]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - mm/memblock.c
UBUNTU: Ubuntu-5.15.0-37.39
[mirror_ubuntu-jammy-kernel.git] / mm / memblock.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NUMA
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159
160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170
171 /*
172 * Address comparison utilities
173 */
174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
176 {
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179
180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
182 {
183 unsigned long i;
184
185 memblock_cap_size(base, &size);
186
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
190 break;
191 return i < type->cnt;
192 }
193
194 /**
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
199 * @size: size of free area to find
200 * @align: alignment of free area to find
201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202 * @flags: pick from blocks based on memory attributes
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
206 * Return:
207 * Found address on success, 0 on failure.
208 */
209 static phys_addr_t __init_memblock
210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 phys_addr_t size, phys_addr_t align, int nid,
212 enum memblock_flags flags)
213 {
214 phys_addr_t this_start, this_end, cand;
215 u64 i;
216
217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
220
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
223 return cand;
224 }
225
226 return 0;
227 }
228
229 /**
230 * __memblock_find_range_top_down - find free area utility, in top-down
231 * @start: start of candidate range
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
234 * @size: size of free area to find
235 * @align: alignment of free area to find
236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237 * @flags: pick from blocks based on memory attributes
238 *
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
240 *
241 * Return:
242 * Found address on success, 0 on failure.
243 */
244 static phys_addr_t __init_memblock
245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 phys_addr_t size, phys_addr_t align, int nid,
247 enum memblock_flags flags)
248 {
249 phys_addr_t this_start, this_end, cand;
250 u64 i;
251
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 NULL) {
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
256
257 if (this_end < size)
258 continue;
259
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
262 return cand;
263 }
264
265 return 0;
266 }
267
268 /**
269 * memblock_find_in_range_node - find free area in given range and node
270 * @size: size of free area to find
271 * @align: alignment of free area to find
272 * @start: start of candidate range
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276 * @flags: pick from blocks based on memory attributes
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
280 * Return:
281 * Found address on success, 0 on failure.
282 */
283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 phys_addr_t align, phys_addr_t start,
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
287 {
288 /* pump up @end */
289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 end == MEMBLOCK_ALLOC_KASAN)
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
296
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
299 nid, flags);
300 else
301 return __memblock_find_range_top_down(start, end, size, align,
302 nid, flags);
303 }
304
305 /**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
315 * Return:
316 * Found address on success, 0 on failure.
317 */
318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 phys_addr_t end, phys_addr_t size,
320 phys_addr_t align)
321 {
322 phys_addr_t ret;
323 enum memblock_flags flags = choose_memblock_flags();
324
325 again:
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
328
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 &size);
332 flags &= ~MEMBLOCK_MIRROR;
333 goto again;
334 }
335
336 return ret;
337 }
338
339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 type->total_size -= type->regions[r].size;
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 type->cnt--;
345
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
348 WARN_ON(type->total_size != 0);
349 type->cnt = 1;
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
352 type->regions[0].flags = 0;
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 }
355 }
356
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359 * memblock_discard - discard memory and reserved arrays if they were allocated
360 */
361 void __init memblock_discard(void)
362 {
363 phys_addr_t addr, size;
364
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
369 if (memblock_reserved_in_slab)
370 kfree(memblock.reserved.regions);
371 else
372 __memblock_free_late(addr, size);
373 }
374
375 if (memblock.memory.regions != memblock_memory_init_regions) {
376 addr = __pa(memblock.memory.regions);
377 size = PAGE_ALIGN(sizeof(struct memblock_region) *
378 memblock.memory.max);
379 if (memblock_memory_in_slab)
380 kfree(memblock.memory.regions);
381 else
382 __memblock_free_late(addr, size);
383 }
384
385 memblock_memory = NULL;
386 }
387 #endif
388
389 /**
390 * memblock_double_array - double the size of the memblock regions array
391 * @type: memblock type of the regions array being doubled
392 * @new_area_start: starting address of memory range to avoid overlap with
393 * @new_area_size: size of memory range to avoid overlap with
394 *
395 * Double the size of the @type regions array. If memblock is being used to
396 * allocate memory for a new reserved regions array and there is a previously
397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398 * waiting to be reserved, ensure the memory used by the new array does
399 * not overlap.
400 *
401 * Return:
402 * 0 on success, -1 on failure.
403 */
404 static int __init_memblock memblock_double_array(struct memblock_type *type,
405 phys_addr_t new_area_start,
406 phys_addr_t new_area_size)
407 {
408 struct memblock_region *new_array, *old_array;
409 phys_addr_t old_alloc_size, new_alloc_size;
410 phys_addr_t old_size, new_size, addr, new_end;
411 int use_slab = slab_is_available();
412 int *in_slab;
413
414 /* We don't allow resizing until we know about the reserved regions
415 * of memory that aren't suitable for allocation
416 */
417 if (!memblock_can_resize)
418 return -1;
419
420 /* Calculate new doubled size */
421 old_size = type->max * sizeof(struct memblock_region);
422 new_size = old_size << 1;
423 /*
424 * We need to allocated new one align to PAGE_SIZE,
425 * so we can free them completely later.
426 */
427 old_alloc_size = PAGE_ALIGN(old_size);
428 new_alloc_size = PAGE_ALIGN(new_size);
429
430 /* Retrieve the slab flag */
431 if (type == &memblock.memory)
432 in_slab = &memblock_memory_in_slab;
433 else
434 in_slab = &memblock_reserved_in_slab;
435
436 /* Try to find some space for it */
437 if (use_slab) {
438 new_array = kmalloc(new_size, GFP_KERNEL);
439 addr = new_array ? __pa(new_array) : 0;
440 } else {
441 /* only exclude range when trying to double reserved.regions */
442 if (type != &memblock.reserved)
443 new_area_start = new_area_size = 0;
444
445 addr = memblock_find_in_range(new_area_start + new_area_size,
446 memblock.current_limit,
447 new_alloc_size, PAGE_SIZE);
448 if (!addr && new_area_size)
449 addr = memblock_find_in_range(0,
450 min(new_area_start, memblock.current_limit),
451 new_alloc_size, PAGE_SIZE);
452
453 new_array = addr ? __va(addr) : NULL;
454 }
455 if (!addr) {
456 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
457 type->name, type->max, type->max * 2);
458 return -1;
459 }
460
461 new_end = addr + new_size - 1;
462 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463 type->name, type->max * 2, &addr, &new_end);
464
465 /*
466 * Found space, we now need to move the array over before we add the
467 * reserved region since it may be our reserved array itself that is
468 * full.
