]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memblock.c
Merge tag 'clk-for-linus-3.14-part1' of git://git.linaro.org/people/mike.turquette...
[mirror_ubuntu-bionic-kernel.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm-generic/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30
31 struct memblock memblock __initdata_memblock = {
32 .memory.regions = memblock_memory_init_regions,
33 .memory.cnt = 1, /* empty dummy entry */
34 .memory.max = INIT_MEMBLOCK_REGIONS,
35
36 .reserved.regions = memblock_reserved_init_regions,
37 .reserved.cnt = 1, /* empty dummy entry */
38 .reserved.max = INIT_MEMBLOCK_REGIONS,
39
40 .bottom_up = false,
41 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
42 };
43
44 int memblock_debug __initdata_memblock;
45 #ifdef CONFIG_MOVABLE_NODE
46 bool movable_node_enabled __initdata_memblock = false;
47 #endif
48 static int memblock_can_resize __initdata_memblock;
49 static int memblock_memory_in_slab __initdata_memblock = 0;
50 static int memblock_reserved_in_slab __initdata_memblock = 0;
51
52 /* inline so we don't get a warning when pr_debug is compiled out */
53 static __init_memblock const char *
54 memblock_type_name(struct memblock_type *type)
55 {
56 if (type == &memblock.memory)
57 return "memory";
58 else if (type == &memblock.reserved)
59 return "reserved";
60 else
61 return "unknown";
62 }
63
64 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
65 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
66 {
67 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
68 }
69
70 /*
71 * Address comparison utilities
72 */
73 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
74 phys_addr_t base2, phys_addr_t size2)
75 {
76 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
77 }
78
79 static long __init_memblock memblock_overlaps_region(struct memblock_type *type,
80 phys_addr_t base, phys_addr_t size)
81 {
82 unsigned long i;
83
84 for (i = 0; i < type->cnt; i++) {
85 phys_addr_t rgnbase = type->regions[i].base;
86 phys_addr_t rgnsize = type->regions[i].size;
87 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
88 break;
89 }
90
91 return (i < type->cnt) ? i : -1;
92 }
93
94 /*
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101 *
102 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
103 *
104 * RETURNS:
105 * Found address on success, 0 on failure.
106 */
107 static phys_addr_t __init_memblock
108 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
109 phys_addr_t size, phys_addr_t align, int nid)
110 {
111 phys_addr_t this_start, this_end, cand;
112 u64 i;
113
114 for_each_free_mem_range(i, nid, &this_start, &this_end, NULL) {
115 this_start = clamp(this_start, start, end);
116 this_end = clamp(this_end, start, end);
117
118 cand = round_up(this_start, align);
119 if (cand < this_end && this_end - cand >= size)
120 return cand;
121 }
122
123 return 0;
124 }
125
126 /**
127 * __memblock_find_range_top_down - find free area utility, in top-down
128 * @start: start of candidate range
129 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
130 * @size: size of free area to find
131 * @align: alignment of free area to find
132 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
133 *
134 * Utility called from memblock_find_in_range_node(), find free area top-down.
135 *
136 * RETURNS:
137 * Found address on success, 0 on failure.
138 */
139 static phys_addr_t __init_memblock
140 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
141 phys_addr_t size, phys_addr_t align, int nid)
142 {
143 phys_addr_t this_start, this_end, cand;
144 u64 i;
145
146 for_each_free_mem_range_reverse(i, nid, &this_start, &this_end, NULL) {
147 this_start = clamp(this_start, start, end);
148 this_end = clamp(this_end, start, end);
149
150 if (this_end < size)
151 continue;
152
153 cand = round_down(this_end - size, align);
154 if (cand >= this_start)
155 return cand;
156 }
157
158 return 0;
159 }
160
161 /**
162 * memblock_find_in_range_node - find free area in given range and node
163 * @size: size of free area to find
164 * @align: alignment of free area to find
165 * @start: start of candidate range
166 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
167 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
168 *
169 * Find @size free area aligned to @align in the specified range and node.
170 *
171 * When allocation direction is bottom-up, the @start should be greater
172 * than the end of the kernel image. Otherwise, it will be trimmed. The
173 * reason is that we want the bottom-up allocation just near the kernel
174 * image so it is highly likely that the allocated memory and the kernel
175 * will reside in the same node.
176 *
177 * If bottom-up allocation failed, will try to allocate memory top-down.
178 *
179 * RETURNS:
180 * Found address on success, 0 on failure.
181 */
182 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
183 phys_addr_t align, phys_addr_t start,
184 phys_addr_t end, int nid)
185 {
186 int ret;
187 phys_addr_t kernel_end;
188
189 /* pump up @end */
190 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
191 end = memblock.current_limit;
192
193 /* avoid allocating the first page */
194 start = max_t(phys_addr_t, start, PAGE_SIZE);
195 end = max(start, end);
196 kernel_end = __pa_symbol(_end);
197
198 /*
199 * try bottom-up allocation only when bottom-up mode
200 * is set and @end is above the kernel image.
201 */
202 if (memblock_bottom_up() && end > kernel_end) {
203 phys_addr_t bottom_up_start;
204
205 /* make sure we will allocate above the kernel */
206 bottom_up_start = max(start, kernel_end);
207
208 /* ok, try bottom-up allocation first */
209 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
210 size, align, nid);
211 if (ret)
212 return ret;
213
214 /*
215 * we always limit bottom-up allocation above the kernel,
216 * but top-down allocation doesn't have the limit, so
217 * retrying top-down allocation may succeed when bottom-up
218 * allocation failed.
219 *
220 * bottom-up allocation is expected to be fail very rarely,
221 * so we use WARN_ONCE() here to see the stack trace if
222 * fail happens.
