]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - mm/ksm.c
ksm: swap the two output parameters of chain/chain_prune
[mirror_ubuntu-zesty-kernel.git] / mm / ksm.c
1 /*
2 * Memory merging support.
3 *
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
6 *
7 * Copyright (C) 2008-2009 Red Hat, Inc.
8 * Authors:
9 * Izik Eidus
10 * Andrea Arcangeli
11 * Chris Wright
12 * Hugh Dickins
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2.
15 */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x) (x)
46 #define DO_NUMA(x) do { (x); } while (0)
47 #else
48 #define NUMA(x) (0)
49 #define DO_NUMA(x) do { } while (0)
50 #endif
51
52 /*
53 * A few notes about the KSM scanning process,
54 * to make it easier to understand the data structures below:
55 *
56 * In order to reduce excessive scanning, KSM sorts the memory pages by their
57 * contents into a data structure that holds pointers to the pages' locations.
58 *
59 * Since the contents of the pages may change at any moment, KSM cannot just
60 * insert the pages into a normal sorted tree and expect it to find anything.
61 * Therefore KSM uses two data structures - the stable and the unstable tree.
62 *
63 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64 * by their contents. Because each such page is write-protected, searching on
65 * this tree is fully assured to be working (except when pages are unmapped),
66 * and therefore this tree is called the stable tree.
67 *
68 * In addition to the stable tree, KSM uses a second data structure called the
69 * unstable tree: this tree holds pointers to pages which have been found to
70 * be "unchanged for a period of time". The unstable tree sorts these pages
71 * by their contents, but since they are not write-protected, KSM cannot rely
72 * upon the unstable tree to work correctly - the unstable tree is liable to
73 * be corrupted as its contents are modified, and so it is called unstable.
74 *
75 * KSM solves this problem by several techniques:
76 *
77 * 1) The unstable tree is flushed every time KSM completes scanning all
78 * memory areas, and then the tree is rebuilt again from the beginning.
79 * 2) KSM will only insert into the unstable tree, pages whose hash value
80 * has not changed since the previous scan of all memory areas.
81 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82 * colors of the nodes and not on their contents, assuring that even when
83 * the tree gets "corrupted" it won't get out of balance, so scanning time
84 * remains the same (also, searching and inserting nodes in an rbtree uses
85 * the same algorithm, so we have no overhead when we flush and rebuild).
86 * 4) KSM never flushes the stable tree, which means that even if it were to
87 * take 10 attempts to find a page in the unstable tree, once it is found,
88 * it is secured in the stable tree. (When we scan a new page, we first
89 * compare it against the stable tree, and then against the unstable tree.)
90 *
91 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
92 * stable trees and multiple unstable trees: one of each for each NUMA node.
93 */
94
95 /**
96 * struct mm_slot - ksm information per mm that is being scanned
97 * @link: link to the mm_slots hash list
98 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
99 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
100 * @mm: the mm that this information is valid for
101 */
102 struct mm_slot {
103 struct hlist_node link;
104 struct list_head mm_list;
105 struct rmap_item *rmap_list;
106 struct mm_struct *mm;
107 };
108
109 /**
110 * struct ksm_scan - cursor for scanning
111 * @mm_slot: the current mm_slot we are scanning
112 * @address: the next address inside that to be scanned
113 * @rmap_list: link to the next rmap to be scanned in the rmap_list
114 * @seqnr: count of completed full scans (needed when removing unstable node)
115 *
116 * There is only the one ksm_scan instance of this cursor structure.
117 */
118 struct ksm_scan {
119 struct mm_slot *mm_slot;
120 unsigned long address;
121 struct rmap_item **rmap_list;
122 unsigned long seqnr;
123 };
124
125 /**
126 * struct stable_node - node of the stable rbtree
127 * @node: rb node of this ksm page in the stable tree
128 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
129 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
130 * @list: linked into migrate_nodes, pending placement in the proper node tree
131 * @hlist: hlist head of rmap_items using this ksm page
132 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
133 * @chain_prune_time: time of the last full garbage collection
134 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
135 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
136 */
137 struct stable_node {
138 union {
139 struct rb_node node; /* when node of stable tree */
140 struct { /* when listed for migration */
141 struct list_head *head;
142 struct {
143 struct hlist_node hlist_dup;
144 struct list_head list;
145 };
146 };
147 };
148 struct hlist_head hlist;
149 union {
150 unsigned long kpfn;
151 unsigned long chain_prune_time;
152 };
153 /*
154 * STABLE_NODE_CHAIN can be any negative number in
155 * rmap_hlist_len negative range, but better not -1 to be able
156 * to reliably detect underflows.
157 */
158 #define STABLE_NODE_CHAIN -1024
159 int rmap_hlist_len;
160 #ifdef CONFIG_NUMA
161 int nid;
162 #endif
163 };
164
165 /**
166 * struct rmap_item - reverse mapping item for virtual addresses
167 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
168 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
169 * @nid: NUMA node id of unstable tree in which linked (may not match page)
170 * @mm: the memory structure this rmap_item is pointing into
171 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
172 * @oldchecksum: previous checksum of the page at that virtual address
173 * @node: rb node of this rmap_item in the unstable tree
174 * @head: pointer to stable_node heading this list in the stable tree
175 * @hlist: link into hlist of rmap_items hanging off that stable_node
176 */
177 struct rmap_item {
178 struct rmap_item *rmap_list;
179 union {
180 struct anon_vma *anon_vma; /* when stable */
181 #ifdef CONFIG_NUMA
182 int nid; /* when node of unstable tree */
183 #endif
184 };
185 struct mm_struct *mm;
186 unsigned long address; /* + low bits used for flags below */
187 unsigned int oldchecksum; /* when unstable */
188 union {
189 struct rb_node node; /* when node of unstable tree */
190 struct { /* when listed from stable tree */
191 struct stable_node *head;
192 struct hlist_node hlist;
193 };
194 };
195 };
196
197 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
198 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
199 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
200
201 /* The stable and unstable tree heads */
202 static struct rb_root one_stable_tree[1] = { RB_ROOT };
203 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
204 static struct rb_root *root_stable_tree = one_stable_tree;
205 static struct rb_root *root_unstable_tree = one_unstable_tree;
206
207 /* Recently migrated nodes of stable tree, pending proper placement */
208 static LIST_HEAD(migrate_nodes);
209 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
210
211 #define MM_SLOTS_HASH_BITS 10
212 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
213
214 static struct mm_slot ksm_mm_head = {
215 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
216 };
217 static struct ksm_scan ksm_scan = {
218 .mm_slot = &ksm_mm_head,
219 };
220
221 static struct kmem_cache *rmap_item_cache;
222 static struct kmem_cache *stable_node_cache;
223 static struct kmem_cache *mm_slot_cache;
224
225 /* The number of nodes in the stable tree */
226 static unsigned long ksm_pages_shared;
227
228 /* The number of page slots additionally sharing those nodes */
229 static unsigned long ksm_pages_sharing;
230
231 /* The number of nodes in the unstable tree */
232 static unsigned long ksm_pages_unshared;
233
234 /* The number of rmap_items in use: to calculate pages_volatile */
235 static unsigned long ksm_rmap_items;
236
237 /* The number of stable_node chains */
238 static unsigned long ksm_stable_node_chains;
239
240 /* The number of stable_node dups linked to the stable_node chains */
241 static unsigned long ksm_stable_node_dups;
242
243 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
244 static int ksm_stable_node_chains_prune_millisecs = 2000;
245
246 /* Maximum number of page slots sharing a stable node */
247 static int ksm_max_page_sharing = 256;
248
249 /* Number of pages ksmd should scan in one batch */
250 static unsigned int ksm_thread_pages_to_scan = 100;
251
252 /* Milliseconds ksmd should sleep between batches */
253 static unsigned int ksm_thread_sleep_millisecs = 20;
254
255 /* Checksum of an empty (zeroed) page */
256 static unsigned int zero_checksum __read_mostly;
257
258 /* Whether to merge empty (zeroed) pages with actual zero pages */
259 static bool ksm_use_zero_pages __read_mostly;
260
261 #ifdef CONFIG_NUMA
262 /* Zeroed when merging across nodes is not allowed */
263 static unsigned int ksm_merge_across_nodes = 1;
264 static int ksm_nr_node_ids = 1;
265 #else
266 #define ksm_merge_across_nodes 1U
267 #define ksm_nr_node_ids 1
268 #endif
269
270 #define KSM_RUN_STOP 0
271 #define KSM_RUN_MERGE 1
272 #define KSM_RUN_UNMERGE 2
273 #define KSM_RUN_OFFLINE 4
274 static unsigned long ksm_run = KSM_RUN_STOP;
275 static void wait_while_offlining(void);
276
277 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
278 static DEFINE_MUTEX(ksm_thread_mutex);
279 static DEFINE_SPINLOCK(ksm_mmlist_lock);
280
281 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
282 sizeof(struct __struct), __alignof__(struct __struct),\
283 (__flags), NULL)
284
285 static int __init ksm_slab_init(void)
286 {
287 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
288 if (!rmap_item_cache)
289 goto out;
290
291 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
292 if (!stable_node_cache)
293 goto out_free1;
294
295 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
296 if (!mm_slot_cache)
297 goto out_free2;
298
299 return 0;
300
301 out_free2:
302 kmem_cache_destroy(stable_node_cache);
303 out_free1:
304 kmem_cache_destroy(rmap_item_cache);
305 out:
306 return -ENOMEM;
307 }
308
309 static void __init ksm_slab_free(void)
310 {
311 kmem_cache_destroy(mm_slot_cache);
312 kmem_cache_destroy(stable_node_cache);
313 kmem_cache_destroy(rmap_item_cache);
314 mm_slot_cache = NULL;
315 }
316
317 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
318 {
319 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
320 }
321
322 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
323 {
324 return dup->head == STABLE_NODE_DUP_HEAD;
325 }
326
327 static inline void stable_node_chain_add_dup(struct stable_node *dup,
328 struct stable_node *chain)
329 {
330 VM_BUG_ON(is_stable_node_dup(dup));
331 dup->head = STABLE_NODE_DUP_HEAD;
332 VM_BUG_ON(!is_stable_node_chain(chain));
333 hlist_add_head(&dup->hlist_dup, &chain->hlist);
334 ksm_stable_node_dups++;
335 }
336
337 static inline void __stable_node_dup_del(struct stable_node *dup)
338 {
339 VM_BUG_ON(!is_stable_node_dup(dup));
340 hlist_del(&dup->hlist_dup);
341 ksm_stable_node_dups--;
342 }
343
344 static inline void stable_node_dup_del(struct stable_node *dup)
345 {
346 VM_BUG_ON(is_stable_node_chain(dup));
347 if (is_stable_node_dup(dup))
348 __stable_node_dup_del(dup);
349 else
350 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
351 #ifdef CONFIG_DEBUG_VM
352 dup->head = NULL;
353 #endif
354 }
355
356 static inline struct rmap_item *alloc_rmap_item(void)
357 {
358 struct rmap_item *rmap_item;
359
360 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
361 __GFP_NORETRY | __GFP_NOWARN);
362 if (rmap_item)
363 ksm_rmap_items++;
364 return rmap_item;
365 }
366
367 static inline void free_rmap_item(struct rmap_item *rmap_item)
368 {
369 ksm_rmap_items--;
370 rmap_item->mm = NULL; /* debug safety */
371 kmem_cache_free(rmap_item_cache, rmap_item);
372 }
373
374 static inline struct stable_node *alloc_stable_node(void)
375 {
376 /*
377 * The allocation can take too long with GFP_KERNEL when memory is under
378 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
379 * grants access to memory reserves, helping to avoid this problem.
380 */
381 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
382 }
383
384 static inline void free_stable_node(struct stable_node *stable_node)
385 {
386 VM_BUG_ON(stable_node->rmap_hlist_len &&
387 !is_stable_node_chain(stable_node));
388 kmem_cache_free(stable_node_cache, stable_node);
389 }
390
391 static inline struct mm_slot *alloc_mm_slot(void)
392 {
393 if (!mm_slot_cache) /* initialization failed */
394 return NULL;
395 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
396 }
397
398 static inline void free_mm_slot(struct mm_slot *mm_slot)
399 {
400 kmem_cache_free(mm_slot_cache, mm_slot);
401 }
402
403 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
404 {
405 struct mm_slot *slot;
406
407 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
408 if (slot->mm == mm)
409 return slot;
410
411 return NULL;
412 }
413
414 static void insert_to_mm_slots_hash(struct mm_struct *mm,
415 struct mm_slot *mm_slot)
416 {
417 mm_slot->mm = mm;
418 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
419 }
420
421 /*
422 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
423 * page tables after it has passed through ksm_exit() - which, if necessary,
424 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
425 * a special flag: they can just back out as soon as mm_users goes to zero.
