]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
mm/mlock.c: use page_zone() instead of page_zone_id()
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 spinlock_t lock;
123 };
124
125 struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 };
128
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135 };
136
137 /*
138 * cgroup_event represents events which userspace want to receive.
139 */
140 struct mem_cgroup_event {
141 /*
142 * memcg which the event belongs to.
143 */
144 struct mem_cgroup *memcg;
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
158 int (*register_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd, const char *args);
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
165 void (*unregister_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd);
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
173 wait_queue_entry_t wait;
174 struct work_struct remove;
175 };
176
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179
180 /* Stuffs for move charges at task migration. */
181 /*
182 * Types of charges to be moved.
183 */
184 #define MOVE_ANON 0x1U
185 #define MOVE_FILE 0x2U
186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
187
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190 spinlock_t lock; /* for from, to */
191 struct mm_struct *mm;
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
194 unsigned long flags;
195 unsigned long precharge;
196 unsigned long moved_charge;
197 unsigned long moved_swap;
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200 } mc = {
201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203 };
204
205 /*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
211
212 enum charge_type {
213 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
214 MEM_CGROUP_CHARGE_TYPE_ANON,
215 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
216 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
217 NR_CHARGE_TYPE,
218 };
219
220 /* for encoding cft->private value on file */
221 enum res_type {
222 _MEM,
223 _MEMSWAP,
224 _OOM_TYPE,
225 _KMEM,
226 _TCP,
227 };
228
229 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
230 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
231 #define MEMFILE_ATTR(val) ((val) & 0xffff)
232 /* Used for OOM nofiier */
233 #define OOM_CONTROL (0)
234
235 /* Some nice accessors for the vmpressure. */
236 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
237 {
238 if (!memcg)
239 memcg = root_mem_cgroup;
240 return &memcg->vmpressure;
241 }
242
243 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
244 {
245 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
246 }
247
248 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
249 {
250 return (memcg == root_mem_cgroup);
251 }
252
253 #ifndef CONFIG_SLOB
254 /*
255 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
256 * The main reason for not using cgroup id for this:
257 * this works better in sparse environments, where we have a lot of memcgs,
258 * but only a few kmem-limited. Or also, if we have, for instance, 200
259 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
260 * 200 entry array for that.
261 *
262 * The current size of the caches array is stored in memcg_nr_cache_ids. It
263 * will double each time we have to increase it.
264 */
265 static DEFINE_IDA(memcg_cache_ida);
266 int memcg_nr_cache_ids;
267
268 /* Protects memcg_nr_cache_ids */
269 static DECLARE_RWSEM(memcg_cache_ids_sem);
270
271 void memcg_get_cache_ids(void)
272 {
273 down_read(&memcg_cache_ids_sem);
274 }
275
276 void memcg_put_cache_ids(void)
277 {
278 up_read(&memcg_cache_ids_sem);
279 }
280
281 /*
282 * MIN_SIZE is different than 1, because we would like to avoid going through
283 * the alloc/free process all the time. In a small machine, 4 kmem-limited
284 * cgroups is a reasonable guess. In the future, it could be a parameter or
285 * tunable, but that is strictly not necessary.
286 *
287 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
288 * this constant directly from cgroup, but it is understandable that this is
289 * better kept as an internal representation in cgroup.c. In any case, the
290 * cgrp_id space is not getting any smaller, and we don't have to necessarily
291 * increase ours as well if it increases.
292 */
293 #define MEMCG_CACHES_MIN_SIZE 4
294 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
295
296 /*
297 * A lot of the calls to the cache allocation functions are expected to be
298 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
299 * conditional to this static branch, we'll have to allow modules that does
300 * kmem_cache_alloc and the such to see this symbol as well
301 */
302 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
303 EXPORT_SYMBOL(memcg_kmem_enabled_key);
304
305 struct workqueue_struct *memcg_kmem_cache_wq;
306
307 #endif /* !CONFIG_SLOB */
308
309 /**
310 * mem_cgroup_css_from_page - css of the memcg associated with a page
311 * @page: page of interest
312 *
313 * If memcg is bound to the default hierarchy, css of the memcg associated
314 * with @page is returned. The returned css remains associated with @page
315 * until it is released.
