]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/madvise.c
netfilter: nf_tables_offload: release flow_rule on error from commit path
[mirror_ubuntu-jammy-kernel.git] / mm / madvise.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/madvise.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 2002 Christoph Hellwig
7 */
8
9 #include <linux/mman.h>
10 #include <linux/pagemap.h>
11 #include <linux/syscalls.h>
12 #include <linux/mempolicy.h>
13 #include <linux/page-isolation.h>
14 #include <linux/page_idle.h>
15 #include <linux/userfaultfd_k.h>
16 #include <linux/hugetlb.h>
17 #include <linux/falloc.h>
18 #include <linux/fadvise.h>
19 #include <linux/sched.h>
20 #include <linux/ksm.h>
21 #include <linux/fs.h>
22 #include <linux/file.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/pagewalk.h>
26 #include <linux/swap.h>
27 #include <linux/swapops.h>
28 #include <linux/shmem_fs.h>
29 #include <linux/mmu_notifier.h>
30
31 #include <asm/tlb.h>
32
33 #include "internal.h"
34
35 struct madvise_walk_private {
36 struct mmu_gather *tlb;
37 bool pageout;
38 };
39
40 /*
41 * Any behaviour which results in changes to the vma->vm_flags needs to
42 * take mmap_sem for writing. Others, which simply traverse vmas, need
43 * to only take it for reading.
44 */
45 static int madvise_need_mmap_write(int behavior)
46 {
47 switch (behavior) {
48 case MADV_REMOVE:
49 case MADV_WILLNEED:
50 case MADV_DONTNEED:
51 case MADV_COLD:
52 case MADV_PAGEOUT:
53 case MADV_FREE:
54 return 0;
55 default:
56 /* be safe, default to 1. list exceptions explicitly */
57 return 1;
58 }
59 }
60
61 /*
62 * We can potentially split a vm area into separate
63 * areas, each area with its own behavior.
64 */
65 static long madvise_behavior(struct vm_area_struct *vma,
66 struct vm_area_struct **prev,
67 unsigned long start, unsigned long end, int behavior)
68 {
69 struct mm_struct *mm = vma->vm_mm;
70 int error = 0;
71 pgoff_t pgoff;
72 unsigned long new_flags = vma->vm_flags;
73
74 switch (behavior) {
75 case MADV_NORMAL:
76 new_flags = new_flags & ~VM_RAND_READ & ~VM_SEQ_READ;
77 break;
78 case MADV_SEQUENTIAL:
79 new_flags = (new_flags & ~VM_RAND_READ) | VM_SEQ_READ;
80 break;
81 case MADV_RANDOM:
82 new_flags = (new_flags & ~VM_SEQ_READ) | VM_RAND_READ;
83 break;
84 case MADV_DONTFORK:
85 new_flags |= VM_DONTCOPY;
86 break;
87 case MADV_DOFORK:
88 if (vma->vm_flags & VM_IO) {
89 error = -EINVAL;
90 goto out;
91 }
92 new_flags &= ~VM_DONTCOPY;
93 break;
94 case MADV_WIPEONFORK:
95 /* MADV_WIPEONFORK is only supported on anonymous memory. */
96 if (vma->vm_file || vma->vm_flags & VM_SHARED) {
97 error = -EINVAL;
98 goto out;
99 }
100 new_flags |= VM_WIPEONFORK;
101 break;
102 case MADV_KEEPONFORK:
103 new_flags &= ~VM_WIPEONFORK;
104 break;
105 case MADV_DONTDUMP:
106 new_flags |= VM_DONTDUMP;
107 break;
108 case MADV_DODUMP:
109 if (!is_vm_hugetlb_page(vma) && new_flags & VM_SPECIAL) {
110 error = -EINVAL;
111 goto out;
112 }
113 new_flags &= ~VM_DONTDUMP;
114 break;
115 case MADV_MERGEABLE:
116 case MADV_UNMERGEABLE:
117 error = ksm_madvise(vma, start, end, behavior, &new_flags);
118 if (error)
119 goto out_convert_errno;
120 break;
121 case MADV_HUGEPAGE:
122 case MADV_NOHUGEPAGE:
123 error = hugepage_madvise(vma, &new_flags, behavior);
124 if (error)
125 goto out_convert_errno;
126 break;
127 }
128
129 if (new_flags == vma->vm_flags) {
130 *prev = vma;
131 goto out;
132 }
133
134 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
135 *prev = vma_merge(mm, *prev, start, end, new_flags, vma->anon_vma,
136 vma->vm_file, pgoff, vma_policy(vma),
137 vma->vm_userfaultfd_ctx);
138 if (*prev) {
139 vma = *prev;
140 goto success;
141 }
142
143 *prev = vma;
144
145 if (start != vma->vm_start) {
146 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
147 error = -ENOMEM;
148 goto out;
149 }
150 error = __split_vma(mm, vma, start, 1);
151 if (error)
152 goto out_convert_errno;
153 }
154
155 if (end != vma->vm_end) {
156 if (unlikely(mm->map_count >= sysctl_max_map_count)) {
157 error = -ENOMEM;
158 goto out;
159 }
160 error = __split_vma(mm, vma, end, 0);
161 if (error)
162 goto out_convert_errno;
163 }
164
165 success:
166 /*
167 * vm_flags is protected by the mmap_sem held in write mode.
