]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memblock.c
netfilter: masquerade: attach nat extension if not present
[mirror_ubuntu-artful-kernel.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38 .memory.name = "memory",
39
40 .reserved.regions = memblock_reserved_init_regions,
41 .reserved.cnt = 1, /* empty dummy entry */
42 .reserved.max = INIT_MEMBLOCK_REGIONS,
43 .reserved.name = "reserved",
44
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem.regions = memblock_physmem_init_regions,
47 .physmem.cnt = 1, /* empty dummy entry */
48 .physmem.max = INIT_PHYSMEM_REGIONS,
49 .physmem.name = "physmem",
50 #endif
51
52 .bottom_up = false,
53 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
54 };
55
56 int memblock_debug __initdata_memblock;
57 #ifdef CONFIG_MOVABLE_NODE
58 bool movable_node_enabled __initdata_memblock = false;
59 #endif
60 static bool system_has_some_mirror __initdata_memblock = false;
61 static int memblock_can_resize __initdata_memblock;
62 static int memblock_memory_in_slab __initdata_memblock = 0;
63 static int memblock_reserved_in_slab __initdata_memblock = 0;
64
65 ulong __init_memblock choose_memblock_flags(void)
66 {
67 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
68 }
69
70 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
71 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
72 {
73 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
74 }
75
76 /*
77 * Address comparison utilities
78 */
79 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
80 phys_addr_t base2, phys_addr_t size2)
81 {
82 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
83 }
84
85 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
86 phys_addr_t base, phys_addr_t size)
87 {
88 unsigned long i;
89
90 for (i = 0; i < type->cnt; i++)
91 if (memblock_addrs_overlap(base, size, type->regions[i].base,
92 type->regions[i].size))
93 break;
94 return i < type->cnt;
95 }
96
97 /*
98 * __memblock_find_range_bottom_up - find free area utility in bottom-up
99 * @start: start of candidate range
100 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
101 * @size: size of free area to find
102 * @align: alignment of free area to find
103 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
104 * @flags: pick from blocks based on memory attributes
105 *
106 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
107 *
108 * RETURNS:
109 * Found address on success, 0 on failure.
110 */
111 static phys_addr_t __init_memblock
112 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
113 phys_addr_t size, phys_addr_t align, int nid,
114 ulong flags)
115 {
116 phys_addr_t this_start, this_end, cand;
117 u64 i;
118
119 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
120 this_start = clamp(this_start, start, end);
121 this_end = clamp(this_end, start, end);
122
123 cand = round_up(this_start, align);
124 if (cand < this_end && this_end - cand >= size)
125 return cand;
126 }
127
128 return 0;
129 }
130
131 /**
132 * __memblock_find_range_top_down - find free area utility, in top-down
133 * @start: start of candidate range
134 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
135 * @size: size of free area to find
136 * @align: alignment of free area to find
137 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
138 * @flags: pick from blocks based on memory attributes
139 *
140 * Utility called from memblock_find_in_range_node(), find free area top-down.
141 *
142 * RETURNS:
143 * Found address on success, 0 on failure.
144 */
145 static phys_addr_t __init_memblock
146 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
147 phys_addr_t size, phys_addr_t align, int nid,
148 ulong flags)
149 {
150 phys_addr_t this_start, this_end, cand;
151 u64 i;
152
153 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
154 NULL) {
155 this_start = clamp(this_start, start, end);
156 this_end = clamp(this_end, start, end);
157
158 if (this_end < size)
159 continue;
160
161 cand = round_down(this_end - size, align);
162 if (cand >= this_start)
163 return cand;
164 }
165
166 return 0;
167 }
168
169 /**
170 * memblock_find_in_range_node - find free area in given range and node
171 * @size: size of free area to find
172 * @align: alignment of free area to find
173 * @start: start of candidate range
174 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
175 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
176 * @flags: pick from blocks based on memory attributes
177 *
178 * Find @size free area aligned to @align in the specified range and node.
179 *
180 * When allocation direction is bottom-up, the @start should be greater
181 * than the end of the kernel image. Otherwise, it will be trimmed. The
182 * reason is that we want the bottom-up allocation just near the kernel
183 * image so it is highly likely that the allocated memory and the kernel
184 * will reside in the same node.
185 *
186 * If bottom-up allocation failed, will try to allocate memory top-down.
187 *
188 * RETURNS:
189 * Found address on success, 0 on failure.
190 */
191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192 phys_addr_t align, phys_addr_t start,
193 phys_addr_t end, int nid, ulong flags)
194 {
195 phys_addr_t kernel_end, ret;
196
197 /* pump up @end */
198 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199 end = memblock.current_limit;
200
201 /* avoid allocating the first page */
202 start = max_t(phys_addr_t, start, PAGE_SIZE);
203 end = max(start, end);
204 kernel_end = __pa_symbol(_end);
205
206 /*
207 * try bottom-up allocation only when bottom-up mode
208 * is set and @end is above the kernel image.
209 */
210 if (memblock_bottom_up() && end > kernel_end) {
211 phys_addr_t bottom_up_start;
212
213 /* make sure we will allocate above the kernel */
214 bottom_up_start = max(start, kernel_end);
215
216 /* ok, try bottom-up allocation first */
217 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
218 size, align, nid, flags);
219 if (ret)
220 return ret;
221
222 /*
223 * we always limit bottom-up allocation above the kernel,
224 * but top-down allocation doesn't have the limit, so
225 * retrying top-down allocation may succeed when bottom-up
226 * allocation failed.
227 *
228 * bottom-up allocation is expected to be fail very rarely,
229 * so we use WARN_ONCE() here to see the stack trace if
230 * fail happens.
231 */
232 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
233 }
234
235 return __memblock_find_range_top_down(start, end, size, align, nid,
236 flags);
237 }
238
239 /**
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
245 *
246 * Find @size free area aligned to @align in the specified range.
247 *
248 * RETURNS:
249 * Found address on success, 0 on failure.
