]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memblock.c
Merge tag 'amd-drm-fixes-5.11-2021-02-03' of https://gitlab.freedesktop.org/agd5f...
[mirror_ubuntu-hirsute-kernel.git] / mm / memblock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NEED_MULTIPLE_NODES
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159
160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170
171 /*
172 * Address comparison utilities
173 */
174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
176 {
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179
180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
182 {
183 unsigned long i;
184
185 for (i = 0; i < type->cnt; i++)
186 if (memblock_addrs_overlap(base, size, type->regions[i].base,
187 type->regions[i].size))
188 break;
189 return i < type->cnt;
190 }
191
192 /**
193 * __memblock_find_range_bottom_up - find free area utility in bottom-up
194 * @start: start of candidate range
195 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
196 * %MEMBLOCK_ALLOC_ACCESSIBLE
197 * @size: size of free area to find
198 * @align: alignment of free area to find
199 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
200 * @flags: pick from blocks based on memory attributes
201 *
202 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
203 *
204 * Return:
205 * Found address on success, 0 on failure.
206 */
207 static phys_addr_t __init_memblock
208 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
209 phys_addr_t size, phys_addr_t align, int nid,
210 enum memblock_flags flags)
211 {
212 phys_addr_t this_start, this_end, cand;
213 u64 i;
214
215 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
216 this_start = clamp(this_start, start, end);
217 this_end = clamp(this_end, start, end);
218
219 cand = round_up(this_start, align);
220 if (cand < this_end && this_end - cand >= size)
221 return cand;
222 }
223
224 return 0;
225 }
226
227 /**
228 * __memblock_find_range_top_down - find free area utility, in top-down
229 * @start: start of candidate range
230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
231 * %MEMBLOCK_ALLOC_ACCESSIBLE
232 * @size: size of free area to find
233 * @align: alignment of free area to find
234 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
235 * @flags: pick from blocks based on memory attributes
236 *
237 * Utility called from memblock_find_in_range_node(), find free area top-down.
238 *
239 * Return:
240 * Found address on success, 0 on failure.
241 */
242 static phys_addr_t __init_memblock
243 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
244 phys_addr_t size, phys_addr_t align, int nid,
245 enum memblock_flags flags)
246 {
247 phys_addr_t this_start, this_end, cand;
248 u64 i;
249
250 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
251 NULL) {
252 this_start = clamp(this_start, start, end);
253 this_end = clamp(this_end, start, end);
254
255 if (this_end < size)
256 continue;
257
258 cand = round_down(this_end - size, align);
259 if (cand >= this_start)
260 return cand;
261 }
262
263 return 0;
264 }
265
266 /**
267 * memblock_find_in_range_node - find free area in given range and node
268 * @size: size of free area to find
269 * @align: alignment of free area to find
270 * @start: start of candidate range
271 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
272 * %MEMBLOCK_ALLOC_ACCESSIBLE
273 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
274 * @flags: pick from blocks based on memory attributes
275 *
276 * Find @size free area aligned to @align in the specified range and node.
277 *
278 * When allocation direction is bottom-up, the @start should be greater
279 * than the end of the kernel image. Otherwise, it will be trimmed. The
280 * reason is that we want the bottom-up allocation just near the kernel
281 * image so it is highly likely that the allocated memory and the kernel
282 * will reside in the same node.
283 *
284 * If bottom-up allocation failed, will try to allocate memory top-down.
285 *
286 * Return:
287 * Found address on success, 0 on failure.
288 */
289 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
290 phys_addr_t align, phys_addr_t start,
291 phys_addr_t end, int nid,
292 enum memblock_flags flags)
293 {
294 phys_addr_t kernel_end, ret;
295
296 /* pump up @end */
297 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
298 end == MEMBLOCK_ALLOC_KASAN)
299 end = memblock.current_limit;
300
301 /* avoid allocating the first page */
302 start = max_t(phys_addr_t, start, PAGE_SIZE);
303 end = max(start, end);
304 kernel_end = __pa_symbol(_end);
305
306 /*
307 * try bottom-up allocation only when bottom-up mode
308 * is set and @end is above the kernel image.
309 */
310 if (memblock_bottom_up() && end > kernel_end) {
311 phys_addr_t bottom_up_start;
312
313 /* make sure we will allocate above the kernel */
314 bottom_up_start = max(start, kernel_end);
315
316 /* ok, try bottom-up allocation first */
317 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
318 size, align, nid, flags);
319 if (ret)
320 return ret;
321
322 /*
323 * we always limit bottom-up allocation above the kernel,
324 * but top-down allocation doesn't have the limit, so
325 * retrying top-down allocation may succeed when bottom-up
326 * allocation failed.
327 *
328 * bottom-up allocation is expected to be fail very rarely,
329 * so we use WARN_ONCE() here to see the stack trace if
330 * fail happens.
331 */
332 WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
333 "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
334 }
335
336 return __memblock_find_range_top_down(start, end, size, align, nid,
337 flags);
338 }
339
340 /**
341 * memblock_find_in_range - find free area in given range
342 * @start: start of candidate range
343 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
344 * %MEMBLOCK_ALLOC_ACCESSIBLE
345 * @size: size of free area to find
346 * @align: alignment of free area to find
347 *
348 * Find @size free area aligned to @align in the specified range.
349 *
350 * Return:
351 * Found address on success, 0 on failure.
352 */
353 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
354 phys_addr_t end, phys_addr_t size,
355 phys_addr_t align)
356 {
357 phys_addr_t ret;
358 enum memblock_flags flags = choose_memblock_flags();
359
360 again:
361 ret = memblock_find_in_range_node(size, align, start, end,
362 NUMA_NO_NODE, flags);
363
364 if (!ret && (flags & MEMBLOCK_MIRROR)) {
365 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
366 &size);
367 flags &= ~MEMBLOCK_MIRROR;
368 goto again;
369 }
370
371 return ret;
372 }
373
374 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
375 {
376 type->total_size -= type->regions[r].size;
377 memmove(&type->regions[r], &type->regions[r + 1],
378 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
379 type->cnt--;
380
381 /* Special case for empty arrays */
382 if (type->cnt == 0) {
383 WARN_ON(type->total_size != 0);
384 type->cnt = 1;
385 type->regions[0].base = 0;
386 type->regions[0].size = 0;
387 type->regions[0].flags = 0;
388 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
389 }
390 }
391
392 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
393 /**
394 * memblock_discard - discard memory and reserved arrays if they were allocated
395 */
396 void __init memblock_discard(void)
397 {
398 phys_addr_t addr, size;
399
400 if (memblock.reserved.regions != memblock_reserved_init_regions) {
401 addr = __pa(memblock.reserved.regions);
402 size = PAGE_ALIGN(sizeof(struct memblock_region) *
403 memblock.reserved.max);
404 __memblock_free_late(addr, size);
405 }
406
407 if (memblock.memory.regions != memblock_memory_init_regions) {
408 addr = __pa(memblock.memory.regions);
409 size = PAGE_ALIGN(sizeof(struct memblock_region) *
410 memblock.memory.max);
411 __memblock_free_late(addr, size);
412 }
413
414 memblock_memory = NULL;
415 }
416 #endif
417
418 /**
419 * memblock_double_array - double the size of the memblock regions array
420 * @type: memblock type of the regions array being doubled
421 * @new_area_start: starting address of memory range to avoid overlap with
422 * @new_area_size: size of memory range to avoid overlap with
423 *
424 * Double the size of the @type regions array. If memblock is being used to
425 * allocate memory for a new reserved regions array and there is a previously
426 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
427 * waiting to be reserved, ensure the memory used by the new array does
428 * not overlap.
