]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 'rtc-4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124 };
125
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136 };
137
138 /*
139 * cgroup_event represents events which userspace want to receive.
140 */
141 struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176 };
177
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181 /* Stuffs for move charges at task migration. */
182 /*
183 * Types of charges to be moved.
184 */
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205
206 /*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219 };
220
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228 };
229
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
235
236 /*
237 * Iteration constructs for visiting all cgroups (under a tree). If
238 * loops are exited prematurely (break), mem_cgroup_iter_break() must
239 * be used for reference counting.
240 */
241 #define for_each_mem_cgroup_tree(iter, root) \
242 for (iter = mem_cgroup_iter(root, NULL, NULL); \
243 iter != NULL; \
244 iter = mem_cgroup_iter(root, iter, NULL))
245
246 #define for_each_mem_cgroup(iter) \
247 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
248 iter != NULL; \
249 iter = mem_cgroup_iter(NULL, iter, NULL))
250
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 {
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257 }
258
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260 {
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262 }
263
264 #ifdef CONFIG_MEMCG_KMEM
265 /*
266 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
267 * The main reason for not using cgroup id for this:
268 * this works better in sparse environments, where we have a lot of memcgs,
269 * but only a few kmem-limited. Or also, if we have, for instance, 200
270 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
271 * 200 entry array for that.
272 *
273 * The current size of the caches array is stored in memcg_nr_cache_ids. It
274 * will double each time we have to increase it.
275 */
276 static DEFINE_IDA(memcg_cache_ida);
277 int memcg_nr_cache_ids;
278
279 /* Protects memcg_nr_cache_ids */
280 static DECLARE_RWSEM(memcg_cache_ids_sem);
281
282 void memcg_get_cache_ids(void)
283 {
284 down_read(&memcg_cache_ids_sem);
285 }
286
287 void memcg_put_cache_ids(void)
288 {
289 up_read(&memcg_cache_ids_sem);
290 }
291
292 /*
293 * MIN_SIZE is different than 1, because we would like to avoid going through
294 * the alloc/free process all the time. In a small machine, 4 kmem-limited
295 * cgroups is a reasonable guess. In the future, it could be a parameter or
296 * tunable, but that is strictly not necessary.
297 *
298 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
299 * this constant directly from cgroup, but it is understandable that this is
300 * better kept as an internal representation in cgroup.c. In any case, the
301 * cgrp_id space is not getting any smaller, and we don't have to necessarily
302 * increase ours as well if it increases.
303 */
304 #define MEMCG_CACHES_MIN_SIZE 4
305 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
306
307 /*
308 * A lot of the calls to the cache allocation functions are expected to be
309 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
310 * conditional to this static branch, we'll have to allow modules that does
311 * kmem_cache_alloc and the such to see this symbol as well
312 */
313 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
314 EXPORT_SYMBOL(memcg_kmem_enabled_key);
315
316 struct workqueue_struct *memcg_kmem_cache_wq;
317
318 static int memcg_shrinker_map_size;
319 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
320
321 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
322 {
323 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
324 }
325
326 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
327 int size, int old_size)
328 {
329 struct memcg_shrinker_map *new, *old;
330 int nid;
331
332 lockdep_assert_held(&memcg_shrinker_map_mutex);
333
334 for_each_node(nid) {
335 old = rcu_dereference_protected(
336 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
337 /* Not yet online memcg */
338 if (!old)
339 return 0;
340
341 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
342 if (!new)
343 return -ENOMEM;
344
345 /* Set all old bits, clear all new bits */
346 memset(new->map, (int)0xff, old_size);
347 memset((void *)new->map + old_size, 0, size - old_size);
348
349 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
350 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
351 }
352
353 return 0;
354 }
355
356 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
357 {
358 struct mem_cgroup_per_node *pn;
359 struct memcg_shrinker_map *map;
360 int nid;
361
362 if (mem_cgroup_is_root(memcg))
363 return;
364
365 for_each_node(nid) {
366 pn = mem_cgroup_nodeinfo(memcg, nid);
367 map = rcu_dereference_protected(pn->shrinker_map, true);
368 if (map)
369 kvfree(map);
370 rcu_assign_pointer(pn->shrinker_map, NULL);
371 }
372 }
373
374 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
375 {
376 struct memcg_shrinker_map *map;
377 int nid, size, ret = 0;
378
379 if (mem_cgroup_is_root(memcg))
380 return 0;
381
382 mutex_lock(&memcg_shrinker_map_mutex);
383 size = memcg_shrinker_map_size;
384 for_each_node(nid) {
385 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
386 if (!map) {
387 memcg_free_shrinker_maps(memcg);
388 ret = -ENOMEM;
389 break;
390 }
391 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
392 }
393 mutex_unlock(&memcg_shrinker_map_mutex);
394
395 return ret;
396 }
397
398 int memcg_expand_shrinker_maps(int new_id)
399 {
400 int size, old_size, ret = 0;
401 struct mem_cgroup *memcg;
402
403 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
404 old_size = memcg_shrinker_map_size;
405 if (size <= old_size)
406 return 0;
407
408 mutex_lock(&memcg_shrinker_map_mutex);
409 if (!root_mem_cgroup)
410 goto unlock;
411
412 for_each_mem_cgroup(memcg) {
413 if (mem_cgroup_is_root(memcg))
414 continue;
415 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
416 if (ret)
417 goto unlock;
418 }
419 unlock:
420 if (!ret)
421 memcg_shrinker_map_size = size;
422 mutex_unlock(&memcg_shrinker_map_mutex);
423 return ret;
424 }
425
426 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
427 {
428 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
429 struct memcg_shrinker_map *map;
430
431 rcu_read_lock();
432 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
433 /* Pairs with smp mb in shrink_slab() */
434 smp_mb__before_atomic();
435 set_bit(shrinker_id, map->map);
436 rcu_read_unlock();
437 }
438 }
439
440 #else /* CONFIG_MEMCG_KMEM */
441 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
442 {
443 return 0;
444 }
445 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
446 #endif /* CONFIG_MEMCG_KMEM */
447
448 /**
449 * mem_cgroup_css_from_page - css of the memcg associated with a page
450 * @page: page of interest
451 *
452 * If memcg is bound to the default hierarchy, css of the memcg associated
453 * with @page is returned. The returned css remains associated with @page
454 * until it is released.
455 *
456 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
457 * is returned.
458 */
459 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
460 {
461 struct mem_cgroup *memcg;
462
463 memcg = page->mem_cgroup;
464
465 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
466 memcg = root_mem_cgroup;
467
468 return &memcg->css;
469 }
470
471 /**
472 * page_cgroup_ino - return inode number of the memcg a page is charged to
473 * @page: the page
474 *
475 * Look up the closest online ancestor of the memory cgroup @page is charged to
476 * and return its inode number or 0 if @page is not charged to any cgroup. It
477 * is safe to call this function without holding a reference to @page.
478 *
479 * Note, this function is inherently racy, because there is nothing to prevent
480 * the cgroup inode from getting torn down and potentially reallocated a moment
481 * after page_cgroup_ino() returns, so it only should be used by callers that
482 * do not care (such as procfs interfaces).
483 */
484 ino_t page_cgroup_ino(struct page *page)
485 {
486 struct mem_cgroup *memcg;
487 unsigned long ino = 0;
488
489 rcu_read_lock();
490 memcg = READ_ONCE(page->mem_cgroup);
491 while (memcg && !(memcg->css.flags & CSS_ONLINE))
492 memcg = parent_mem_cgroup(memcg);
493 if (memcg)
494 ino = cgroup_ino(memcg->css.cgroup);
495 rcu_read_unlock();
496 return ino;
497 }
498
499 static struct mem_cgroup_per_node *
500 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
501 {
502 int nid = page_to_nid(page);
503
504 return memcg->nodeinfo[nid];
505 }
506
507 static struct mem_cgroup_tree_per_node *
508 soft_limit_tree_node(int nid)
509 {
510 return soft_limit_tree.rb_tree_per_node[nid];
511 }
512
513 static struct mem_cgroup_tree_per_node *
514 soft_limit_tree_from_page(struct page *page)
515 {
516 int nid = page_to_nid(page);
517
518 return soft_limit_tree.rb_tree_per_node[nid];
519 }
520
521 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
522 struct mem_cgroup_tree_per_node *mctz,
523 unsigned long new_usage_in_excess)
524 {
525 struct rb_node **p = &mctz->rb_root.rb_node;
526 struct rb_node *parent = NULL;
527 struct mem_cgroup_per_node *mz_node;
528 bool rightmost = true;
529
530 if (mz->on_tree)
531 return;
532
533 mz->usage_in_excess = new_usage_in_excess;
534 if (!mz->usage_in_excess)
535 return;
536 while (*p) {
537 parent = *p;
538 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
539 tree_node);
540 if (mz->usage_in_excess < mz_node->usage_in_excess) {
541 p = &(*p)->rb_left;
542 rightmost = false;
543 }
544
545 /*
546 * We can't avoid mem cgroups that are over their soft
547 * limit by the same amount
548 */
549 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
550 p = &(*p)->rb_right;
551 }
552
553 if (rightmost)
554 mctz->rb_rightmost = &mz->tree_node;
555
556 rb_link_node(&mz->tree_node, parent, p);
557 rb_insert_color(&mz->tree_node, &mctz->rb_root);
558 mz->on_tree = true;
559 }
560
561 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
562 struct mem_cgroup_tree_per_node *mctz)
563 {
564 if (!mz->on_tree)
565 return;
566
567 if (&mz->tree_node == mctz->rb_rightmost)
568 mctz->rb_rightmost = rb_prev(&mz->tree_node);
569
570 rb_erase(&mz->tree_node, &mctz->rb_root);
571 mz->on_tree = false;
572 }
573
574 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
575 struct mem_cgroup_tree_per_node *mctz)
576 {
577 unsigned long flags;
578
579 spin_lock_irqsave(&mctz->lock, flags);
580 __mem_cgroup_remove_exceeded(mz, mctz);
581 spin_unlock_irqrestore(&mctz->lock, flags);
582 }
583
584 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
585 {
586 unsigned long nr_pages = page_counter_read(&memcg->memory);
587 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
588 unsigned long excess = 0;
589
590 if (nr_pages > soft_limit)
591 excess = nr_pages - soft_limit;
592
593 return excess;
594 }
595
596 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
597 {
598 unsigned long excess;
599 struct mem_cgroup_per_node *mz;
600 struct mem_cgroup_tree_per_node *mctz;
601
602 mctz = soft_limit_tree_from_page(page);
603 if (!mctz)
604 return;
605 /*
606 * Necessary to update all ancestors when hierarchy is used.
607 * because their event counter is not touched.
608 */
609 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
610 mz = mem_cgroup_page_nodeinfo(memcg, page);
611 excess = soft_limit_excess(memcg);
612 /*
613 * We have to update the tree if mz is on RB-tree or
614 * mem is over its softlimit.
615 */
616 if (excess || mz->on_tree) {
617 unsigned long flags;
618
619 spin_lock_irqsave(&mctz->lock, flags);
620 /* if on-tree, remove it */
621 if (mz->on_tree)
622 __mem_cgroup_remove_exceeded(mz, mctz);
623 /*
624 * Insert again. mz->usage_in_excess will be updated.
625 * If excess is 0, no tree ops.
626 */
627 __mem_cgroup_insert_exceeded(mz, mctz, excess);
628 spin_unlock_irqrestore(&mctz->lock, flags);
629 }
630 }
631 }
632
633 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
634 {
635 struct mem_cgroup_tree_per_node *mctz;
636 struct mem_cgroup_per_node *mz;
637 int nid;
638
639 for_each_node(nid) {
640 mz = mem_cgroup_nodeinfo(memcg, nid);
641 mctz = soft_limit_tree_node(nid);
642 if (mctz)
643 mem_cgroup_remove_exceeded(mz, mctz);
644 }
645 }
646
647 static struct mem_cgroup_per_node *
648 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
649 {
650 struct mem_cgroup_per_node *mz;
651
652 retry:
653 mz = NULL;
654 if (!mctz->rb_rightmost)
655 goto done; /* Nothing to reclaim from */
656
657 mz = rb_entry(mctz->rb_rightmost,
658 struct mem_cgroup_per_node, tree_node);
659 /*
660 * Remove the node now but someone else can add it back,
661 * we will to add it back at the end of reclaim to its correct
662 * position in the tree.
663 */
664 __mem_cgroup_remove_exceeded(mz, mctz);
665 if (!soft_limit_excess(mz->memcg) ||
666 !css_tryget_online(&mz->memcg->css))
667 goto retry;
668 done:
669 return mz;
670 }
671
672 static struct mem_cgroup_per_node *
673 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
674 {
675 struct mem_cgroup_per_node *mz;
676
677 spin_lock_irq(&mctz->lock);
678 mz = __mem_cgroup_largest_soft_limit_node(mctz);
679 spin_unlock_irq(&mctz->lock);
680 return mz;
681 }
682
683 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
684 int event)
685 {
686 return atomic_long_read(&memcg->events[event]);
687 }
688
689 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
690 struct page *page,
691 bool compound, int nr_pages)
692 {
693 /*
694 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
695 * counted as CACHE even if it's on ANON LRU.
696 */
697 if (PageAnon(page))
698 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
699 else {
700 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
701 if (PageSwapBacked(page))
702 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
703 }
704
705 if (compound) {
706 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
707 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
708 }
709
710 /* pagein of a big page is an event. So, ignore page size */
711 if (nr_pages > 0)
712 __count_memcg_events(memcg, PGPGIN, 1);
713 else {
714 __count_memcg_events(memcg, PGPGOUT, 1);
715 nr_pages = -nr_pages; /* for event */
716 }
717
718 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
719 }
720
721 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
722 int nid, unsigned int lru_mask)
723 {
724 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
725 unsigned long nr = 0;
726 enum lru_list lru;
727
728 VM_BUG_ON((unsigned)nid >= nr_node_ids);
729
730 for_each_lru(lru) {
731 if (!(BIT(lru) & lru_mask))
732 continue;
733 nr += mem_cgroup_get_lru_size(lruvec, lru);
734 }
735 return nr;
736 }
737
738 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
739 unsigned int lru_mask)
740 {
741 unsigned long nr = 0;
742 int nid;
743
744 for_each_node_state(nid, N_MEMORY)
745 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
746 return nr;
747 }
748
749 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
750 enum mem_cgroup_events_target target)
751 {
752 unsigned long val, next;
753
754 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
755 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
756 /* from time_after() in jiffies.h */
757 if ((long)(next - val) < 0) {
758 switch (target) {
759 case MEM_CGROUP_TARGET_THRESH:
760 next = val + THRESHOLDS_EVENTS_TARGET;
761 break;
762 case MEM_CGROUP_TARGET_SOFTLIMIT:
763 next = val + SOFTLIMIT_EVENTS_TARGET;
764 break;
765 case MEM_CGROUP_TARGET_NUMAINFO:
766 next = val + NUMAINFO_EVENTS_TARGET;
767 break;
768 default:
769 break;
770 }
771 __this_cpu_write(memcg->stat_cpu->targets[target], next);
772 return true;
773 }
774 return false;
775 }
776
777 /*
778 * Check events in order.
779 *
780 */
781 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
782 {
783 /* threshold event is triggered in finer grain than soft limit */
784 if (unlikely(mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_THRESH))) {
786 bool do_softlimit;
787 bool do_numainfo __maybe_unused;
788
789 do_softlimit = mem_cgroup_event_ratelimit(memcg,
790 MEM_CGROUP_TARGET_SOFTLIMIT);
791 #if MAX_NUMNODES > 1
792 do_numainfo = mem_cgroup_event_ratelimit(memcg,
793 MEM_CGROUP_TARGET_NUMAINFO);
794 #endif
795 mem_cgroup_threshold(memcg);
796 if (unlikely(do_softlimit))
797 mem_cgroup_update_tree(memcg, page);
798 #if MAX_NUMNODES > 1
799 if (unlikely(do_numainfo))
800 atomic_inc(&memcg->numainfo_events);
801 #endif
802 }
803 }
804
805 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
806 {
807 /*
808 * mm_update_next_owner() may clear mm->owner to NULL
809 * if it races with swapoff, page migration, etc.
810 * So this can be called with p == NULL.
811 */
812 if (unlikely(!p))
813 return NULL;
814
815 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
816 }
817 EXPORT_SYMBOL(mem_cgroup_from_task);
818
819 /**
820 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
821 * @mm: mm from which memcg should be extracted. It can be NULL.
822 *
823 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
824 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
825 * returned.
826 */
827 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
828 {
829 struct mem_cgroup *memcg;
830
831 if (mem_cgroup_disabled())
832 return NULL;
833
834 rcu_read_lock();
835 do {
836 /*
837 * Page cache insertions can happen withou an
838 * actual mm context, e.g. during disk probing
839 * on boot, loopback IO, acct() writes etc.
840 */
841 if (unlikely(!mm))
842 memcg = root_mem_cgroup;
843 else {
844 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
845 if (unlikely(!memcg))
846 memcg = root_mem_cgroup;
847 }
848 } while (!css_tryget_online(&memcg->css));
849 rcu_read_unlock();
850 return memcg;
851 }
852 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
853
854 /**
855 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
856 * @page: page from which memcg should be extracted.
857 *
858 * Obtain a reference on page->memcg and returns it if successful. Otherwise
859 * root_mem_cgroup is returned.
860 */
861 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
862 {
863 struct mem_cgroup *memcg = page->mem_cgroup;
864
865 if (mem_cgroup_disabled())
866 return NULL;
867
868 rcu_read_lock();
869 if (!memcg || !css_tryget_online(&memcg->css))
870 memcg = root_mem_cgroup;
871 rcu_read_unlock();
872 return memcg;
873 }
874 EXPORT_SYMBOL(get_mem_cgroup_from_page);
875
876 /**
877 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
878 */
879 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
880 {
881 if (unlikely(current->active_memcg)) {
882 struct mem_cgroup *memcg = root_mem_cgroup;
883
884 rcu_read_lock();
885 if (css_tryget_online(&current->active_memcg->css))
886 memcg = current->active_memcg;
887 rcu_read_unlock();
888 return memcg;
889 }
890 return get_mem_cgroup_from_mm(current->mm);
891 }
892
893 /**
894 * mem_cgroup_iter - iterate over memory cgroup hierarchy
895 * @root: hierarchy root
896 * @prev: previously returned memcg, NULL on first invocation
897 * @reclaim: cookie for shared reclaim walks, NULL for full walks
898 *
899 * Returns references to children of the hierarchy below @root, or
900 * @root itself, or %NULL after a full round-trip.
901 *
902 * Caller must pass the return value in @prev on subsequent
903 * invocations for reference counting, or use mem_cgroup_iter_break()
904 * to cancel a hierarchy walk before the round-trip is complete.
905 *
906 * Reclaimers can specify a node and a priority level in @reclaim to
907 * divide up the memcgs in the hierarchy among all concurrent
908 * reclaimers operating on the same node and priority.
909 */
910 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
911 struct mem_cgroup *prev,
912 struct mem_cgroup_reclaim_cookie *reclaim)
913 {
914 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
915 struct cgroup_subsys_state *css = NULL;
916 struct mem_cgroup *memcg = NULL;
917 struct mem_cgroup *pos = NULL;
918
919 if (mem_cgroup_disabled())
920 return NULL;
921
922 if (!root)
923 root = root_mem_cgroup;
924
925 if (prev && !reclaim)
926 pos = prev;
927
928 if (!root->use_hierarchy && root != root_mem_cgroup) {
929 if (prev)
930 goto out;
931 return root;
932 }
933
934 rcu_read_lock();
935
936 if (reclaim) {
937 struct mem_cgroup_per_node *mz;
938
939 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
940 iter = &mz->iter[reclaim->priority];
941
942 if (prev && reclaim->generation != iter->generation)
943 goto out_unlock;
944
945 while (1) {
946 pos = READ_ONCE(iter->position);
947 if (!pos || css_tryget(&pos->css))
948 break;
949 /*
950 * css reference reached zero, so iter->position will
951 * be cleared by ->css_released. However, we should not
952 * rely on this happening soon, because ->css_released
953 * is called from a work queue, and by busy-waiting we
954 * might block it. So we clear iter->position right
955 * away.
956 */
957 (void)cmpxchg(&iter->position, pos, NULL);
958 }
959 }
960
961 if (pos)
962 css = &pos->css;
963
964 for (;;) {
965 css = css_next_descendant_pre(css, &root->css);
966 if (!css) {
967 /*
968 * Reclaimers share the hierarchy walk, and a
969 * new one might jump in right at the end of
970 * the hierarchy - make sure they see at least
971 * one group and restart from the beginning.
972 */
973 if (!prev)
974 continue;
975 break;
976 }
977
978 /*
979 * Verify the css and acquire a reference. The root
980 * is provided by the caller, so we know it's alive
981 * and kicking, and don't take an extra reference.
982 */
983 memcg = mem_cgroup_from_css(css);
984
985 if (css == &root->css)
986 break;
987
988 if (css_tryget(css))
989 break;
990
991 memcg = NULL;
992 }
993
994 if (reclaim) {
995 /*
996 * The position could have already been updated by a competing
997 * thread, so check that the value hasn't changed since we read
998 * it to avoid reclaiming from the same cgroup twice.
999 */
1000 (void)cmpxchg(&iter->position, pos, memcg);
1001
1002 if (pos)
1003 css_put(&pos->css);
1004
1005 if (!memcg)
1006 iter->generation++;
1007 else if (!prev)
1008 reclaim->generation = iter->generation;
1009 }
1010
1011 out_unlock:
1012 rcu_read_unlock();
1013 out:
1014 if (prev && prev != root)
1015 css_put(&prev->css);
1016
1017 return memcg;
1018 }
1019
1020 /**
1021 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1022 * @root: hierarchy root
1023 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1024 */
1025 void mem_cgroup_iter_break(struct mem_cgroup *root,
1026 struct mem_cgroup *prev)
1027 {
1028 if (!root)
1029 root = root_mem_cgroup;
1030 if (prev && prev != root)
1031 css_put(&prev->css);
1032 }
1033
1034 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1035 {
1036 struct mem_cgroup *memcg = dead_memcg;
1037 struct mem_cgroup_reclaim_iter *iter;
1038 struct mem_cgroup_per_node *mz;
1039 int nid;
1040 int i;
1041
1042 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1043 for_each_node(nid) {
1044 mz = mem_cgroup_nodeinfo(memcg, nid);
1045 for (i = 0; i <= DEF_PRIORITY; i++) {
1046 iter = &mz->iter[i];
1047 cmpxchg(&iter->position,
1048 dead_memcg, NULL);
1049 }
1050 }
1051 }
1052 }
1053
1054 /**
1055 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1056 * @memcg: hierarchy root
1057 * @fn: function to call for each task
1058 * @arg: argument passed to @fn
1059 *
1060 * This function iterates over tasks attached to @memcg or to any of its
1061 * descendants and calls @fn for each task. If @fn returns a non-zero
1062 * value, the function breaks the iteration loop and returns the value.
1063 * Otherwise, it will iterate over all tasks and return 0.
1064 *
1065 * This function must not be called for the root memory cgroup.
1066 */
1067 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1068 int (*fn)(struct task_struct *, void *), void *arg)
1069 {
1070 struct mem_cgroup *iter;
1071 int ret = 0;
1072
1073 BUG_ON(memcg == root_mem_cgroup);
1074
1075 for_each_mem_cgroup_tree(iter, memcg) {
1076 struct css_task_iter it;
1077 struct task_struct *task;
1078
1079 css_task_iter_start(&iter->css, 0, &it);
1080 while (!ret && (task = css_task_iter_next(&it)))
1081 ret = fn(task, arg);
1082 css_task_iter_end(&it);
1083 if (ret) {
1084 mem_cgroup_iter_break(memcg, iter);
1085 break;
1086 }
1087 }
1088 return ret;
1089 }
1090
1091 /**
1092 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1093 * @page: the page
1094 * @pgdat: pgdat of the page
1095 *
1096 * This function is only safe when following the LRU page isolation
1097 * and putback protocol: the LRU lock must be held, and the page must
1098 * either be PageLRU() or the caller must have isolated/allocated it.
