]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memblock.c
e264e8c7089295f71651382e28674ce94f7fae03
[mirror_ubuntu-artful-kernel.git] / mm / memblock.c
1 /*
2 * Procedures for maintaining information about logical memory blocks.
3 *
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/bitops.h>
16 #include <linux/memblock.h>
17
18 #define MEMBLOCK_ALLOC_ANYWHERE 0
19
20 struct memblock memblock;
21
22 static int memblock_debug;
23
24 static int __init early_memblock(char *p)
25 {
26 if (p && strstr(p, "debug"))
27 memblock_debug = 1;
28 return 0;
29 }
30 early_param("memblock", early_memblock);
31
32 static void memblock_dump(struct memblock_type *region, char *name)
33 {
34 unsigned long long base, size;
35 int i;
36
37 pr_info(" %s.cnt = 0x%lx\n", name, region->cnt);
38
39 for (i = 0; i < region->cnt; i++) {
40 base = region->regions[i].base;
41 size = region->regions[i].size;
42
43 pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
44 name, i, base, base + size - 1, size);
45 }
46 }
47
48 void memblock_dump_all(void)
49 {
50 if (!memblock_debug)
51 return;
52
53 pr_info("MEMBLOCK configuration:\n");
54 pr_info(" rmo_size = 0x%llx\n", (unsigned long long)memblock.rmo_size);
55 pr_info(" memory.size = 0x%llx\n", (unsigned long long)memblock.memory.size);
56
57 memblock_dump(&memblock.memory, "memory");
58 memblock_dump(&memblock.reserved, "reserved");
59 }
60
61 static unsigned long memblock_addrs_overlap(u64 base1, u64 size1, u64 base2,
62 u64 size2)
63 {
64 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
65 }
66
67 static long memblock_addrs_adjacent(u64 base1, u64 size1, u64 base2, u64 size2)
68 {
69 if (base2 == base1 + size1)
70 return 1;
71 else if (base1 == base2 + size2)
72 return -1;
73
74 return 0;
75 }
76
77 static long memblock_regions_adjacent(struct memblock_type *type,
78 unsigned long r1, unsigned long r2)
79 {
80 u64 base1 = type->regions[r1].base;
81 u64 size1 = type->regions[r1].size;
82 u64 base2 = type->regions[r2].base;
83 u64 size2 = type->regions[r2].size;
84
85 return memblock_addrs_adjacent(base1, size1, base2, size2);
86 }
87
88 static void memblock_remove_region(struct memblock_type *type, unsigned long r)
89 {
90 unsigned long i;
91
92 for (i = r; i < type->cnt - 1; i++) {
93 type->regions[i].base = type->regions[i + 1].base;
94 type->regions[i].size = type->regions[i + 1].size;
95 }
96 type->cnt--;
97 }
98
99 /* Assumption: base addr of region 1 < base addr of region 2 */
100 static void memblock_coalesce_regions(struct memblock_type *type,
101 unsigned long r1, unsigned long r2)
102 {
103 type->regions[r1].size += type->regions[r2].size;
104 memblock_remove_region(type, r2);
105 }
106
107 void __init memblock_init(void)
108 {
109 /* Create a dummy zero size MEMBLOCK which will get coalesced away later.
110 * This simplifies the memblock_add() code below...
