]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memblock.c
Merge remote-tracking branch 'regulator/fix/max77802' into regulator-linus
[mirror_ubuntu-artful-kernel.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
22
23 #include <asm/sections.h>
24 #include <linux/io.h>
25
26 #include "internal.h"
27
28 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
29 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
32 #endif
33
34 struct memblock memblock __initdata_memblock = {
35 .memory.regions = memblock_memory_init_regions,
36 .memory.cnt = 1, /* empty dummy entry */
37 .memory.max = INIT_MEMBLOCK_REGIONS,
38 .memory.name = "memory",
39
40 .reserved.regions = memblock_reserved_init_regions,
41 .reserved.cnt = 1, /* empty dummy entry */
42 .reserved.max = INIT_MEMBLOCK_REGIONS,
43 .reserved.name = "reserved",
44
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem.regions = memblock_physmem_init_regions,
47 .physmem.cnt = 1, /* empty dummy entry */
48 .physmem.max = INIT_PHYSMEM_REGIONS,
49 .physmem.name = "physmem",
50 #endif
51
52 .bottom_up = false,
53 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
54 };
55
56 int memblock_debug __initdata_memblock;
57 #ifdef CONFIG_MOVABLE_NODE
58 bool movable_node_enabled __initdata_memblock = false;
59 #endif
60 static bool system_has_some_mirror __initdata_memblock = false;
61 static int memblock_can_resize __initdata_memblock;
62 static int memblock_memory_in_slab __initdata_memblock = 0;
63 static int memblock_reserved_in_slab __initdata_memblock = 0;
64
65 ulong __init_memblock choose_memblock_flags(void)
66 {
67 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
68 }
69
70 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
71 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
72 {
73 return *size = min(*size, (phys_addr_t)ULLONG_MAX - base);
74 }
75
76 /*
77 * Address comparison utilities
78 */
79 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
80 phys_addr_t base2, phys_addr_t size2)
81 {
82 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
83 }
84
85 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
86 phys_addr_t base, phys_addr_t size)
87 {
88 unsigned long i;
89
90 for (i = 0; i < type->cnt; i++)
91 if (memblock_addrs_overlap(base, size, type->regions[i].base,
92 type->regions[i].size))
93 break;
94 return i < type->cnt;
95 }
96
97 /*
98 * __memblock_find_range_bottom_up - find free area utility in bottom-up
99 * @start: start of candidate range
100 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
101 * @size: size of free area to find
102 * @align: alignment of free area to find
103 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
104 * @flags: pick from blocks based on memory attributes
105 *
106 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
107 *
108 * RETURNS:
109 * Found address on success, 0 on failure.
110 */
111 static phys_addr_t __init_memblock
112 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
113 phys_addr_t size, phys_addr_t align, int nid,
114 ulong flags)
115 {
116 phys_addr_t this_start, this_end, cand;
117 u64 i;
118
119 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
120 this_start = clamp(this_start, start, end);
121 this_end = clamp(this_end, start, end);
122
123 cand = round_up(this_start, align);
124 if (cand < this_end && this_end - cand >= size)
125 return cand;
126 }
127
128 return 0;
129 }
130
131 /**
132 * __memblock_find_range_top_down - find free area utility, in top-down
133 * @start: start of candidate range
134 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
135 * @size: size of free area to find
136 * @align: alignment of free area to find
137 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
138 * @flags: pick from blocks based on memory attributes
139 *
140 * Utility called from memblock_find_in_range_node(), find free area top-down.
141 *
142 * RETURNS:
143 * Found address on success, 0 on failure.
144 */
145 static phys_addr_t __init_memblock
146 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
147 phys_addr_t size, phys_addr_t align, int nid,
148 ulong flags)
149 {
150 phys_addr_t this_start, this_end, cand;
151 u64 i;
152
153 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
154 NULL) {
155 this_start = clamp(this_start, start, end);
156 this_end = clamp(this_end, start, end);
157
158 if (this_end < size)
159 continue;
160
161 cand = round_down(this_end - size, align);
162 if (cand >= this_start)
163 return cand;
164 }
165
166 return 0;
167 }
168
169 /**
170 * memblock_find_in_range_node - find free area in given range and node
171 * @size: size of free area to find
172 * @align: alignment of free area to find
173 * @start: start of candidate range
174 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
175 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
176 * @flags: pick from blocks based on memory attributes
177 *
178 * Find @size free area aligned to @align in the specified range and node.
179 *
180 * When allocation direction is bottom-up, the @start should be greater
181 * than the end of the kernel image. Otherwise, it will be trimmed. The
182 * reason is that we want the bottom-up allocation just near the kernel
183 * image so it is highly likely that the allocated memory and the kernel
184 * will reside in the same node.
185 *
186 * If bottom-up allocation failed, will try to allocate memory top-down.
187 *
188 * RETURNS:
189 * Found address on success, 0 on failure.
190 */
191 phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
192 phys_addr_t align, phys_addr_t start,
193 phys_addr_t end, int nid, ulong flags)
194 {
195 phys_addr_t kernel_end, ret;
196
197 /* pump up @end */
198 if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
199 end = memblock.current_limit;
200
201 /* avoid allocating the first page */
202 start = max_t(phys_addr_t, start, PAGE_SIZE);
203 end = max(start, end);
204 kernel_end = __pa_symbol(_end);
205
206 /*
207 * try bottom-up allocation only when bottom-up mode
208 * is set and @end is above the kernel image.
209 */
210 if (memblock_bottom_up() && end > kernel_end) {
211 phys_addr_t bottom_up_start;
212
213 /* make sure we will allocate above the kernel */
214 bottom_up_start = max(start, kernel_end);
215
216 /* ok, try bottom-up allocation first */
217 ret = __memblock_find_range_bottom_up(bottom_up_start, end,
218 size, align, nid, flags);
219 if (ret)
220 return ret;
221
222 /*
223 * we always limit bottom-up allocation above the kernel,
224 * but top-down allocation doesn't have the limit, so
225 * retrying top-down allocation may succeed when bottom-up
226 * allocation failed.
227 *
228 * bottom-up allocation is expected to be fail very rarely,
229 * so we use WARN_ONCE() here to see the stack trace if
230 * fail happens.
231 */
232 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
233 }
234
235 return __memblock_find_range_top_down(start, end, size, align, nid,
236 flags);
237 }
238
239 /**
240 * memblock_find_in_range - find free area in given range
241 * @start: start of candidate range
242 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
243 * @size: size of free area to find
244 * @align: alignment of free area to find
245 *
246 * Find @size free area aligned to @align in the specified range.
247 *
248 * RETURNS:
249 * Found address on success, 0 on failure.