1099 */
1100 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1101 {
1102 struct mem_cgroup_per_node *mz;
1103 struct mem_cgroup *memcg;
1104 struct lruvec *lruvec;
1105
1106 if (mem_cgroup_disabled()) {
1107 lruvec = &pgdat->lruvec;
1108 goto out;
1109 }
1110
1111 memcg = page->mem_cgroup;
1112 /*
1113 * Swapcache readahead pages are added to the LRU - and
1114 * possibly migrated - before they are charged.
1115 */
1116 if (!memcg)
1117 memcg = root_mem_cgroup;
1118
1119 mz = mem_cgroup_page_nodeinfo(memcg, page);
1120 lruvec = &mz->lruvec;
1121 out:
1122 /*
1123 * Since a node can be onlined after the mem_cgroup was created,
1124 * we have to be prepared to initialize lruvec->zone here;
1125 * and if offlined then reonlined, we need to reinitialize it.
1126 */
1127 if (unlikely(lruvec->pgdat != pgdat))
1128 lruvec->pgdat = pgdat;
1129 return lruvec;
1130 }
1131
1132 /**
1133 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1134 * @lruvec: mem_cgroup per zone lru vector
1135 * @lru: index of lru list the page is sitting on
1136 * @zid: zone id of the accounted pages
1137 * @nr_pages: positive when adding or negative when removing
1138 *
1139 * This function must be called under lru_lock, just before a page is added
1140 * to or just after a page is removed from an lru list (that ordering being
1141 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1142 */
1143 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1144 int zid, int nr_pages)
1145 {
1146 struct mem_cgroup_per_node *mz;
1147 unsigned long *lru_size;
1148 long size;
1149
1150 if (mem_cgroup_disabled())
1151 return;
1152
1153 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1154 lru_size = &mz->lru_zone_size[zid][lru];
1155
1156 if (nr_pages < 0)
1157 *lru_size += nr_pages;
1158
1159 size = *lru_size;
1160 if (WARN_ONCE(size < 0,
1161 "%s(%p, %d, %d): lru_size %ld\n",
1162 __func__, lruvec, lru, nr_pages, size)) {
1163 VM_BUG_ON(1);
1164 *lru_size = 0;
1165 }
1166
1167 if (nr_pages > 0)
1168 *lru_size += nr_pages;
1169 }
1170
1171 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1172 {
1173 struct mem_cgroup *task_memcg;
1174 struct task_struct *p;
1175 bool ret;
1176
1177 p = find_lock_task_mm(task);
1178 if (p) {
1179 task_memcg = get_mem_cgroup_from_mm(p->mm);
1180 task_unlock(p);
1181 } else {
1182 /*
1183 * All threads may have already detached their mm's, but the oom
1184 * killer still needs to detect if they have already been oom
1185 * killed to prevent needlessly killing additional tasks.
1186 */
1187 rcu_read_lock();
1188 task_memcg = mem_cgroup_from_task(task);
1189 css_get(&task_memcg->css);
1190 rcu_read_unlock();
1191 }
1192 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1193 css_put(&task_memcg->css);
1194 return ret;
1195 }
1196
1197 /**
1198 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1199 * @memcg: the memory cgroup
1200 *
1201 * Returns the maximum amount of memory @mem can be charged with, in
1202 * pages.
1203 */
1204 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1205 {
1206 unsigned long margin = 0;
1207 unsigned long count;
1208 unsigned long limit;
1209
1210 count = page_counter_read(&memcg->memory);
1211 limit = READ_ONCE(memcg->memory.max);
1212 if (count < limit)
1213 margin = limit - count;
1214
1215 if (do_memsw_account()) {
1216 count = page_counter_read(&memcg->memsw);
1217 limit = READ_ONCE(memcg->memsw.max);
1218 if (count <= limit)
1219 margin = min(margin, limit - count);
1220 else
1221 margin = 0;
1222 }
1223
1224 return margin;
1225 }
1226
1227 /*
1228 * A routine for checking "mem" is under move_account() or not.
1229 *
1230 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1231 * moving cgroups. This is for waiting at high-memory pressure
1232 * caused by "move".
1233 */
1234 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1235 {
1236 struct mem_cgroup *from;
1237 struct mem_cgroup *to;
1238 bool ret = false;
1239 /*
1240 * Unlike task_move routines, we access mc.to, mc.from not under
1241 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1242 */
1243 spin_lock(&mc.lock);
1244 from = mc.from;
1245 to = mc.to;
1246 if (!from)
1247 goto unlock;
1248
1249 ret = mem_cgroup_is_descendant(from, memcg) ||
1250 mem_cgroup_is_descendant(to, memcg);
1251 unlock:
1252 spin_unlock(&mc.lock);
1253 return ret;
1254 }
1255
1256 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1257 {
1258 if (mc.moving_task && current != mc.moving_task) {
1259 if (mem_cgroup_under_move(memcg)) {
1260 DEFINE_WAIT(wait);
1261 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1262 /* moving charge context might have finished. */
1263 if (mc.moving_task)
1264 schedule();
1265 finish_wait(&mc.waitq, &wait);
1266 return true;
1267 }
1268 }
1269 return false;
1270 }
1271
1272 static const unsigned int memcg1_stats[] = {
1273 MEMCG_CACHE,
1274 MEMCG_RSS,
1275 MEMCG_RSS_HUGE,
1276 NR_SHMEM,
1277 NR_FILE_MAPPED,
1278 NR_FILE_DIRTY,
1279 NR_WRITEBACK,
1280 MEMCG_SWAP,
1281 };
1282
1283 static const char *const memcg1_stat_names[] = {
1284 "cache",
1285 "rss",
1286 "rss_huge",
1287 "shmem",
1288 "mapped_file",
1289 "dirty",
1290 "writeback",
1291 "swap",
1292 };
1293
1294 #define K(x) ((x) << (PAGE_SHIFT-10))
1295 /**
1296 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1297 * @memcg: The memory cgroup that went over limit
1298 * @p: Task that is going to be killed
1299 *
1300 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1301 * enabled
1302 */
1303 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1304 {
1305 struct mem_cgroup *iter;
1306 unsigned int i;
1307
1308 rcu_read_lock();
1309
1310 if (p) {
1311 pr_info("Task in ");
1312 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1313 pr_cont(" killed as a result of limit of ");
1314 } else {
1315 pr_info("Memory limit reached of cgroup ");
1316 }
1317
1318 pr_cont_cgroup_path(memcg->css.cgroup);
1319 pr_cont("\n");
1320
1321 rcu_read_unlock();
1322
1323 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1324 K((u64)page_counter_read(&memcg->memory)),
1325 K((u64)memcg->memory.max), memcg->memory.failcnt);
1326 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1327 K((u64)page_counter_read(&memcg->memsw)),
1328 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1329 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1330 K((u64)page_counter_read(&memcg->kmem)),
1331 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1332
1333 for_each_mem_cgroup_tree(iter, memcg) {
1334 pr_info("Memory cgroup stats for ");
1335 pr_cont_cgroup_path(iter->css.cgroup);
1336 pr_cont(":");
1337
1338 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1339 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1340 continue;
1341 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1342 K(memcg_page_state(iter, memcg1_stats[i])));
1343 }
1344
1345 for (i = 0; i < NR_LRU_LISTS; i++)
1346 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1347 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1348
1349 pr_cont("\n");
1350 }
1351 }
1352
1353 /*
1354 * Return the memory (and swap, if configured) limit for a memcg.
1355 */
1356 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1357 {
1358 unsigned long max;
1359
1360 max = memcg->memory.max;
1361 if (mem_cgroup_swappiness(memcg)) {
1362 unsigned long memsw_max;
1363 unsigned long swap_max;
1364
1365 memsw_max = memcg->memsw.max;
1366 swap_max = memcg->swap.max;
1367 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1368 max = min(max + swap_max, memsw_max);
1369 }
1370 return max;
1371 }
1372
1373 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1374 int order)
1375 {
1376 struct oom_control oc = {
1377 .zonelist = NULL,
1378 .nodemask = NULL,
1379 .memcg = memcg,
1380 .gfp_mask = gfp_mask,
1381 .order = order,
1382 };
1383 bool ret;
1384
1385 mutex_lock(&oom_lock);
1386 ret = out_of_memory(&oc);
1387 mutex_unlock(&oom_lock);
1388 return ret;
1389 }
1390
1391 #if MAX_NUMNODES > 1
1392
1393 /**
1394 * test_mem_cgroup_node_reclaimable
1395 * @memcg: the target memcg
1396 * @nid: the node ID to be checked.
1397 * @noswap : specify true here if the user wants flle only information.
1398 *
1399 * This function returns whether the specified memcg contains any
1400 * reclaimable pages on a node. Returns true if there are any reclaimable
1401 * pages in the node.
1402 */
1403 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1404 int nid, bool noswap)
1405 {
1406 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1407 return true;
1408 if (noswap || !total_swap_pages)
1409 return false;
1410 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1411 return true;
1412 return false;
1413
1414 }
1415
1416 /*
1417 * Always updating the nodemask is not very good - even if we have an empty
1418 * list or the wrong list here, we can start from some node and traverse all
1419 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1420 *
1421 */
1422 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1423 {
1424 int nid;
1425 /*
1426 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1427 * pagein/pageout changes since the last update.
1428 */
1429 if (!atomic_read(&memcg->numainfo_events))
1430 return;
1431 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1432 return;
1433
1434 /* make a nodemask where this memcg uses memory from */
1435 memcg->scan_nodes = node_states[N_MEMORY];
1436
1437 for_each_node_mask(nid, node_states[N_MEMORY]) {
1438
1439 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1440 node_clear(nid, memcg->scan_nodes);
1441 }
1442
1443 atomic_set(&memcg->numainfo_events, 0);
1444 atomic_set(&memcg->numainfo_updating, 0);
1445 }
1446
1447 /*
1448 * Selecting a node where we start reclaim from. Because what we need is just
1449 * reducing usage counter, start from anywhere is O,K. Considering
1450 * memory reclaim from current node, there are pros. and cons.
1451 *
1452 * Freeing memory from current node means freeing memory from a node which
1453 * we'll use or we've used. So, it may make LRU bad. And if several threads
1454 * hit limits, it will see a contention on a node. But freeing from remote
1455 * node means more costs for memory reclaim because of memory latency.
1456 *
1457 * Now, we use round-robin. Better algorithm is welcomed.
1458 */
1459 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1460 {
1461 int node;
1462
1463 mem_cgroup_may_update_nodemask(memcg);
1464 node = memcg->last_scanned_node;
1465
1466 node = next_node_in(node, memcg->scan_nodes);
1467 /*
1468 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1469 * last time it really checked all the LRUs due to rate limiting.
1470 * Fallback to the current node in that case for simplicity.
1471 */
1472 if (unlikely(node == MAX_NUMNODES))
1473 node = numa_node_id();
1474
1475 memcg->last_scanned_node = node;
1476 return node;
1477 }
1478 #else
1479 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1480 {
1481 return 0;
1482 }
1483 #endif
1484
1485 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1486 pg_data_t *pgdat,
1487 gfp_t gfp_mask,
1488 unsigned long *total_scanned)
1489 {
1490 struct mem_cgroup *victim = NULL;
1491 int total = 0;
1492 int loop = 0;
1493 unsigned long excess;
1494 unsigned long nr_scanned;
1495 struct mem_cgroup_reclaim_cookie reclaim = {
1496 .pgdat = pgdat,
1497 .priority = 0,
1498 };
1499
1500 excess = soft_limit_excess(root_memcg);
1501
1502 while (1) {
1503 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1504 if (!victim) {
1505 loop++;
1506 if (loop >= 2) {
1507 /*
1508 * If we have not been able to reclaim
1509 * anything, it might because there are
1510 * no reclaimable pages under this hierarchy
1511 */
1512 if (!total)
1513 break;
1514 /*
1515 * We want to do more targeted reclaim.
1516 * excess >> 2 is not to excessive so as to
1517 * reclaim too much, nor too less that we keep
1518 * coming back to reclaim from this cgroup
1519 */
1520 if (total >= (excess >> 2) ||
1521 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1522 break;
1523 }
1524 continue;
1525 }
1526 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1527 pgdat, &nr_scanned);
1528 *total_scanned += nr_scanned;
1529 if (!soft_limit_excess(root_memcg))
1530 break;
1531 }
1532 mem_cgroup_iter_break(root_memcg, victim);
1533 return total;
1534 }
1535
1536 #ifdef CONFIG_LOCKDEP
1537 static struct lockdep_map memcg_oom_lock_dep_map = {
1538 .name = "memcg_oom_lock",
1539 };
1540 #endif
1541
1542 static DEFINE_SPINLOCK(memcg_oom_lock);
1543
1544 /*
1545 * Check OOM-Killer is already running under our hierarchy.
1546 * If someone is running, return false.
1547 */
1548 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1549 {
1550 struct mem_cgroup *iter, *failed = NULL;
1551
1552 spin_lock(&memcg_oom_lock);
1553
1554 for_each_mem_cgroup_tree(iter, memcg) {
1555 if (iter->oom_lock) {
1556 /*
1557 * this subtree of our hierarchy is already locked
1558 * so we cannot give a lock.
1559 */
1560 failed = iter;
1561 mem_cgroup_iter_break(memcg, iter);
1562 break;
1563 } else
1564 iter->oom_lock = true;
1565 }
1566
1567 if (failed) {
1568 /*
1569 * OK, we failed to lock the whole subtree so we have
1570 * to clean up what we set up to the failing subtree
1571 */
1572 for_each_mem_cgroup_tree(iter, memcg) {
1573 if (iter == failed) {
1574 mem_cgroup_iter_break(memcg, iter);
1575 break;
1576 }
1577 iter->oom_lock = false;
1578 }
1579 } else
1580 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1581
1582 spin_unlock(&memcg_oom_lock);
1583
1584 return !failed;
1585 }
1586
1587 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1588 {
1589 struct mem_cgroup *iter;
1590
1591 spin_lock(&memcg_oom_lock);
1592 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1593 for_each_mem_cgroup_tree(iter, memcg)
1594 iter->oom_lock = false;
1595 spin_unlock(&memcg_oom_lock);
1596 }
1597
1598 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1599 {
1600 struct mem_cgroup *iter;
1601
1602 spin_lock(&memcg_oom_lock);
1603 for_each_mem_cgroup_tree(iter, memcg)
1604 iter->under_oom++;
1605 spin_unlock(&memcg_oom_lock);
1606 }
1607
1608 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1609 {
1610 struct mem_cgroup *iter;
1611
1612 /*
1613 * When a new child is created while the hierarchy is under oom,
1614 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1615 */
1616 spin_lock(&memcg_oom_lock);
1617 for_each_mem_cgroup_tree(iter, memcg)
1618 if (iter->under_oom > 0)
1619 iter->under_oom--;
1620 spin_unlock(&memcg_oom_lock);
1621 }
1622
1623 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1624
1625 struct oom_wait_info {
1626 struct mem_cgroup *memcg;
1627 wait_queue_entry_t wait;
1628 };
1629
1630 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1631 unsigned mode, int sync, void *arg)
1632 {
1633 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1634 struct mem_cgroup *oom_wait_memcg;
1635 struct oom_wait_info *oom_wait_info;
1636
1637 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1638 oom_wait_memcg = oom_wait_info->memcg;
1639
1640 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1641 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1642 return 0;
1643 return autoremove_wake_function(wait, mode, sync, arg);
1644 }
1645
1646 static void memcg_oom_recover(struct mem_cgroup *memcg)
1647 {
1648 /*
1649 * For the following lockless ->under_oom test, the only required
1650 * guarantee is that it must see the state asserted by an OOM when
1651 * this function is called as a result of userland actions
1652 * triggered by the notification of the OOM. This is trivially
1653 * achieved by invoking mem_cgroup_mark_under_oom() before
1654 * triggering notification.
1655 */
1656 if (memcg && memcg->under_oom)
1657 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1658 }
1659
1660 enum oom_status {
1661 OOM_SUCCESS,
1662 OOM_FAILED,
1663 OOM_ASYNC,
1664 OOM_SKIPPED
1665 };
1666
1667 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1668 {
1669 if (order > PAGE_ALLOC_COSTLY_ORDER)
1670 return OOM_SKIPPED;
1671
1672 memcg_memory_event(memcg, MEMCG_OOM);
1673
1674 /*
1675 * We are in the middle of the charge context here, so we
1676 * don't want to block when potentially sitting on a callstack
1677 * that holds all kinds of filesystem and mm locks.
1678 *
1679 * cgroup1 allows disabling the OOM killer and waiting for outside
1680 * handling until the charge can succeed; remember the context and put
1681 * the task to sleep at the end of the page fault when all locks are
1682 * released.
1683 *
1684 * On the other hand, in-kernel OOM killer allows for an async victim
1685 * memory reclaim (oom_reaper) and that means that we are not solely
1686 * relying on the oom victim to make a forward progress and we can
1687 * invoke the oom killer here.
1688 *
1689 * Please note that mem_cgroup_out_of_memory might fail to find a
1690 * victim and then we have to bail out from the charge path.
1691 */
1692 if (memcg->oom_kill_disable) {
1693 if (!current->in_user_fault)
1694 return OOM_SKIPPED;
1695 css_get(&memcg->css);
1696 current->memcg_in_oom = memcg;
1697 current->memcg_oom_gfp_mask = mask;
1698 current->memcg_oom_order = order;
1699
1700 return OOM_ASYNC;
1701 }
1702
1703 if (mem_cgroup_out_of_memory(memcg, mask, order))
1704 return OOM_SUCCESS;
1705
1706 return OOM_FAILED;
1707 }
1708
1709 /**
1710 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1711 * @handle: actually kill/wait or just clean up the OOM state
1712 *
1713 * This has to be called at the end of a page fault if the memcg OOM
1714 * handler was enabled.
1715 *
1716 * Memcg supports userspace OOM handling where failed allocations must
1717 * sleep on a waitqueue until the userspace task resolves the
1718 * situation. Sleeping directly in the charge context with all kinds
1719 * of locks held is not a good idea, instead we remember an OOM state
1720 * in the task and mem_cgroup_oom_synchronize() has to be called at
1721 * the end of the page fault to complete the OOM handling.
1722 *
1723 * Returns %true if an ongoing memcg OOM situation was detected and
1724 * completed, %false otherwise.
1725 */
1726 bool mem_cgroup_oom_synchronize(bool handle)
1727 {
1728 struct mem_cgroup *memcg = current->memcg_in_oom;
1729 struct oom_wait_info owait;
1730 bool locked;
1731
1732 /* OOM is global, do not handle */
1733 if (!memcg)
1734 return false;
1735
1736 if (!handle)
1737 goto cleanup;
1738
1739 owait.memcg = memcg;
1740 owait.wait.flags = 0;
1741 owait.wait.func = memcg_oom_wake_function;
1742 owait.wait.private = current;
1743 INIT_LIST_HEAD(&owait.wait.entry);
1744
1745 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1746 mem_cgroup_mark_under_oom(memcg);
1747
1748 locked = mem_cgroup_oom_trylock(memcg);
1749
1750 if (locked)
1751 mem_cgroup_oom_notify(memcg);
1752
1753 if (locked && !memcg->oom_kill_disable) {
1754 mem_cgroup_unmark_under_oom(memcg);
1755 finish_wait(&memcg_oom_waitq, &owait.wait);
1756 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1757 current->memcg_oom_order);
1758 } else {
1759 schedule();
1760 mem_cgroup_unmark_under_oom(memcg);
1761 finish_wait(&memcg_oom_waitq, &owait.wait);
1762 }
1763
1764 if (locked) {
1765 mem_cgroup_oom_unlock(memcg);
1766 /*
1767 * There is no guarantee that an OOM-lock contender
1768 * sees the wakeups triggered by the OOM kill
1769 * uncharges. Wake any sleepers explicitely.
1770 */
1771 memcg_oom_recover(memcg);
1772 }
1773 cleanup:
1774 current->memcg_in_oom = NULL;
1775 css_put(&memcg->css);
1776 return true;
1777 }
1778
1779 /**
1780 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1781 * @victim: task to be killed by the OOM killer
1782 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1783 *
1784 * Returns a pointer to a memory cgroup, which has to be cleaned up
1785 * by killing all belonging OOM-killable tasks.
1786 *
1787 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1788 */
1789 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1790 struct mem_cgroup *oom_domain)
1791 {
1792 struct mem_cgroup *oom_group = NULL;
1793 struct mem_cgroup *memcg;
1794
1795 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1796 return NULL;
1797
1798 if (!oom_domain)
1799 oom_domain = root_mem_cgroup;
1800
1801 rcu_read_lock();
1802
1803 memcg = mem_cgroup_from_task(victim);
1804 if (memcg == root_mem_cgroup)
1805 goto out;
1806
1807 /*
1808 * Traverse the memory cgroup hierarchy from the victim task's
1809 * cgroup up to the OOMing cgroup (or root) to find the
1810 * highest-level memory cgroup with oom.group set.
1811 */
1812 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1813 if (memcg->oom_group)
1814 oom_group = memcg;
1815
1816 if (memcg == oom_domain)
1817 break;
1818 }
1819
1820 if (oom_group)
1821 css_get(&oom_group->css);
1822 out:
1823 rcu_read_unlock();
1824
1825 return oom_group;
1826 }
1827
1828 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1829 {
1830 pr_info("Tasks in ");
1831 pr_cont_cgroup_path(memcg->css.cgroup);
1832 pr_cont(" are going to be killed due to memory.oom.group set\n");
1833 }
1834
1835 /**
1836 * lock_page_memcg - lock a page->mem_cgroup binding
1837 * @page: the page
1838 *
1839 * This function protects unlocked LRU pages from being moved to
1840 * another cgroup.
1841 *
1842 * It ensures lifetime of the returned memcg. Caller is responsible
1843 * for the lifetime of the page; __unlock_page_memcg() is available
1844 * when @page might get freed inside the locked section.
1845 */
1846 struct mem_cgroup *lock_page_memcg(struct page *page)
1847 {
1848 struct mem_cgroup *memcg;
1849 unsigned long flags;
1850
1851 /*
1852 * The RCU lock is held throughout the transaction. The fast
1853 * path can get away without acquiring the memcg->move_lock
1854 * because page moving starts with an RCU grace period.
1855 *
1856 * The RCU lock also protects the memcg from being freed when
1857 * the page state that is going to change is the only thing
1858 * preventing the page itself from being freed. E.g. writeback
1859 * doesn't hold a page reference and relies on PG_writeback to
1860 * keep off truncation, migration and so forth.
1861 */
1862 rcu_read_lock();
1863
1864 if (mem_cgroup_disabled())
1865 return NULL;
1866 again:
1867 memcg = page->mem_cgroup;
1868 if (unlikely(!memcg))
1869 return NULL;
1870
1871 if (atomic_read(&memcg->moving_account) <= 0)
1872 return memcg;
1873
1874 spin_lock_irqsave(&memcg->move_lock, flags);
1875 if (memcg != page->mem_cgroup) {
1876 spin_unlock_irqrestore(&memcg->move_lock, flags);
1877 goto again;
1878 }
1879
1880 /*
1881 * When charge migration first begins, we can have locked and
1882 * unlocked page stat updates happening concurrently. Track
1883 * the task who has the lock for unlock_page_memcg().