316 *
317 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
318 * is returned.
319 */
320 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
321 {
322 struct mem_cgroup *memcg;
323
324 memcg = page->mem_cgroup;
325
326 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
327 memcg = root_mem_cgroup;
328
329 return &memcg->css;
330 }
331
332 /**
333 * page_cgroup_ino - return inode number of the memcg a page is charged to
334 * @page: the page
335 *
336 * Look up the closest online ancestor of the memory cgroup @page is charged to
337 * and return its inode number or 0 if @page is not charged to any cgroup. It
338 * is safe to call this function without holding a reference to @page.
339 *
340 * Note, this function is inherently racy, because there is nothing to prevent
341 * the cgroup inode from getting torn down and potentially reallocated a moment
342 * after page_cgroup_ino() returns, so it only should be used by callers that
343 * do not care (such as procfs interfaces).
344 */
345 ino_t page_cgroup_ino(struct page *page)
346 {
347 struct mem_cgroup *memcg;
348 unsigned long ino = 0;
349
350 rcu_read_lock();
351 memcg = READ_ONCE(page->mem_cgroup);
352 while (memcg && !(memcg->css.flags & CSS_ONLINE))
353 memcg = parent_mem_cgroup(memcg);
354 if (memcg)
355 ino = cgroup_ino(memcg->css.cgroup);
356 rcu_read_unlock();
357 return ino;
358 }
359
360 static struct mem_cgroup_per_node *
361 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
362 {
363 int nid = page_to_nid(page);
364
365 return memcg->nodeinfo[nid];
366 }
367
368 static struct mem_cgroup_tree_per_node *
369 soft_limit_tree_node(int nid)
370 {
371 return soft_limit_tree.rb_tree_per_node[nid];
372 }
373
374 static struct mem_cgroup_tree_per_node *
375 soft_limit_tree_from_page(struct page *page)
376 {
377 int nid = page_to_nid(page);
378
379 return soft_limit_tree.rb_tree_per_node[nid];
380 }
381
382 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
383 struct mem_cgroup_tree_per_node *mctz,
384 unsigned long new_usage_in_excess)
385 {
386 struct rb_node **p = &mctz->rb_root.rb_node;
387 struct rb_node *parent = NULL;
388 struct mem_cgroup_per_node *mz_node;
389
390 if (mz->on_tree)
391 return;
392
393 mz->usage_in_excess = new_usage_in_excess;
394 if (!mz->usage_in_excess)
395 return;
396 while (*p) {
397 parent = *p;
398 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
399 tree_node);
400 if (mz->usage_in_excess < mz_node->usage_in_excess)
401 p = &(*p)->rb_left;
402 /*
403 * We can't avoid mem cgroups that are over their soft
404 * limit by the same amount
405 */
406 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
407 p = &(*p)->rb_right;
408 }
409 rb_link_node(&mz->tree_node, parent, p);
410 rb_insert_color(&mz->tree_node, &mctz->rb_root);
411 mz->on_tree = true;
412 }
413
414 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
415 struct mem_cgroup_tree_per_node *mctz)
416 {
417 if (!mz->on_tree)
418 return;
419 rb_erase(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = false;
421 }
422
423 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425 {
426 unsigned long flags;
427
428 spin_lock_irqsave(&mctz->lock, flags);
429 __mem_cgroup_remove_exceeded(mz, mctz);
430 spin_unlock_irqrestore(&mctz->lock, flags);
431 }
432
433 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
434 {
435 unsigned long nr_pages = page_counter_read(&memcg->memory);
436 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
437 unsigned long excess = 0;
438
439 if (nr_pages > soft_limit)
440 excess = nr_pages - soft_limit;
441
442 return excess;
443 }
444
445 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
446 {
447 unsigned long excess;
448 struct mem_cgroup_per_node *mz;
449 struct mem_cgroup_tree_per_node *mctz;
450
451 mctz = soft_limit_tree_from_page(page);
452 if (!mctz)
453 return;
454 /*
455 * Necessary to update all ancestors when hierarchy is used.