250 */
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 phys_addr_t end, phys_addr_t size,
253 phys_addr_t align)
254 {
255 phys_addr_t ret;
256 ulong flags = choose_memblock_flags();
257
258 again:
259 ret = memblock_find_in_range_node(size, align, start, end,
260 NUMA_NO_NODE, flags);
261
262 if (!ret && (flags & MEMBLOCK_MIRROR)) {
263 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
264 &size);
265 flags &= ~MEMBLOCK_MIRROR;
266 goto again;
267 }
268
269 return ret;
270 }
271
272 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
273 {
274 type->total_size -= type->regions[r].size;
275 memmove(&type->regions[r], &type->regions[r + 1],
276 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
277 type->cnt--;
278
279 /* Special case for empty arrays */
280 if (type->cnt == 0) {
281 WARN_ON(type->total_size != 0);
282 type->cnt = 1;
283 type->regions[0].base = 0;
284 type->regions[0].size = 0;
285 type->regions[0].flags = 0;
286 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
287 }
288 }
289
290 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
291
292 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
293 phys_addr_t *addr)
294 {
295 if (memblock.reserved.regions == memblock_reserved_init_regions)
296 return 0;
297
298 *addr = __pa(memblock.reserved.regions);
299
300 return PAGE_ALIGN(sizeof(struct memblock_region) *
301 memblock.reserved.max);
302 }
303
304 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
305 phys_addr_t *addr)
306 {
307 if (memblock.memory.regions == memblock_memory_init_regions)
308 return 0;
309
310 *addr = __pa(memblock.memory.regions);
311
312 return PAGE_ALIGN(sizeof(struct memblock_region) *
313 memblock.memory.max);
314 }
315
316 #endif
317
318 /**
319 * memblock_double_array - double the size of the memblock regions array
320 * @type: memblock type of the regions array being doubled
321 * @new_area_start: starting address of memory range to avoid overlap with
322 * @new_area_size: size of memory range to avoid overlap with
323 *
324 * Double the size of the @type regions array. If memblock is being used to
325 * allocate memory for a new reserved regions array and there is a previously
326 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
327 * waiting to be reserved, ensure the memory used by the new array does
328 * not overlap.
329 *
330 * RETURNS:
331 * 0 on success, -1 on failure.
332 */
333 static int __init_memblock memblock_double_array(struct memblock_type *type,
334 phys_addr_t new_area_start,
335 phys_addr_t new_area_size)
336 {
337 struct memblock_region *new_array, *old_array;
338 phys_addr_t old_alloc_size, new_alloc_size;
339 phys_addr_t old_size, new_size, addr;
340 int use_slab = slab_is_available();
341 int *in_slab;
342
343 /* We don't allow resizing until we know about the reserved regions
344 * of memory that aren't suitable for allocation
345 */
346 if (!memblock_can_resize)
347 return -1;
348
349 /* Calculate new doubled size */
350 old_size = type->max * sizeof(struct memblock_region);
351 new_size = old_size << 1;
352 /*
353 * We need to allocated new one align to PAGE_SIZE,
354 * so we can free them completely later.
355 */
356 old_alloc_size = PAGE_ALIGN(old_size);
357 new_alloc_size = PAGE_ALIGN(new_size);
358
359 /* Retrieve the slab flag */
360 if (type == &memblock.memory)
361 in_slab = &memblock_memory_in_slab;
362 else
363 in_slab = &memblock_reserved_in_slab;
364
365 /* Try to find some space for it.
366 *
367 * WARNING: We assume that either slab_is_available() and we use it or
368 * we use MEMBLOCK for allocations. That means that this is unsafe to
369 * use when bootmem is currently active (unless bootmem itself is
370 * implemented on top of MEMBLOCK which isn't the case yet)
371 *
372 * This should however not be an issue for now, as we currently only
373 * call into MEMBLOCK while it's still active, or much later when slab
374 * is active for memory hotplug operations
375 */
376 if (use_slab) {
377 new_array = kmalloc(new_size, GFP_KERNEL);
378 addr = new_array ? __pa(new_array) : 0;
379 } else {
380 /* only exclude range when trying to double reserved.regions */
381 if (type != &memblock.reserved)
382 new_area_start = new_area_size = 0;
383
384 addr = memblock_find_in_range(new_area_start + new_area_size,
385 memblock.current_limit,
386 new_alloc_size, PAGE_SIZE);
387 if (!addr && new_area_size)
388 addr = memblock_find_in_range(0,
389 min(new_area_start, memblock.current_limit),
390 new_alloc_size, PAGE_SIZE);
391
392 new_array = addr ? __va(addr) : NULL;
393 }
394 if (!addr) {
395 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
396 type->name, type->max, type->max * 2);
397 return -1;
398 }
399
400 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
401 type->name, type->max * 2, (u64)addr,
402 (u64)addr + new_size - 1);
403
404 /*
405 * Found space, we now need to move the array over before we add the
406 * reserved region since it may be our reserved array itself that is
407 * full.
408 */
409 memcpy(new_array, type->regions, old_size);
410 memset(new_array + type->max, 0, old_size);
411 old_array = type->regions;
412 type->regions = new_array;
413 type->max <<= 1;
414
415 /* Free old array. We needn't free it if the array is the static one */
416 if (*in_slab)
417 kfree(old_array);
418 else if (old_array != memblock_memory_init_regions &&
419 old_array != memblock_reserved_init_regions)
420 memblock_free(__pa(old_array), old_alloc_size);
421
422 /*
423 * Reserve the new array if that comes from the memblock. Otherwise, we
424 * needn't do it
425 */
426 if (!use_slab)
427 BUG_ON(memblock_reserve(addr, new_alloc_size));
428
429 /* Update slab flag */
430 *in_slab = use_slab;
431
432 return 0;
433 }
434
435 /**
436 * memblock_merge_regions - merge neighboring compatible regions
437 * @type: memblock type to scan
438 *
439 * Scan @type and merge neighboring compatible regions.
440 */
441 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
442 {
443 int i = 0;
444
445 /* cnt never goes below 1 */
446 while (i < type->cnt - 1) {
447 struct memblock_region *this = &type->regions[i];
448 struct memblock_region *next = &type->regions[i + 1];
449
450 if (this->base + this->size != next->base ||
451 memblock_get_region_node(this) !=
452 memblock_get_region_node(next) ||
453 this->flags != next->flags) {
454 BUG_ON(this->base + this->size > next->base);
455 i++;
456 continue;
457 }
458
459 this->size += next->size;
460 /* move forward from next + 1, index of which is i + 2 */
461 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
462 type->cnt--;
463 }
464 }
465
466 /**
467 * memblock_insert_region - insert new memblock region
468 * @type: memblock type to insert into
469 * @idx: index for the insertion point
470 * @base: base address of the new region
471 * @size: size of the new region
472 * @nid: node id of the new region
473 * @flags: flags of the new region
474 *
475 * Insert new memblock region [@base,@base+@size) into @type at @idx.