223 */
224 WARN_ONCE(1, "memblock: bottom-up allocation failed, "
225 "memory hotunplug may be affected\n");
226 }
227
228 return __memblock_find_range_top_down(start, end, size, align, nid);
229 }
230
231 /**
232 * memblock_find_in_range - find free area in given range
233 * @start: start of candidate range
234 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
235 * @size: size of free area to find
236 * @align: alignment of free area to find
237 *
238 * Find @size free area aligned to @align in the specified range.
239 *
240 * RETURNS:
241 * Found address on success, 0 on failure.
242 */
243 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
244 phys_addr_t end, phys_addr_t size,
245 phys_addr_t align)
246 {
247 return memblock_find_in_range_node(size, align, start, end,
248 NUMA_NO_NODE);
249 }
250
251 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
252 {
253 type->total_size -= type->regions[r].size;
254 memmove(&type->regions[r], &type->regions[r + 1],
255 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
256 type->cnt--;
257
258 /* Special case for empty arrays */
259 if (type->cnt == 0) {
260 WARN_ON(type->total_size != 0);
261 type->cnt = 1;
262 type->regions[0].base = 0;
263 type->regions[0].size = 0;
264 type->regions[0].flags = 0;
265 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
266 }
267 }
268
269 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
270 phys_addr_t *addr)
271 {
272 if (memblock.reserved.regions == memblock_reserved_init_regions)
273 return 0;
274
275 /*
276 * Don't allow nobootmem allocator to free reserved memory regions
277 * array if
278 * - CONFIG_DEBUG_FS is enabled;
279 * - CONFIG_ARCH_DISCARD_MEMBLOCK is not enabled;
280 * - reserved memory regions array have been resized during boot.
281 * Otherwise debug_fs entry "sys/kernel/debug/memblock/reserved"
282 * will show garbage instead of state of memory reservations.
283 */
284 if (IS_ENABLED(CONFIG_DEBUG_FS) &&
285 !IS_ENABLED(CONFIG_ARCH_DISCARD_MEMBLOCK))
286 return 0;
287
288 *addr = __pa(memblock.reserved.regions);
289
290 return PAGE_ALIGN(sizeof(struct memblock_region) *
291 memblock.reserved.max);
292 }
293
294 /**
295 * memblock_double_array - double the size of the memblock regions array
296 * @type: memblock type of the regions array being doubled
297 * @new_area_start: starting address of memory range to avoid overlap with
298 * @new_area_size: size of memory range to avoid overlap with
299 *
300 * Double the size of the @type regions array. If memblock is being used to
301 * allocate memory for a new reserved regions array and there is a previously
302 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
303 * waiting to be reserved, ensure the memory used by the new array does
304 * not overlap.
305 *
306 * RETURNS:
307 * 0 on success, -1 on failure.
308 */
309 static int __init_memblock memblock_double_array(struct memblock_type *type,
310 phys_addr_t new_area_start,
311 phys_addr_t new_area_size)
312 {
313 struct memblock_region *new_array, *old_array;
314 phys_addr_t old_alloc_size, new_alloc_size;
315 phys_addr_t old_size, new_size, addr;
316 int use_slab = slab_is_available();
317 int *in_slab;
318
319 /* We don't allow resizing until we know about the reserved regions
320 * of memory that aren't suitable for allocation
321 */
322 if (!memblock_can_resize)
323 return -1;
324
325 /* Calculate new doubled size */
326 old_size = type->max * sizeof(struct memblock_region);
327 new_size = old_size << 1;
328 /*
329 * We need to allocated new one align to PAGE_SIZE,
330 * so we can free them completely later.
331 */
332 old_alloc_size = PAGE_ALIGN(old_size);
333 new_alloc_size = PAGE_ALIGN(new_size);
334
335 /* Retrieve the slab flag */
336 if (type == &memblock.memory)
337 in_slab = &memblock_memory_in_slab;
338 else
339 in_slab = &memblock_reserved_in_slab;
340
341 /* Try to find some space for it.
342 *
343 * WARNING: We assume that either slab_is_available() and we use it or
344 * we use MEMBLOCK for allocations. That means that this is unsafe to
345 * use when bootmem is currently active (unless bootmem itself is
346 * implemented on top of MEMBLOCK which isn't the case yet)
347 *
348 * This should however not be an issue for now, as we currently only
349 * call into MEMBLOCK while it's still active, or much later when slab
350 * is active for memory hotplug operations
351 */
352 if (use_slab) {
353 new_array = kmalloc(new_size, GFP_KERNEL);
354 addr = new_array ? __pa(new_array) : 0;
355 } else {
356 /* only exclude range when trying to double reserved.regions */
357 if (type != &memblock.reserved)
358 new_area_start = new_area_size = 0;
359
360 addr = memblock_find_in_range(new_area_start + new_area_size,
361 memblock.current_limit,
362 new_alloc_size, PAGE_SIZE);
363 if (!addr && new_area_size)
364 addr = memblock_find_in_range(0,
365 min(new_area_start, memblock.current_limit),
366 new_alloc_size, PAGE_SIZE);
367
368 new_array = addr ? __va(addr) : NULL;
369 }
370 if (!addr) {
371 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
372 memblock_type_name(type), type->max, type->max * 2);
373 return -1;
374 }
375
376 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
377 memblock_type_name(type), type->max * 2, (u64)addr,
378 (u64)addr + new_size - 1);
379
380 /*
381 * Found space, we now need to move the array over before we add the
382 * reserved region since it may be our reserved array itself that is
383 * full.
