replace page in vma by new ksm page
924 * @vma: vma that holds the pte pointing to page
925 * @page: the page we are replacing by kpage
926 * @kpage: the ksm page we replace page by
927 * @orig_pte: the original value of the pte
928 *
929 * Returns 0 on success, -EFAULT on failure.
930 */
931 static int replace_page(struct vm_area_struct *vma, struct page *page,
932 struct page *kpage, pte_t orig_pte)
933 {
934 struct mm_struct *mm = vma->vm_mm;
935 pmd_t *pmd;
936 pte_t *ptep;
937 pte_t newpte;
938 spinlock_t *ptl;
939 unsigned long addr;
940 int err = -EFAULT;
941 unsigned long mmun_start; /* For mmu_notifiers */
942 unsigned long mmun_end; /* For mmu_notifiers */
943
944 addr = page_address_in_vma(page, vma);
945 if (addr == -EFAULT)
946 goto out;
947
948 pmd = mm_find_pmd(mm, addr);
949 if (!pmd)
950 goto out;
951
952 mmun_start = addr;
953 mmun_end = addr + PAGE_SIZE;
954 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
955
956 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
957 if (!pte_same(*ptep, orig_pte)) {
958 pte_unmap_unlock(ptep, ptl);
959 goto out_mn;
960 }
961
962 /*
963 * No need to check ksm_use_zero_pages here: we can only have a
964 * zero_page here if ksm_use_zero_pages was enabled alreaady.
965 */
966 if (!is_zero_pfn(page_to_pfn(kpage))) {
967 get_page(kpage);
968 page_add_anon_rmap(kpage, vma, addr, false);
969 newpte = mk_pte(kpage, vma->vm_page_prot);
970 } else {
971 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
972 vma->vm_page_prot));
973 }
974
975 flush_cache_page(vma, addr, pte_pfn(*ptep));
976 ptep_clear_flush_notify(vma, addr, ptep);
977 set_pte_at_notify(mm, addr, ptep, newpte);
978
979 page_remove_rmap(page, false);
980 if (!page_mapped(page))
981 try_to_free_swap(page);
982 put_page(page);
983
984 pte_unmap_unlock(ptep, ptl);
985 err = 0;
986 out_mn:
987 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
988 out:
989 return err;
990 }
991
992 /*
993 * try_to_merge_one_page - take two pages and merge them into one
994 * @vma: the vma that holds the pte pointing to page
995 * @page: the PageAnon page that we want to replace with kpage
996 * @kpage: the PageKsm page that we want to map instead of page,
997 * or NULL the first time when we want to use page as kpage.
998 *
999 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1000 */
1001 static int try_to_merge_one_page(struct vm_area_struct *vma,
1002 struct page *page, struct page *kpage)
1003 {
1004 pte_t orig_pte = __pte(0);
1005 int err = -EFAULT;
1006
1007 if (page == kpage) /* ksm page forked */
1008 return 0;
1009
1010 if (!PageAnon(page))
1011 goto out;
1012
1013 /*
1014 * We need the page lock to read a stable PageSwapCache in
1015 * write_protect_page(). We use trylock_page() instead of
1016 * lock_page() because we don't want to wait here - we
1017 * prefer to continue scanning and merging different pages,
1018 * then come back to this page when it is unlocked.
1019 */
1020 if (!trylock_page(page))
1021 goto out;
1022
1023 if (PageTransCompound(page)) {
1024 err = split_huge_page(page);
1025 if (err)
1026 goto out_unlock;
1027 }
1028
1029 /*
1030 * If this anonymous page is mapped only here, its pte may need
1031 * to be write-protected. If it's mapped elsewhere, all of its
1032 * ptes are necessarily already write-protected. But in either
1033 * case, we need to lock and check page_count is not raised.
1034 */
1035 if (write_protect_page(vma, page, &orig_pte) == 0) {
1036 if (!kpage) {
1037 /*
1038 * While we hold page lock, upgrade page from
1039 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1040 * stable_tree_insert() will update stable_node.
1041 */
1042 set_page_stable_node(page, NULL);
1043 mark_page_accessed(page);
1044 /*
1045 * Page reclaim just frees a clean page with no dirty
1046 * ptes: make sure that the ksm page would be swapped.
1047 */
1048 if (!PageDirty(page))
1049 SetPageDirty(page);
1050 err = 0;
1051 } else if (pages_identical(page, kpage))
1052 err = replace_page(vma, page, kpage, orig_pte);
1053 }
1054
1055 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1056 munlock_vma_page(page);
1057 if (!PageMlocked(kpage)) {
1058 unlock_page(page);
1059 lock_page(kpage);
1060 mlock_vma_page(kpage);
1061 page = kpage; /* for final unlock */
1062 }
1063 }
1064
1065 out_unlock:
1066 unlock_page(page);
1067 out:
1068 return err;
1069 }
1070
1071 /*
1072 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1073 * but no new kernel page is allocated: kpage must already be a ksm page.
1074 *
1075 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1076 */
1077 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1078 struct page *page, struct page *kpage)
1079 {
1080 struct mm_struct *mm = rmap_item->mm;
1081 struct vm_area_struct *vma;
1082 int err = -EFAULT;
1083
1084 down_read(&mm->mmap_sem);
1085 vma = find_mergeable_vma(mm, rmap_item->address);
1086 if (!vma)
1087 goto out;
1088
1089 err = try_to_merge_one_page(vma, page, kpage);
1090 if (err)
1091 goto out;
1092
1093 /* Unstable nid is in union with stable anon_vma: remove first */
1094 remove_rmap_item_from_tree(rmap_item);
1095
1096 /* Must get reference to anon_vma while still holding mmap_sem */
1097 rmap_item->anon_vma = vma->anon_vma;
1098 get_anon_vma(vma->anon_vma);
1099 out:
1100 up_read(&mm->mmap_sem);
1101 return err;
1102 }
1103
1104 /*
1105 * try_to_merge_two_pages - take two identical pages and prepare them
1106 * to be merged into one page.
1107 *
1108 * This function returns the kpage if we successfully merged two identical
1109 * pages into one ksm page, NULL otherwise.