456 * because their event counter is not touched.
457 */
458 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
459 mz = mem_cgroup_page_nodeinfo(memcg, page);
460 excess = soft_limit_excess(memcg);
461 /*
462 * We have to update the tree if mz is on RB-tree or
463 * mem is over its softlimit.
464 */
465 if (excess || mz->on_tree) {
466 unsigned long flags;
467
468 spin_lock_irqsave(&mctz->lock, flags);
469 /* if on-tree, remove it */
470 if (mz->on_tree)
471 __mem_cgroup_remove_exceeded(mz, mctz);
472 /*
473 * Insert again. mz->usage_in_excess will be updated.
474 * If excess is 0, no tree ops.
475 */
476 __mem_cgroup_insert_exceeded(mz, mctz, excess);
477 spin_unlock_irqrestore(&mctz->lock, flags);
478 }
479 }
480 }
481
482 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
483 {
484 struct mem_cgroup_tree_per_node *mctz;
485 struct mem_cgroup_per_node *mz;
486 int nid;
487
488 for_each_node(nid) {
489 mz = mem_cgroup_nodeinfo(memcg, nid);
490 mctz = soft_limit_tree_node(nid);
491 if (mctz)
492 mem_cgroup_remove_exceeded(mz, mctz);
493 }
494 }
495
496 static struct mem_cgroup_per_node *
497 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
498 {
499 struct rb_node *rightmost = NULL;
500 struct mem_cgroup_per_node *mz;
501
502 retry:
503 mz = NULL;
504 rightmost = rb_last(&mctz->rb_root);
505 if (!rightmost)
506 goto done; /* Nothing to reclaim from */
507
508 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
509 /*
510 * Remove the node now but someone else can add it back,
511 * we will to add it back at the end of reclaim to its correct
512 * position in the tree.
513 */
514 __mem_cgroup_remove_exceeded(mz, mctz);
515 if (!soft_limit_excess(mz->memcg) ||
516 !css_tryget_online(&mz->memcg->css))
517 goto retry;
518 done:
519 return mz;
520 }
521
522 static struct mem_cgroup_per_node *
523 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
524 {
525 struct mem_cgroup_per_node *mz;
526
527 spin_lock_irq(&mctz->lock);
528 mz = __mem_cgroup_largest_soft_limit_node(mctz);
529 spin_unlock_irq(&mctz->lock);
530 return mz;
531 }
532
533 /*
534 * Return page count for single (non recursive) @memcg.
535 *
536 * Implementation Note: reading percpu statistics for memcg.
537 *
538 * Both of vmstat[] and percpu_counter has threshold and do periodic
539 * synchronization to implement "quick" read. There are trade-off between
540 * reading cost and precision of value. Then, we may have a chance to implement
541 * a periodic synchronization of counter in memcg's counter.
542 *
543 * But this _read() function is used for user interface now. The user accounts
544 * memory usage by memory cgroup and he _always_ requires exact value because
545 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
546 * have to visit all online cpus and make sum. So, for now, unnecessary
547 * synchronization is not implemented. (just implemented for cpu hotplug)
548 *
549 * If there are kernel internal actions which can make use of some not-exact
550 * value, and reading all cpu value can be performance bottleneck in some
551 * common workload, threshold and synchronization as vmstat[] should be
552 * implemented.