384 */
385 memcpy(new_array, type->regions, old_size);
386 memset(new_array + type->max, 0, old_size);
387 old_array = type->regions;
388 type->regions = new_array;
389 type->max <<= 1;
390
391 /* Free old array. We needn't free it if the array is the static one */
392 if (*in_slab)
393 kfree(old_array);
394 else if (old_array != memblock_memory_init_regions &&
395 old_array != memblock_reserved_init_regions)
396 memblock_free(__pa(old_array), old_alloc_size);
397
398 /*
399 * Reserve the new array if that comes from the memblock. Otherwise, we
400 * needn't do it
401 */
402 if (!use_slab)
403 BUG_ON(memblock_reserve(addr, new_alloc_size));
404
405 /* Update slab flag */
406 *in_slab = use_slab;
407
408 return 0;
409 }
410
411 /**
412 * memblock_merge_regions - merge neighboring compatible regions
413 * @type: memblock type to scan
414 *
415 * Scan @type and merge neighboring compatible regions.
416 */
417 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
418 {
419 int i = 0;
420
421 /* cnt never goes below 1 */
422 while (i < type->cnt - 1) {
423 struct memblock_region *this = &type->regions[i];
424 struct memblock_region *next = &type->regions[i + 1];
425
426 if (this->base + this->size != next->base ||
427 memblock_get_region_node(this) !=
428 memblock_get_region_node(next) ||
429 this->flags != next->flags) {
430 BUG_ON(this->base + this->size > next->base);
431 i++;
432 continue;
433 }
434
435 this->size += next->size;
436 /* move forward from next + 1, index of which is i + 2 */
437 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
438 type->cnt--;
439 }
440 }
441
442 /**
443 * memblock_insert_region - insert new memblock region
444 * @type: memblock type to insert into
445 * @idx: index for the insertion point
446 * @base: base address of the new region
447 * @size: size of the new region
448 * @nid: node id of the new region
449 * @flags: flags of the new region
450 *
451 * Insert new memblock region [@base,@base+@size) into @type at @idx.
452 * @type must already have extra room to accomodate the new region.
453 */
454 static void __init_memblock memblock_insert_region(struct memblock_type *type,
455 int idx, phys_addr_t base,
456 phys_addr_t size,
457 int nid, unsigned long flags)
458 {
459 struct memblock_region *rgn = &type->regions[idx];
460
461 BUG_ON(type->cnt >= type->max);
462 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
463 rgn->base = base;
464 rgn->size = size;
465 rgn->flags = flags;
466 memblock_set_region_node(rgn, nid);
467 type->cnt++;
468 type->total_size += size;
469 }
470
471 /**
472 * memblock_add_region - add new memblock region
473 * @type: memblock type to add new region into
474 * @base: base address of the new region
475 * @size: size of the new region
476 * @nid: nid of the new region
477 * @flags: flags of the new region
478 *
479 * Add new memblock region [@base,@base+@size) into @type. The new region
480 * is allowed to overlap with existing ones - overlaps don't affect already
481 * existing regions. @type is guaranteed to be minimal (all neighbouring
482 * compatible regions are merged) after the addition.
483 *
484 * RETURNS:
485 * 0 on success, -errno on failure.
486 */
487 static int __init_memblock memblock_add_region(struct memblock_type *type,
488 phys_addr_t base, phys_addr_t size,
489 int nid, unsigned long flags)
490 {
491 bool insert = false;
492 phys_addr_t obase = base;
493 phys_addr_t end = base + memblock_cap_size(base, &size);
494 int i, nr_new;
495
496 if (!size)
497 return 0;
498
499 /* special case for empty array */
500 if (type->regions[0].size == 0) {
501 WARN_ON(type->cnt != 1 || type->total_size);
502 type->regions[0].base = base;
503 type->regions[0].size = size;
504 type->regions[0].flags = flags;
505 memblock_set_region_node(&type->regions[0], nid);
506 type->total_size = size;
507 return 0;
508 }
509 repeat:
510 /*
511 * The following is executed twice. Once with %false @insert and
512 * then with %true. The first counts the number of regions needed
513 * to accomodate the new area. The second actually inserts them.
514 */
515 base = obase;
516 nr_new = 0;
517
518 for (i = 0; i < type->cnt; i++) {
519 struct memblock_region *rgn = &type->regions[i];
520 phys_addr_t rbase = rgn->base;
521 phys_addr_t rend = rbase + rgn->size;
522
523 if (rbase >= end)
524 break;
525 if (rend <= base)
526 continue;
527 /*
528 * @rgn overlaps. If it separates the lower part of new
529 * area, insert that portion.
530 */
531 if (rbase > base) {
532 nr_new++;
533 if (insert)
534 memblock_insert_region(type, i++, base,
535 rbase - base, nid,
536 flags);
537 }
538 /* area below @rend is dealt with, forget about it */
539 base = min(rend, end);
540 }
541
542 /* insert the remaining portion */
543 if (base < end) {
544 nr_new++;
545 if (insert)
546 memblock_insert_region(type, i, base, end - base,
547 nid, flags);
548 }
549
550 /*
551 * If this was the first round, resize array and repeat for actual
552 * insertions; otherwise, merge and return.