426 * ksm_test_exit() is used throughout to make this test for exit: in some
427 * places for correctness, in some places just to avoid unnecessary work.
428 */
429 static inline bool ksm_test_exit(struct mm_struct *mm)
430 {
431 return atomic_read(&mm->mm_users) == 0;
432 }
433
434 /*
435 * We use break_ksm to break COW on a ksm page: it's a stripped down
436 *
437 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
438 * put_page(page);
439 *
440 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
441 * in case the application has unmapped and remapped mm,addr meanwhile.
442 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
443 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
444 *
445 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
446 * of the process that owns 'vma'. We also do not want to enforce
447 * protection keys here anyway.
448 */
449 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
450 {
451 struct page *page;
452 int ret = 0;
453
454 do {
455 cond_resched();
456 page = follow_page(vma, addr,
457 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
458 if (IS_ERR_OR_NULL(page))
459 break;
460 if (PageKsm(page))
461 ret = handle_mm_fault(vma, addr,
462 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
463 else
464 ret = VM_FAULT_WRITE;
465 put_page(page);
466 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
467 /*
468 * We must loop because handle_mm_fault() may back out if there's
469 * any difficulty e.g. if pte accessed bit gets updated concurrently.
470 *
471 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
472 * COW has been broken, even if the vma does not permit VM_WRITE;
473 * but note that a concurrent fault might break PageKsm for us.
474 *
475 * VM_FAULT_SIGBUS could occur if we race with truncation of the
476 * backing file, which also invalidates anonymous pages: that's
477 * okay, that truncation will have unmapped the PageKsm for us.
478 *
479 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
480 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
481 * current task has TIF_MEMDIE set, and will be OOM killed on return
482 * to user; and ksmd, having no mm, would never be chosen for that.
483 *
484 * But if the mm is in a limited mem_cgroup, then the fault may fail
485 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
486 * even ksmd can fail in this way - though it's usually breaking ksm
487 * just to undo a merge it made a moment before, so unlikely to oom.
488 *
489 * That's a pity: we might therefore have more kernel pages allocated
490 * than we're counting as nodes in the stable tree; but ksm_do_scan
491 * will retry to break_cow on each pass, so should recover the page
492 * in due course. The important thing is to not let VM_MERGEABLE
493 * be cleared while any such pages might remain in the area.
494 */
495 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
496 }
497
498 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
499 unsigned long addr)
500 {
501 struct vm_area_struct *vma;
502 if (ksm_test_exit(mm))
503 return NULL;
504 vma = find_vma(mm, addr);
505 if (!vma || vma->vm_start > addr)
506 return NULL;
507 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
508 return NULL;
509 return vma;
510 }
511
512 static void break_cow(struct rmap_item *rmap_item)
513 {
514 struct mm_struct *mm = rmap_item->mm;
515 unsigned long addr = rmap_item->address;
516 struct vm_area_struct *vma;
517
518 /*
519 * It is not an accident that whenever we want to break COW
520 * to undo, we also need to drop a reference to the anon_vma.
521 */
522 put_anon_vma(rmap_item->anon_vma);
523
524 down_read(&mm->mmap_sem);
525 vma = find_mergeable_vma(mm, addr);
526 if (vma)
527 break_ksm(vma, addr);
528 up_read(&mm->mmap_sem);
529 }
530
531 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
532 {
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
535 struct vm_area_struct *vma;
536 struct page *page;
537
538 down_read(&mm->mmap_sem);
539 vma = find_mergeable_vma(mm, addr);
540 if (!vma)
541 goto out;
542
543 page = follow_page(vma, addr, FOLL_GET);
544 if (IS_ERR_OR_NULL(page))
545 goto out;
546 if (PageAnon(page)) {
547 flush_anon_page(vma, page, addr);
548 flush_dcache_page(page);
549 } else {
550 put_page(page);
551 out:
552 page = NULL;
553 }
554 up_read(&mm->mmap_sem);
555 return page;
556 }
557
558 /*
559 * This helper is used for getting right index into array of tree roots.
560 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
561 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
562 * every node has its own stable and unstable tree.
563 */
564 static inline int get_kpfn_nid(unsigned long kpfn)
565 {
566 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
567 }
568
569 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
570 struct rb_root *root)
571 {
572 struct stable_node *chain = alloc_stable_node();
573 VM_BUG_ON(is_stable_node_chain(dup));
574 if (likely(chain)) {
575 INIT_HLIST_HEAD(&chain->hlist);
576 chain->chain_prune_time = jiffies;
577 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
578 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
579 chain->nid = -1; /* debug */
580 #endif
581 ksm_stable_node_chains++;
582
583 /*
584 * Put the stable node chain in the first dimension of
585 * the stable tree and at the same time remove the old
586 * stable node.
587 */
588 rb_replace_node(&dup->node, &chain->node, root);
589
590 /*
591 * Move the old stable node to the second dimension
592 * queued in the hlist_dup. The invariant is that all
593 * dup stable_nodes in the chain->hlist point to pages
594 * that are wrprotected and have the exact same
595 * content.
596 */
597 stable_node_chain_add_dup(dup, chain);
598 }
599 return chain;
600 }
601
602 static inline void free_stable_node_chain(struct stable_node *chain,
603 struct rb_root *root)
604 {
605 rb_erase(&chain->node, root);
606 free_stable_node(chain);
607 ksm_stable_node_chains--;
608 }
609
610 static void remove_node_from_stable_tree(struct stable_node *stable_node)
611 {
612 struct rmap_item *rmap_item;
613
614 /* check it's not STABLE_NODE_CHAIN or negative */
615 BUG_ON(stable_node->rmap_hlist_len < 0);
616
617 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
618 if (rmap_item->hlist.next)
619 ksm_pages_sharing--;
620 else
621 ksm_pages_shared--;
622 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
623 stable_node->rmap_hlist_len--;
624 put_anon_vma(rmap_item->anon_vma);
625 rmap_item->address &= PAGE_MASK;
626 cond_resched();
627 }
628
629 /*
630 * We need the second aligned pointer of the migrate_nodes
631 * list_head to stay clear from the rb_parent_color union
632 * (aligned and different than any node) and also different
633 * from &migrate_nodes. This will verify that future list.h changes
634 * don't break STABLE_NODE_DUP_HEAD.
635 */
636 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
637 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
638 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
639 #endif
640
641 if (stable_node->head == &migrate_nodes)
642 list_del(&stable_node->list);
643 else
644 stable_node_dup_del(stable_node);
645 free_stable_node(stable_node);
646 }
647
648 /*
649 * get_ksm_page: checks if the page indicated by the stable node
650 * is still its ksm page, despite having held no reference to it.
651 * In which case we can trust the content of the page, and it
652 * returns the gotten page; but if the page has now been zapped,
653 * remove the stale node from the stable tree and return NULL.
654 * But beware, the stable node's page might be being migrated.
655 *
656 * You would expect the stable_node to hold a reference to the ksm page.
657 * But if it increments the page's count, swapping out has to wait for
658 * ksmd to come around again before it can free the page, which may take
659 * seconds or even minutes: much too unresponsive. So instead we use a
660 * "keyhole reference": access to the ksm page from the stable node peeps
661 * out through its keyhole to see if that page still holds the right key,
662 * pointing back to this stable node. This relies on freeing a PageAnon
663 * page to reset its page->mapping to NULL, and relies on no other use of
664 * a page to put something that might look like our key in page->mapping.
665 * is on its way to being freed; but it is an anomaly to bear in mind.
666 */
667 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
668 {
669 struct page *page;
670 void *expected_mapping;
671 unsigned long kpfn;
672
673 expected_mapping = (void *)((unsigned long)stable_node |
674 PAGE_MAPPING_KSM);
675 again:
676 kpfn = READ_ONCE(stable_node->kpfn);
677 page = pfn_to_page(kpfn);
678
679 /*
680 * page is computed from kpfn, so on most architectures reading
681 * page->mapping is naturally ordered after reading node->kpfn,
682 * but on Alpha we need to be more careful.
683 */
684 smp_read_barrier_depends();
685 if (READ_ONCE(page->mapping) != expected_mapping)
686 goto stale;
687
688 /*
689 * We cannot do anything with the page while its refcount is 0.
690 * Usually 0 means free, or tail of a higher-order page: in which
691 * case this node is no longer referenced, and should be freed;
692 * however, it might mean that the page is under page_freeze_refs().
693 * The __remove_mapping() case is easy, again the node is now stale;
694 * but if page is swapcache in migrate_page_move_mapping(), it might
695 * still be our page, in which case it's essential to keep the node.
696 */
697 while (!get_page_unless_zero(page)) {
698 /*
699 * Another check for page->mapping != expected_mapping would
700 * work here too. We have chosen the !PageSwapCache test to
701 * optimize the common case, when the page is or is about to
702 * be freed: PageSwapCache is cleared (under spin_lock_irq)
703 * in the freeze_refs section of __remove_mapping(); but Anon
704 * page->mapping reset to NULL later, in free_pages_prepare().
705 */
706 if (!PageSwapCache(page))
707 goto stale;
708 cpu_relax();
709 }
710
711 if (READ_ONCE(page->mapping) != expected_mapping) {
712 put_page(page);
713 goto stale;
714 }
715
716 if (lock_it) {
717 lock_page(page);
718 if (READ_ONCE(page->mapping) != expected_mapping) {
719 unlock_page(page);
720 put_page(page);
721 goto stale;
722 }
723 }
724 return page;
725
726 stale:
727 /*
728 * We come here from above when page->mapping or !PageSwapCache
729 * suggests that the node is stale; but it might be under migration.
730 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
731 * before checking whether node->kpfn has been changed.
732 */
733 smp_rmb();
734 if (READ_ONCE(stable_node->kpfn) != kpfn)
735 goto again;
736 remove_node_from_stable_tree(stable_node);
737 return NULL;
738 }
739
740 /*
741 * Removing rmap_item from stable or unstable tree.
742 * This function will clean the information from the stable/unstable tree.
743 */
744 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
745 {
746 if (rmap_item->address & STABLE_FLAG) {
747 struct stable_node *stable_node;
748 struct page *page;
749
750 stable_node = rmap_item->head;
751 page = get_ksm_page(stable_node, true);
752 if (!page)
753 goto out;
754
755 hlist_del(&rmap_item->hlist);
756 unlock_page(page);
757 put_page(page);
758
759 if (!hlist_empty(&stable_node->hlist))
760 ksm_pages_sharing--;
761 else
762 ksm_pages_shared--;
763 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
764 stable_node->rmap_hlist_len--;
765
766 put_anon_vma(rmap_item->anon_vma);
767 rmap_item->address &= PAGE_MASK;
768
769 } else if (rmap_item->address & UNSTABLE_FLAG) {
770 unsigned char age;
771 /*
772 * Usually ksmd can and must skip the rb_erase, because
773 * root_unstable_tree was already reset to RB_ROOT.
774 * But be careful when an mm is exiting: do the rb_erase
775 * if this rmap_item was inserted by this scan, rather
776 * than left over from before.
777 */
778 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
779 BUG_ON(age > 1);
780 if (!age)
781 rb_erase(&rmap_item->node,
782 root_unstable_tree + NUMA(rmap_item->nid));
783 ksm_pages_unshared--;
784 rmap_item->address &= PAGE_MASK;
785 }
786 out:
787 cond_resched(); /* we're called from many long loops */
788 }
789
790 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
791 struct rmap_item **rmap_list)
792 {
793 while (*rmap_list) {
794 struct rmap_item *rmap_item = *rmap_list;
795 *rmap_list = rmap_item->rmap_list;
796 remove_rmap_item_from_tree(rmap_item);
797 free_rmap_item(rmap_item);
798 }
799 }
800
801 /*
802 * Though it's very tempting to unmerge rmap_items from stable tree rather
803 * than check every pte of a given vma, the locking doesn't quite work for
804 * that - an rmap_item is assigned to the stable tree after inserting ksm
805 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
806 * rmap_items from parent to child at fork time (so as not to waste time
807 * if exit comes before the next scan reaches it).