469 */
470 memcpy(new_array, type->regions, old_size);
471 memset(new_array + type->max, 0, old_size);
472 old_array = type->regions;
473 type->regions = new_array;
474 type->max <<= 1;
475
476 /* Free old array. We needn't free it if the array is the static one */
477 if (*in_slab)
478 kfree(old_array);
479 else if (old_array != memblock_memory_init_regions &&
480 old_array != memblock_reserved_init_regions)
481 memblock_free_ptr(old_array, old_alloc_size);
482
483 /*
484 * Reserve the new array if that comes from the memblock. Otherwise, we
485 * needn't do it
486 */
487 if (!use_slab)
488 BUG_ON(memblock_reserve(addr, new_alloc_size));
489
490 /* Update slab flag */
491 *in_slab = use_slab;
492
493 return 0;
494 }
495
496 /**
497 * memblock_merge_regions - merge neighboring compatible regions
498 * @type: memblock type to scan
499 *
500 * Scan @type and merge neighboring compatible regions.
501 */
502 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
503 {
504 int i = 0;
505
506 /* cnt never goes below 1 */
507 while (i < type->cnt - 1) {
508 struct memblock_region *this = &type->regions[i];
509 struct memblock_region *next = &type->regions[i + 1];
510
511 if (this->base + this->size != next->base ||
512 memblock_get_region_node(this) !=
513 memblock_get_region_node(next) ||
514 this->flags != next->flags) {
515 BUG_ON(this->base + this->size > next->base);
516 i++;
517 continue;
518 }
519
520 this->size += next->size;
521 /* move forward from next + 1, index of which is i + 2 */
522 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
523 type->cnt--;
524 }
525 }
526
527 /**
528 * memblock_insert_region - insert new memblock region
529 * @type: memblock type to insert into
530 * @idx: index for the insertion point
531 * @base: base address of the new region
532 * @size: size of the new region
533 * @nid: node id of the new region
534 * @flags: flags of the new region
535 *
536 * Insert new memblock region [@base, @base + @size) into @type at @idx.
537 * @type must already have extra room to accommodate the new region.
538 */
539 static void __init_memblock memblock_insert_region(struct memblock_type *type,
540 int idx, phys_addr_t base,
541 phys_addr_t size,
542 int nid,
543 enum memblock_flags flags)
544 {
545 struct memblock_region *rgn = &type->regions[idx];
546
547 BUG_ON(type->cnt >= type->max);
548 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
549 rgn->base = base;
550 rgn->size = size;
551 rgn->flags = flags;
552 memblock_set_region_node(rgn, nid);
553 type->cnt++;
554 type->total_size += size;
555 }
556
557 /**
558 * memblock_add_range - add new memblock region
559 * @type: memblock type to add new region into
560 * @base: base address of the new region
561 * @size: size of the new region
562 * @nid: nid of the new region
563 * @flags: flags of the new region
564 *
565 * Add new memblock region [@base, @base + @size) into @type. The new region
566 * is allowed to overlap with existing ones - overlaps don't affect already
567 * existing regions. @type is guaranteed to be minimal (all neighbouring
568 * compatible regions are merged) after the addition.
569 *
570 * Return:
571 * 0 on success, -errno on failure.
572 */
573 static int __init_memblock memblock_add_range(struct memblock_type *type,
574 phys_addr_t base, phys_addr_t size,
575 int nid, enum memblock_flags flags)
576 {
577 bool insert = false;
578 phys_addr_t obase = base;
579 phys_addr_t end = base + memblock_cap_size(base, &size);
580 int idx, nr_new;
581 struct memblock_region *rgn;
582
583 if (!size)
584 return 0;
585
586 /* special case for empty array */
587 if (type->regions[0].size == 0) {
588 WARN_ON(type->cnt != 1 || type->total_size);
589 type->regions[0].base = base;
590 type->regions[0].size = size;
591 type->regions[0].flags = flags;
592 memblock_set_region_node(&type->regions[0], nid);
593 type->total_size = size;
594 return 0;
595 }
596 repeat:
597 /*
598 * The following is executed twice. Once with %false @insert and
599 * then with %true. The first counts the number of regions needed
600 * to accommodate the new area. The second actually inserts them.
601 */
602 base = obase;
603 nr_new = 0;
604
605 for_each_memblock_type(idx, type, rgn) {
606 phys_addr_t rbase = rgn->base;
607 phys_addr_t rend = rbase + rgn->size;
608
609 if (rbase >= end)
610 break;
611 if (rend <= base)
612 continue;
613 /*
614 * @rgn overlaps. If it separates the lower part of new
615 * area, insert that portion.
616 */
617 if (rbase > base) {
618 #ifdef CONFIG_NUMA
619 WARN_ON(nid != memblock_get_region_node(rgn));
620 #endif
621 WARN_ON(flags != rgn->flags);
622 nr_new++;
623 if (insert)
624 memblock_insert_region(type, idx++, base,
625 rbase - base, nid,
626 flags);
627 }
628 /* area below @rend is dealt with, forget about it */
629 base = min(rend, end);
630 }
631
632 /* insert the remaining portion */
633 if (base < end) {
634 nr_new++;
635 if (insert)
636 memblock_insert_region(type, idx, base, end - base,
637 nid, flags);
638 }
639
640 if (!nr_new)
641 return 0;
642
643 /*
644 * If this was the first round, resize array and repeat for actual
645 * insertions; otherwise, merge and return.
646 */
647 if (!insert) {
648 while (type->cnt + nr_new > type->max)
649 if (memblock_double_array(type, obase, size) < 0)
650 return -ENOMEM;
651 insert = true;
652 goto repeat;
653 } else {
654 memblock_merge_regions(type);
655 return 0;
656 }
657 }
658
659 /**
660 * memblock_add_node - add new memblock region within a NUMA node
661 * @base: base address of the new region
662 * @size: size of the new region
663 * @nid: nid of the new region
664 *
665 * Add new memblock region [@base, @base + @size) to the "memory"
666 * type. See memblock_add_range() description for mode details
667 *
668 * Return:
669 * 0 on success, -errno on failure.
670 */
671 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
672 int nid)
673 {
674 phys_addr_t end = base + size - 1;
675
676 memblock_dbg("%s: [%pa-%pa] nid=%d %pS\n", __func__,
677 &base, &end, nid, (void *)_RET_IP_);
678
679 return memblock_add_range(&memblock.memory, base, size, nid, 0);
680 }
681
682 /**
683 * memblock_add - add new memblock region
684 * @base: base address of the new region
685 * @size: size of the new region
686 *
687 * Add new memblock region [@base, @base + @size) to the "memory"
688 * type. See memblock_add_range() description for mode details
689 *
690 * Return:
691 * 0 on success, -errno on failure.
692 */
693 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
694 {
695 phys_addr_t end = base + size - 1;
696
697 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
698 &base, &end, (void *)_RET_IP_);
699
700 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
701 }
702
703 /**
704 * memblock_isolate_range - isolate given range into disjoint memblocks
705 * @type: memblock type to isolate range for
706 * @base: base of range to isolate
707 * @size: size of range to isolate
708 * @start_rgn: out parameter for the start of isolated region
709 * @end_rgn: out parameter for the end of isolated region
710 *
711 * Walk @type and ensure that regions don't cross the boundaries defined by
712 * [@base, @base + @size). Crossing regions are split at the boundaries,
713 * which may create at most two more regions. The index of the first
714 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
715 *
716 * Return:
717 * 0 on success, -errno on failure.