168 */
169 vma->vm_flags = new_flags;
170
171 out_convert_errno:
172 /*
173 * madvise() returns EAGAIN if kernel resources, such as
174 * slab, are temporarily unavailable.
175 */
176 if (error == -ENOMEM)
177 error = -EAGAIN;
178 out:
179 return error;
180 }
181
182 #ifdef CONFIG_SWAP
183 static int swapin_walk_pmd_entry(pmd_t *pmd, unsigned long start,
184 unsigned long end, struct mm_walk *walk)
185 {
186 pte_t *orig_pte;
187 struct vm_area_struct *vma = walk->private;
188 unsigned long index;
189
190 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
191 return 0;
192
193 for (index = start; index != end; index += PAGE_SIZE) {
194 pte_t pte;
195 swp_entry_t entry;
196 struct page *page;
197 spinlock_t *ptl;
198
199 orig_pte = pte_offset_map_lock(vma->vm_mm, pmd, start, &ptl);
200 pte = *(orig_pte + ((index - start) / PAGE_SIZE));
201 pte_unmap_unlock(orig_pte, ptl);
202
203 if (pte_present(pte) || pte_none(pte))
204 continue;
205 entry = pte_to_swp_entry(pte);
206 if (unlikely(non_swap_entry(entry)))
207 continue;
208
209 page = read_swap_cache_async(entry, GFP_HIGHUSER_MOVABLE,
210 vma, index, false);
211 if (page)
212 put_page(page);
213 }
214
215 return 0;
216 }
217
218 static const struct mm_walk_ops swapin_walk_ops = {
219 .pmd_entry = swapin_walk_pmd_entry,
220 };
221
222 static void force_shm_swapin_readahead(struct vm_area_struct *vma,
223 unsigned long start, unsigned long end,
224 struct address_space *mapping)
225 {
226 pgoff_t index;
227 struct page *page;
228 swp_entry_t swap;
229
230 for (; start < end; start += PAGE_SIZE) {
231 index = ((start - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
232
233 page = find_get_entry(mapping, index);
234 if (!xa_is_value(page)) {
235 if (page)
236 put_page(page);
237 continue;
238 }
239 swap = radix_to_swp_entry(page);
240 page = read_swap_cache_async(swap, GFP_HIGHUSER_MOVABLE,
241 NULL, 0, false);
242 if (page)
243 put_page(page);
244 }
245
246 lru_add_drain(); /* Push any new pages onto the LRU now */
247 }
248 #endif /* CONFIG_SWAP */
249
250 /*
251 * Schedule all required I/O operations. Do not wait for completion.
252 */
253 static long madvise_willneed(struct vm_area_struct *vma,
254 struct vm_area_struct **prev,
255 unsigned long start, unsigned long end)
256 {
257 struct file *file = vma->vm_file;
258 loff_t offset;
259
260 *prev = vma;
261 #ifdef CONFIG_SWAP
262 if (!file) {
263 walk_page_range(vma->vm_mm, start, end, &swapin_walk_ops, vma);
264 lru_add_drain(); /* Push any new pages onto the LRU now */
265 return 0;
266 }
267
268 if (shmem_mapping(file->f_mapping)) {
269 force_shm_swapin_readahead(vma, start, end,
270 file->f_mapping);
271 return 0;
272 }
273 #else
274 if (!file)
275 return -EBADF;
276 #endif
277
278 if (IS_DAX(file_inode(file))) {
279 /* no bad return value, but ignore advice */
280 return 0;
281 }
282
283 /*
284 * Filesystem's fadvise may need to take various locks. We need to
285 * explicitly grab a reference because the vma (and hence the
286 * vma's reference to the file) can go away as soon as we drop
287 * mmap_sem.