1884 */
1885 memcg->move_lock_task = current;
1886 memcg->move_lock_flags = flags;
1887
1888 return memcg;
1889 }
1890 EXPORT_SYMBOL(lock_page_memcg);
1891
1892 /**
1893 * __unlock_page_memcg - unlock and unpin a memcg
1894 * @memcg: the memcg
1895 *
1896 * Unlock and unpin a memcg returned by lock_page_memcg().
1897 */
1898 void __unlock_page_memcg(struct mem_cgroup *memcg)
1899 {
1900 if (memcg && memcg->move_lock_task == current) {
1901 unsigned long flags = memcg->move_lock_flags;
1902
1903 memcg->move_lock_task = NULL;
1904 memcg->move_lock_flags = 0;
1905
1906 spin_unlock_irqrestore(&memcg->move_lock, flags);
1907 }
1908
1909 rcu_read_unlock();
1910 }
1911
1912 /**
1913 * unlock_page_memcg - unlock a page->mem_cgroup binding
1914 * @page: the page
1915 */
1916 void unlock_page_memcg(struct page *page)
1917 {
1918 __unlock_page_memcg(page->mem_cgroup);
1919 }
1920 EXPORT_SYMBOL(unlock_page_memcg);
1921
1922 struct memcg_stock_pcp {
1923 struct mem_cgroup *cached; /* this never be root cgroup */
1924 unsigned int nr_pages;
1925 struct work_struct work;
1926 unsigned long flags;
1927 #define FLUSHING_CACHED_CHARGE 0
1928 };
1929 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1930 static DEFINE_MUTEX(percpu_charge_mutex);
1931
1932 /**
1933 * consume_stock: Try to consume stocked charge on this cpu.
1934 * @memcg: memcg to consume from.
1935 * @nr_pages: how many pages to charge.
1936 *
1937 * The charges will only happen if @memcg matches the current cpu's memcg
1938 * stock, and at least @nr_pages are available in that stock. Failure to
1939 * service an allocation will refill the stock.
1940 *
1941 * returns true if successful, false otherwise.
1942 */
1943 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1944 {
1945 struct memcg_stock_pcp *stock;
1946 unsigned long flags;
1947 bool ret = false;
1948
1949 if (nr_pages > MEMCG_CHARGE_BATCH)
1950 return ret;
1951
1952 local_irq_save(flags);
1953
1954 stock = this_cpu_ptr(&memcg_stock);
1955 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1956 stock->nr_pages -= nr_pages;
1957 ret = true;
1958 }
1959
1960 local_irq_restore(flags);
1961
1962 return ret;
1963 }
1964
1965 /*
1966 * Returns stocks cached in percpu and reset cached information.
1967 */
1968 static void drain_stock(struct memcg_stock_pcp *stock)
1969 {
1970 struct mem_cgroup *old = stock->cached;
1971
1972 if (stock->nr_pages) {
1973 page_counter_uncharge(&old->memory, stock->nr_pages);
1974 if (do_memsw_account())
1975 page_counter_uncharge(&old->memsw, stock->nr_pages);
1976 css_put_many(&old->css, stock->nr_pages);
1977 stock->nr_pages = 0;
1978 }
1979 stock->cached = NULL;
1980 }
1981
1982 static void drain_local_stock(struct work_struct *dummy)
1983 {
1984 struct memcg_stock_pcp *stock;
1985 unsigned long flags;
1986
1987 /*
1988 * The only protection from memory hotplug vs. drain_stock races is
1989 * that we always operate on local CPU stock here with IRQ disabled
1990 */
1991 local_irq_save(flags);
1992
1993 stock = this_cpu_ptr(&memcg_stock);
1994 drain_stock(stock);
1995 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1996
1997 local_irq_restore(flags);
1998 }
1999
2000 /*
2001 * Cache charges(val) to local per_cpu area.
2002 * This will be consumed by consume_stock() function, later.
2003 */
2004 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2005 {
2006 struct memcg_stock_pcp *stock;
2007 unsigned long flags;
2008
2009 local_irq_save(flags);
2010
2011 stock = this_cpu_ptr(&memcg_stock);
2012 if (stock->cached != memcg) { /* reset if necessary */
2013 drain_stock(stock);
2014 stock->cached = memcg;
2015 }
2016 stock->nr_pages += nr_pages;
2017
2018 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2019 drain_stock(stock);
2020
2021 local_irq_restore(flags);
2022 }
2023
2024 /*
2025 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2026 * of the hierarchy under it.
2027 */
2028 static void drain_all_stock(struct mem_cgroup *root_memcg)
2029 {
2030 int cpu, curcpu;
2031
2032 /* If someone's already draining, avoid adding running more workers. */
2033 if (!mutex_trylock(&percpu_charge_mutex))
2034 return;
2035 /*
2036 * Notify other cpus that system-wide "drain" is running
2037 * We do not care about races with the cpu hotplug because cpu down
2038 * as well as workers from this path always operate on the local
2039 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2040 */
2041 curcpu = get_cpu();
2042 for_each_online_cpu(cpu) {
2043 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2044 struct mem_cgroup *memcg;
2045
2046 memcg = stock->cached;
2047 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2048 continue;
2049 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2050 css_put(&memcg->css);
2051 continue;
2052 }
2053 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2054 if (cpu == curcpu)
2055 drain_local_stock(&stock->work);
2056 else
2057 schedule_work_on(cpu, &stock->work);
2058 }
2059 css_put(&memcg->css);
2060 }
2061 put_cpu();
2062 mutex_unlock(&percpu_charge_mutex);
2063 }
2064
2065 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2066 {
2067 struct memcg_stock_pcp *stock;
2068 struct mem_cgroup *memcg;
2069
2070 stock = &per_cpu(memcg_stock, cpu);
2071 drain_stock(stock);
2072
2073 for_each_mem_cgroup(memcg) {
2074 int i;
2075
2076 for (i = 0; i < MEMCG_NR_STAT; i++) {
2077 int nid;
2078 long x;
2079
2080 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
2081 if (x)
2082 atomic_long_add(x, &memcg->stat[i]);
2083
2084 if (i >= NR_VM_NODE_STAT_ITEMS)
2085 continue;
2086
2087 for_each_node(nid) {
2088 struct mem_cgroup_per_node *pn;
2089
2090 pn = mem_cgroup_nodeinfo(memcg, nid);
2091 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2092 if (x)
2093 atomic_long_add(x, &pn->lruvec_stat[i]);
2094 }
2095 }
2096
2097 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2098 long x;
2099
2100 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
2101 if (x)
2102 atomic_long_add(x, &memcg->events[i]);
2103 }
2104 }
2105
2106 return 0;
2107 }
2108
2109 static void reclaim_high(struct mem_cgroup *memcg,
2110 unsigned int nr_pages,
2111 gfp_t gfp_mask)
2112 {
2113 do {
2114 if (page_counter_read(&memcg->memory) <= memcg->high)
2115 continue;
2116 memcg_memory_event(memcg, MEMCG_HIGH);
2117 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2118 } while ((memcg = parent_mem_cgroup(memcg)));
2119 }
2120
2121 static void high_work_func(struct work_struct *work)
2122 {
2123 struct mem_cgroup *memcg;
2124
2125 memcg = container_of(work, struct mem_cgroup, high_work);
2126 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2127 }
2128
2129 /*
2130 * Scheduled by try_charge() to be executed from the userland return path
2131 * and reclaims memory over the high limit.
2132 */
2133 void mem_cgroup_handle_over_high(void)
2134 {
2135 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2136 struct mem_cgroup *memcg;
2137
2138 if (likely(!nr_pages))
2139 return;
2140
2141 memcg = get_mem_cgroup_from_mm(current->mm);
2142 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2143 css_put(&memcg->css);
2144 current->memcg_nr_pages_over_high = 0;
2145 }
2146
2147 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2148 unsigned int nr_pages)
2149 {
2150 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2151 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2152 struct mem_cgroup *mem_over_limit;
2153 struct page_counter *counter;
2154 unsigned long nr_reclaimed;
2155 bool may_swap = true;
2156 bool drained = false;
2157 bool oomed = false;
2158 enum oom_status oom_status;
2159
2160 if (mem_cgroup_is_root(memcg))
2161 return 0;
2162 retry:
2163 if (consume_stock(memcg, nr_pages))
2164 return 0;
2165
2166 if (!do_memsw_account() ||
2167 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2168 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2169 goto done_restock;
2170 if (do_memsw_account())
2171 page_counter_uncharge(&memcg->memsw, batch);
2172 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2173 } else {
2174 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2175 may_swap = false;
2176 }
2177
2178 if (batch > nr_pages) {
2179 batch = nr_pages;
2180 goto retry;
2181 }
2182
2183 /*
2184 * Unlike in global OOM situations, memcg is not in a physical
2185 * memory shortage. Allow dying and OOM-killed tasks to
2186 * bypass the last charges so that they can exit quickly and
2187 * free their memory.
2188 */
2189 if (unlikely(tsk_is_oom_victim(current) ||
2190 fatal_signal_pending(current) ||
2191 current->flags & PF_EXITING))
2192 goto force;
2193
2194 /*
2195 * Prevent unbounded recursion when reclaim operations need to
2196 * allocate memory. This might exceed the limits temporarily,
2197 * but we prefer facilitating memory reclaim and getting back
2198 * under the limit over triggering OOM kills in these cases.
2199 */
2200 if (unlikely(current->flags & PF_MEMALLOC))
2201 goto force;
2202
2203 if (unlikely(task_in_memcg_oom(current)))
2204 goto nomem;
2205
2206 if (!gfpflags_allow_blocking(gfp_mask))
2207 goto nomem;
2208
2209 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2210
2211 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2212 gfp_mask, may_swap);
2213
2214 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2215 goto retry;
2216
2217 if (!drained) {
2218 drain_all_stock(mem_over_limit);
2219 drained = true;
2220 goto retry;
2221 }
2222
2223 if (gfp_mask & __GFP_NORETRY)
2224 goto nomem;
2225 /*
2226 * Even though the limit is exceeded at this point, reclaim
2227 * may have been able to free some pages. Retry the charge
2228 * before killing the task.
2229 *
2230 * Only for regular pages, though: huge pages are rather
2231 * unlikely to succeed so close to the limit, and we fall back
2232 * to regular pages anyway in case of failure.
2233 */
2234 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2235 goto retry;
2236 /*
2237 * At task move, charge accounts can be doubly counted. So, it's
2238 * better to wait until the end of task_move if something is going on.
2239 */
2240 if (mem_cgroup_wait_acct_move(mem_over_limit))
2241 goto retry;
2242
2243 if (nr_retries--)
2244 goto retry;
2245
2246 if (gfp_mask & __GFP_RETRY_MAYFAIL && oomed)
2247 goto nomem;
2248
2249 if (gfp_mask & __GFP_NOFAIL)
2250 goto force;
2251
2252 if (fatal_signal_pending(current))
2253 goto force;
2254
2255 /*
2256 * keep retrying as long as the memcg oom killer is able to make
2257 * a forward progress or bypass the charge if the oom killer
2258 * couldn't make any progress.
2259 */
2260 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2261 get_order(nr_pages * PAGE_SIZE));
2262 switch (oom_status) {
2263 case OOM_SUCCESS:
2264 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2265 oomed = true;
2266 goto retry;
2267 case OOM_FAILED:
2268 goto force;
2269 default:
2270 goto nomem;
2271 }
2272 nomem:
2273 if (!(gfp_mask & __GFP_NOFAIL))
2274 return -ENOMEM;
2275 force:
2276 /*
2277 * The allocation either can't fail or will lead to more memory
2278 * being freed very soon. Allow memory usage go over the limit
2279 * temporarily by force charging it.
2280 */
2281 page_counter_charge(&memcg->memory, nr_pages);
2282 if (do_memsw_account())
2283 page_counter_charge(&memcg->memsw, nr_pages);
2284 css_get_many(&memcg->css, nr_pages);
2285
2286 return 0;
2287
2288 done_restock:
2289 css_get_many(&memcg->css, batch);
2290 if (batch > nr_pages)
2291 refill_stock(memcg, batch - nr_pages);
2292
2293 /*
2294 * If the hierarchy is above the normal consumption range, schedule
2295 * reclaim on returning to userland. We can perform reclaim here
2296 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2297 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2298 * not recorded as it most likely matches current's and won't
2299 * change in the meantime. As high limit is checked again before
2300 * reclaim, the cost of mismatch is negligible.
2301 */
2302 do {
2303 if (page_counter_read(&memcg->memory) > memcg->high) {
2304 /* Don't bother a random interrupted task */
2305 if (in_interrupt()) {
2306 schedule_work(&memcg->high_work);
2307 break;
2308 }
2309 current->memcg_nr_pages_over_high += batch;
2310 set_notify_resume(current);
2311 break;
2312 }
2313 } while ((memcg = parent_mem_cgroup(memcg)));
2314
2315 return 0;
2316 }
2317
2318 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2319 {
2320 if (mem_cgroup_is_root(memcg))
2321 return;
2322
2323 page_counter_uncharge(&memcg->memory, nr_pages);
2324 if (do_memsw_account())
2325 page_counter_uncharge(&memcg->memsw, nr_pages);
2326
2327 css_put_many(&memcg->css, nr_pages);
2328 }
2329
2330 static void lock_page_lru(struct page *page, int *isolated)
2331 {
2332 struct zone *zone = page_zone(page);
2333
2334 spin_lock_irq(zone_lru_lock(zone));
2335 if (PageLRU(page)) {
2336 struct lruvec *lruvec;
2337
2338 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2339 ClearPageLRU(page);
2340 del_page_from_lru_list(page, lruvec, page_lru(page));
2341 *isolated = 1;
2342 } else
2343 *isolated = 0;
2344 }
2345
2346 static void unlock_page_lru(struct page *page, int isolated)
2347 {
2348 struct zone *zone = page_zone(page);
2349
2350 if (isolated) {
2351 struct lruvec *lruvec;
2352
2353 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2354 VM_BUG_ON_PAGE(PageLRU(page), page);
2355 SetPageLRU(page);
2356 add_page_to_lru_list(page, lruvec, page_lru(page));
2357 }
2358 spin_unlock_irq(zone_lru_lock(zone));
2359 }
2360
2361 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2362 bool lrucare)
2363 {
2364 int isolated;
2365
2366 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2367
2368 /*
2369 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2370 * may already be on some other mem_cgroup's LRU. Take care of it.
2371 */
2372 if (lrucare)
2373 lock_page_lru(page, &isolated);
2374
2375 /*
2376 * Nobody should be changing or seriously looking at
2377 * page->mem_cgroup at this point:
2378 *
2379 * - the page is uncharged
2380 *
2381 * - the page is off-LRU
2382 *
2383 * - an anonymous fault has exclusive page access, except for
2384 * a locked page table
2385 *
2386 * - a page cache insertion, a swapin fault, or a migration
2387 * have the page locked
2388 */
2389 page->mem_cgroup = memcg;
2390
2391 if (lrucare)
2392 unlock_page_lru(page, isolated);
2393 }
2394
2395 #ifdef CONFIG_MEMCG_KMEM
2396 static int memcg_alloc_cache_id(void)
2397 {
2398 int id, size;
2399 int err;
2400
2401 id = ida_simple_get(&memcg_cache_ida,
2402 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2403 if (id < 0)
2404 return id;
2405
2406 if (id < memcg_nr_cache_ids)
2407 return id;
2408
2409 /*
2410 * There's no space for the new id in memcg_caches arrays,
2411 * so we have to grow them.
2412 */
2413 down_write(&memcg_cache_ids_sem);
2414
2415 size = 2 * (id + 1);
2416 if (size < MEMCG_CACHES_MIN_SIZE)
2417 size = MEMCG_CACHES_MIN_SIZE;
2418 else if (size > MEMCG_CACHES_MAX_SIZE)
2419 size = MEMCG_CACHES_MAX_SIZE;
2420
2421 err = memcg_update_all_caches(size);
2422 if (!err)
2423 err = memcg_update_all_list_lrus(size);
2424 if (!err)
2425 memcg_nr_cache_ids = size;
2426
2427 up_write(&memcg_cache_ids_sem);
2428
2429 if (err) {
2430 ida_simple_remove(&memcg_cache_ida, id);
2431 return err;
2432 }
2433 return id;
2434 }
2435
2436 static void memcg_free_cache_id(int id)
2437 {
2438 ida_simple_remove(&memcg_cache_ida, id);
2439 }
2440
2441 struct memcg_kmem_cache_create_work {
2442 struct mem_cgroup *memcg;
2443 struct kmem_cache *cachep;
2444 struct work_struct work;
2445 };
2446
2447 static void memcg_kmem_cache_create_func(struct work_struct *w)
2448 {
2449 struct memcg_kmem_cache_create_work *cw =
2450 container_of(w, struct memcg_kmem_cache_create_work, work);
2451 struct mem_cgroup *memcg = cw->memcg;
2452 struct kmem_cache *cachep = cw->cachep;
2453
2454 memcg_create_kmem_cache(memcg, cachep);
2455
2456 css_put(&memcg->css);
2457 kfree(cw);
2458 }
2459
2460 /*
2461 * Enqueue the creation of a per-memcg kmem_cache.
2462 */
2463 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2464 struct kmem_cache *cachep)
2465 {
2466 struct memcg_kmem_cache_create_work *cw;
2467
2468 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2469 if (!cw)
2470 return;
2471
2472 css_get(&memcg->css);
2473
2474 cw->memcg = memcg;
2475 cw->cachep = cachep;
2476 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2477
2478 queue_work(memcg_kmem_cache_wq, &cw->work);
2479 }
2480
2481 static inline bool memcg_kmem_bypass(void)
2482 {
2483 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2484 return true;
2485 return false;
2486 }
2487
2488 /**
2489 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2490 * @cachep: the original global kmem cache
2491 *
2492 * Return the kmem_cache we're supposed to use for a slab allocation.
2493 * We try to use the current memcg's version of the cache.
2494 *
2495 * If the cache does not exist yet, if we are the first user of it, we
2496 * create it asynchronously in a workqueue and let the current allocation
2497 * go through with the original cache.
2498 *
2499 * This function takes a reference to the cache it returns to assure it
2500 * won't get destroyed while we are working with it. Once the caller is
2501 * done with it, memcg_kmem_put_cache() must be called to release the
2502 * reference.
2503 */
2504 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2505 {
2506 struct mem_cgroup *memcg;
2507 struct kmem_cache *memcg_cachep;
2508 int kmemcg_id;
2509
2510 VM_BUG_ON(!is_root_cache(cachep));
2511
2512 if (memcg_kmem_bypass())
2513 return cachep;
2514
2515 memcg = get_mem_cgroup_from_current();
2516 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2517 if (kmemcg_id < 0)
2518 goto out;
2519
2520 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2521 if (likely(memcg_cachep))
2522 return memcg_cachep;
2523
2524 /*
2525 * If we are in a safe context (can wait, and not in interrupt
2526 * context), we could be be predictable and return right away.
2527 * This would guarantee that the allocation being performed
2528 * already belongs in the new cache.
2529 *
2530 * However, there are some clashes that can arrive from locking.
2531 * For instance, because we acquire the slab_mutex while doing
2532 * memcg_create_kmem_cache, this means no further allocation
2533 * could happen with the slab_mutex held. So it's better to
2534 * defer everything.
2535 */
2536 memcg_schedule_kmem_cache_create(memcg, cachep);
2537 out:
2538 css_put(&memcg->css);
2539 return cachep;
2540 }
2541
2542 /**
2543 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2544 * @cachep: the cache returned by memcg_kmem_get_cache
2545 */
2546 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2547 {
2548 if (!is_root_cache(cachep))
2549 css_put(&cachep->memcg_params.memcg->css);
2550 }
2551
2552 /**
2553 * memcg_kmem_charge_memcg: charge a kmem page
2554 * @page: page to charge
2555 * @gfp: reclaim mode
2556 * @order: allocation order
2557 * @memcg: memory cgroup to charge
2558 *
2559 * Returns 0 on success, an error code on failure.
2560 */
2561 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2562 struct mem_cgroup *memcg)
2563 {
2564 unsigned int nr_pages = 1 << order;
2565 struct page_counter *counter;
2566 int ret;
2567
2568 ret = try_charge(memcg, gfp, nr_pages);
2569 if (ret)
2570 return ret;
2571
2572 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2573 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2574 cancel_charge(memcg, nr_pages);
2575 return -ENOMEM;
2576 }
2577
2578 page->mem_cgroup = memcg;
2579
2580 return 0;
2581 }
2582
2583 /**
2584 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2585 * @page: page to charge
2586 * @gfp: reclaim mode
2587 * @order: allocation order
2588 *
2589 * Returns 0 on success, an error code on failure.
2590 */
2591 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2592 {
2593 struct mem_cgroup *memcg;
2594 int ret = 0;
2595
2596 if (memcg_kmem_bypass())
2597 return 0;
2598
2599 memcg = get_mem_cgroup_from_current();
2600 if (!mem_cgroup_is_root(memcg)) {
2601 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2602 if (!ret)
2603 __SetPageKmemcg(page);
2604 }
2605 css_put(&memcg->css);
2606 return ret;
2607 }
2608 /**
2609 * memcg_kmem_uncharge: uncharge a kmem page
2610 * @page: page to uncharge
2611 * @order: allocation order
2612 */
2613 void memcg_kmem_uncharge(struct page *page, int order)
2614 {
2615 struct mem_cgroup *memcg = page->mem_cgroup;
2616 unsigned int nr_pages = 1 << order;
2617
2618 if (!memcg)
2619 return;
2620
2621 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2622
2623 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2624 page_counter_uncharge(&memcg->kmem, nr_pages);
2625
2626 page_counter_uncharge(&memcg->memory, nr_pages);
2627 if (do_memsw_account())
2628 page_counter_uncharge(&memcg->memsw, nr_pages);
2629
2630 page->mem_cgroup = NULL;
2631
2632 /* slab pages do not have PageKmemcg flag set */
2633 if (PageKmemcg(page))
2634 __ClearPageKmemcg(page);
2635
2636 css_put_many(&memcg->css, nr_pages);
2637 }
2638 #endif /* CONFIG_MEMCG_KMEM */
2639
2640 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2641
2642 /*
2643 * Because tail pages are not marked as "used", set it. We're under
2644 * zone_lru_lock and migration entries setup in all page mappings.
2645 */
2646 void mem_cgroup_split_huge_fixup(struct page *head)
2647 {
2648 int i;
2649
2650 if (mem_cgroup_disabled())
2651 return;
2652
2653 for (i = 1; i < HPAGE_PMD_NR; i++)
2654 head[i].mem_cgroup = head->mem_cgroup;
2655
2656 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2657 }
2658 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2659
2660 #ifdef CONFIG_MEMCG_SWAP
2661 /**
2662 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2663 * @entry: swap entry to be moved
2664 * @from: mem_cgroup which the entry is moved from
2665 * @to: mem_cgroup which the entry is moved to
2666 *
2667 * It succeeds only when the swap_cgroup's record for this entry is the same
2668 * as the mem_cgroup's id of @from.
2669 *
2670 * Returns 0 on success, -EINVAL on failure.
2671 *
2672 * The caller must have charged to @to, IOW, called page_counter_charge() about
2673 * both res and memsw, and called css_get().