553 */
554 if (!insert) {
555 while (type->cnt + nr_new > type->max)
556 if (memblock_double_array(type, obase, size) < 0)
557 return -ENOMEM;
558 insert = true;
559 goto repeat;
560 } else {
561 memblock_merge_regions(type);
562 return 0;
563 }
564 }
565
566 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
567 int nid)
568 {
569 return memblock_add_region(&memblock.memory, base, size, nid, 0);
570 }
571
572 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
573 {
574 return memblock_add_region(&memblock.memory, base, size,
575 MAX_NUMNODES, 0);
576 }
577
578 /**
579 * memblock_isolate_range - isolate given range into disjoint memblocks
580 * @type: memblock type to isolate range for
581 * @base: base of range to isolate
582 * @size: size of range to isolate
583 * @start_rgn: out parameter for the start of isolated region
584 * @end_rgn: out parameter for the end of isolated region
585 *
586 * Walk @type and ensure that regions don't cross the boundaries defined by
587 * [@base,@base+@size). Crossing regions are split at the boundaries,
588 * which may create at most two more regions. The index of the first
589 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
590 *
591 * RETURNS:
592 * 0 on success, -errno on failure.
593 */
594 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
595 phys_addr_t base, phys_addr_t size,
596 int *start_rgn, int *end_rgn)
597 {
598 phys_addr_t end = base + memblock_cap_size(base, &size);
599 int i;
600
601 *start_rgn = *end_rgn = 0;
602
603 if (!size)
604 return 0;
605
606 /* we'll create at most two more regions */
607 while (type->cnt + 2 > type->max)
608 if (memblock_double_array(type, base, size) < 0)
609 return -ENOMEM;
610
611 for (i = 0; i < type->cnt; i++) {
612 struct memblock_region *rgn = &type->regions[i];
613 phys_addr_t rbase = rgn->base;
614 phys_addr_t rend = rbase + rgn->size;
615
616 if (rbase >= end)
617 break;
618 if (rend <= base)
619 continue;
620
621 if (rbase < base) {
622 /*
623 * @rgn intersects from below. Split and continue
624 * to process the next region - the new top half.
625 */
626 rgn->base = base;
627 rgn->size -= base - rbase;
628 type->total_size -= base - rbase;
629 memblock_insert_region(type, i, rbase, base - rbase,
630 memblock_get_region_node(rgn),
631 rgn->flags);
632 } else if (rend > end) {
633 /*
634 * @rgn intersects from above. Split and redo the
635 * current region - the new bottom half.
636 */
637 rgn->base = end;
638 rgn->size -= end - rbase;
639 type->total_size -= end - rbase;
640 memblock_insert_region(type, i--, rbase, end - rbase,
641 memblock_get_region_node(rgn),
642 rgn->flags);
643 } else {
644 /* @rgn is fully contained, record it */
645 if (!*end_rgn)
646 *start_rgn = i;
647 *end_rgn = i + 1;
648 }
649 }
650
651 return 0;
652 }
653
654 static int __init_memblock __memblock_remove(struct memblock_type *type,
655 phys_addr_t base, phys_addr_t size)
656 {
657 int start_rgn, end_rgn;
658 int i, ret;
659
660 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
661 if (ret)
662 return ret;
663
664 for (i = end_rgn - 1; i >= start_rgn; i--)
665 memblock_remove_region(type, i);
666 return 0;
667 }
668
669 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
670 {
671 return __memblock_remove(&memblock.memory, base, size);
672 }
673
674 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
675 {
676 memblock_dbg(" memblock_free: [%#016llx-%#016llx] %pF\n",
677 (unsigned long long)base,
678 (unsigned long long)base + size - 1,
679 (void *)_RET_IP_);
680
681 return __memblock_remove(&memblock.reserved, base, size);
682 }
683
684 static int __init_memblock memblock_reserve_region(phys_addr_t base,
685 phys_addr_t size,
686 int nid,
687 unsigned long flags)
688 {
689 struct memblock_type *_rgn = &memblock.reserved;
690
691 memblock_dbg("memblock_reserve: [%#016llx-%#016llx] flags %#02lx %pF\n",
692 (unsigned long long)base,
693 (unsigned long long)base + size - 1,
694 flags, (void *)_RET_IP_);
695
696 return memblock_add_region(_rgn, base, size, nid, flags);
697 }
698
699 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
700 {
701 return memblock_reserve_region(base, size, MAX_NUMNODES, 0);
702 }
703
704 /**
705 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
706 * @base: the base phys addr of the region
707 * @size: the size of the region
708 *
709 * This function isolates region [@base, @base + @size), and mark it with flag
710 * MEMBLOCK_HOTPLUG.
711 *
712 * Return 0 on succees, -errno on failure.
713 */
714 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
715 {
716 struct memblock_type *type = &memblock.memory;
717 int i, ret, start_rgn, end_rgn;
718
719 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
720 if (ret)
721 return ret;
722
723 for (i = start_rgn; i < end_rgn; i++)
724 memblock_set_region_flags(&type->regions[i], MEMBLOCK_HOTPLUG);
725
726 memblock_merge_regions(type);
727 return 0;
728 }
729
730 /**
731 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
732 * @base: the base phys addr of the region
733 * @size: the size of the region
734 *
735 * This function isolates region [@base, @base + @size), and clear flag
736 * MEMBLOCK_HOTPLUG for the isolated regions.
737 *
738 * Return 0 on succees, -errno on failure.
739 */
740 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
741 {
742 struct memblock_type *type = &memblock.memory;
743 int i, ret, start_rgn, end_rgn;
744
745 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
746 if (ret)
747 return ret;
748
749 for (i = start_rgn; i < end_rgn; i++)
750 memblock_clear_region_flags(&type->regions[i],
751 MEMBLOCK_HOTPLUG);
752
753 memblock_merge_regions(type);
754 return 0;
755 }
756
757 /**
758 * __next_free_mem_range - next function for for_each_free_mem_range()
759 * @idx: pointer to u64 loop variable
760 * @nid: node selector, %NUMA_NO_NODE for all nodes
761 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
762 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
763 * @out_nid: ptr to int for nid of the range, can be %NULL
764 *
765 * Find the first free area from *@idx which matches @nid, fill the out
766 * parameters, and update *@idx for the next iteration. The lower 32bit of
767 * *@idx contains index into memory region and the upper 32bit indexes the
768 * areas before each reserved region. For example, if reserved regions
769 * look like the following,
770 *
771 * 0:[0-16), 1:[32-48), 2:[128-130)
772 *
773 * The upper 32bit indexes the following regions.