476 * @type must already have extra room to accommodate the new region.
477 */
478 static void __init_memblock memblock_insert_region(struct memblock_type *type,
479 int idx, phys_addr_t base,
480 phys_addr_t size,
481 int nid, unsigned long flags)
482 {
483 struct memblock_region *rgn = &type->regions[idx];
484
485 BUG_ON(type->cnt >= type->max);
486 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
487 rgn->base = base;
488 rgn->size = size;
489 rgn->flags = flags;
490 memblock_set_region_node(rgn, nid);
491 type->cnt++;
492 type->total_size += size;
493 }
494
495 /**
496 * memblock_add_range - add new memblock region
497 * @type: memblock type to add new region into
498 * @base: base address of the new region
499 * @size: size of the new region
500 * @nid: nid of the new region
501 * @flags: flags of the new region
502 *
503 * Add new memblock region [@base,@base+@size) into @type. The new region
504 * is allowed to overlap with existing ones - overlaps don't affect already
505 * existing regions. @type is guaranteed to be minimal (all neighbouring
506 * compatible regions are merged) after the addition.
507 *
508 * RETURNS:
509 * 0 on success, -errno on failure.
510 */
511 int __init_memblock memblock_add_range(struct memblock_type *type,
512 phys_addr_t base, phys_addr_t size,
513 int nid, unsigned long flags)
514 {
515 bool insert = false;
516 phys_addr_t obase = base;
517 phys_addr_t end = base + memblock_cap_size(base, &size);
518 int idx, nr_new;
519 struct memblock_region *rgn;
520
521 if (!size)
522 return 0;
523
524 /* special case for empty array */
525 if (type->regions[0].size == 0) {
526 WARN_ON(type->cnt != 1 || type->total_size);
527 type->regions[0].base = base;
528 type->regions[0].size = size;
529 type->regions[0].flags = flags;
530 memblock_set_region_node(&type->regions[0], nid);
531 type->total_size = size;
532 return 0;
533 }
534 repeat:
535 /*
536 * The following is executed twice. Once with %false @insert and
537 * then with %true. The first counts the number of regions needed
538 * to accommodate the new area. The second actually inserts them.
539 */
540 base = obase;
541 nr_new = 0;
542
543 for_each_memblock_type(type, rgn) {
544 phys_addr_t rbase = rgn->base;
545 phys_addr_t rend = rbase + rgn->size;
546
547 if (rbase >= end)
548 break;
549 if (rend <= base)
550 continue;
551 /*
552 * @rgn overlaps. If it separates the lower part of new
553 * area, insert that portion.
554 */
555 if (rbase > base) {
556 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
557 WARN_ON(nid != memblock_get_region_node(rgn));
558 #endif
559 WARN_ON(flags != rgn->flags);
560 nr_new++;
561 if (insert)
562 memblock_insert_region(type, idx++, base,
563 rbase - base, nid,
564 flags);
565 }
566 /* area below @rend is dealt with, forget about it */
567 base = min(rend, end);
568 }
569
570 /* insert the remaining portion */
571 if (base < end) {
572 nr_new++;
573 if (insert)
574 memblock_insert_region(type, idx, base, end - base,
575 nid, flags);
576 }
577
578 if (!nr_new)
579 return 0;
580
581 /*
582 * If this was the first round, resize array and repeat for actual
583 * insertions; otherwise, merge and return.
584 */
585 if (!insert) {
586 while (type->cnt + nr_new > type->max)
587 if (memblock_double_array(type, obase, size) < 0)
588 return -ENOMEM;
589 insert = true;
590 goto repeat;
591 } else {
592 memblock_merge_regions(type);
593 return 0;
594 }
595 }
596
597 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
598 int nid)
599 {
600 return memblock_add_range(&memblock.memory, base, size, nid, 0);
601 }
602
603 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
604 {
605 phys_addr_t end = base + size - 1;
606
607 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
608 &base, &end, (void *)_RET_IP_);
609
610 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
611 }
612
613 /**
614 * memblock_isolate_range - isolate given range into disjoint memblocks
615 * @type: memblock type to isolate range for
616 * @base: base of range to isolate
617 * @size: size of range to isolate
618 * @start_rgn: out parameter for the start of isolated region
619 * @end_rgn: out parameter for the end of isolated region
620 *
621 * Walk @type and ensure that regions don't cross the boundaries defined by
622 * [@base,@base+@size). Crossing regions are split at the boundaries,
623 * which may create at most two more regions. The index of the first
624 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
625 *
626 * RETURNS:
627 * 0 on success, -errno on failure.
628 */
629 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
630 phys_addr_t base, phys_addr_t size,
631 int *start_rgn, int *end_rgn)
632 {
633 phys_addr_t end = base + memblock_cap_size(base, &size);
634 int idx;
635 struct memblock_region *rgn;
636
637 *start_rgn = *end_rgn = 0;
638
639 if (!size)
640 return 0;
641
642 /* we'll create at most two more regions */
643 while (type->cnt + 2 > type->max)
644 if (memblock_double_array(type, base, size) < 0)
645 return -ENOMEM;
646
647 for_each_memblock_type(type, rgn) {
648 phys_addr_t rbase = rgn->base;
649 phys_addr_t rend = rbase + rgn->size;
650
651 if (rbase >= end)
652 break;
653 if (rend <= base)
654 continue;
655
656 if (rbase < base) {
657 /*
658 * @rgn intersects from below. Split and continue
659 * to process the next region - the new top half.
660 */
661 rgn->base = base;
662 rgn->size -= base - rbase;
663 type->total_size -= base - rbase;
664 memblock_insert_region(type, idx, rbase, base - rbase,
665 memblock_get_region_node(rgn),
666 rgn->flags);
667 } else if (rend > end) {
668 /*
669 * @rgn intersects from above. Split and redo the
670 * current region - the new bottom half.