288 */
289 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
290 get_file(file);
291 up_read(&current->mm->mmap_sem);
292 offset = (loff_t)(start - vma->vm_start)
293 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
294 vfs_fadvise(file, offset, end - start, POSIX_FADV_WILLNEED);
295 fput(file);
296 down_read(&current->mm->mmap_sem);
297 return 0;
298 }
299
300 static int madvise_cold_or_pageout_pte_range(pmd_t *pmd,
301 unsigned long addr, unsigned long end,
302 struct mm_walk *walk)
303 {
304 struct madvise_walk_private *private = walk->private;
305 struct mmu_gather *tlb = private->tlb;
306 bool pageout = private->pageout;
307 struct mm_struct *mm = tlb->mm;
308 struct vm_area_struct *vma = walk->vma;
309 pte_t *orig_pte, *pte, ptent;
310 spinlock_t *ptl;
311 struct page *page = NULL;
312 LIST_HEAD(page_list);
313
314 if (fatal_signal_pending(current))
315 return -EINTR;
316
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 if (pmd_trans_huge(*pmd)) {
319 pmd_t orig_pmd;
320 unsigned long next = pmd_addr_end(addr, end);
321
322 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
323 ptl = pmd_trans_huge_lock(pmd, vma);
324 if (!ptl)
325 return 0;
326
327 orig_pmd = *pmd;
328 if (is_huge_zero_pmd(orig_pmd))
329 goto huge_unlock;
330
331 if (unlikely(!pmd_present(orig_pmd))) {
332 VM_BUG_ON(thp_migration_supported() &&
333 !is_pmd_migration_entry(orig_pmd));
334 goto huge_unlock;
335 }
336
337 page = pmd_page(orig_pmd);
338 if (next - addr != HPAGE_PMD_SIZE) {
339 int err;
340
341 if (page_mapcount(page) != 1)
342 goto huge_unlock;
343
344 get_page(page);
345 spin_unlock(ptl);
346 lock_page(page);
347 err = split_huge_page(page);
348 unlock_page(page);
349 put_page(page);
350 if (!err)
351 goto regular_page;
352 return 0;
353 }
354
355 if (pmd_young(orig_pmd)) {
356 pmdp_invalidate(vma, addr, pmd);
357 orig_pmd = pmd_mkold(orig_pmd);
358
359 set_pmd_at(mm, addr, pmd, orig_pmd);
360 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
361 }
362
363 ClearPageReferenced(page);
364 test_and_clear_page_young(page);
365 if (pageout) {
366 if (!isolate_lru_page(page))
367 list_add(&page->lru, &page_list);
368 } else
369 deactivate_page(page);
370 huge_unlock:
371 spin_unlock(ptl);
372 if (pageout)
373 reclaim_pages(&page_list);
374 return 0;
375 }
376
377 if (pmd_trans_unstable(pmd))
378 return 0;
379 regular_page:
380 #endif
381 tlb_change_page_size(tlb, PAGE_SIZE);
382 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
383 flush_tlb_batched_pending(mm);
384 arch_enter_lazy_mmu_mode();
385 for (; addr < end; pte++, addr += PAGE_SIZE) {
386 ptent = *pte;
387
388 if (pte_none(ptent))
389 continue;
390
391 if (!pte_present(ptent))
392 continue;
393
394 page = vm_normal_page(vma, addr, ptent);
395 if (!page)
396 continue;
397
398 /*
399 * Creating a THP page is expensive so split it only if we
400 * are sure it's worth. Split it if we are only owner.
401 */
402 if (PageTransCompound(page)) {
403 if (page_mapcount(page) != 1)
404 break;
405 get_page(page);
406 if (!trylock_page(page)) {
407 put_page(page);
408 break;
409 }
410 pte_unmap_unlock(orig_pte, ptl);
411 if (split_huge_page(page)) {
412 unlock_page(page);
413 put_page(page);
414 pte_offset_map_lock(mm, pmd, addr, &ptl);
415 break;
416 }
417 unlock_page(page);
418 put_page(page);
419 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
420 pte--;
421 addr -= PAGE_SIZE;
422 continue;
423 }
424
425 VM_BUG_ON_PAGE(PageTransCompound(page), page);
426
427 if (pte_young(ptent)) {
428 ptent = ptep_get_and_clear_full(mm, addr, pte,
429 tlb->fullmm);
430 ptent = pte_mkold(ptent);
431 set_pte_at(mm, addr, pte, ptent);
432 tlb_remove_tlb_entry(tlb, pte, addr);
433 }
434
435 /*
436 * We are deactivating a page for accelerating reclaiming.
437 * VM couldn't reclaim the page unless we clear PG_young.
438 * As a side effect, it makes confuse idle-page tracking
439 * because they will miss recent referenced history.