429 *
430 * Return:
431 * 0 on success, -1 on failure.
432 */
433 static int __init_memblock memblock_double_array(struct memblock_type *type,
434 phys_addr_t new_area_start,
435 phys_addr_t new_area_size)
436 {
437 struct memblock_region *new_array, *old_array;
438 phys_addr_t old_alloc_size, new_alloc_size;
439 phys_addr_t old_size, new_size, addr, new_end;
440 int use_slab = slab_is_available();
441 int *in_slab;
442
443 /* We don't allow resizing until we know about the reserved regions
444 * of memory that aren't suitable for allocation
445 */
446 if (!memblock_can_resize)
447 return -1;
448
449 /* Calculate new doubled size */
450 old_size = type->max * sizeof(struct memblock_region);
451 new_size = old_size << 1;
452 /*
453 * We need to allocated new one align to PAGE_SIZE,
454 * so we can free them completely later.
455 */
456 old_alloc_size = PAGE_ALIGN(old_size);
457 new_alloc_size = PAGE_ALIGN(new_size);
458
459 /* Retrieve the slab flag */
460 if (type == &memblock.memory)
461 in_slab = &memblock_memory_in_slab;
462 else
463 in_slab = &memblock_reserved_in_slab;
464
465 /* Try to find some space for it */
466 if (use_slab) {
467 new_array = kmalloc(new_size, GFP_KERNEL);
468 addr = new_array ? __pa(new_array) : 0;
469 } else {
470 /* only exclude range when trying to double reserved.regions */
471 if (type != &memblock.reserved)
472 new_area_start = new_area_size = 0;
473
474 addr = memblock_find_in_range(new_area_start + new_area_size,
475 memblock.current_limit,
476 new_alloc_size, PAGE_SIZE);
477 if (!addr && new_area_size)
478 addr = memblock_find_in_range(0,
479 min(new_area_start, memblock.current_limit),
480 new_alloc_size, PAGE_SIZE);
481
482 new_array = addr ? __va(addr) : NULL;
483 }
484 if (!addr) {
485 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
486 type->name, type->max, type->max * 2);
487 return -1;
488 }
489
490 new_end = addr + new_size - 1;
491 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
492 type->name, type->max * 2, &addr, &new_end);
493
494 /*
495 * Found space, we now need to move the array over before we add the
496 * reserved region since it may be our reserved array itself that is
497 * full.
498 */
499 memcpy(new_array, type->regions, old_size);
500 memset(new_array + type->max, 0, old_size);
501 old_array = type->regions;
502 type->regions = new_array;
503 type->max <<= 1;
504
505 /* Free old array. We needn't free it if the array is the static one */
506 if (*in_slab)
507 kfree(old_array);
508 else if (old_array != memblock_memory_init_regions &&
509 old_array != memblock_reserved_init_regions)
510 memblock_free(__pa(old_array), old_alloc_size);
511
512 /*
513 * Reserve the new array if that comes from the memblock. Otherwise, we
514 * needn't do it
515 */
516 if (!use_slab)
517 BUG_ON(memblock_reserve(addr, new_alloc_size));
518
519 /* Update slab flag */
520 *in_slab = use_slab;
521
522 return 0;
523 }
524
525 /**
526 * memblock_merge_regions - merge neighboring compatible regions
527 * @type: memblock type to scan
528 *
529 * Scan @type and merge neighboring compatible regions.
530 */
531 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
532 {
533 int i = 0;
534
535 /* cnt never goes below 1 */
536 while (i < type->cnt - 1) {
537 struct memblock_region *this = &type->regions[i];
538 struct memblock_region *next = &type->regions[i + 1];
539
540 if (this->base + this->size != next->base ||
541 memblock_get_region_node(this) !=
542 memblock_get_region_node(next) ||
543 this->flags != next->flags) {
544 BUG_ON(this->base + this->size > next->base);
545 i++;
546 continue;
547 }
548
549 this->size += next->size;
550 /* move forward from next + 1, index of which is i + 2 */
551 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
552 type->cnt--;
553 }
554 }
555
556 /**
557 * memblock_insert_region - insert new memblock region
558 * @type: memblock type to insert into
559 * @idx: index for the insertion point
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: node id of the new region
563 * @flags: flags of the new region
564 *
565 * Insert new memblock region [@base, @base + @size) into @type at @idx.
566 * @type must already have extra room to accommodate the new region.
567 */
568 static void __init_memblock memblock_insert_region(struct memblock_type *type,
569 int idx, phys_addr_t base,
570 phys_addr_t size,
571 int nid,
572 enum memblock_flags flags)
573 {
574 struct memblock_region *rgn = &type->regions[idx];
575
576 BUG_ON(type->cnt >= type->max);
577 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
578 rgn->base = base;
579 rgn->size = size;
580 rgn->flags = flags;
581 memblock_set_region_node(rgn, nid);
582 type->cnt++;
583 type->total_size += size;
584 }
585
586 /**
587 * memblock_add_range - add new memblock region
588 * @type: memblock type to add new region into
589 * @base: base address of the new region
590 * @size: size of the new region
591 * @nid: nid of the new region
592 * @flags: flags of the new region
593 *
594 * Add new memblock region [@base, @base + @size) into @type. The new region
595 * is allowed to overlap with existing ones - overlaps don't affect already
596 * existing regions. @type is guaranteed to be minimal (all neighbouring
597 * compatible regions are merged) after the addition.
598 *
599 * Return:
600 * 0 on success, -errno on failure.
601 */
602 static int __init_memblock memblock_add_range(struct memblock_type *type,
603 phys_addr_t base, phys_addr_t size,
604 int nid, enum memblock_flags flags)
605 {
606 bool insert = false;
607 phys_addr_t obase = base;
608 phys_addr_t end = base + memblock_cap_size(base, &size);
609 int idx, nr_new;
610 struct memblock_region *rgn;
611
612 if (!size)
613 return 0;
614
615 /* special case for empty array */
616 if (type->regions[0].size == 0) {
617 WARN_ON(type->cnt != 1 || type->total_size);
618 type->regions[0].base = base;
619 type->regions[0].size = size;
620 type->regions[0].flags = flags;
621 memblock_set_region_node(&type->regions[0], nid);
622 type->total_size = size;
623 return 0;
624 }
625 repeat:
626 /*
627 * The following is executed twice. Once with %false @insert and
628 * then with %true. The first counts the number of regions needed
629 * to accommodate the new area. The second actually inserts them.
630 */
631 base = obase;
632 nr_new = 0;
633
634 for_each_memblock_type(idx, type, rgn) {
635 phys_addr_t rbase = rgn->base;
636 phys_addr_t rend = rbase + rgn->size;
637
638 if (rbase >= end)
639 break;
640 if (rend <= base)
641 continue;
642 /*
643 * @rgn overlaps. If it separates the lower part of new
644 * area, insert that portion.