553 *
554 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
555 */
556
557 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
558 int event)
559 {
560 unsigned long val = 0;
561 int cpu;
562
563 for_each_possible_cpu(cpu)
564 val += per_cpu(memcg->stat->events[event], cpu);
565 return val;
566 }
567
568 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
569 struct page *page,
570 bool compound, int nr_pages)
571 {
572 /*
573 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
574 * counted as CACHE even if it's on ANON LRU.
575 */
576 if (PageAnon(page))
577 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
578 else {
579 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
580 if (PageSwapBacked(page))
581 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
582 }
583
584 if (compound) {
585 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
586 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
587 }
588
589 /* pagein of a big page is an event. So, ignore page size */
590 if (nr_pages > 0)
591 __this_cpu_inc(memcg->stat->events[PGPGIN]);
592 else {
593 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
594 nr_pages = -nr_pages; /* for event */
595 }
596
597 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
598 }
599
600 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
601 int nid, unsigned int lru_mask)
602 {
603 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
604 unsigned long nr = 0;
605 enum lru_list lru;
606
607 VM_BUG_ON((unsigned)nid >= nr_node_ids);
608
609 for_each_lru(lru) {
610 if (!(BIT(lru) & lru_mask))
611 continue;
612 nr += mem_cgroup_get_lru_size(lruvec, lru);
613 }
614 return nr;
615 }
616
617 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
618 unsigned int lru_mask)
619 {
620 unsigned long nr = 0;
621 int nid;
622
623 for_each_node_state(nid, N_MEMORY)
624 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
625 return nr;
626 }
627
628 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
629 enum mem_cgroup_events_target target)
630 {
631 unsigned long val, next;
632
633 val = __this_cpu_read(memcg->stat->nr_page_events);
634 next = __this_cpu_read(memcg->stat->targets[target]);
635 /* from time_after() in jiffies.h */
636 if ((long)(next - val) < 0) {
637 switch (target) {
638 case MEM_CGROUP_TARGET_THRESH:
639 next = val + THRESHOLDS_EVENTS_TARGET;
640 break;
641 case MEM_CGROUP_TARGET_SOFTLIMIT:
642 next = val + SOFTLIMIT_EVENTS_TARGET;
643 break;
644 case MEM_CGROUP_TARGET_NUMAINFO:
645 next = val + NUMAINFO_EVENTS_TARGET;
646 break;
647 default:
648 break;
649 }
650 __this_cpu_write(memcg->stat->targets[target], next);
651 return true;
652 }
653 return false;
654 }
655
656 /*
657 * Check events in order.
658 *
659 */
660 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
661 {
662 /* threshold event is triggered in finer grain than soft limit */
663 if (unlikely(mem_cgroup_event_ratelimit(memcg,
664 MEM_CGROUP_TARGET_THRESH))) {
665 bool do_softlimit;
666 bool do_numainfo __maybe_unused;
667
668 do_softlimit = mem_cgroup_event_ratelimit(memcg,
669 MEM_CGROUP_TARGET_SOFTLIMIT);
670 #if MAX_NUMNODES > 1
671 do_numainfo = mem_cgroup_event_ratelimit(memcg,
672 MEM_CGROUP_TARGET_NUMAINFO);
673 #endif
674 mem_cgroup_threshold(memcg);
675 if (unlikely(do_softlimit))
676 mem_cgroup_update_tree(memcg, page);
677 #if MAX_NUMNODES > 1
678 if (unlikely(do_numainfo))
679 atomic_inc(&memcg->numainfo_events);
680 #endif
681 }
682 }
683
684 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
685 {
686 /*
687 * mm_update_next_owner() may clear mm->owner to NULL
688 * if it races with swapoff, page migration, etc.
689 * So this can be called with p == NULL.
690 */
691 if (unlikely(!p))
692 return NULL;
693
694 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
695 }
696 EXPORT_SYMBOL(mem_cgroup_from_task);
697
698 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
699 {
700 struct mem_cgroup *memcg = NULL;
701
702 rcu_read_lock();
703 do {
704 /*
705 * Page cache insertions can happen withou an
706 * actual mm context, e.g. during disk probing
707 * on boot, loopback IO, acct() writes etc.