1110 *
1111 * Note that this function upgrades page to ksm page: if one of the pages
1112 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1113 */
1114 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1115 struct page *page,
1116 struct rmap_item *tree_rmap_item,
1117 struct page *tree_page)
1118 {
1119 int err;
1120
1121 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1122 if (!err) {
1123 err = try_to_merge_with_ksm_page(tree_rmap_item,
1124 tree_page, page);
1125 /*
1126 * If that fails, we have a ksm page with only one pte
1127 * pointing to it: so break it.
1128 */
1129 if (err)
1130 break_cow(rmap_item);
1131 }
1132 return err ? NULL : page;
1133 }
1134
1135 /*
1136 * stable_tree_search - search for page inside the stable tree
1137 *
1138 * This function checks if there is a page inside the stable tree
1139 * with identical content to the page that we are scanning right now.
1140 *
1141 * This function returns the stable tree node of identical content if found,
1142 * NULL otherwise.
1143 */
1144 static struct page *stable_tree_search(struct page *page)
1145 {
1146 int nid;
1147 struct rb_root *root;
1148 struct rb_node **new;
1149 struct rb_node *parent;
1150 struct stable_node *stable_node;
1151 struct stable_node *page_node;
1152
1153 page_node = page_stable_node(page);
1154 if (page_node && page_node->head != &migrate_nodes) {
1155 /* ksm page forked */
1156 get_page(page);
1157 return page;
1158 }
1159
1160 nid = get_kpfn_nid(page_to_pfn(page));
1161 root = root_stable_tree + nid;
1162 again:
1163 new = &root->rb_node;
1164 parent = NULL;
1165
1166 while (*new) {
1167 struct page *tree_page;
1168 int ret;
1169
1170 cond_resched();
1171 stable_node = rb_entry(*new, struct stable_node, node);
1172 tree_page = get_ksm_page(stable_node, false);
1173 if (!tree_page) {
1174 /*
1175 * If we walked over a stale stable_node,
1176 * get_ksm_page() will call rb_erase() and it
1177 * may rebalance the tree from under us. So
1178 * restart the search from scratch. Returning
1179 * NULL would be safe too, but we'd generate
1180 * false negative insertions just because some
1181 * stable_node was stale.
1182 */
1183 goto again;
1184 }
1185
1186 ret = memcmp_pages(page, tree_page);
1187 put_page(tree_page);
1188
1189 parent = *new;
1190 if (ret < 0)
1191 new = &parent->rb_left;
1192 else if (ret > 0)
1193 new = &parent->rb_right;
1194 else {
1195 /*
1196 * Lock and unlock the stable_node's page (which
1197 * might already have been migrated) so that page
1198 * migration is sure to notice its raised count.
1199 * It would be more elegant to return stable_node
1200 * than kpage, but that involves more changes.
1201 */
1202 tree_page = get_ksm_page(stable_node, true);
1203 if (tree_page) {
1204 unlock_page(tree_page);
1205 if (get_kpfn_nid(stable_node->kpfn) !=
1206 NUMA(stable_node->nid)) {
1207 put_page(tree_page);
1208 goto replace;
1209 }
1210 return tree_page;
1211 }
1212 /*
1213 * There is now a place for page_node, but the tree may
1214 * have been rebalanced, so re-evaluate parent and new.
1215 */
1216 if (page_node)
1217 goto again;
1218 return NULL;
1219 }
1220 }
1221
1222 if (!page_node)
1223 return NULL;
1224
1225 list_del(&page_node->list);
1226 DO_NUMA(page_node->nid = nid);
1227 rb_link_node(&page_node->node, parent, new);
1228 rb_insert_color(&page_node->node, root);
1229 get_page(page);
1230 return page;
1231
1232 replace:
1233 if (page_node) {
1234 list_del(&page_node->list);
1235 DO_NUMA(page_node->nid = nid);
1236 rb_replace_node(&stable_node->node, &page_node->node, root);
1237 get_page(page);
1238 } else {
1239 rb_erase(&stable_node->node, root);
1240 page = NULL;
1241 }
1242 stable_node->head = &migrate_nodes;
1243 list_add(&stable_node->list, stable_node->head);
1244 return page;
1245 }
1246
1247 /*
1248 * stable_tree_insert - insert stable tree node pointing to new ksm page
1249 * into the stable tree.
1250 *
1251 * This function returns the stable tree node just allocated on success,
1252 * NULL otherwise.
1253 */
1254 static struct stable_node *stable_tree_insert(struct page *kpage)
1255 {
1256 int nid;
1257 unsigned long kpfn;
1258 struct rb_root *root;
1259 struct rb_node **new;
1260 struct rb_node *parent;
1261 struct stable_node *stable_node;
1262
1263 kpfn = page_to_pfn(kpage);
1264 nid = get_kpfn_nid(kpfn);
1265 root = root_stable_tree + nid;
1266 again:
1267 parent = NULL;
1268 new = &root->rb_node;
1269
1270 while (*new) {
1271 struct page *tree_page;
1272 int ret;
1273
1274 cond_resched();
1275 stable_node = rb_entry(*new, struct stable_node, node);
1276 tree_page = get_ksm_page(stable_node, false);
1277 if (!tree_page) {
1278 /*
1279 * If we walked over a stale stable_node,
1280 * get_ksm_page() will call rb_erase() and it
1281 * may rebalance the tree from under us. So
1282 * restart the search from scratch. Returning
1283 * NULL would be safe too, but we'd generate
1284 * false negative insertions just because some
1285 * stable_node was stale.
1286 */
1287 goto again;
1288 }
1289
1290 ret = memcmp_pages(kpage, tree_page);
1291 put_page(tree_page);
1292
1293 parent = *new;
1294 if (ret < 0)
1295 new = &parent->rb_left;
1296 else if (ret > 0)
1297 new = &parent->rb_right;
1298 else {
1299 /*
1300 * It is not a bug that stable_tree_search() didn't
1301 * find this node: because at that time our page was
1302 * not yet write-protected, so may have changed since.