718 */
719 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
720 phys_addr_t base, phys_addr_t size,
721 int *start_rgn, int *end_rgn)
722 {
723 phys_addr_t end = base + memblock_cap_size(base, &size);
724 int idx;
725 struct memblock_region *rgn;
726
727 *start_rgn = *end_rgn = 0;
728
729 if (!size)
730 return 0;
731
732 /* we'll create at most two more regions */
733 while (type->cnt + 2 > type->max)
734 if (memblock_double_array(type, base, size) < 0)
735 return -ENOMEM;
736
737 for_each_memblock_type(idx, type, rgn) {
738 phys_addr_t rbase = rgn->base;
739 phys_addr_t rend = rbase + rgn->size;
740
741 if (rbase >= end)
742 break;
743 if (rend <= base)
744 continue;
745
746 if (rbase < base) {
747 /*
748 * @rgn intersects from below. Split and continue
749 * to process the next region - the new top half.
750 */
751 rgn->base = base;
752 rgn->size -= base - rbase;
753 type->total_size -= base - rbase;
754 memblock_insert_region(type, idx, rbase, base - rbase,
755 memblock_get_region_node(rgn),
756 rgn->flags);
757 } else if (rend > end) {
758 /*
759 * @rgn intersects from above. Split and redo the
760 * current region - the new bottom half.
761 */
762 rgn->base = end;
763 rgn->size -= end - rbase;
764 type->total_size -= end - rbase;
765 memblock_insert_region(type, idx--, rbase, end - rbase,
766 memblock_get_region_node(rgn),
767 rgn->flags);
768 } else {
769 /* @rgn is fully contained, record it */
770 if (!*end_rgn)
771 *start_rgn = idx;
772 *end_rgn = idx + 1;
773 }
774 }
775
776 return 0;
777 }
778
779 static int __init_memblock memblock_remove_range(struct memblock_type *type,
780 phys_addr_t base, phys_addr_t size)
781 {
782 int start_rgn, end_rgn;
783 int i, ret;
784
785 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
786 if (ret)
787 return ret;
788
789 for (i = end_rgn - 1; i >= start_rgn; i--)
790 memblock_remove_region(type, i);
791 return 0;
792 }
793
794 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
795 {
796 phys_addr_t end = base + size - 1;
797
798 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
799 &base, &end, (void *)_RET_IP_);
800
801 return memblock_remove_range(&memblock.memory, base, size);
802 }
803
804 /**
805 * memblock_free_ptr - free boot memory allocation
806 * @ptr: starting address of the boot memory allocation
807 * @size: size of the boot memory block in bytes
808 *
809 * Free boot memory block previously allocated by memblock_alloc_xx() API.
810 * The freeing memory will not be released to the buddy allocator.
811 */
812 void __init_memblock memblock_free_ptr(void *ptr, size_t size)
813 {
814 if (ptr)
815 memblock_free(__pa(ptr), size);
816 }
817
818 /**
819 * memblock_free - free boot memory block
820 * @base: phys starting address of the boot memory block
821 * @size: size of the boot memory block in bytes
822 *
823 * Free boot memory block previously allocated by memblock_alloc_xx() API.
824 * The freeing memory will not be released to the buddy allocator.
825 */
826 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
827 {
828 phys_addr_t end = base + size - 1;
829
830 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
831 &base, &end, (void *)_RET_IP_);
832
833 kmemleak_free_part_phys(base, size);
834 return memblock_remove_range(&memblock.reserved, base, size);
835 }
836
837 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
838 {
839 phys_addr_t end = base + size - 1;
840
841 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
842 &base, &end, (void *)_RET_IP_);
843
844 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
845 }
846
847 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
848 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
849 {
850 phys_addr_t end = base + size - 1;
851
852 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
853 &base, &end, (void *)_RET_IP_);
854
855 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
856 }
857 #endif
858
859 /**
860 * memblock_setclr_flag - set or clear flag for a memory region
861 * @base: base address of the region
862 * @size: size of the region
863 * @set: set or clear the flag
864 * @flag: the flag to update
865 *
866 * This function isolates region [@base, @base + @size), and sets/clears flag
867 *
868 * Return: 0 on success, -errno on failure.
869 */
870 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
871 phys_addr_t size, int set, int flag)
872 {
873 struct memblock_type *type = &memblock.memory;
874 int i, ret, start_rgn, end_rgn;
875
876 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
877 if (ret)
878 return ret;
879
880 for (i = start_rgn; i < end_rgn; i++) {
881 struct memblock_region *r = &type->regions[i];
882
883 if (set)
884 r->flags |= flag;
885 else
886 r->flags &= ~flag;
887 }
888
889 memblock_merge_regions(type);
890 return 0;
891 }
892
893 /**
894 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
895 * @base: the base phys addr of the region
896 * @size: the size of the region
897 *
898 * Return: 0 on success, -errno on failure.
899 */
900 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
901 {
902 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
903 }
904
905 /**
906 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
907 * @base: the base phys addr of the region
908 * @size: the size of the region
909 *
910 * Return: 0 on success, -errno on failure.
911 */
912 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
913 {
914 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
915 }
916
917 /**
918 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
919 * @base: the base phys addr of the region
920 * @size: the size of the region
921 *
922 * Return: 0 on success, -errno on failure.
923 */
924 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
925 {
926 system_has_some_mirror = true;
927
928 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
929 }
930
931 /**
932 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
933 * @base: the base phys addr of the region
934 * @size: the size of the region
935 *
936 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
937 * direct mapping of the physical memory. These regions will still be
938 * covered by the memory map. The struct page representing NOMAP memory
939 * frames in the memory map will be PageReserved()
940 *
941 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
942 * memblock, the caller must inform kmemleak to ignore that memory
943 *
944 * Return: 0 on success, -errno on failure.
945 */
946 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
947 {
948 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
949 }
950
951 /**
952 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
953 * @base: the base phys addr of the region
954 * @size: the size of the region
955 *
956 * Return: 0 on success, -errno on failure.
957 */
958 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
959 {
960 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
961 }
962
963 static bool should_skip_region(struct memblock_type *type,
964 struct memblock_region *m,
965 int nid, int flags)
966 {
967 int m_nid = memblock_get_region_node(m);
968
969 /* we never skip regions when iterating memblock.reserved or physmem */
970 if (type != memblock_memory)
971 return false;
972
973 /* only memory regions are associated with nodes, check it */
974 if (nid != NUMA_NO_NODE && nid != m_nid)
975 return true;
976
977 /* skip hotpluggable memory regions if needed */
978 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
979 !(flags & MEMBLOCK_HOTPLUG))
980 return true;
981
982 /* if we want mirror memory skip non-mirror memory regions */
983 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
984 return true;
985
986 /* skip nomap memory unless we were asked for it explicitly */
987 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
988 return true;
989
990 return false;
991 }
992
993 /**
994 * __next_mem_range - next function for for_each_free_mem_range() etc.