808 *
809 * Similarly, although we'd like to remove rmap_items (so updating counts
810 * and freeing memory) when unmerging an area, it's easier to leave that
811 * to the next pass of ksmd - consider, for example, how ksmd might be
812 * in cmp_and_merge_page on one of the rmap_items we would be removing.
813 */
814 static int unmerge_ksm_pages(struct vm_area_struct *vma,
815 unsigned long start, unsigned long end)
816 {
817 unsigned long addr;
818 int err = 0;
819
820 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
821 if (ksm_test_exit(vma->vm_mm))
822 break;
823 if (signal_pending(current))
824 err = -ERESTARTSYS;
825 else
826 err = break_ksm(vma, addr);
827 }
828 return err;
829 }
830
831 #ifdef CONFIG_SYSFS
832 /*
833 * Only called through the sysfs control interface:
834 */
835 static int remove_stable_node(struct stable_node *stable_node)
836 {
837 struct page *page;
838 int err;
839
840 page = get_ksm_page(stable_node, true);
841 if (!page) {
842 /*
843 * get_ksm_page did remove_node_from_stable_tree itself.
844 */
845 return 0;
846 }
847
848 if (WARN_ON_ONCE(page_mapped(page))) {
849 /*
850 * This should not happen: but if it does, just refuse to let
851 * merge_across_nodes be switched - there is no need to panic.
852 */
853 err = -EBUSY;
854 } else {
855 /*
856 * The stable node did not yet appear stale to get_ksm_page(),
857 * since that allows for an unmapped ksm page to be recognized
858 * right up until it is freed; but the node is safe to remove.
859 * This page might be in a pagevec waiting to be freed,
860 * or it might be PageSwapCache (perhaps under writeback),
861 * or it might have been removed from swapcache a moment ago.
862 */
863 set_page_stable_node(page, NULL);
864 remove_node_from_stable_tree(stable_node);
865 err = 0;
866 }
867
868 unlock_page(page);
869 put_page(page);
870 return err;
871 }
872
873 static int remove_stable_node_chain(struct stable_node *stable_node,
874 struct rb_root *root)
875 {
876 struct stable_node *dup;
877 struct hlist_node *hlist_safe;
878
879 if (!is_stable_node_chain(stable_node)) {
880 VM_BUG_ON(is_stable_node_dup(stable_node));
881 if (remove_stable_node(stable_node))
882 return true;
883 else
884 return false;
885 }
886
887 hlist_for_each_entry_safe(dup, hlist_safe,
888 &stable_node->hlist, hlist_dup) {
889 VM_BUG_ON(!is_stable_node_dup(dup));
890 if (remove_stable_node(dup))
891 return true;
892 }
893 BUG_ON(!hlist_empty(&stable_node->hlist));
894 free_stable_node_chain(stable_node, root);
895 return false;
896 }
897
898 static int remove_all_stable_nodes(void)
899 {
900 struct stable_node *stable_node, *next;
901 int nid;
902 int err = 0;
903
904 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
905 while (root_stable_tree[nid].rb_node) {
906 stable_node = rb_entry(root_stable_tree[nid].rb_node,
907 struct stable_node, node);
908 if (remove_stable_node_chain(stable_node,
909 root_stable_tree + nid)) {
910 err = -EBUSY;
911 break; /* proceed to next nid */
912 }
913 cond_resched();
914 }
915 }
916 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
917 if (remove_stable_node(stable_node))
918 err = -EBUSY;
919 cond_resched();
920 }
921 return err;
922 }
923
924 static int unmerge_and_remove_all_rmap_items(void)
925 {
926 struct mm_slot *mm_slot;
927 struct mm_struct *mm;
928 struct vm_area_struct *vma;
929 int err = 0;
930
931 spin_lock(&ksm_mmlist_lock);
932 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
933 struct mm_slot, mm_list);
934 spin_unlock(&ksm_mmlist_lock);
935
936 for (mm_slot = ksm_scan.mm_slot;
937 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
938 mm = mm_slot->mm;
939 down_read(&mm->mmap_sem);
940 for (vma = mm->mmap; vma; vma = vma->vm_next) {
941 if (ksm_test_exit(mm))
942 break;
943 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
944 continue;
945 err = unmerge_ksm_pages(vma,
946 vma->vm_start, vma->vm_end);
947 if (err)
948 goto error;
949 }
950
951 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
952 up_read(&mm->mmap_sem);
953
954 spin_lock(&ksm_mmlist_lock);
955 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
956 struct mm_slot, mm_list);
957 if (ksm_test_exit(mm)) {
958 hash_del(&mm_slot->link);
959 list_del(&mm_slot->mm_list);
960 spin_unlock(&ksm_mmlist_lock);
961
962 free_mm_slot(mm_slot);
963 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
964 mmdrop(mm);
965 } else
966 spin_unlock(&ksm_mmlist_lock);
967 }
968
969 /* Clean up stable nodes, but don't worry if some are still busy */
970 remove_all_stable_nodes();
971 ksm_scan.seqnr = 0;
972 return 0;
973
974 error:
975 up_read(&mm->mmap_sem);
976 spin_lock(&ksm_mmlist_lock);
977 ksm_scan.mm_slot = &ksm_mm_head;
978 spin_unlock(&ksm_mmlist_lock);
979 return err;
980 }
981 #endif /* CONFIG_SYSFS */
982
983 static u32 calc_checksum(struct page *page)
984 {
985 u32 checksum;
986 void *addr = kmap_atomic(page);
987 checksum = jhash2(addr, PAGE_SIZE / 4, 17);
988 kunmap_atomic(addr);
989 return checksum;
990 }
991
992 static int memcmp_pages(struct page *page1, struct page *page2)
993 {
994 char *addr1, *addr2;
995 int ret;
996
997 addr1 = kmap_atomic(page1);
998 addr2 = kmap_atomic(page2);
999 ret = memcmp(addr1, addr2, PAGE_SIZE);
1000 kunmap_atomic(addr2);
1001 kunmap_atomic(addr1);
1002 return ret;
1003 }
1004
1005 static inline int pages_identical(struct page *page1, struct page *page2)
1006 {
1007 return !memcmp_pages(page1, page2);
1008 }
1009
1010 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1011 pte_t *orig_pte)
1012 {
1013 struct mm_struct *mm = vma->vm_mm;
1014 unsigned long addr;
1015 pte_t *ptep;
1016 spinlock_t *ptl;
1017 int swapped;
1018 int err = -EFAULT;
1019 unsigned long mmun_start; /* For mmu_notifiers */
1020 unsigned long mmun_end; /* For mmu_notifiers */
1021
1022 addr = page_address_in_vma(page, vma);
1023 if (addr == -EFAULT)
1024 goto out;
1025
1026 BUG_ON(PageTransCompound(page));
1027
1028 mmun_start = addr;
1029 mmun_end = addr + PAGE_SIZE;
1030 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1031
1032 ptep = page_check_address(page, mm, addr, &ptl, 0);
1033 if (!ptep)
1034 goto out_mn;
1035
1036 if (pte_write(*ptep) || pte_dirty(*ptep) ||
1037 (pte_protnone(*ptep) && pte_savedwrite(*ptep))) {
1038 pte_t entry;
1039
1040 swapped = PageSwapCache(page);
1041 flush_cache_page(vma, addr, page_to_pfn(page));
1042 /*
1043 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1044 * take any lock, therefore the check that we are going to make
1045 * with the pagecount against the mapcount is racey and
1046 * O_DIRECT can happen right after the check.
1047 * So we clear the pte and flush the tlb before the check
1048 * this assure us that no O_DIRECT can happen after the check
1049 * or in the middle of the check.
1050 */
1051 entry = ptep_clear_flush_notify(vma, addr, ptep);
1052 /*
1053 * Check that no O_DIRECT or similar I/O is in progress on the
1054 * page
1055 */
1056 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1057 set_pte_at(mm, addr, ptep, entry);
1058 goto out_unlock;
1059 }
1060 if (pte_dirty(entry))
1061 set_page_dirty(page);
1062
1063 if (pte_protnone(entry))
1064 entry = pte_mkclean(pte_clear_savedwrite(entry));
1065 else
1066 entry = pte_mkclean(pte_wrprotect(entry));
1067 set_pte_at_notify(mm, addr, ptep, entry);
1068 }
1069 *orig_pte = *ptep;
1070 err = 0;
1071
1072 out_unlock:
1073 pte_unmap_unlock(ptep, ptl);
1074 out_mn:
1075 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1076 out:
1077 return err;
1078 }
1079
1080 /**
1081 * replace_page - replace page in vma by new ksm page
1082 * @vma: vma that holds the pte pointing to page
1083 * @page: the page we are replacing by kpage
1084 * @kpage: the ksm page we replace page by
1085 * @orig_pte: the original value of the pte
1086 *
1087 * Returns 0 on success, -EFAULT on failure.
1088 */
1089 static int replace_page(struct vm_area_struct *vma, struct page *page,
1090 struct page *kpage, pte_t orig_pte)
1091 {
1092 struct mm_struct *mm = vma->vm_mm;
1093 pmd_t *pmd;
1094 pte_t *ptep;
1095 pte_t newpte;
1096 spinlock_t *ptl;
1097 unsigned long addr;
1098 int err = -EFAULT;
1099 unsigned long mmun_start; /* For mmu_notifiers */
1100 unsigned long mmun_end; /* For mmu_notifiers */
1101
1102 addr = page_address_in_vma(page, vma);
1103 if (addr == -EFAULT)
1104 goto out;
1105
1106 pmd = mm_find_pmd(mm, addr);
1107 if (!pmd)
1108 goto out;
1109
1110 mmun_start = addr;
1111 mmun_end = addr + PAGE_SIZE;
1112 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1113
1114 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1115 if (!pte_same(*ptep, orig_pte)) {
1116 pte_unmap_unlock(ptep, ptl);
1117 goto out_mn;
1118 }
1119
1120 /*
1121 * No need to check ksm_use_zero_pages here: we can only have a
1122 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1123 */
1124 if (!is_zero_pfn(page_to_pfn(kpage))) {
1125 get_page(kpage);
1126 page_add_anon_rmap(kpage, vma, addr, false);
1127 newpte = mk_pte(kpage, vma->vm_page_prot);
1128 } else {
1129 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1130 vma->vm_page_prot));
1131 }
1132
1133 flush_cache_page(vma, addr, pte_pfn(*ptep));
1134 ptep_clear_flush_notify(vma, addr, ptep);
1135 set_pte_at_notify(mm, addr, ptep, newpte);
1136
1137 page_remove_rmap(page, false);
1138 if (!page_mapped(page))
1139 try_to_free_swap(page);
1140 put_page(page);
1141
1142 pte_unmap_unlock(ptep, ptl);
1143 err = 0;
1144 out_mn:
1145 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1146 out:
1147 return err;
1148 }
1149
1150 /*
1151 * try_to_merge_one_page - take two pages and merge them into one
1152 * @vma: the vma that holds the pte pointing to page
1153 * @page: the PageAnon page that we want to replace with kpage
1154 * @kpage: the PageKsm page that we want to map instead of page,
1155 * or NULL the first time when we want to use page as kpage.
1156 *
1157 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1158 */
1159 static int try_to_merge_one_page(struct vm_area_struct *vma,
1160 struct page *page, struct page *kpage)
1161 {
1162 pte_t orig_pte = __pte(0);
1163 int err = -EFAULT;
1164
1165 if (page == kpage) /* ksm page forked */
1166 return 0;
1167
1168 if (!PageAnon(page))
1169 goto out;
1170
1171 /*
1172 * We need the page lock to read a stable PageSwapCache in
1173 * write_protect_page(). We use trylock_page() instead of
1174 * lock_page() because we don't want to wait here - we
1175 * prefer to continue scanning and merging different pages,
1176 * then come back to this page when it is unlocked.
1177 */
1178 if (!trylock_page(page))
1179 goto out;
1180
1181 if (PageTransCompound(page)) {
1182 err = split_huge_page(page);
1183 if (err)
1184 goto out_unlock;
1185 }
1186
1187 /*
1188 * If this anonymous page is mapped only here, its pte may need
1189 * to be write-protected. If it's mapped elsewhere, all of its
1190 * ptes are necessarily already write-protected. But in either
1191 * case, we need to lock and check page_count is not raised.