1303 */
1304 return NULL;
1305 }
1306 }
1307
1308 stable_node = alloc_stable_node();
1309 if (!stable_node)
1310 return NULL;
1311
1312 INIT_HLIST_HEAD(&stable_node->hlist);
1313 stable_node->kpfn = kpfn;
1314 set_page_stable_node(kpage, stable_node);
1315 DO_NUMA(stable_node->nid = nid);
1316 rb_link_node(&stable_node->node, parent, new);
1317 rb_insert_color(&stable_node->node, root);
1318
1319 return stable_node;
1320 }
1321
1322 /*
1323 * unstable_tree_search_insert - search for identical page,
1324 * else insert rmap_item into the unstable tree.
1325 *
1326 * This function searches for a page in the unstable tree identical to the
1327 * page currently being scanned; and if no identical page is found in the
1328 * tree, we insert rmap_item as a new object into the unstable tree.
1329 *
1330 * This function returns pointer to rmap_item found to be identical
1331 * to the currently scanned page, NULL otherwise.
1332 *
1333 * This function does both searching and inserting, because they share
1334 * the same walking algorithm in an rbtree.
1335 */
1336 static
1337 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1338 struct page *page,
1339 struct page **tree_pagep)
1340 {
1341 struct rb_node **new;
1342 struct rb_root *root;
1343 struct rb_node *parent = NULL;
1344 int nid;
1345
1346 nid = get_kpfn_nid(page_to_pfn(page));
1347 root = root_unstable_tree + nid;
1348 new = &root->rb_node;
1349
1350 while (*new) {
1351 struct rmap_item *tree_rmap_item;
1352 struct page *tree_page;
1353 int ret;
1354
1355 cond_resched();
1356 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1357 tree_page = get_mergeable_page(tree_rmap_item);
1358 if (!tree_page)
1359 return NULL;
1360
1361 /*
1362 * Don't substitute a ksm page for a forked page.
1363 */
1364 if (page == tree_page) {
1365 put_page(tree_page);
1366 return NULL;
1367 }
1368
1369 ret = memcmp_pages(page, tree_page);
1370
1371 parent = *new;
1372 if (ret < 0) {
1373 put_page(tree_page);
1374 new = &parent->rb_left;
1375 } else if (ret > 0) {
1376 put_page(tree_page);
1377 new = &parent->rb_right;
1378 } else if (!ksm_merge_across_nodes &&
1379 page_to_nid(tree_page) != nid) {
1380 /*
1381 * If tree_page has been migrated to another NUMA node,
1382 * it will be flushed out and put in the right unstable
1383 * tree next time: only merge with it when across_nodes.
1384 */
1385 put_page(tree_page);
1386 return NULL;
1387 } else {
1388 *tree_pagep = tree_page;
1389 return tree_rmap_item;
1390 }
1391 }
1392
1393 rmap_item->address |= UNSTABLE_FLAG;
1394 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1395 DO_NUMA(rmap_item->nid = nid);
1396 rb_link_node(&rmap_item->node, parent, new);
1397 rb_insert_color(&rmap_item->node, root);
1398
1399 ksm_pages_unshared++;
1400 return NULL;
1401 }
1402
1403 /*
1404 * stable_tree_append - add another rmap_item to the linked list of
1405 * rmap_items hanging off a given node of the stable tree, all sharing
1406 * the same ksm page.
1407 */
1408 static void stable_tree_append(struct rmap_item *rmap_item,
1409 struct stable_node *stable_node)
1410 {
1411 rmap_item->head = stable_node;
1412 rmap_item->address |= STABLE_FLAG;
1413 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1414
1415 if (rmap_item->hlist.next)
1416 ksm_pages_sharing++;
1417 else
1418 ksm_pages_shared++;
1419 }
1420
1421 /*
1422 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1423 * if not, compare checksum to previous and if it's the same, see if page can
1424 * be inserted into the unstable tree, or merged with a page already there and
1425 * both transferred to the stable tree.
1426 *
1427 * @page: the page that we are searching identical page to.
1428 * @rmap_item: the reverse mapping into the virtual address of this page
1429 */
1430 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1431 {
1432 struct rmap_item *tree_rmap_item;
1433 struct page *tree_page = NULL;
1434 struct stable_node *stable_node;
1435 struct page *kpage;
1436 unsigned int checksum;
1437 int err;
1438
1439 stable_node = page_stable_node(page);
1440 if (stable_node) {
1441 if (stable_node->head != &migrate_nodes &&
1442 get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1443 rb_erase(&stable_node->node,
1444 root_stable_tree + NUMA(stable_node->nid));
1445 stable_node->head = &migrate_nodes;
1446 list_add(&stable_node->list, stable_node->head);
1447 }
1448 if (stable_node->head != &migrate_nodes &&
1449 rmap_item->head == stable_node)
1450 return;
1451 }
1452
1453 /* We first start with searching the page inside the stable tree */
1454 kpage = stable_tree_search(page);
1455 if (kpage == page && rmap_item->head == stable_node) {
1456 put_page(kpage);
1457 return;
1458 }
1459
1460 remove_rmap_item_from_tree(rmap_item);
1461
1462 if (kpage) {
1463 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1464 if (!err) {
1465 /*
1466 * The page was successfully merged:
1467 * add its rmap_item to the stable tree.
1468 */
1469 lock_page(kpage);
1470 stable_tree_append(rmap_item, page_stable_node(kpage));
1471 unlock_page(kpage);
1472 }
1473 put_page(kpage);
1474 return;
1475 }
1476
1477 /*
1478 * If the hash value of the page has changed from the last time
1479 * we calculated it, this page is changing frequently: therefore we
1480 * don't want to insert it in the unstable tree, and we don't want
1481 * to waste our time searching for something identical to it there.
1482 */
1483 checksum = calc_checksum(page);
1484 if (rmap_item->oldchecksum != checksum) {
1485 rmap_item->oldchecksum = checksum;
1486 return;
1487 }
1488
1489 /*
1490 * Same checksum as an empty page. We attempt to merge it with the
1491 * appropriate zero page if the user enabled this via sysfs.