2674 */
2675 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2676 struct mem_cgroup *from, struct mem_cgroup *to)
2677 {
2678 unsigned short old_id, new_id;
2679
2680 old_id = mem_cgroup_id(from);
2681 new_id = mem_cgroup_id(to);
2682
2683 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2684 mod_memcg_state(from, MEMCG_SWAP, -1);
2685 mod_memcg_state(to, MEMCG_SWAP, 1);
2686 return 0;
2687 }
2688 return -EINVAL;
2689 }
2690 #else
2691 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2692 struct mem_cgroup *from, struct mem_cgroup *to)
2693 {
2694 return -EINVAL;
2695 }
2696 #endif
2697
2698 static DEFINE_MUTEX(memcg_max_mutex);
2699
2700 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2701 unsigned long max, bool memsw)
2702 {
2703 bool enlarge = false;
2704 bool drained = false;
2705 int ret;
2706 bool limits_invariant;
2707 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2708
2709 do {
2710 if (signal_pending(current)) {
2711 ret = -EINTR;
2712 break;
2713 }
2714
2715 mutex_lock(&memcg_max_mutex);
2716 /*
2717 * Make sure that the new limit (memsw or memory limit) doesn't
2718 * break our basic invariant rule memory.max <= memsw.max.
2719 */
2720 limits_invariant = memsw ? max >= memcg->memory.max :
2721 max <= memcg->memsw.max;
2722 if (!limits_invariant) {
2723 mutex_unlock(&memcg_max_mutex);
2724 ret = -EINVAL;
2725 break;
2726 }
2727 if (max > counter->max)
2728 enlarge = true;
2729 ret = page_counter_set_max(counter, max);
2730 mutex_unlock(&memcg_max_mutex);
2731
2732 if (!ret)
2733 break;
2734
2735 if (!drained) {
2736 drain_all_stock(memcg);
2737 drained = true;
2738 continue;
2739 }
2740
2741 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2742 GFP_KERNEL, !memsw)) {
2743 ret = -EBUSY;
2744 break;
2745 }
2746 } while (true);
2747
2748 if (!ret && enlarge)
2749 memcg_oom_recover(memcg);
2750
2751 return ret;
2752 }
2753
2754 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2755 gfp_t gfp_mask,
2756 unsigned long *total_scanned)
2757 {
2758 unsigned long nr_reclaimed = 0;
2759 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2760 unsigned long reclaimed;
2761 int loop = 0;
2762 struct mem_cgroup_tree_per_node *mctz;
2763 unsigned long excess;
2764 unsigned long nr_scanned;
2765
2766 if (order > 0)
2767 return 0;
2768
2769 mctz = soft_limit_tree_node(pgdat->node_id);
2770
2771 /*
2772 * Do not even bother to check the largest node if the root
2773 * is empty. Do it lockless to prevent lock bouncing. Races
2774 * are acceptable as soft limit is best effort anyway.
2775 */
2776 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2777 return 0;
2778
2779 /*
2780 * This loop can run a while, specially if mem_cgroup's continuously
2781 * keep exceeding their soft limit and putting the system under
2782 * pressure
2783 */
2784 do {
2785 if (next_mz)
2786 mz = next_mz;
2787 else
2788 mz = mem_cgroup_largest_soft_limit_node(mctz);
2789 if (!mz)
2790 break;
2791
2792 nr_scanned = 0;
2793 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2794 gfp_mask, &nr_scanned);
2795 nr_reclaimed += reclaimed;
2796 *total_scanned += nr_scanned;
2797 spin_lock_irq(&mctz->lock);
2798 __mem_cgroup_remove_exceeded(mz, mctz);
2799
2800 /*
2801 * If we failed to reclaim anything from this memory cgroup
2802 * it is time to move on to the next cgroup
2803 */
2804 next_mz = NULL;
2805 if (!reclaimed)
2806 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2807
2808 excess = soft_limit_excess(mz->memcg);
2809 /*
2810 * One school of thought says that we should not add
2811 * back the node to the tree if reclaim returns 0.
2812 * But our reclaim could return 0, simply because due
2813 * to priority we are exposing a smaller subset of
2814 * memory to reclaim from. Consider this as a longer
2815 * term TODO.
2816 */
2817 /* If excess == 0, no tree ops */
2818 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2819 spin_unlock_irq(&mctz->lock);
2820 css_put(&mz->memcg->css);
2821 loop++;
2822 /*
2823 * Could not reclaim anything and there are no more
2824 * mem cgroups to try or we seem to be looping without
2825 * reclaiming anything.
2826 */
2827 if (!nr_reclaimed &&
2828 (next_mz == NULL ||
2829 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2830 break;
2831 } while (!nr_reclaimed);
2832 if (next_mz)
2833 css_put(&next_mz->memcg->css);
2834 return nr_reclaimed;
2835 }
2836
2837 /*
2838 * Test whether @memcg has children, dead or alive. Note that this
2839 * function doesn't care whether @memcg has use_hierarchy enabled and
2840 * returns %true if there are child csses according to the cgroup
2841 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2842 */
2843 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2844 {
2845 bool ret;
2846
2847 rcu_read_lock();
2848 ret = css_next_child(NULL, &memcg->css);
2849 rcu_read_unlock();
2850 return ret;
2851 }
2852
2853 /*
2854 * Reclaims as many pages from the given memcg as possible.
2855 *
2856 * Caller is responsible for holding css reference for memcg.
2857 */
2858 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2859 {
2860 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2861
2862 /* we call try-to-free pages for make this cgroup empty */
2863 lru_add_drain_all();
2864
2865 drain_all_stock(memcg);
2866
2867 /* try to free all pages in this cgroup */
2868 while (nr_retries && page_counter_read(&memcg->memory)) {
2869 int progress;
2870
2871 if (signal_pending(current))
2872 return -EINTR;
2873
2874 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2875 GFP_KERNEL, true);
2876 if (!progress) {
2877 nr_retries--;
2878 /* maybe some writeback is necessary */
2879 congestion_wait(BLK_RW_ASYNC, HZ/10);
2880 }
2881
2882 }
2883
2884 return 0;
2885 }
2886
2887 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2888 char *buf, size_t nbytes,
2889 loff_t off)
2890 {
2891 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2892
2893 if (mem_cgroup_is_root(memcg))
2894 return -EINVAL;
2895 return mem_cgroup_force_empty(memcg) ?: nbytes;
2896 }
2897
2898 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2899 struct cftype *cft)
2900 {
2901 return mem_cgroup_from_css(css)->use_hierarchy;
2902 }
2903
2904 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2905 struct cftype *cft, u64 val)
2906 {
2907 int retval = 0;
2908 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2909 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2910
2911 if (memcg->use_hierarchy == val)
2912 return 0;
2913
2914 /*
2915 * If parent's use_hierarchy is set, we can't make any modifications
2916 * in the child subtrees. If it is unset, then the change can
2917 * occur, provided the current cgroup has no children.
2918 *
2919 * For the root cgroup, parent_mem is NULL, we allow value to be
2920 * set if there are no children.
2921 */
2922 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2923 (val == 1 || val == 0)) {
2924 if (!memcg_has_children(memcg))
2925 memcg->use_hierarchy = val;
2926 else
2927 retval = -EBUSY;
2928 } else
2929 retval = -EINVAL;
2930
2931 return retval;
2932 }
2933
2934 struct accumulated_stats {
2935 unsigned long stat[MEMCG_NR_STAT];
2936 unsigned long events[NR_VM_EVENT_ITEMS];
2937 unsigned long lru_pages[NR_LRU_LISTS];
2938 const unsigned int *stats_array;
2939 const unsigned int *events_array;
2940 int stats_size;
2941 int events_size;
2942 };
2943
2944 static void accumulate_memcg_tree(struct mem_cgroup *memcg,
2945 struct accumulated_stats *acc)
2946 {
2947 struct mem_cgroup *mi;
2948 int i;
2949
2950 for_each_mem_cgroup_tree(mi, memcg) {
2951 for (i = 0; i < acc->stats_size; i++)
2952 acc->stat[i] += memcg_page_state(mi,
2953 acc->stats_array ? acc->stats_array[i] : i);
2954
2955 for (i = 0; i < acc->events_size; i++)
2956 acc->events[i] += memcg_sum_events(mi,
2957 acc->events_array ? acc->events_array[i] : i);
2958
2959 for (i = 0; i < NR_LRU_LISTS; i++)
2960 acc->lru_pages[i] +=
2961 mem_cgroup_nr_lru_pages(mi, BIT(i));
2962 }
2963 }
2964
2965 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2966 {
2967 unsigned long val = 0;
2968
2969 if (mem_cgroup_is_root(memcg)) {
2970 struct mem_cgroup *iter;
2971
2972 for_each_mem_cgroup_tree(iter, memcg) {
2973 val += memcg_page_state(iter, MEMCG_CACHE);
2974 val += memcg_page_state(iter, MEMCG_RSS);
2975 if (swap)
2976 val += memcg_page_state(iter, MEMCG_SWAP);
2977 }
2978 } else {
2979 if (!swap)
2980 val = page_counter_read(&memcg->memory);
2981 else
2982 val = page_counter_read(&memcg->memsw);
2983 }
2984 return val;
2985 }
2986
2987 enum {
2988 RES_USAGE,
2989 RES_LIMIT,
2990 RES_MAX_USAGE,
2991 RES_FAILCNT,
2992 RES_SOFT_LIMIT,
2993 };
2994
2995 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2996 struct cftype *cft)
2997 {
2998 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2999 struct page_counter *counter;
3000
3001 switch (MEMFILE_TYPE(cft->private)) {
3002 case _MEM:
3003 counter = &memcg->memory;
3004 break;
3005 case _MEMSWAP:
3006 counter = &memcg->memsw;
3007 break;
3008 case _KMEM:
3009 counter = &memcg->kmem;
3010 break;
3011 case _TCP:
3012 counter = &memcg->tcpmem;
3013 break;
3014 default:
3015 BUG();
3016 }
3017
3018 switch (MEMFILE_ATTR(cft->private)) {
3019 case RES_USAGE:
3020 if (counter == &memcg->memory)
3021 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3022 if (counter == &memcg->memsw)
3023 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3024 return (u64)page_counter_read(counter) * PAGE_SIZE;
3025 case RES_LIMIT:
3026 return (u64)counter->max * PAGE_SIZE;
3027 case RES_MAX_USAGE:
3028 return (u64)counter->watermark * PAGE_SIZE;
3029 case RES_FAILCNT:
3030 return counter->failcnt;
3031 case RES_SOFT_LIMIT:
3032 return (u64)memcg->soft_limit * PAGE_SIZE;
3033 default:
3034 BUG();
3035 }
3036 }
3037
3038 #ifdef CONFIG_MEMCG_KMEM
3039 static int memcg_online_kmem(struct mem_cgroup *memcg)
3040 {
3041 int memcg_id;
3042
3043 if (cgroup_memory_nokmem)
3044 return 0;
3045
3046 BUG_ON(memcg->kmemcg_id >= 0);
3047 BUG_ON(memcg->kmem_state);
3048
3049 memcg_id = memcg_alloc_cache_id();
3050 if (memcg_id < 0)
3051 return memcg_id;
3052
3053 static_branch_inc(&memcg_kmem_enabled_key);
3054 /*
3055 * A memory cgroup is considered kmem-online as soon as it gets
3056 * kmemcg_id. Setting the id after enabling static branching will
3057 * guarantee no one starts accounting before all call sites are
3058 * patched.
3059 */
3060 memcg->kmemcg_id = memcg_id;
3061 memcg->kmem_state = KMEM_ONLINE;
3062 INIT_LIST_HEAD(&memcg->kmem_caches);
3063
3064 return 0;
3065 }
3066
3067 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3068 {
3069 struct cgroup_subsys_state *css;
3070 struct mem_cgroup *parent, *child;
3071 int kmemcg_id;
3072
3073 if (memcg->kmem_state != KMEM_ONLINE)
3074 return;
3075 /*
3076 * Clear the online state before clearing memcg_caches array
3077 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3078 * guarantees that no cache will be created for this cgroup
3079 * after we are done (see memcg_create_kmem_cache()).
3080 */
3081 memcg->kmem_state = KMEM_ALLOCATED;
3082
3083 memcg_deactivate_kmem_caches(memcg);
3084
3085 kmemcg_id = memcg->kmemcg_id;
3086 BUG_ON(kmemcg_id < 0);
3087
3088 parent = parent_mem_cgroup(memcg);
3089 if (!parent)
3090 parent = root_mem_cgroup;
3091
3092 /*
3093 * Change kmemcg_id of this cgroup and all its descendants to the
3094 * parent's id, and then move all entries from this cgroup's list_lrus
3095 * to ones of the parent. After we have finished, all list_lrus
3096 * corresponding to this cgroup are guaranteed to remain empty. The
3097 * ordering is imposed by list_lru_node->lock taken by
3098 * memcg_drain_all_list_lrus().
3099 */
3100 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3101 css_for_each_descendant_pre(css, &memcg->css) {
3102 child = mem_cgroup_from_css(css);
3103 BUG_ON(child->kmemcg_id != kmemcg_id);
3104 child->kmemcg_id = parent->kmemcg_id;
3105 if (!memcg->use_hierarchy)
3106 break;
3107 }
3108 rcu_read_unlock();
3109
3110 memcg_drain_all_list_lrus(kmemcg_id, parent);
3111
3112 memcg_free_cache_id(kmemcg_id);
3113 }
3114
3115 static void memcg_free_kmem(struct mem_cgroup *memcg)
3116 {
3117 /* css_alloc() failed, offlining didn't happen */
3118 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3119 memcg_offline_kmem(memcg);
3120
3121 if (memcg->kmem_state == KMEM_ALLOCATED) {
3122 memcg_destroy_kmem_caches(memcg);
3123 static_branch_dec(&memcg_kmem_enabled_key);
3124 WARN_ON(page_counter_read(&memcg->kmem));
3125 }
3126 }
3127 #else
3128 static int memcg_online_kmem(struct mem_cgroup *memcg)
3129 {
3130 return 0;
3131 }
3132 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3133 {
3134 }
3135 static void memcg_free_kmem(struct mem_cgroup *memcg)
3136 {
3137 }
3138 #endif /* CONFIG_MEMCG_KMEM */
3139
3140 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3141 unsigned long max)
3142 {
3143 int ret;
3144
3145 mutex_lock(&memcg_max_mutex);
3146 ret = page_counter_set_max(&memcg->kmem, max);
3147 mutex_unlock(&memcg_max_mutex);
3148 return ret;
3149 }
3150
3151 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3152 {
3153 int ret;
3154
3155 mutex_lock(&memcg_max_mutex);
3156
3157 ret = page_counter_set_max(&memcg->tcpmem, max);
3158 if (ret)
3159 goto out;
3160
3161 if (!memcg->tcpmem_active) {
3162 /*
3163 * The active flag needs to be written after the static_key
3164 * update. This is what guarantees that the socket activation
3165 * function is the last one to run. See mem_cgroup_sk_alloc()
3166 * for details, and note that we don't mark any socket as
3167 * belonging to this memcg until that flag is up.
3168 *
3169 * We need to do this, because static_keys will span multiple
3170 * sites, but we can't control their order. If we mark a socket
3171 * as accounted, but the accounting functions are not patched in
3172 * yet, we'll lose accounting.
3173 *
3174 * We never race with the readers in mem_cgroup_sk_alloc(),
3175 * because when this value change, the code to process it is not
3176 * patched in yet.
3177 */
3178 static_branch_inc(&memcg_sockets_enabled_key);
3179 memcg->tcpmem_active = true;
3180 }
3181 out:
3182 mutex_unlock(&memcg_max_mutex);
3183 return ret;
3184 }
3185
3186 /*
3187 * The user of this function is...
3188 * RES_LIMIT.
3189 */
3190 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3191 char *buf, size_t nbytes, loff_t off)
3192 {
3193 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3194 unsigned long nr_pages;
3195 int ret;
3196
3197 buf = strstrip(buf);
3198 ret = page_counter_memparse(buf, "-1", &nr_pages);
3199 if (ret)
3200 return ret;
3201
3202 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3203 case RES_LIMIT:
3204 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3205 ret = -EINVAL;
3206 break;
3207 }
3208 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3209 case _MEM:
3210 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3211 break;
3212 case _MEMSWAP:
3213 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3214 break;
3215 case _KMEM:
3216 ret = memcg_update_kmem_max(memcg, nr_pages);
3217 break;
3218 case _TCP:
3219 ret = memcg_update_tcp_max(memcg, nr_pages);
3220 break;
3221 }
3222 break;
3223 case RES_SOFT_LIMIT:
3224 memcg->soft_limit = nr_pages;
3225 ret = 0;
3226 break;
3227 }
3228 return ret ?: nbytes;
3229 }
3230
3231 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3232 size_t nbytes, loff_t off)
3233 {
3234 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3235 struct page_counter *counter;
3236
3237 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3238 case _MEM:
3239 counter = &memcg->memory;
3240 break;
3241 case _MEMSWAP:
3242 counter = &memcg->memsw;
3243 break;
3244 case _KMEM:
3245 counter = &memcg->kmem;
3246 break;
3247 case _TCP:
3248 counter = &memcg->tcpmem;
3249 break;
3250 default:
3251 BUG();
3252 }
3253
3254 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3255 case RES_MAX_USAGE:
3256 page_counter_reset_watermark(counter);
3257 break;
3258 case RES_FAILCNT:
3259 counter->failcnt = 0;
3260 break;
3261 default:
3262 BUG();
3263 }
3264
3265 return nbytes;
3266 }
3267
3268 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3269 struct cftype *cft)
3270 {
3271 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3272 }
3273
3274 #ifdef CONFIG_MMU
3275 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3276 struct cftype *cft, u64 val)
3277 {
3278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3279
3280 if (val & ~MOVE_MASK)
3281 return -EINVAL;
3282
3283 /*
3284 * No kind of locking is needed in here, because ->can_attach() will
3285 * check this value once in the beginning of the process, and then carry
3286 * on with stale data. This means that changes to this value will only
3287 * affect task migrations starting after the change.
3288 */
3289 memcg->move_charge_at_immigrate = val;
3290 return 0;
3291 }
3292 #else
3293 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3294 struct cftype *cft, u64 val)
3295 {
3296 return -ENOSYS;
3297 }
3298 #endif
3299
3300 #ifdef CONFIG_NUMA
3301 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3302 {
3303 struct numa_stat {
3304 const char *name;
3305 unsigned int lru_mask;
3306 };
3307
3308 static const struct numa_stat stats[] = {
3309 { "total", LRU_ALL },
3310 { "file", LRU_ALL_FILE },
3311 { "anon", LRU_ALL_ANON },
3312 { "unevictable", BIT(LRU_UNEVICTABLE) },
3313 };
3314 const struct numa_stat *stat;
3315 int nid;
3316 unsigned long nr;
3317 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3318
3319 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3320 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3321 seq_printf(m, "%s=%lu", stat->name, nr);
3322 for_each_node_state(nid, N_MEMORY) {
3323 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3324 stat->lru_mask);
3325 seq_printf(m, " N%d=%lu", nid, nr);
3326 }
3327 seq_putc(m, '\n');
3328 }
3329
3330 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3331 struct mem_cgroup *iter;
3332
3333 nr = 0;
3334 for_each_mem_cgroup_tree(iter, memcg)
3335 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3336 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3337 for_each_node_state(nid, N_MEMORY) {
3338 nr = 0;
3339 for_each_mem_cgroup_tree(iter, memcg)
3340 nr += mem_cgroup_node_nr_lru_pages(
3341 iter, nid, stat->lru_mask);
3342 seq_printf(m, " N%d=%lu", nid, nr);
3343 }
3344 seq_putc(m, '\n');
3345 }
3346
3347 return 0;
3348 }
3349 #endif /* CONFIG_NUMA */
3350
3351 /* Universal VM events cgroup1 shows, original sort order */
3352 static const unsigned int memcg1_events[] = {
3353 PGPGIN,
3354 PGPGOUT,
3355 PGFAULT,
3356 PGMAJFAULT,
3357 };
3358
3359 static const char *const memcg1_event_names[] = {
3360 "pgpgin",
3361 "pgpgout",
3362 "pgfault",
3363 "pgmajfault",
3364 };
3365
3366 static int memcg_stat_show(struct seq_file *m, void *v)
3367 {
3368 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3369 unsigned long memory, memsw;
3370 struct mem_cgroup *mi;
3371 unsigned int i;
3372 struct accumulated_stats acc;
3373
3374 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3375 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3376
3377 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3378 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3379 continue;
3380 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3381 memcg_page_state(memcg, memcg1_stats[i]) *
3382 PAGE_SIZE);
3383 }
3384
3385 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3386 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3387 memcg_sum_events(memcg, memcg1_events[i]));
3388
3389 for (i = 0; i < NR_LRU_LISTS; i++)
3390 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3391 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3392
3393 /* Hierarchical information */
3394 memory = memsw = PAGE_COUNTER_MAX;
3395 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3396 memory = min(memory, mi->memory.max);
3397 memsw = min(memsw, mi->memsw.max);
3398 }
3399 seq_printf(m, "hierarchical_memory_limit %llu\n",
3400 (u64)memory * PAGE_SIZE);
3401 if (do_memsw_account())
3402 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3403 (u64)memsw * PAGE_SIZE);
3404
3405 memset(&acc, 0, sizeof(acc));
3406 acc.stats_size = ARRAY_SIZE(memcg1_stats);
3407 acc.stats_array = memcg1_stats;
3408 acc.events_size = ARRAY_SIZE(memcg1_events);
3409 acc.events_array = memcg1_events;
3410 accumulate_memcg_tree(memcg, &acc);
3411
3412 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3413 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3414 continue;
3415 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3416 (u64)acc.stat[i] * PAGE_SIZE);
3417 }
3418
3419 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3420 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3421 (u64)acc.events[i]);
3422
3423 for (i = 0; i < NR_LRU_LISTS; i++)
3424 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3425 (u64)acc.lru_pages[i] * PAGE_SIZE);
3426
3427 #ifdef CONFIG_DEBUG_VM
3428 {
3429 pg_data_t *pgdat;
3430 struct mem_cgroup_per_node *mz;
3431 struct zone_reclaim_stat *rstat;
3432 unsigned long recent_rotated[2] = {0, 0};
3433 unsigned long recent_scanned[2] = {0, 0};
3434
3435 for_each_online_pgdat(pgdat) {
3436 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3437 rstat = &mz->lruvec.reclaim_stat;
3438
3439 recent_rotated[0] += rstat->recent_rotated[0];
3440 recent_rotated[1] += rstat->recent_rotated[1];
3441 recent_scanned[0] += rstat->recent_scanned[0];
3442 recent_scanned[1] += rstat->recent_scanned[1];
3443 }
3444 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3445 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3446 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3447 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3448 }
3449 #endif
3450
3451 return 0;
3452 }
3453
3454 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3455 struct cftype *cft)
3456 {
3457 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3458
3459 return mem_cgroup_swappiness(memcg);
3460 }
3461
3462 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3463 struct cftype *cft, u64 val)
3464 {
3465 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3466
3467 if (val > 100)
3468 return -EINVAL;
3469
3470 if (css->parent)
3471 memcg->swappiness = val;
3472 else
3473 vm_swappiness = val;
3474
3475 return 0;
3476 }
3477
3478 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3479 {
3480 struct mem_cgroup_threshold_ary *t;
3481 unsigned long usage;
3482 int i;
3483
3484 rcu_read_lock();
3485 if (!swap)
3486 t = rcu_dereference(memcg->thresholds.primary);
3487 else
3488 t = rcu_dereference(memcg->memsw_thresholds.primary);
3489
3490 if (!t)
3491 goto unlock;
3492
3493 usage = mem_cgroup_usage(memcg, swap);
3494
3495 /*
3496 * current_threshold points to threshold just below or equal to usage.
3497 * If it's not true, a threshold was crossed after last
3498 * call of __mem_cgroup_threshold().
3499 */
3500 i = t->current_threshold;
3501
3502 /*
3503 * Iterate backward over array of thresholds starting from
3504 * current_threshold and check if a threshold is crossed.
3505 * If none of thresholds below usage is crossed, we read
3506 * only one element of the array here.