1192 */
1193 if (write_protect_page(vma, page, &orig_pte) == 0) {
1194 if (!kpage) {
1195 /*
1196 * While we hold page lock, upgrade page from
1197 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1198 * stable_tree_insert() will update stable_node.
1199 */
1200 set_page_stable_node(page, NULL);
1201 mark_page_accessed(page);
1202 /*
1203 * Page reclaim just frees a clean page with no dirty
1204 * ptes: make sure that the ksm page would be swapped.
1205 */
1206 if (!PageDirty(page))
1207 SetPageDirty(page);
1208 err = 0;
1209 } else if (pages_identical(page, kpage))
1210 err = replace_page(vma, page, kpage, orig_pte);
1211 }
1212
1213 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1214 munlock_vma_page(page);
1215 if (!PageMlocked(kpage)) {
1216 unlock_page(page);
1217 lock_page(kpage);
1218 mlock_vma_page(kpage);
1219 page = kpage; /* for final unlock */
1220 }
1221 }
1222
1223 out_unlock:
1224 unlock_page(page);
1225 out:
1226 return err;
1227 }
1228
1229 /*
1230 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1231 * but no new kernel page is allocated: kpage must already be a ksm page.
1232 *
1233 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1234 */
1235 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1236 struct page *page, struct page *kpage)
1237 {
1238 struct mm_struct *mm = rmap_item->mm;
1239 struct vm_area_struct *vma;
1240 int err = -EFAULT;
1241
1242 down_read(&mm->mmap_sem);
1243 vma = find_mergeable_vma(mm, rmap_item->address);
1244 if (!vma)
1245 goto out;
1246
1247 err = try_to_merge_one_page(vma, page, kpage);
1248 if (err)
1249 goto out;
1250
1251 /* Unstable nid is in union with stable anon_vma: remove first */
1252 remove_rmap_item_from_tree(rmap_item);
1253
1254 /* Must get reference to anon_vma while still holding mmap_sem */
1255 rmap_item->anon_vma = vma->anon_vma;
1256 get_anon_vma(vma->anon_vma);
1257 out:
1258 up_read(&mm->mmap_sem);
1259 return err;
1260 }
1261
1262 /*
1263 * try_to_merge_two_pages - take two identical pages and prepare them
1264 * to be merged into one page.
1265 *
1266 * This function returns the kpage if we successfully merged two identical
1267 * pages into one ksm page, NULL otherwise.
1268 *
1269 * Note that this function upgrades page to ksm page: if one of the pages
1270 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1271 */
1272 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1273 struct page *page,
1274 struct rmap_item *tree_rmap_item,
1275 struct page *tree_page)
1276 {
1277 int err;
1278
1279 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1280 if (!err) {
1281 err = try_to_merge_with_ksm_page(tree_rmap_item,
1282 tree_page, page);
1283 /*
1284 * If that fails, we have a ksm page with only one pte
1285 * pointing to it: so break it.
1286 */
1287 if (err)
1288 break_cow(rmap_item);
1289 }
1290 return err ? NULL : page;
1291 }
1292
1293 static __always_inline
1294 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1295 {
1296 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1297 /*
1298 * Check that at least one mapping still exists, otherwise
1299 * there's no much point to merge and share with this
1300 * stable_node, as the underlying tree_page of the other
1301 * sharer is going to be freed soon.
1302 */
1303 return stable_node->rmap_hlist_len &&
1304 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1305 }
1306
1307 static __always_inline
1308 bool is_page_sharing_candidate(struct stable_node *stable_node)
1309 {
1310 return __is_page_sharing_candidate(stable_node, 0);
1311 }
1312
1313 struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1314 struct stable_node **_stable_node,
1315 struct rb_root *root,
1316 bool prune_stale_stable_nodes)
1317 {
1318 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1319 struct hlist_node *hlist_safe;
1320 struct page *_tree_page, *tree_page = NULL;
1321 int nr = 0;
1322 int found_rmap_hlist_len;
1323
1324 if (!prune_stale_stable_nodes ||
1325 time_before(jiffies, stable_node->chain_prune_time +
1326 msecs_to_jiffies(
1327 ksm_stable_node_chains_prune_millisecs)))
1328 prune_stale_stable_nodes = false;
1329 else
1330 stable_node->chain_prune_time = jiffies;
1331
1332 hlist_for_each_entry_safe(dup, hlist_safe,
1333 &stable_node->hlist, hlist_dup) {
1334 cond_resched();
1335 /*
1336 * We must walk all stable_node_dup to prune the stale
1337 * stable nodes during lookup.
1338 *
1339 * get_ksm_page can drop the nodes from the
1340 * stable_node->hlist if they point to freed pages
1341 * (that's why we do a _safe walk). The "dup"
1342 * stable_node parameter itself will be freed from
1343 * under us if it returns NULL.
1344 */
1345 _tree_page = get_ksm_page(dup, false);
1346 if (!_tree_page)
1347 continue;
1348 nr += 1;
1349 if (is_page_sharing_candidate(dup)) {
1350 if (!found ||
1351 dup->rmap_hlist_len > found_rmap_hlist_len) {
1352 if (found)
1353 put_page(tree_page);
1354 found = dup;
1355 found_rmap_hlist_len = found->rmap_hlist_len;
1356 tree_page = _tree_page;
1357
1358 /* skip put_page for found dup */
1359 if (!prune_stale_stable_nodes)
1360 break;
1361 continue;
1362 }
1363 }
1364 put_page(_tree_page);
1365 }
1366
1367 /*
1368 * nr is relevant only if prune_stale_stable_nodes is true,
1369 * otherwise we may break the loop at nr == 1 even if there
1370 * are multiple entries.
1371 */
1372 if (prune_stale_stable_nodes && found) {
1373 if (nr == 1) {
1374 /*
1375 * If there's not just one entry it would
1376 * corrupt memory, better BUG_ON. In KSM
1377 * context with no lock held it's not even
1378 * fatal.
1379 */
1380 BUG_ON(stable_node->hlist.first->next);
1381
1382 /*
1383 * There's just one entry and it is below the
1384 * deduplication limit so drop the chain.
1385 */
1386 rb_replace_node(&stable_node->node, &found->node,
1387 root);
1388 free_stable_node(stable_node);
1389 ksm_stable_node_chains--;
1390 ksm_stable_node_dups--;
1391 /*
1392 * NOTE: the caller depends on the stable_node
1393 * to be equal to stable_node_dup if the chain
1394 * was collapsed.
1395 */
1396 *_stable_node = found;
1397 /*
1398 * Just for robustneess as stable_node is
1399 * otherwise left as a stable pointer, the
1400 * compiler shall optimize it away at build
1401 * time.
1402 */
1403 stable_node = NULL;
1404 } else if (__is_page_sharing_candidate(found, 1)) {
1405 /*
1406 * Refile our candidate at the head
1407 * after the prune if our candidate
1408 * can accept one more future sharing
1409 * in addition to the one underway.
1410 */
1411 hlist_del(&found->hlist_dup);
1412 hlist_add_head(&found->hlist_dup,
1413 &stable_node->hlist);
1414 }
1415 }
1416
1417 *_stable_node_dup = found;
1418 return tree_page;
1419 }
1420
1421 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1422 struct rb_root *root)
1423 {
1424 if (!is_stable_node_chain(stable_node))
1425 return stable_node;
1426 if (hlist_empty(&stable_node->hlist)) {
1427 free_stable_node_chain(stable_node, root);
1428 return NULL;
1429 }
1430 return hlist_entry(stable_node->hlist.first,
1431 typeof(*stable_node), hlist_dup);
1432 }
1433
1434 /*
1435 * Like for get_ksm_page, this function can free the *_stable_node and
1436 * *_stable_node_dup if the returned tree_page is NULL.
1437 *
1438 * It can also free and overwrite *_stable_node with the found
1439 * stable_node_dup if the chain is collapsed (in which case
1440 * *_stable_node will be equal to *_stable_node_dup like if the chain
1441 * never existed). It's up to the caller to verify tree_page is not
1442 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1443 *
1444 * *_stable_node_dup is really a second output parameter of this
1445 * function and will be overwritten in all cases, the caller doesn't
1446 * need to initialize it.
1447 */
1448 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1449 struct stable_node **_stable_node,
1450 struct rb_root *root,
1451 bool prune_stale_stable_nodes)
1452 {
1453 struct stable_node *stable_node = *_stable_node;
1454 if (!is_stable_node_chain(stable_node)) {
1455 if (is_page_sharing_candidate(stable_node)) {
1456 *_stable_node_dup = stable_node;
1457 return get_ksm_page(stable_node, false);
1458 }
1459 /*
1460 * _stable_node_dup set to NULL means the stable_node
1461 * reached the ksm_max_page_sharing limit.
1462 */
1463 *_stable_node_dup = NULL;
1464 return NULL;
1465 }
1466 return stable_node_dup(_stable_node_dup, _stable_node, root,
1467 prune_stale_stable_nodes);
1468 }
1469
1470 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1471 struct stable_node **s_n,
1472 struct rb_root *root)
1473 {
1474 return __stable_node_chain(s_n_d, s_n, root, true);
1475 }
1476
1477 static __always_inline struct page *chain(struct stable_node **s_n_d,
1478 struct stable_node *s_n,
1479 struct rb_root *root)
1480 {
1481 struct stable_node *old_stable_node = s_n;
1482 struct page *tree_page;
1483
1484 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1485 /* not pruning dups so s_n cannot have changed */
1486 VM_BUG_ON(s_n != old_stable_node);
1487 return tree_page;
1488 }
1489
1490 /*
1491 * stable_tree_search - search for page inside the stable tree
1492 *
1493 * This function checks if there is a page inside the stable tree
1494 * with identical content to the page that we are scanning right now.
1495 *
1496 * This function returns the stable tree node of identical content if found,
1497 * NULL otherwise.
1498 */
1499 static struct page *stable_tree_search(struct page *page)
1500 {
1501 int nid;
1502 struct rb_root *root;
1503 struct rb_node **new;
1504 struct rb_node *parent;
1505 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1506 struct stable_node *page_node;
1507
1508 page_node = page_stable_node(page);
1509 if (page_node && page_node->head != &migrate_nodes) {
1510 /* ksm page forked */
1511 get_page(page);
1512 return page;
1513 }
1514
1515 nid = get_kpfn_nid(page_to_pfn(page));
1516 root = root_stable_tree + nid;
1517 again:
1518 new = &root->rb_node;
1519 parent = NULL;
1520
1521 while (*new) {
1522 struct page *tree_page;
1523 int ret;
1524
1525 cond_resched();
1526 stable_node = rb_entry(*new, struct stable_node, node);
1527 stable_node_any = NULL;
1528 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1529 /*
1530 * NOTE: stable_node may have been freed by
1531 * chain_prune() if the returned stable_node_dup is
1532 * not NULL. stable_node_dup may have been inserted in
1533 * the rbtree instead as a regular stable_node (in
1534 * order to collapse the stable_node chain if a single
1535 * stable_node dup was found in it). In such case the
1536 * stable_node is overwritten by the calleee to point
1537 * to the stable_node_dup that was collapsed in the
1538 * stable rbtree and stable_node will be equal to
1539 * stable_node_dup like if the chain never existed.
1540 */
1541 if (!stable_node_dup) {
1542 /*
1543 * Either all stable_node dups were full in
1544 * this stable_node chain, or this chain was
1545 * empty and should be rb_erased.
1546 */
1547 stable_node_any = stable_node_dup_any(stable_node,
1548 root);
1549 if (!stable_node_any) {
1550 /* rb_erase just run */
1551 goto again;
1552 }
1553 /*
1554 * Take any of the stable_node dups page of
1555 * this stable_node chain to let the tree walk
1556 * continue. All KSM pages belonging to the
1557 * stable_node dups in a stable_node chain
1558 * have the same content and they're
1559 * wrprotected at all times. Any will work
1560 * fine to continue the walk.
1561 */
1562 tree_page = get_ksm_page(stable_node_any, false);
1563 }
1564 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1565 if (!tree_page) {
1566 /*
1567 * If we walked over a stale stable_node,
1568 * get_ksm_page() will call rb_erase() and it
1569 * may rebalance the tree from under us. So
1570 * restart the search from scratch. Returning
1571 * NULL would be safe too, but we'd generate
1572 * false negative insertions just because some
1573 * stable_node was stale.