645 */
646 if (rbase > base) {
647 #ifdef CONFIG_NEED_MULTIPLE_NODES
648 WARN_ON(nid != memblock_get_region_node(rgn));
649 #endif
650 WARN_ON(flags != rgn->flags);
651 nr_new++;
652 if (insert)
653 memblock_insert_region(type, idx++, base,
654 rbase - base, nid,
655 flags);
656 }
657 /* area below @rend is dealt with, forget about it */
658 base = min(rend, end);
659 }
660
661 /* insert the remaining portion */
662 if (base < end) {
663 nr_new++;
664 if (insert)
665 memblock_insert_region(type, idx, base, end - base,
666 nid, flags);
667 }
668
669 if (!nr_new)
670 return 0;
671
672 /*
673 * If this was the first round, resize array and repeat for actual
674 * insertions; otherwise, merge and return.
675 */
676 if (!insert) {
677 while (type->cnt + nr_new > type->max)
678 if (memblock_double_array(type, obase, size) < 0)
679 return -ENOMEM;
680 insert = true;
681 goto repeat;
682 } else {
683 memblock_merge_regions(type);
684 return 0;
685 }
686 }
687
688 /**
689 * memblock_add_node - add new memblock region within a NUMA node
690 * @base: base address of the new region
691 * @size: size of the new region
692 * @nid: nid of the new region
693 *
694 * Add new memblock region [@base, @base + @size) to the "memory"
695 * type. See memblock_add_range() description for mode details
696 *
697 * Return:
698 * 0 on success, -errno on failure.
699 */
700 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
701 int nid)
702 {
703 return memblock_add_range(&memblock.memory, base, size, nid, 0);
704 }
705
706 /**
707 * memblock_add - add new memblock region
708 * @base: base address of the new region
709 * @size: size of the new region
710 *
711 * Add new memblock region [@base, @base + @size) to the "memory"
712 * type. See memblock_add_range() description for mode details
713 *
714 * Return:
715 * 0 on success, -errno on failure.
716 */
717 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
718 {
719 phys_addr_t end = base + size - 1;
720
721 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
722 &base, &end, (void *)_RET_IP_);
723
724 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
725 }
726
727 /**
728 * memblock_isolate_range - isolate given range into disjoint memblocks
729 * @type: memblock type to isolate range for
730 * @base: base of range to isolate
731 * @size: size of range to isolate
732 * @start_rgn: out parameter for the start of isolated region
733 * @end_rgn: out parameter for the end of isolated region
734 *
735 * Walk @type and ensure that regions don't cross the boundaries defined by
736 * [@base, @base + @size). Crossing regions are split at the boundaries,
737 * which may create at most two more regions. The index of the first
738 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
739 *
740 * Return:
741 * 0 on success, -errno on failure.
742 */
743 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
744 phys_addr_t base, phys_addr_t size,
745 int *start_rgn, int *end_rgn)
746 {
747 phys_addr_t end = base + memblock_cap_size(base, &size);
748 int idx;
749 struct memblock_region *rgn;
750
751 *start_rgn = *end_rgn = 0;
752
753 if (!size)
754 return 0;
755
756 /* we'll create at most two more regions */
757 while (type->cnt + 2 > type->max)
758 if (memblock_double_array(type, base, size) < 0)
759 return -ENOMEM;
760
761 for_each_memblock_type(idx, type, rgn) {
762 phys_addr_t rbase = rgn->base;
763 phys_addr_t rend = rbase + rgn->size;
764
765 if (rbase >= end)
766 break;
767 if (rend <= base)
768 continue;
769
770 if (rbase < base) {
771 /*
772 * @rgn intersects from below. Split and continue
773 * to process the next region - the new top half.
774 */
775 rgn->base = base;
776 rgn->size -= base - rbase;
777 type->total_size -= base - rbase;
778 memblock_insert_region(type, idx, rbase, base - rbase,
779 memblock_get_region_node(rgn),
780 rgn->flags);
781 } else if (rend > end) {
782 /*
783 * @rgn intersects from above. Split and redo the
784 * current region - the new bottom half.
785 */
786 rgn->base = end;
787 rgn->size -= end - rbase;
788 type->total_size -= end - rbase;
789 memblock_insert_region(type, idx--, rbase, end - rbase,
790 memblock_get_region_node(rgn),
791 rgn->flags);
792 } else {
793 /* @rgn is fully contained, record it */
794 if (!*end_rgn)
795 *start_rgn = idx;
796 *end_rgn = idx + 1;
797 }
798 }
799
800 return 0;
801 }
802
803 static int __init_memblock memblock_remove_range(struct memblock_type *type,
804 phys_addr_t base, phys_addr_t size)
805 {
806 int start_rgn, end_rgn;
807 int i, ret;
808
809 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
810 if (ret)
811 return ret;
812
813 for (i = end_rgn - 1; i >= start_rgn; i--)
814 memblock_remove_region(type, i);
815 return 0;
816 }
817
818 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
819 {
820 phys_addr_t end = base + size - 1;
821
822 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
823 &base, &end, (void *)_RET_IP_);
824
825 return memblock_remove_range(&memblock.memory, base, size);
826 }
827
828 /**
829 * memblock_free - free boot memory block
830 * @base: phys starting address of the boot memory block
831 * @size: size of the boot memory block in bytes
832 *
833 * Free boot memory block previously allocated by memblock_alloc_xx() API.
834 * The freeing memory will not be released to the buddy allocator.
835 */
836 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
837 {
838 phys_addr_t end = base + size - 1;
839
840 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
841 &base, &end, (void *)_RET_IP_);
842
843 kmemleak_free_part_phys(base, size);
844 return memblock_remove_range(&memblock.reserved, base, size);
845 }
846
847 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
848 {
849 phys_addr_t end = base + size - 1;
850
851 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
852 &base, &end, (void *)_RET_IP_);
853
854 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
855 }
856
857 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
858 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
859 {
860 phys_addr_t end = base + size - 1;
861
862 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
863 &base, &end, (void *)_RET_IP_);
864
865 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
866 }
867 #endif
868
869 /**
870 * memblock_setclr_flag - set or clear flag for a memory region
871 * @base: base address of the region
872 * @size: size of the region
873 * @set: set or clear the flag
874 * @flag: the flag to update
875 *
876 * This function isolates region [@base, @base + @size), and sets/clears flag
877 *
878 * Return: 0 on success, -errno on failure.
879 */
880 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
881 phys_addr_t size, int set, int flag)
882 {
883 struct memblock_type *type = &memblock.memory;
884 int i, ret, start_rgn, end_rgn;
885
886 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
887 if (ret)
888 return ret;
889
890 for (i = start_rgn; i < end_rgn; i++) {
891 struct memblock_region *r = &type->regions[i];
892
893 if (set)
894 r->flags |= flag;
895 else
896 r->flags &= ~flag;
897 }
898
899 memblock_merge_regions(type);
900 return 0;
901 }
902
903 /**
904 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
905 * @base: the base phys addr of the region
906 * @size: the size of the region
907 *
908 * Return: 0 on success, -errno on failure.
909 */
910 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
911 {
912 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
913 }
914
915 /**
916 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
917 * @base: the base phys addr of the region
918 * @size: the size of the region
919 *
920 * Return: 0 on success, -errno on failure.
921 */
922 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
923 {
924 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
925 }
926
927 /**
928 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
929 * @base: the base phys addr of the region
930 * @size: the size of the region
931 *
932 * Return: 0 on success, -errno on failure.