440 */
441 ClearPageReferenced(page);
442 test_and_clear_page_young(page);
443 if (pageout) {
444 if (!isolate_lru_page(page))
445 list_add(&page->lru, &page_list);
446 } else
447 deactivate_page(page);
448 }
449
450 arch_leave_lazy_mmu_mode();
451 pte_unmap_unlock(orig_pte, ptl);
452 if (pageout)
453 reclaim_pages(&page_list);
454 cond_resched();
455
456 return 0;
457 }
458
459 static const struct mm_walk_ops cold_walk_ops = {
460 .pmd_entry = madvise_cold_or_pageout_pte_range,
461 };
462
463 static void madvise_cold_page_range(struct mmu_gather *tlb,
464 struct vm_area_struct *vma,
465 unsigned long addr, unsigned long end)
466 {
467 struct madvise_walk_private walk_private = {
468 .pageout = false,
469 .tlb = tlb,
470 };
471
472 tlb_start_vma(tlb, vma);
473 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
474 tlb_end_vma(tlb, vma);
475 }
476
477 static long madvise_cold(struct vm_area_struct *vma,
478 struct vm_area_struct **prev,
479 unsigned long start_addr, unsigned long end_addr)
480 {
481 struct mm_struct *mm = vma->vm_mm;
482 struct mmu_gather tlb;
483
484 *prev = vma;
485 if (!can_madv_lru_vma(vma))
486 return -EINVAL;
487
488 lru_add_drain();
489 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
490 madvise_cold_page_range(&tlb, vma, start_addr, end_addr);
491 tlb_finish_mmu(&tlb, start_addr, end_addr);
492
493 return 0;
494 }
495
496 static void madvise_pageout_page_range(struct mmu_gather *tlb,
497 struct vm_area_struct *vma,
498 unsigned long addr, unsigned long end)
499 {
500 struct madvise_walk_private walk_private = {
501 .pageout = true,
502 .tlb = tlb,
503 };
504
505 tlb_start_vma(tlb, vma);
506 walk_page_range(vma->vm_mm, addr, end, &cold_walk_ops, &walk_private);
507 tlb_end_vma(tlb, vma);
508 }
509
510 static inline bool can_do_pageout(struct vm_area_struct *vma)
511 {
512 if (vma_is_anonymous(vma))
513 return true;
514 if (!vma->vm_file)
515 return false;
516 /*
517 * paging out pagecache only for non-anonymous mappings that correspond
518 * to the files the calling process could (if tried) open for writing;
519 * otherwise we'd be including shared non-exclusive mappings, which
520 * opens a side channel.
521 */
522 return inode_owner_or_capable(file_inode(vma->vm_file)) ||
523 inode_permission(file_inode(vma->vm_file), MAY_WRITE) == 0;
524 }
525
526 static long madvise_pageout(struct vm_area_struct *vma,
527 struct vm_area_struct **prev,
528 unsigned long start_addr, unsigned long end_addr)
529 {
530 struct mm_struct *mm = vma->vm_mm;
531 struct mmu_gather tlb;
532
533 *prev = vma;
534 if (!can_madv_lru_vma(vma))
535 return -EINVAL;
536
537 if (!can_do_pageout(vma))
538 return 0;
539
540 lru_add_drain();
541 tlb_gather_mmu(&tlb, mm, start_addr, end_addr);
542 madvise_pageout_page_range(&tlb, vma, start_addr, end_addr);
543 tlb_finish_mmu(&tlb, start_addr, end_addr);
544
545 return 0;
546 }
547
548 static int madvise_free_pte_range(pmd_t *pmd, unsigned long addr,
549 unsigned long end, struct mm_walk *walk)
550
551 {
552 struct mmu_gather *tlb = walk->private;
553 struct mm_struct *mm = tlb->mm;
554 struct vm_area_struct *vma = walk->vma;
555 spinlock_t *ptl;
556 pte_t *orig_pte, *pte, ptent;
557 struct page *page;
558 int nr_swap = 0;
559 unsigned long next;
560
561 next = pmd_addr_end(addr, end);
562 if (pmd_trans_huge(*pmd))
563 if (madvise_free_huge_pmd(tlb, vma, pmd, addr, next))
564 goto next;
565
566 if (pmd_trans_unstable(pmd))
567 return 0;
568
569 tlb_change_page_size(tlb, PAGE_SIZE);
570 orig_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
571 flush_tlb_batched_pending(mm);
572 arch_enter_lazy_mmu_mode();
573 for (; addr != end; pte++, addr += PAGE_SIZE) {
574 ptent = *pte;
575
576 if (pte_none(ptent))
577 continue;
578 /*
579 * If the pte has swp_entry, just clear page table to
580 * prevent swap-in which is more expensive rather than
581 * (page allocation + zeroing).
582 */
583 if (!pte_present(ptent)) {
584 swp_entry_t entry;
585
586 entry = pte_to_swp_entry(ptent);
587 if (non_swap_entry(entry))
588 continue;
589 nr_swap--;
590 free_swap_and_cache(entry);
591 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
592 continue;
593 }
594
595 page = vm_normal_page(vma, addr, ptent);
596 if (!page)
597 continue;
598
599 /*
600 * If pmd isn't transhuge but the page is THP and
601 * is owned by only this process, split it and
602 * deactivate all pages.