671 */
672 rgn->base = end;
673 rgn->size -= end - rbase;
674 type->total_size -= end - rbase;
675 memblock_insert_region(type, idx--, rbase, end - rbase,
676 memblock_get_region_node(rgn),
677 rgn->flags);
678 } else {
679 /* @rgn is fully contained, record it */
680 if (!*end_rgn)
681 *start_rgn = idx;
682 *end_rgn = idx + 1;
683 }
684 }
685
686 return 0;
687 }
688
689 static int __init_memblock memblock_remove_range(struct memblock_type *type,
690 phys_addr_t base, phys_addr_t size)
691 {
692 int start_rgn, end_rgn;
693 int i, ret;
694
695 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
696 if (ret)
697 return ret;
698
699 for (i = end_rgn - 1; i >= start_rgn; i--)
700 memblock_remove_region(type, i);
701 return 0;
702 }
703
704 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
705 {
706 return memblock_remove_range(&memblock.memory, base, size);
707 }
708
709
710 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
711 {
712 phys_addr_t end = base + size - 1;
713
714 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
715 &base, &end, (void *)_RET_IP_);
716
717 kmemleak_free_part_phys(base, size);
718 return memblock_remove_range(&memblock.reserved, base, size);
719 }
720
721 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
722 {
723 phys_addr_t end = base + size - 1;
724
725 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
726 &base, &end, (void *)_RET_IP_);
727
728 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
729 }
730
731 /**
732 *
733 * This function isolates region [@base, @base + @size), and sets/clears flag
734 *
735 * Return 0 on success, -errno on failure.
736 */
737 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
738 phys_addr_t size, int set, int flag)
739 {
740 struct memblock_type *type = &memblock.memory;
741 int i, ret, start_rgn, end_rgn;
742
743 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
744 if (ret)
745 return ret;
746
747 for (i = start_rgn; i < end_rgn; i++)
748 if (set)
749 memblock_set_region_flags(&type->regions[i], flag);
750 else
751 memblock_clear_region_flags(&type->regions[i], flag);
752
753 memblock_merge_regions(type);
754 return 0;
755 }
756
757 /**
758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759 * @base: the base phys addr of the region
760 * @size: the size of the region
761 *
762 * Return 0 on success, -errno on failure.
763 */
764 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
765 {
766 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
767 }
768
769 /**
770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771 * @base: the base phys addr of the region
772 * @size: the size of the region
773 *
774 * Return 0 on success, -errno on failure.
775 */
776 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
777 {
778 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
779 }
780
781 /**
782 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
783 * @base: the base phys addr of the region
784 * @size: the size of the region
785 *
786 * Return 0 on success, -errno on failure.
787 */
788 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
789 {
790 system_has_some_mirror = true;
791
792 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
793 }
794
795 /**
796 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
797 * @base: the base phys addr of the region
798 * @size: the size of the region
799 *
800 * Return 0 on success, -errno on failure.
801 */
802 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
803 {
804 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
805 }
806
807 /**
808 * __next_reserved_mem_region - next function for for_each_reserved_region()
809 * @idx: pointer to u64 loop variable
810 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
811 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
812 *
813 * Iterate over all reserved memory regions.
814 */
815 void __init_memblock __next_reserved_mem_region(u64 *idx,
816 phys_addr_t *out_start,
817 phys_addr_t *out_end)
818 {
819 struct memblock_type *type = &memblock.reserved;
820
821 if (*idx < type->cnt) {
822 struct memblock_region *r = &type->regions[*idx];
823 phys_addr_t base = r->base;
824 phys_addr_t size = r->size;
825
826 if (out_start)
827 *out_start = base;
828 if (out_end)
829 *out_end = base + size - 1;
830
831 *idx += 1;
832 return;
833 }
834
835 /* signal end of iteration */
836 *idx = ULLONG_MAX;
837 }
838
839 /**
840 * __next__mem_range - next function for for_each_free_mem_range() etc.
841 * @idx: pointer to u64 loop variable
842 * @nid: node selector, %NUMA_NO_NODE for all nodes
843 * @flags: pick from blocks based on memory attributes
844 * @type_a: pointer to memblock_type from where the range is taken
845 * @type_b: pointer to memblock_type which excludes memory from being taken
846 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
847 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
848 * @out_nid: ptr to int for nid of the range, can be %NULL
849 *
850 * Find the first area from *@idx which matches @nid, fill the out
851 * parameters, and update *@idx for the next iteration. The lower 32bit of
852 * *@idx contains index into type_a and the upper 32bit indexes the
853 * areas before each region in type_b. For example, if type_b regions
854 * look like the following,
855 *
856 * 0:[0-16), 1:[32-48), 2:[128-130)
857 *
858 * The upper 32bit indexes the following regions.
859 *
860 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
861 *
862 * As both region arrays are sorted, the function advances the two indices
863 * in lockstep and returns each intersection.
864 */
865 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
866 struct memblock_type *type_a,
867 struct memblock_type *type_b,
868 phys_addr_t *out_start,
869 phys_addr_t *out_end, int *out_nid)
870 {
871 int idx_a = *idx & 0xffffffff;
872 int idx_b = *idx >> 32;
873
874 if (WARN_ONCE(nid == MAX_NUMNODES,
875 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
876 nid = NUMA_NO_NODE;
877
878 for (; idx_a < type_a->cnt; idx_a++) {
879 struct memblock_region *m = &type_a->regions[idx_a];
880
881 phys_addr_t m_start = m->base;
882 phys_addr_t m_end = m->base + m->size;
883 int m_nid = memblock_get_region_node(m);
884
885 /* only memory regions are associated with nodes, check it */
886 if (nid != NUMA_NO_NODE && nid != m_nid)
887 continue;
888
889 /* skip hotpluggable memory regions if needed */
890 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
891 continue;
892
893 /* if we want mirror memory skip non-mirror memory regions */
894 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
895 continue;
896
897 /* skip nomap memory unless we were asked for it explicitly */
898 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
899 continue;
900
901 if (!type_b) {
902 if (out_start)
903 *out_start = m_start;
904 if (out_end)
905 *out_end = m_end;
906 if (out_nid)
907 *out_nid = m_nid;
908 idx_a++;
909 *idx = (u32)idx_a | (u64)idx_b << 32;
910 return;
911 }
912
913 /* scan areas before each reservation */
914 for (; idx_b < type_b->cnt + 1; idx_b++) {
915 struct memblock_region *r;
916 phys_addr_t r_start;
917 phys_addr_t r_end;
918
919 r = &type_b->regions[idx_b];
920 r_start = idx_b ? r[-1].base + r[-1].size : 0;
921 r_end = idx_b < type_b->cnt ?