3507 */
3508 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3509 eventfd_signal(t->entries[i].eventfd, 1);
3510
3511 /* i = current_threshold + 1 */
3512 i++;
3513
3514 /*
3515 * Iterate forward over array of thresholds starting from
3516 * current_threshold+1 and check if a threshold is crossed.
3517 * If none of thresholds above usage is crossed, we read
3518 * only one element of the array here.
3519 */
3520 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3521 eventfd_signal(t->entries[i].eventfd, 1);
3522
3523 /* Update current_threshold */
3524 t->current_threshold = i - 1;
3525 unlock:
3526 rcu_read_unlock();
3527 }
3528
3529 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3530 {
3531 while (memcg) {
3532 __mem_cgroup_threshold(memcg, false);
3533 if (do_memsw_account())
3534 __mem_cgroup_threshold(memcg, true);
3535
3536 memcg = parent_mem_cgroup(memcg);
3537 }
3538 }
3539
3540 static int compare_thresholds(const void *a, const void *b)
3541 {
3542 const struct mem_cgroup_threshold *_a = a;
3543 const struct mem_cgroup_threshold *_b = b;
3544
3545 if (_a->threshold > _b->threshold)
3546 return 1;
3547
3548 if (_a->threshold < _b->threshold)
3549 return -1;
3550
3551 return 0;
3552 }
3553
3554 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3555 {
3556 struct mem_cgroup_eventfd_list *ev;
3557
3558 spin_lock(&memcg_oom_lock);
3559
3560 list_for_each_entry(ev, &memcg->oom_notify, list)
3561 eventfd_signal(ev->eventfd, 1);
3562
3563 spin_unlock(&memcg_oom_lock);
3564 return 0;
3565 }
3566
3567 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3568 {
3569 struct mem_cgroup *iter;
3570
3571 for_each_mem_cgroup_tree(iter, memcg)
3572 mem_cgroup_oom_notify_cb(iter);
3573 }
3574
3575 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3576 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3577 {
3578 struct mem_cgroup_thresholds *thresholds;
3579 struct mem_cgroup_threshold_ary *new;
3580 unsigned long threshold;
3581 unsigned long usage;
3582 int i, size, ret;
3583
3584 ret = page_counter_memparse(args, "-1", &threshold);
3585 if (ret)
3586 return ret;
3587
3588 mutex_lock(&memcg->thresholds_lock);
3589
3590 if (type == _MEM) {
3591 thresholds = &memcg->thresholds;
3592 usage = mem_cgroup_usage(memcg, false);
3593 } else if (type == _MEMSWAP) {
3594 thresholds = &memcg->memsw_thresholds;
3595 usage = mem_cgroup_usage(memcg, true);
3596 } else
3597 BUG();
3598
3599 /* Check if a threshold crossed before adding a new one */
3600 if (thresholds->primary)
3601 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3602
3603 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3604
3605 /* Allocate memory for new array of thresholds */
3606 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3607 GFP_KERNEL);
3608 if (!new) {
3609 ret = -ENOMEM;
3610 goto unlock;
3611 }
3612 new->size = size;
3613
3614 /* Copy thresholds (if any) to new array */
3615 if (thresholds->primary) {
3616 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3617 sizeof(struct mem_cgroup_threshold));
3618 }
3619
3620 /* Add new threshold */
3621 new->entries[size - 1].eventfd = eventfd;
3622 new->entries[size - 1].threshold = threshold;
3623
3624 /* Sort thresholds. Registering of new threshold isn't time-critical */
3625 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3626 compare_thresholds, NULL);
3627
3628 /* Find current threshold */
3629 new->current_threshold = -1;
3630 for (i = 0; i < size; i++) {
3631 if (new->entries[i].threshold <= usage) {
3632 /*
3633 * new->current_threshold will not be used until
3634 * rcu_assign_pointer(), so it's safe to increment
3635 * it here.
3636 */
3637 ++new->current_threshold;
3638 } else
3639 break;
3640 }
3641
3642 /* Free old spare buffer and save old primary buffer as spare */
3643 kfree(thresholds->spare);
3644 thresholds->spare = thresholds->primary;
3645
3646 rcu_assign_pointer(thresholds->primary, new);
3647
3648 /* To be sure that nobody uses thresholds */
3649 synchronize_rcu();
3650
3651 unlock:
3652 mutex_unlock(&memcg->thresholds_lock);
3653
3654 return ret;
3655 }
3656
3657 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3658 struct eventfd_ctx *eventfd, const char *args)
3659 {
3660 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3661 }
3662
3663 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3664 struct eventfd_ctx *eventfd, const char *args)
3665 {
3666 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3667 }
3668
3669 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3670 struct eventfd_ctx *eventfd, enum res_type type)
3671 {
3672 struct mem_cgroup_thresholds *thresholds;
3673 struct mem_cgroup_threshold_ary *new;
3674 unsigned long usage;
3675 int i, j, size;
3676
3677 mutex_lock(&memcg->thresholds_lock);
3678
3679 if (type == _MEM) {
3680 thresholds = &memcg->thresholds;
3681 usage = mem_cgroup_usage(memcg, false);
3682 } else if (type == _MEMSWAP) {
3683 thresholds = &memcg->memsw_thresholds;
3684 usage = mem_cgroup_usage(memcg, true);
3685 } else
3686 BUG();
3687
3688 if (!thresholds->primary)
3689 goto unlock;
3690
3691 /* Check if a threshold crossed before removing */
3692 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3693
3694 /* Calculate new number of threshold */
3695 size = 0;
3696 for (i = 0; i < thresholds->primary->size; i++) {
3697 if (thresholds->primary->entries[i].eventfd != eventfd)
3698 size++;
3699 }
3700
3701 new = thresholds->spare;
3702
3703 /* Set thresholds array to NULL if we don't have thresholds */
3704 if (!size) {
3705 kfree(new);
3706 new = NULL;
3707 goto swap_buffers;
3708 }
3709
3710 new->size = size;
3711
3712 /* Copy thresholds and find current threshold */
3713 new->current_threshold = -1;
3714 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3715 if (thresholds->primary->entries[i].eventfd == eventfd)
3716 continue;
3717
3718 new->entries[j] = thresholds->primary->entries[i];
3719 if (new->entries[j].threshold <= usage) {
3720 /*
3721 * new->current_threshold will not be used
3722 * until rcu_assign_pointer(), so it's safe to increment
3723 * it here.
3724 */
3725 ++new->current_threshold;
3726 }
3727 j++;
3728 }
3729
3730 swap_buffers:
3731 /* Swap primary and spare array */
3732 thresholds->spare = thresholds->primary;
3733
3734 rcu_assign_pointer(thresholds->primary, new);
3735
3736 /* To be sure that nobody uses thresholds */
3737 synchronize_rcu();
3738
3739 /* If all events are unregistered, free the spare array */
3740 if (!new) {
3741 kfree(thresholds->spare);
3742 thresholds->spare = NULL;
3743 }
3744 unlock:
3745 mutex_unlock(&memcg->thresholds_lock);
3746 }
3747
3748 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3749 struct eventfd_ctx *eventfd)
3750 {
3751 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3752 }
3753
3754 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3755 struct eventfd_ctx *eventfd)
3756 {
3757 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3758 }
3759
3760 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3761 struct eventfd_ctx *eventfd, const char *args)
3762 {
3763 struct mem_cgroup_eventfd_list *event;
3764
3765 event = kmalloc(sizeof(*event), GFP_KERNEL);
3766 if (!event)
3767 return -ENOMEM;
3768
3769 spin_lock(&memcg_oom_lock);
3770
3771 event->eventfd = eventfd;
3772 list_add(&event->list, &memcg->oom_notify);
3773
3774 /* already in OOM ? */
3775 if (memcg->under_oom)
3776 eventfd_signal(eventfd, 1);
3777 spin_unlock(&memcg_oom_lock);
3778
3779 return 0;
3780 }
3781
3782 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3783 struct eventfd_ctx *eventfd)
3784 {
3785 struct mem_cgroup_eventfd_list *ev, *tmp;
3786
3787 spin_lock(&memcg_oom_lock);
3788
3789 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3790 if (ev->eventfd == eventfd) {
3791 list_del(&ev->list);
3792 kfree(ev);
3793 }
3794 }
3795
3796 spin_unlock(&memcg_oom_lock);
3797 }
3798
3799 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3800 {
3801 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3802
3803 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3804 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3805 seq_printf(sf, "oom_kill %lu\n",
3806 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
3807 return 0;
3808 }
3809
3810 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3811 struct cftype *cft, u64 val)
3812 {
3813 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3814
3815 /* cannot set to root cgroup and only 0 and 1 are allowed */
3816 if (!css->parent || !((val == 0) || (val == 1)))
3817 return -EINVAL;
3818
3819 memcg->oom_kill_disable = val;
3820 if (!val)
3821 memcg_oom_recover(memcg);
3822
3823 return 0;
3824 }
3825
3826 #ifdef CONFIG_CGROUP_WRITEBACK
3827
3828 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3829 {
3830 return wb_domain_init(&memcg->cgwb_domain, gfp);
3831 }
3832
3833 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3834 {
3835 wb_domain_exit(&memcg->cgwb_domain);
3836 }
3837
3838 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3839 {
3840 wb_domain_size_changed(&memcg->cgwb_domain);
3841 }
3842
3843 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3844 {
3845 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3846
3847 if (!memcg->css.parent)
3848 return NULL;
3849
3850 return &memcg->cgwb_domain;
3851 }
3852
3853 /**
3854 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3855 * @wb: bdi_writeback in question
3856 * @pfilepages: out parameter for number of file pages
3857 * @pheadroom: out parameter for number of allocatable pages according to memcg
3858 * @pdirty: out parameter for number of dirty pages
3859 * @pwriteback: out parameter for number of pages under writeback
3860 *
3861 * Determine the numbers of file, headroom, dirty, and writeback pages in
3862 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3863 * is a bit more involved.
3864 *
3865 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3866 * headroom is calculated as the lowest headroom of itself and the
3867 * ancestors. Note that this doesn't consider the actual amount of
3868 * available memory in the system. The caller should further cap
3869 * *@pheadroom accordingly.
3870 */
3871 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3872 unsigned long *pheadroom, unsigned long *pdirty,
3873 unsigned long *pwriteback)
3874 {
3875 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3876 struct mem_cgroup *parent;
3877
3878 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3879
3880 /* this should eventually include NR_UNSTABLE_NFS */
3881 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3882 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3883 (1 << LRU_ACTIVE_FILE));
3884 *pheadroom = PAGE_COUNTER_MAX;
3885
3886 while ((parent = parent_mem_cgroup(memcg))) {
3887 unsigned long ceiling = min(memcg->memory.max, memcg->high);
3888 unsigned long used = page_counter_read(&memcg->memory);
3889
3890 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3891 memcg = parent;
3892 }
3893 }
3894
3895 #else /* CONFIG_CGROUP_WRITEBACK */
3896
3897 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3898 {
3899 return 0;
3900 }
3901
3902 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3903 {
3904 }
3905
3906 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3907 {
3908 }
3909
3910 #endif /* CONFIG_CGROUP_WRITEBACK */
3911
3912 /*
3913 * DO NOT USE IN NEW FILES.
3914 *
3915 * "cgroup.event_control" implementation.
3916 *
3917 * This is way over-engineered. It tries to support fully configurable
3918 * events for each user. Such level of flexibility is completely
3919 * unnecessary especially in the light of the planned unified hierarchy.
3920 *
3921 * Please deprecate this and replace with something simpler if at all
3922 * possible.
3923 */
3924
3925 /*
3926 * Unregister event and free resources.
3927 *
3928 * Gets called from workqueue.
3929 */
3930 static void memcg_event_remove(struct work_struct *work)
3931 {
3932 struct mem_cgroup_event *event =
3933 container_of(work, struct mem_cgroup_event, remove);
3934 struct mem_cgroup *memcg = event->memcg;
3935
3936 remove_wait_queue(event->wqh, &event->wait);
3937
3938 event->unregister_event(memcg, event->eventfd);
3939
3940 /* Notify userspace the event is going away. */
3941 eventfd_signal(event->eventfd, 1);
3942
3943 eventfd_ctx_put(event->eventfd);
3944 kfree(event);
3945 css_put(&memcg->css);
3946 }
3947
3948 /*
3949 * Gets called on EPOLLHUP on eventfd when user closes it.
3950 *
3951 * Called with wqh->lock held and interrupts disabled.
3952 */
3953 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3954 int sync, void *key)
3955 {
3956 struct mem_cgroup_event *event =
3957 container_of(wait, struct mem_cgroup_event, wait);
3958 struct mem_cgroup *memcg = event->memcg;
3959 __poll_t flags = key_to_poll(key);
3960
3961 if (flags & EPOLLHUP) {
3962 /*
3963 * If the event has been detached at cgroup removal, we
3964 * can simply return knowing the other side will cleanup
3965 * for us.
3966 *
3967 * We can't race against event freeing since the other
3968 * side will require wqh->lock via remove_wait_queue(),
3969 * which we hold.
3970 */
3971 spin_lock(&memcg->event_list_lock);
3972 if (!list_empty(&event->list)) {
3973 list_del_init(&event->list);
3974 /*
3975 * We are in atomic context, but cgroup_event_remove()
3976 * may sleep, so we have to call it in workqueue.
3977 */
3978 schedule_work(&event->remove);
3979 }
3980 spin_unlock(&memcg->event_list_lock);
3981 }
3982
3983 return 0;
3984 }
3985
3986 static void memcg_event_ptable_queue_proc(struct file *file,
3987 wait_queue_head_t *wqh, poll_table *pt)
3988 {
3989 struct mem_cgroup_event *event =
3990 container_of(pt, struct mem_cgroup_event, pt);
3991
3992 event->wqh = wqh;
3993 add_wait_queue(wqh, &event->wait);
3994 }
3995
3996 /*
3997 * DO NOT USE IN NEW FILES.
3998 *
3999 * Parse input and register new cgroup event handler.
4000 *
4001 * Input must be in format '<event_fd> <control_fd> <args>'.
4002 * Interpretation of args is defined by control file implementation.
4003 */
4004 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4005 char *buf, size_t nbytes, loff_t off)
4006 {
4007 struct cgroup_subsys_state *css = of_css(of);
4008 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4009 struct mem_cgroup_event *event;
4010 struct cgroup_subsys_state *cfile_css;
4011 unsigned int efd, cfd;
4012 struct fd efile;
4013 struct fd cfile;
4014 const char *name;
4015 char *endp;
4016 int ret;
4017
4018 buf = strstrip(buf);
4019
4020 efd = simple_strtoul(buf, &endp, 10);
4021 if (*endp != ' ')
4022 return -EINVAL;
4023 buf = endp + 1;
4024
4025 cfd = simple_strtoul(buf, &endp, 10);
4026 if ((*endp != ' ') && (*endp != '\0'))
4027 return -EINVAL;
4028 buf = endp + 1;
4029
4030 event = kzalloc(sizeof(*event), GFP_KERNEL);
4031 if (!event)
4032 return -ENOMEM;
4033
4034 event->memcg = memcg;
4035 INIT_LIST_HEAD(&event->list);
4036 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4037 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4038 INIT_WORK(&event->remove, memcg_event_remove);
4039
4040 efile = fdget(efd);
4041 if (!efile.file) {
4042 ret = -EBADF;
4043 goto out_kfree;
4044 }
4045
4046 event->eventfd = eventfd_ctx_fileget(efile.file);
4047 if (IS_ERR(event->eventfd)) {
4048 ret = PTR_ERR(event->eventfd);
4049 goto out_put_efile;
4050 }
4051
4052 cfile = fdget(cfd);
4053 if (!cfile.file) {
4054 ret = -EBADF;
4055 goto out_put_eventfd;
4056 }
4057
4058 /* the process need read permission on control file */
4059 /* AV: shouldn't we check that it's been opened for read instead? */
4060 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4061 if (ret < 0)
4062 goto out_put_cfile;
4063
4064 /*
4065 * Determine the event callbacks and set them in @event. This used
4066 * to be done via struct cftype but cgroup core no longer knows
4067 * about these events. The following is crude but the whole thing
4068 * is for compatibility anyway.
4069 *
4070 * DO NOT ADD NEW FILES.
4071 */
4072 name = cfile.file->f_path.dentry->d_name.name;
4073
4074 if (!strcmp(name, "memory.usage_in_bytes")) {
4075 event->register_event = mem_cgroup_usage_register_event;
4076 event->unregister_event = mem_cgroup_usage_unregister_event;
4077 } else if (!strcmp(name, "memory.oom_control")) {
4078 event->register_event = mem_cgroup_oom_register_event;
4079 event->unregister_event = mem_cgroup_oom_unregister_event;
4080 } else if (!strcmp(name, "memory.pressure_level")) {
4081 event->register_event = vmpressure_register_event;
4082 event->unregister_event = vmpressure_unregister_event;
4083 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4084 event->register_event = memsw_cgroup_usage_register_event;
4085 event->unregister_event = memsw_cgroup_usage_unregister_event;
4086 } else {
4087 ret = -EINVAL;
4088 goto out_put_cfile;
4089 }
4090
4091 /*
4092 * Verify @cfile should belong to @css. Also, remaining events are
4093 * automatically removed on cgroup destruction but the removal is
4094 * asynchronous, so take an extra ref on @css.
4095 */
4096 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4097 &memory_cgrp_subsys);
4098 ret = -EINVAL;
4099 if (IS_ERR(cfile_css))
4100 goto out_put_cfile;
4101 if (cfile_css != css) {
4102 css_put(cfile_css);
4103 goto out_put_cfile;
4104 }
4105
4106 ret = event->register_event(memcg, event->eventfd, buf);
4107 if (ret)
4108 goto out_put_css;
4109
4110 vfs_poll(efile.file, &event->pt);
4111
4112 spin_lock(&memcg->event_list_lock);
4113 list_add(&event->list, &memcg->event_list);
4114 spin_unlock(&memcg->event_list_lock);
4115
4116 fdput(cfile);
4117 fdput(efile);
4118
4119 return nbytes;
4120
4121 out_put_css:
4122 css_put(css);
4123 out_put_cfile:
4124 fdput(cfile);
4125 out_put_eventfd:
4126 eventfd_ctx_put(event->eventfd);
4127 out_put_efile:
4128 fdput(efile);
4129 out_kfree:
4130 kfree(event);
4131
4132 return ret;
4133 }
4134
4135 static struct cftype mem_cgroup_legacy_files[] = {
4136 {
4137 .name = "usage_in_bytes",
4138 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4139 .read_u64 = mem_cgroup_read_u64,
4140 },
4141 {
4142 .name = "max_usage_in_bytes",
4143 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4144 .write = mem_cgroup_reset,
4145 .read_u64 = mem_cgroup_read_u64,
4146 },
4147 {
4148 .name = "limit_in_bytes",
4149 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4150 .write = mem_cgroup_write,
4151 .read_u64 = mem_cgroup_read_u64,
4152 },
4153 {
4154 .name = "soft_limit_in_bytes",
4155 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4156 .write = mem_cgroup_write,
4157 .read_u64 = mem_cgroup_read_u64,
4158 },
4159 {
4160 .name = "failcnt",
4161 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4162 .write = mem_cgroup_reset,
4163 .read_u64 = mem_cgroup_read_u64,
4164 },
4165 {
4166 .name = "stat",
4167 .seq_show = memcg_stat_show,
4168 },
4169 {
4170 .name = "force_empty",
4171 .write = mem_cgroup_force_empty_write,
4172 },
4173 {
4174 .name = "use_hierarchy",
4175 .write_u64 = mem_cgroup_hierarchy_write,
4176 .read_u64 = mem_cgroup_hierarchy_read,
4177 },
4178 {
4179 .name = "cgroup.event_control", /* XXX: for compat */
4180 .write = memcg_write_event_control,
4181 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4182 },
4183 {
4184 .name = "swappiness",
4185 .read_u64 = mem_cgroup_swappiness_read,
4186 .write_u64 = mem_cgroup_swappiness_write,
4187 },
4188 {
4189 .name = "move_charge_at_immigrate",
4190 .read_u64 = mem_cgroup_move_charge_read,
4191 .write_u64 = mem_cgroup_move_charge_write,
4192 },
4193 {
4194 .name = "oom_control",
4195 .seq_show = mem_cgroup_oom_control_read,
4196 .write_u64 = mem_cgroup_oom_control_write,
4197 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4198 },
4199 {
4200 .name = "pressure_level",
4201 },
4202 #ifdef CONFIG_NUMA
4203 {
4204 .name = "numa_stat",
4205 .seq_show = memcg_numa_stat_show,
4206 },
4207 #endif
4208 {
4209 .name = "kmem.limit_in_bytes",
4210 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4211 .write = mem_cgroup_write,
4212 .read_u64 = mem_cgroup_read_u64,
4213 },
4214 {
4215 .name = "kmem.usage_in_bytes",
4216 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4217 .read_u64 = mem_cgroup_read_u64,
4218 },
4219 {
4220 .name = "kmem.failcnt",
4221 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4222 .write = mem_cgroup_reset,
4223 .read_u64 = mem_cgroup_read_u64,
4224 },
4225 {
4226 .name = "kmem.max_usage_in_bytes",
4227 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4228 .write = mem_cgroup_reset,
4229 .read_u64 = mem_cgroup_read_u64,
4230 },
4231 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4232 {
4233 .name = "kmem.slabinfo",
4234 .seq_start = memcg_slab_start,
4235 .seq_next = memcg_slab_next,
4236 .seq_stop = memcg_slab_stop,
4237 .seq_show = memcg_slab_show,
4238 },
4239 #endif
4240 {
4241 .name = "kmem.tcp.limit_in_bytes",
4242 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4243 .write = mem_cgroup_write,
4244 .read_u64 = mem_cgroup_read_u64,
4245 },
4246 {
4247 .name = "kmem.tcp.usage_in_bytes",
4248 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4249 .read_u64 = mem_cgroup_read_u64,
4250 },
4251 {
4252 .name = "kmem.tcp.failcnt",
4253 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4254 .write = mem_cgroup_reset,
4255 .read_u64 = mem_cgroup_read_u64,
4256 },
4257 {
4258 .name = "kmem.tcp.max_usage_in_bytes",
4259 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4260 .write = mem_cgroup_reset,
4261 .read_u64 = mem_cgroup_read_u64,
4262 },
4263 { }, /* terminate */
4264 };
4265
4266 /*
4267 * Private memory cgroup IDR
4268 *
4269 * Swap-out records and page cache shadow entries need to store memcg
4270 * references in constrained space, so we maintain an ID space that is
4271 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4272 * memory-controlled cgroups to 64k.
4273 *
4274 * However, there usually are many references to the oflline CSS after
4275 * the cgroup has been destroyed, such as page cache or reclaimable
4276 * slab objects, that don't need to hang on to the ID. We want to keep
4277 * those dead CSS from occupying IDs, or we might quickly exhaust the
4278 * relatively small ID space and prevent the creation of new cgroups
4279 * even when there are much fewer than 64k cgroups - possibly none.
4280 *
4281 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4282 * be freed and recycled when it's no longer needed, which is usually
4283 * when the CSS is offlined.
4284 *
4285 * The only exception to that are records of swapped out tmpfs/shmem
4286 * pages that need to be attributed to live ancestors on swapin. But
4287 * those references are manageable from userspace.