774 *
775 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
776 *
777 * As both region arrays are sorted, the function advances the two indices
778 * in lockstep and returns each intersection.
779 */
780 void __init_memblock __next_free_mem_range(u64 *idx, int nid,
781 phys_addr_t *out_start,
782 phys_addr_t *out_end, int *out_nid)
783 {
784 struct memblock_type *mem = &memblock.memory;
785 struct memblock_type *rsv = &memblock.reserved;
786 int mi = *idx & 0xffffffff;
787 int ri = *idx >> 32;
788
789 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
790 nid = NUMA_NO_NODE;
791
792 for ( ; mi < mem->cnt; mi++) {
793 struct memblock_region *m = &mem->regions[mi];
794 phys_addr_t m_start = m->base;
795 phys_addr_t m_end = m->base + m->size;
796
797 /* only memory regions are associated with nodes, check it */
798 if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
799 continue;
800
801 /* scan areas before each reservation for intersection */
802 for ( ; ri < rsv->cnt + 1; ri++) {
803 struct memblock_region *r = &rsv->regions[ri];
804 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
805 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
806
807 /* if ri advanced past mi, break out to advance mi */
808 if (r_start >= m_end)
809 break;
810 /* if the two regions intersect, we're done */
811 if (m_start < r_end) {
812 if (out_start)
813 *out_start = max(m_start, r_start);
814 if (out_end)
815 *out_end = min(m_end, r_end);
816 if (out_nid)
817 *out_nid = memblock_get_region_node(m);
818 /*
819 * The region which ends first is advanced
820 * for the next iteration.
821 */
822 if (m_end <= r_end)
823 mi++;
824 else
825 ri++;
826 *idx = (u32)mi | (u64)ri << 32;
827 return;
828 }
829 }
830 }
831
832 /* signal end of iteration */
833 *idx = ULLONG_MAX;
834 }
835
836 /**
837 * __next_free_mem_range_rev - next function for for_each_free_mem_range_reverse()
838 * @idx: pointer to u64 loop variable
839 * @nid: nid: node selector, %NUMA_NO_NODE for all nodes
840 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
841 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
842 * @out_nid: ptr to int for nid of the range, can be %NULL
843 *
844 * Reverse of __next_free_mem_range().
845 *
846 * Linux kernel cannot migrate pages used by itself. Memory hotplug users won't
847 * be able to hot-remove hotpluggable memory used by the kernel. So this
848 * function skip hotpluggable regions if needed when allocating memory for the
849 * kernel.
850 */
851 void __init_memblock __next_free_mem_range_rev(u64 *idx, int nid,
852 phys_addr_t *out_start,
853 phys_addr_t *out_end, int *out_nid)
854 {
855 struct memblock_type *mem = &memblock.memory;
856 struct memblock_type *rsv = &memblock.reserved;
857 int mi = *idx & 0xffffffff;
858 int ri = *idx >> 32;
859
860 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
861 nid = NUMA_NO_NODE;
862
863 if (*idx == (u64)ULLONG_MAX) {
864 mi = mem->cnt - 1;
865 ri = rsv->cnt;
866 }
867
868 for ( ; mi >= 0; mi--) {
869 struct memblock_region *m = &mem->regions[mi];
870 phys_addr_t m_start = m->base;
871 phys_addr_t m_end = m->base + m->size;
872
873 /* only memory regions are associated with nodes, check it */
874 if (nid != NUMA_NO_NODE && nid != memblock_get_region_node(m))
875 continue;
876
877 /* skip hotpluggable memory regions if needed */
878 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
879 continue;
880
881 /* scan areas before each reservation for intersection */
882 for ( ; ri >= 0; ri--) {
883 struct memblock_region *r = &rsv->regions[ri];
884 phys_addr_t r_start = ri ? r[-1].base + r[-1].size : 0;
885 phys_addr_t r_end = ri < rsv->cnt ? r->base : ULLONG_MAX;
886
887 /* if ri advanced past mi, break out to advance mi */
888 if (r_end <= m_start)
889 break;
890 /* if the two regions intersect, we're done */
891 if (m_end > r_start) {
892 if (out_start)
893 *out_start = max(m_start, r_start);
894 if (out_end)
895 *out_end = min(m_end, r_end);
896 if (out_nid)
897 *out_nid = memblock_get_region_node(m);
898
899 if (m_start >= r_start)
900 mi--;
901 else
902 ri--;
903 *idx = (u32)mi | (u64)ri << 32;
904 return;
905 }
906 }
907 }
908
909 *idx = ULLONG_MAX;
910 }
911
912 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
913 /*
914 * Common iterator interface used to define for_each_mem_range().