1574 */
1575 goto again;
1576 }
1577
1578 ret = memcmp_pages(page, tree_page);
1579 put_page(tree_page);
1580
1581 parent = *new;
1582 if (ret < 0)
1583 new = &parent->rb_left;
1584 else if (ret > 0)
1585 new = &parent->rb_right;
1586 else {
1587 if (page_node) {
1588 VM_BUG_ON(page_node->head != &migrate_nodes);
1589 /*
1590 * Test if the migrated page should be merged
1591 * into a stable node dup. If the mapcount is
1592 * 1 we can migrate it with another KSM page
1593 * without adding it to the chain.
1594 */
1595 if (page_mapcount(page) > 1)
1596 goto chain_append;
1597 }
1598
1599 if (!stable_node_dup) {
1600 /*
1601 * If the stable_node is a chain and
1602 * we got a payload match in memcmp
1603 * but we cannot merge the scanned
1604 * page in any of the existing
1605 * stable_node dups because they're
1606 * all full, we need to wait the
1607 * scanned page to find itself a match
1608 * in the unstable tree to create a
1609 * brand new KSM page to add later to
1610 * the dups of this stable_node.
1611 */
1612 return NULL;
1613 }
1614
1615 /*
1616 * Lock and unlock the stable_node's page (which
1617 * might already have been migrated) so that page
1618 * migration is sure to notice its raised count.
1619 * It would be more elegant to return stable_node
1620 * than kpage, but that involves more changes.
1621 */
1622 tree_page = get_ksm_page(stable_node_dup, true);
1623 if (unlikely(!tree_page))
1624 /*
1625 * The tree may have been rebalanced,
1626 * so re-evaluate parent and new.
1627 */
1628 goto again;
1629 unlock_page(tree_page);
1630
1631 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1632 NUMA(stable_node_dup->nid)) {
1633 put_page(tree_page);
1634 goto replace;
1635 }
1636 return tree_page;
1637 }
1638 }
1639
1640 if (!page_node)
1641 return NULL;
1642
1643 list_del(&page_node->list);
1644 DO_NUMA(page_node->nid = nid);
1645 rb_link_node(&page_node->node, parent, new);
1646 rb_insert_color(&page_node->node, root);
1647 out:
1648 if (is_page_sharing_candidate(page_node)) {
1649 get_page(page);
1650 return page;
1651 } else
1652 return NULL;
1653
1654 replace:
1655 /*
1656 * If stable_node was a chain and chain_prune collapsed it,
1657 * stable_node has been updated to be the new regular
1658 * stable_node. A collapse of the chain is indistinguishable
1659 * from the case there was no chain in the stable
1660 * rbtree. Otherwise stable_node is the chain and
1661 * stable_node_dup is the dup to replace.
1662 */
1663 if (stable_node_dup == stable_node) {
1664 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1665 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1666 /* there is no chain */
1667 if (page_node) {
1668 VM_BUG_ON(page_node->head != &migrate_nodes);
1669 list_del(&page_node->list);
1670 DO_NUMA(page_node->nid = nid);
1671 rb_replace_node(&stable_node_dup->node,
1672 &page_node->node,
1673 root);
1674 if (is_page_sharing_candidate(page_node))
1675 get_page(page);
1676 else
1677 page = NULL;
1678 } else {
1679 rb_erase(&stable_node_dup->node, root);
1680 page = NULL;
1681 }
1682 } else {
1683 VM_BUG_ON(!is_stable_node_chain(stable_node));
1684 __stable_node_dup_del(stable_node_dup);
1685 if (page_node) {
1686 VM_BUG_ON(page_node->head != &migrate_nodes);
1687 list_del(&page_node->list);
1688 DO_NUMA(page_node->nid = nid);
1689 stable_node_chain_add_dup(page_node, stable_node);
1690 if (is_page_sharing_candidate(page_node))
1691 get_page(page);
1692 else
1693 page = NULL;
1694 } else {
1695 page = NULL;
1696 }
1697 }
1698 stable_node_dup->head = &migrate_nodes;
1699 list_add(&stable_node_dup->list, stable_node_dup->head);
1700 return page;
1701
1702 chain_append:
1703 /* stable_node_dup could be null if it reached the limit */
1704 if (!stable_node_dup)
1705 stable_node_dup = stable_node_any;
1706 /*
1707 * If stable_node was a chain and chain_prune collapsed it,
1708 * stable_node has been updated to be the new regular
1709 * stable_node. A collapse of the chain is indistinguishable
1710 * from the case there was no chain in the stable
1711 * rbtree. Otherwise stable_node is the chain and
1712 * stable_node_dup is the dup to replace.
1713 */
1714 if (stable_node_dup == stable_node) {
1715 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1716 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1717 /* chain is missing so create it */
1718 stable_node = alloc_stable_node_chain(stable_node_dup,
1719 root);
1720 if (!stable_node)
1721 return NULL;
1722 }
1723 /*
1724 * Add this stable_node dup that was
1725 * migrated to the stable_node chain
1726 * of the current nid for this page
1727 * content.
1728 */
1729 VM_BUG_ON(!is_stable_node_chain(stable_node));
1730 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1731 VM_BUG_ON(page_node->head != &migrate_nodes);
1732 list_del(&page_node->list);
1733 DO_NUMA(page_node->nid = nid);
1734 stable_node_chain_add_dup(page_node, stable_node);
1735 goto out;
1736 }
1737
1738 /*
1739 * stable_tree_insert - insert stable tree node pointing to new ksm page
1740 * into the stable tree.
1741 *
1742 * This function returns the stable tree node just allocated on success,
1743 * NULL otherwise.
1744 */
1745 static struct stable_node *stable_tree_insert(struct page *kpage)
1746 {
1747 int nid;
1748 unsigned long kpfn;
1749 struct rb_root *root;
1750 struct rb_node **new;
1751 struct rb_node *parent;
1752 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1753 bool need_chain = false;
1754
1755 kpfn = page_to_pfn(kpage);
1756 nid = get_kpfn_nid(kpfn);
1757 root = root_stable_tree + nid;
1758 again:
1759 parent = NULL;
1760 new = &root->rb_node;
1761
1762 while (*new) {
1763 struct page *tree_page;
1764 int ret;
1765
1766 cond_resched();
1767 stable_node = rb_entry(*new, struct stable_node, node);
1768 stable_node_any = NULL;
1769 tree_page = chain(&stable_node_dup, stable_node, root);
1770 if (!stable_node_dup) {
1771 /*
1772 * Either all stable_node dups were full in
1773 * this stable_node chain, or this chain was
1774 * empty and should be rb_erased.
1775 */
1776 stable_node_any = stable_node_dup_any(stable_node,
1777 root);
1778 if (!stable_node_any) {
1779 /* rb_erase just run */
1780 goto again;
1781 }
1782 /*
1783 * Take any of the stable_node dups page of
1784 * this stable_node chain to let the tree walk
1785 * continue. All KSM pages belonging to the
1786 * stable_node dups in a stable_node chain
1787 * have the same content and they're
1788 * wrprotected at all times. Any will work
1789 * fine to continue the walk.
1790 */
1791 tree_page = get_ksm_page(stable_node_any, false);
1792 }
1793 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1794 if (!tree_page) {
1795 /*
1796 * If we walked over a stale stable_node,
1797 * get_ksm_page() will call rb_erase() and it
1798 * may rebalance the tree from under us. So
1799 * restart the search from scratch. Returning
1800 * NULL would be safe too, but we'd generate
1801 * false negative insertions just because some
1802 * stable_node was stale.
1803 */
1804 goto again;
1805 }
1806
1807 ret = memcmp_pages(kpage, tree_page);
1808 put_page(tree_page);
1809
1810 parent = *new;
1811 if (ret < 0)
1812 new = &parent->rb_left;
1813 else if (ret > 0)
1814 new = &parent->rb_right;
1815 else {
1816 need_chain = true;
1817 break;
1818 }
1819 }
1820
1821 stable_node_dup = alloc_stable_node();
1822 if (!stable_node_dup)
1823 return NULL;
1824
1825 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1826 stable_node_dup->kpfn = kpfn;
1827 set_page_stable_node(kpage, stable_node_dup);
1828 stable_node_dup->rmap_hlist_len = 0;
1829 DO_NUMA(stable_node_dup->nid = nid);
1830 if (!need_chain) {
1831 rb_link_node(&stable_node_dup->node, parent, new);
1832 rb_insert_color(&stable_node_dup->node, root);
1833 } else {
1834 if (!is_stable_node_chain(stable_node)) {
1835 struct stable_node *orig = stable_node;
1836 /* chain is missing so create it */
1837 stable_node = alloc_stable_node_chain(orig, root);
1838 if (!stable_node) {
1839 free_stable_node(stable_node_dup);
1840 return NULL;
1841 }
1842 }
1843 stable_node_chain_add_dup(stable_node_dup, stable_node);
1844 }
1845
1846 return stable_node_dup;
1847 }
1848
1849 /*
1850 * unstable_tree_search_insert - search for identical page,
1851 * else insert rmap_item into the unstable tree.
1852 *
1853 * This function searches for a page in the unstable tree identical to the
1854 * page currently being scanned; and if no identical page is found in the
1855 * tree, we insert rmap_item as a new object into the unstable tree.
1856 *
1857 * This function returns pointer to rmap_item found to be identical
1858 * to the currently scanned page, NULL otherwise.
1859 *
1860 * This function does both searching and inserting, because they share
1861 * the same walking algorithm in an rbtree.
1862 */
1863 static
1864 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1865 struct page *page,
1866 struct page **tree_pagep)
1867 {
1868 struct rb_node **new;
1869 struct rb_root *root;
1870 struct rb_node *parent = NULL;
1871 int nid;
1872
1873 nid = get_kpfn_nid(page_to_pfn(page));
1874 root = root_unstable_tree + nid;
1875 new = &root->rb_node;
1876
1877 while (*new) {
1878 struct rmap_item *tree_rmap_item;
1879 struct page *tree_page;
1880 int ret;
1881
1882 cond_resched();
1883 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1884 tree_page = get_mergeable_page(tree_rmap_item);
1885 if (!tree_page)
1886 return NULL;
1887
1888 /*
1889 * Don't substitute a ksm page for a forked page.
1890 */
1891 if (page == tree_page) {
1892 put_page(tree_page);
1893 return NULL;
1894 }
1895
1896 ret = memcmp_pages(page, tree_page);
1897
1898 parent = *new;
1899 if (ret < 0) {
1900 put_page(tree_page);
1901 new = &parent->rb_left;
1902 } else if (ret > 0) {
1903 put_page(tree_page);
1904 new = &parent->rb_right;
1905 } else if (!ksm_merge_across_nodes &&
1906 page_to_nid(tree_page) != nid) {
1907 /*
1908 * If tree_page has been migrated to another NUMA node,
1909 * it will be flushed out and put in the right unstable
1910 * tree next time: only merge with it when across_nodes.
1911 */
1912 put_page(tree_page);
1913 return NULL;
1914 } else {
1915 *tree_pagep = tree_page;
1916 return tree_rmap_item;
1917 }
1918 }
1919
1920 rmap_item->address |= UNSTABLE_FLAG;
1921 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1922 DO_NUMA(rmap_item->nid = nid);
1923 rb_link_node(&rmap_item->node, parent, new);
1924 rb_insert_color(&rmap_item->node, root);
1925
1926 ksm_pages_unshared++;
1927 return NULL;
1928 }
1929
1930 /*
1931 * stable_tree_append - add another rmap_item to the linked list of
1932 * rmap_items hanging off a given node of the stable tree, all sharing
1933 * the same ksm page.
1934 */
1935 static void stable_tree_append(struct rmap_item *rmap_item,
1936 struct stable_node *stable_node,
1937 bool max_page_sharing_bypass)
1938 {
1939 /*
1940 * rmap won't find this mapping if we don't insert the
1941 * rmap_item in the right stable_node
1942 * duplicate. page_migration could break later if rmap breaks,
1943 * so we can as well crash here. We really need to check for
1944 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1945 * for other negative values as an undeflow if detected here
1946 * for the first time (and not when decreasing rmap_hlist_len)
1947 * would be sign of memory corruption in the stable_node.