1492 */
1493 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
1494 struct vm_area_struct *vma;
1495
1496 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
1497 err = try_to_merge_one_page(vma, page,
1498 ZERO_PAGE(rmap_item->address));
1499 /*
1500 * In case of failure, the page was not really empty, so we
1501 * need to continue. Otherwise we're done.
1502 */
1503 if (!err)
1504 return;
1505 }
1506 tree_rmap_item =
1507 unstable_tree_search_insert(rmap_item, page, &tree_page);
1508 if (tree_rmap_item) {
1509 kpage = try_to_merge_two_pages(rmap_item, page,
1510 tree_rmap_item, tree_page);
1511 put_page(tree_page);
1512 if (kpage) {
1513 /*
1514 * The pages were successfully merged: insert new
1515 * node in the stable tree and add both rmap_items.
1516 */
1517 lock_page(kpage);
1518 stable_node = stable_tree_insert(kpage);
1519 if (stable_node) {
1520 stable_tree_append(tree_rmap_item, stable_node);
1521 stable_tree_append(rmap_item, stable_node);
1522 }
1523 unlock_page(kpage);
1524
1525 /*
1526 * If we fail to insert the page into the stable tree,
1527 * we will have 2 virtual addresses that are pointing
1528 * to a ksm page left outside the stable tree,
1529 * in which case we need to break_cow on both.
1530 */
1531 if (!stable_node) {
1532 break_cow(tree_rmap_item);
1533 break_cow(rmap_item);
1534 }
1535 }
1536 }
1537 }
1538
1539 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1540 struct rmap_item **rmap_list,
1541 unsigned long addr)
1542 {
1543 struct rmap_item *rmap_item;
1544
1545 while (*rmap_list) {
1546 rmap_item = *rmap_list;
1547 if ((rmap_item->address & PAGE_MASK) == addr)
1548 return rmap_item;
1549 if (rmap_item->address > addr)
1550 break;
1551 *rmap_list = rmap_item->rmap_list;
1552 remove_rmap_item_from_tree(rmap_item);
1553 free_rmap_item(rmap_item);
1554 }
1555
1556 rmap_item = alloc_rmap_item();
1557 if (rmap_item) {
1558 /* It has already been zeroed */
1559 rmap_item->mm = mm_slot->mm;
1560 rmap_item->address = addr;
1561 rmap_item->rmap_list = *rmap_list;
1562 *rmap_list = rmap_item;
1563 }
1564 return rmap_item;
1565 }
1566
1567 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1568 {
1569 struct mm_struct *mm;
1570 struct mm_slot *slot;
1571 struct vm_area_struct *vma;
1572 struct rmap_item *rmap_item;
1573 int nid;
1574
1575 if (list_empty(&ksm_mm_head.mm_list))
1576 return NULL;
1577
1578 slot = ksm_scan.mm_slot;
1579 if (slot == &ksm_mm_head) {
1580 /*
1581 * A number of pages can hang around indefinitely on per-cpu
1582 * pagevecs, raised page count preventing write_protect_page
1583 * from merging them. Though it doesn't really matter much,
1584 * it is puzzling to see some stuck in pages_volatile until
1585 * other activity jostles them out, and they also prevented
1586 * LTP's KSM test from succeeding deterministically; so drain
1587 * them here (here rather than on entry to ksm_do_scan(),
1588 * so we don't IPI too often when pages_to_scan is set low).
1589 */
1590 lru_add_drain_all();
1591
1592 /*
1593 * Whereas stale stable_nodes on the stable_tree itself
1594 * get pruned in the regular course of stable_tree_search(),
1595 * those moved out to the migrate_nodes list can accumulate:
1596 * so prune them once before each full scan.
1597 */
1598 if (!ksm_merge_across_nodes) {
1599 struct stable_node *stable_node, *next;
1600 struct page *page;
1601
1602 list_for_each_entry_safe(stable_node, next,
1603 &migrate_nodes, list) {
1604 page = get_ksm_page(stable_node, false);
1605 if (page)
1606 put_page(page);
1607 cond_resched();
1608 }
1609 }
1610
1611 for (nid = 0; nid < ksm_nr_node_ids; nid++)
1612 root_unstable_tree[nid] = RB_ROOT;
1613
1614 spin_lock(&ksm_mmlist_lock);
1615 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1616 ksm_scan.mm_slot = slot;
1617 spin_unlock(&ksm_mmlist_lock);
1618 /*
1619 * Although we tested list_empty() above, a racing __ksm_exit
1620 * of the last mm on the list may have removed it since then.
1621 */
1622 if (slot == &ksm_mm_head)
1623 return NULL;
1624 next_mm:
1625 ksm_scan.address = 0;
1626 ksm_scan.rmap_list = &slot->rmap_list;
1627 }
1628
1629 mm = slot->mm;
1630 down_read(&mm->mmap_sem);
1631 if (ksm_test_exit(mm))
1632 vma = NULL;
1633 else
1634 vma = find_vma(mm, ksm_scan.address);
1635
1636 for (; vma; vma = vma->vm_next) {
1637 if (!(vma->vm_flags & VM_MERGEABLE))
1638 continue;
1639 if (ksm_scan.address < vma->vm_start)
1640 ksm_scan.address = vma->vm_start;
1641 if (!vma->anon_vma)
1642 ksm_scan.address = vma->vm_end;
1643
1644 while (ksm_scan.address < vma->vm_end) {
1645 if (ksm_test_exit(mm))
1646 break;
1647 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1648 if (IS_ERR_OR_NULL(*page)) {
1649 ksm_scan.address += PAGE_SIZE;
1650 cond_resched();
1651 continue;
1652 }
1653 if (PageAnon(*page)) {
1654 flush_anon_page(vma, *page, ksm_scan.address);
1655 flush_dcache_page(*page);
1656 rmap_item = get_next_rmap_item(slot,
1657 ksm_scan.rmap_list, ksm_scan.address);
1658 if (rmap_item) {
1659 ksm_scan.rmap_list =
1660 &rmap_item->rmap_list;
1661 ksm_scan.address += PAGE_SIZE;
1662 } else
1663 put_page(*page);
1664 up_read(&mm->mmap_sem);
1665 return rmap_item;
1666 }
1667 put_page(*page);
1668 ksm_scan.address += PAGE_SIZE;
1669 cond_resched();
1670 }
1671 }
1672
1673 if (ksm_test_exit(mm)) {
1674 ksm_scan.address = 0;
1675 ksm_scan.rmap_list = &slot->rmap_list;
1676 }
1677 /*
1678 * Nuke all the rmap_items that are above this current rmap:
1679 * because there were no VM_MERGEABLE vmas with such addresses.