250 */
251 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
252 phys_addr_t end, phys_addr_t size,
253 phys_addr_t align)
254 {
255 phys_addr_t ret;
256 ulong flags = choose_memblock_flags();
257
258 again:
259 ret = memblock_find_in_range_node(size, align, start, end,
260 NUMA_NO_NODE, flags);
261
262 if (!ret && (flags & MEMBLOCK_MIRROR)) {
263 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
264 &size);
265 flags &= ~MEMBLOCK_MIRROR;
266 goto again;
267 }
268
269 return ret;
270 }
271
272 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
273 {
274 type->total_size -= type->regions[r].size;
275 memmove(&type->regions[r], &type->regions[r + 1],
276 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
277 type->cnt--;
278
279 /* Special case for empty arrays */
280 if (type->cnt == 0) {
281 WARN_ON(type->total_size != 0);
282 type->cnt = 1;
283 type->regions[0].base = 0;
284 type->regions[0].size = 0;
285 type->regions[0].flags = 0;
286 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
287 }
288 }
289
290 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
291
292 phys_addr_t __init_memblock get_allocated_memblock_reserved_regions_info(
293 phys_addr_t *addr)
294 {
295 if (memblock.reserved.regions == memblock_reserved_init_regions)
296 return 0;
297
298 *addr = __pa(memblock.reserved.regions);
299
300 return PAGE_ALIGN(sizeof(struct memblock_region) *
301 memblock.reserved.max);
302 }
303
304 phys_addr_t __init_memblock get_allocated_memblock_memory_regions_info(
305 phys_addr_t *addr)
306 {
307 if (memblock.memory.regions == memblock_memory_init_regions)
308 return 0;
309
310 *addr = __pa(memblock.memory.regions);
311
312 return PAGE_ALIGN(sizeof(struct memblock_region) *
313 memblock.memory.max);
314 }
315
316 #endif
317
318 /**
319 * memblock_double_array - double the size of the memblock regions array
320 * @type: memblock type of the regions array being doubled
321 * @new_area_start: starting address of memory range to avoid overlap with
322 * @new_area_size: size of memory range to avoid overlap with
323 *
324 * Double the size of the @type regions array. If memblock is being used to
325 * allocate memory for a new reserved regions array and there is a previously
326 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
327 * waiting to be reserved, ensure the memory used by the new array does
328 * not overlap.
329 *
330 * RETURNS:
331 * 0 on success, -1 on failure.
332 */
333 static int __init_memblock memblock_double_array(struct memblock_type *type,
334 phys_addr_t new_area_start,
335 phys_addr_t new_area_size)
336 {
337 struct memblock_region *new_array, *old_array;
338 phys_addr_t old_alloc_size, new_alloc_size;
339 phys_addr_t old_size, new_size, addr;
340 int use_slab = slab_is_available();
341 int *in_slab;
342
343 /* We don't allow resizing until we know about the reserved regions
344 * of memory that aren't suitable for allocation
345 */
346 if (!memblock_can_resize)
347 return -1;
348
349 /* Calculate new doubled size */
350 old_size = type->max * sizeof(struct memblock_region);
351 new_size = old_size << 1;
352 /*
353 * We need to allocated new one align to PAGE_SIZE,
354 * so we can free them completely later.
355 */
356 old_alloc_size = PAGE_ALIGN(old_size);
357 new_alloc_size = PAGE_ALIGN(new_size);
358
359 /* Retrieve the slab flag */
360 if (type == &memblock.memory)
361 in_slab = &memblock_memory_in_slab;
362 else
363 in_slab = &memblock_reserved_in_slab;
364
365 /* Try to find some space for it.
366 *
367 * WARNING: We assume that either slab_is_available() and we use it or
368 * we use MEMBLOCK for allocations. That means that this is unsafe to
369 * use when bootmem is currently active (unless bootmem itself is
370 * implemented on top of MEMBLOCK which isn't the case yet)
371 *
372 * This should however not be an issue for now, as we currently only
373 * call into MEMBLOCK while it's still active, or much later when slab
374 * is active for memory hotplug operations
375 */
376 if (use_slab) {
377 new_array = kmalloc(new_size, GFP_KERNEL);
378 addr = new_array ? __pa(new_array) : 0;
379 } else {
380 /* only exclude range when trying to double reserved.regions */
381 if (type != &memblock.reserved)
382 new_area_start = new_area_size = 0;
383
384 addr = memblock_find_in_range(new_area_start + new_area_size,
385 memblock.current_limit,
386 new_alloc_size, PAGE_SIZE);
387 if (!addr && new_area_size)
388 addr = memblock_find_in_range(0,
389 min(new_area_start, memblock.current_limit),
390 new_alloc_size, PAGE_SIZE);
391
392 new_array = addr ? __va(addr) : NULL;
393 }
394 if (!addr) {
395 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
396 type->name, type->max, type->max * 2);
397 return -1;
398 }
399
400 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
401 type->name, type->max * 2, (u64)addr,
402 (u64)addr + new_size - 1);
403
404 /*
405 * Found space, we now need to move the array over before we add the
406 * reserved region since it may be our reserved array itself that is
407 * full.
408 */
409 memcpy(new_array, type->regions, old_size);
410 memset(new_array + type->max, 0, old_size);
411 old_array = type->regions;
412 type->regions = new_array;
413 type->max <<= 1;
414
415 /* Free old array. We needn't free it if the array is the static one */
416 if (*in_slab)
417 kfree(old_array);
418 else if (old_array != memblock_memory_init_regions &&
419 old_array != memblock_reserved_init_regions)
420 memblock_free(__pa(old_array), old_alloc_size);
421
422 /*
423 * Reserve the new array if that comes from the memblock. Otherwise, we
424 * needn't do it
425 */
426 if (!use_slab)
427 BUG_ON(memblock_reserve(addr, new_alloc_size));
428
429 /* Update slab flag */
430 *in_slab = use_slab;
431
432 return 0;
433 }
434
435 /**
436 * memblock_merge_regions - merge neighboring compatible regions
437 * @type: memblock type to scan
438 *
439 * Scan @type and merge neighboring compatible regions.