995 * @idx: pointer to u64 loop variable
996 * @nid: node selector, %NUMA_NO_NODE for all nodes
997 * @flags: pick from blocks based on memory attributes
998 * @type_a: pointer to memblock_type from where the range is taken
999 * @type_b: pointer to memblock_type which excludes memory from being taken
1000 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1001 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1002 * @out_nid: ptr to int for nid of the range, can be %NULL
1003 *
1004 * Find the first area from *@idx which matches @nid, fill the out
1005 * parameters, and update *@idx for the next iteration. The lower 32bit of
1006 * *@idx contains index into type_a and the upper 32bit indexes the
1007 * areas before each region in type_b. For example, if type_b regions
1008 * look like the following,
1009 *
1010 * 0:[0-16), 1:[32-48), 2:[128-130)
1011 *
1012 * The upper 32bit indexes the following regions.
1013 *
1014 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1015 *
1016 * As both region arrays are sorted, the function advances the two indices
1017 * in lockstep and returns each intersection.
1018 */
1019 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1020 struct memblock_type *type_a,
1021 struct memblock_type *type_b, phys_addr_t *out_start,
1022 phys_addr_t *out_end, int *out_nid)
1023 {
1024 int idx_a = *idx & 0xffffffff;
1025 int idx_b = *idx >> 32;
1026
1027 if (WARN_ONCE(nid == MAX_NUMNODES,
1028 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1029 nid = NUMA_NO_NODE;
1030
1031 for (; idx_a < type_a->cnt; idx_a++) {
1032 struct memblock_region *m = &type_a->regions[idx_a];
1033
1034 phys_addr_t m_start = m->base;
1035 phys_addr_t m_end = m->base + m->size;
1036 int m_nid = memblock_get_region_node(m);
1037
1038 if (should_skip_region(type_a, m, nid, flags))
1039 continue;
1040
1041 if (!type_b) {
1042 if (out_start)
1043 *out_start = m_start;
1044 if (out_end)
1045 *out_end = m_end;
1046 if (out_nid)
1047 *out_nid = m_nid;
1048 idx_a++;
1049 *idx = (u32)idx_a | (u64)idx_b << 32;
1050 return;
1051 }
1052
1053 /* scan areas before each reservation */
1054 for (; idx_b < type_b->cnt + 1; idx_b++) {
1055 struct memblock_region *r;
1056 phys_addr_t r_start;
1057 phys_addr_t r_end;
1058
1059 r = &type_b->regions[idx_b];
1060 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1061 r_end = idx_b < type_b->cnt ?
1062 r->base : PHYS_ADDR_MAX;
1063
1064 /*
1065 * if idx_b advanced past idx_a,
1066 * break out to advance idx_a
1067 */
1068 if (r_start >= m_end)
1069 break;
1070 /* if the two regions intersect, we're done */
1071 if (m_start < r_end) {
1072 if (out_start)
1073 *out_start =
1074 max(m_start, r_start);
1075 if (out_end)
1076 *out_end = min(m_end, r_end);
1077 if (out_nid)
1078 *out_nid = m_nid;
1079 /*
1080 * The region which ends first is
1081 * advanced for the next iteration.
1082 */
1083 if (m_end <= r_end)
1084 idx_a++;
1085 else
1086 idx_b++;
1087 *idx = (u32)idx_a | (u64)idx_b << 32;
1088 return;
1089 }
1090 }
1091 }
1092
1093 /* signal end of iteration */
1094 *idx = ULLONG_MAX;
1095 }
1096
1097 /**
1098 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1099 *
1100 * @idx: pointer to u64 loop variable
1101 * @nid: node selector, %NUMA_NO_NODE for all nodes
1102 * @flags: pick from blocks based on memory attributes
1103 * @type_a: pointer to memblock_type from where the range is taken
1104 * @type_b: pointer to memblock_type which excludes memory from being taken
1105 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1106 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1107 * @out_nid: ptr to int for nid of the range, can be %NULL
1108 *
1109 * Finds the next range from type_a which is not marked as unsuitable
1110 * in type_b.
1111 *
1112 * Reverse of __next_mem_range().
1113 */
1114 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1115 enum memblock_flags flags,
1116 struct memblock_type *type_a,
1117 struct memblock_type *type_b,
1118 phys_addr_t *out_start,
1119 phys_addr_t *out_end, int *out_nid)
1120 {
1121 int idx_a = *idx & 0xffffffff;
1122 int idx_b = *idx >> 32;
1123
1124 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1125 nid = NUMA_NO_NODE;
1126
1127 if (*idx == (u64)ULLONG_MAX) {
1128 idx_a = type_a->cnt - 1;
1129 if (type_b != NULL)
1130 idx_b = type_b->cnt;
1131 else
1132 idx_b = 0;
1133 }
1134
1135 for (; idx_a >= 0; idx_a--) {
1136 struct memblock_region *m = &type_a->regions[idx_a];
1137
1138 phys_addr_t m_start = m->base;
1139 phys_addr_t m_end = m->base + m->size;
1140 int m_nid = memblock_get_region_node(m);
1141
1142 if (should_skip_region(type_a, m, nid, flags))
1143 continue;
1144
1145 if (!type_b) {
1146 if (out_start)
1147 *out_start = m_start;
1148 if (out_end)
1149 *out_end = m_end;
1150 if (out_nid)
1151 *out_nid = m_nid;
1152 idx_a--;
1153 *idx = (u32)idx_a | (u64)idx_b << 32;
1154 return;
1155 }
1156
1157 /* scan areas before each reservation */
1158 for (; idx_b >= 0; idx_b--) {
1159 struct memblock_region *r;
1160 phys_addr_t r_start;
1161 phys_addr_t r_end;
1162
1163 r = &type_b->regions[idx_b];
1164 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1165 r_end = idx_b < type_b->cnt ?
1166 r->base : PHYS_ADDR_MAX;
1167 /*
1168 * if idx_b advanced past idx_a,
1169 * break out to advance idx_a
1170 */
1171
1172 if (r_end <= m_start)
1173 break;
1174 /* if the two regions intersect, we're done */
1175 if (m_end > r_start) {
1176 if (out_start)
1177 *out_start = max(m_start, r_start);
1178 if (out_end)
1179 *out_end = min(m_end, r_end);
1180 if (out_nid)
1181 *out_nid = m_nid;
1182 if (m_start >= r_start)
1183 idx_a--;
1184 else
1185 idx_b--;
1186 *idx = (u32)idx_a | (u64)idx_b << 32;
1187 return;
1188 }
1189 }
1190 }
1191 /* signal end of iteration */
1192 *idx = ULLONG_MAX;
1193 }
1194
1195 /*
1196 * Common iterator interface used to define for_each_mem_pfn_range().