915 */
916 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
917 unsigned long *out_start_pfn,
918 unsigned long *out_end_pfn, int *out_nid)
919 {
920 struct memblock_type *type = &memblock.memory;
921 struct memblock_region *r;
922
923 while (++*idx < type->cnt) {
924 r = &type->regions[*idx];
925
926 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
927 continue;
928 if (nid == MAX_NUMNODES || nid == r->nid)
929 break;
930 }
931 if (*idx >= type->cnt) {
932 *idx = -1;
933 return;
934 }
935
936 if (out_start_pfn)
937 *out_start_pfn = PFN_UP(r->base);
938 if (out_end_pfn)
939 *out_end_pfn = PFN_DOWN(r->base + r->size);
940 if (out_nid)
941 *out_nid = r->nid;
942 }
943
944 /**
945 * memblock_set_node - set node ID on memblock regions
946 * @base: base of area to set node ID for
947 * @size: size of area to set node ID for
948 * @type: memblock type to set node ID for
949 * @nid: node ID to set
950 *
951 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
952 * Regions which cross the area boundaries are split as necessary.
953 *
954 * RETURNS:
955 * 0 on success, -errno on failure.
956 */
957 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
958 struct memblock_type *type, int nid)
959 {
960 int start_rgn, end_rgn;
961 int i, ret;
962
963 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
964 if (ret)
965 return ret;
966
967 for (i = start_rgn; i < end_rgn; i++)
968 memblock_set_region_node(&type->regions[i], nid);
969
970 memblock_merge_regions(type);
971 return 0;
972 }
973 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
974
975 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
976 phys_addr_t align, phys_addr_t max_addr,
977 int nid)
978 {
979 phys_addr_t found;
980
981 if (!align)
982 align = SMP_CACHE_BYTES;
983
984 /* align @size to avoid excessive fragmentation on reserved array */
985 size = round_up(size, align);
986
987 found = memblock_find_in_range_node(size, align, 0, max_addr, nid);
988 if (found && !memblock_reserve(found, size))
989 return found;
990
991 return 0;
992 }
993
994 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
995 {
996 return memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
997 }
998
999 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1000 {
1001 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE);
1002 }
1003
1004 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1005 {
1006 phys_addr_t alloc;
1007
1008 alloc = __memblock_alloc_base(size, align, max_addr);
1009
1010 if (alloc == 0)
1011 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
1012 (unsigned long long) size, (unsigned long long) max_addr);
1013
1014 return alloc;
1015 }
1016
1017 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1018 {
1019 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1020 }
1021
1022 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1023 {
1024 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1025
1026 if (res)
1027 return res;
1028 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1029 }
1030
1031 /**
1032 * memblock_virt_alloc_internal - allocate boot memory block
1033 * @size: size of memory block to be allocated in bytes
1034 * @align: alignment of the region and block's size
1035 * @min_addr: the lower bound of the memory region to allocate (phys address)
1036 * @max_addr: the upper bound of the memory region to allocate (phys address)
1037 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1038 *
1039 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1040 * will fall back to memory below @min_addr. Also, allocation may fall back
1041 * to any node in the system if the specified node can not
1042 * hold the requested memory.
1043 *
1044 * The allocation is performed from memory region limited by
1045 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1046 *
1047 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1048 *
1049 * The phys address of allocated boot memory block is converted to virtual and
1050 * allocated memory is reset to 0.
1051 *
1052 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1053 * allocated boot memory block, so that it is never reported as leaks.
1054 *
1055 * RETURNS:
1056 * Virtual address of allocated memory block on success, NULL on failure.
1057 */
1058 static void * __init memblock_virt_alloc_internal(
1059 phys_addr_t size, phys_addr_t align,
1060 phys_addr_t min_addr, phys_addr_t max_addr,
1061 int nid)
1062 {
1063 phys_addr_t alloc;
1064 void *ptr;
1065
1066 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1067 nid = NUMA_NO_NODE;
1068
1069 /*
1070 * Detect any accidental use of these APIs after slab is ready, as at
1071 * this moment memblock may be deinitialized already and its
1072 * internal data may be destroyed (after execution of free_all_bootmem)
1073 */
1074 if (WARN_ON_ONCE(slab_is_available()))
1075 return kzalloc_node(size, GFP_NOWAIT, nid);
1076
1077 if (!align)
1078 align = SMP_CACHE_BYTES;
1079
1080 /* align @size to avoid excessive fragmentation on reserved array */
1081 size = round_up(size, align);
1082
1083 again:
1084 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1085 nid);
1086 if (alloc)
1087 goto done;
1088
1089 if (nid != NUMA_NO_NODE) {
1090 alloc = memblock_find_in_range_node(size, align, min_addr,
1091 max_addr, NUMA_NO_NODE);
1092 if (alloc)
1093 goto done;
1094 }
1095
1096 if (min_addr) {
1097 min_addr = 0;
1098 goto again;
1099 } else {
1100 goto error;
1101 }
1102
1103 done:
1104 memblock_reserve(alloc, size);
1105 ptr = phys_to_virt(alloc);
1106 memset(ptr, 0, size);
1107
1108 /*
1109 * The min_count is set to 0 so that bootmem allocated blocks
1110 * are never reported as leaks. This is because many of these blocks
1111 * are only referred via the physical address which is not
1112 * looked up by kmemleak.
1113 */
1114 kmemleak_alloc(ptr, size, 0, 0);
1115
1116 return ptr;
1117
1118 error:
1119 return NULL;
1120 }
1121
1122 /**
1123 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1124 * @size: size of memory block to be allocated in bytes
1125 * @align: alignment of the region and block's size
1126 * @min_addr: the lower bound of the memory region from where the allocation
1127 * is preferred (phys address)
1128 * @max_addr: the upper bound of the memory region from where the allocation
1129 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1130 * allocate only from memory limited by memblock.current_limit value
1131 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1132 *
1133 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1134 * additional debug information (including caller info), if enabled.
1135 *
1136 * RETURNS:
1137 * Virtual address of allocated memory block on success, NULL on failure.