440 */
441 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
442 {
443 int i = 0;
444
445 /* cnt never goes below 1 */
446 while (i < type->cnt - 1) {
447 struct memblock_region *this = &type->regions[i];
448 struct memblock_region *next = &type->regions[i + 1];
449
450 if (this->base + this->size != next->base ||
451 memblock_get_region_node(this) !=
452 memblock_get_region_node(next) ||
453 this->flags != next->flags) {
454 BUG_ON(this->base + this->size > next->base);
455 i++;
456 continue;
457 }
458
459 this->size += next->size;
460 /* move forward from next + 1, index of which is i + 2 */
461 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
462 type->cnt--;
463 }
464 }
465
466 /**
467 * memblock_insert_region - insert new memblock region
468 * @type: memblock type to insert into
469 * @idx: index for the insertion point
470 * @base: base address of the new region
471 * @size: size of the new region
472 * @nid: node id of the new region
473 * @flags: flags of the new region
474 *
475 * Insert new memblock region [@base,@base+@size) into @type at @idx.
476 * @type must already have extra room to accommodate the new region.
477 */
478 static void __init_memblock memblock_insert_region(struct memblock_type *type,
479 int idx, phys_addr_t base,
480 phys_addr_t size,
481 int nid, unsigned long flags)
482 {
483 struct memblock_region *rgn = &type->regions[idx];
484
485 BUG_ON(type->cnt >= type->max);
486 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
487 rgn->base = base;
488 rgn->size = size;
489 rgn->flags = flags;
490 memblock_set_region_node(rgn, nid);
491 type->cnt++;
492 type->total_size += size;
493 }
494
495 /**
496 * memblock_add_range - add new memblock region
497 * @type: memblock type to add new region into
498 * @base: base address of the new region
499 * @size: size of the new region
500 * @nid: nid of the new region
501 * @flags: flags of the new region
502 *
503 * Add new memblock region [@base,@base+@size) into @type. The new region
504 * is allowed to overlap with existing ones - overlaps don't affect already
505 * existing regions. @type is guaranteed to be minimal (all neighbouring
506 * compatible regions are merged) after the addition.
507 *
508 * RETURNS:
509 * 0 on success, -errno on failure.
510 */
511 int __init_memblock memblock_add_range(struct memblock_type *type,
512 phys_addr_t base, phys_addr_t size,
513 int nid, unsigned long flags)
514 {
515 bool insert = false;
516 phys_addr_t obase = base;
517 phys_addr_t end = base + memblock_cap_size(base, &size);
518 int idx, nr_new;
519 struct memblock_region *rgn;
520
521 if (!size)
522 return 0;
523
524 /* special case for empty array */
525 if (type->regions[0].size == 0) {
526 WARN_ON(type->cnt != 1 || type->total_size);
527 type->regions[0].base = base;
528 type->regions[0].size = size;
529 type->regions[0].flags = flags;
530 memblock_set_region_node(&type->regions[0], nid);
531 type->total_size = size;
532 return 0;
533 }
534 repeat:
535 /*
536 * The following is executed twice. Once with %false @insert and
537 * then with %true. The first counts the number of regions needed
538 * to accommodate the new area. The second actually inserts them.
539 */
540 base = obase;
541 nr_new = 0;
542
543 for_each_memblock_type(type, rgn) {
544 phys_addr_t rbase = rgn->base;
545 phys_addr_t rend = rbase + rgn->size;
546
547 if (rbase >= end)
548 break;
549 if (rend <= base)
550 continue;
551 /*
552 * @rgn overlaps. If it separates the lower part of new
553 * area, insert that portion.
554 */
555 if (rbase > base) {
556 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
557 WARN_ON(nid != memblock_get_region_node(rgn));
558 #endif
559 WARN_ON(flags != rgn->flags);
560 nr_new++;
561 if (insert)
562 memblock_insert_region(type, idx++, base,
563 rbase - base, nid,
564 flags);
565 }
566 /* area below @rend is dealt with, forget about it */
567 base = min(rend, end);
568 }
569
570 /* insert the remaining portion */
571 if (base < end) {
572 nr_new++;
573 if (insert)
574 memblock_insert_region(type, idx, base, end - base,
575 nid, flags);
576 }
577
578 if (!nr_new)
579 return 0;
580
581 /*
582 * If this was the first round, resize array and repeat for actual
583 * insertions; otherwise, merge and return.
584 */
585 if (!insert) {
586 while (type->cnt + nr_new > type->max)
587 if (memblock_double_array(type, obase, size) < 0)
588 return -ENOMEM;
589 insert = true;
590 goto repeat;
591 } else {
592 memblock_merge_regions(type);
593 return 0;
594 }
595 }
596
597 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
598 int nid)
599 {
600 return memblock_add_range(&memblock.memory, base, size, nid, 0);
601 }
602
603 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
604 {
605 phys_addr_t end = base + size - 1;
606
607 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
608 &base, &end, (void *)_RET_IP_);
609
610 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
611 }
612
613 /**
614 * memblock_isolate_range - isolate given range into disjoint memblocks
615 * @type: memblock type to isolate range for
616 * @base: base of range to isolate
617 * @size: size of range to isolate
618 * @start_rgn: out parameter for the start of isolated region
619 * @end_rgn: out parameter for the end of isolated region
620 *
621 * Walk @type and ensure that regions don't cross the boundaries defined by
622 * [@base,@base+@size). Crossing regions are split at the boundaries,
623 * which may create at most two more regions. The index of the first
624 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
625 *
626 * RETURNS:
627 * 0 on success, -errno on failure.
628 */
629 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
630 phys_addr_t base, phys_addr_t size,
631 int *start_rgn, int *end_rgn)
632 {
633 phys_addr_t end = base + memblock_cap_size(base, &size);
634 int idx;
635 struct memblock_region *rgn;
636
637 *start_rgn = *end_rgn = 0;
638
639 if (!size)
640 return 0;
641
642 /* we'll create at most two more regions */
643 while (type->cnt + 2 > type->max)
644 if (memblock_double_array(type, base, size) < 0)
645 return -ENOMEM;
646
647 for_each_memblock_type(type, rgn) {
648 phys_addr_t rbase = rgn->base;
649 phys_addr_t rend = rbase + rgn->size;
650
651 if (rbase >= end)
652 break;
653 if (rend <= base)
654 continue;
655
656 if (rbase < base) {
657 /*
658 * @rgn intersects from below. Split and continue
659 * to process the next region - the new top half.
660 */
661 rgn->base = base;
662 rgn->size -= base - rbase;
663 type->total_size -= base - rbase;
664 memblock_insert_region(type, idx, rbase, base - rbase,
665 memblock_get_region_node(rgn),
666 rgn->flags);
667 } else if (rend > end) {
668 /*
669 * @rgn intersects from above. Split and redo the
670 * current region - the new bottom half.