1197 */
1198 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1199 unsigned long *out_start_pfn,
1200 unsigned long *out_end_pfn, int *out_nid)
1201 {
1202 struct memblock_type *type = &memblock.memory;
1203 struct memblock_region *r;
1204 int r_nid;
1205
1206 while (++*idx < type->cnt) {
1207 r = &type->regions[*idx];
1208 r_nid = memblock_get_region_node(r);
1209
1210 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1211 continue;
1212 if (nid == MAX_NUMNODES || nid == r_nid)
1213 break;
1214 }
1215 if (*idx >= type->cnt) {
1216 *idx = -1;
1217 return;
1218 }
1219
1220 if (out_start_pfn)
1221 *out_start_pfn = PFN_UP(r->base);
1222 if (out_end_pfn)
1223 *out_end_pfn = PFN_DOWN(r->base + r->size);
1224 if (out_nid)
1225 *out_nid = r_nid;
1226 }
1227
1228 /**
1229 * memblock_set_node - set node ID on memblock regions
1230 * @base: base of area to set node ID for
1231 * @size: size of area to set node ID for
1232 * @type: memblock type to set node ID for
1233 * @nid: node ID to set
1234 *
1235 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1236 * Regions which cross the area boundaries are split as necessary.
1237 *
1238 * Return:
1239 * 0 on success, -errno on failure.
1240 */
1241 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1242 struct memblock_type *type, int nid)
1243 {
1244 #ifdef CONFIG_NUMA
1245 int start_rgn, end_rgn;
1246 int i, ret;
1247
1248 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1249 if (ret)
1250 return ret;
1251
1252 for (i = start_rgn; i < end_rgn; i++)
1253 memblock_set_region_node(&type->regions[i], nid);
1254
1255 memblock_merge_regions(type);
1256 #endif
1257 return 0;
1258 }
1259
1260 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1261 /**
1262 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1263 *
1264 * @idx: pointer to u64 loop variable
1265 * @zone: zone in which all of the memory blocks reside
1266 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1267 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1268 *
1269 * This function is meant to be a zone/pfn specific wrapper for the
1270 * for_each_mem_range type iterators. Specifically they are used in the
1271 * deferred memory init routines and as such we were duplicating much of
1272 * this logic throughout the code. So instead of having it in multiple
1273 * locations it seemed like it would make more sense to centralize this to
1274 * one new iterator that does everything they need.
1275 */
1276 void __init_memblock
1277 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1278 unsigned long *out_spfn, unsigned long *out_epfn)
1279 {
1280 int zone_nid = zone_to_nid(zone);
1281 phys_addr_t spa, epa;
1282 int nid;
1283
1284 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1285 &memblock.memory, &memblock.reserved,
1286 &spa, &epa, &nid);
1287
1288 while (*idx != U64_MAX) {
1289 unsigned long epfn = PFN_DOWN(epa);
1290 unsigned long spfn = PFN_UP(spa);
1291
1292 /*
1293 * Verify the end is at least past the start of the zone and
1294 * that we have at least one PFN to initialize.
1295 */
1296 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1297 /* if we went too far just stop searching */
1298 if (zone_end_pfn(zone) <= spfn) {
1299 *idx = U64_MAX;
1300 break;
1301 }
1302
1303 if (out_spfn)
1304 *out_spfn = max(zone->zone_start_pfn, spfn);
1305 if (out_epfn)
1306 *out_epfn = min(zone_end_pfn(zone), epfn);
1307
1308 return;
1309 }
1310
1311 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1312 &memblock.memory, &memblock.reserved,
1313 &spa, &epa, &nid);
1314 }
1315
1316 /* signal end of iteration */
1317 if (out_spfn)
1318 *out_spfn = ULONG_MAX;
1319 if (out_epfn)
1320 *out_epfn = 0;
1321 }
1322
1323 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1324
1325 /**
1326 * memblock_alloc_range_nid - allocate boot memory block
1327 * @size: size of memory block to be allocated in bytes
1328 * @align: alignment of the region and block's size
1329 * @start: the lower bound of the memory region to allocate (phys address)
1330 * @end: the upper bound of the memory region to allocate (phys address)
1331 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1332 * @exact_nid: control the allocation fall back to other nodes
1333 *
1334 * The allocation is performed from memory region limited by
1335 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1336 *
1337 * If the specified node can not hold the requested memory and @exact_nid
1338 * is false, the allocation falls back to any node in the system.
1339 *
1340 * For systems with memory mirroring, the allocation is attempted first
1341 * from the regions with mirroring enabled and then retried from any
1342 * memory region.
1343 *
1344 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1345 * allocated boot memory block, so that it is never reported as leaks.
1346 *
1347 * Return:
1348 * Physical address of allocated memory block on success, %0 on failure.
1349 */
1350 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1351 phys_addr_t align, phys_addr_t start,
1352 phys_addr_t end, int nid,
1353 bool exact_nid)
1354 {
1355 enum memblock_flags flags = choose_memblock_flags();
1356 phys_addr_t found;
1357
1358 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1359 nid = NUMA_NO_NODE;
1360
1361 if (!align) {
1362 /* Can't use WARNs this early in boot on powerpc */
1363 dump_stack();
1364 align = SMP_CACHE_BYTES;
1365 }
1366
1367 again:
1368 found = memblock_find_in_range_node(size, align, start, end, nid,
1369 flags);
1370 if (found && !memblock_reserve(found, size))
1371 goto done;
1372
1373 if (nid != NUMA_NO_NODE && !exact_nid) {
1374 found = memblock_find_in_range_node(size, align, start,
1375 end, NUMA_NO_NODE,
1376 flags);
1377 if (found && !memblock_reserve(found, size))
1378 goto done;
1379 }
1380
1381 if (flags & MEMBLOCK_MIRROR) {
1382 flags &= ~MEMBLOCK_MIRROR;
1383 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1384 &size);
1385 goto again;
1386 }
1387
1388 return 0;
1389
1390 done:
1391 /* Skip kmemleak for kasan_init() due to high volume. */
1392 if (end != MEMBLOCK_ALLOC_KASAN)
1393 /*
1394 * The min_count is set to 0 so that memblock allocated
1395 * blocks are never reported as leaks. This is because many
1396 * of these blocks are only referred via the physical
1397 * address which is not looked up by kmemleak.
1398 */
1399 kmemleak_alloc_phys(found, size, 0, 0);
1400
1401 return found;
1402 }
1403
1404 /**
1405 * memblock_phys_alloc_range - allocate a memory block inside specified range
1406 * @size: size of memory block to be allocated in bytes
1407 * @align: alignment of the region and block's size
1408 * @start: the lower bound of the memory region to allocate (physical address)
1409 * @end: the upper bound of the memory region to allocate (physical address)
1410 *
1411 * Allocate @size bytes in the between @start and @end.
1412 *
1413 * Return: physical address of the allocated memory block on success,
1414 * %0 on failure.
1415 */
1416 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1417 phys_addr_t align,
1418 phys_addr_t start,
1419 phys_addr_t end)
1420 {
1421 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1422 __func__, (u64)size, (u64)align, &start, &end,
1423 (void *)_RET_IP_);
1424 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1425 false);
1426 }
1427
1428 /**
1429 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1430 * @size: size of memory block to be allocated in bytes
1431 * @align: alignment of the region and block's size
1432 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1433 *
1434 * Allocates memory block from the specified NUMA node. If the node
1435 * has no available memory, attempts to allocated from any node in the
1436 * system.