933 */
934 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
935 {
936 system_has_some_mirror = true;
937
938 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
939 }
940
941 /**
942 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
943 * @base: the base phys addr of the region
944 * @size: the size of the region
945 *
946 * Return: 0 on success, -errno on failure.
947 */
948 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
949 {
950 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
951 }
952
953 /**
954 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
955 * @base: the base phys addr of the region
956 * @size: the size of the region
957 *
958 * Return: 0 on success, -errno on failure.
959 */
960 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
961 {
962 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
963 }
964
965 static bool should_skip_region(struct memblock_type *type,
966 struct memblock_region *m,
967 int nid, int flags)
968 {
969 int m_nid = memblock_get_region_node(m);
970
971 /* we never skip regions when iterating memblock.reserved or physmem */
972 if (type != memblock_memory)
973 return false;
974
975 /* only memory regions are associated with nodes, check it */
976 if (nid != NUMA_NO_NODE && nid != m_nid)
977 return true;
978
979 /* skip hotpluggable memory regions if needed */
980 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
981 return true;
982
983 /* if we want mirror memory skip non-mirror memory regions */
984 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
985 return true;
986
987 /* skip nomap memory unless we were asked for it explicitly */
988 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
989 return true;
990
991 return false;
992 }
993
994 /**
995 * __next_mem_range - next function for for_each_free_mem_range() etc.
996 * @idx: pointer to u64 loop variable
997 * @nid: node selector, %NUMA_NO_NODE for all nodes
998 * @flags: pick from blocks based on memory attributes
999 * @type_a: pointer to memblock_type from where the range is taken
1000 * @type_b: pointer to memblock_type which excludes memory from being taken
1001 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1002 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1003 * @out_nid: ptr to int for nid of the range, can be %NULL
1004 *
1005 * Find the first area from *@idx which matches @nid, fill the out
1006 * parameters, and update *@idx for the next iteration. The lower 32bit of
1007 * *@idx contains index into type_a and the upper 32bit indexes the
1008 * areas before each region in type_b. For example, if type_b regions
1009 * look like the following,
1010 *
1011 * 0:[0-16), 1:[32-48), 2:[128-130)
1012 *
1013 * The upper 32bit indexes the following regions.
1014 *
1015 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1016 *
1017 * As both region arrays are sorted, the function advances the two indices
1018 * in lockstep and returns each intersection.
1019 */
1020 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1021 struct memblock_type *type_a,
1022 struct memblock_type *type_b, phys_addr_t *out_start,
1023 phys_addr_t *out_end, int *out_nid)
1024 {
1025 int idx_a = *idx & 0xffffffff;
1026 int idx_b = *idx >> 32;
1027
1028 if (WARN_ONCE(nid == MAX_NUMNODES,
1029 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1030 nid = NUMA_NO_NODE;
1031
1032 for (; idx_a < type_a->cnt; idx_a++) {
1033 struct memblock_region *m = &type_a->regions[idx_a];
1034
1035 phys_addr_t m_start = m->base;
1036 phys_addr_t m_end = m->base + m->size;
1037 int m_nid = memblock_get_region_node(m);
1038
1039 if (should_skip_region(type_a, m, nid, flags))
1040 continue;
1041
1042 if (!type_b) {
1043 if (out_start)
1044 *out_start = m_start;
1045 if (out_end)
1046 *out_end = m_end;
1047 if (out_nid)
1048 *out_nid = m_nid;
1049 idx_a++;
1050 *idx = (u32)idx_a | (u64)idx_b << 32;
1051 return;
1052 }
1053
1054 /* scan areas before each reservation */
1055 for (; idx_b < type_b->cnt + 1; idx_b++) {
1056 struct memblock_region *r;
1057 phys_addr_t r_start;
1058 phys_addr_t r_end;
1059
1060 r = &type_b->regions[idx_b];
1061 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1062 r_end = idx_b < type_b->cnt ?
1063 r->base : PHYS_ADDR_MAX;
1064
1065 /*
1066 * if idx_b advanced past idx_a,
1067 * break out to advance idx_a
1068 */
1069 if (r_start >= m_end)
1070 break;
1071 /* if the two regions intersect, we're done */
1072 if (m_start < r_end) {
1073 if (out_start)
1074 *out_start =
1075 max(m_start, r_start);
1076 if (out_end)
1077 *out_end = min(m_end, r_end);
1078 if (out_nid)
1079 *out_nid = m_nid;
1080 /*
1081 * The region which ends first is
1082 * advanced for the next iteration.
1083 */
1084 if (m_end <= r_end)
1085 idx_a++;
1086 else
1087 idx_b++;
1088 *idx = (u32)idx_a | (u64)idx_b << 32;
1089 return;
1090 }
1091 }
1092 }
1093
1094 /* signal end of iteration */
1095 *idx = ULLONG_MAX;
1096 }
1097
1098 /**
1099 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1100 *
1101 * @idx: pointer to u64 loop variable
1102 * @nid: node selector, %NUMA_NO_NODE for all nodes
1103 * @flags: pick from blocks based on memory attributes
1104 * @type_a: pointer to memblock_type from where the range is taken
1105 * @type_b: pointer to memblock_type which excludes memory from being taken
1106 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1107 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1108 * @out_nid: ptr to int for nid of the range, can be %NULL
1109 *
1110 * Finds the next range from type_a which is not marked as unsuitable
1111 * in type_b.
1112 *
1113 * Reverse of __next_mem_range().
1114 */
1115 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1116 enum memblock_flags flags,
1117 struct memblock_type *type_a,
1118 struct memblock_type *type_b,
1119 phys_addr_t *out_start,
1120 phys_addr_t *out_end, int *out_nid)
1121 {
1122 int idx_a = *idx & 0xffffffff;
1123 int idx_b = *idx >> 32;
1124
1125 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1126 nid = NUMA_NO_NODE;
1127
1128 if (*idx == (u64)ULLONG_MAX) {
1129 idx_a = type_a->cnt - 1;
1130 if (type_b != NULL)
1131 idx_b = type_b->cnt;
1132 else
1133 idx_b = 0;
1134 }
1135
1136 for (; idx_a >= 0; idx_a--) {
1137 struct memblock_region *m = &type_a->regions[idx_a];
1138
1139 phys_addr_t m_start = m->base;
1140 phys_addr_t m_end = m->base + m->size;
1141 int m_nid = memblock_get_region_node(m);
1142
1143 if (should_skip_region(type_a, m, nid, flags))
1144 continue;
1145
1146 if (!type_b) {
1147 if (out_start)
1148 *out_start = m_start;
1149 if (out_end)
1150 *out_end = m_end;
1151 if (out_nid)
1152 *out_nid = m_nid;
1153 idx_a--;
1154 *idx = (u32)idx_a | (u64)idx_b << 32;
1155 return;
1156 }
1157
1158 /* scan areas before each reservation */
1159 for (; idx_b >= 0; idx_b--) {
1160 struct memblock_region *r;
1161 phys_addr_t r_start;
1162 phys_addr_t r_end;
1163
1164 r = &type_b->regions[idx_b];
1165 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1166 r_end = idx_b < type_b->cnt ?