671 */
672 rgn->base = end;
673 rgn->size -= end - rbase;
674 type->total_size -= end - rbase;
675 memblock_insert_region(type, idx--, rbase, end - rbase,
676 memblock_get_region_node(rgn),
677 rgn->flags);
678 } else {
679 /* @rgn is fully contained, record it */
680 if (!*end_rgn)
681 *start_rgn = idx;
682 *end_rgn = idx + 1;
683 }
684 }
685
686 return 0;
687 }
688
689 static int __init_memblock memblock_remove_range(struct memblock_type *type,
690 phys_addr_t base, phys_addr_t size)
691 {
692 int start_rgn, end_rgn;
693 int i, ret;
694
695 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
696 if (ret)
697 return ret;
698
699 for (i = end_rgn - 1; i >= start_rgn; i--)
700 memblock_remove_region(type, i);
701 return 0;
702 }
703
704 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
705 {
706 return memblock_remove_range(&memblock.memory, base, size);
707 }
708
709
710 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
711 {
712 phys_addr_t end = base + size - 1;
713
714 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
715 &base, &end, (void *)_RET_IP_);
716
717 kmemleak_free_part_phys(base, size);
718 return memblock_remove_range(&memblock.reserved, base, size);
719 }
720
721 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
722 {
723 phys_addr_t end = base + size - 1;
724
725 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
726 &base, &end, (void *)_RET_IP_);
727
728 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
729 }
730
731 /**
732 *
733 * This function isolates region [@base, @base + @size), and sets/clears flag
734 *
735 * Return 0 on success, -errno on failure.
736 */
737 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
738 phys_addr_t size, int set, int flag)
739 {
740 struct memblock_type *type = &memblock.memory;
741 int i, ret, start_rgn, end_rgn;
742
743 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
744 if (ret)
745 return ret;
746
747 for (i = start_rgn; i < end_rgn; i++)
748 if (set)
749 memblock_set_region_flags(&type->regions[i], flag);
750 else
751 memblock_clear_region_flags(&type->regions[i], flag);
752
753 memblock_merge_regions(type);
754 return 0;
755 }
756
757 /**
758 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
759 * @base: the base phys addr of the region
760 * @size: the size of the region
761 *
762 * Return 0 on success, -errno on failure.
763 */
764 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
765 {
766 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
767 }
768
769 /**
770 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
771 * @base: the base phys addr of the region
772 * @size: the size of the region
773 *
774 * Return 0 on success, -errno on failure.
775 */
776 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
777 {
778 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
779 }
780
781 /**
782 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
783 * @base: the base phys addr of the region
784 * @size: the size of the region
785 *
786 * Return 0 on success, -errno on failure.
787 */
788 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
789 {
790 system_has_some_mirror = true;
791
792 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
793 }
794
795 /**
796 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
797 * @base: the base phys addr of the region
798 * @size: the size of the region
799 *
800 * Return 0 on success, -errno on failure.
801 */
802 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
803 {
804 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
805 }
806
807 /**
808 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
809 * @base: the base phys addr of the region
810 * @size: the size of the region
811 *
812 * Return 0 on success, -errno on failure.
813 */
814 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
815 {
816 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
817 }
818
819 /**
820 * __next_reserved_mem_region - next function for for_each_reserved_region()
821 * @idx: pointer to u64 loop variable
822 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
823 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
824 *
825 * Iterate over all reserved memory regions.
826 */
827 void __init_memblock __next_reserved_mem_region(u64 *idx,
828 phys_addr_t *out_start,
829 phys_addr_t *out_end)
830 {
831 struct memblock_type *type = &memblock.reserved;
832
833 if (*idx < type->cnt) {
834 struct memblock_region *r = &type->regions[*idx];
835 phys_addr_t base = r->base;
836 phys_addr_t size = r->size;
837
838 if (out_start)
839 *out_start = base;
840 if (out_end)
841 *out_end = base + size - 1;
842
843 *idx += 1;
844 return;
845 }
846
847 /* signal end of iteration */
848 *idx = ULLONG_MAX;
849 }
850
851 /**
852 * __next__mem_range - next function for for_each_free_mem_range() etc.
853 * @idx: pointer to u64 loop variable
854 * @nid: node selector, %NUMA_NO_NODE for all nodes
855 * @flags: pick from blocks based on memory attributes
856 * @type_a: pointer to memblock_type from where the range is taken
857 * @type_b: pointer to memblock_type which excludes memory from being taken
858 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
859 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
860 * @out_nid: ptr to int for nid of the range, can be %NULL
861 *
862 * Find the first area from *@idx which matches @nid, fill the out
863 * parameters, and update *@idx for the next iteration. The lower 32bit of
864 * *@idx contains index into type_a and the upper 32bit indexes the
865 * areas before each region in type_b. For example, if type_b regions
866 * look like the following,
867 *
868 * 0:[0-16), 1:[32-48), 2:[128-130)
869 *
870 * The upper 32bit indexes the following regions.
871 *
872 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
873 *
874 * As both region arrays are sorted, the function advances the two indices
875 * in lockstep and returns each intersection.
876 */
877 void __init_memblock __next_mem_range(u64 *idx, int nid, ulong flags,
878 struct memblock_type *type_a,
879 struct memblock_type *type_b,
880 phys_addr_t *out_start,
881 phys_addr_t *out_end, int *out_nid)
882 {
883 int idx_a = *idx & 0xffffffff;
884 int idx_b = *idx >> 32;
885
886 if (WARN_ONCE(nid == MAX_NUMNODES,
887 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
888 nid = NUMA_NO_NODE;
889
890 for (; idx_a < type_a->cnt; idx_a++) {
891 struct memblock_region *m = &type_a->regions[idx_a];
892
893 phys_addr_t m_start = m->base;
894 phys_addr_t m_end = m->base + m->size;
895 int m_nid = memblock_get_region_node(m);
896
897 /* only memory regions are associated with nodes, check it */
898 if (nid != NUMA_NO_NODE && nid != m_nid)
899 continue;
900
901 /* skip hotpluggable memory regions if needed */
902 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
903 continue;
904
905 /* if we want mirror memory skip non-mirror memory regions */
906 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
907 continue;
908
909 /* skip nomap memory unless we were asked for it explicitly */
910 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
911 continue;
912
913 if (!type_b) {
914 if (out_start)
915 *out_start = m_start;
916 if (out_end)
917 *out_end = m_end;
918 if (out_nid)
919 *out_nid = m_nid;
920 idx_a++;
921 *idx = (u32)idx_a | (u64)idx_b << 32;
922 return;
923 }
924
925 /* scan areas before each reservation */
926 for (; idx_b < type_b->cnt + 1; idx_b++) {
927 struct memblock_region *r;
928 phys_addr_t r_start;
929 phys_addr_t r_end;
930
931 r = &type_b->regions[idx_b];
932 r_start = idx_b ? r[-1].base + r[-1].size : 0;
933 r_end = idx_b < type_b->cnt ?