1437 *
1438 * Return: physical address of the allocated memory block on success,
1439 * %0 on failure.
1440 */
1441 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1442 {
1443 return memblock_alloc_range_nid(size, align, 0,
1444 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1445 }
1446
1447 /**
1448 * memblock_alloc_internal - allocate boot memory block
1449 * @size: size of memory block to be allocated in bytes
1450 * @align: alignment of the region and block's size
1451 * @min_addr: the lower bound of the memory region to allocate (phys address)
1452 * @max_addr: the upper bound of the memory region to allocate (phys address)
1453 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1454 * @exact_nid: control the allocation fall back to other nodes
1455 *
1456 * Allocates memory block using memblock_alloc_range_nid() and
1457 * converts the returned physical address to virtual.
1458 *
1459 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1460 * will fall back to memory below @min_addr. Other constraints, such
1461 * as node and mirrored memory will be handled again in
1462 * memblock_alloc_range_nid().
1463 *
1464 * Return:
1465 * Virtual address of allocated memory block on success, NULL on failure.
1466 */
1467 static void * __init memblock_alloc_internal(
1468 phys_addr_t size, phys_addr_t align,
1469 phys_addr_t min_addr, phys_addr_t max_addr,
1470 int nid, bool exact_nid)
1471 {
1472 phys_addr_t alloc;
1473
1474 /*
1475 * Detect any accidental use of these APIs after slab is ready, as at
1476 * this moment memblock may be deinitialized already and its
1477 * internal data may be destroyed (after execution of memblock_free_all)
1478 */
1479 if (WARN_ON_ONCE(slab_is_available()))
1480 return kzalloc_node(size, GFP_NOWAIT, nid);
1481
1482 if (max_addr > memblock.current_limit)
1483 max_addr = memblock.current_limit;
1484
1485 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1486 exact_nid);
1487
1488 /* retry allocation without lower limit */
1489 if (!alloc && min_addr)
1490 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1491 exact_nid);
1492
1493 if (!alloc)
1494 return NULL;
1495
1496 return phys_to_virt(alloc);
1497 }
1498
1499 /**
1500 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1501 * without zeroing memory
1502 * @size: size of memory block to be allocated in bytes
1503 * @align: alignment of the region and block's size
1504 * @min_addr: the lower bound of the memory region from where the allocation
1505 * is preferred (phys address)
1506 * @max_addr: the upper bound of the memory region from where the allocation
1507 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1508 * allocate only from memory limited by memblock.current_limit value
1509 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1510 *
1511 * Public function, provides additional debug information (including caller
1512 * info), if enabled. Does not zero allocated memory.
1513 *
1514 * Return:
1515 * Virtual address of allocated memory block on success, NULL on failure.
1516 */
1517 void * __init memblock_alloc_exact_nid_raw(
1518 phys_addr_t size, phys_addr_t align,
1519 phys_addr_t min_addr, phys_addr_t max_addr,
1520 int nid)
1521 {
1522 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1523 __func__, (u64)size, (u64)align, nid, &min_addr,
1524 &max_addr, (void *)_RET_IP_);
1525
1526 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1527 true);
1528 }
1529
1530 /**
1531 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1532 * memory and without panicking
1533 * @size: size of memory block to be allocated in bytes
1534 * @align: alignment of the region and block's size
1535 * @min_addr: the lower bound of the memory region from where the allocation
1536 * is preferred (phys address)
1537 * @max_addr: the upper bound of the memory region from where the allocation
1538 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1539 * allocate only from memory limited by memblock.current_limit value
1540 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1541 *
1542 * Public function, provides additional debug information (including caller
1543 * info), if enabled. Does not zero allocated memory, does not panic if request
1544 * cannot be satisfied.
1545 *
1546 * Return:
1547 * Virtual address of allocated memory block on success, NULL on failure.
1548 */
1549 void * __init memblock_alloc_try_nid_raw(
1550 phys_addr_t size, phys_addr_t align,
1551 phys_addr_t min_addr, phys_addr_t max_addr,
1552 int nid)
1553 {
1554 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1555 __func__, (u64)size, (u64)align, nid, &min_addr,
1556 &max_addr, (void *)_RET_IP_);
1557
1558 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1559 false);
1560 }
1561
1562 /**
1563 * memblock_alloc_try_nid - allocate boot memory block
1564 * @size: size of memory block to be allocated in bytes
1565 * @align: alignment of the region and block's size
1566 * @min_addr: the lower bound of the memory region from where the allocation
1567 * is preferred (phys address)
1568 * @max_addr: the upper bound of the memory region from where the allocation
1569 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1570 * allocate only from memory limited by memblock.current_limit value
1571 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1572 *
1573 * Public function, provides additional debug information (including caller
1574 * info), if enabled. This function zeroes the allocated memory.
1575 *
1576 * Return:
1577 * Virtual address of allocated memory block on success, NULL on failure.
1578 */
1579 void * __init memblock_alloc_try_nid(
1580 phys_addr_t size, phys_addr_t align,
1581 phys_addr_t min_addr, phys_addr_t max_addr,
1582 int nid)
1583 {
1584 void *ptr;
1585
1586 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1587 __func__, (u64)size, (u64)align, nid, &min_addr,
1588 &max_addr, (void *)_RET_IP_);
1589 ptr = memblock_alloc_internal(size, align,
1590 min_addr, max_addr, nid, false);
1591 if (ptr)
1592 memset(ptr, 0, size);
1593
1594 return ptr;
1595 }
1596
1597 /**
1598 * __memblock_free_late - free pages directly to buddy allocator
1599 * @base: phys starting address of the boot memory block
1600 * @size: size of the boot memory block in bytes
1601 *
1602 * This is only useful when the memblock allocator has already been torn
1603 * down, but we are still initializing the system. Pages are released directly
1604 * to the buddy allocator.