708 */
709 if (unlikely(!mm))
710 memcg = root_mem_cgroup;
711 else {
712 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
713 if (unlikely(!memcg))
714 memcg = root_mem_cgroup;
715 }
716 } while (!css_tryget_online(&memcg->css));
717 rcu_read_unlock();
718 return memcg;
719 }
720
721 /**
722 * mem_cgroup_iter - iterate over memory cgroup hierarchy
723 * @root: hierarchy root
724 * @prev: previously returned memcg, NULL on first invocation
725 * @reclaim: cookie for shared reclaim walks, NULL for full walks
726 *
727 * Returns references to children of the hierarchy below @root, or
728 * @root itself, or %NULL after a full round-trip.
729 *
730 * Caller must pass the return value in @prev on subsequent
731 * invocations for reference counting, or use mem_cgroup_iter_break()
732 * to cancel a hierarchy walk before the round-trip is complete.
733 *
734 * Reclaimers can specify a zone and a priority level in @reclaim to
735 * divide up the memcgs in the hierarchy among all concurrent
736 * reclaimers operating on the same zone and priority.
737 */
738 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
739 struct mem_cgroup *prev,
740 struct mem_cgroup_reclaim_cookie *reclaim)
741 {
742 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
743 struct cgroup_subsys_state *css = NULL;
744 struct mem_cgroup *memcg = NULL;
745 struct mem_cgroup *pos = NULL;
746
747 if (mem_cgroup_disabled())
748 return NULL;
749
750 if (!root)
751 root = root_mem_cgroup;
752
753 if (prev && !reclaim)
754 pos = prev;
755
756 if (!root->use_hierarchy && root != root_mem_cgroup) {
757 if (prev)
758 goto out;
759 return root;
760 }
761
762 rcu_read_lock();
763
764 if (reclaim) {
765 struct mem_cgroup_per_node *mz;
766
767 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
768 iter = &mz->iter[reclaim->priority];
769
770 if (prev && reclaim->generation != iter->generation)
771 goto out_unlock;
772
773 while (1) {
774 pos = READ_ONCE(iter->position);
775 if (!pos || css_tryget(&pos->css))
776 break;
777 /*
778 * css reference reached zero, so iter->position will
779 * be cleared by ->css_released. However, we should not
780 * rely on this happening soon, because ->css_released
781 * is called from a work queue, and by busy-waiting we
782 * might block it. So we clear iter->position right
783 * away.
784 */
785 (void)cmpxchg(&iter->position, pos, NULL);
786 }
787 }
788
789 if (pos)
790 css = &pos->css;
791
792 for (;;) {
793 css = css_next_descendant_pre(css, &root->css);
794 if (!css) {
795 /*
796 * Reclaimers share the hierarchy walk, and a
797 * new one might jump in right at the end of
798 * the hierarchy - make sure they see at least
799 * one group and restart from the beginning.
800 */
801 if (!prev)
802 continue;
803 break;
804 }
805
806 /*
807 * Verify the css and acquire a reference. The root
808 * is provided by the caller, so we know it's alive
809 * and kicking, and don't take an extra reference.
810 */
811 memcg = mem_cgroup_from_css(css);
812
813 if (css == &root->css)
814 break;
815
816 if (css_tryget(css))
817 break;
818
819 memcg = NULL;
820 }
821
822 if (reclaim) {
823 /*
824 * The position could have already been updated by a competing
825 * thread, so check that the value hasn't changed since we read
826 * it to avoid reclaiming from the same cgroup twice.