1680 */
1681 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1682
1683 spin_lock(&ksm_mmlist_lock);
1684 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1685 struct mm_slot, mm_list);
1686 if (ksm_scan.address == 0) {
1687 /*
1688 * We've completed a full scan of all vmas, holding mmap_sem
1689 * throughout, and found no VM_MERGEABLE: so do the same as
1690 * __ksm_exit does to remove this mm from all our lists now.
1691 * This applies either when cleaning up after __ksm_exit
1692 * (but beware: we can reach here even before __ksm_exit),
1693 * or when all VM_MERGEABLE areas have been unmapped (and
1694 * mmap_sem then protects against race with MADV_MERGEABLE).
1695 */
1696 hash_del(&slot->link);
1697 list_del(&slot->mm_list);
1698 spin_unlock(&ksm_mmlist_lock);
1699
1700 free_mm_slot(slot);
1701 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1702 up_read(&mm->mmap_sem);
1703 mmdrop(mm);
1704 } else {
1705 up_read(&mm->mmap_sem);
1706 /*
1707 * up_read(&mm->mmap_sem) first because after
1708 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
1709 * already have been freed under us by __ksm_exit()
1710 * because the "mm_slot" is still hashed and
1711 * ksm_scan.mm_slot doesn't point to it anymore.
1712 */
1713 spin_unlock(&ksm_mmlist_lock);
1714 }
1715
1716 /* Repeat until we've completed scanning the whole list */
1717 slot = ksm_scan.mm_slot;
1718 if (slot != &ksm_mm_head)
1719 goto next_mm;
1720
1721 ksm_scan.seqnr++;
1722 return NULL;
1723 }
1724
1725 /**
1726 * ksm_do_scan - the ksm scanner main worker function.
1727 * @scan_npages - number of pages we want to scan before we return.
1728 */
1729 static void ksm_do_scan(unsigned int scan_npages)
1730 {
1731 struct rmap_item *rmap_item;
1732 struct page *uninitialized_var(page);
1733
1734 while (scan_npages-- && likely(!freezing(current))) {
1735 cond_resched();
1736 rmap_item = scan_get_next_rmap_item(&page);
1737 if (!rmap_item)
1738 return;
1739 cmp_and_merge_page(page, rmap_item);
1740 put_page(page);
1741 }
1742 }
1743
1744 static int ksmd_should_run(void)
1745 {
1746 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1747 }
1748
1749 static int ksm_scan_thread(void *nothing)
1750 {
1751 set_freezable();
1752 set_user_nice(current, 5);
1753
1754 while (!kthread_should_stop()) {
1755 mutex_lock(&ksm_thread_mutex);
1756 wait_while_offlining();
1757 if (ksmd_should_run())
1758 ksm_do_scan(ksm_thread_pages_to_scan);
1759 mutex_unlock(&ksm_thread_mutex);
1760
1761 try_to_freeze();
1762
1763 if (ksmd_should_run()) {
1764 if (ksm_thread_sleep_millisecs >= 1000)
1765 schedule_timeout_interruptible(
1766 msecs_to_jiffies(round_jiffies_relative(ksm_thread_sleep_millisecs)));
1767 else
1768 schedule_timeout_interruptible(
1769 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1770 } else {
1771 wait_event_freezable(ksm_thread_wait,
1772 ksmd_should_run() || kthread_should_stop());
1773 }
1774 }
1775 return 0;
1776 }
1777
1778 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1779 unsigned long end, int advice, unsigned long *vm_flags)
1780 {
1781 struct mm_struct *mm = vma->vm_mm;
1782 int err;
1783
1784 switch (advice) {
1785 case MADV_MERGEABLE:
1786 /*
1787 * Be somewhat over-protective for now!
1788 */
1789 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
1790 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1791 VM_HUGETLB | VM_MIXEDMAP))
1792 return 0; /* just ignore the advice */
1793
1794 #ifdef VM_SAO
1795 if (*vm_flags & VM_SAO)
1796 return 0;
1797 #endif
1798
1799 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1800 err = __ksm_enter(mm);
1801 if (err)
1802 return err;
1803 }
1804
1805 *vm_flags |= VM_MERGEABLE;
1806 break;
1807
1808 case MADV_UNMERGEABLE:
1809 if (!(*vm_flags & VM_MERGEABLE))
1810 return 0; /* just ignore the advice */
1811
1812 if (vma->anon_vma) {
1813 err = unmerge_ksm_pages(vma, start, end);
1814 if (err)
1815 return err;
1816 }
1817
1818 *vm_flags &= ~VM_MERGEABLE;
1819 break;
1820 }
1821
1822 return 0;
1823 }
1824
1825 int __ksm_enter(struct mm_struct *mm)
1826 {
1827 struct mm_slot *mm_slot;
1828 int needs_wakeup;
1829
1830 mm_slot = alloc_mm_slot();
1831 if (!mm_slot)
1832 return -ENOMEM;
1833
1834 /* Check ksm_run too? Would need tighter locking */
1835 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1836
1837 spin_lock(&ksm_mmlist_lock);
1838 insert_to_mm_slots_hash(mm, mm_slot);
1839 /*
1840 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1841 * insert just behind the scanning cursor, to let the area settle
1842 * down a little; when fork is followed by immediate exec, we don't
1843 * want ksmd to waste time setting up and tearing down an rmap_list.
1844 *
1845 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1846 * scanning cursor, otherwise KSM pages in newly forked mms will be
1847 * missed: then we might as well insert at the end of the list.