1167 r->base : PHYS_ADDR_MAX;
1168 /*
1169 * if idx_b advanced past idx_a,
1170 * break out to advance idx_a
1171 */
1172
1173 if (r_end <= m_start)
1174 break;
1175 /* if the two regions intersect, we're done */
1176 if (m_end > r_start) {
1177 if (out_start)
1178 *out_start = max(m_start, r_start);
1179 if (out_end)
1180 *out_end = min(m_end, r_end);
1181 if (out_nid)
1182 *out_nid = m_nid;
1183 if (m_start >= r_start)
1184 idx_a--;
1185 else
1186 idx_b--;
1187 *idx = (u32)idx_a | (u64)idx_b << 32;
1188 return;
1189 }
1190 }
1191 }
1192 /* signal end of iteration */
1193 *idx = ULLONG_MAX;
1194 }
1195
1196 /*
1197 * Common iterator interface used to define for_each_mem_pfn_range().
1198 */
1199 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1200 unsigned long *out_start_pfn,
1201 unsigned long *out_end_pfn, int *out_nid)
1202 {
1203 struct memblock_type *type = &memblock.memory;
1204 struct memblock_region *r;
1205 int r_nid;
1206
1207 while (++*idx < type->cnt) {
1208 r = &type->regions[*idx];
1209 r_nid = memblock_get_region_node(r);
1210
1211 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1212 continue;
1213 if (nid == MAX_NUMNODES || nid == r_nid)
1214 break;
1215 }
1216 if (*idx >= type->cnt) {
1217 *idx = -1;
1218 return;
1219 }
1220
1221 if (out_start_pfn)
1222 *out_start_pfn = PFN_UP(r->base);
1223 if (out_end_pfn)
1224 *out_end_pfn = PFN_DOWN(r->base + r->size);
1225 if (out_nid)
1226 *out_nid = r_nid;
1227 }
1228
1229 /**
1230 * memblock_set_node - set node ID on memblock regions
1231 * @base: base of area to set node ID for
1232 * @size: size of area to set node ID for
1233 * @type: memblock type to set node ID for
1234 * @nid: node ID to set
1235 *
1236 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1237 * Regions which cross the area boundaries are split as necessary.
1238 *
1239 * Return:
1240 * 0 on success, -errno on failure.
1241 */
1242 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1243 struct memblock_type *type, int nid)
1244 {
1245 #ifdef CONFIG_NEED_MULTIPLE_NODES
1246 int start_rgn, end_rgn;
1247 int i, ret;
1248
1249 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1250 if (ret)
1251 return ret;
1252
1253 for (i = start_rgn; i < end_rgn; i++)
1254 memblock_set_region_node(&type->regions[i], nid);
1255
1256 memblock_merge_regions(type);
1257 #endif
1258 return 0;
1259 }
1260
1261 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1262 /**
1263 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1264 *
1265 * @idx: pointer to u64 loop variable
1266 * @zone: zone in which all of the memory blocks reside
1267 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1268 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1269 *
1270 * This function is meant to be a zone/pfn specific wrapper for the
1271 * for_each_mem_range type iterators. Specifically they are used in the
1272 * deferred memory init routines and as such we were duplicating much of
1273 * this logic throughout the code. So instead of having it in multiple
1274 * locations it seemed like it would make more sense to centralize this to
1275 * one new iterator that does everything they need.
1276 */
1277 void __init_memblock
1278 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1279 unsigned long *out_spfn, unsigned long *out_epfn)
1280 {
1281 int zone_nid = zone_to_nid(zone);
1282 phys_addr_t spa, epa;
1283 int nid;
1284
1285 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1286 &memblock.memory, &memblock.reserved,
1287 &spa, &epa, &nid);
1288
1289 while (*idx != U64_MAX) {
1290 unsigned long epfn = PFN_DOWN(epa);
1291 unsigned long spfn = PFN_UP(spa);
1292
1293 /*
1294 * Verify the end is at least past the start of the zone and
1295 * that we have at least one PFN to initialize.
1296 */
1297 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1298 /* if we went too far just stop searching */
1299 if (zone_end_pfn(zone) <= spfn) {
1300 *idx = U64_MAX;
1301 break;
1302 }
1303
1304 if (out_spfn)
1305 *out_spfn = max(zone->zone_start_pfn, spfn);
1306 if (out_epfn)
1307 *out_epfn = min(zone_end_pfn(zone), epfn);
1308
1309 return;
1310 }
1311
1312 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1313 &memblock.memory, &memblock.reserved,
1314 &spa, &epa, &nid);
1315 }
1316
1317 /* signal end of iteration */
1318 if (out_spfn)
1319 *out_spfn = ULONG_MAX;
1320 if (out_epfn)
1321 *out_epfn = 0;
1322 }
1323
1324 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1325
1326 /**
1327 * memblock_alloc_range_nid - allocate boot memory block
1328 * @size: size of memory block to be allocated in bytes
1329 * @align: alignment of the region and block's size
1330 * @start: the lower bound of the memory region to allocate (phys address)
1331 * @end: the upper bound of the memory region to allocate (phys address)
1332 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1333 * @exact_nid: control the allocation fall back to other nodes
1334 *
1335 * The allocation is performed from memory region limited by
1336 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1337 *
1338 * If the specified node can not hold the requested memory and @exact_nid
1339 * is false, the allocation falls back to any node in the system.
1340 *
1341 * For systems with memory mirroring, the allocation is attempted first
1342 * from the regions with mirroring enabled and then retried from any
1343 * memory region.
1344 *
1345 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1346 * allocated boot memory block, so that it is never reported as leaks.
1347 *
1348 * Return:
1349 * Physical address of allocated memory block on success, %0 on failure.
1350 */
1351 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1352 phys_addr_t align, phys_addr_t start,
1353 phys_addr_t end, int nid,
1354 bool exact_nid)
1355 {
1356 enum memblock_flags flags = choose_memblock_flags();
1357 phys_addr_t found;
1358
1359 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1360 nid = NUMA_NO_NODE;
1361
1362 if (!align) {
1363 /* Can't use WARNs this early in boot on powerpc */
1364 dump_stack();
1365 align = SMP_CACHE_BYTES;
1366 }
1367
1368 again:
1369 found = memblock_find_in_range_node(size, align, start, end, nid,
1370 flags);
1371 if (found && !memblock_reserve(found, size))
1372 goto done;
1373
1374 if (nid != NUMA_NO_NODE && !exact_nid) {
1375 found = memblock_find_in_range_node(size, align, start,
1376 end, NUMA_NO_NODE,
1377 flags);
1378 if (found && !memblock_reserve(found, size))
1379 goto done;
1380 }
1381
1382 if (flags & MEMBLOCK_MIRROR) {
1383 flags &= ~MEMBLOCK_MIRROR;
1384 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1385 &size);
1386 goto again;
1387 }
1388
1389 return 0;
1390
1391 done:
1392 /* Skip kmemleak for kasan_init() due to high volume. */
1393 if (end != MEMBLOCK_ALLOC_KASAN)
1394 /*
1395 * The min_count is set to 0 so that memblock allocated
1396 * blocks are never reported as leaks. This is because many
1397 * of these blocks are only referred via the physical
1398 * address which is not looked up by kmemleak.