4288 */
4289
4290 static DEFINE_IDR(mem_cgroup_idr);
4291
4292 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4293 {
4294 if (memcg->id.id > 0) {
4295 idr_remove(&mem_cgroup_idr, memcg->id.id);
4296 memcg->id.id = 0;
4297 }
4298 }
4299
4300 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4301 {
4302 refcount_add(n, &memcg->id.ref);
4303 }
4304
4305 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4306 {
4307 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4308 mem_cgroup_id_remove(memcg);
4309
4310 /* Memcg ID pins CSS */
4311 css_put(&memcg->css);
4312 }
4313 }
4314
4315 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4316 {
4317 mem_cgroup_id_get_many(memcg, 1);
4318 }
4319
4320 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4321 {
4322 mem_cgroup_id_put_many(memcg, 1);
4323 }
4324
4325 /**
4326 * mem_cgroup_from_id - look up a memcg from a memcg id
4327 * @id: the memcg id to look up
4328 *
4329 * Caller must hold rcu_read_lock().
4330 */
4331 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4332 {
4333 WARN_ON_ONCE(!rcu_read_lock_held());
4334 return idr_find(&mem_cgroup_idr, id);
4335 }
4336
4337 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4338 {
4339 struct mem_cgroup_per_node *pn;
4340 int tmp = node;
4341 /*
4342 * This routine is called against possible nodes.
4343 * But it's BUG to call kmalloc() against offline node.
4344 *
4345 * TODO: this routine can waste much memory for nodes which will
4346 * never be onlined. It's better to use memory hotplug callback
4347 * function.
4348 */
4349 if (!node_state(node, N_NORMAL_MEMORY))
4350 tmp = -1;
4351 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4352 if (!pn)
4353 return 1;
4354
4355 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4356 if (!pn->lruvec_stat_cpu) {
4357 kfree(pn);
4358 return 1;
4359 }
4360
4361 lruvec_init(&pn->lruvec);
4362 pn->usage_in_excess = 0;
4363 pn->on_tree = false;
4364 pn->memcg = memcg;
4365
4366 memcg->nodeinfo[node] = pn;
4367 return 0;
4368 }
4369
4370 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4371 {
4372 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4373
4374 if (!pn)
4375 return;
4376
4377 free_percpu(pn->lruvec_stat_cpu);
4378 kfree(pn);
4379 }
4380
4381 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4382 {
4383 int node;
4384
4385 for_each_node(node)
4386 free_mem_cgroup_per_node_info(memcg, node);
4387 free_percpu(memcg->stat_cpu);
4388 kfree(memcg);
4389 }
4390
4391 static void mem_cgroup_free(struct mem_cgroup *memcg)
4392 {
4393 memcg_wb_domain_exit(memcg);
4394 __mem_cgroup_free(memcg);
4395 }
4396
4397 static struct mem_cgroup *mem_cgroup_alloc(void)
4398 {
4399 struct mem_cgroup *memcg;
4400 size_t size;
4401 int node;
4402
4403 size = sizeof(struct mem_cgroup);
4404 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4405
4406 memcg = kzalloc(size, GFP_KERNEL);
4407 if (!memcg)
4408 return NULL;
4409
4410 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4411 1, MEM_CGROUP_ID_MAX,
4412 GFP_KERNEL);
4413 if (memcg->id.id < 0)
4414 goto fail;
4415
4416 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4417 if (!memcg->stat_cpu)
4418 goto fail;
4419
4420 for_each_node(node)
4421 if (alloc_mem_cgroup_per_node_info(memcg, node))
4422 goto fail;
4423
4424 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4425 goto fail;
4426
4427 INIT_WORK(&memcg->high_work, high_work_func);
4428 memcg->last_scanned_node = MAX_NUMNODES;
4429 INIT_LIST_HEAD(&memcg->oom_notify);
4430 mutex_init(&memcg->thresholds_lock);
4431 spin_lock_init(&memcg->move_lock);
4432 vmpressure_init(&memcg->vmpressure);
4433 INIT_LIST_HEAD(&memcg->event_list);
4434 spin_lock_init(&memcg->event_list_lock);
4435 memcg->socket_pressure = jiffies;
4436 #ifdef CONFIG_MEMCG_KMEM
4437 memcg->kmemcg_id = -1;
4438 #endif
4439 #ifdef CONFIG_CGROUP_WRITEBACK
4440 INIT_LIST_HEAD(&memcg->cgwb_list);
4441 #endif
4442 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4443 return memcg;
4444 fail:
4445 mem_cgroup_id_remove(memcg);
4446 __mem_cgroup_free(memcg);
4447 return NULL;
4448 }
4449
4450 static struct cgroup_subsys_state * __ref
4451 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4452 {
4453 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4454 struct mem_cgroup *memcg;
4455 long error = -ENOMEM;
4456
4457 memcg = mem_cgroup_alloc();
4458 if (!memcg)
4459 return ERR_PTR(error);
4460
4461 memcg->high = PAGE_COUNTER_MAX;
4462 memcg->soft_limit = PAGE_COUNTER_MAX;
4463 if (parent) {
4464 memcg->swappiness = mem_cgroup_swappiness(parent);
4465 memcg->oom_kill_disable = parent->oom_kill_disable;
4466 }
4467 if (parent && parent->use_hierarchy) {
4468 memcg->use_hierarchy = true;
4469 page_counter_init(&memcg->memory, &parent->memory);
4470 page_counter_init(&memcg->swap, &parent->swap);
4471 page_counter_init(&memcg->memsw, &parent->memsw);
4472 page_counter_init(&memcg->kmem, &parent->kmem);
4473 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4474 } else {
4475 page_counter_init(&memcg->memory, NULL);
4476 page_counter_init(&memcg->swap, NULL);
4477 page_counter_init(&memcg->memsw, NULL);
4478 page_counter_init(&memcg->kmem, NULL);
4479 page_counter_init(&memcg->tcpmem, NULL);
4480 /*
4481 * Deeper hierachy with use_hierarchy == false doesn't make
4482 * much sense so let cgroup subsystem know about this
4483 * unfortunate state in our controller.
4484 */
4485 if (parent != root_mem_cgroup)
4486 memory_cgrp_subsys.broken_hierarchy = true;
4487 }
4488
4489 /* The following stuff does not apply to the root */
4490 if (!parent) {
4491 root_mem_cgroup = memcg;
4492 return &memcg->css;
4493 }
4494
4495 error = memcg_online_kmem(memcg);
4496 if (error)
4497 goto fail;
4498
4499 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4500 static_branch_inc(&memcg_sockets_enabled_key);
4501
4502 return &memcg->css;
4503 fail:
4504 mem_cgroup_id_remove(memcg);
4505 mem_cgroup_free(memcg);
4506 return ERR_PTR(-ENOMEM);
4507 }
4508
4509 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4510 {
4511 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4512
4513 /*
4514 * A memcg must be visible for memcg_expand_shrinker_maps()
4515 * by the time the maps are allocated. So, we allocate maps
4516 * here, when for_each_mem_cgroup() can't skip it.
4517 */
4518 if (memcg_alloc_shrinker_maps(memcg)) {
4519 mem_cgroup_id_remove(memcg);
4520 return -ENOMEM;
4521 }
4522
4523 /* Online state pins memcg ID, memcg ID pins CSS */
4524 refcount_set(&memcg->id.ref, 1);
4525 css_get(css);
4526 return 0;
4527 }
4528
4529 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4530 {
4531 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4532 struct mem_cgroup_event *event, *tmp;
4533
4534 /*
4535 * Unregister events and notify userspace.
4536 * Notify userspace about cgroup removing only after rmdir of cgroup
4537 * directory to avoid race between userspace and kernelspace.
4538 */
4539 spin_lock(&memcg->event_list_lock);
4540 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4541 list_del_init(&event->list);
4542 schedule_work(&event->remove);
4543 }
4544 spin_unlock(&memcg->event_list_lock);
4545
4546 page_counter_set_min(&memcg->memory, 0);
4547 page_counter_set_low(&memcg->memory, 0);
4548
4549 memcg_offline_kmem(memcg);
4550 wb_memcg_offline(memcg);
4551
4552 drain_all_stock(memcg);
4553
4554 mem_cgroup_id_put(memcg);
4555 }
4556
4557 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4558 {
4559 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4560
4561 invalidate_reclaim_iterators(memcg);
4562 }
4563
4564 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4565 {
4566 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4567
4568 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4569 static_branch_dec(&memcg_sockets_enabled_key);
4570
4571 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4572 static_branch_dec(&memcg_sockets_enabled_key);
4573
4574 vmpressure_cleanup(&memcg->vmpressure);
4575 cancel_work_sync(&memcg->high_work);
4576 mem_cgroup_remove_from_trees(memcg);
4577 memcg_free_shrinker_maps(memcg);
4578 memcg_free_kmem(memcg);
4579 mem_cgroup_free(memcg);
4580 }
4581
4582 /**
4583 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4584 * @css: the target css
4585 *
4586 * Reset the states of the mem_cgroup associated with @css. This is
4587 * invoked when the userland requests disabling on the default hierarchy
4588 * but the memcg is pinned through dependency. The memcg should stop
4589 * applying policies and should revert to the vanilla state as it may be
4590 * made visible again.
4591 *
4592 * The current implementation only resets the essential configurations.
4593 * This needs to be expanded to cover all the visible parts.
4594 */
4595 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4596 {
4597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4598
4599 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4600 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4601 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4602 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4603 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4604 page_counter_set_min(&memcg->memory, 0);
4605 page_counter_set_low(&memcg->memory, 0);
4606 memcg->high = PAGE_COUNTER_MAX;
4607 memcg->soft_limit = PAGE_COUNTER_MAX;
4608 memcg_wb_domain_size_changed(memcg);
4609 }
4610
4611 #ifdef CONFIG_MMU
4612 /* Handlers for move charge at task migration. */
4613 static int mem_cgroup_do_precharge(unsigned long count)
4614 {
4615 int ret;
4616
4617 /* Try a single bulk charge without reclaim first, kswapd may wake */
4618 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4619 if (!ret) {
4620 mc.precharge += count;
4621 return ret;
4622 }
4623
4624 /* Try charges one by one with reclaim, but do not retry */
4625 while (count--) {
4626 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4627 if (ret)
4628 return ret;
4629 mc.precharge++;
4630 cond_resched();
4631 }
4632 return 0;
4633 }
4634
4635 union mc_target {
4636 struct page *page;
4637 swp_entry_t ent;
4638 };
4639
4640 enum mc_target_type {
4641 MC_TARGET_NONE = 0,
4642 MC_TARGET_PAGE,
4643 MC_TARGET_SWAP,
4644 MC_TARGET_DEVICE,
4645 };
4646
4647 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4648 unsigned long addr, pte_t ptent)
4649 {
4650 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4651
4652 if (!page || !page_mapped(page))
4653 return NULL;
4654 if (PageAnon(page)) {
4655 if (!(mc.flags & MOVE_ANON))
4656 return NULL;
4657 } else {
4658 if (!(mc.flags & MOVE_FILE))
4659 return NULL;
4660 }
4661 if (!get_page_unless_zero(page))
4662 return NULL;
4663
4664 return page;
4665 }
4666
4667 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4668 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4669 pte_t ptent, swp_entry_t *entry)
4670 {
4671 struct page *page = NULL;
4672 swp_entry_t ent = pte_to_swp_entry(ptent);
4673
4674 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4675 return NULL;
4676
4677 /*
4678 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4679 * a device and because they are not accessible by CPU they are store
4680 * as special swap entry in the CPU page table.
4681 */
4682 if (is_device_private_entry(ent)) {
4683 page = device_private_entry_to_page(ent);
4684 /*
4685 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4686 * a refcount of 1 when free (unlike normal page)
4687 */
4688 if (!page_ref_add_unless(page, 1, 1))
4689 return NULL;
4690 return page;
4691 }
4692
4693 /*
4694 * Because lookup_swap_cache() updates some statistics counter,
4695 * we call find_get_page() with swapper_space directly.
4696 */
4697 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4698 if (do_memsw_account())
4699 entry->val = ent.val;
4700
4701 return page;
4702 }
4703 #else
4704 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4705 pte_t ptent, swp_entry_t *entry)
4706 {
4707 return NULL;
4708 }
4709 #endif
4710
4711 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4712 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4713 {
4714 struct page *page = NULL;
4715 struct address_space *mapping;
4716 pgoff_t pgoff;
4717
4718 if (!vma->vm_file) /* anonymous vma */
4719 return NULL;
4720 if (!(mc.flags & MOVE_FILE))
4721 return NULL;
4722
4723 mapping = vma->vm_file->f_mapping;
4724 pgoff = linear_page_index(vma, addr);
4725
4726 /* page is moved even if it's not RSS of this task(page-faulted). */
4727 #ifdef CONFIG_SWAP
4728 /* shmem/tmpfs may report page out on swap: account for that too. */
4729 if (shmem_mapping(mapping)) {
4730 page = find_get_entry(mapping, pgoff);
4731 if (radix_tree_exceptional_entry(page)) {
4732 swp_entry_t swp = radix_to_swp_entry(page);
4733 if (do_memsw_account())
4734 *entry = swp;
4735 page = find_get_page(swap_address_space(swp),
4736 swp_offset(swp));
4737 }
4738 } else
4739 page = find_get_page(mapping, pgoff);
4740 #else
4741 page = find_get_page(mapping, pgoff);
4742 #endif
4743 return page;
4744 }
4745
4746 /**
4747 * mem_cgroup_move_account - move account of the page
4748 * @page: the page
4749 * @compound: charge the page as compound or small page
4750 * @from: mem_cgroup which the page is moved from.
4751 * @to: mem_cgroup which the page is moved to. @from != @to.
4752 *
4753 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4754 *
4755 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4756 * from old cgroup.
4757 */
4758 static int mem_cgroup_move_account(struct page *page,
4759 bool compound,
4760 struct mem_cgroup *from,
4761 struct mem_cgroup *to)
4762 {
4763 unsigned long flags;
4764 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4765 int ret;
4766 bool anon;
4767
4768 VM_BUG_ON(from == to);
4769 VM_BUG_ON_PAGE(PageLRU(page), page);
4770 VM_BUG_ON(compound && !PageTransHuge(page));
4771
4772 /*
4773 * Prevent mem_cgroup_migrate() from looking at
4774 * page->mem_cgroup of its source page while we change it.
4775 */
4776 ret = -EBUSY;
4777 if (!trylock_page(page))
4778 goto out;
4779
4780 ret = -EINVAL;
4781 if (page->mem_cgroup != from)
4782 goto out_unlock;
4783
4784 anon = PageAnon(page);
4785
4786 spin_lock_irqsave(&from->move_lock, flags);
4787
4788 if (!anon && page_mapped(page)) {
4789 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4790 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4791 }
4792
4793 /*
4794 * move_lock grabbed above and caller set from->moving_account, so
4795 * mod_memcg_page_state will serialize updates to PageDirty.
4796 * So mapping should be stable for dirty pages.
4797 */
4798 if (!anon && PageDirty(page)) {
4799 struct address_space *mapping = page_mapping(page);
4800
4801 if (mapping_cap_account_dirty(mapping)) {
4802 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4803 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4804 }
4805 }
4806
4807 if (PageWriteback(page)) {
4808 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4809 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4810 }
4811
4812 /*
4813 * It is safe to change page->mem_cgroup here because the page
4814 * is referenced, charged, and isolated - we can't race with
4815 * uncharging, charging, migration, or LRU putback.
4816 */
4817
4818 /* caller should have done css_get */
4819 page->mem_cgroup = to;
4820 spin_unlock_irqrestore(&from->move_lock, flags);
4821
4822 ret = 0;
4823
4824 local_irq_disable();
4825 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4826 memcg_check_events(to, page);
4827 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4828 memcg_check_events(from, page);
4829 local_irq_enable();
4830 out_unlock:
4831 unlock_page(page);
4832 out:
4833 return ret;
4834 }
4835
4836 /**
4837 * get_mctgt_type - get target type of moving charge
4838 * @vma: the vma the pte to be checked belongs
4839 * @addr: the address corresponding to the pte to be checked
4840 * @ptent: the pte to be checked
4841 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4842 *
4843 * Returns
4844 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4845 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4846 * move charge. if @target is not NULL, the page is stored in target->page
4847 * with extra refcnt got(Callers should handle it).
4848 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4849 * target for charge migration. if @target is not NULL, the entry is stored
4850 * in target->ent.
4851 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4852 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4853 * For now we such page is charge like a regular page would be as for all
4854 * intent and purposes it is just special memory taking the place of a
4855 * regular page.
4856 *
4857 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4858 *
4859 * Called with pte lock held.
4860 */
4861
4862 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4863 unsigned long addr, pte_t ptent, union mc_target *target)
4864 {
4865 struct page *page = NULL;
4866 enum mc_target_type ret = MC_TARGET_NONE;
4867 swp_entry_t ent = { .val = 0 };
4868
4869 if (pte_present(ptent))
4870 page = mc_handle_present_pte(vma, addr, ptent);
4871 else if (is_swap_pte(ptent))
4872 page = mc_handle_swap_pte(vma, ptent, &ent);
4873 else if (pte_none(ptent))
4874 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4875
4876 if (!page && !ent.val)
4877 return ret;
4878 if (page) {
4879 /*
4880 * Do only loose check w/o serialization.
4881 * mem_cgroup_move_account() checks the page is valid or
4882 * not under LRU exclusion.
4883 */
4884 if (page->mem_cgroup == mc.from) {
4885 ret = MC_TARGET_PAGE;
4886 if (is_device_private_page(page) ||
4887 is_device_public_page(page))
4888 ret = MC_TARGET_DEVICE;
4889 if (target)
4890 target->page = page;
4891 }
4892 if (!ret || !target)
4893 put_page(page);
4894 }
4895 /*
4896 * There is a swap entry and a page doesn't exist or isn't charged.
4897 * But we cannot move a tail-page in a THP.
4898 */
4899 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4900 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4901 ret = MC_TARGET_SWAP;
4902 if (target)
4903 target->ent = ent;
4904 }
4905 return ret;
4906 }
4907
4908 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4909 /*
4910 * We don't consider PMD mapped swapping or file mapped pages because THP does
4911 * not support them for now.
4912 * Caller should make sure that pmd_trans_huge(pmd) is true.
4913 */
4914 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4915 unsigned long addr, pmd_t pmd, union mc_target *target)
4916 {
4917 struct page *page = NULL;
4918 enum mc_target_type ret = MC_TARGET_NONE;
4919
4920 if (unlikely(is_swap_pmd(pmd))) {
4921 VM_BUG_ON(thp_migration_supported() &&
4922 !is_pmd_migration_entry(pmd));
4923 return ret;
4924 }
4925 page = pmd_page(pmd);
4926 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4927 if (!(mc.flags & MOVE_ANON))
4928 return ret;
4929 if (page->mem_cgroup == mc.from) {
4930 ret = MC_TARGET_PAGE;
4931 if (target) {
4932 get_page(page);
4933 target->page = page;
4934 }
4935 }
4936 return ret;
4937 }
4938 #else
4939 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4940 unsigned long addr, pmd_t pmd, union mc_target *target)
4941 {
4942 return MC_TARGET_NONE;
4943 }
4944 #endif
4945
4946 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4947 unsigned long addr, unsigned long end,
4948 struct mm_walk *walk)
4949 {
4950 struct vm_area_struct *vma = walk->vma;
4951 pte_t *pte;
4952 spinlock_t *ptl;
4953
4954 ptl = pmd_trans_huge_lock(pmd, vma);
4955 if (ptl) {
4956 /*
4957 * Note their can not be MC_TARGET_DEVICE for now as we do not
4958 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4959 * MEMORY_DEVICE_PRIVATE but this might change.
4960 */
4961 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4962 mc.precharge += HPAGE_PMD_NR;
4963 spin_unlock(ptl);
4964 return 0;
4965 }
4966
4967 if (pmd_trans_unstable(pmd))
4968 return 0;
4969 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4970 for (; addr != end; pte++, addr += PAGE_SIZE)
4971 if (get_mctgt_type(vma, addr, *pte, NULL))
4972 mc.precharge++; /* increment precharge temporarily */
4973 pte_unmap_unlock(pte - 1, ptl);
4974 cond_resched();
4975
4976 return 0;
4977 }
4978
4979 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4980 {
4981 unsigned long precharge;
4982
4983 struct mm_walk mem_cgroup_count_precharge_walk = {
4984 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4985 .mm = mm,
4986 };
4987 down_read(&mm->mmap_sem);
4988 walk_page_range(0, mm->highest_vm_end,
4989 &mem_cgroup_count_precharge_walk);
4990 up_read(&mm->mmap_sem);
4991
4992 precharge = mc.precharge;
4993 mc.precharge = 0;
4994
4995 return precharge;
4996 }
4997
4998 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4999 {
5000 unsigned long precharge = mem_cgroup_count_precharge(mm);
5001
5002 VM_BUG_ON(mc.moving_task);
5003 mc.moving_task = current;
5004 return mem_cgroup_do_precharge(precharge);
5005 }
5006
5007 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5008 static void __mem_cgroup_clear_mc(void)
5009 {
5010 struct mem_cgroup *from = mc.from;
5011 struct mem_cgroup *to = mc.to;
5012
5013 /* we must uncharge all the leftover precharges from mc.to */
5014 if (mc.precharge) {
5015 cancel_charge(mc.to, mc.precharge);
5016 mc.precharge = 0;
5017 }
5018 /*
5019 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5020 * we must uncharge here.
5021 */
5022 if (mc.moved_charge) {
5023 cancel_charge(mc.from, mc.moved_charge);
5024 mc.moved_charge = 0;
5025 }
5026 /* we must fixup refcnts and charges */
5027 if (mc.moved_swap) {
5028 /* uncharge swap account from the old cgroup */
5029 if (!mem_cgroup_is_root(mc.from))
5030 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5031
5032 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5033
5034 /*
5035 * we charged both to->memory and to->memsw, so we
5036 * should uncharge to->memory.
5037 */
5038 if (!mem_cgroup_is_root(mc.to))
5039 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5040
5041 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5042 css_put_many(&mc.to->css, mc.moved_swap);
5043
5044 mc.moved_swap = 0;
5045 }
5046 memcg_oom_recover(from);
5047 memcg_oom_recover(to);
5048 wake_up_all(&mc.waitq);
5049 }
5050
5051 static void mem_cgroup_clear_mc(void)
5052 {
5053 struct mm_struct *mm = mc.mm;
5054
5055 /*
5056 * we must clear moving_task before waking up waiters at the end of
5057 * task migration.
5058 */
5059 mc.moving_task = NULL;
5060 __mem_cgroup_clear_mc();
5061 spin_lock(&mc.lock);
5062 mc.from = NULL;
5063 mc.to = NULL;
5064 mc.mm = NULL;
5065 spin_unlock(&mc.lock);
5066
5067 mmput(mm);
5068 }
5069
5070 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5071 {
5072 struct cgroup_subsys_state *css;
5073 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5074 struct mem_cgroup *from;
5075 struct task_struct *leader, *p;
5076 struct mm_struct *mm;
5077 unsigned long move_flags;
5078 int ret = 0;
5079
5080 /* charge immigration isn't supported on the default hierarchy */
5081 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5082 return 0;
5083
5084 /*
5085 * Multi-process migrations only happen on the default hierarchy
5086 * where charge immigration is not used. Perform charge
5087 * immigration if @tset contains a leader and whine if there are
5088 * multiple.
5089 */
5090 p = NULL;
5091 cgroup_taskset_for_each_leader(leader, css, tset) {
5092 WARN_ON_ONCE(p);
5093 p = leader;
5094 memcg = mem_cgroup_from_css(css);
5095 }
5096 if (!p)
5097 return 0;
5098
5099 /*
5100 * We are now commited to this value whatever it is. Changes in this
5101 * tunable will only affect upcoming migrations, not the current one.
5102 * So we need to save it, and keep it going.