111 */
112 memblock.memory.regions[0].base = 0;
113 memblock.memory.regions[0].size = 0;
114 memblock.memory.cnt = 1;
115
116 /* Ditto. */
117 memblock.reserved.regions[0].base = 0;
118 memblock.reserved.regions[0].size = 0;
119 memblock.reserved.cnt = 1;
120 }
121
122 void __init memblock_analyze(void)
123 {
124 int i;
125
126 memblock.memory.size = 0;
127
128 for (i = 0; i < memblock.memory.cnt; i++)
129 memblock.memory.size += memblock.memory.regions[i].size;
130 }
131
132 static long memblock_add_region(struct memblock_type *type, u64 base, u64 size)
133 {
134 unsigned long coalesced = 0;
135 long adjacent, i;
136
137 if ((type->cnt == 1) && (type->regions[0].size == 0)) {
138 type->regions[0].base = base;
139 type->regions[0].size = size;
140 return 0;
141 }
142
143 /* First try and coalesce this MEMBLOCK with another. */
144 for (i = 0; i < type->cnt; i++) {
145 u64 rgnbase = type->regions[i].base;
146 u64 rgnsize = type->regions[i].size;
147
148 if ((rgnbase == base) && (rgnsize == size))
149 /* Already have this region, so we're done */
150 return 0;
151
152 adjacent = memblock_addrs_adjacent(base, size, rgnbase, rgnsize);
153 if (adjacent > 0) {
154 type->regions[i].base -= size;
155 type->regions[i].size += size;
156 coalesced++;
157 break;
158 } else if (adjacent < 0) {
159 type->regions[i].size += size;
160 coalesced++;
161 break;
162 }
163 }
164
165 if ((i < type->cnt - 1) && memblock_regions_adjacent(type, i, i+1)) {
166 memblock_coalesce_regions(type, i, i+1);
167 coalesced++;
168 }
169
170 if (coalesced)
171 return coalesced;
172 if (type->cnt >= MAX_MEMBLOCK_REGIONS)
173 return -1;
174
175 /* Couldn't coalesce the MEMBLOCK, so add it to the sorted table. */
176 for (i = type->cnt - 1; i >= 0; i--) {
177 if (base < type->regions[i].base) {
178 type->regions[i+1].base = type->regions[i].base;
179 type->regions[i+1].size = type->regions[i].size;
180 } else {
181 type->regions[i+1].base = base;
182 type->regions[i+1].size = size;
183 break;
184 }
185 }
186
187 if (base < type->regions[0].base) {
188 type->regions[0].base = base;
189 type->regions[0].size = size;
190 }
191 type->cnt++;
192
193 return 0;
194 }
195
196 long memblock_add(u64 base, u64 size)
197 {
198 /* On pSeries LPAR systems, the first MEMBLOCK is our RMO region. */
199 if (base == 0)
200 memblock.rmo_size = size;
201
202 return memblock_add_region(&memblock.memory, base, size);
203
204 }
205
206 static long __memblock_remove(struct memblock_type *type, u64 base, u64 size)
207 {
208 u64 rgnbegin, rgnend;
209 u64 end = base + size;
210 int i;
211
212 rgnbegin = rgnend = 0; /* supress gcc warnings */
213
214 /* Find the region where (base, size) belongs to */
215 for (i=0; i < type->cnt; i++) {
216 rgnbegin = type->regions[i].base;
217 rgnend = rgnbegin + type->regions[i].size;
218
219 if ((rgnbegin <= base) && (end <= rgnend))
220 break;
221 }
222
223 /* Didn't find the region */
224 if (i == type->cnt)
225 return -1;
226
227 /* Check to see if we are removing entire region */
228 if ((rgnbegin == base) && (rgnend == end)) {
229 memblock_remove_region(type, i);
230 return 0;
231 }
232
233 /* Check to see if region is matching at the front */
234 if (rgnbegin == base) {
235 type->regions[i].base = end;
236 type->regions[i].size -= size;
237 return 0;
238 }
239
240 /* Check to see if the region is matching at the end */
241 if (rgnend == end) {
242 type->regions[i].size -= size;
243 return 0;
244 }
245
246 /*
247 * We need to split the entry - adjust the current one to the
248 * beginging of the hole and add the region after hole.