1848 */
1849 if (ksm_run & KSM_RUN_UNMERGE)
1850 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1851 else
1852 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1853 spin_unlock(&ksm_mmlist_lock);
1854
1855 set_bit(MMF_VM_MERGEABLE, &mm->flags);
1856 atomic_inc(&mm->mm_count);
1857
1858 if (needs_wakeup)
1859 wake_up_interruptible(&ksm_thread_wait);
1860
1861 return 0;
1862 }
1863
1864 void __ksm_exit(struct mm_struct *mm)
1865 {
1866 struct mm_slot *mm_slot;
1867 int easy_to_free = 0;
1868
1869 /*
1870 * This process is exiting: if it's straightforward (as is the
1871 * case when ksmd was never running), free mm_slot immediately.
1872 * But if it's at the cursor or has rmap_items linked to it, use
1873 * mmap_sem to synchronize with any break_cows before pagetables
1874 * are freed, and leave the mm_slot on the list for ksmd to free.
1875 * Beware: ksm may already have noticed it exiting and freed the slot.
1876 */
1877
1878 spin_lock(&ksm_mmlist_lock);
1879 mm_slot = get_mm_slot(mm);
1880 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1881 if (!mm_slot->rmap_list) {
1882 hash_del(&mm_slot->link);
1883 list_del(&mm_slot->mm_list);
1884 easy_to_free = 1;
1885 } else {
1886 list_move(&mm_slot->mm_list,
1887 &ksm_scan.mm_slot->mm_list);
1888 }
1889 }
1890 spin_unlock(&ksm_mmlist_lock);
1891
1892 if (easy_to_free) {
1893 free_mm_slot(mm_slot);
1894 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1895 mmdrop(mm);
1896 } else if (mm_slot) {
1897 down_write(&mm->mmap_sem);
1898 up_write(&mm->mmap_sem);
1899 }
1900 }
1901
1902 struct page *ksm_might_need_to_copy(struct page *page,
1903 struct vm_area_struct *vma, unsigned long address)
1904 {
1905 struct anon_vma *anon_vma = page_anon_vma(page);
1906 struct page *new_page;
1907
1908 if (PageKsm(page)) {
1909 if (page_stable_node(page) &&
1910 !(ksm_run & KSM_RUN_UNMERGE))
1911 return page; /* no need to copy it */
1912 } else if (!anon_vma) {
1913 return page; /* no need to copy it */
1914 } else if (anon_vma->root == vma->anon_vma->root &&
1915 page->index == linear_page_index(vma, address)) {
1916 return page; /* still no need to copy it */
1917 }
1918 if (!PageUptodate(page))
1919 return page; /* let do_swap_page report the error */
1920
1921 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1922 if (new_page) {
1923 copy_user_highpage(new_page, page, address, vma);
1924
1925 SetPageDirty(new_page);
1926 __SetPageUptodate(new_page);
1927 __SetPageLocked(new_page);
1928 }
1929
1930 return new_page;
1931 }
1932
1933 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
1934 {
1935 struct stable_node *stable_node;
1936 struct rmap_item *rmap_item;
1937 int ret = SWAP_AGAIN;
1938 int search_new_forks = 0;
1939
1940 VM_BUG_ON_PAGE(!PageKsm(page), page);
1941
1942 /*
1943 * Rely on the page lock to protect against concurrent modifications
1944 * to that page's node of the stable tree.
1945 */
1946 VM_BUG_ON_PAGE(!PageLocked(page), page);
1947
1948 stable_node = page_stable_node(page);
1949 if (!stable_node)
1950 return ret;
1951 again:
1952 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
1953 struct anon_vma *anon_vma = rmap_item->anon_vma;
1954 struct anon_vma_chain *vmac;
1955 struct vm_area_struct *vma;
1956
1957 cond_resched();
1958 anon_vma_lock_read(anon_vma);
1959 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1960 0, ULONG_MAX) {
1961 cond_resched();
1962 vma = vmac->vma;
1963 if (rmap_item->address < vma->vm_start ||
1964 rmap_item->address >= vma->vm_end)
1965 continue;
1966 /*
1967 * Initially we examine only the vma which covers this
1968 * rmap_item; but later, if there is still work to do,
1969 * we examine covering vmas in other mms: in case they
1970 * were forked from the original since ksmd passed.
1971 */
1972 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1973 continue;
1974
1975 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1976 continue;
1977
1978 ret = rwc->rmap_one(page, vma,
1979 rmap_item->address, rwc->arg);
1980 if (ret != SWAP_AGAIN) {
1981 anon_vma_unlock_read(anon_vma);
1982 goto out;
1983 }
1984 if (rwc->done && rwc->done(page)) {
1985 anon_vma_unlock_read(anon_vma);
1986 goto out;
1987 }
1988 }
1989 anon_vma_unlock_read(anon_vma);
1990 }
1991 if (!search_new_forks++)
1992 goto again;
1993 out:
1994 return ret;
1995 }
1996
1997 #ifdef CONFIG_MIGRATION
1998 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1999 {
2000 struct stable_node *stable_node;
2001
2002 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2003 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2004 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2005
2006 stable_node = page_stable_node(newpage);
2007 if (stable_node) {
2008 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2009 stable_node->kpfn = page_to_pfn(newpage);
2010 /*
2011 * newpage->mapping was set in advance; now we need smp_wmb()
2012 * to make sure that the new stable_node->kpfn is visible
2013 * to get_ksm_page() before it can see that oldpage->mapping
2014 * has gone stale (or that PageSwapCache has been cleared).