603 */
604 if (PageTransCompound(page)) {
605 if (page_mapcount(page) != 1)
606 goto out;
607 get_page(page);
608 if (!trylock_page(page)) {
609 put_page(page);
610 goto out;
611 }
612 pte_unmap_unlock(orig_pte, ptl);
613 if (split_huge_page(page)) {
614 unlock_page(page);
615 put_page(page);
616 pte_offset_map_lock(mm, pmd, addr, &ptl);
617 goto out;
618 }
619 unlock_page(page);
620 put_page(page);
621 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
622 pte--;
623 addr -= PAGE_SIZE;
624 continue;
625 }
626
627 VM_BUG_ON_PAGE(PageTransCompound(page), page);
628
629 if (PageSwapCache(page) || PageDirty(page)) {
630 if (!trylock_page(page))
631 continue;
632 /*
633 * If page is shared with others, we couldn't clear
634 * PG_dirty of the page.
635 */
636 if (page_mapcount(page) != 1) {
637 unlock_page(page);
638 continue;
639 }
640
641 if (PageSwapCache(page) && !try_to_free_swap(page)) {
642 unlock_page(page);
643 continue;
644 }
645
646 ClearPageDirty(page);
647 unlock_page(page);
648 }
649
650 if (pte_young(ptent) || pte_dirty(ptent)) {
651 /*
652 * Some of architecture(ex, PPC) don't update TLB
653 * with set_pte_at and tlb_remove_tlb_entry so for
654 * the portability, remap the pte with old|clean
655 * after pte clearing.
656 */
657 ptent = ptep_get_and_clear_full(mm, addr, pte,
658 tlb->fullmm);
659
660 ptent = pte_mkold(ptent);
661 ptent = pte_mkclean(ptent);
662 set_pte_at(mm, addr, pte, ptent);
663 tlb_remove_tlb_entry(tlb, pte, addr);
664 }
665 mark_page_lazyfree(page);
666 }
667 out:
668 if (nr_swap) {
669 if (current->mm == mm)
670 sync_mm_rss(mm);
671
672 add_mm_counter(mm, MM_SWAPENTS, nr_swap);
673 }
674 arch_leave_lazy_mmu_mode();
675 pte_unmap_unlock(orig_pte, ptl);
676 cond_resched();
677 next:
678 return 0;
679 }
680
681 static const struct mm_walk_ops madvise_free_walk_ops = {
682 .pmd_entry = madvise_free_pte_range,
683 };
684
685 static int madvise_free_single_vma(struct vm_area_struct *vma,
686 unsigned long start_addr, unsigned long end_addr)
687 {
688 struct mm_struct *mm = vma->vm_mm;
689 struct mmu_notifier_range range;
690 struct mmu_gather tlb;
691
692 /* MADV_FREE works for only anon vma at the moment */
693 if (!vma_is_anonymous(vma))
694 return -EINVAL;
695
696 range.start = max(vma->vm_start, start_addr);
697 if (range.start >= vma->vm_end)
698 return -EINVAL;
699 range.end = min(vma->vm_end, end_addr);
700 if (range.end <= vma->vm_start)
701 return -EINVAL;
702 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
703 range.start, range.end);
704
705 lru_add_drain();
706 tlb_gather_mmu(&tlb, mm, range.start, range.end);
707 update_hiwater_rss(mm);
708
709 mmu_notifier_invalidate_range_start(&range);
710 tlb_start_vma(&tlb, vma);
711 walk_page_range(vma->vm_mm, range.start, range.end,
712 &madvise_free_walk_ops, &tlb);
713 tlb_end_vma(&tlb, vma);
714 mmu_notifier_invalidate_range_end(&range);
715 tlb_finish_mmu(&tlb, range.start, range.end);
716
717 return 0;
718 }
719
720 /*
721 * Application no longer needs these pages. If the pages are dirty,
722 * it's OK to just throw them away. The app will be more careful about
723 * data it wants to keep. Be sure to free swap resources too. The
724 * zap_page_range call sets things up for shrink_active_list to actually free
725 * these pages later if no one else has touched them in the meantime,
726 * although we could add these pages to a global reuse list for
727 * shrink_active_list to pick up before reclaiming other pages.
728 *
729 * NB: This interface discards data rather than pushes it out to swap,
730 * as some implementations do. This has performance implications for
731 * applications like large transactional databases which want to discard
732 * pages in anonymous maps after committing to backing store the data
733 * that was kept in them. There is no reason to write this data out to
734 * the swap area if the application is discarding it.
735 *
736 * An interface that causes the system to free clean pages and flush
737 * dirty pages is already available as msync(MS_INVALIDATE).