922 r->base : ULLONG_MAX;
923
924 /*
925 * if idx_b advanced past idx_a,
926 * break out to advance idx_a
927 */
928 if (r_start >= m_end)
929 break;
930 /* if the two regions intersect, we're done */
931 if (m_start < r_end) {
932 if (out_start)
933 *out_start =
934 max(m_start, r_start);
935 if (out_end)
936 *out_end = min(m_end, r_end);
937 if (out_nid)
938 *out_nid = m_nid;
939 /*
940 * The region which ends first is
941 * advanced for the next iteration.
942 */
943 if (m_end <= r_end)
944 idx_a++;
945 else
946 idx_b++;
947 *idx = (u32)idx_a | (u64)idx_b << 32;
948 return;
949 }
950 }
951 }
952
953 /* signal end of iteration */
954 *idx = ULLONG_MAX;
955 }
956
957 /**
958 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
959 *
960 * Finds the next range from type_a which is not marked as unsuitable
961 * in type_b.
962 *
963 * @idx: pointer to u64 loop variable
964 * @nid: node selector, %NUMA_NO_NODE for all nodes
965 * @flags: pick from blocks based on memory attributes
966 * @type_a: pointer to memblock_type from where the range is taken
967 * @type_b: pointer to memblock_type which excludes memory from being taken
968 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
969 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
970 * @out_nid: ptr to int for nid of the range, can be %NULL
971 *
972 * Reverse of __next_mem_range().
973 */
974 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
975 struct memblock_type *type_a,
976 struct memblock_type *type_b,
977 phys_addr_t *out_start,
978 phys_addr_t *out_end, int *out_nid)
979 {
980 int idx_a = *idx & 0xffffffff;
981 int idx_b = *idx >> 32;
982
983 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
984 nid = NUMA_NO_NODE;
985
986 if (*idx == (u64)ULLONG_MAX) {
987 idx_a = type_a->cnt - 1;
988 if (type_b != NULL)
989 idx_b = type_b->cnt;
990 else
991 idx_b = 0;
992 }
993
994 for (; idx_a >= 0; idx_a--) {
995 struct memblock_region *m = &type_a->regions[idx_a];
996
997 phys_addr_t m_start = m->base;
998 phys_addr_t m_end = m->base + m->size;
999 int m_nid = memblock_get_region_node(m);
1000
1001 /* only memory regions are associated with nodes, check it */
1002 if (nid != NUMA_NO_NODE && nid != m_nid)
1003 continue;
1004
1005 /* skip hotpluggable memory regions if needed */
1006 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1007 continue;
1008
1009 /* if we want mirror memory skip non-mirror memory regions */
1010 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1011 continue;
1012
1013 /* skip nomap memory unless we were asked for it explicitly */
1014 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1015 continue;
1016
1017 if (!type_b) {
1018 if (out_start)
1019 *out_start = m_start;
1020 if (out_end)
1021 *out_end = m_end;
1022 if (out_nid)
1023 *out_nid = m_nid;
1024 idx_a--;
1025 *idx = (u32)idx_a | (u64)idx_b << 32;
1026 return;
1027 }
1028
1029 /* scan areas before each reservation */
1030 for (; idx_b >= 0; idx_b--) {
1031 struct memblock_region *r;
1032 phys_addr_t r_start;
1033 phys_addr_t r_end;
1034
1035 r = &type_b->regions[idx_b];
1036 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1037 r_end = idx_b < type_b->cnt ?
1038 r->base : ULLONG_MAX;
1039 /*
1040 * if idx_b advanced past idx_a,
1041 * break out to advance idx_a
1042 */
1043
1044 if (r_end <= m_start)
1045 break;
1046 /* if the two regions intersect, we're done */
1047 if (m_end > r_start) {
1048 if (out_start)
1049 *out_start = max(m_start, r_start);
1050 if (out_end)
1051 *out_end = min(m_end, r_end);
1052 if (out_nid)
1053 *out_nid = m_nid;
1054 if (m_start >= r_start)
1055 idx_a--;
1056 else
1057 idx_b--;
1058 *idx = (u32)idx_a | (u64)idx_b << 32;
1059 return;
1060 }
1061 }
1062 }
1063 /* signal end of iteration */
1064 *idx = ULLONG_MAX;
1065 }
1066
1067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1068 /*
1069 * Common iterator interface used to define for_each_mem_range().
1070 */
1071 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1072 unsigned long *out_start_pfn,
1073 unsigned long *out_end_pfn, int *out_nid)
1074 {
1075 struct memblock_type *type = &memblock.memory;
1076 struct memblock_region *r;
1077
1078 while (++*idx < type->cnt) {
1079 r = &type->regions[*idx];
1080
1081 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1082 continue;
1083 if (nid == MAX_NUMNODES || nid == r->nid)
1084 break;
1085 }
1086 if (*idx >= type->cnt) {
1087 *idx = -1;
1088 return;
1089 }
1090
1091 if (out_start_pfn)
1092 *out_start_pfn = PFN_UP(r->base);
1093 if (out_end_pfn)
1094 *out_end_pfn = PFN_DOWN(r->base + r->size);
1095 if (out_nid)
1096 *out_nid = r->nid;
1097 }
1098
1099 unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
1100 unsigned long max_pfn)
1101 {
1102 struct memblock_type *type = &memblock.memory;
1103 unsigned int right = type->cnt;
1104 unsigned int mid, left = 0;
1105 phys_addr_t addr = PFN_PHYS(pfn + 1);
1106
1107 do {
1108 mid = (right + left) / 2;
1109
1110 if (addr < type->regions[mid].base)
1111 right = mid;
1112 else if (addr >= (type->regions[mid].base +
1113 type->regions[mid].size))
1114 left = mid + 1;
1115 else {
1116 /* addr is within the region, so pfn + 1 is valid */
1117 return min(pfn + 1, max_pfn);
1118 }
1119 } while (left < right);
1120
1121 if (right == type->cnt)
1122 return max_pfn;
1123 else
1124 return min(PHYS_PFN(type->regions[right].base), max_pfn);
1125 }
1126
1127 /**
1128 * memblock_set_node - set node ID on memblock regions
1129 * @base: base of area to set node ID for
1130 * @size: size of area to set node ID for
1131 * @type: memblock type to set node ID for
1132 * @nid: node ID to set
1133 *
1134 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1135 * Regions which cross the area boundaries are split as necessary.