5103 */
5104 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5105 if (!move_flags)
5106 return 0;
5107
5108 from = mem_cgroup_from_task(p);
5109
5110 VM_BUG_ON(from == memcg);
5111
5112 mm = get_task_mm(p);
5113 if (!mm)
5114 return 0;
5115 /* We move charges only when we move a owner of the mm */
5116 if (mm->owner == p) {
5117 VM_BUG_ON(mc.from);
5118 VM_BUG_ON(mc.to);
5119 VM_BUG_ON(mc.precharge);
5120 VM_BUG_ON(mc.moved_charge);
5121 VM_BUG_ON(mc.moved_swap);
5122
5123 spin_lock(&mc.lock);
5124 mc.mm = mm;
5125 mc.from = from;
5126 mc.to = memcg;
5127 mc.flags = move_flags;
5128 spin_unlock(&mc.lock);
5129 /* We set mc.moving_task later */
5130
5131 ret = mem_cgroup_precharge_mc(mm);
5132 if (ret)
5133 mem_cgroup_clear_mc();
5134 } else {
5135 mmput(mm);
5136 }
5137 return ret;
5138 }
5139
5140 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5141 {
5142 if (mc.to)
5143 mem_cgroup_clear_mc();
5144 }
5145
5146 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5147 unsigned long addr, unsigned long end,
5148 struct mm_walk *walk)
5149 {
5150 int ret = 0;
5151 struct vm_area_struct *vma = walk->vma;
5152 pte_t *pte;
5153 spinlock_t *ptl;
5154 enum mc_target_type target_type;
5155 union mc_target target;
5156 struct page *page;
5157
5158 ptl = pmd_trans_huge_lock(pmd, vma);
5159 if (ptl) {
5160 if (mc.precharge < HPAGE_PMD_NR) {
5161 spin_unlock(ptl);
5162 return 0;
5163 }
5164 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5165 if (target_type == MC_TARGET_PAGE) {
5166 page = target.page;
5167 if (!isolate_lru_page(page)) {
5168 if (!mem_cgroup_move_account(page, true,
5169 mc.from, mc.to)) {
5170 mc.precharge -= HPAGE_PMD_NR;
5171 mc.moved_charge += HPAGE_PMD_NR;
5172 }
5173 putback_lru_page(page);
5174 }
5175 put_page(page);
5176 } else if (target_type == MC_TARGET_DEVICE) {
5177 page = target.page;
5178 if (!mem_cgroup_move_account(page, true,
5179 mc.from, mc.to)) {
5180 mc.precharge -= HPAGE_PMD_NR;
5181 mc.moved_charge += HPAGE_PMD_NR;
5182 }
5183 put_page(page);
5184 }
5185 spin_unlock(ptl);
5186 return 0;
5187 }
5188
5189 if (pmd_trans_unstable(pmd))
5190 return 0;
5191 retry:
5192 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5193 for (; addr != end; addr += PAGE_SIZE) {
5194 pte_t ptent = *(pte++);
5195 bool device = false;
5196 swp_entry_t ent;
5197
5198 if (!mc.precharge)
5199 break;
5200
5201 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5202 case MC_TARGET_DEVICE:
5203 device = true;
5204 /* fall through */
5205 case MC_TARGET_PAGE:
5206 page = target.page;
5207 /*
5208 * We can have a part of the split pmd here. Moving it
5209 * can be done but it would be too convoluted so simply
5210 * ignore such a partial THP and keep it in original
5211 * memcg. There should be somebody mapping the head.
5212 */
5213 if (PageTransCompound(page))
5214 goto put;
5215 if (!device && isolate_lru_page(page))
5216 goto put;
5217 if (!mem_cgroup_move_account(page, false,
5218 mc.from, mc.to)) {
5219 mc.precharge--;
5220 /* we uncharge from mc.from later. */
5221 mc.moved_charge++;
5222 }
5223 if (!device)
5224 putback_lru_page(page);
5225 put: /* get_mctgt_type() gets the page */
5226 put_page(page);
5227 break;
5228 case MC_TARGET_SWAP:
5229 ent = target.ent;
5230 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5231 mc.precharge--;
5232 /* we fixup refcnts and charges later. */
5233 mc.moved_swap++;
5234 }
5235 break;
5236 default:
5237 break;
5238 }
5239 }
5240 pte_unmap_unlock(pte - 1, ptl);
5241 cond_resched();
5242
5243 if (addr != end) {
5244 /*
5245 * We have consumed all precharges we got in can_attach().
5246 * We try charge one by one, but don't do any additional
5247 * charges to mc.to if we have failed in charge once in attach()
5248 * phase.
5249 */
5250 ret = mem_cgroup_do_precharge(1);
5251 if (!ret)
5252 goto retry;
5253 }
5254
5255 return ret;
5256 }
5257
5258 static void mem_cgroup_move_charge(void)
5259 {
5260 struct mm_walk mem_cgroup_move_charge_walk = {
5261 .pmd_entry = mem_cgroup_move_charge_pte_range,
5262 .mm = mc.mm,
5263 };
5264
5265 lru_add_drain_all();
5266 /*
5267 * Signal lock_page_memcg() to take the memcg's move_lock
5268 * while we're moving its pages to another memcg. Then wait
5269 * for already started RCU-only updates to finish.
5270 */
5271 atomic_inc(&mc.from->moving_account);
5272 synchronize_rcu();
5273 retry:
5274 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5275 /*
5276 * Someone who are holding the mmap_sem might be waiting in
5277 * waitq. So we cancel all extra charges, wake up all waiters,
5278 * and retry. Because we cancel precharges, we might not be able
5279 * to move enough charges, but moving charge is a best-effort
5280 * feature anyway, so it wouldn't be a big problem.
5281 */
5282 __mem_cgroup_clear_mc();
5283 cond_resched();
5284 goto retry;
5285 }
5286 /*
5287 * When we have consumed all precharges and failed in doing
5288 * additional charge, the page walk just aborts.
5289 */
5290 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5291
5292 up_read(&mc.mm->mmap_sem);
5293 atomic_dec(&mc.from->moving_account);
5294 }
5295
5296 static void mem_cgroup_move_task(void)
5297 {
5298 if (mc.to) {
5299 mem_cgroup_move_charge();
5300 mem_cgroup_clear_mc();
5301 }
5302 }
5303 #else /* !CONFIG_MMU */
5304 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5305 {
5306 return 0;
5307 }
5308 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5309 {
5310 }
5311 static void mem_cgroup_move_task(void)
5312 {
5313 }
5314 #endif
5315
5316 /*
5317 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5318 * to verify whether we're attached to the default hierarchy on each mount
5319 * attempt.
5320 */
5321 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5322 {
5323 /*
5324 * use_hierarchy is forced on the default hierarchy. cgroup core
5325 * guarantees that @root doesn't have any children, so turning it
5326 * on for the root memcg is enough.
5327 */
5328 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5329 root_mem_cgroup->use_hierarchy = true;
5330 else
5331 root_mem_cgroup->use_hierarchy = false;
5332 }
5333
5334 static u64 memory_current_read(struct cgroup_subsys_state *css,
5335 struct cftype *cft)
5336 {
5337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5338
5339 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5340 }
5341
5342 static int memory_min_show(struct seq_file *m, void *v)
5343 {
5344 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5345 unsigned long min = READ_ONCE(memcg->memory.min);
5346
5347 if (min == PAGE_COUNTER_MAX)
5348 seq_puts(m, "max\n");
5349 else
5350 seq_printf(m, "%llu\n", (u64)min * PAGE_SIZE);
5351
5352 return 0;
5353 }
5354
5355 static ssize_t memory_min_write(struct kernfs_open_file *of,
5356 char *buf, size_t nbytes, loff_t off)
5357 {
5358 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5359 unsigned long min;
5360 int err;
5361
5362 buf = strstrip(buf);
5363 err = page_counter_memparse(buf, "max", &min);
5364 if (err)
5365 return err;
5366
5367 page_counter_set_min(&memcg->memory, min);
5368
5369 return nbytes;
5370 }
5371
5372 static int memory_low_show(struct seq_file *m, void *v)
5373 {
5374 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5375 unsigned long low = READ_ONCE(memcg->memory.low);
5376
5377 if (low == PAGE_COUNTER_MAX)
5378 seq_puts(m, "max\n");
5379 else
5380 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5381
5382 return 0;
5383 }
5384
5385 static ssize_t memory_low_write(struct kernfs_open_file *of,
5386 char *buf, size_t nbytes, loff_t off)
5387 {
5388 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5389 unsigned long low;
5390 int err;
5391
5392 buf = strstrip(buf);
5393 err = page_counter_memparse(buf, "max", &low);
5394 if (err)
5395 return err;
5396
5397 page_counter_set_low(&memcg->memory, low);
5398
5399 return nbytes;
5400 }
5401
5402 static int memory_high_show(struct seq_file *m, void *v)
5403 {
5404 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5405 unsigned long high = READ_ONCE(memcg->high);
5406
5407 if (high == PAGE_COUNTER_MAX)
5408 seq_puts(m, "max\n");
5409 else
5410 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5411
5412 return 0;
5413 }
5414
5415 static ssize_t memory_high_write(struct kernfs_open_file *of,
5416 char *buf, size_t nbytes, loff_t off)
5417 {
5418 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5419 unsigned long nr_pages;
5420 unsigned long high;
5421 int err;
5422
5423 buf = strstrip(buf);
5424 err = page_counter_memparse(buf, "max", &high);
5425 if (err)
5426 return err;
5427
5428 memcg->high = high;
5429
5430 nr_pages = page_counter_read(&memcg->memory);
5431 if (nr_pages > high)
5432 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5433 GFP_KERNEL, true);
5434
5435 memcg_wb_domain_size_changed(memcg);
5436 return nbytes;
5437 }
5438
5439 static int memory_max_show(struct seq_file *m, void *v)
5440 {
5441 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5442 unsigned long max = READ_ONCE(memcg->memory.max);
5443
5444 if (max == PAGE_COUNTER_MAX)
5445 seq_puts(m, "max\n");
5446 else
5447 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5448
5449 return 0;
5450 }
5451
5452 static ssize_t memory_max_write(struct kernfs_open_file *of,
5453 char *buf, size_t nbytes, loff_t off)
5454 {
5455 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5456 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5457 bool drained = false;
5458 unsigned long max;
5459 int err;
5460
5461 buf = strstrip(buf);
5462 err = page_counter_memparse(buf, "max", &max);
5463 if (err)
5464 return err;
5465
5466 xchg(&memcg->memory.max, max);
5467
5468 for (;;) {
5469 unsigned long nr_pages = page_counter_read(&memcg->memory);
5470
5471 if (nr_pages <= max)
5472 break;
5473
5474 if (signal_pending(current)) {
5475 err = -EINTR;
5476 break;
5477 }
5478
5479 if (!drained) {
5480 drain_all_stock(memcg);
5481 drained = true;
5482 continue;
5483 }
5484
5485 if (nr_reclaims) {
5486 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5487 GFP_KERNEL, true))
5488 nr_reclaims--;
5489 continue;
5490 }
5491
5492 memcg_memory_event(memcg, MEMCG_OOM);
5493 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5494 break;
5495 }
5496
5497 memcg_wb_domain_size_changed(memcg);
5498 return nbytes;
5499 }
5500
5501 static int memory_events_show(struct seq_file *m, void *v)
5502 {
5503 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5504
5505 seq_printf(m, "low %lu\n",
5506 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5507 seq_printf(m, "high %lu\n",
5508 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5509 seq_printf(m, "max %lu\n",
5510 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5511 seq_printf(m, "oom %lu\n",
5512 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5513 seq_printf(m, "oom_kill %lu\n",
5514 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
5515
5516 return 0;
5517 }
5518
5519 static int memory_stat_show(struct seq_file *m, void *v)
5520 {
5521 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5522 struct accumulated_stats acc;
5523 int i;
5524
5525 /*
5526 * Provide statistics on the state of the memory subsystem as
5527 * well as cumulative event counters that show past behavior.
5528 *
5529 * This list is ordered following a combination of these gradients:
5530 * 1) generic big picture -> specifics and details
5531 * 2) reflecting userspace activity -> reflecting kernel heuristics
5532 *
5533 * Current memory state:
5534 */
5535
5536 memset(&acc, 0, sizeof(acc));
5537 acc.stats_size = MEMCG_NR_STAT;
5538 acc.events_size = NR_VM_EVENT_ITEMS;
5539 accumulate_memcg_tree(memcg, &acc);
5540
5541 seq_printf(m, "anon %llu\n",
5542 (u64)acc.stat[MEMCG_RSS] * PAGE_SIZE);
5543 seq_printf(m, "file %llu\n",
5544 (u64)acc.stat[MEMCG_CACHE] * PAGE_SIZE);
5545 seq_printf(m, "kernel_stack %llu\n",
5546 (u64)acc.stat[MEMCG_KERNEL_STACK_KB] * 1024);
5547 seq_printf(m, "slab %llu\n",
5548 (u64)(acc.stat[NR_SLAB_RECLAIMABLE] +
5549 acc.stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5550 seq_printf(m, "sock %llu\n",
5551 (u64)acc.stat[MEMCG_SOCK] * PAGE_SIZE);
5552
5553 seq_printf(m, "shmem %llu\n",
5554 (u64)acc.stat[NR_SHMEM] * PAGE_SIZE);
5555 seq_printf(m, "file_mapped %llu\n",
5556 (u64)acc.stat[NR_FILE_MAPPED] * PAGE_SIZE);
5557 seq_printf(m, "file_dirty %llu\n",
5558 (u64)acc.stat[NR_FILE_DIRTY] * PAGE_SIZE);
5559 seq_printf(m, "file_writeback %llu\n",
5560 (u64)acc.stat[NR_WRITEBACK] * PAGE_SIZE);
5561
5562 for (i = 0; i < NR_LRU_LISTS; i++)
5563 seq_printf(m, "%s %llu\n", mem_cgroup_lru_names[i],
5564 (u64)acc.lru_pages[i] * PAGE_SIZE);
5565
5566 seq_printf(m, "slab_reclaimable %llu\n",
5567 (u64)acc.stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5568 seq_printf(m, "slab_unreclaimable %llu\n",
5569 (u64)acc.stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5570
5571 /* Accumulated memory events */
5572
5573 seq_printf(m, "pgfault %lu\n", acc.events[PGFAULT]);
5574 seq_printf(m, "pgmajfault %lu\n", acc.events[PGMAJFAULT]);
5575
5576 seq_printf(m, "workingset_refault %lu\n",
5577 acc.stat[WORKINGSET_REFAULT]);
5578 seq_printf(m, "workingset_activate %lu\n",
5579 acc.stat[WORKINGSET_ACTIVATE]);
5580 seq_printf(m, "workingset_nodereclaim %lu\n",
5581 acc.stat[WORKINGSET_NODERECLAIM]);
5582
5583 seq_printf(m, "pgrefill %lu\n", acc.events[PGREFILL]);
5584 seq_printf(m, "pgscan %lu\n", acc.events[PGSCAN_KSWAPD] +
5585 acc.events[PGSCAN_DIRECT]);
5586 seq_printf(m, "pgsteal %lu\n", acc.events[PGSTEAL_KSWAPD] +
5587 acc.events[PGSTEAL_DIRECT]);
5588 seq_printf(m, "pgactivate %lu\n", acc.events[PGACTIVATE]);
5589 seq_printf(m, "pgdeactivate %lu\n", acc.events[PGDEACTIVATE]);
5590 seq_printf(m, "pglazyfree %lu\n", acc.events[PGLAZYFREE]);
5591 seq_printf(m, "pglazyfreed %lu\n", acc.events[PGLAZYFREED]);
5592
5593 return 0;
5594 }
5595
5596 static int memory_oom_group_show(struct seq_file *m, void *v)
5597 {
5598 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5599
5600 seq_printf(m, "%d\n", memcg->oom_group);
5601
5602 return 0;
5603 }
5604
5605 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5606 char *buf, size_t nbytes, loff_t off)
5607 {
5608 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5609 int ret, oom_group;
5610
5611 buf = strstrip(buf);
5612 if (!buf)
5613 return -EINVAL;
5614
5615 ret = kstrtoint(buf, 0, &oom_group);
5616 if (ret)
5617 return ret;
5618
5619 if (oom_group != 0 && oom_group != 1)
5620 return -EINVAL;
5621
5622 memcg->oom_group = oom_group;
5623
5624 return nbytes;
5625 }
5626
5627 static struct cftype memory_files[] = {
5628 {
5629 .name = "current",
5630 .flags = CFTYPE_NOT_ON_ROOT,
5631 .read_u64 = memory_current_read,
5632 },
5633 {
5634 .name = "min",
5635 .flags = CFTYPE_NOT_ON_ROOT,
5636 .seq_show = memory_min_show,
5637 .write = memory_min_write,
5638 },
5639 {
5640 .name = "low",
5641 .flags = CFTYPE_NOT_ON_ROOT,
5642 .seq_show = memory_low_show,
5643 .write = memory_low_write,
5644 },
5645 {
5646 .name = "high",
5647 .flags = CFTYPE_NOT_ON_ROOT,
5648 .seq_show = memory_high_show,
5649 .write = memory_high_write,
5650 },
5651 {
5652 .name = "max",
5653 .flags = CFTYPE_NOT_ON_ROOT,
5654 .seq_show = memory_max_show,
5655 .write = memory_max_write,
5656 },
5657 {
5658 .name = "events",
5659 .flags = CFTYPE_NOT_ON_ROOT,
5660 .file_offset = offsetof(struct mem_cgroup, events_file),
5661 .seq_show = memory_events_show,
5662 },
5663 {
5664 .name = "stat",
5665 .flags = CFTYPE_NOT_ON_ROOT,
5666 .seq_show = memory_stat_show,
5667 },
5668 {
5669 .name = "oom.group",
5670 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5671 .seq_show = memory_oom_group_show,
5672 .write = memory_oom_group_write,
5673 },
5674 { } /* terminate */
5675 };
5676
5677 struct cgroup_subsys memory_cgrp_subsys = {
5678 .css_alloc = mem_cgroup_css_alloc,
5679 .css_online = mem_cgroup_css_online,
5680 .css_offline = mem_cgroup_css_offline,
5681 .css_released = mem_cgroup_css_released,
5682 .css_free = mem_cgroup_css_free,
5683 .css_reset = mem_cgroup_css_reset,
5684 .can_attach = mem_cgroup_can_attach,
5685 .cancel_attach = mem_cgroup_cancel_attach,
5686 .post_attach = mem_cgroup_move_task,
5687 .bind = mem_cgroup_bind,
5688 .dfl_cftypes = memory_files,
5689 .legacy_cftypes = mem_cgroup_legacy_files,
5690 .early_init = 0,
5691 };
5692
5693 /**
5694 * mem_cgroup_protected - check if memory consumption is in the normal range
5695 * @root: the top ancestor of the sub-tree being checked
5696 * @memcg: the memory cgroup to check
5697 *
5698 * WARNING: This function is not stateless! It can only be used as part
5699 * of a top-down tree iteration, not for isolated queries.
5700 *
5701 * Returns one of the following:
5702 * MEMCG_PROT_NONE: cgroup memory is not protected
5703 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5704 * an unprotected supply of reclaimable memory from other cgroups.
5705 * MEMCG_PROT_MIN: cgroup memory is protected
5706 *
5707 * @root is exclusive; it is never protected when looked at directly
5708 *
5709 * To provide a proper hierarchical behavior, effective memory.min/low values
5710 * are used. Below is the description of how effective memory.low is calculated.
5711 * Effective memory.min values is calculated in the same way.
5712 *
5713 * Effective memory.low is always equal or less than the original memory.low.
5714 * If there is no memory.low overcommittment (which is always true for
5715 * top-level memory cgroups), these two values are equal.
5716 * Otherwise, it's a part of parent's effective memory.low,
5717 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5718 * memory.low usages, where memory.low usage is the size of actually
5719 * protected memory.
5720 *
5721 * low_usage
5722 * elow = min( memory.low, parent->elow * ------------------ ),
5723 * siblings_low_usage
5724 *
5725 * | memory.current, if memory.current < memory.low
5726 * low_usage = |
5727 | 0, otherwise.
5728 *
5729 *
5730 * Such definition of the effective memory.low provides the expected
5731 * hierarchical behavior: parent's memory.low value is limiting
5732 * children, unprotected memory is reclaimed first and cgroups,
5733 * which are not using their guarantee do not affect actual memory
5734 * distribution.
5735 *
5736 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5737 *
5738 * A A/memory.low = 2G, A/memory.current = 6G
5739 * //\\
5740 * BC DE B/memory.low = 3G B/memory.current = 2G
5741 * C/memory.low = 1G C/memory.current = 2G
5742 * D/memory.low = 0 D/memory.current = 2G
5743 * E/memory.low = 10G E/memory.current = 0
5744 *
5745 * and the memory pressure is applied, the following memory distribution
5746 * is expected (approximately):
5747 *
5748 * A/memory.current = 2G
5749 *
5750 * B/memory.current = 1.3G
5751 * C/memory.current = 0.6G
5752 * D/memory.current = 0
5753 * E/memory.current = 0
5754 *
5755 * These calculations require constant tracking of the actual low usages
5756 * (see propagate_protected_usage()), as well as recursive calculation of
5757 * effective memory.low values. But as we do call mem_cgroup_protected()
5758 * path for each memory cgroup top-down from the reclaim,
5759 * it's possible to optimize this part, and save calculated elow
5760 * for next usage. This part is intentionally racy, but it's ok,
5761 * as memory.low is a best-effort mechanism.
5762 */
5763 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5764 struct mem_cgroup *memcg)
5765 {
5766 struct mem_cgroup *parent;
5767 unsigned long emin, parent_emin;
5768 unsigned long elow, parent_elow;
5769 unsigned long usage;
5770
5771 if (mem_cgroup_disabled())
5772 return MEMCG_PROT_NONE;
5773
5774 if (!root)
5775 root = root_mem_cgroup;
5776 if (memcg == root)
5777 return MEMCG_PROT_NONE;
5778
5779 usage = page_counter_read(&memcg->memory);
5780 if (!usage)
5781 return MEMCG_PROT_NONE;
5782
5783 emin = memcg->memory.min;
5784 elow = memcg->memory.low;
5785
5786 parent = parent_mem_cgroup(memcg);
5787 /* No parent means a non-hierarchical mode on v1 memcg */
5788 if (!parent)
5789 return MEMCG_PROT_NONE;
5790
5791 if (parent == root)
5792 goto exit;
5793
5794 parent_emin = READ_ONCE(parent->memory.emin);
5795 emin = min(emin, parent_emin);
5796 if (emin && parent_emin) {
5797 unsigned long min_usage, siblings_min_usage;
5798
5799 min_usage = min(usage, memcg->memory.min);
5800 siblings_min_usage = atomic_long_read(
5801 &parent->memory.children_min_usage);
5802
5803 if (min_usage && siblings_min_usage)
5804 emin = min(emin, parent_emin * min_usage /
5805 siblings_min_usage);
5806 }
5807
5808 parent_elow = READ_ONCE(parent->memory.elow);
5809 elow = min(elow, parent_elow);
5810 if (elow && parent_elow) {
5811 unsigned long low_usage, siblings_low_usage;
5812
5813 low_usage = min(usage, memcg->memory.low);
5814 siblings_low_usage = atomic_long_read(
5815 &parent->memory.children_low_usage);
5816
5817 if (low_usage && siblings_low_usage)
5818 elow = min(elow, parent_elow * low_usage /
5819 siblings_low_usage);
5820 }
5821
5822 exit:
5823 memcg->memory.emin = emin;
5824 memcg->memory.elow = elow;
5825
5826 if (usage <= emin)
5827 return MEMCG_PROT_MIN;
5828 else if (usage <= elow)
5829 return MEMCG_PROT_LOW;
5830 else
5831 return MEMCG_PROT_NONE;
5832 }
5833
5834 /**
5835 * mem_cgroup_try_charge - try charging a page
5836 * @page: page to charge
5837 * @mm: mm context of the victim
5838 * @gfp_mask: reclaim mode
5839 * @memcgp: charged memcg return
5840 * @compound: charge the page as compound or small page
5841 *
5842 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5843 * pages according to @gfp_mask if necessary.