249 */
250 type->regions[i].size = base - type->regions[i].base;
251 return memblock_add_region(type, end, rgnend - end);
252 }
253
254 long memblock_remove(u64 base, u64 size)
255 {
256 return __memblock_remove(&memblock.memory, base, size);
257 }
258
259 long __init memblock_free(u64 base, u64 size)
260 {
261 return __memblock_remove(&memblock.reserved, base, size);
262 }
263
264 long __init memblock_reserve(u64 base, u64 size)
265 {
266 struct memblock_type *_rgn = &memblock.reserved;
267
268 BUG_ON(0 == size);
269
270 return memblock_add_region(_rgn, base, size);
271 }
272
273 long memblock_overlaps_region(struct memblock_type *type, u64 base, u64 size)
274 {
275 unsigned long i;
276
277 for (i = 0; i < type->cnt; i++) {
278 u64 rgnbase = type->regions[i].base;
279 u64 rgnsize = type->regions[i].size;
280 if (memblock_addrs_overlap(base, size, rgnbase, rgnsize))
281 break;
282 }
283
284 return (i < type->cnt) ? i : -1;
285 }
286
287 static u64 memblock_align_down(u64 addr, u64 size)
288 {
289 return addr & ~(size - 1);
290 }
291
292 static u64 memblock_align_up(u64 addr, u64 size)
293 {
294 return (addr + (size - 1)) & ~(size - 1);
295 }
296
297 static u64 __init memblock_alloc_region(u64 start, u64 end,
298 u64 size, u64 align)
299 {
300 u64 base, res_base;
301 long j;
302
303 base = memblock_align_down((end - size), align);
304 while (start <= base) {
305 j = memblock_overlaps_region(&memblock.reserved, base, size);
306 if (j < 0) {
307 /* this area isn't reserved, take it */
308 if (memblock_add_region(&memblock.reserved, base, size) < 0)
309 base = ~(u64)0;
310 return base;
311 }
312 res_base = memblock.reserved.regions[j].base;
313 if (res_base < size)
314 break;
315 base = memblock_align_down(res_base - size, align);
316 }
317
318 return ~(u64)0;
319 }
320
321 u64 __weak __init memblock_nid_range(u64 start, u64 end, int *nid)
322 {
323 *nid = 0;
324
325 return end;
326 }
327
328 static u64 __init memblock_alloc_nid_region(struct memblock_region *mp,
329 u64 size, u64 align, int nid)
330 {
331 u64 start, end;
332
333 start = mp->base;
334 end = start + mp->size;
335
336 start = memblock_align_up(start, align);
337 while (start < end) {
338 u64 this_end;
339 int this_nid;
340
341 this_end = memblock_nid_range(start, end, &this_nid);
342 if (this_nid == nid) {
343 u64 ret = memblock_alloc_region(start, this_end, size, align);
344 if (ret != ~(u64)0)
345 return ret;
346 }
347 start = this_end;
348 }
349
350 return ~(u64)0;
351 }
352
353 u64 __init memblock_alloc_nid(u64 size, u64 align, int nid)
354 {
355 struct memblock_type *mem = &memblock.memory;
356 int i;
357
358 BUG_ON(0 == size);
359
360 /* We do a bottom-up search for a region with the right
361 * nid since that's easier considering how memblock_nid_range()
362 * works
363 */
364 size = memblock_align_up(size, align);
365
366 for (i = 0; i < mem->cnt; i++) {
367 u64 ret = memblock_alloc_nid_region(&mem->regions[i],
368 size, align, nid);
369 if (ret != ~(u64)0)
370 return ret;
371 }
372
373 return memblock_alloc(size, align);
374 }
375
376 u64 __init memblock_alloc(u64 size, u64 align)
377 {
378 return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ANYWHERE);
379 }
380
381 u64 __init memblock_alloc_base(u64 size, u64 align, u64 max_addr)
382 {
383 u64 alloc;
384
385 alloc = __memblock_alloc_base(size, align, max_addr);
386
387 if (alloc == 0)
388 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
389 (unsigned long long) size, (unsigned long long) max_addr);
390
391 return alloc;
392 }
393
394 u64 __init __memblock_alloc_base(u64 size, u64 align, u64 max_addr)