738 */
739 static long madvise_dontneed_single_vma(struct vm_area_struct *vma,
740 unsigned long start, unsigned long end)
741 {
742 zap_page_range(vma, start, end - start);
743 return 0;
744 }
745
746 static long madvise_dontneed_free(struct vm_area_struct *vma,
747 struct vm_area_struct **prev,
748 unsigned long start, unsigned long end,
749 int behavior)
750 {
751 *prev = vma;
752 if (!can_madv_lru_vma(vma))
753 return -EINVAL;
754
755 if (!userfaultfd_remove(vma, start, end)) {
756 *prev = NULL; /* mmap_sem has been dropped, prev is stale */
757
758 down_read(&current->mm->mmap_sem);
759 vma = find_vma(current->mm, start);
760 if (!vma)
761 return -ENOMEM;
762 if (start < vma->vm_start) {
763 /*
764 * This "vma" under revalidation is the one
765 * with the lowest vma->vm_start where start
766 * is also < vma->vm_end. If start <
767 * vma->vm_start it means an hole materialized
768 * in the user address space within the
769 * virtual range passed to MADV_DONTNEED
770 * or MADV_FREE.
771 */
772 return -ENOMEM;
773 }
774 if (!can_madv_lru_vma(vma))
775 return -EINVAL;
776 if (end > vma->vm_end) {
777 /*
778 * Don't fail if end > vma->vm_end. If the old
779 * vma was splitted while the mmap_sem was
780 * released the effect of the concurrent
781 * operation may not cause madvise() to
782 * have an undefined result. There may be an
783 * adjacent next vma that we'll walk
784 * next. userfaultfd_remove() will generate an
785 * UFFD_EVENT_REMOVE repetition on the
786 * end-vma->vm_end range, but the manager can
787 * handle a repetition fine.
788 */
789 end = vma->vm_end;
790 }
791 VM_WARN_ON(start >= end);
792 }
793
794 if (behavior == MADV_DONTNEED)
795 return madvise_dontneed_single_vma(vma, start, end);
796 else if (behavior == MADV_FREE)
797 return madvise_free_single_vma(vma, start, end);
798 else
799 return -EINVAL;
800 }
801
802 /*
803 * Application wants to free up the pages and associated backing store.
804 * This is effectively punching a hole into the middle of a file.
805 */
806 static long madvise_remove(struct vm_area_struct *vma,
807 struct vm_area_struct **prev,
808 unsigned long start, unsigned long end)
809 {
810 loff_t offset;
811 int error;
812 struct file *f;
813
814 *prev = NULL; /* tell sys_madvise we drop mmap_sem */
815
816 if (vma->vm_flags & VM_LOCKED)
817 return -EINVAL;
818
819 f = vma->vm_file;
820
821 if (!f || !f->f_mapping || !f->f_mapping->host) {
822 return -EINVAL;
823 }
824
825 if ((vma->vm_flags & (VM_SHARED|VM_WRITE)) != (VM_SHARED|VM_WRITE))
826 return -EACCES;
827
828 offset = (loff_t)(start - vma->vm_start)
829 + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
830
831 /*
832 * Filesystem's fallocate may need to take i_mutex. We need to
833 * explicitly grab a reference because the vma (and hence the
834 * vma's reference to the file) can go away as soon as we drop
835 * mmap_sem.
836 */
837 get_file(f);
838 if (userfaultfd_remove(vma, start, end)) {
839 /* mmap_sem was not released by userfaultfd_remove() */
840 up_read(&current->mm->mmap_sem);
841 }
842 error = vfs_fallocate(f,
843 FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
844 offset, end - start);
845 fput(f);
846 down_read(&current->mm->mmap_sem);
847 return error;
848 }
849
850 #ifdef CONFIG_MEMORY_FAILURE
851 /*
852 * Error injection support for memory error handling.
853 */
854 static int madvise_inject_error(int behavior,
855 unsigned long start, unsigned long end)
856 {
857 struct page *page;
858 struct zone *zone;
859 unsigned int order;
860
861 if (!capable(CAP_SYS_ADMIN))
862 return -EPERM;
863
864
865 for (; start < end; start += PAGE_SIZE << order) {
866 unsigned long pfn;
867 int ret;
868
869 ret = get_user_pages_fast(start, 1, 0, &page);
870 if (ret != 1)
871 return ret;
872 pfn = page_to_pfn(page);
873
874 /*
875 * When soft offlining hugepages, after migrating the page
876 * we dissolve it, therefore in the second loop "page" will
877 * no longer be a compound page, and order will be 0.