5844 *
5845 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5846 * Otherwise, an error code is returned.
5847 *
5848 * After page->mapping has been set up, the caller must finalize the
5849 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5850 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5851 */
5852 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5853 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5854 bool compound)
5855 {
5856 struct mem_cgroup *memcg = NULL;
5857 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5858 int ret = 0;
5859
5860 if (mem_cgroup_disabled())
5861 goto out;
5862
5863 if (PageSwapCache(page)) {
5864 /*
5865 * Every swap fault against a single page tries to charge the
5866 * page, bail as early as possible. shmem_unuse() encounters
5867 * already charged pages, too. The USED bit is protected by
5868 * the page lock, which serializes swap cache removal, which
5869 * in turn serializes uncharging.
5870 */
5871 VM_BUG_ON_PAGE(!PageLocked(page), page);
5872 if (compound_head(page)->mem_cgroup)
5873 goto out;
5874
5875 if (do_swap_account) {
5876 swp_entry_t ent = { .val = page_private(page), };
5877 unsigned short id = lookup_swap_cgroup_id(ent);
5878
5879 rcu_read_lock();
5880 memcg = mem_cgroup_from_id(id);
5881 if (memcg && !css_tryget_online(&memcg->css))
5882 memcg = NULL;
5883 rcu_read_unlock();
5884 }
5885 }
5886
5887 if (!memcg)
5888 memcg = get_mem_cgroup_from_mm(mm);
5889
5890 ret = try_charge(memcg, gfp_mask, nr_pages);
5891
5892 css_put(&memcg->css);
5893 out:
5894 *memcgp = memcg;
5895 return ret;
5896 }
5897
5898 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
5899 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5900 bool compound)
5901 {
5902 struct mem_cgroup *memcg;
5903 int ret;
5904
5905 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
5906 memcg = *memcgp;
5907 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
5908 return ret;
5909 }
5910
5911 /**
5912 * mem_cgroup_commit_charge - commit a page charge
5913 * @page: page to charge
5914 * @memcg: memcg to charge the page to
5915 * @lrucare: page might be on LRU already
5916 * @compound: charge the page as compound or small page
5917 *
5918 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5919 * after page->mapping has been set up. This must happen atomically
5920 * as part of the page instantiation, i.e. under the page table lock
5921 * for anonymous pages, under the page lock for page and swap cache.
5922 *
5923 * In addition, the page must not be on the LRU during the commit, to
5924 * prevent racing with task migration. If it might be, use @lrucare.
5925 *
5926 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5927 */
5928 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5929 bool lrucare, bool compound)
5930 {
5931 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5932
5933 VM_BUG_ON_PAGE(!page->mapping, page);
5934 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5935
5936 if (mem_cgroup_disabled())
5937 return;
5938 /*
5939 * Swap faults will attempt to charge the same page multiple
5940 * times. But reuse_swap_page() might have removed the page
5941 * from swapcache already, so we can't check PageSwapCache().
5942 */
5943 if (!memcg)
5944 return;
5945
5946 commit_charge(page, memcg, lrucare);
5947
5948 local_irq_disable();
5949 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5950 memcg_check_events(memcg, page);
5951 local_irq_enable();
5952
5953 if (do_memsw_account() && PageSwapCache(page)) {
5954 swp_entry_t entry = { .val = page_private(page) };
5955 /*
5956 * The swap entry might not get freed for a long time,
5957 * let's not wait for it. The page already received a
5958 * memory+swap charge, drop the swap entry duplicate.
5959 */
5960 mem_cgroup_uncharge_swap(entry, nr_pages);
5961 }
5962 }
5963
5964 /**
5965 * mem_cgroup_cancel_charge - cancel a page charge
5966 * @page: page to charge
5967 * @memcg: memcg to charge the page to
5968 * @compound: charge the page as compound or small page
5969 *
5970 * Cancel a charge transaction started by mem_cgroup_try_charge().
5971 */
5972 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5973 bool compound)
5974 {
5975 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5976
5977 if (mem_cgroup_disabled())
5978 return;
5979 /*
5980 * Swap faults will attempt to charge the same page multiple
5981 * times. But reuse_swap_page() might have removed the page
5982 * from swapcache already, so we can't check PageSwapCache().
5983 */
5984 if (!memcg)
5985 return;
5986
5987 cancel_charge(memcg, nr_pages);
5988 }
5989
5990 struct uncharge_gather {
5991 struct mem_cgroup *memcg;
5992 unsigned long pgpgout;
5993 unsigned long nr_anon;
5994 unsigned long nr_file;
5995 unsigned long nr_kmem;
5996 unsigned long nr_huge;
5997 unsigned long nr_shmem;
5998 struct page *dummy_page;
5999 };
6000
6001 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6002 {
6003 memset(ug, 0, sizeof(*ug));
6004 }
6005
6006 static void uncharge_batch(const struct uncharge_gather *ug)
6007 {
6008 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6009 unsigned long flags;
6010
6011 if (!mem_cgroup_is_root(ug->memcg)) {
6012 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6013 if (do_memsw_account())
6014 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6015 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6016 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6017 memcg_oom_recover(ug->memcg);
6018 }
6019
6020 local_irq_save(flags);
6021 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6022 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6023 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6024 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6025 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6026 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
6027 memcg_check_events(ug->memcg, ug->dummy_page);
6028 local_irq_restore(flags);
6029
6030 if (!mem_cgroup_is_root(ug->memcg))
6031 css_put_many(&ug->memcg->css, nr_pages);
6032 }
6033
6034 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6035 {
6036 VM_BUG_ON_PAGE(PageLRU(page), page);
6037 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6038 !PageHWPoison(page) , page);
6039
6040 if (!page->mem_cgroup)
6041 return;
6042
6043 /*
6044 * Nobody should be changing or seriously looking at
6045 * page->mem_cgroup at this point, we have fully
6046 * exclusive access to the page.
6047 */
6048
6049 if (ug->memcg != page->mem_cgroup) {
6050 if (ug->memcg) {
6051 uncharge_batch(ug);
6052 uncharge_gather_clear(ug);
6053 }
6054 ug->memcg = page->mem_cgroup;
6055 }
6056
6057 if (!PageKmemcg(page)) {
6058 unsigned int nr_pages = 1;
6059
6060 if (PageTransHuge(page)) {
6061 nr_pages <<= compound_order(page);
6062 ug->nr_huge += nr_pages;
6063 }
6064 if (PageAnon(page))
6065 ug->nr_anon += nr_pages;
6066 else {
6067 ug->nr_file += nr_pages;
6068 if (PageSwapBacked(page))
6069 ug->nr_shmem += nr_pages;
6070 }
6071 ug->pgpgout++;
6072 } else {
6073 ug->nr_kmem += 1 << compound_order(page);
6074 __ClearPageKmemcg(page);
6075 }
6076
6077 ug->dummy_page = page;
6078 page->mem_cgroup = NULL;
6079 }
6080
6081 static void uncharge_list(struct list_head *page_list)
6082 {
6083 struct uncharge_gather ug;
6084 struct list_head *next;
6085
6086 uncharge_gather_clear(&ug);
6087
6088 /*
6089 * Note that the list can be a single page->lru; hence the
6090 * do-while loop instead of a simple list_for_each_entry().
6091 */
6092 next = page_list->next;
6093 do {
6094 struct page *page;
6095
6096 page = list_entry(next, struct page, lru);
6097 next = page->lru.next;
6098
6099 uncharge_page(page, &ug);
6100 } while (next != page_list);
6101
6102 if (ug.memcg)
6103 uncharge_batch(&ug);
6104 }
6105
6106 /**
6107 * mem_cgroup_uncharge - uncharge a page
6108 * @page: page to uncharge
6109 *
6110 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6111 * mem_cgroup_commit_charge().
6112 */
6113 void mem_cgroup_uncharge(struct page *page)
6114 {
6115 struct uncharge_gather ug;
6116
6117 if (mem_cgroup_disabled())
6118 return;
6119
6120 /* Don't touch page->lru of any random page, pre-check: */
6121 if (!page->mem_cgroup)
6122 return;
6123
6124 uncharge_gather_clear(&ug);
6125 uncharge_page(page, &ug);
6126 uncharge_batch(&ug);
6127 }
6128
6129 /**
6130 * mem_cgroup_uncharge_list - uncharge a list of page
6131 * @page_list: list of pages to uncharge
6132 *
6133 * Uncharge a list of pages previously charged with
6134 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6135 */
6136 void mem_cgroup_uncharge_list(struct list_head *page_list)
6137 {
6138 if (mem_cgroup_disabled())
6139 return;
6140
6141 if (!list_empty(page_list))
6142 uncharge_list(page_list);
6143 }
6144
6145 /**
6146 * mem_cgroup_migrate - charge a page's replacement
6147 * @oldpage: currently circulating page
6148 * @newpage: replacement page
6149 *
6150 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6151 * be uncharged upon free.
6152 *
6153 * Both pages must be locked, @newpage->mapping must be set up.
6154 */
6155 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6156 {
6157 struct mem_cgroup *memcg;
6158 unsigned int nr_pages;
6159 bool compound;
6160 unsigned long flags;
6161
6162 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6163 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6164 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6165 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6166 newpage);
6167
6168 if (mem_cgroup_disabled())
6169 return;
6170
6171 /* Page cache replacement: new page already charged? */
6172 if (newpage->mem_cgroup)
6173 return;
6174
6175 /* Swapcache readahead pages can get replaced before being charged */
6176 memcg = oldpage->mem_cgroup;
6177 if (!memcg)
6178 return;
6179
6180 /* Force-charge the new page. The old one will be freed soon */
6181 compound = PageTransHuge(newpage);
6182 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6183
6184 page_counter_charge(&memcg->memory, nr_pages);
6185 if (do_memsw_account())
6186 page_counter_charge(&memcg->memsw, nr_pages);
6187 css_get_many(&memcg->css, nr_pages);
6188
6189 commit_charge(newpage, memcg, false);
6190
6191 local_irq_save(flags);
6192 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6193 memcg_check_events(memcg, newpage);
6194 local_irq_restore(flags);
6195 }
6196
6197 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6198 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6199
6200 void mem_cgroup_sk_alloc(struct sock *sk)
6201 {
6202 struct mem_cgroup *memcg;
6203
6204 if (!mem_cgroup_sockets_enabled)
6205 return;
6206
6207 /*
6208 * Socket cloning can throw us here with sk_memcg already
6209 * filled. It won't however, necessarily happen from
6210 * process context. So the test for root memcg given
6211 * the current task's memcg won't help us in this case.
6212 *
6213 * Respecting the original socket's memcg is a better
6214 * decision in this case.
6215 */
6216 if (sk->sk_memcg) {
6217 css_get(&sk->sk_memcg->css);
6218 return;
6219 }
6220
6221 rcu_read_lock();
6222 memcg = mem_cgroup_from_task(current);
6223 if (memcg == root_mem_cgroup)
6224 goto out;
6225 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6226 goto out;
6227 if (css_tryget_online(&memcg->css))
6228 sk->sk_memcg = memcg;
6229 out:
6230 rcu_read_unlock();
6231 }
6232
6233 void mem_cgroup_sk_free(struct sock *sk)
6234 {
6235 if (sk->sk_memcg)
6236 css_put(&sk->sk_memcg->css);
6237 }
6238
6239 /**
6240 * mem_cgroup_charge_skmem - charge socket memory
6241 * @memcg: memcg to charge
6242 * @nr_pages: number of pages to charge
6243 *
6244 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6245 * @memcg's configured limit, %false if the charge had to be forced.
6246 */
6247 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6248 {
6249 gfp_t gfp_mask = GFP_KERNEL;
6250
6251 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6252 struct page_counter *fail;
6253
6254 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6255 memcg->tcpmem_pressure = 0;
6256 return true;
6257 }
6258 page_counter_charge(&memcg->tcpmem, nr_pages);
6259 memcg->tcpmem_pressure = 1;
6260 return false;
6261 }
6262
6263 /* Don't block in the packet receive path */
6264 if (in_softirq())
6265 gfp_mask = GFP_NOWAIT;
6266
6267 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6268
6269 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6270 return true;
6271
6272 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6273 return false;
6274 }
6275
6276 /**
6277 * mem_cgroup_uncharge_skmem - uncharge socket memory
6278 * @memcg: memcg to uncharge
6279 * @nr_pages: number of pages to uncharge
6280 */
6281 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6282 {
6283 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6284 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6285 return;
6286 }
6287
6288 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6289
6290 refill_stock(memcg, nr_pages);
6291 }
6292
6293 static int __init cgroup_memory(char *s)
6294 {
6295 char *token;
6296
6297 while ((token = strsep(&s, ",")) != NULL) {
6298 if (!*token)
6299 continue;
6300 if (!strcmp(token, "nosocket"))
6301 cgroup_memory_nosocket = true;
6302 if (!strcmp(token, "nokmem"))
6303 cgroup_memory_nokmem = true;
6304 }
6305 return 0;
6306 }
6307 __setup("cgroup.memory=", cgroup_memory);
6308
6309 /*
6310 * subsys_initcall() for memory controller.
6311 *
6312 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6313 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6314 * basically everything that doesn't depend on a specific mem_cgroup structure
6315 * should be initialized from here.
6316 */
6317 static int __init mem_cgroup_init(void)
6318 {
6319 int cpu, node;
6320
6321 #ifdef CONFIG_MEMCG_KMEM
6322 /*
6323 * Kmem cache creation is mostly done with the slab_mutex held,
6324 * so use a workqueue with limited concurrency to avoid stalling
6325 * all worker threads in case lots of cgroups are created and
6326 * destroyed simultaneously.
6327 */
6328 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6329 BUG_ON(!memcg_kmem_cache_wq);
6330 #endif
6331
6332 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6333 memcg_hotplug_cpu_dead);
6334
6335 for_each_possible_cpu(cpu)
6336 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6337 drain_local_stock);
6338
6339 for_each_node(node) {
6340 struct mem_cgroup_tree_per_node *rtpn;
6341
6342 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6343 node_online(node) ? node : NUMA_NO_NODE);
6344
6345 rtpn->rb_root = RB_ROOT;
6346 rtpn->rb_rightmost = NULL;
6347 spin_lock_init(&rtpn->lock);
6348 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6349 }
6350
6351 return 0;
6352 }
6353 subsys_initcall(mem_cgroup_init);
6354
6355 #ifdef CONFIG_MEMCG_SWAP
6356 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6357 {
6358 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6359 /*
6360 * The root cgroup cannot be destroyed, so it's refcount must
6361 * always be >= 1.
6362 */
6363 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6364 VM_BUG_ON(1);
6365 break;
6366 }
6367 memcg = parent_mem_cgroup(memcg);
6368 if (!memcg)
6369 memcg = root_mem_cgroup;
6370 }
6371 return memcg;
6372 }
6373
6374 /**
6375 * mem_cgroup_swapout - transfer a memsw charge to swap
6376 * @page: page whose memsw charge to transfer
6377 * @entry: swap entry to move the charge to
6378 *
6379 * Transfer the memsw charge of @page to @entry.
6380 */
6381 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6382 {
6383 struct mem_cgroup *memcg, *swap_memcg;
6384 unsigned int nr_entries;
6385 unsigned short oldid;
6386
6387 VM_BUG_ON_PAGE(PageLRU(page), page);
6388 VM_BUG_ON_PAGE(page_count(page), page);
6389
6390 if (!do_memsw_account())
6391 return;
6392
6393 memcg = page->mem_cgroup;
6394
6395 /* Readahead page, never charged */
6396 if (!memcg)
6397 return;
6398
6399 /*
6400 * In case the memcg owning these pages has been offlined and doesn't
6401 * have an ID allocated to it anymore, charge the closest online
6402 * ancestor for the swap instead and transfer the memory+swap charge.
6403 */
6404 swap_memcg = mem_cgroup_id_get_online(memcg);
6405 nr_entries = hpage_nr_pages(page);
6406 /* Get references for the tail pages, too */
6407 if (nr_entries > 1)
6408 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6409 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6410 nr_entries);
6411 VM_BUG_ON_PAGE(oldid, page);
6412 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6413
6414 page->mem_cgroup = NULL;
6415
6416 if (!mem_cgroup_is_root(memcg))
6417 page_counter_uncharge(&memcg->memory, nr_entries);
6418
6419 if (memcg != swap_memcg) {
6420 if (!mem_cgroup_is_root(swap_memcg))
6421 page_counter_charge(&swap_memcg->memsw, nr_entries);
6422 page_counter_uncharge(&memcg->memsw, nr_entries);
6423 }
6424
6425 /*
6426 * Interrupts should be disabled here because the caller holds the
6427 * i_pages lock which is taken with interrupts-off. It is
6428 * important here to have the interrupts disabled because it is the
6429 * only synchronisation we have for updating the per-CPU variables.
6430 */
6431 VM_BUG_ON(!irqs_disabled());
6432 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6433 -nr_entries);
6434 memcg_check_events(memcg, page);
6435
6436 if (!mem_cgroup_is_root(memcg))
6437 css_put_many(&memcg->css, nr_entries);
6438 }
6439
6440 /**
6441 * mem_cgroup_try_charge_swap - try charging swap space for a page
6442 * @page: page being added to swap
6443 * @entry: swap entry to charge
6444 *
6445 * Try to charge @page's memcg for the swap space at @entry.
6446 *
6447 * Returns 0 on success, -ENOMEM on failure.
6448 */
6449 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6450 {
6451 unsigned int nr_pages = hpage_nr_pages(page);
6452 struct page_counter *counter;
6453 struct mem_cgroup *memcg;
6454 unsigned short oldid;
6455
6456 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6457 return 0;
6458
6459 memcg = page->mem_cgroup;
6460
6461 /* Readahead page, never charged */
6462 if (!memcg)
6463 return 0;
6464
6465 if (!entry.val) {
6466 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6467 return 0;
6468 }
6469
6470 memcg = mem_cgroup_id_get_online(memcg);
6471
6472 if (!mem_cgroup_is_root(memcg) &&
6473 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6474 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6475 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6476 mem_cgroup_id_put(memcg);
6477 return -ENOMEM;
6478 }
6479
6480 /* Get references for the tail pages, too */
6481 if (nr_pages > 1)
6482 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6483 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6484 VM_BUG_ON_PAGE(oldid, page);
6485 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6486
6487 return 0;
6488 }
6489
6490 /**
6491 * mem_cgroup_uncharge_swap - uncharge swap space
6492 * @entry: swap entry to uncharge
6493 * @nr_pages: the amount of swap space to uncharge
6494 */
6495 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6496 {
6497 struct mem_cgroup *memcg;
6498 unsigned short id;
6499
6500 if (!do_swap_account)
6501 return;
6502
6503 id = swap_cgroup_record(entry, 0, nr_pages);
6504 rcu_read_lock();
6505 memcg = mem_cgroup_from_id(id);
6506 if (memcg) {
6507 if (!mem_cgroup_is_root(memcg)) {
6508 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6509 page_counter_uncharge(&memcg->swap, nr_pages);
6510 else
6511 page_counter_uncharge(&memcg->memsw, nr_pages);
6512 }
6513 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6514 mem_cgroup_id_put_many(memcg, nr_pages);
6515 }
6516 rcu_read_unlock();
6517 }
6518
6519 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6520 {
6521 long nr_swap_pages = get_nr_swap_pages();
6522
6523 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6524 return nr_swap_pages;
6525 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6526 nr_swap_pages = min_t(long, nr_swap_pages,
6527 READ_ONCE(memcg->swap.max) -
6528 page_counter_read(&memcg->swap));
6529 return nr_swap_pages;
6530 }
6531
6532 bool mem_cgroup_swap_full(struct page *page)
6533 {
6534 struct mem_cgroup *memcg;
6535
6536 VM_BUG_ON_PAGE(!PageLocked(page), page);
6537
6538 if (vm_swap_full())
6539 return true;
6540 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6541 return false;
6542
6543 memcg = page->mem_cgroup;
6544 if (!memcg)
6545 return false;
6546
6547 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6548 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6549 return true;
6550
6551 return false;
6552 }
6553
6554 /* for remember boot option*/
6555 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6556 static int really_do_swap_account __initdata = 1;
6557 #else
6558 static int really_do_swap_account __initdata;
6559 #endif
6560
6561 static int __init enable_swap_account(char *s)
6562 {
6563 if (!strcmp(s, "1"))
6564 really_do_swap_account = 1;
6565 else if (!strcmp(s, "0"))
6566 really_do_swap_account = 0;
6567 return 1;
6568 }
6569 __setup("swapaccount=", enable_swap_account);
6570
6571 static u64 swap_current_read(struct cgroup_subsys_state *css,
6572 struct cftype *cft)
6573 {
6574 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6575
6576 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6577 }
6578
6579 static int swap_max_show(struct seq_file *m, void *v)
6580 {
6581 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6582 unsigned long max = READ_ONCE(memcg->swap.max);
6583
6584 if (max == PAGE_COUNTER_MAX)
6585 seq_puts(m, "max\n");
6586 else
6587 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6588
6589 return 0;
6590 }
6591
6592 static ssize_t swap_max_write(struct kernfs_open_file *of,
6593 char *buf, size_t nbytes, loff_t off)
6594 {
6595 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6596 unsigned long max;
6597 int err;
6598
6599 buf = strstrip(buf);
6600 err = page_counter_memparse(buf, "max", &max);
6601 if (err)
6602 return err;
6603
6604 xchg(&memcg->swap.max, max);
6605
6606 return nbytes;
6607 }
6608
6609 static int swap_events_show(struct seq_file *m, void *v)
6610 {
6611 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6612
6613 seq_printf(m, "max %lu\n",
6614 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6615 seq_printf(m, "fail %lu\n",
6616 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6617
6618 return 0;
6619 }
6620
6621 static struct cftype swap_files[] = {
6622 {
6623 .name = "swap.current",
6624 .flags = CFTYPE_NOT_ON_ROOT,
6625 .read_u64 = swap_current_read,
6626 },
6627 {
6628 .name = "swap.max",
6629 .flags = CFTYPE_NOT_ON_ROOT,
6630 .seq_show = swap_max_show,
6631 .write = swap_max_write,
6632 },
6633 {
6634 .name = "swap.events",
6635 .flags = CFTYPE_NOT_ON_ROOT,
6636 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6637 .seq_show = swap_events_show,
6638 },
6639 { } /* terminate */
6640 };
6641
6642 static struct cftype memsw_cgroup_files[] = {
6643 {
6644 .name = "memsw.usage_in_bytes",
6645 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6646 .read_u64 = mem_cgroup_read_u64,
6647 },
6648 {
6649 .name = "memsw.max_usage_in_bytes",
6650 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6651 .write = mem_cgroup_reset,
6652 .read_u64 = mem_cgroup_read_u64,
6653 },
6654 {
6655 .name = "memsw.limit_in_bytes",
6656 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6657 .write = mem_cgroup_write,
6658 .read_u64 = mem_cgroup_read_u64,
6659 },
6660 {
6661 .name = "memsw.failcnt",
6662 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6663 .write = mem_cgroup_reset,
6664 .read_u64 = mem_cgroup_read_u64,
6665 },
6666 { }, /* terminate */
6667 };
6668
6669 static int __init mem_cgroup_swap_init(void)
6670 {
6671 if (!mem_cgroup_disabled() && really_do_swap_account) {
6672 do_swap_account = 1;
6673 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6674 swap_files));
6675 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6676 memsw_cgroup_files));
6677 }
6678 return 0;
6679 }
6680 subsys_initcall(mem_cgroup_swap_init);
6681
6682 #endif /* CONFIG_MEMCG_SWAP */