1399 */
1400 kmemleak_alloc_phys(found, size, 0, 0);
1401
1402 return found;
1403 }
1404
1405 /**
1406 * memblock_phys_alloc_range - allocate a memory block inside specified range
1407 * @size: size of memory block to be allocated in bytes
1408 * @align: alignment of the region and block's size
1409 * @start: the lower bound of the memory region to allocate (physical address)
1410 * @end: the upper bound of the memory region to allocate (physical address)
1411 *
1412 * Allocate @size bytes in the between @start and @end.
1413 *
1414 * Return: physical address of the allocated memory block on success,
1415 * %0 on failure.
1416 */
1417 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1418 phys_addr_t align,
1419 phys_addr_t start,
1420 phys_addr_t end)
1421 {
1422 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1423 __func__, (u64)size, (u64)align, &start, &end,
1424 (void *)_RET_IP_);
1425 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1426 false);
1427 }
1428
1429 /**
1430 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1431 * @size: size of memory block to be allocated in bytes
1432 * @align: alignment of the region and block's size
1433 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1434 *
1435 * Allocates memory block from the specified NUMA node. If the node
1436 * has no available memory, attempts to allocated from any node in the
1437 * system.
1438 *
1439 * Return: physical address of the allocated memory block on success,
1440 * %0 on failure.
1441 */
1442 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1443 {
1444 return memblock_alloc_range_nid(size, align, 0,
1445 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1446 }
1447
1448 /**
1449 * memblock_alloc_internal - allocate boot memory block
1450 * @size: size of memory block to be allocated in bytes
1451 * @align: alignment of the region and block's size
1452 * @min_addr: the lower bound of the memory region to allocate (phys address)
1453 * @max_addr: the upper bound of the memory region to allocate (phys address)
1454 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1455 * @exact_nid: control the allocation fall back to other nodes
1456 *
1457 * Allocates memory block using memblock_alloc_range_nid() and
1458 * converts the returned physical address to virtual.
1459 *
1460 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1461 * will fall back to memory below @min_addr. Other constraints, such
1462 * as node and mirrored memory will be handled again in
1463 * memblock_alloc_range_nid().
1464 *
1465 * Return:
1466 * Virtual address of allocated memory block on success, NULL on failure.
1467 */
1468 static void * __init memblock_alloc_internal(
1469 phys_addr_t size, phys_addr_t align,
1470 phys_addr_t min_addr, phys_addr_t max_addr,
1471 int nid, bool exact_nid)
1472 {
1473 phys_addr_t alloc;
1474
1475 /*
1476 * Detect any accidental use of these APIs after slab is ready, as at
1477 * this moment memblock may be deinitialized already and its
1478 * internal data may be destroyed (after execution of memblock_free_all)
1479 */
1480 if (WARN_ON_ONCE(slab_is_available()))
1481 return kzalloc_node(size, GFP_NOWAIT, nid);
1482
1483 if (max_addr > memblock.current_limit)
1484 max_addr = memblock.current_limit;
1485
1486 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1487 exact_nid);
1488
1489 /* retry allocation without lower limit */
1490 if (!alloc && min_addr)
1491 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1492 exact_nid);
1493
1494 if (!alloc)
1495 return NULL;
1496
1497 return phys_to_virt(alloc);
1498 }
1499
1500 /**
1501 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1502 * without zeroing memory
1503 * @size: size of memory block to be allocated in bytes
1504 * @align: alignment of the region and block's size
1505 * @min_addr: the lower bound of the memory region from where the allocation
1506 * is preferred (phys address)
1507 * @max_addr: the upper bound of the memory region from where the allocation
1508 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1509 * allocate only from memory limited by memblock.current_limit value
1510 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1511 *
1512 * Public function, provides additional debug information (including caller
1513 * info), if enabled. Does not zero allocated memory.
1514 *
1515 * Return:
1516 * Virtual address of allocated memory block on success, NULL on failure.
1517 */
1518 void * __init memblock_alloc_exact_nid_raw(
1519 phys_addr_t size, phys_addr_t align,
1520 phys_addr_t min_addr, phys_addr_t max_addr,
1521 int nid)
1522 {
1523 void *ptr;
1524
1525 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1526 __func__, (u64)size, (u64)align, nid, &min_addr,
1527 &max_addr, (void *)_RET_IP_);
1528
1529 ptr = memblock_alloc_internal(size, align,
1530 min_addr, max_addr, nid, true);
1531 if (ptr && size > 0)
1532 page_init_poison(ptr, size);
1533
1534 return ptr;
1535 }
1536
1537 /**
1538 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1539 * memory and without panicking
1540 * @size: size of memory block to be allocated in bytes
1541 * @align: alignment of the region and block's size
1542 * @min_addr: the lower bound of the memory region from where the allocation
1543 * is preferred (phys address)
1544 * @max_addr: the upper bound of the memory region from where the allocation
1545 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1546 * allocate only from memory limited by memblock.current_limit value
1547 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1548 *
1549 * Public function, provides additional debug information (including caller
1550 * info), if enabled. Does not zero allocated memory, does not panic if request
1551 * cannot be satisfied.
1552 *
1553 * Return:
1554 * Virtual address of allocated memory block on success, NULL on failure.
1555 */
1556 void * __init memblock_alloc_try_nid_raw(
1557 phys_addr_t size, phys_addr_t align,
1558 phys_addr_t min_addr, phys_addr_t max_addr,
1559 int nid)
1560 {
1561 void *ptr;
1562
1563 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1564 __func__, (u64)size, (u64)align, nid, &min_addr,
1565 &max_addr, (void *)_RET_IP_);
1566
1567 ptr = memblock_alloc_internal(size, align,
1568 min_addr, max_addr, nid, false);
1569 if (ptr && size > 0)
1570 page_init_poison(ptr, size);
1571
1572 return ptr;
1573 }
1574
1575 /**
1576 * memblock_alloc_try_nid - allocate boot memory block
1577 * @size: size of memory block to be allocated in bytes
1578 * @align: alignment of the region and block's size
1579 * @min_addr: the lower bound of the memory region from where the allocation
1580 * is preferred (phys address)
1581 * @max_addr: the upper bound of the memory region from where the allocation
1582 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1583 * allocate only from memory limited by memblock.current_limit value
1584 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1585 *
1586 * Public function, provides additional debug information (including caller
1587 * info), if enabled. This function zeroes the allocated memory.
1588 *
1589 * Return:
1590 * Virtual address of allocated memory block on success, NULL on failure.
1591 */
1592 void * __init memblock_alloc_try_nid(
1593 phys_addr_t size, phys_addr_t align,
1594 phys_addr_t min_addr, phys_addr_t max_addr,
1595 int nid)
1596 {
1597 void *ptr;
1598
1599 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1600 __func__, (u64)size, (u64)align, nid, &min_addr,
1601 &max_addr, (void *)_RET_IP_);
1602 ptr = memblock_alloc_internal(size, align,
1603 min_addr, max_addr, nid, false);
1604 if (ptr)
1605 memset(ptr, 0, size);
1606
1607 return ptr;
1608 }
1609
1610 /**
1611 * __memblock_free_late - free pages directly to buddy allocator
1612 * @base: phys starting address of the boot memory block
1613 * @size: size of the boot memory block in bytes
1614 *
1615 * This is only useful when the memblock allocator has already been torn
1616 * down, but we are still initializing the system. Pages are released directly
1617 * to the buddy allocator.