934 r->base : ULLONG_MAX;
935
936 /*
937 * if idx_b advanced past idx_a,
938 * break out to advance idx_a
939 */
940 if (r_start >= m_end)
941 break;
942 /* if the two regions intersect, we're done */
943 if (m_start < r_end) {
944 if (out_start)
945 *out_start =
946 max(m_start, r_start);
947 if (out_end)
948 *out_end = min(m_end, r_end);
949 if (out_nid)
950 *out_nid = m_nid;
951 /*
952 * The region which ends first is
953 * advanced for the next iteration.
954 */
955 if (m_end <= r_end)
956 idx_a++;
957 else
958 idx_b++;
959 *idx = (u32)idx_a | (u64)idx_b << 32;
960 return;
961 }
962 }
963 }
964
965 /* signal end of iteration */
966 *idx = ULLONG_MAX;
967 }
968
969 /**
970 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
971 *
972 * Finds the next range from type_a which is not marked as unsuitable
973 * in type_b.
974 *
975 * @idx: pointer to u64 loop variable
976 * @nid: node selector, %NUMA_NO_NODE for all nodes
977 * @flags: pick from blocks based on memory attributes
978 * @type_a: pointer to memblock_type from where the range is taken
979 * @type_b: pointer to memblock_type which excludes memory from being taken
980 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
981 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
982 * @out_nid: ptr to int for nid of the range, can be %NULL
983 *
984 * Reverse of __next_mem_range().
985 */
986 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, ulong flags,
987 struct memblock_type *type_a,
988 struct memblock_type *type_b,
989 phys_addr_t *out_start,
990 phys_addr_t *out_end, int *out_nid)
991 {
992 int idx_a = *idx & 0xffffffff;
993 int idx_b = *idx >> 32;
994
995 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
996 nid = NUMA_NO_NODE;
997
998 if (*idx == (u64)ULLONG_MAX) {
999 idx_a = type_a->cnt - 1;
1000 if (type_b != NULL)
1001 idx_b = type_b->cnt;
1002 else
1003 idx_b = 0;
1004 }
1005
1006 for (; idx_a >= 0; idx_a--) {
1007 struct memblock_region *m = &type_a->regions[idx_a];
1008
1009 phys_addr_t m_start = m->base;
1010 phys_addr_t m_end = m->base + m->size;
1011 int m_nid = memblock_get_region_node(m);
1012
1013 /* only memory regions are associated with nodes, check it */
1014 if (nid != NUMA_NO_NODE && nid != m_nid)
1015 continue;
1016
1017 /* skip hotpluggable memory regions if needed */
1018 if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1019 continue;
1020
1021 /* if we want mirror memory skip non-mirror memory regions */
1022 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1023 continue;
1024
1025 /* skip nomap memory unless we were asked for it explicitly */
1026 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1027 continue;
1028
1029 if (!type_b) {
1030 if (out_start)
1031 *out_start = m_start;
1032 if (out_end)
1033 *out_end = m_end;
1034 if (out_nid)
1035 *out_nid = m_nid;
1036 idx_a--;
1037 *idx = (u32)idx_a | (u64)idx_b << 32;
1038 return;
1039 }
1040
1041 /* scan areas before each reservation */
1042 for (; idx_b >= 0; idx_b--) {
1043 struct memblock_region *r;
1044 phys_addr_t r_start;
1045 phys_addr_t r_end;
1046
1047 r = &type_b->regions[idx_b];
1048 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1049 r_end = idx_b < type_b->cnt ?
1050 r->base : ULLONG_MAX;
1051 /*
1052 * if idx_b advanced past idx_a,
1053 * break out to advance idx_a
1054 */
1055
1056 if (r_end <= m_start)
1057 break;
1058 /* if the two regions intersect, we're done */
1059 if (m_end > r_start) {
1060 if (out_start)
1061 *out_start = max(m_start, r_start);
1062 if (out_end)
1063 *out_end = min(m_end, r_end);
1064 if (out_nid)
1065 *out_nid = m_nid;
1066 if (m_start >= r_start)
1067 idx_a--;
1068 else
1069 idx_b--;
1070 *idx = (u32)idx_a | (u64)idx_b << 32;
1071 return;
1072 }
1073 }
1074 }
1075 /* signal end of iteration */
1076 *idx = ULLONG_MAX;
1077 }
1078
1079 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1080 /*
1081 * Common iterator interface used to define for_each_mem_range().
1082 */
1083 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1084 unsigned long *out_start_pfn,
1085 unsigned long *out_end_pfn, int *out_nid)
1086 {
1087 struct memblock_type *type = &memblock.memory;
1088 struct memblock_region *r;
1089
1090 while (++*idx < type->cnt) {
1091 r = &type->regions[*idx];
1092
1093 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1094 continue;
1095 if (nid == MAX_NUMNODES || nid == r->nid)
1096 break;
1097 }
1098 if (*idx >= type->cnt) {
1099 *idx = -1;
1100 return;
1101 }
1102
1103 if (out_start_pfn)
1104 *out_start_pfn = PFN_UP(r->base);
1105 if (out_end_pfn)
1106 *out_end_pfn = PFN_DOWN(r->base + r->size);
1107 if (out_nid)
1108 *out_nid = r->nid;
1109 }
1110
1111 unsigned long __init_memblock memblock_next_valid_pfn(unsigned long pfn,
1112 unsigned long max_pfn)
1113 {
1114 struct memblock_type *type = &memblock.memory;
1115 unsigned int right = type->cnt;
1116 unsigned int mid, left = 0;
1117 phys_addr_t addr = PFN_PHYS(pfn + 1);
1118
1119 do {
1120 mid = (right + left) / 2;
1121
1122 if (addr < type->regions[mid].base)
1123 right = mid;
1124 else if (addr >= (type->regions[mid].base +
1125 type->regions[mid].size))
1126 left = mid + 1;
1127 else {
1128 /* addr is within the region, so pfn + 1 is valid */
1129 return min(pfn + 1, max_pfn);
1130 }
1131 } while (left < right);
1132
1133 if (right == type->cnt)
1134 return max_pfn;
1135 else
1136 return min(PHYS_PFN(type->regions[right].base), max_pfn);
1137 }
1138
1139 /**
1140 * memblock_set_node - set node ID on memblock regions
1141 * @base: base of area to set node ID for
1142 * @size: size of area to set node ID for
1143 * @type: memblock type to set node ID for
1144 * @nid: node ID to set
1145 *
1146 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1147 * Regions which cross the area boundaries are split as necessary.
1148 *
1149 * RETURNS:
1150 * 0 on success, -errno on failure.