1948 */
1949 BUG_ON(stable_node->rmap_hlist_len < 0);
1950
1951 stable_node->rmap_hlist_len++;
1952 if (!max_page_sharing_bypass)
1953 /* possibly non fatal but unexpected overflow, only warn */
1954 WARN_ON_ONCE(stable_node->rmap_hlist_len >
1955 ksm_max_page_sharing);
1956
1957 rmap_item->head = stable_node;
1958 rmap_item->address |= STABLE_FLAG;
1959 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1960
1961 if (rmap_item->hlist.next)
1962 ksm_pages_sharing++;
1963 else
1964 ksm_pages_shared++;
1965 }
1966
1967 /*
1968 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1969 * if not, compare checksum to previous and if it's the same, see if page can
1970 * be inserted into the unstable tree, or merged with a page already there and
1971 * both transferred to the stable tree.
1972 *
1973 * @page: the page that we are searching identical page to.
1974 * @rmap_item: the reverse mapping into the virtual address of this page
1975 */
1976 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1977 {
1978 struct rmap_item *tree_rmap_item;
1979 struct page *tree_page = NULL;
1980 struct stable_node *stable_node;
1981 struct page *kpage;
1982 unsigned int checksum;
1983 int err;
1984 bool max_page_sharing_bypass = false;
1985
1986 stable_node = page_stable_node(page);
1987 if (stable_node) {
1988 if (stable_node->head != &migrate_nodes &&
1989 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
1990 NUMA(stable_node->nid)) {
1991 stable_node_dup_del(stable_node);
1992 stable_node->head = &migrate_nodes;
1993 list_add(&stable_node->list, stable_node->head);
1994 }
1995 if (stable_node->head != &migrate_nodes &&
1996 rmap_item->head == stable_node)
1997 return;
1998 /*
1999 * If it's a KSM fork, allow it to go over the sharing limit
2000 * without warnings.
2001 */
2002 if (!is_page_sharing_candidate(stable_node))
2003 max_page_sharing_bypass = true;
2004 }
2005
2006 /* We first start with searching the page inside the stable tree */
2007 kpage = stable_tree_search(page);
2008 if (kpage == page && rmap_item->head == stable_node) {
2009 put_page(kpage);
2010 return;
2011 }
2012
2013 remove_rmap_item_from_tree(rmap_item);
2014
2015 if (kpage) {
2016 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2017 if (!err) {
2018 /*
2019 * The page was successfully merged:
2020 * add its rmap_item to the stable tree.
2021 */
2022 lock_page(kpage);
2023 stable_tree_append(rmap_item, page_stable_node(kpage),
2024 max_page_sharing_bypass);
2025 unlock_page(kpage);
2026 }
2027 put_page(kpage);
2028 return;
2029 }
2030
2031 /*
2032 * If the hash value of the page has changed from the last time
2033 * we calculated it, this page is changing frequently: therefore we
2034 * don't want to insert it in the unstable tree, and we don't want
2035 * to waste our time searching for something identical to it there.
2036 */
2037 checksum = calc_checksum(page);
2038 if (rmap_item->oldchecksum != checksum) {
2039 rmap_item->oldchecksum = checksum;
2040 return;
2041 }
2042
2043 /*
2044 * Same checksum as an empty page. We attempt to merge it with the
2045 * appropriate zero page if the user enabled this via sysfs.
2046 */
2047 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2048 struct vm_area_struct *vma;
2049
2050 vma = find_mergeable_vma(rmap_item->mm, rmap_item->address);
2051 err = try_to_merge_one_page(vma, page,
2052 ZERO_PAGE(rmap_item->address));
2053 /*
2054 * In case of failure, the page was not really empty, so we
2055 * need to continue. Otherwise we're done.
2056 */
2057 if (!err)
2058 return;
2059 }
2060 tree_rmap_item =
2061 unstable_tree_search_insert(rmap_item, page, &tree_page);
2062 if (tree_rmap_item) {
2063 kpage = try_to_merge_two_pages(rmap_item, page,
2064 tree_rmap_item, tree_page);
2065 put_page(tree_page);
2066 if (kpage) {
2067 /*
2068 * The pages were successfully merged: insert new
2069 * node in the stable tree and add both rmap_items.
2070 */
2071 lock_page(kpage);
2072 stable_node = stable_tree_insert(kpage);
2073 if (stable_node) {
2074 stable_tree_append(tree_rmap_item, stable_node,
2075 false);
2076 stable_tree_append(rmap_item, stable_node,
2077 false);
2078 }
2079 unlock_page(kpage);
2080
2081 /*
2082 * If we fail to insert the page into the stable tree,
2083 * we will have 2 virtual addresses that are pointing
2084 * to a ksm page left outside the stable tree,
2085 * in which case we need to break_cow on both.
2086 */
2087 if (!stable_node) {
2088 break_cow(tree_rmap_item);
2089 break_cow(rmap_item);
2090 }
2091 }
2092 }
2093 }
2094
2095 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2096 struct rmap_item **rmap_list,
2097 unsigned long addr)
2098 {
2099 struct rmap_item *rmap_item;
2100
2101 while (*rmap_list) {
2102 rmap_item = *rmap_list;
2103 if ((rmap_item->address & PAGE_MASK) == addr)
2104 return rmap_item;
2105 if (rmap_item->address > addr)
2106 break;
2107 *rmap_list = rmap_item->rmap_list;
2108 remove_rmap_item_from_tree(rmap_item);
2109 free_rmap_item(rmap_item);
2110 }
2111
2112 rmap_item = alloc_rmap_item();
2113 if (rmap_item) {
2114 /* It has already been zeroed */
2115 rmap_item->mm = mm_slot->mm;
2116 rmap_item->address = addr;
2117 rmap_item->rmap_list = *rmap_list;
2118 *rmap_list = rmap_item;
2119 }
2120 return rmap_item;
2121 }
2122
2123 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2124 {
2125 struct mm_struct *mm;
2126 struct mm_slot *slot;
2127 struct vm_area_struct *vma;
2128 struct rmap_item *rmap_item;
2129 int nid;
2130
2131 if (list_empty(&ksm_mm_head.mm_list))
2132 return NULL;
2133
2134 slot = ksm_scan.mm_slot;
2135 if (slot == &ksm_mm_head) {
2136 /*
2137 * A number of pages can hang around indefinitely on per-cpu
2138 * pagevecs, raised page count preventing write_protect_page
2139 * from merging them. Though it doesn't really matter much,
2140 * it is puzzling to see some stuck in pages_volatile until
2141 * other activity jostles them out, and they also prevented
2142 * LTP's KSM test from succeeding deterministically; so drain
2143 * them here (here rather than on entry to ksm_do_scan(),
2144 * so we don't IPI too often when pages_to_scan is set low).
2145 */
2146 lru_add_drain_all();
2147
2148 /*
2149 * Whereas stale stable_nodes on the stable_tree itself
2150 * get pruned in the regular course of stable_tree_search(),
2151 * those moved out to the migrate_nodes list can accumulate:
2152 * so prune them once before each full scan.
2153 */
2154 if (!ksm_merge_across_nodes) {
2155 struct stable_node *stable_node, *next;
2156 struct page *page;
2157
2158 list_for_each_entry_safe(stable_node, next,
2159 &migrate_nodes, list) {
2160 page = get_ksm_page(stable_node, false);
2161 if (page)
2162 put_page(page);
2163 cond_resched();
2164 }
2165 }
2166
2167 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2168 root_unstable_tree[nid] = RB_ROOT;
2169
2170 spin_lock(&ksm_mmlist_lock);
2171 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2172 ksm_scan.mm_slot = slot;
2173 spin_unlock(&ksm_mmlist_lock);
2174 /*
2175 * Although we tested list_empty() above, a racing __ksm_exit
2176 * of the last mm on the list may have removed it since then.
2177 */
2178 if (slot == &ksm_mm_head)
2179 return NULL;
2180 next_mm:
2181 ksm_scan.address = 0;
2182 ksm_scan.rmap_list = &slot->rmap_list;
2183 }
2184
2185 mm = slot->mm;
2186 down_read(&mm->mmap_sem);
2187 if (ksm_test_exit(mm))
2188 vma = NULL;
2189 else
2190 vma = find_vma(mm, ksm_scan.address);
2191
2192 for (; vma; vma = vma->vm_next) {
2193 if (!(vma->vm_flags & VM_MERGEABLE))
2194 continue;
2195 if (ksm_scan.address < vma->vm_start)
2196 ksm_scan.address = vma->vm_start;
2197 if (!vma->anon_vma)
2198 ksm_scan.address = vma->vm_end;
2199
2200 while (ksm_scan.address < vma->vm_end) {
2201 if (ksm_test_exit(mm))
2202 break;
2203 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2204 if (IS_ERR_OR_NULL(*page)) {
2205 ksm_scan.address += PAGE_SIZE;
2206 cond_resched();
2207 continue;
2208 }
2209 if (PageAnon(*page)) {
2210 flush_anon_page(vma, *page, ksm_scan.address);
2211 flush_dcache_page(*page);
2212 rmap_item = get_next_rmap_item(slot,
2213 ksm_scan.rmap_list, ksm_scan.address);
2214 if (rmap_item) {
2215 ksm_scan.rmap_list =
2216 &rmap_item->rmap_list;
2217 ksm_scan.address += PAGE_SIZE;
2218 } else
2219 put_page(*page);
2220 up_read(&mm->mmap_sem);
2221 return rmap_item;
2222 }
2223 put_page(*page);
2224 ksm_scan.address += PAGE_SIZE;
2225 cond_resched();
2226 }
2227 }
2228
2229 if (ksm_test_exit(mm)) {
2230 ksm_scan.address = 0;
2231 ksm_scan.rmap_list = &slot->rmap_list;
2232 }
2233 /*
2234 * Nuke all the rmap_items that are above this current rmap:
2235 * because there were no VM_MERGEABLE vmas with such addresses.
2236 */
2237 remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2238
2239 spin_lock(&ksm_mmlist_lock);
2240 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2241 struct mm_slot, mm_list);
2242 if (ksm_scan.address == 0) {
2243 /*
2244 * We've completed a full scan of all vmas, holding mmap_sem
2245 * throughout, and found no VM_MERGEABLE: so do the same as
2246 * __ksm_exit does to remove this mm from all our lists now.
2247 * This applies either when cleaning up after __ksm_exit
2248 * (but beware: we can reach here even before __ksm_exit),
2249 * or when all VM_MERGEABLE areas have been unmapped (and
2250 * mmap_sem then protects against race with MADV_MERGEABLE).
2251 */
2252 hash_del(&slot->link);
2253 list_del(&slot->mm_list);
2254 spin_unlock(&ksm_mmlist_lock);
2255
2256 free_mm_slot(slot);
2257 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2258 up_read(&mm->mmap_sem);
2259 mmdrop(mm);
2260 } else {
2261 up_read(&mm->mmap_sem);
2262 /*
2263 * up_read(&mm->mmap_sem) first because after
2264 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2265 * already have been freed under us by __ksm_exit()
2266 * because the "mm_slot" is still hashed and
2267 * ksm_scan.mm_slot doesn't point to it anymore.
2268 */
2269 spin_unlock(&ksm_mmlist_lock);
2270 }
2271
2272 /* Repeat until we've completed scanning the whole list */
2273 slot = ksm_scan.mm_slot;
2274 if (slot != &ksm_mm_head)
2275 goto next_mm;
2276
2277 ksm_scan.seqnr++;
2278 return NULL;
2279 }
2280
2281 /**
2282 * ksm_do_scan - the ksm scanner main worker function.
2283 * @scan_npages - number of pages we want to scan before we return.
2284 */
2285 static void ksm_do_scan(unsigned int scan_npages)
2286 {
2287 struct rmap_item *rmap_item;
2288 struct page *uninitialized_var(page);
2289
2290 while (scan_npages-- && likely(!freezing(current))) {
2291 cond_resched();
2292 rmap_item = scan_get_next_rmap_item(&page);
2293 if (!rmap_item)
2294 return;
2295 cmp_and_merge_page(page, rmap_item);
2296 put_page(page);
2297 }
2298 }
2299
2300 static int ksmd_should_run(void)
2301 {
2302 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2303 }
2304
2305 static int ksm_scan_thread(void *nothing)
2306 {
2307 set_freezable();
2308 set_user_nice(current, 5);
2309
2310 while (!kthread_should_stop()) {
2311 mutex_lock(&ksm_thread_mutex);
2312 wait_while_offlining();
2313 if (ksmd_should_run())
2314 ksm_do_scan(ksm_thread_pages_to_scan);
2315 mutex_unlock(&ksm_thread_mutex);
2316
2317 try_to_freeze();
2318
2319 if (ksmd_should_run()) {
2320 if (ksm_thread_sleep_millisecs >= 1000)
2321 schedule_timeout_interruptible(
2322 msecs_to_jiffies(round_jiffies_relative(ksm_thread_sleep_millisecs)));
2323 else
2324 schedule_timeout_interruptible(
2325 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2326 } else {
2327 wait_event_freezable(ksm_thread_wait,
2328 ksmd_should_run() || kthread_should_stop());
2329 }
2330 }
2331 return 0;
2332 }
2333
2334 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2335 unsigned long end, int advice, unsigned long *vm_flags)
2336 {
2337 struct mm_struct *mm = vma->vm_mm;
2338 int err;
2339
2340 switch (advice) {
2341 case MADV_MERGEABLE:
2342 /*
2343 * Be somewhat over-protective for now!