1136 *
1137 * RETURNS:
1138 * 0 on success, -errno on failure.
1139 */
1140 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1141 struct memblock_type *type, int nid)
1142 {
1143 int start_rgn, end_rgn;
1144 int i, ret;
1145
1146 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1147 if (ret)
1148 return ret;
1149
1150 for (i = start_rgn; i < end_rgn; i++)
1151 memblock_set_region_node(&type->regions[i], nid);
1152
1153 memblock_merge_regions(type);
1154 return 0;
1155 }
1156 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1157
1158 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1159 phys_addr_t align, phys_addr_t start,
1160 phys_addr_t end, int nid, ulong flags)
1161 {
1162 phys_addr_t found;
1163
1164 if (!align)
1165 align = SMP_CACHE_BYTES;
1166
1167 found = memblock_find_in_range_node(size, align, start, end, nid,
1168 flags);
1169 if (found && !memblock_reserve(found, size)) {
1170 /*
1171 * The min_count is set to 0 so that memblock allocations are
1172 * never reported as leaks.
1173 */
1174 kmemleak_alloc_phys(found, size, 0, 0);
1175 return found;
1176 }
1177 return 0;
1178 }
1179
1180 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1181 phys_addr_t start, phys_addr_t end,
1182 ulong flags)
1183 {
1184 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1185 flags);
1186 }
1187
1188 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1189 phys_addr_t align, phys_addr_t max_addr,
1190 int nid, ulong flags)
1191 {
1192 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1193 }
1194
1195 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1196 {
1197 ulong flags = choose_memblock_flags();
1198 phys_addr_t ret;
1199
1200 again:
1201 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1202 nid, flags);
1203
1204 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1205 flags &= ~MEMBLOCK_MIRROR;
1206 goto again;
1207 }
1208 return ret;
1209 }
1210
1211 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1212 {
1213 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1214 MEMBLOCK_NONE);
1215 }
1216
1217 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1218 {
1219 phys_addr_t alloc;
1220
1221 alloc = __memblock_alloc_base(size, align, max_addr);
1222
1223 if (alloc == 0)
1224 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1225 &size, &max_addr);
1226
1227 return alloc;
1228 }
1229
1230 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1231 {
1232 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1233 }
1234
1235 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1236 {
1237 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1238
1239 if (res)
1240 return res;
1241 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1242 }
1243
1244 /**
1245 * memblock_virt_alloc_internal - allocate boot memory block
1246 * @size: size of memory block to be allocated in bytes
1247 * @align: alignment of the region and block's size
1248 * @min_addr: the lower bound of the memory region to allocate (phys address)
1249 * @max_addr: the upper bound of the memory region to allocate (phys address)
1250 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1251 *
1252 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1253 * will fall back to memory below @min_addr. Also, allocation may fall back
1254 * to any node in the system if the specified node can not
1255 * hold the requested memory.
1256 *
1257 * The allocation is performed from memory region limited by
1258 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1259 *
1260 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1261 *
1262 * The phys address of allocated boot memory block is converted to virtual and
1263 * allocated memory is reset to 0.
1264 *
1265 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1266 * allocated boot memory block, so that it is never reported as leaks.
1267 *
1268 * RETURNS:
1269 * Virtual address of allocated memory block on success, NULL on failure.
1270 */
1271 static void * __init memblock_virt_alloc_internal(
1272 phys_addr_t size, phys_addr_t align,
1273 phys_addr_t min_addr, phys_addr_t max_addr,
1274 int nid)
1275 {
1276 phys_addr_t alloc;
1277 void *ptr;
1278 ulong flags = choose_memblock_flags();
1279
1280 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1281 nid = NUMA_NO_NODE;
1282
1283 /*
1284 * Detect any accidental use of these APIs after slab is ready, as at
1285 * this moment memblock may be deinitialized already and its
1286 * internal data may be destroyed (after execution of free_all_bootmem)
1287 */
1288 if (WARN_ON_ONCE(slab_is_available()))
1289 return kzalloc_node(size, GFP_NOWAIT, nid);
1290
1291 if (!align)
1292 align = SMP_CACHE_BYTES;
1293
1294 if (max_addr > memblock.current_limit)
1295 max_addr = memblock.current_limit;
1296 again:
1297 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1298 nid, flags);
1299 if (alloc && !memblock_reserve(alloc, size))
1300 goto done;
1301
1302 if (nid != NUMA_NO_NODE) {
1303 alloc = memblock_find_in_range_node(size, align, min_addr,
1304 max_addr, NUMA_NO_NODE,
1305 flags);
1306 if (alloc && !memblock_reserve(alloc, size))
1307 goto done;
1308 }
1309
1310 if (min_addr) {
1311 min_addr = 0;
1312 goto again;
1313 }
1314
1315 if (flags & MEMBLOCK_MIRROR) {
1316 flags &= ~MEMBLOCK_MIRROR;
1317 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1318 &size);
1319 goto again;
1320 }
1321
1322 return NULL;
1323 done:
1324 ptr = phys_to_virt(alloc);
1325 memset(ptr, 0, size);
1326
1327 /*
1328 * The min_count is set to 0 so that bootmem allocated blocks
1329 * are never reported as leaks. This is because many of these blocks
1330 * are only referred via the physical address which is not
1331 * looked up by kmemleak.
1332 */
1333 kmemleak_alloc(ptr, size, 0, 0);
1334
1335 return ptr;
1336 }
1337
1338 /**
1339 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1340 * @size: size of memory block to be allocated in bytes
1341 * @align: alignment of the region and block's size
1342 * @min_addr: the lower bound of the memory region from where the allocation
1343 * is preferred (phys address)
1344 * @max_addr: the upper bound of the memory region from where the allocation
1345 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1346 * allocate only from memory limited by memblock.current_limit value
1347 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1348 *
1349 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1350 * additional debug information (including caller info), if enabled.