1151 */
1152 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1153 struct memblock_type *type, int nid)
1154 {
1155 int start_rgn, end_rgn;
1156 int i, ret;
1157
1158 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1159 if (ret)
1160 return ret;
1161
1162 for (i = start_rgn; i < end_rgn; i++)
1163 memblock_set_region_node(&type->regions[i], nid);
1164
1165 memblock_merge_regions(type);
1166 return 0;
1167 }
1168 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1169
1170 static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1171 phys_addr_t align, phys_addr_t start,
1172 phys_addr_t end, int nid, ulong flags)
1173 {
1174 phys_addr_t found;
1175
1176 if (!align)
1177 align = SMP_CACHE_BYTES;
1178
1179 found = memblock_find_in_range_node(size, align, start, end, nid,
1180 flags);
1181 if (found && !memblock_reserve(found, size)) {
1182 /*
1183 * The min_count is set to 0 so that memblock allocations are
1184 * never reported as leaks.
1185 */
1186 kmemleak_alloc_phys(found, size, 0, 0);
1187 return found;
1188 }
1189 return 0;
1190 }
1191
1192 phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1193 phys_addr_t start, phys_addr_t end,
1194 ulong flags)
1195 {
1196 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1197 flags);
1198 }
1199
1200 static phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1201 phys_addr_t align, phys_addr_t max_addr,
1202 int nid, ulong flags)
1203 {
1204 return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1205 }
1206
1207 phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1208 {
1209 ulong flags = choose_memblock_flags();
1210 phys_addr_t ret;
1211
1212 again:
1213 ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1214 nid, flags);
1215
1216 if (!ret && (flags & MEMBLOCK_MIRROR)) {
1217 flags &= ~MEMBLOCK_MIRROR;
1218 goto again;
1219 }
1220 return ret;
1221 }
1222
1223 phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1224 {
1225 return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1226 MEMBLOCK_NONE);
1227 }
1228
1229 phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1230 {
1231 phys_addr_t alloc;
1232
1233 alloc = __memblock_alloc_base(size, align, max_addr);
1234
1235 if (alloc == 0)
1236 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1237 &size, &max_addr);
1238
1239 return alloc;
1240 }
1241
1242 phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1243 {
1244 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1245 }
1246
1247 phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1248 {
1249 phys_addr_t res = memblock_alloc_nid(size, align, nid);
1250
1251 if (res)
1252 return res;
1253 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1254 }
1255
1256 /**
1257 * memblock_virt_alloc_internal - allocate boot memory block
1258 * @size: size of memory block to be allocated in bytes
1259 * @align: alignment of the region and block's size
1260 * @min_addr: the lower bound of the memory region to allocate (phys address)
1261 * @max_addr: the upper bound of the memory region to allocate (phys address)
1262 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1263 *
1264 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1265 * will fall back to memory below @min_addr. Also, allocation may fall back
1266 * to any node in the system if the specified node can not
1267 * hold the requested memory.
1268 *
1269 * The allocation is performed from memory region limited by
1270 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1271 *
1272 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1273 *
1274 * The phys address of allocated boot memory block is converted to virtual and
1275 * allocated memory is reset to 0.
1276 *
1277 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1278 * allocated boot memory block, so that it is never reported as leaks.
1279 *
1280 * RETURNS:
1281 * Virtual address of allocated memory block on success, NULL on failure.
1282 */
1283 static void * __init memblock_virt_alloc_internal(
1284 phys_addr_t size, phys_addr_t align,
1285 phys_addr_t min_addr, phys_addr_t max_addr,
1286 int nid)
1287 {
1288 phys_addr_t alloc;
1289 void *ptr;
1290 ulong flags = choose_memblock_flags();
1291
1292 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1293 nid = NUMA_NO_NODE;
1294
1295 /*
1296 * Detect any accidental use of these APIs after slab is ready, as at
1297 * this moment memblock may be deinitialized already and its
1298 * internal data may be destroyed (after execution of free_all_bootmem)
1299 */
1300 if (WARN_ON_ONCE(slab_is_available()))
1301 return kzalloc_node(size, GFP_NOWAIT, nid);
1302
1303 if (!align)
1304 align = SMP_CACHE_BYTES;
1305
1306 if (max_addr > memblock.current_limit)
1307 max_addr = memblock.current_limit;
1308 again:
1309 alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1310 nid, flags);
1311 if (alloc && !memblock_reserve(alloc, size))
1312 goto done;
1313
1314 if (nid != NUMA_NO_NODE) {
1315 alloc = memblock_find_in_range_node(size, align, min_addr,
1316 max_addr, NUMA_NO_NODE,
1317 flags);
1318 if (alloc && !memblock_reserve(alloc, size))
1319 goto done;
1320 }
1321
1322 if (min_addr) {
1323 min_addr = 0;
1324 goto again;
1325 }
1326
1327 if (flags & MEMBLOCK_MIRROR) {
1328 flags &= ~MEMBLOCK_MIRROR;
1329 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1330 &size);
1331 goto again;
1332 }
1333
1334 return NULL;
1335 done:
1336 ptr = phys_to_virt(alloc);
1337 memset(ptr, 0, size);
1338
1339 /*
1340 * The min_count is set to 0 so that bootmem allocated blocks
1341 * are never reported as leaks. This is because many of these blocks
1342 * are only referred via the physical address which is not
1343 * looked up by kmemleak.
1344 */
1345 kmemleak_alloc(ptr, size, 0, 0);
1346
1347 return ptr;
1348 }
1349
1350 /**
1351 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1352 * @size: size of memory block to be allocated in bytes
1353 * @align: alignment of the region and block's size
1354 * @min_addr: the lower bound of the memory region from where the allocation
1355 * is preferred (phys address)
1356 * @max_addr: the upper bound of the memory region from where the allocation
1357 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1358 * allocate only from memory limited by memblock.current_limit value
1359 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1360 *
1361 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1362 * additional debug information (including caller info), if enabled.
1363 *
1364 * RETURNS:
1365 * Virtual address of allocated memory block on success, NULL on failure.
1366 */
1367 void * __init memblock_virt_alloc_try_nid_nopanic(
1368 phys_addr_t size, phys_addr_t align,
1369 phys_addr_t min_addr, phys_addr_t max_addr,
1370 int nid)
1371 {
1372 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1373 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1374 (u64)max_addr, (void *)_RET_IP_);
1375 return memblock_virt_alloc_internal(size, align, min_addr,
1376 max_addr, nid);
1377 }
1378
1379 /**
1380 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1381 * @size: size of memory block to be allocated in bytes
1382 * @align: alignment of the region and block's size
1383 * @min_addr: the lower bound of the memory region from where the allocation
1384 * is preferred (phys address)
1385 * @max_addr: the upper bound of the memory region from where the allocation
1386 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1387 * allocate only from memory limited by memblock.current_limit value
1388 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1389 *
1390 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1391 * which provides debug information (including caller info), if enabled,
1392 * and panics if the request can not be satisfied.