1618 */
1619 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1620 {
1621 phys_addr_t cursor, end;
1622
1623 end = base + size - 1;
1624 memblock_dbg("%s: [%pa-%pa] %pS\n",
1625 __func__, &base, &end, (void *)_RET_IP_);
1626 kmemleak_free_part_phys(base, size);
1627 cursor = PFN_UP(base);
1628 end = PFN_DOWN(base + size);
1629
1630 for (; cursor < end; cursor++) {
1631 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1632 totalram_pages_inc();
1633 }
1634 }
1635
1636 /*
1637 * Remaining API functions
1638 */
1639
1640 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1641 {
1642 return memblock.memory.total_size;
1643 }
1644
1645 phys_addr_t __init_memblock memblock_reserved_size(void)
1646 {
1647 return memblock.reserved.total_size;
1648 }
1649
1650 /* lowest address */
1651 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1652 {
1653 return memblock.memory.regions[0].base;
1654 }
1655
1656 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1657 {
1658 int idx = memblock.memory.cnt - 1;
1659
1660 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1661 }
1662
1663 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1664 {
1665 phys_addr_t max_addr = PHYS_ADDR_MAX;
1666 struct memblock_region *r;
1667
1668 /*
1669 * translate the memory @limit size into the max address within one of
1670 * the memory memblock regions, if the @limit exceeds the total size
1671 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1672 */
1673 for_each_mem_region(r) {
1674 if (limit <= r->size) {
1675 max_addr = r->base + limit;
1676 break;
1677 }
1678 limit -= r->size;
1679 }
1680
1681 return max_addr;
1682 }
1683
1684 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1685 {
1686 phys_addr_t max_addr;
1687
1688 if (!limit)
1689 return;
1690
1691 max_addr = __find_max_addr(limit);
1692
1693 /* @limit exceeds the total size of the memory, do nothing */
1694 if (max_addr == PHYS_ADDR_MAX)
1695 return;
1696
1697 /* truncate both memory and reserved regions */
1698 memblock_remove_range(&memblock.memory, max_addr,
1699 PHYS_ADDR_MAX);
1700 memblock_remove_range(&memblock.reserved, max_addr,
1701 PHYS_ADDR_MAX);
1702 }
1703
1704 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1705 {
1706 int start_rgn, end_rgn;
1707 int i, ret;
1708
1709 if (!size)
1710 return;
1711
1712 ret = memblock_isolate_range(&memblock.memory, base, size,
1713 &start_rgn, &end_rgn);
1714 if (ret)
1715 return;
1716
1717 /* remove all the MAP regions */
1718 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1719 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1720 memblock_remove_region(&memblock.memory, i);
1721
1722 for (i = start_rgn - 1; i >= 0; i--)
1723 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1724 memblock_remove_region(&memblock.memory, i);
1725
1726 /* truncate the reserved regions */
1727 memblock_remove_range(&memblock.reserved, 0, base);
1728 memblock_remove_range(&memblock.reserved,
1729 base + size, PHYS_ADDR_MAX);
1730 }
1731
1732 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1733 {
1734 phys_addr_t max_addr;
1735
1736 if (!limit)
1737 return;
1738
1739 max_addr = __find_max_addr(limit);
1740
1741 /* @limit exceeds the total size of the memory, do nothing */
1742 if (max_addr == PHYS_ADDR_MAX)
1743 return;
1744
1745 memblock_cap_memory_range(0, max_addr);
1746 }
1747
1748 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1749 {
1750 unsigned int left = 0, right = type->cnt;
1751
1752 do {
1753 unsigned int mid = (right + left) / 2;
1754
1755 if (addr < type->regions[mid].base)
1756 right = mid;
1757 else if (addr >= (type->regions[mid].base +
1758 type->regions[mid].size))
1759 left = mid + 1;
1760 else
1761 return mid;
1762 } while (left < right);
1763 return -1;
1764 }
1765
1766 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1767 {
1768 return memblock_search(&memblock.reserved, addr) != -1;
1769 }
1770
1771 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1772 {
1773 return memblock_search(&memblock.memory, addr) != -1;
1774 }
1775
1776 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1777 {
1778 int i = memblock_search(&memblock.memory, addr);
1779
1780 if (i == -1)
1781 return false;
1782 return !memblock_is_nomap(&memblock.memory.regions[i]);
1783 }
1784
1785 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1786 unsigned long *start_pfn, unsigned long *end_pfn)
1787 {
1788 struct memblock_type *type = &memblock.memory;
1789 int mid = memblock_search(type, PFN_PHYS(pfn));
1790
1791 if (mid == -1)
1792 return -1;
1793
1794 *start_pfn = PFN_DOWN(type->regions[mid].base);
1795 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1796
1797 return memblock_get_region_node(&type->regions[mid]);
1798 }
1799
1800 /**
1801 * memblock_is_region_memory - check if a region is a subset of memory
1802 * @base: base of region to check
1803 * @size: size of region to check
1804 *
1805 * Check if the region [@base, @base + @size) is a subset of a memory block.
1806 *
1807 * Return:
1808 * 0 if false, non-zero if true
1809 */
1810 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1811 {
1812 int idx = memblock_search(&memblock.memory, base);
1813 phys_addr_t end = base + memblock_cap_size(base, &size);
1814
1815 if (idx == -1)
1816 return false;
1817 return (memblock.memory.regions[idx].base +
1818 memblock.memory.regions[idx].size) >= end;
1819 }
1820
1821 /**
1822 * memblock_is_region_reserved - check if a region intersects reserved memory
1823 * @base: base of region to check
1824 * @size: size of region to check
1825 *
1826 * Check if the region [@base, @base + @size) intersects a reserved
1827 * memory block.
1828 *
1829 * Return:
1830 * True if they intersect, false if not.
1831 */
1832 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1833 {
1834 memblock_cap_size(base, &size);
1835 return memblock_overlaps_region(&memblock.reserved, base, size);
1836 }
1837
1838 void __init_memblock memblock_trim_memory(phys_addr_t align)
1839 {
1840 phys_addr_t start, end, orig_start, orig_end;
1841 struct memblock_region *r;
1842
1843 for_each_mem_region(r) {
1844 orig_start = r->base;
1845 orig_end = r->base + r->size;
1846 start = round_up(orig_start, align);
1847 end = round_down(orig_end, align);
1848
1849 if (start == orig_start && end == orig_end)
1850 continue;
1851
1852 if (start < end) {
1853 r->base = start;
1854 r->size = end - start;
1855 } else {
1856 memblock_remove_region(&memblock.memory,
1857 r - memblock.memory.regions);
1858 r--;
1859 }
1860 }
1861 }
1862
1863 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1864 {
1865 memblock.current_limit = limit;
1866 }
1867
1868 phys_addr_t __init_memblock memblock_get_current_limit(void)
1869 {
1870 return memblock.current_limit;
1871 }
1872
1873 static void __init_memblock memblock_dump(struct memblock_type *type)
1874 {
1875 phys_addr_t base, end, size;
1876 enum memblock_flags flags;
1877 int idx;
1878 struct memblock_region *rgn;
1879
1880 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1881
1882 for_each_memblock_type(idx, type, rgn) {
1883 char nid_buf[32] = "";
1884
1885 base = rgn->base;
1886 size = rgn->size;
1887 end = base + size - 1;
1888 flags = rgn->flags;
1889 #ifdef CONFIG_NEED_MULTIPLE_NODES
1890 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1891 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1892 memblock_get_region_node(rgn));
1893 #endif
1894 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1895 type->name, idx, &base, &end, &size, nid_buf, flags);
1896 }
1897 }
1898
1899 static void __init_memblock __memblock_dump_all(void)
1900 {
1901 pr_info("MEMBLOCK configuration:\n");
1902 pr_info(" memory size = %pa reserved size = %pa\n",
1903 &memblock.memory.total_size,
1904 &memblock.reserved.total_size);
1905
1906 memblock_dump(&memblock.memory);
1907 memblock_dump(&memblock.reserved);
1908 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1909 memblock_dump(&physmem);
1910 #endif
1911 }
1912
1913 void __init_memblock memblock_dump_all(void)
1914 {
1915 if (memblock_debug)
1916 __memblock_dump_all();
1917 }
1918
1919 void __init memblock_allow_resize(void)
1920 {
1921 memblock_can_resize = 1;
1922 }
1923
1924 static int __init early_memblock(char *p)
1925 {
1926 if (p && strstr(p, "debug"))
1927 memblock_debug = 1;
1928 return 0;
1929 }
1930 early_param("memblock", early_memblock);
1931
1932 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1933 {
1934 struct page *start_pg, *end_pg;
1935 phys_addr_t pg, pgend;
1936
1937 /*
1938 * Convert start_pfn/end_pfn to a struct page pointer.