878 */
879 order = compound_order(compound_head(page));
880
881 if (PageHWPoison(page)) {
882 put_page(page);
883 continue;
884 }
885
886 if (behavior == MADV_SOFT_OFFLINE) {
887 pr_info("Soft offlining pfn %#lx at process virtual address %#lx\n",
888 pfn, start);
889
890 ret = soft_offline_page(page, MF_COUNT_INCREASED);
891 if (ret)
892 return ret;
893 continue;
894 }
895
896 pr_info("Injecting memory failure for pfn %#lx at process virtual address %#lx\n",
897 pfn, start);
898
899 /*
900 * Drop the page reference taken by get_user_pages_fast(). In
901 * the absence of MF_COUNT_INCREASED the memory_failure()
902 * routine is responsible for pinning the page to prevent it
903 * from being released back to the page allocator.
904 */
905 put_page(page);
906 ret = memory_failure(pfn, 0);
907 if (ret)
908 return ret;
909 }
910
911 /* Ensure that all poisoned pages are removed from per-cpu lists */
912 for_each_populated_zone(zone)
913 drain_all_pages(zone);
914
915 return 0;
916 }
917 #endif
918
919 static long
920 madvise_vma(struct vm_area_struct *vma, struct vm_area_struct **prev,
921 unsigned long start, unsigned long end, int behavior)
922 {
923 switch (behavior) {
924 case MADV_REMOVE:
925 return madvise_remove(vma, prev, start, end);
926 case MADV_WILLNEED:
927 return madvise_willneed(vma, prev, start, end);
928 case MADV_COLD:
929 return madvise_cold(vma, prev, start, end);
930 case MADV_PAGEOUT:
931 return madvise_pageout(vma, prev, start, end);
932 case MADV_FREE:
933 case MADV_DONTNEED:
934 return madvise_dontneed_free(vma, prev, start, end, behavior);
935 default:
936 return madvise_behavior(vma, prev, start, end, behavior);
937 }
938 }
939
940 static bool
941 madvise_behavior_valid(int behavior)
942 {
943 switch (behavior) {
944 case MADV_DOFORK:
945 case MADV_DONTFORK:
946 case MADV_NORMAL:
947 case MADV_SEQUENTIAL:
948 case MADV_RANDOM:
949 case MADV_REMOVE:
950 case MADV_WILLNEED:
951 case MADV_DONTNEED:
952 case MADV_FREE:
953 case MADV_COLD:
954 case MADV_PAGEOUT:
955 #ifdef CONFIG_KSM
956 case MADV_MERGEABLE:
957 case MADV_UNMERGEABLE:
958 #endif
959 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
960 case MADV_HUGEPAGE:
961 case MADV_NOHUGEPAGE:
962 #endif
963 case MADV_DONTDUMP:
964 case MADV_DODUMP:
965 case MADV_WIPEONFORK:
966 case MADV_KEEPONFORK:
967 #ifdef CONFIG_MEMORY_FAILURE
968 case MADV_SOFT_OFFLINE:
969 case MADV_HWPOISON:
970 #endif
971 return true;
972
973 default:
974 return false;
975 }
976 }
977
978 /*
979 * The madvise(2) system call.
980 *
981 * Applications can use madvise() to advise the kernel how it should
982 * handle paging I/O in this VM area. The idea is to help the kernel
983 * use appropriate read-ahead and caching techniques. The information
984 * provided is advisory only, and can be safely disregarded by the
985 * kernel without affecting the correct operation of the application.
986 *
987 * behavior values:
988 * MADV_NORMAL - the default behavior is to read clusters. This
989 * results in some read-ahead and read-behind.
990 * MADV_RANDOM - the system should read the minimum amount of data
991 * on any access, since it is unlikely that the appli-
992 * cation will need more than what it asks for.
993 * MADV_SEQUENTIAL - pages in the given range will probably be accessed
994 * once, so they can be aggressively read ahead, and
995 * can be freed soon after they are accessed.
996 * MADV_WILLNEED - the application is notifying the system to read
997 * some pages ahead.
998 * MADV_DONTNEED - the application is finished with the given range,
999 * so the kernel can free resources associated with it.
1000 * MADV_FREE - the application marks pages in the given range as lazy free,
1001 * where actual purges are postponed until memory pressure happens.
1002 * MADV_REMOVE - the application wants to free up the given range of
1003 * pages and associated backing store.
1004 * MADV_DONTFORK - omit this area from child's address space when forking:
1005 * typically, to avoid COWing pages pinned by get_user_pages().
1006 * MADV_DOFORK - cancel MADV_DONTFORK: no longer omit this area when forking.
1007 * MADV_WIPEONFORK - present the child process with zero-filled memory in this
1008 * range after a fork.
1009 * MADV_KEEPONFORK - undo the effect of MADV_WIPEONFORK
1010 * MADV_HWPOISON - trigger memory error handler as if the given memory range
1011 * were corrupted by unrecoverable hardware memory failure.
1012 * MADV_SOFT_OFFLINE - try to soft-offline the given range of memory.