1393 *
1394 * RETURNS:
1395 * Virtual address of allocated memory block on success, NULL on failure.
1396 */
1397 void * __init memblock_virt_alloc_try_nid(
1398 phys_addr_t size, phys_addr_t align,
1399 phys_addr_t min_addr, phys_addr_t max_addr,
1400 int nid)
1401 {
1402 void *ptr;
1403
1404 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1405 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1406 (u64)max_addr, (void *)_RET_IP_);
1407 ptr = memblock_virt_alloc_internal(size, align,
1408 min_addr, max_addr, nid);
1409 if (ptr)
1410 return ptr;
1411
1412 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1413 __func__, (u64)size, (u64)align, nid, (u64)min_addr,
1414 (u64)max_addr);
1415 return NULL;
1416 }
1417
1418 /**
1419 * __memblock_free_early - free boot memory block
1420 * @base: phys starting address of the boot memory block
1421 * @size: size of the boot memory block in bytes
1422 *
1423 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1424 * The freeing memory will not be released to the buddy allocator.
1425 */
1426 void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1427 {
1428 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1429 __func__, (u64)base, (u64)base + size - 1,
1430 (void *)_RET_IP_);
1431 kmemleak_free_part_phys(base, size);
1432 memblock_remove_range(&memblock.reserved, base, size);
1433 }
1434
1435 /*
1436 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1437 * @addr: phys starting address of the boot memory block
1438 * @size: size of the boot memory block in bytes
1439 *
1440 * This is only useful when the bootmem allocator has already been torn
1441 * down, but we are still initializing the system. Pages are released directly
1442 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1443 */
1444 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1445 {
1446 u64 cursor, end;
1447
1448 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1449 __func__, (u64)base, (u64)base + size - 1,
1450 (void *)_RET_IP_);
1451 kmemleak_free_part_phys(base, size);
1452 cursor = PFN_UP(base);
1453 end = PFN_DOWN(base + size);
1454
1455 for (; cursor < end; cursor++) {
1456 __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1457 totalram_pages++;
1458 }
1459 }
1460
1461 /*
1462 * Remaining API functions
1463 */
1464
1465 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1466 {
1467 return memblock.memory.total_size;
1468 }
1469
1470 phys_addr_t __init_memblock memblock_reserved_size(void)
1471 {
1472 return memblock.reserved.total_size;
1473 }
1474
1475 phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1476 {
1477 unsigned long pages = 0;
1478 struct memblock_region *r;
1479 unsigned long start_pfn, end_pfn;
1480
1481 for_each_memblock(memory, r) {
1482 start_pfn = memblock_region_memory_base_pfn(r);
1483 end_pfn = memblock_region_memory_end_pfn(r);
1484 start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1485 end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1486 pages += end_pfn - start_pfn;
1487 }
1488
1489 return PFN_PHYS(pages);
1490 }
1491
1492 /* lowest address */
1493 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1494 {
1495 return memblock.memory.regions[0].base;
1496 }
1497
1498 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1499 {
1500 int idx = memblock.memory.cnt - 1;
1501
1502 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1503 }
1504
1505 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1506 {
1507 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1508 struct memblock_region *r;
1509
1510 /*
1511 * translate the memory @limit size into the max address within one of
1512 * the memory memblock regions, if the @limit exceeds the total size
1513 * of those regions, max_addr will keep original value ULLONG_MAX
1514 */
1515 for_each_memblock(memory, r) {
1516 if (limit <= r->size) {
1517 max_addr = r->base + limit;
1518 break;
1519 }
1520 limit -= r->size;
1521 }
1522
1523 return max_addr;
1524 }
1525
1526 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1527 {
1528 phys_addr_t max_addr = (phys_addr_t)ULLONG_MAX;
1529
1530 if (!limit)
1531 return;
1532
1533 max_addr = __find_max_addr(limit);
1534
1535 /* @limit exceeds the total size of the memory, do nothing */
1536 if (max_addr == (phys_addr_t)ULLONG_MAX)
1537 return;
1538
1539 /* truncate both memory and reserved regions */
1540 memblock_remove_range(&memblock.memory, max_addr,
1541 (phys_addr_t)ULLONG_MAX);
1542 memblock_remove_range(&memblock.reserved, max_addr,
1543 (phys_addr_t)ULLONG_MAX);
1544 }
1545
1546 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1547 {
1548 int start_rgn, end_rgn;
1549 int i, ret;
1550
1551 if (!size)
1552 return;
1553
1554 ret = memblock_isolate_range(&memblock.memory, base, size,
1555 &start_rgn, &end_rgn);
1556 if (ret)
1557 return;
1558
1559 /* remove all the MAP regions */
1560 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1561 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1562 memblock_remove_region(&memblock.memory, i);
1563
1564 for (i = start_rgn - 1; i >= 0; i--)
1565 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1566 memblock_remove_region(&memblock.memory, i);
1567
1568 /* truncate the reserved regions */
1569 memblock_remove_range(&memblock.reserved, 0, base);
1570 memblock_remove_range(&memblock.reserved,
1571 base + size, (phys_addr_t)ULLONG_MAX);
1572 }
1573
1574 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1575 {
1576 phys_addr_t max_addr;
1577
1578 if (!limit)
1579 return;
1580
1581 max_addr = __find_max_addr(limit);
1582
1583 /* @limit exceeds the total size of the memory, do nothing */
1584 if (max_addr == (phys_addr_t)ULLONG_MAX)
1585 return;
1586
1587 memblock_cap_memory_range(0, max_addr);
1588 }
1589
1590 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1591 {
1592 unsigned int left = 0, right = type->cnt;
1593
1594 do {
1595 unsigned int mid = (right + left) / 2;
1596
1597 if (addr < type->regions[mid].base)
1598 right = mid;
1599 else if (addr >= (type->regions[mid].base +
1600 type->regions[mid].size))
1601 left = mid + 1;
1602 else
1603 return mid;
1604 } while (left < right);
1605 return -1;
1606 }
1607
1608 bool __init memblock_is_reserved(phys_addr_t addr)
1609 {
1610 return memblock_search(&memblock.reserved, addr) != -1;
1611 }
1612
1613 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1614 {
1615 return memblock_search(&memblock.memory, addr) != -1;
1616 }
1617
1618 int __init_memblock memblock_is_map_memory(phys_addr_t addr)
1619 {
1620 int i = memblock_search(&memblock.memory, addr);
1621
1622 if (i == -1)
1623 return false;
1624 return !memblock_is_nomap(&memblock.memory.regions[i]);
1625 }
1626
1627 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1628 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1629 unsigned long *start_pfn, unsigned long *end_pfn)
1630 {
1631 struct memblock_type *type = &memblock.memory;
1632 int mid = memblock_search(type, PFN_PHYS(pfn));
1633
1634 if (mid == -1)
1635 return -1;
1636
1637 *start_pfn = PFN_DOWN(type->regions[mid].base);
1638 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1639
1640 return type->regions[mid].nid;
1641 }
1642 #endif
1643
1644 /**
1645 * memblock_is_region_memory - check if a region is a subset of memory
1646 * @base: base of region to check
1647 * @size: size of region to check
1648 *
1649 * Check if the region [@base, @base+@size) is a subset of a memory block.