2344 */
2345 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2346 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2347 VM_HUGETLB | VM_MIXEDMAP))
2348 return 0; /* just ignore the advice */
2349
2350 #ifdef VM_SAO
2351 if (*vm_flags & VM_SAO)
2352 return 0;
2353 #endif
2354
2355 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2356 err = __ksm_enter(mm);
2357 if (err)
2358 return err;
2359 }
2360
2361 *vm_flags |= VM_MERGEABLE;
2362 break;
2363
2364 case MADV_UNMERGEABLE:
2365 if (!(*vm_flags & VM_MERGEABLE))
2366 return 0; /* just ignore the advice */
2367
2368 if (vma->anon_vma) {
2369 err = unmerge_ksm_pages(vma, start, end);
2370 if (err)
2371 return err;
2372 }
2373
2374 *vm_flags &= ~VM_MERGEABLE;
2375 break;
2376 }
2377
2378 return 0;
2379 }
2380
2381 int __ksm_enter(struct mm_struct *mm)
2382 {
2383 struct mm_slot *mm_slot;
2384 int needs_wakeup;
2385
2386 mm_slot = alloc_mm_slot();
2387 if (!mm_slot)
2388 return -ENOMEM;
2389
2390 /* Check ksm_run too? Would need tighter locking */
2391 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2392
2393 spin_lock(&ksm_mmlist_lock);
2394 insert_to_mm_slots_hash(mm, mm_slot);
2395 /*
2396 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2397 * insert just behind the scanning cursor, to let the area settle
2398 * down a little; when fork is followed by immediate exec, we don't
2399 * want ksmd to waste time setting up and tearing down an rmap_list.
2400 *
2401 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2402 * scanning cursor, otherwise KSM pages in newly forked mms will be
2403 * missed: then we might as well insert at the end of the list.
2404 */
2405 if (ksm_run & KSM_RUN_UNMERGE)
2406 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2407 else
2408 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2409 spin_unlock(&ksm_mmlist_lock);
2410
2411 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2412 atomic_inc(&mm->mm_count);
2413
2414 if (needs_wakeup)
2415 wake_up_interruptible(&ksm_thread_wait);
2416
2417 return 0;
2418 }
2419
2420 void __ksm_exit(struct mm_struct *mm)
2421 {
2422 struct mm_slot *mm_slot;
2423 int easy_to_free = 0;
2424
2425 /*
2426 * This process is exiting: if it's straightforward (as is the
2427 * case when ksmd was never running), free mm_slot immediately.
2428 * But if it's at the cursor or has rmap_items linked to it, use
2429 * mmap_sem to synchronize with any break_cows before pagetables
2430 * are freed, and leave the mm_slot on the list for ksmd to free.
2431 * Beware: ksm may already have noticed it exiting and freed the slot.
2432 */
2433
2434 spin_lock(&ksm_mmlist_lock);
2435 mm_slot = get_mm_slot(mm);
2436 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2437 if (!mm_slot->rmap_list) {
2438 hash_del(&mm_slot->link);
2439 list_del(&mm_slot->mm_list);
2440 easy_to_free = 1;
2441 } else {
2442 list_move(&mm_slot->mm_list,
2443 &ksm_scan.mm_slot->mm_list);
2444 }
2445 }
2446 spin_unlock(&ksm_mmlist_lock);
2447
2448 if (easy_to_free) {
2449 free_mm_slot(mm_slot);
2450 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2451 mmdrop(mm);
2452 } else if (mm_slot) {
2453 down_write(&mm->mmap_sem);
2454 up_write(&mm->mmap_sem);
2455 }
2456 }
2457
2458 struct page *ksm_might_need_to_copy(struct page *page,
2459 struct vm_area_struct *vma, unsigned long address)
2460 {
2461 struct anon_vma *anon_vma = page_anon_vma(page);
2462 struct page *new_page;
2463
2464 if (PageKsm(page)) {
2465 if (page_stable_node(page) &&
2466 !(ksm_run & KSM_RUN_UNMERGE))
2467 return page; /* no need to copy it */
2468 } else if (!anon_vma) {
2469 return page; /* no need to copy it */
2470 } else if (anon_vma->root == vma->anon_vma->root &&
2471 page->index == linear_page_index(vma, address)) {
2472 return page; /* still no need to copy it */
2473 }
2474 if (!PageUptodate(page))
2475 return page; /* let do_swap_page report the error */
2476
2477 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2478 if (new_page) {
2479 copy_user_highpage(new_page, page, address, vma);
2480
2481 SetPageDirty(new_page);
2482 __SetPageUptodate(new_page);
2483 __SetPageLocked(new_page);
2484 }
2485
2486 return new_page;
2487 }
2488
2489 int rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2490 {
2491 struct stable_node *stable_node;
2492 struct rmap_item *rmap_item;
2493 int ret = SWAP_AGAIN;
2494 int search_new_forks = 0;
2495
2496 VM_BUG_ON_PAGE(!PageKsm(page), page);
2497
2498 /*
2499 * Rely on the page lock to protect against concurrent modifications
2500 * to that page's node of the stable tree.
2501 */
2502 VM_BUG_ON_PAGE(!PageLocked(page), page);
2503
2504 stable_node = page_stable_node(page);
2505 if (!stable_node)
2506 return ret;
2507 again:
2508 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2509 struct anon_vma *anon_vma = rmap_item->anon_vma;
2510 struct anon_vma_chain *vmac;
2511 struct vm_area_struct *vma;
2512
2513 cond_resched();
2514 anon_vma_lock_read(anon_vma);
2515 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2516 0, ULONG_MAX) {
2517 cond_resched();
2518 vma = vmac->vma;
2519 if (rmap_item->address < vma->vm_start ||
2520 rmap_item->address >= vma->vm_end)
2521 continue;
2522 /*
2523 * Initially we examine only the vma which covers this
2524 * rmap_item; but later, if there is still work to do,
2525 * we examine covering vmas in other mms: in case they
2526 * were forked from the original since ksmd passed.
2527 */
2528 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2529 continue;
2530
2531 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2532 continue;
2533
2534 ret = rwc->rmap_one(page, vma,
2535 rmap_item->address, rwc->arg);
2536 if (ret != SWAP_AGAIN) {
2537 anon_vma_unlock_read(anon_vma);
2538 goto out;
2539 }
2540 if (rwc->done && rwc->done(page)) {
2541 anon_vma_unlock_read(anon_vma);
2542 goto out;
2543 }
2544 }
2545 anon_vma_unlock_read(anon_vma);
2546 }
2547 if (!search_new_forks++)
2548 goto again;
2549 out:
2550 return ret;
2551 }
2552
2553 #ifdef CONFIG_MIGRATION
2554 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2555 {
2556 struct stable_node *stable_node;
2557
2558 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2559 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2560 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2561
2562 stable_node = page_stable_node(newpage);
2563 if (stable_node) {
2564 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2565 stable_node->kpfn = page_to_pfn(newpage);
2566 /*
2567 * newpage->mapping was set in advance; now we need smp_wmb()
2568 * to make sure that the new stable_node->kpfn is visible
2569 * to get_ksm_page() before it can see that oldpage->mapping
2570 * has gone stale (or that PageSwapCache has been cleared).
2571 */
2572 smp_wmb();
2573 set_page_stable_node(oldpage, NULL);
2574 }
2575 }
2576 #endif /* CONFIG_MIGRATION */
2577
2578 #ifdef CONFIG_MEMORY_HOTREMOVE
2579 static void wait_while_offlining(void)
2580 {
2581 while (ksm_run & KSM_RUN_OFFLINE) {
2582 mutex_unlock(&ksm_thread_mutex);
2583 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2584 TASK_UNINTERRUPTIBLE);
2585 mutex_lock(&ksm_thread_mutex);
2586 }
2587 }
2588
2589 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2590 unsigned long start_pfn,
2591 unsigned long end_pfn)
2592 {
2593 if (stable_node->kpfn >= start_pfn &&
2594 stable_node->kpfn < end_pfn) {
2595 /*
2596 * Don't get_ksm_page, page has already gone:
2597 * which is why we keep kpfn instead of page*
2598 */
2599 remove_node_from_stable_tree(stable_node);
2600 return true;
2601 }
2602 return false;
2603 }
2604
2605 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2606 unsigned long start_pfn,
2607 unsigned long end_pfn,
2608 struct rb_root *root)
2609 {
2610 struct stable_node *dup;
2611 struct hlist_node *hlist_safe;
2612
2613 if (!is_stable_node_chain(stable_node)) {
2614 VM_BUG_ON(is_stable_node_dup(stable_node));
2615 return stable_node_dup_remove_range(stable_node, start_pfn,
2616 end_pfn);
2617 }
2618
2619 hlist_for_each_entry_safe(dup, hlist_safe,
2620 &stable_node->hlist, hlist_dup) {
2621 VM_BUG_ON(!is_stable_node_dup(dup));
2622 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2623 }
2624 if (hlist_empty(&stable_node->hlist)) {
2625 free_stable_node_chain(stable_node, root);
2626 return true; /* notify caller that tree was rebalanced */
2627 } else
2628 return false;
2629 }
2630
2631 static void ksm_check_stable_tree(unsigned long start_pfn,
2632 unsigned long end_pfn)
2633 {
2634 struct stable_node *stable_node, *next;
2635 struct rb_node *node;
2636 int nid;
2637
2638 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2639 node = rb_first(root_stable_tree + nid);
2640 while (node) {
2641 stable_node = rb_entry(node, struct stable_node, node);
2642 if (stable_node_chain_remove_range(stable_node,
2643 start_pfn, end_pfn,
2644 root_stable_tree +
2645 nid))
2646 node = rb_first(root_stable_tree + nid);
2647 else
2648 node = rb_next(node);
2649 cond_resched();
2650 }
2651 }
2652 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2653 if (stable_node->kpfn >= start_pfn &&
2654 stable_node->kpfn < end_pfn)
2655 remove_node_from_stable_tree(stable_node);
2656 cond_resched();
2657 }
2658 }
2659
2660 static int ksm_memory_callback(struct notifier_block *self,
2661 unsigned long action, void *arg)
2662 {
2663 struct memory_notify *mn = arg;
2664
2665 switch (action) {
2666 case MEM_GOING_OFFLINE:
2667 /*
2668 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2669 * and remove_all_stable_nodes() while memory is going offline:
2670 * it is unsafe for them to touch the stable tree at this time.
2671 * But unmerge_ksm_pages(), rmap lookups and other entry points
2672 * which do not need the ksm_thread_mutex are all safe.
2673 */
2674 mutex_lock(&ksm_thread_mutex);
2675 ksm_run |= KSM_RUN_OFFLINE;
2676 mutex_unlock(&ksm_thread_mutex);
2677 break;
2678
2679 case MEM_OFFLINE:
2680 /*
2681 * Most of the work is done by page migration; but there might
2682 * be a few stable_nodes left over, still pointing to struct
2683 * pages which have been offlined: prune those from the tree,
2684 * otherwise get_ksm_page() might later try to access a
2685 * non-existent struct page.