827 */
828 (void)cmpxchg(&iter->position, pos, memcg);
829
830 if (pos)
831 css_put(&pos->css);
832
833 if (!memcg)
834 iter->generation++;
835 else if (!prev)
836 reclaim->generation = iter->generation;
837 }
838
839 out_unlock:
840 rcu_read_unlock();
841 out:
842 if (prev && prev != root)
843 css_put(&prev->css);
844
845 return memcg;
846 }
847
848 /**
849 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
850 * @root: hierarchy root
851 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
852 */
853 void mem_cgroup_iter_break(struct mem_cgroup *root,
854 struct mem_cgroup *prev)
855 {
856 if (!root)
857 root = root_mem_cgroup;
858 if (prev && prev != root)
859 css_put(&prev->css);
860 }
861
862 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
863 {
864 struct mem_cgroup *memcg = dead_memcg;
865 struct mem_cgroup_reclaim_iter *iter;
866 struct mem_cgroup_per_node *mz;
867 int nid;
868 int i;
869
870 while ((memcg = parent_mem_cgroup(memcg))) {
871 for_each_node(nid) {
872 mz = mem_cgroup_nodeinfo(memcg, nid);
873 for (i = 0; i <= DEF_PRIORITY; i++) {
874 iter = &mz->iter[i];
875 cmpxchg(&iter->position,
876 dead_memcg, NULL);
877 }
878 }
879 }
880 }
881
882 /*
883 * Iteration constructs for visiting all cgroups (under a tree). If
884 * loops are exited prematurely (break), mem_cgroup_iter_break() must
885 * be used for reference counting.
886 */
887 #define for_each_mem_cgroup_tree(iter, root) \
888 for (iter = mem_cgroup_iter(root, NULL, NULL); \
889 iter != NULL; \
890 iter = mem_cgroup_iter(root, iter, NULL))
891
892 #define for_each_mem_cgroup(iter) \
893 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
894 iter != NULL; \
895 iter = mem_cgroup_iter(NULL, iter, NULL))
896
897 /**
898 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
899 * @memcg: hierarchy root
900 * @fn: function to call for each task
901 * @arg: argument passed to @fn
902 *
903 * This function iterates over tasks attached to @memcg or to any of its
904 * descendants and calls @fn for each task. If @fn returns a non-zero
905 * value, the function breaks the iteration loop and returns the value.
906 * Otherwise, it will iterate over all tasks and return 0.
907 *
908 * This function must not be called for the root memory cgroup.
909 */
910 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
911 int (*fn)(struct task_struct *, void *), void *arg)
912 {
913 struct mem_cgroup *iter;
914 int ret = 0;
915
916 BUG_ON(memcg == root_mem_cgroup);
917
918 for_each_mem_cgroup_tree(iter, memcg) {
919 struct css_task_iter it;
920 struct task_struct *task;
921
922 css_task_iter_start(&iter->css, 0, &it);
923 while (!ret && (task = css_task_iter_next(&it)))
924 ret = fn(task, arg);
925 css_task_iter_end(&it);
926 if (ret) {
927 mem_cgroup_iter_break(memcg, iter);
928 break;
929 }
930 }
931 return ret;
932 }
933
934 /**
935 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
936 * @page: the page
937 * @zone: zone of the page
938 *
939 * This function is only safe when following the LRU page isolation
940 * and putback protocol: the LRU lock must be held, and the page must
941 * either be PageLRU() or the caller must have isolated/allocated it.
942 */
943 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
944 {
945 struct mem_cgroup_per_node *mz;
946 struct mem_cgroup *memcg;
947 struct lruvec *lruvec;
948
949 if (mem_cgroup_disabled()) {
950 lruvec = &pgdat->lruvec;
951 goto out;
952 }
953
954 memcg = page->mem_cgroup;
955 /*
956 * Swapcache readahead pages are added to the LRU - and
957 * possibly migrated - before they are charged.
958 */
959 if (!memcg)
960 memcg = root_mem_cgroup;
961
962 mz = mem_cgroup_page_nodeinfo(memcg, page);
963 lruvec = &mz->lruvec;
964 out:
965 /*
966 * Since a node can be onlined after the mem_cgroup was created,
967 * we have to be prepared to initialize lruvec->zone here;
968 * and if offlined then reonlined, we need to reinitialize it.