1351 *
1352 * RETURNS:
1353 * Virtual address of allocated memory block on success, NULL on failure.
1354 */
1355 void * __init memblock_virt_alloc_try_nid_nopanic(
1356 phys_addr_t size, phys_addr_t align,
1357 phys_addr_t min_addr, phys_addr_t max_addr,
1358 int nid)
1359 {
1360 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1361 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1362 (u64)max_addr, (void *)_RET_IP_);
1363 return memblock_virt_alloc_internal(size, align, min_addr,
1364 max_addr, nid);
1365 }
1366
1367 /**
1368 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1369 * @size: size of memory block to be allocated in bytes
1370 * @align: alignment of the region and block's size
1371 * @min_addr: the lower bound of the memory region from where the allocation
1372 * is preferred (phys address)
1373 * @max_addr: the upper bound of the memory region from where the allocation
1374 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1375 * allocate only from memory limited by memblock.current_limit value
1376 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1377 *
1378 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1379 * which provides debug information (including caller info), if enabled,
1380 * and panics if the request can not be satisfied.
1381 *
1382 * RETURNS:
1383 * Virtual address of allocated memory block on success, NULL on failure.
1384 */
1385 void * __init memblock_virt_alloc_try_nid(
1386 phys_addr_t size, phys_addr_t align,
1387 phys_addr_t min_addr, phys_addr_t max_addr,
1388 int nid)
1389 {
1390 void *ptr;
1391
1392 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1393 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1394 (u64)max_addr, (void *)_RET_IP_);
1395 ptr = memblock_virt_alloc_internal(size, align,
1396 min_addr, max_addr, nid);
1397 if (ptr)
1398 return ptr;
1399
1400 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1401 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1402 (u64)max_addr);
1403 return NULL;
1404 }
1405
1406 /**
1407 * __memblock_free_early - free boot memory block
1408 * @base: phys starting address of the boot memory block
1409 * @size: size of the boot memory block in bytes
1410 *
1411 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1412 * The freeing memory will not be released to the buddy allocator.
1413 */
1414 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1415 {
1416 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1417 __func__, (u64)base, (u64)base + size - 1,
1418 (void *)_RET_IP_);
1419 kmemleak_free_part_phys(base, size);
1420 memblock_remove_range(&memblock.reserved, base, size);
1421 }
1422
1423 /*
1424 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1425 * @addr: phys starting address of the boot memory block
1426 * @size: size of the boot memory block in bytes
1427 *
1428 * This is only useful when the bootmem allocator has already been torn
1429 * down, but we are still initializing the system. Pages are released directly
1430 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1431 */
1432 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1433 {
1434 u64 cursor, end;
1435
1436 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1437 __func__, (u64)base, (u64)base + size - 1,
1438 (void *)_RET_IP_);
1439 kmemleak_free_part_phys(base, size);
1440 cursor = PFN_UP(base);
1441 end = PFN_DOWN(base + size);
1442
1443 for (; cursor < end; cursor++) {
1444 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1445 totalram_pages++;
1446 }
1447 }
1448
1449 /*
1450 * Remaining API functions
1451 */
1452
1453 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1454 {
1455 return memblock.memory.total_size;
1456 }
1457
1458 phys_addr_t __init_memblock memblock_reserved_size(void)
1459 {
1460 return memblock.reserved.total_size;
1461 }
1462
1463 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1464 {
1465 unsigned long pages = 0;
1466 struct memblock_region *r;
1467 unsigned long start_pfn, end_pfn;
1468
1469 for_each_memblock(memory, r) {
1470 start_pfn = memblock_region_memory_base_pfn(r);
1471 end_pfn = memblock_region_memory_end_pfn(r);
1472 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1473 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1474 pages += end_pfn - start_pfn;
1475 }
1476
1477 return PFN_PHYS(pages);
1478 }
1479
1480 /* lowest address */
1481 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1482 {
1483 return memblock.memory.regions[0].base;
1484 }
1485
1486 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1487 {
1488 int idx = memblock.memory.cnt - 1;
1489
1490 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1491 }
1492
1493 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1494 {
1495 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1496 struct memblock_region *r;
1497
1498 /*
1499 * translate the memory @limit size into the max address within one of
1500 * the memory memblock regions, if the @limit exceeds the total size
1501 * of those regions, max_addr will keep original value ULLONG_MAX
1502 */
1503 for_each_memblock(memory, r) {
1504 if (limit <= r->size) {
1505 max_addr = r->base + limit;
1506 break;
1507 }
1508 limit -= r->size;
1509 }
1510
1511 return max_addr;
1512 }
1513
1514 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1515 {
1516 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1517
1518 if (!limit)
1519 return;
1520
1521 max_addr = __find_max_addr(limit);
1522
1523 /* @limit exceeds the total size of the memory, do nothing */
1524 if (max_addr == (phys_addr_t)ULLONG_MAX)
1525 return;
1526
1527 /* truncate both memory and reserved regions */
1528 memblock_remove_range(&memblock.memory, max_addr,
1529 (phys_addr_t)ULLONG_MAX);
1530 memblock_remove_range(&memblock.reserved, max_addr,
1531 (phys_addr_t)ULLONG_MAX);
1532 }
1533
1534 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1535 {
1536 struct memblock_type *type = &memblock.memory;
1537 phys_addr_t max_addr;
1538 int i, ret, start_rgn, end_rgn;
1539
1540 if (!limit)
1541 return;
1542
1543 max_addr = __find_max_addr(limit);
1544
1545 /* @limit exceeds the total size of the memory, do nothing */
1546 if (max_addr == (phys_addr_t)ULLONG_MAX)
1547 return;
1548
1549 ret = memblock_isolate_range(type, max_addr, (phys_addr_t)ULLONG_MAX,
1550 &start_rgn, &end_rgn);
1551 if (ret)
1552 return;
1553
1554 /* remove all the MAP regions above the limit */
1555 for (i = end_rgn - 1; i >= start_rgn; i--) {
1556 if (!memblock_is_nomap(&type->regions[i]))
1557 memblock_remove_region(type, i);
1558 }
1559 /* truncate the reserved regions */
1560 memblock_remove_range(&memblock.reserved, max_addr,
1561 (phys_addr_t)ULLONG_MAX);
1562 }
1563
1564 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1565 {
1566 unsigned int left = 0, right = type->cnt;
1567
1568 do {
1569 unsigned int mid = (right + left) / 2;
1570
1571 if (addr < type->regions[mid].base)
1572 right = mid;
1573 else if (addr >= (type->regions[mid].base +
1574 type->regions[mid].size))
1575 left = mid + 1;
1576 else
1577 return mid;
1578 } while (left < right);
1579 return -1;
1580 }
1581
1582 bool __init memblock_is_reserved(phys_addr_t addr)
1583 {
1584 return memblock_search(&memblock.reserved, addr) != -1;
1585 }
1586
1587 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1588 {
1589 return memblock_search(&memblock.memory, addr) != -1;
1590 }
1591
1592 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1593 {
1594 int i = memblock_search(&memblock.memory, addr);
1595
1596 if (i == -1)
1597 return false;
1598 return !memblock_is_nomap(&memblock.memory.regions[i]);
1599 }
1600
1601 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1602 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1603 unsigned long *start_pfn, unsigned long *end_pfn)
1604 {
1605 struct memblock_type *type = &memblock.memory;
1606 int mid = memblock_search(type, PFN_PHYS(pfn));
1607
1608 if (mid == -1)
1609 return -1;
1610
1611 *start_pfn = PFN_DOWN(type->regions[mid].base);
1612 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1613
1614 return type->regions[mid].nid;
1615 }
1616 #endif
1617
1618 /**
1619 * memblock_is_region_memory - check if a region is a subset of memory
1620 * @base: base of region to check
1621 * @size: size of region to check
1622 *
1623 * Check if the region [@base, @base+@size) is a subset of a memory block.