1605 */
1606 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1607 {
1608 phys_addr_t cursor, end;
1609
1610 end = base + size - 1;
1611 memblock_dbg("%s: [%pa-%pa] %pS\n",
1612 __func__, &base, &end, (void *)_RET_IP_);
1613 kmemleak_free_part_phys(base, size);
1614 cursor = PFN_UP(base);
1615 end = PFN_DOWN(base + size);
1616
1617 for (; cursor < end; cursor++) {
1618 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1619 totalram_pages_inc();
1620 }
1621 }
1622
1623 /*
1624 * Remaining API functions
1625 */
1626
1627 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1628 {
1629 return memblock.memory.total_size;
1630 }
1631
1632 phys_addr_t __init_memblock memblock_reserved_size(void)
1633 {
1634 return memblock.reserved.total_size;
1635 }
1636
1637 /* lowest address */
1638 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1639 {
1640 return memblock.memory.regions[0].base;
1641 }
1642
1643 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1644 {
1645 int idx = memblock.memory.cnt - 1;
1646
1647 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1648 }
1649
1650 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1651 {
1652 phys_addr_t max_addr = PHYS_ADDR_MAX;
1653 struct memblock_region *r;
1654
1655 /*
1656 * translate the memory @limit size into the max address within one of
1657 * the memory memblock regions, if the @limit exceeds the total size
1658 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1659 */
1660 for_each_mem_region(r) {
1661 if (limit <= r->size) {
1662 max_addr = r->base + limit;
1663 break;
1664 }
1665 limit -= r->size;
1666 }
1667
1668 return max_addr;
1669 }
1670
1671 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1672 {
1673 phys_addr_t max_addr;
1674
1675 if (!limit)
1676 return;
1677
1678 max_addr = __find_max_addr(limit);
1679
1680 /* @limit exceeds the total size of the memory, do nothing */
1681 if (max_addr == PHYS_ADDR_MAX)
1682 return;
1683
1684 /* truncate both memory and reserved regions */
1685 memblock_remove_range(&memblock.memory, max_addr,
1686 PHYS_ADDR_MAX);
1687 memblock_remove_range(&memblock.reserved, max_addr,
1688 PHYS_ADDR_MAX);
1689 }
1690
1691 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1692 {
1693 int start_rgn, end_rgn;
1694 int i, ret;
1695
1696 if (!size)
1697 return;
1698
1699 if (!memblock_memory->total_size) {
1700 pr_warn("%s: No memory registered yet\n", __func__);
1701 return;
1702 }
1703
1704 ret = memblock_isolate_range(&memblock.memory, base, size,
1705 &start_rgn, &end_rgn);
1706 if (ret)
1707 return;
1708
1709 /* remove all the MAP regions */
1710 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1711 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1712 memblock_remove_region(&memblock.memory, i);
1713
1714 for (i = start_rgn - 1; i >= 0; i--)
1715 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1716 memblock_remove_region(&memblock.memory, i);
1717
1718 /* truncate the reserved regions */
1719 memblock_remove_range(&memblock.reserved, 0, base);
1720 memblock_remove_range(&memblock.reserved,
1721 base + size, PHYS_ADDR_MAX);
1722 }
1723
1724 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1725 {
1726 phys_addr_t max_addr;
1727
1728 if (!limit)
1729 return;
1730
1731 max_addr = __find_max_addr(limit);
1732
1733 /* @limit exceeds the total size of the memory, do nothing */
1734 if (max_addr == PHYS_ADDR_MAX)
1735 return;
1736
1737 memblock_cap_memory_range(0, max_addr);
1738 }
1739
1740 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1741 {
1742 unsigned int left = 0, right = type->cnt;
1743
1744 do {
1745 unsigned int mid = (right + left) / 2;
1746
1747 if (addr < type->regions[mid].base)
1748 right = mid;
1749 else if (addr >= (type->regions[mid].base +
1750 type->regions[mid].size))
1751 left = mid + 1;
1752 else
1753 return mid;
1754 } while (left < right);
1755 return -1;
1756 }
1757
1758 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1759 {
1760 return memblock_search(&memblock.reserved, addr) != -1;
1761 }
1762
1763 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1764 {
1765 return memblock_search(&memblock.memory, addr) != -1;
1766 }
1767
1768 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1769 {
1770 int i = memblock_search(&memblock.memory, addr);
1771
1772 if (i == -1)
1773 return false;
1774 return !memblock_is_nomap(&memblock.memory.regions[i]);
1775 }
1776
1777 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1778 unsigned long *start_pfn, unsigned long *end_pfn)
1779 {
1780 struct memblock_type *type = &memblock.memory;
1781 int mid = memblock_search(type, PFN_PHYS(pfn));
1782
1783 if (mid == -1)
1784 return -1;
1785
1786 *start_pfn = PFN_DOWN(type->regions[mid].base);
1787 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1788
1789 return memblock_get_region_node(&type->regions[mid]);
1790 }
1791
1792 /**
1793 * memblock_is_region_memory - check if a region is a subset of memory
1794 * @base: base of region to check
1795 * @size: size of region to check
1796 *
1797 * Check if the region [@base, @base + @size) is a subset of a memory block.
1798 *
1799 * Return:
1800 * 0 if false, non-zero if true
1801 */
1802 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1803 {
1804 int idx = memblock_search(&memblock.memory, base);
1805 phys_addr_t end = base + memblock_cap_size(base, &size);
1806
1807 if (idx == -1)
1808 return false;
1809 return (memblock.memory.regions[idx].base +
1810 memblock.memory.regions[idx].size) >= end;
1811 }
1812
1813 /**
1814 * memblock_is_region_reserved - check if a region intersects reserved memory
1815 * @base: base of region to check
1816 * @size: size of region to check
1817 *
1818 * Check if the region [@base, @base + @size) intersects a reserved
1819 * memory block.
1820 *
1821 * Return:
1822 * True if they intersect, false if not.
1823 */
1824 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1825 {
1826 return memblock_overlaps_region(&memblock.reserved, base, size);
1827 }
1828
1829 void __init_memblock memblock_trim_memory(phys_addr_t align)
1830 {
1831 phys_addr_t start, end, orig_start, orig_end;
1832 struct memblock_region *r;
1833
1834 for_each_mem_region(r) {
1835 orig_start = r->base;
1836 orig_end = r->base + r->size;
1837 start = round_up(orig_start, align);
1838 end = round_down(orig_end, align);
1839
1840 if (start == orig_start && end == orig_end)
1841 continue;
1842
1843 if (start < end) {
1844 r->base = start;
1845 r->size = end - start;
1846 } else {
1847 memblock_remove_region(&memblock.memory,
1848 r - memblock.memory.regions);
1849 r--;
1850 }
1851 }
1852 }
1853
1854 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1855 {
1856 memblock.current_limit = limit;
1857 }
1858
1859 phys_addr_t __init_memblock memblock_get_current_limit(void)
1860 {
1861 return memblock.current_limit;
1862 }
1863
1864 static void __init_memblock memblock_dump(struct memblock_type *type)
1865 {
1866 phys_addr_t base, end, size;
1867 enum memblock_flags flags;
1868 int idx;
1869 struct memblock_region *rgn;
1870
1871 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1872
1873 for_each_memblock_type(idx, type, rgn) {
1874 char nid_buf[32] = "";
1875
1876 base = rgn->base;
1877 size = rgn->size;
1878 end = base + size - 1;
1879 flags = rgn->flags;
1880 #ifdef CONFIG_NUMA
1881 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1882 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1883 memblock_get_region_node(rgn));
1884 #endif
1885 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1886 type->name, idx, &base, &end, &size, nid_buf, flags);
1887 }
1888 }
1889
1890 static void __init_memblock __memblock_dump_all(void)
1891 {
1892 pr_info("MEMBLOCK configuration:\n");
1893 pr_info(" memory size = %pa reserved size = %pa\n",
1894 &memblock.memory.total_size,
1895 &memblock.reserved.total_size);
1896
1897 memblock_dump(&memblock.memory);
1898 memblock_dump(&memblock.reserved);
1899 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1900 memblock_dump(&physmem);
1901 #endif
1902 }
1903
1904 void __init_memblock memblock_dump_all(void)
1905 {
1906 if (memblock_debug)
1907 __memblock_dump_all();
1908 }
1909
1910 void __init memblock_allow_resize(void)
1911 {
1912 memblock_can_resize = 1;
1913 }
1914
1915 static int __init early_memblock(char *p)
1916 {
1917 if (p && strstr(p, "debug"))
1918 memblock_debug = 1;
1919 return 0;
1920 }
1921 early_param("memblock", early_memblock);
1922
1923 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1924 {
1925 struct page *start_pg, *end_pg;
1926 phys_addr_t pg, pgend;
1927
1928 /*
1929 * Convert start_pfn/end_pfn to a struct page pointer.