395 {
396 long i;
397 u64 base = 0;
398 u64 res_base;
399
400 BUG_ON(0 == size);
401
402 size = memblock_align_up(size, align);
403
404 /* On some platforms, make sure we allocate lowmem */
405 /* Note that MEMBLOCK_REAL_LIMIT may be MEMBLOCK_ALLOC_ANYWHERE */
406 if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
407 max_addr = MEMBLOCK_REAL_LIMIT;
408
409 /* Pump up max_addr */
410 if (max_addr == MEMBLOCK_ALLOC_ANYWHERE)
411 max_addr = ~(u64)0;
412
413 /* We do a top-down search, this tends to limit memory
414 * fragmentation by keeping early boot allocs near the
415 * top of memory
416 */
417 for (i = memblock.memory.cnt - 1; i >= 0; i--) {
418 u64 memblockbase = memblock.memory.regions[i].base;
419 u64 memblocksize = memblock.memory.regions[i].size;
420
421 if (memblocksize < size)
422 continue;
423 base = min(memblockbase + memblocksize, max_addr);
424 res_base = memblock_alloc_region(memblockbase, base, size, align);
425 if (res_base != ~(u64)0)
426 return res_base;
427 }
428 return 0;
429 }
430
431 /* You must call memblock_analyze() before this. */
432 u64 __init memblock_phys_mem_size(void)
433 {
434 return memblock.memory.size;
435 }
436
437 u64 memblock_end_of_DRAM(void)
438 {
439 int idx = memblock.memory.cnt - 1;
440
441 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
442 }
443
444 /* You must call memblock_analyze() after this. */
445 void __init memblock_enforce_memory_limit(u64 memory_limit)
446 {
447 unsigned long i;
448 u64 limit;
449 struct memblock_region *p;
450
451 if (!memory_limit)
452 return;
453
454 /* Truncate the memblock regions to satisfy the memory limit. */
455 limit = memory_limit;
456 for (i = 0; i < memblock.memory.cnt; i++) {
457 if (limit > memblock.memory.regions[i].size) {
458 limit -= memblock.memory.regions[i].size;
459 continue;
460 }
461
462 memblock.memory.regions[i].size = limit;
463 memblock.memory.cnt = i + 1;
464 break;
465 }
466
467 if (memblock.memory.regions[0].size < memblock.rmo_size)
468 memblock.rmo_size = memblock.memory.regions[0].size;
469
470 memory_limit = memblock_end_of_DRAM();
471
472 /* And truncate any reserves above the limit also. */
473 for (i = 0; i < memblock.reserved.cnt; i++) {
474 p = &memblock.reserved.regions[i];
475
476 if (p->base > memory_limit)
477 p->size = 0;
478 else if ((p->base + p->size) > memory_limit)
479 p->size = memory_limit - p->base;
480
481 if (p->size == 0) {
482 memblock_remove_region(&memblock.reserved, i);
483 i--;
484 }
485 }
486 }
487
488 static int memblock_search(struct memblock_type *type, u64 addr)
489 {
490 unsigned int left = 0, right = type->cnt;
491
492 do {
493 unsigned int mid = (right + left) / 2;
494
495 if (addr < type->regions[mid].base)
496 right = mid;
497 else if (addr >= (type->regions[mid].base +
498 type->regions[mid].size))
499 left = mid + 1;
500 else
501 return mid;
502 } while (left < right);
503 return -1;
504 }
505
506 int __init memblock_is_reserved(u64 addr)
507 {
508 return memblock_search(&memblock.reserved, addr) != -1;
509 }
510
511 int memblock_is_memory(u64 addr)
512 {
513 return memblock_search(&memblock.memory, addr) != -1;
514 }
515
516 int memblock_is_region_memory(u64 base, u64 size)
517 {
518 int idx = memblock_search(&memblock.reserved, base);
519
520 if (idx == -1)
521 return 0;
522 return memblock.reserved.regions[idx].base <= base &&
523 (memblock.reserved.regions[idx].base +
524 memblock.reserved.regions[idx].size) >= (base + size);
525 }
526
527 int memblock_is_region_reserved(u64 base, u64 size)
528 {
529 return memblock_overlaps_region(&memblock.reserved, base, size) >= 0;
530 }
531