1624 *
1625 * RETURNS:
1626 * 0 if false, non-zero if true
1627 */
1628 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1629 {
1630 int idx = memblock_search(&memblock.memory, base);
1631 phys_addr_t end = base + memblock_cap_size(base, &size);
1632
1633 if (idx == -1)
1634 return 0;
1635 return (memblock.memory.regions[idx].base +
1636 memblock.memory.regions[idx].size) >= end;
1637 }
1638
1639 /**
1640 * memblock_is_region_reserved - check if a region intersects reserved memory
1641 * @base: base of region to check
1642 * @size: size of region to check
1643 *
1644 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1645 *
1646 * RETURNS:
1647 * True if they intersect, false if not.
1648 */
1649 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1650 {
1651 memblock_cap_size(base, &size);
1652 return memblock_overlaps_region(&memblock.reserved, base, size);
1653 }
1654
1655 void __init_memblock memblock_trim_memory(phys_addr_t align)
1656 {
1657 phys_addr_t start, end, orig_start, orig_end;
1658 struct memblock_region *r;
1659
1660 for_each_memblock(memory, r) {
1661 orig_start = r->base;
1662 orig_end = r->base + r->size;
1663 start = round_up(orig_start, align);
1664 end = round_down(orig_end, align);
1665
1666 if (start == orig_start && end == orig_end)
1667 continue;
1668
1669 if (start < end) {
1670 r->base = start;
1671 r->size = end - start;
1672 } else {
1673 memblock_remove_region(&memblock.memory,
1674 r - memblock.memory.regions);
1675 r--;
1676 }
1677 }
1678 }
1679
1680 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1681 {
1682 memblock.current_limit = limit;
1683 }
1684
1685 phys_addr_t __init_memblock memblock_get_current_limit(void)
1686 {
1687 return memblock.current_limit;
1688 }
1689
1690 static void __init_memblock memblock_dump(struct memblock_type *type)
1691 {
1692 phys_addr_t base, end, size;
1693 unsigned long flags;
1694 int idx;
1695 struct memblock_region *rgn;
1696
1697 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1698
1699 for_each_memblock_type(type, rgn) {
1700 char nid_buf[32] = "";
1701
1702 base = rgn->base;
1703 size = rgn->size;
1704 end = base + size - 1;
1705 flags = rgn->flags;
1706 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1707 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1708 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1709 memblock_get_region_node(rgn));
1710 #endif
1711 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1712 type->name, idx, &base, &end, &size, nid_buf, flags);
1713 }
1714 }
1715
1716 void __init_memblock __memblock_dump_all(void)
1717 {
1718 pr_info("MEMBLOCK configuration:\n");
1719 pr_info(" memory size = %pa reserved size = %pa\n",
1720 &memblock.memory.total_size,
1721 &memblock.reserved.total_size);
1722
1723 memblock_dump(&memblock.memory);
1724 memblock_dump(&memblock.reserved);
1725 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1726 memblock_dump(&memblock.physmem);
1727 #endif
1728 }
1729
1730 void __init memblock_allow_resize(void)
1731 {
1732 memblock_can_resize = 1;
1733 }
1734
1735 static int __init early_memblock(char *p)
1736 {
1737 if (p && strstr(p, "debug"))
1738 memblock_debug = 1;
1739 return 0;
1740 }
1741 early_param("memblock", early_memblock);
1742
1743 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1744
1745 static int memblock_debug_show(struct seq_file *m, void *private)
1746 {
1747 struct memblock_type *type = m->private;
1748 struct memblock_region *reg;
1749 int i;
1750 phys_addr_t end;
1751
1752 for (i = 0; i < type->cnt; i++) {
1753 reg = &type->regions[i];
1754 end = reg->base + reg->size - 1;
1755
1756 seq_printf(m, "%4d: ", i);
1757 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1758 }
1759 return 0;
1760 }
1761
1762 static int memblock_debug_open(struct inode *inode, struct file *file)
1763 {
1764 return single_open(file, memblock_debug_show, inode->i_private);
1765 }
1766
1767 static const struct file_operations memblock_debug_fops = {
1768 .open = memblock_debug_open,
1769 .read = seq_read,
1770 .llseek = seq_lseek,
1771 .release = single_release,
1772 };
1773
1774 static int __init memblock_init_debugfs(void)
1775 {
1776 struct dentry *root = debugfs_create_dir("memblock", NULL);
1777 if (!root)
1778 return -ENXIO;
1779 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1780 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1781 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1782 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1783 #endif
1784
1785 return 0;
1786 }
1787 __initcall(memblock_init_debugfs);
1788
1789 #endif /* CONFIG_DEBUG_FS */