1930 */
1931 start_pg = pfn_to_page(start_pfn - 1) + 1;
1932 end_pg = pfn_to_page(end_pfn - 1) + 1;
1933
1934 /*
1935 * Convert to physical addresses, and round start upwards and end
1936 * downwards.
1937 */
1938 pg = PAGE_ALIGN(__pa(start_pg));
1939 pgend = __pa(end_pg) & PAGE_MASK;
1940
1941 /*
1942 * If there are free pages between these, free the section of the
1943 * memmap array.
1944 */
1945 if (pg < pgend)
1946 memblock_free(pg, pgend - pg);
1947 }
1948
1949 /*
1950 * The mem_map array can get very big. Free the unused area of the memory map.
1951 */
1952 static void __init free_unused_memmap(void)
1953 {
1954 unsigned long start, end, prev_end = 0;
1955 int i;
1956
1957 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1958 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1959 return;
1960
1961 /*
1962 * This relies on each bank being in address order.
1963 * The banks are sorted previously in bootmem_init().
1964 */
1965 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1966 #ifdef CONFIG_SPARSEMEM
1967 /*
1968 * Take care not to free memmap entries that don't exist
1969 * due to SPARSEMEM sections which aren't present.
1970 */
1971 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1972 #endif
1973 /*
1974 * Align down here since many operations in VM subsystem
1975 * presume that there are no holes in the memory map inside
1976 * a pageblock
1977 */
1978 start = round_down(start, pageblock_nr_pages);
1979
1980 /*
1981 * If we had a previous bank, and there is a space
1982 * between the current bank and the previous, free it.
1983 */
1984 if (prev_end && prev_end < start)
1985 free_memmap(prev_end, start);
1986
1987 /*
1988 * Align up here since many operations in VM subsystem
1989 * presume that there are no holes in the memory map inside
1990 * a pageblock
1991 */
1992 prev_end = ALIGN(end, pageblock_nr_pages);
1993 }
1994
1995 #ifdef CONFIG_SPARSEMEM
1996 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
1997 prev_end = ALIGN(end, pageblock_nr_pages);
1998 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
1999 }
2000 #endif
2001 }
2002
2003 static void __init __free_pages_memory(unsigned long start, unsigned long end)
2004 {
2005 int order;
2006
2007 while (start < end) {
2008 order = min(MAX_ORDER - 1UL, __ffs(start));
2009
2010 while (start + (1UL << order) > end)
2011 order--;
2012
2013 memblock_free_pages(pfn_to_page(start), start, order);
2014
2015 start += (1UL << order);
2016 }
2017 }
2018
2019 static unsigned long __init __free_memory_core(phys_addr_t start,
2020 phys_addr_t end)
2021 {
2022 unsigned long start_pfn = PFN_UP(start);
2023 unsigned long end_pfn = min_t(unsigned long,
2024 PFN_DOWN(end), max_low_pfn);
2025
2026 if (start_pfn >= end_pfn)
2027 return 0;
2028
2029 __free_pages_memory(start_pfn, end_pfn);
2030
2031 return end_pfn - start_pfn;
2032 }
2033
2034 static void __init memmap_init_reserved_pages(void)
2035 {
2036 struct memblock_region *region;
2037 phys_addr_t start, end;
2038 u64 i;
2039
2040 /* initialize struct pages for the reserved regions */
2041 for_each_reserved_mem_range(i, &start, &end)
2042 reserve_bootmem_region(start, end);
2043
2044 /* and also treat struct pages for the NOMAP regions as PageReserved */
2045 for_each_mem_region(region) {
2046 if (memblock_is_nomap(region)) {
2047 start = region->base;
2048 end = start + region->size;
2049 reserve_bootmem_region(start, end);
2050 }
2051 }
2052 }
2053
2054 static unsigned long __init free_low_memory_core_early(void)
2055 {
2056 unsigned long count = 0;
2057 phys_addr_t start, end;
2058 u64 i;
2059
2060 memblock_clear_hotplug(0, -1);
2061
2062 memmap_init_reserved_pages();
2063
2064 /*
2065 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2066 * because in some case like Node0 doesn't have RAM installed
2067 * low ram will be on Node1
2068 */
2069 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2070 NULL)
2071 count += __free_memory_core(start, end);
2072
2073 return count;
2074 }
2075
2076 static int reset_managed_pages_done __initdata;
2077
2078 void reset_node_managed_pages(pg_data_t *pgdat)
2079 {
2080 struct zone *z;
2081
2082 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2083 atomic_long_set(&z->managed_pages, 0);
2084 }
2085
2086 void __init reset_all_zones_managed_pages(void)
2087 {
2088 struct pglist_data *pgdat;
2089
2090 if (reset_managed_pages_done)
2091 return;
2092
2093 for_each_online_pgdat(pgdat)
2094 reset_node_managed_pages(pgdat);
2095
2096 reset_managed_pages_done = 1;
2097 }
2098
2099 /**
2100 * memblock_free_all - release free pages to the buddy allocator
2101 */
2102 void __init memblock_free_all(void)
2103 {
2104 unsigned long pages;
2105
2106 free_unused_memmap();
2107 reset_all_zones_managed_pages();
2108
2109 pages = free_low_memory_core_early();
2110 totalram_pages_add(pages);
2111 }
2112
2113 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2114
2115 static int memblock_debug_show(struct seq_file *m, void *private)
2116 {
2117 struct memblock_type *type = m->private;
2118 struct memblock_region *reg;
2119 int i;
2120 phys_addr_t end;
2121
2122 for (i = 0; i < type->cnt; i++) {
2123 reg = &type->regions[i];
2124 end = reg->base + reg->size - 1;
2125
2126 seq_printf(m, "%4d: ", i);
2127 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2128 }
2129 return 0;
2130 }
2131 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2132
2133 static int __init memblock_init_debugfs(void)
2134 {
2135 struct dentry *root = debugfs_create_dir("memblock", NULL);
2136
2137 debugfs_create_file("memory", 0444, root,
2138 &memblock.memory, &memblock_debug_fops);
2139 debugfs_create_file("reserved", 0444, root,
2140 &memblock.reserved, &memblock_debug_fops);
2141 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2142 debugfs_create_file("physmem", 0444, root, &physmem,
2143 &memblock_debug_fops);
2144 #endif
2145
2146 return 0;
2147 }
2148 __initcall(memblock_init_debugfs);
2149
2150 #endif /* CONFIG_DEBUG_FS */