1939 */
1940 start_pg = pfn_to_page(start_pfn - 1) + 1;
1941 end_pg = pfn_to_page(end_pfn - 1) + 1;
1942
1943 /*
1944 * Convert to physical addresses, and round start upwards and end
1945 * downwards.
1946 */
1947 pg = PAGE_ALIGN(__pa(start_pg));
1948 pgend = __pa(end_pg) & PAGE_MASK;
1949
1950 /*
1951 * If there are free pages between these, free the section of the
1952 * memmap array.
1953 */
1954 if (pg < pgend)
1955 memblock_free(pg, pgend - pg);
1956 }
1957
1958 /*
1959 * The mem_map array can get very big. Free the unused area of the memory map.
1960 */
1961 static void __init free_unused_memmap(void)
1962 {
1963 unsigned long start, end, prev_end = 0;
1964 int i;
1965
1966 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1967 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1968 return;
1969
1970 /*
1971 * This relies on each bank being in address order.
1972 * The banks are sorted previously in bootmem_init().
1973 */
1974 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1975 #ifdef CONFIG_SPARSEMEM
1976 /*
1977 * Take care not to free memmap entries that don't exist
1978 * due to SPARSEMEM sections which aren't present.
1979 */
1980 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1981 #else
1982 /*
1983 * Align down here since the VM subsystem insists that the
1984 * memmap entries are valid from the bank start aligned to
1985 * MAX_ORDER_NR_PAGES.
1986 */
1987 start = round_down(start, MAX_ORDER_NR_PAGES);
1988 #endif
1989
1990 /*
1991 * If we had a previous bank, and there is a space
1992 * between the current bank and the previous, free it.
1993 */
1994 if (prev_end && prev_end < start)
1995 free_memmap(prev_end, start);
1996
1997 /*
1998 * Align up here since the VM subsystem insists that the
1999 * memmap entries are valid from the bank end aligned to
2000 * MAX_ORDER_NR_PAGES.
2001 */
2002 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
2003 }
2004
2005 #ifdef CONFIG_SPARSEMEM
2006 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
2007 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
2008 #endif
2009 }
2010
2011 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2012 {
2013 int order;
2014
2015 while (start < end) {
2016 order = min(MAX_ORDER - 1UL, __ffs(start));
2017
2018 while (start + (1UL << order) > end)
2019 order--;
2020
2021 memblock_free_pages(pfn_to_page(start), start, order);
2022
2023 start += (1UL << order);
2024 }
2025 }
2026
2027 static unsigned long __init __free_memory_core(phys_addr_t start,
2028 phys_addr_t end)
2029 {
2030 unsigned long start_pfn = PFN_UP(start);
2031 unsigned long end_pfn = min_t(unsigned long,
2032 PFN_DOWN(end), max_low_pfn);
2033
2034 if (start_pfn >= end_pfn)
2035 return 0;
2036
2037 __free_pages_memory(start_pfn, end_pfn);
2038
2039 return end_pfn - start_pfn;
2040 }
2041
2042 static unsigned long __init free_low_memory_core_early(void)
2043 {
2044 unsigned long count = 0;
2045 phys_addr_t start, end;
2046 u64 i;
2047
2048 memblock_clear_hotplug(0, -1);
2049
2050 for_each_reserved_mem_range(i, &start, &end)
2051 reserve_bootmem_region(start, end);
2052
2053 /*
2054 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2055 * because in some case like Node0 doesn't have RAM installed
2056 * low ram will be on Node1
2057 */
2058 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2059 NULL)
2060 count += __free_memory_core(start, end);
2061
2062 return count;
2063 }
2064
2065 static int reset_managed_pages_done __initdata;
2066
2067 void reset_node_managed_pages(pg_data_t *pgdat)
2068 {
2069 struct zone *z;
2070
2071 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2072 atomic_long_set(&z->managed_pages, 0);
2073 }
2074
2075 void __init reset_all_zones_managed_pages(void)
2076 {
2077 struct pglist_data *pgdat;
2078
2079 if (reset_managed_pages_done)
2080 return;
2081
2082 for_each_online_pgdat(pgdat)
2083 reset_node_managed_pages(pgdat);
2084
2085 reset_managed_pages_done = 1;
2086 }
2087
2088 /**
2089 * memblock_free_all - release free pages to the buddy allocator
2090 *
2091 * Return: the number of pages actually released.
2092 */
2093 unsigned long __init memblock_free_all(void)
2094 {
2095 unsigned long pages;
2096
2097 free_unused_memmap();
2098 reset_all_zones_managed_pages();
2099
2100 pages = free_low_memory_core_early();
2101 totalram_pages_add(pages);
2102
2103 return pages;
2104 }
2105
2106 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2107
2108 static int memblock_debug_show(struct seq_file *m, void *private)
2109 {
2110 struct memblock_type *type = m->private;
2111 struct memblock_region *reg;
2112 int i;
2113 phys_addr_t end;
2114
2115 for (i = 0; i < type->cnt; i++) {
2116 reg = &type->regions[i];
2117 end = reg->base + reg->size - 1;
2118
2119 seq_printf(m, "%4d: ", i);
2120 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2121 }
2122 return 0;
2123 }
2124 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2125
2126 static int __init memblock_init_debugfs(void)
2127 {
2128 struct dentry *root = debugfs_create_dir("memblock", NULL);
2129
2130 debugfs_create_file("memory", 0444, root,
2131 &memblock.memory, &memblock_debug_fops);
2132 debugfs_create_file("reserved", 0444, root,
2133 &memblock.reserved, &memblock_debug_fops);
2134 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2135 debugfs_create_file("physmem", 0444, root, &physmem,
2136 &memblock_debug_fops);
2137 #endif
2138
2139 return 0;
2140 }
2141 __initcall(memblock_init_debugfs);
2142
2143 #endif /* CONFIG_DEBUG_FS */