1138 */
1139 void * __init memblock_virt_alloc_try_nid_nopanic(
1140 phys_addr_t size, phys_addr_t align,
1141 phys_addr_t min_addr, phys_addr_t max_addr,
1142 int nid)
1143 {
1144 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1145 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1146 (u64)max_addr, (void *)_RET_IP_);
1147 return memblock_virt_alloc_internal(size, align, min_addr,
1148 max_addr, nid);
1149 }
1150
1151 /**
1152 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1153 * @size: size of memory block to be allocated in bytes
1154 * @align: alignment of the region and block's size
1155 * @min_addr: the lower bound of the memory region from where the allocation
1156 * is preferred (phys address)
1157 * @max_addr: the upper bound of the memory region from where the allocation
1158 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1159 * allocate only from memory limited by memblock.current_limit value
1160 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1161 *
1162 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1163 * which provides debug information (including caller info), if enabled,
1164 * and panics if the request can not be satisfied.
1165 *
1166 * RETURNS:
1167 * Virtual address of allocated memory block on success, NULL on failure.
1168 */
1169 void * __init memblock_virt_alloc_try_nid(
1170 phys_addr_t size, phys_addr_t align,
1171 phys_addr_t min_addr, phys_addr_t max_addr,
1172 int nid)
1173 {
1174 void *ptr;
1175
1176 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1177 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1178 (u64)max_addr, (void *)_RET_IP_);
1179 ptr = memblock_virt_alloc_internal(size, align,
1180 min_addr, max_addr, nid);
1181 if (ptr)
1182 return ptr;
1183
1184 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1185 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1186 (u64)max_addr);
1187 return NULL;
1188 }
1189
1190 /**
1191 * __memblock_free_early - free boot memory block
1192 * @base: phys starting address of the boot memory block
1193 * @size: size of the boot memory block in bytes
1194 *
1195 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1196 * The freeing memory will not be released to the buddy allocator.
1197 */
1198 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1199 {
1200 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1201 __func__, (u64)base, (u64)base + size - 1,
1202 (void *)_RET_IP_);
1203 kmemleak_free_part(__va(base), size);
1204 __memblock_remove(&memblock.reserved, base, size);
1205 }
1206
1207 /*
1208 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1209 * @addr: phys starting address of the boot memory block
1210 * @size: size of the boot memory block in bytes
1211 *
1212 * This is only useful when the bootmem allocator has already been torn
1213 * down, but we are still initializing the system. Pages are released directly
1214 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1215 */
1216 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1217 {
1218 u64 cursor, end;
1219
1220 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1221 __func__, (u64)base, (u64)base + size - 1,
1222 (void *)_RET_IP_);
1223 kmemleak_free_part(__va(base), size);
1224 cursor = PFN_UP(base);
1225 end = PFN_DOWN(base + size);
1226
1227 for (; cursor < end; cursor++) {
1228 __free_pages_bootmem(pfn_to_page(cursor), 0);
1229 totalram_pages++;
1230 }
1231 }
1232
1233 /*
1234 * Remaining API functions
1235 */
1236
1237 phys_addr_t __init memblock_phys_mem_size(void)
1238 {
1239 return memblock.memory.total_size;
1240 }
1241
1242 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1243 {
1244 unsigned long pages = 0;
1245 struct memblock_region *r;
1246 unsigned long start_pfn, end_pfn;
1247
1248 for_each_memblock(memory, r) {
1249 start_pfn = memblock_region_memory_base_pfn(r);
1250 end_pfn = memblock_region_memory_end_pfn(r);
1251 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1252 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1253 pages += end_pfn - start_pfn;
1254 }
1255
1256 return (phys_addr_t)pages << PAGE_SHIFT;
1257 }
1258
1259 /* lowest address */
1260 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1261 {
1262 return memblock.memory.regions[0].base;
1263 }
1264
1265 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1266 {
1267 int idx = memblock.memory.cnt - 1;
1268
1269 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1270 }
1271
1272 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1273 {
1274 unsigned long i;
1275 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1276
1277 if (!limit)
1278 return;
1279
1280 /* find out max address */
1281 for (i = 0; i < memblock.memory.cnt; i++) {
1282 struct memblock_region *r = &memblock.memory.regions[i];
1283
1284 if (limit <= r->size) {
1285 max_addr = r->base + limit;
1286 break;
1287 }
1288 limit -= r->size;
1289 }
1290
1291 /* truncate both memory and reserved regions */
1292 __memblock_remove(&memblock.memory, max_addr, (phys_addr_t)ULLONG_MAX);
1293 __memblock_remove(&memblock.reserved, max_addr, (phys_addr_t)ULLONG_MAX);
1294 }
1295
1296 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1297 {
1298 unsigned int left = 0, right = type->cnt;
1299
1300 do {
1301 unsigned int mid = (right + left) / 2;
1302
1303 if (addr < type->regions[mid].base)
1304 right = mid;
1305 else if (addr >= (type->regions[mid].base +
1306 type->regions[mid].size))
1307 left = mid + 1;
1308 else
1309 return mid;
1310 } while (left < right);
1311 return -1;
1312 }
1313
1314 int __init memblock_is_reserved(phys_addr_t addr)
1315 {
1316 return memblock_search(&memblock.reserved, addr) != -1;
1317 }
1318
1319 int __init_memblock memblock_is_memory(phys_addr_t addr)
1320 {
1321 return memblock_search(&memblock.memory, addr) != -1;
1322 }
1323
1324 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1325 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1326 unsigned long *start_pfn, unsigned long *end_pfn)
1327 {
1328 struct memblock_type *type = &memblock.memory;
1329 int mid = memblock_search(type, (phys_addr_t)pfn << PAGE_SHIFT);
1330
1331 if (mid == -1)
1332 return -1;
1333
1334 *start_pfn = type->regions[mid].base >> PAGE_SHIFT;
1335 *end_pfn = (type->regions[mid].base + type->regions[mid].size)
1336 >> PAGE_SHIFT;
1337
1338 return type->regions[mid].nid;
1339 }
1340 #endif
1341
1342 /**
1343 * memblock_is_region_memory - check if a region is a subset of memory
1344 * @base: base of region to check
1345 * @size: size of region to check
1346 *
1347 * Check if the region [@base, @base+@size) is a subset of a memory block.