2015 */
2016 smp_wmb();
2017 set_page_stable_node(oldpage, NULL);
2018 }
2019 }
2020 #endif /* CONFIG_MIGRATION */
2021
2022 #ifdef CONFIG_MEMORY_HOTREMOVE
2023 static void wait_while_offlining(void)
2024 {
2025 while (ksm_run & KSM_RUN_OFFLINE) {
2026 mutex_unlock(&ksm_thread_mutex);
2027 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2028 TASK_UNINTERRUPTIBLE);
2029 mutex_lock(&ksm_thread_mutex);
2030 }
2031 }
2032
2033 static void ksm_check_stable_tree(unsigned long start_pfn,
2034 unsigned long end_pfn)
2035 {
2036 struct stable_node *stable_node, *next;
2037 struct rb_node *node;
2038 int nid;
2039
2040 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2041 node = rb_first(root_stable_tree + nid);
2042 while (node) {
2043 stable_node = rb_entry(node, struct stable_node, node);
2044 if (stable_node->kpfn >= start_pfn &&
2045 stable_node->kpfn < end_pfn) {
2046 /*
2047 * Don't get_ksm_page, page has already gone:
2048 * which is why we keep kpfn instead of page*
2049 */
2050 remove_node_from_stable_tree(stable_node);
2051 node = rb_first(root_stable_tree + nid);
2052 } else
2053 node = rb_next(node);
2054 cond_resched();
2055 }
2056 }
2057 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2058 if (stable_node->kpfn >= start_pfn &&
2059 stable_node->kpfn < end_pfn)
2060 remove_node_from_stable_tree(stable_node);
2061 cond_resched();
2062 }
2063 }
2064
2065 static int ksm_memory_callback(struct notifier_block *self,
2066 unsigned long action, void *arg)
2067 {
2068 struct memory_notify *mn = arg;
2069
2070 switch (action) {
2071 case MEM_GOING_OFFLINE:
2072 /*
2073 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2074 * and remove_all_stable_nodes() while memory is going offline:
2075 * it is unsafe for them to touch the stable tree at this time.
2076 * But unmerge_ksm_pages(), rmap lookups and other entry points
2077 * which do not need the ksm_thread_mutex are all safe.
2078 */
2079 mutex_lock(&ksm_thread_mutex);
2080 ksm_run |= KSM_RUN_OFFLINE;
2081 mutex_unlock(&ksm_thread_mutex);
2082 break;
2083
2084 case MEM_OFFLINE:
2085 /*
2086 * Most of the work is done by page migration; but there might
2087 * be a few stable_nodes left over, still pointing to struct
2088 * pages which have been offlined: prune those from the tree,
2089 * otherwise get_ksm_page() might later try to access a
2090 * non-existent struct page.
2091 */
2092 ksm_check_stable_tree(mn->start_pfn,
2093 mn->start_pfn + mn->nr_pages);
2094 /* fallthrough */
2095
2096 case MEM_CANCEL_OFFLINE:
2097 mutex_lock(&ksm_thread_mutex);
2098 ksm_run &= ~KSM_RUN_OFFLINE;
2099 mutex_unlock(&ksm_thread_mutex);
2100
2101 smp_mb(); /* wake_up_bit advises this */
2102 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2103 break;
2104 }
2105 return NOTIFY_OK;
2106 }
2107 #else
2108 static void wait_while_offlining(void)
2109 {
2110 }
2111 #endif /* CONFIG_MEMORY_HOTREMOVE */
2112
2113 #ifdef CONFIG_SYSFS
2114 /*
2115 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2116 */
2117
2118 #define KSM_ATTR_RO(_name) \
2119 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2120 #define KSM_ATTR(_name) \
2121 static struct kobj_attribute _name##_attr = \
2122 __ATTR(_name, 0644, _name##_show, _name##_store)
2123
2124 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2125 struct kobj_attribute *attr, char *buf)
2126 {
2127 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2128 }
2129
2130 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2131 struct kobj_attribute *attr,
2132 const char *buf, size_t count)
2133 {
2134 unsigned long msecs;
2135 int err;
2136
2137 err = kstrtoul(buf, 10, &msecs);
2138 if (err || msecs > UINT_MAX)
2139 return -EINVAL;
2140
2141 ksm_thread_sleep_millisecs = msecs;
2142
2143 return count;
2144 }
2145 KSM_ATTR(sleep_millisecs);
2146
2147 static ssize_t pages_to_scan_show(struct kobject *kobj,
2148 struct kobj_attribute *attr, char *buf)
2149 {
2150 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2151 }
2152
2153 static ssize_t pages_to_scan_store(struct kobject *kobj,
2154 struct kobj_attribute *attr,
2155 const char *buf, size_t count)
2156 {
2157 int err;
2158 unsigned long nr_pages;
2159
2160 err = kstrtoul(buf, 10, &nr_pages);
2161 if (err || nr_pages > UINT_MAX)
2162 return -EINVAL;
2163
2164 ksm_thread_pages_to_scan = nr_pages;
2165
2166 return count;
2167 }
2168 KSM_ATTR(pages_to_scan);
2169
2170 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2171 char *buf)
2172 {
2173 return sprintf(buf, "%lu\n", ksm_run);
2174 }
2175
2176 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2177 const char *buf, size_t count)
2178 {
2179 int err;
2180 unsigned long flags;
2181
2182 err = kstrtoul(buf, 10, &flags);
2183 if (err || flags > UINT_MAX)
2184 return -EINVAL;
2185 if (flags > KSM_RUN_UNMERGE)
2186 return -EINVAL;
2187
2188 /*
2189 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2190 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2191 * breaking COW to free the pages_shared (but leaves mm_slots
2192 * on the list for when ksmd may be set running again).