1013 * MADV_MERGEABLE - the application recommends that KSM try to merge pages in
1014 * this area with pages of identical content from other such areas.
1015 * MADV_UNMERGEABLE- cancel MADV_MERGEABLE: no longer merge pages with others.
1016 * MADV_HUGEPAGE - the application wants to back the given range by transparent
1017 * huge pages in the future. Existing pages might be coalesced and
1018 * new pages might be allocated as THP.
1019 * MADV_NOHUGEPAGE - mark the given range as not worth being backed by
1020 * transparent huge pages so the existing pages will not be
1021 * coalesced into THP and new pages will not be allocated as THP.
1022 * MADV_DONTDUMP - the application wants to prevent pages in the given range
1023 * from being included in its core dump.
1024 * MADV_DODUMP - cancel MADV_DONTDUMP: no longer exclude from core dump.
1025 *
1026 * return values:
1027 * zero - success
1028 * -EINVAL - start + len < 0, start is not page-aligned,
1029 * "behavior" is not a valid value, or application
1030 * is attempting to release locked or shared pages,
1031 * or the specified address range includes file, Huge TLB,
1032 * MAP_SHARED or VMPFNMAP range.
1033 * -ENOMEM - addresses in the specified range are not currently
1034 * mapped, or are outside the AS of the process.
1035 * -EIO - an I/O error occurred while paging in data.
1036 * -EBADF - map exists, but area maps something that isn't a file.
1037 * -EAGAIN - a kernel resource was temporarily unavailable.
1038 */
1039 SYSCALL_DEFINE3(madvise, unsigned long, start, size_t, len_in, int, behavior)
1040 {
1041 unsigned long end, tmp;
1042 struct vm_area_struct *vma, *prev;
1043 int unmapped_error = 0;
1044 int error = -EINVAL;
1045 int write;
1046 size_t len;
1047 struct blk_plug plug;
1048
1049 start = untagged_addr(start);
1050
1051 if (!madvise_behavior_valid(behavior))
1052 return error;
1053
1054 if (start & ~PAGE_MASK)
1055 return error;
1056 len = (len_in + ~PAGE_MASK) & PAGE_MASK;
1057
1058 /* Check to see whether len was rounded up from small -ve to zero */
1059 if (len_in && !len)
1060 return error;
1061
1062 end = start + len;
1063 if (end < start)
1064 return error;
1065
1066 error = 0;
1067 if (end == start)
1068 return error;
1069
1070 #ifdef CONFIG_MEMORY_FAILURE
1071 if (behavior == MADV_HWPOISON || behavior == MADV_SOFT_OFFLINE)
1072 return madvise_inject_error(behavior, start, start + len_in);
1073 #endif
1074
1075 write = madvise_need_mmap_write(behavior);
1076 if (write) {
1077 if (down_write_killable(&current->mm->mmap_sem))
1078 return -EINTR;
1079 } else {
1080 down_read(&current->mm->mmap_sem);
1081 }
1082
1083 /*
1084 * If the interval [start,end) covers some unmapped address
1085 * ranges, just ignore them, but return -ENOMEM at the end.
1086 * - different from the way of handling in mlock etc.
1087 */
1088 vma = find_vma_prev(current->mm, start, &prev);
1089 if (vma && start > vma->vm_start)
1090 prev = vma;
1091
1092 blk_start_plug(&plug);
1093 for (;;) {
1094 /* Still start < end. */
1095 error = -ENOMEM;
1096 if (!vma)
1097 goto out;
1098
1099 /* Here start < (end|vma->vm_end). */
1100 if (start < vma->vm_start) {
1101 unmapped_error = -ENOMEM;
1102 start = vma->vm_start;
1103 if (start >= end)
1104 goto out;
1105 }
1106
1107 /* Here vma->vm_start <= start < (end|vma->vm_end) */
1108 tmp = vma->vm_end;
1109 if (end < tmp)
1110 tmp = end;
1111
1112 /* Here vma->vm_start <= start < tmp <= (end|vma->vm_end). */
1113 error = madvise_vma(vma, &prev, start, tmp, behavior);
1114 if (error)
1115 goto out;
1116 start = tmp;
1117 if (prev && start < prev->vm_end)
1118 start = prev->vm_end;
1119 error = unmapped_error;
1120 if (start >= end)
1121 goto out;
1122 if (prev)
1123 vma = prev->vm_next;
1124 else /* madvise_remove dropped mmap_sem */
1125 vma = find_vma(current->mm, start);
1126 }
1127 out:
1128 blk_finish_plug(&plug);
1129 if (write)
1130 up_write(&current->mm->mmap_sem);
1131 else
1132 up_read(&current->mm->mmap_sem);
1133
1134 return error;
1135 }