1650 *
1651 * RETURNS:
1652 * 0 if false, non-zero if true
1653 */
1654 int __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1655 {
1656 int idx = memblock_search(&memblock.memory, base);
1657 phys_addr_t end = base + memblock_cap_size(base, &size);
1658
1659 if (idx == -1)
1660 return 0;
1661 return (memblock.memory.regions[idx].base +
1662 memblock.memory.regions[idx].size) >= end;
1663 }
1664
1665 /**
1666 * memblock_is_region_reserved - check if a region intersects reserved memory
1667 * @base: base of region to check
1668 * @size: size of region to check
1669 *
1670 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1671 *
1672 * RETURNS:
1673 * True if they intersect, false if not.
1674 */
1675 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1676 {
1677 memblock_cap_size(base, &size);
1678 return memblock_overlaps_region(&memblock.reserved, base, size);
1679 }
1680
1681 void __init_memblock memblock_trim_memory(phys_addr_t align)
1682 {
1683 phys_addr_t start, end, orig_start, orig_end;
1684 struct memblock_region *r;
1685
1686 for_each_memblock(memory, r) {
1687 orig_start = r->base;
1688 orig_end = r->base + r->size;
1689 start = round_up(orig_start, align);
1690 end = round_down(orig_end, align);
1691
1692 if (start == orig_start && end == orig_end)
1693 continue;
1694
1695 if (start < end) {
1696 r->base = start;
1697 r->size = end - start;
1698 } else {
1699 memblock_remove_region(&memblock.memory,
1700 r - memblock.memory.regions);
1701 r--;
1702 }
1703 }
1704 }
1705
1706 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1707 {
1708 memblock.current_limit = limit;
1709 }
1710
1711 phys_addr_t __init_memblock memblock_get_current_limit(void)
1712 {
1713 return memblock.current_limit;
1714 }
1715
1716 static void __init_memblock memblock_dump(struct memblock_type *type)
1717 {
1718 phys_addr_t base, end, size;
1719 unsigned long flags;
1720 int idx;
1721 struct memblock_region *rgn;
1722
1723 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1724
1725 for_each_memblock_type(type, rgn) {
1726 char nid_buf[32] = "";
1727
1728 base = rgn->base;
1729 size = rgn->size;
1730 end = base + size - 1;
1731 flags = rgn->flags;
1732 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1733 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1734 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1735 memblock_get_region_node(rgn));
1736 #endif
1737 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1738 type->name, idx, &base, &end, &size, nid_buf, flags);
1739 }
1740 }
1741
1742 extern unsigned long __init_memblock
1743 memblock_reserved_memory_within(phys_addr_t start_addr, phys_addr_t end_addr)
1744 {
1745 struct memblock_region *rgn;
1746 unsigned long size = 0;
1747 int idx;
1748
1749 for_each_memblock_type((&memblock.reserved), rgn) {
1750 phys_addr_t start, end;
1751
1752 if (rgn->base + rgn->size < start_addr)
1753 continue;
1754 if (rgn->base > end_addr)
1755 continue;
1756
1757 start = rgn->base;
1758 end = start + rgn->size;
1759 size += end - start;
1760 }
1761
1762 return size;
1763 }
1764
1765 void __init_memblock __memblock_dump_all(void)
1766 {
1767 pr_info("MEMBLOCK configuration:\n");
1768 pr_info(" memory size = %pa reserved size = %pa\n",
1769 &memblock.memory.total_size,
1770 &memblock.reserved.total_size);
1771
1772 memblock_dump(&memblock.memory);
1773 memblock_dump(&memblock.reserved);
1774 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1775 memblock_dump(&memblock.physmem);
1776 #endif
1777 }
1778
1779 void __init memblock_allow_resize(void)
1780 {
1781 memblock_can_resize = 1;
1782 }
1783
1784 static int __init early_memblock(char *p)
1785 {
1786 if (p && strstr(p, "debug"))
1787 memblock_debug = 1;
1788 return 0;
1789 }
1790 early_param("memblock", early_memblock);
1791
1792 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1793
1794 static int memblock_debug_show(struct seq_file *m, void *private)
1795 {
1796 struct memblock_type *type = m->private;
1797 struct memblock_region *reg;
1798 int i;
1799 phys_addr_t end;
1800
1801 for (i = 0; i < type->cnt; i++) {
1802 reg = &type->regions[i];
1803 end = reg->base + reg->size - 1;
1804
1805 seq_printf(m, "%4d: ", i);
1806 seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1807 }
1808 return 0;
1809 }
1810
1811 static int memblock_debug_open(struct inode *inode, struct file *file)
1812 {
1813 return single_open(file, memblock_debug_show, inode->i_private);
1814 }
1815
1816 static const struct file_operations memblock_debug_fops = {
1817 .open = memblock_debug_open,
1818 .read = seq_read,
1819 .llseek = seq_lseek,
1820 .release = single_release,
1821 };
1822
1823 static int __init memblock_init_debugfs(void)
1824 {
1825 struct dentry *root = debugfs_create_dir("memblock", NULL);
1826 if (!root)
1827 return -ENXIO;
1828 debugfs_create_file("memory", S_IRUGO, root, &memblock.memory, &memblock_debug_fops);
1829 debugfs_create_file("reserved", S_IRUGO, root, &memblock.reserved, &memblock_debug_fops);
1830 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1831 debugfs_create_file("physmem", S_IRUGO, root, &memblock.physmem, &memblock_debug_fops);
1832 #endif
1833
1834 return 0;
1835 }
1836 __initcall(memblock_init_debugfs);
1837
1838 #endif /* CONFIG_DEBUG_FS */