2193 */
2194
2195 mutex_lock(&ksm_thread_mutex);
2196 wait_while_offlining();
2197 if (ksm_run != flags) {
2198 ksm_run = flags;
2199 if (flags & KSM_RUN_UNMERGE) {
2200 set_current_oom_origin();
2201 err = unmerge_and_remove_all_rmap_items();
2202 clear_current_oom_origin();
2203 if (err) {
2204 ksm_run = KSM_RUN_STOP;
2205 count = err;
2206 }
2207 }
2208 }
2209 mutex_unlock(&ksm_thread_mutex);
2210
2211 if (flags & KSM_RUN_MERGE)
2212 wake_up_interruptible(&ksm_thread_wait);
2213
2214 return count;
2215 }
2216 KSM_ATTR(run);
2217
2218 #ifdef CONFIG_NUMA
2219 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2220 struct kobj_attribute *attr, char *buf)
2221 {
2222 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2223 }
2224
2225 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2226 struct kobj_attribute *attr,
2227 const char *buf, size_t count)
2228 {
2229 int err;
2230 unsigned long knob;
2231
2232 err = kstrtoul(buf, 10, &knob);
2233 if (err)
2234 return err;
2235 if (knob > 1)
2236 return -EINVAL;
2237
2238 mutex_lock(&ksm_thread_mutex);
2239 wait_while_offlining();
2240 if (ksm_merge_across_nodes != knob) {
2241 if (ksm_pages_shared || remove_all_stable_nodes())
2242 err = -EBUSY;
2243 else if (root_stable_tree == one_stable_tree) {
2244 struct rb_root *buf;
2245 /*
2246 * This is the first time that we switch away from the
2247 * default of merging across nodes: must now allocate
2248 * a buffer to hold as many roots as may be needed.
2249 * Allocate stable and unstable together:
2250 * MAXSMP NODES_SHIFT 10 will use 16kB.
2251 */
2252 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2253 GFP_KERNEL);
2254 /* Let us assume that RB_ROOT is NULL is zero */
2255 if (!buf)
2256 err = -ENOMEM;
2257 else {
2258 root_stable_tree = buf;
2259 root_unstable_tree = buf + nr_node_ids;
2260 /* Stable tree is empty but not the unstable */
2261 root_unstable_tree[0] = one_unstable_tree[0];
2262 }
2263 }
2264 if (!err) {
2265 ksm_merge_across_nodes = knob;
2266 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2267 }
2268 }
2269 mutex_unlock(&ksm_thread_mutex);
2270
2271 return err ? err : count;
2272 }
2273 KSM_ATTR(merge_across_nodes);
2274 #endif
2275
2276 static ssize_t use_zero_pages_show(struct kobject *kobj,
2277 struct kobj_attribute *attr, char *buf)
2278 {
2279 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2280 }
2281 static ssize_t use_zero_pages_store(struct kobject *kobj,
2282 struct kobj_attribute *attr,
2283 const char *buf, size_t count)
2284 {
2285 int err;
2286 bool value;
2287
2288 err = kstrtobool(buf, &value);
2289 if (err)
2290 return -EINVAL;
2291
2292 ksm_use_zero_pages = value;
2293
2294 return count;
2295 }
2296 KSM_ATTR(use_zero_pages);
2297
2298 static ssize_t pages_shared_show(struct kobject *kobj,
2299 struct kobj_attribute *attr, char *buf)
2300 {
2301 return sprintf(buf, "%lu\n", ksm_pages_shared);
2302 }
2303 KSM_ATTR_RO(pages_shared);
2304
2305 static ssize_t pages_sharing_show(struct kobject *kobj,
2306 struct kobj_attribute *attr, char *buf)
2307 {
2308 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2309 }
2310 KSM_ATTR_RO(pages_sharing);
2311
2312 static ssize_t pages_unshared_show(struct kobject *kobj,
2313 struct kobj_attribute *attr, char *buf)
2314 {
2315 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2316 }
2317 KSM_ATTR_RO(pages_unshared);
2318
2319 static ssize_t pages_volatile_show(struct kobject *kobj,
2320 struct kobj_attribute *attr, char *buf)
2321 {
2322 long ksm_pages_volatile;
2323
2324 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2325 - ksm_pages_sharing - ksm_pages_unshared;
2326 /*
2327 * It was not worth any locking to calculate that statistic,
2328 * but it might therefore sometimes be negative: conceal that.
2329 */
2330 if (ksm_pages_volatile < 0)
2331 ksm_pages_volatile = 0;
2332 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2333 }
2334 KSM_ATTR_RO(pages_volatile);
2335
2336 static ssize_t full_scans_show(struct kobject *kobj,
2337 struct kobj_attribute *attr, char *buf)
2338 {
2339 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2340 }
2341 KSM_ATTR_RO(full_scans);
2342
2343 static struct attribute *ksm_attrs[] = {
2344 &sleep_millisecs_attr.attr,
2345 &pages_to_scan_attr.attr,
2346 &run_attr.attr,
2347 &pages_shared_attr.attr,
2348 &pages_sharing_attr.attr,
2349 &pages_unshared_attr.attr,
2350 &pages_volatile_attr.attr,
2351 &full_scans_attr.attr,
2352 #ifdef CONFIG_NUMA
2353 &merge_across_nodes_attr.attr,
2354 #endif
2355 &use_zero_pages_attr.attr,
2356 NULL,
2357 };
2358
2359 static struct attribute_group ksm_attr_group = {
2360 .attrs = ksm_attrs,
2361 .name = "ksm",
2362 };
2363 #endif /* CONFIG_SYSFS */
2364
2365 static int __init ksm_init(void)
2366 {
2367 struct task_struct *ksm_thread;
2368 int err;
2369
2370 /* The correct value depends on page size and endianness */
2371 zero_checksum = calc_checksum(ZERO_PAGE(0));
2372 /* Default to false for backwards compatibility */
2373 ksm_use_zero_pages = false;
2374
2375 err = ksm_slab_init();
2376 if (err)
2377 goto out;
2378
2379 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2380 if (IS_ERR(ksm_thread)) {
2381 pr_err("ksm: creating kthread failed\n");
2382 err = PTR_ERR(ksm_thread);
2383 goto out_free;
2384 }
2385
2386 #ifdef CONFIG_SYSFS
2387 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2388 if (err) {
2389 pr_err("ksm: register sysfs failed\n");
2390 kthread_stop(ksm_thread);
2391 goto out_free;
2392 }
2393 #else
2394 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
2395
2396 #endif /* CONFIG_SYSFS */
2397
2398 #ifdef CONFIG_MEMORY_HOTREMOVE
2399 /* There is no significance to this priority 100 */
2400 hotplug_memory_notifier(ksm_memory_callback, 100);
2401 #endif
2402 return 0;
2403
2404 out_free:
2405 ksm_slab_free();
2406 out:
2407 return err;
2408 }
2409 subsys_initcall(ksm_init);