969 */
970 if (unlikely(lruvec->pgdat != pgdat))
971 lruvec->pgdat = pgdat;
972 return lruvec;
973 }
974
975 /**
976 * mem_cgroup_update_lru_size - account for adding or removing an lru page
977 * @lruvec: mem_cgroup per zone lru vector
978 * @lru: index of lru list the page is sitting on
979 * @zid: zone id of the accounted pages
980 * @nr_pages: positive when adding or negative when removing
981 *
982 * This function must be called under lru_lock, just before a page is added
983 * to or just after a page is removed from an lru list (that ordering being
984 * so as to allow it to check that lru_size 0 is consistent with list_empty).
985 */
986 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
987 int zid, int nr_pages)
988 {
989 struct mem_cgroup_per_node *mz;
990 unsigned long *lru_size;
991 long size;
992
993 if (mem_cgroup_disabled())
994 return;
995
996 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
997 lru_size = &mz->lru_zone_size[zid][lru];
998
999 if (nr_pages < 0)
1000 *lru_size += nr_pages;
1001
1002 size = *lru_size;
1003 if (WARN_ONCE(size < 0,
1004 "%s(%p, %d, %d): lru_size %ld\n",
1005 __func__, lruvec, lru, nr_pages, size)) {
1006 VM_BUG_ON(1);
1007 *lru_size = 0;
1008 }
1009
1010 if (nr_pages > 0)
1011 *lru_size += nr_pages;
1012 }
1013
1014 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1015 {
1016 struct mem_cgroup *task_memcg;
1017 struct task_struct *p;
1018 bool ret;
1019
1020 p = find_lock_task_mm(task);
1021 if (p) {
1022 task_memcg = get_mem_cgroup_from_mm(p->mm);
1023 task_unlock(p);
1024 } else {
1025 /*
1026 * All threads may have already detached their mm's, but the oom
1027 * killer still needs to detect if they have already been oom
1028 * killed to prevent needlessly killing additional tasks.
1029 */
1030 rcu_read_lock();
1031 task_memcg = mem_cgroup_from_task(task);
1032 css_get(&task_memcg->css);
1033 rcu_read_unlock();
1034 }
1035 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1036 css_put(&task_memcg->css);
1037 return ret;
1038 }
1039
1040 /**
1041 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1042 * @memcg: the memory cgroup
1043 *
1044 * Returns the maximum amount of memory @mem can be charged with, in
1045 * pages.
1046 */
1047 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1048 {
1049 unsigned long margin = 0;
1050 unsigned long count;
1051 unsigned long limit;
1052
1053 count = page_counter_read(&memcg->memory);
1054 limit = READ_ONCE(memcg->memory.limit);
1055 if (count < limit)
1056 margin = limit - count;
1057
1058 if (do_memsw_account()) {
1059 count = page_counter_read(&memcg->memsw);
1060 limit = READ_ONCE(memcg->memsw.limit);
1061 if (count <= limit)
1062 margin = min(margin, limit - count);
1063 else
1064 margin = 0;
1065 }
1066
1067 return margin;
1068 }
1069
1070 /*
1071 * A routine for checking "mem" is under move_account() or not.
1072 *
1073 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1074 * moving cgroups. This is for waiting at high-memory pressure
1075 * caused by "move".