2686 */
2687 ksm_check_stable_tree(mn->start_pfn,
2688 mn->start_pfn + mn->nr_pages);
2689 /* fallthrough */
2690
2691 case MEM_CANCEL_OFFLINE:
2692 mutex_lock(&ksm_thread_mutex);
2693 ksm_run &= ~KSM_RUN_OFFLINE;
2694 mutex_unlock(&ksm_thread_mutex);
2695
2696 smp_mb(); /* wake_up_bit advises this */
2697 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2698 break;
2699 }
2700 return NOTIFY_OK;
2701 }
2702 #else
2703 static void wait_while_offlining(void)
2704 {
2705 }
2706 #endif /* CONFIG_MEMORY_HOTREMOVE */
2707
2708 #ifdef CONFIG_SYSFS
2709 /*
2710 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2711 */
2712
2713 #define KSM_ATTR_RO(_name) \
2714 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2715 #define KSM_ATTR(_name) \
2716 static struct kobj_attribute _name##_attr = \
2717 __ATTR(_name, 0644, _name##_show, _name##_store)
2718
2719 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2720 struct kobj_attribute *attr, char *buf)
2721 {
2722 return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2723 }
2724
2725 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2726 struct kobj_attribute *attr,
2727 const char *buf, size_t count)
2728 {
2729 unsigned long msecs;
2730 int err;
2731
2732 err = kstrtoul(buf, 10, &msecs);
2733 if (err || msecs > UINT_MAX)
2734 return -EINVAL;
2735
2736 ksm_thread_sleep_millisecs = msecs;
2737
2738 return count;
2739 }
2740 KSM_ATTR(sleep_millisecs);
2741
2742 static ssize_t pages_to_scan_show(struct kobject *kobj,
2743 struct kobj_attribute *attr, char *buf)
2744 {
2745 return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2746 }
2747
2748 static ssize_t pages_to_scan_store(struct kobject *kobj,
2749 struct kobj_attribute *attr,
2750 const char *buf, size_t count)
2751 {
2752 int err;
2753 unsigned long nr_pages;
2754
2755 err = kstrtoul(buf, 10, &nr_pages);
2756 if (err || nr_pages > UINT_MAX)
2757 return -EINVAL;
2758
2759 ksm_thread_pages_to_scan = nr_pages;
2760
2761 return count;
2762 }
2763 KSM_ATTR(pages_to_scan);
2764
2765 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2766 char *buf)
2767 {
2768 return sprintf(buf, "%lu\n", ksm_run);
2769 }
2770
2771 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2772 const char *buf, size_t count)
2773 {
2774 int err;
2775 unsigned long flags;
2776
2777 err = kstrtoul(buf, 10, &flags);
2778 if (err || flags > UINT_MAX)
2779 return -EINVAL;
2780 if (flags > KSM_RUN_UNMERGE)
2781 return -EINVAL;
2782
2783 /*
2784 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2785 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2786 * breaking COW to free the pages_shared (but leaves mm_slots
2787 * on the list for when ksmd may be set running again).
2788 */
2789
2790 mutex_lock(&ksm_thread_mutex);
2791 wait_while_offlining();
2792 if (ksm_run != flags) {
2793 ksm_run = flags;
2794 if (flags & KSM_RUN_UNMERGE) {
2795 set_current_oom_origin();
2796 err = unmerge_and_remove_all_rmap_items();
2797 clear_current_oom_origin();
2798 if (err) {
2799 ksm_run = KSM_RUN_STOP;
2800 count = err;
2801 }
2802 }
2803 }
2804 mutex_unlock(&ksm_thread_mutex);
2805
2806 if (flags & KSM_RUN_MERGE)
2807 wake_up_interruptible(&ksm_thread_wait);
2808
2809 return count;
2810 }
2811 KSM_ATTR(run);
2812
2813 #ifdef CONFIG_NUMA
2814 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2815 struct kobj_attribute *attr, char *buf)
2816 {
2817 return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2818 }
2819
2820 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2821 struct kobj_attribute *attr,
2822 const char *buf, size_t count)
2823 {
2824 int err;
2825 unsigned long knob;
2826
2827 err = kstrtoul(buf, 10, &knob);
2828 if (err)
2829 return err;
2830 if (knob > 1)
2831 return -EINVAL;
2832
2833 mutex_lock(&ksm_thread_mutex);
2834 wait_while_offlining();
2835 if (ksm_merge_across_nodes != knob) {
2836 if (ksm_pages_shared || remove_all_stable_nodes())
2837 err = -EBUSY;
2838 else if (root_stable_tree == one_stable_tree) {
2839 struct rb_root *buf;
2840 /*
2841 * This is the first time that we switch away from the
2842 * default of merging across nodes: must now allocate
2843 * a buffer to hold as many roots as may be needed.
2844 * Allocate stable and unstable together:
2845 * MAXSMP NODES_SHIFT 10 will use 16kB.
2846 */
2847 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2848 GFP_KERNEL);
2849 /* Let us assume that RB_ROOT is NULL is zero */
2850 if (!buf)
2851 err = -ENOMEM;
2852 else {
2853 root_stable_tree = buf;
2854 root_unstable_tree = buf + nr_node_ids;
2855 /* Stable tree is empty but not the unstable */
2856 root_unstable_tree[0] = one_unstable_tree[0];
2857 }
2858 }
2859 if (!err) {
2860 ksm_merge_across_nodes = knob;
2861 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2862 }
2863 }
2864 mutex_unlock(&ksm_thread_mutex);
2865
2866 return err ? err : count;
2867 }
2868 KSM_ATTR(merge_across_nodes);
2869 #endif
2870
2871 static ssize_t use_zero_pages_show(struct kobject *kobj,
2872 struct kobj_attribute *attr, char *buf)
2873 {
2874 return sprintf(buf, "%u\n", ksm_use_zero_pages);
2875 }
2876 static ssize_t use_zero_pages_store(struct kobject *kobj,
2877 struct kobj_attribute *attr,
2878 const char *buf, size_t count)
2879 {
2880 int err;
2881 bool value;
2882
2883 err = kstrtobool(buf, &value);
2884 if (err)
2885 return -EINVAL;
2886
2887 ksm_use_zero_pages = value;
2888
2889 return count;
2890 }
2891 KSM_ATTR(use_zero_pages);
2892
2893 static ssize_t max_page_sharing_show(struct kobject *kobj,
2894 struct kobj_attribute *attr, char *buf)
2895 {
2896 return sprintf(buf, "%u\n", ksm_max_page_sharing);
2897 }
2898
2899 static ssize_t max_page_sharing_store(struct kobject *kobj,
2900 struct kobj_attribute *attr,
2901 const char *buf, size_t count)
2902 {
2903 int err;
2904 int knob;
2905
2906 err = kstrtoint(buf, 10, &knob);
2907 if (err)
2908 return err;
2909 /*
2910 * When a KSM page is created it is shared by 2 mappings. This
2911 * being a signed comparison, it implicitly verifies it's not
2912 * negative.
2913 */
2914 if (knob < 2)
2915 return -EINVAL;
2916
2917 if (READ_ONCE(ksm_max_page_sharing) == knob)
2918 return count;
2919
2920 mutex_lock(&ksm_thread_mutex);
2921 wait_while_offlining();
2922 if (ksm_max_page_sharing != knob) {
2923 if (ksm_pages_shared || remove_all_stable_nodes())
2924 err = -EBUSY;
2925 else
2926 ksm_max_page_sharing = knob;
2927 }
2928 mutex_unlock(&ksm_thread_mutex);
2929
2930 return err ? err : count;
2931 }
2932 KSM_ATTR(max_page_sharing);
2933
2934 static ssize_t pages_shared_show(struct kobject *kobj,
2935 struct kobj_attribute *attr, char *buf)
2936 {
2937 return sprintf(buf, "%lu\n", ksm_pages_shared);
2938 }
2939 KSM_ATTR_RO(pages_shared);
2940
2941 static ssize_t pages_sharing_show(struct kobject *kobj,
2942 struct kobj_attribute *attr, char *buf)
2943 {
2944 return sprintf(buf, "%lu\n", ksm_pages_sharing);
2945 }
2946 KSM_ATTR_RO(pages_sharing);
2947
2948 static ssize_t pages_unshared_show(struct kobject *kobj,
2949 struct kobj_attribute *attr, char *buf)
2950 {
2951 return sprintf(buf, "%lu\n", ksm_pages_unshared);
2952 }
2953 KSM_ATTR_RO(pages_unshared);
2954
2955 static ssize_t pages_volatile_show(struct kobject *kobj,
2956 struct kobj_attribute *attr, char *buf)
2957 {
2958 long ksm_pages_volatile;
2959
2960 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2961 - ksm_pages_sharing - ksm_pages_unshared;
2962 /*
2963 * It was not worth any locking to calculate that statistic,
2964 * but it might therefore sometimes be negative: conceal that.
2965 */
2966 if (ksm_pages_volatile < 0)
2967 ksm_pages_volatile = 0;
2968 return sprintf(buf, "%ld\n", ksm_pages_volatile);
2969 }
2970 KSM_ATTR_RO(pages_volatile);
2971
2972 static ssize_t stable_node_dups_show(struct kobject *kobj,
2973 struct kobj_attribute *attr, char *buf)
2974 {
2975 return sprintf(buf, "%lu\n", ksm_stable_node_dups);
2976 }
2977 KSM_ATTR_RO(stable_node_dups);
2978
2979 static ssize_t stable_node_chains_show(struct kobject *kobj,
2980 struct kobj_attribute *attr, char *buf)
2981 {
2982 return sprintf(buf, "%lu\n", ksm_stable_node_chains);
2983 }
2984 KSM_ATTR_RO(stable_node_chains);
2985
2986 static ssize_t
2987 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
2988 struct kobj_attribute *attr,
2989 char *buf)
2990 {
2991 return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
2992 }
2993
2994 static ssize_t
2995 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
2996 struct kobj_attribute *attr,
2997 const char *buf, size_t count)
2998 {
2999 unsigned long msecs;
3000 int err;
3001
3002 err = kstrtoul(buf, 10, &msecs);
3003 if (err || msecs > UINT_MAX)
3004 return -EINVAL;
3005
3006 ksm_stable_node_chains_prune_millisecs = msecs;
3007
3008 return count;
3009 }
3010 KSM_ATTR(stable_node_chains_prune_millisecs);
3011
3012 static ssize_t full_scans_show(struct kobject *kobj,
3013 struct kobj_attribute *attr, char *buf)
3014 {
3015 return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3016 }
3017 KSM_ATTR_RO(full_scans);
3018
3019 static struct attribute *ksm_attrs[] = {
3020 &sleep_millisecs_attr.attr,
3021 &pages_to_scan_attr.attr,
3022 &run_attr.attr,
3023 &pages_shared_attr.attr,
3024 &pages_sharing_attr.attr,
3025 &pages_unshared_attr.attr,
3026 &pages_volatile_attr.attr,
3027 &full_scans_attr.attr,
3028 #ifdef CONFIG_NUMA
3029 &merge_across_nodes_attr.attr,
3030 #endif
3031 &max_page_sharing_attr.attr,
3032 &stable_node_chains_attr.attr,
3033 &stable_node_dups_attr.attr,
3034 &stable_node_chains_prune_millisecs_attr.attr,
3035 &use_zero_pages_attr.attr,
3036 NULL,
3037 };
3038
3039 static struct attribute_group ksm_attr_group = {
3040 .attrs = ksm_attrs,
3041 .name = "ksm",
3042 };
3043 #endif /* CONFIG_SYSFS */
3044
3045 static int __init ksm_init(void)
3046 {
3047 struct task_struct *ksm_thread;
3048 int err;
3049
3050 /* The correct value depends on page size and endianness */
3051 zero_checksum = calc_checksum(ZERO_PAGE(0));
3052 /* Default to false for backwards compatibility */
3053 ksm_use_zero_pages = false;
3054
3055 err = ksm_slab_init();
3056 if (err)
3057 goto out;
3058
3059 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3060 if (IS_ERR(ksm_thread)) {
3061 pr_err("ksm: creating kthread failed\n");
3062 err = PTR_ERR(ksm_thread);
3063 goto out_free;
3064 }
3065
3066 #ifdef CONFIG_SYSFS
3067 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3068 if (err) {
3069 pr_err("ksm: register sysfs failed\n");
3070 kthread_stop(ksm_thread);
3071 goto out_free;
3072 }
3073 #else
3074 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3075
3076 #endif /* CONFIG_SYSFS */
3077
3078 #ifdef CONFIG_MEMORY_HOTREMOVE
3079 /* There is no significance to this priority 100 */
3080 hotplug_memory_notifier(ksm_memory_callback, 100);
3081 #endif
3082 return 0;
3083
3084 out_free:
3085 ksm_slab_free();
3086 out:
3087 return err;
3088 }
3089 subsys_initcall(ksm_init);