1348 *
1349 * RETURNS:
1350 * 0 if false, non-zero if true
1351 */
1352 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1353 {
1354 int idx = memblock_search(&memblock.memory, base);
1355 phys_addr_t end = base + memblock_cap_size(base, &size);
1356
1357 if (idx == -1)
1358 return 0;
1359 return memblock.memory.regions[idx].base <= base &&
1360 (memblock.memory.regions[idx].base +
1361 memblock.memory.regions[idx].size) >= end;
1362 }
1363
1364 /**
1365 * memblock_is_region_reserved - check if a region intersects reserved memory
1366 * @base: base of region to check
1367 * @size: size of region to check
1368 *
1369 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1370 *
1371 * RETURNS:
1372 * 0 if false, non-zero if true
1373 */
1374 int __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1375 {
1376 memblock_cap_size(base, &size);
1377 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
1378 }
1379
1380 void __init_memblock memblock_trim_memory(phys_addr_t align)
1381 {
1382 int i;
1383 phys_addr_t start, end, orig_start, orig_end;
1384 struct memblock_type *mem = &memblock.memory;
1385
1386 for (i = 0; i < mem->cnt; i++) {
1387 orig_start = mem->regions[i].base;
1388 orig_end = mem->regions[i].base + mem->regions[i].size;
1389 start = round_up(orig_start, align);
1390 end = round_down(orig_end, align);
1391
1392 if (start == orig_start && end == orig_end)
1393 continue;
1394
1395 if (start < end) {
1396 mem->regions[i].base = start;
1397 mem->regions[i].size = end - start;
1398 } else {
1399 memblock_remove_region(mem, i);
1400 i--;
1401 }
1402 }
1403 }
1404
1405 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1406 {
1407 memblock.current_limit = limit;
1408 }
1409
1410 static void __init_memblock memblock_dump(struct memblock_type *type, char *name)
1411 {
1412 unsigned long long base, size;
1413 unsigned long flags;
1414 int i;
1415
1416 pr_info(" %s.cnt = 0x%lx\n", name, type->cnt);
1417
1418 for (i = 0; i < type->cnt; i++) {
1419 struct memblock_region *rgn = &type->regions[i];
1420 char nid_buf[32] = "";
1421
1422 base = rgn->base;
1423 size = rgn->size;
1424 flags = rgn->flags;
1425 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1426 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1427 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1428 memblock_get_region_node(rgn));
1429 #endif
1430 pr_info(" %s[%#x]\t[%#016llx-%#016llx], %#llx bytes%s flags: %#lx\n",
1431 name, i, base, base + size - 1, size, nid_buf, flags);
1432 }
1433 }
1434
1435 void __init_memblock __memblock_dump_all(void)
1436 {
1437 pr_info("MEMBLOCK configuration:\n");
1438 pr_info(" memory size = %#llx reserved size = %#llx\n",
1439 (unsigned long long)memblock.memory.total_size,
1440 (unsigned long long)memblock.reserved.total_size);
1441
1442 memblock_dump(&memblock.memory, "memory");
1443 memblock_dump(&memblock.reserved, "reserved");
1444 }
1445
1446 void __init memblock_allow_resize(void)
1447 {
1448 memblock_can_resize = 1;
1449 }
1450
1451 static int __init early_memblock(char *p)
1452 {
1453 if (p && strstr(p, "debug"))
1454 memblock_debug = 1;
1455 return 0;
1456 }
1457 early_param("memblock", early_memblock);
1458
1459 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1460
1461 static int memblock_debug_show(struct seq_file *m, void *private)
1462 {
1463 struct memblock_type *type = m->private;
1464 struct memblock_region *reg;
1465 int i;
1466
1467 for (i = 0; i < type->cnt; i++) {
1468 reg = &type->regions[i];
1469 seq_printf(m, "%4d: ", i);
1470 if (sizeof(phys_addr_t) == 4)
1471 seq_printf(m, "0x%08lx..0x%08lx\n",
1472 (unsigned long)reg->base,
1473 (unsigned long)(reg->base + reg->size - 1));
1474 else
1475 seq_printf(m, "0x%016llx..0x%016llx\n",
1476 (unsigned long long)reg->base,
1477 (unsigned long long)(reg->base + reg->size - 1));
1478
1479 }
1480 return 0;
1481 }
1482
1483 static int memblock_debug_open(struct inode *inode, struct file *file)
1484 {
1485 return single_open(file, memblock_debug_show, inode->i_private);
1486 }
1487
1488 static const struct file_operations memblock_debug_fops = {
1489 .open = memblock_debug_open,
1490 .read = seq_read,
1491 .llseek = seq_lseek,
1492 .release = single_release,
1493 };
1494
1495 static int __init memblock_init_debugfs(void)
1496 {
1497 struct dentry *root = debugfs_create_dir("memblock", NULL);
1498 if (!root)
1499 return -ENXIO;
1500 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1501 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1502
1503 return 0;
1504 }
1505 __initcall(memblock_init_debugfs);
1506
1507 #endif /* CONFIG_DEBUG_FS */