1076 */
1077 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1078 {
1079 struct mem_cgroup *from;
1080 struct mem_cgroup *to;
1081 bool ret = false;
1082 /*
1083 * Unlike task_move routines, we access mc.to, mc.from not under
1084 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1085 */
1086 spin_lock(&mc.lock);
1087 from = mc.from;
1088 to = mc.to;
1089 if (!from)
1090 goto unlock;
1091
1092 ret = mem_cgroup_is_descendant(from, memcg) ||
1093 mem_cgroup_is_descendant(to, memcg);
1094 unlock:
1095 spin_unlock(&mc.lock);
1096 return ret;
1097 }
1098
1099 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1100 {
1101 if (mc.moving_task && current != mc.moving_task) {
1102 if (mem_cgroup_under_move(memcg)) {
1103 DEFINE_WAIT(wait);
1104 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1105 /* moving charge context might have finished. */
1106 if (mc.moving_task)
1107 schedule();
1108 finish_wait(&mc.waitq, &wait);
1109 return true;
1110 }
1111 }
1112 return false;
1113 }
1114
1115 unsigned int memcg1_stats[] = {
1116 MEMCG_CACHE,
1117 MEMCG_RSS,
1118 MEMCG_RSS_HUGE,
1119 NR_SHMEM,
1120 NR_FILE_MAPPED,
1121 NR_FILE_DIRTY,
1122 NR_WRITEBACK,
1123 MEMCG_SWAP,
1124 };
1125
1126 static const char *const memcg1_stat_names[] = {
1127 "cache",
1128 "rss",
1129 "rss_huge",
1130 "shmem",
1131 "mapped_file",
1132 "dirty",
1133 "writeback",
1134 "swap",
1135 };
1136
1137 #define K(x) ((x) << (PAGE_SHIFT-10))
1138 /**
1139 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1140 * @memcg: The memory cgroup that went over limit
1141 * @p: Task that is going to be killed
1142 *
1143 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1144 * enabled
1145 */
1146 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1147 {
1148 struct mem_cgroup *iter;
1149 unsigned int i;
1150
1151 rcu_read_lock();
1152
1153 if (p) {
1154 pr_info("Task in ");
1155 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1156 pr_cont(" killed as a result of limit of ");
1157 } else {
1158 pr_info("Memory limit reached of cgroup ");
1159 }
1160
1161 pr_cont_cgroup_path(memcg->css.cgroup);
1162 pr_cont("\n");
1163
1164 rcu_read_unlock();
1165
1166 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1167 K((u64)page_counter_read(&memcg->memory)),
1168 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1169 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1170 K((u64)page_counter_read(&memcg->memsw)),
1171 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1172 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->kmem)),
1174 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1175
1176 for_each_mem_cgroup_tree(iter, memcg) {
1177 pr_info("Memory cgroup stats for ");
1178 pr_cont_cgroup_path(iter->css.cgroup);
1179 pr_cont(":");
1180
1181 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1182 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1183 continue;
1184 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1185 K(memcg_page_state(iter, memcg1_stats[i])));
1186 }
1187
1188 for (i = 0; i < NR_LRU_LISTS; i++)
1189 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1190 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1191
1192 pr_cont("\n");
1193 }
1194 }
1195
1196 /*
1197 * This function returns the number of memcg under hierarchy tree. Returns
1198 * 1(self count) if no children.
1199 */
1200 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1201 {
1202 int num = 0;
1203 struct mem_cgroup *iter;
1204
1205 for_each_mem_cgroup_tree(iter, memcg)
1206 num++;
1207 return num;
1208 }
1209
1210 /*
1211 * Return the memory (and swap, if configured) limit for a memcg.
1212 */
1213 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1214 {
1215 unsigned long limit;
1216
1217 limit = memcg->memory.limit;
1218 if (mem_cgroup_swappiness(memcg)) {
1219 unsigned long memsw_limit;
1220 unsigned long swap_limit;
1221
1222 memsw_limit = memcg->memsw.limit;
1223 swap_limit = memcg->swap.limit;
1224 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1225 limit = min(limit + swap_limit, memsw_limit);
1226 }
1227 return limit;
1228 }
1229
1230 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1231 int order)
1232 {
1233 struct oom_control oc = {
1234 .zonelist = NULL,
1235 .nodemask = NULL,
1236 .memcg = memcg,
1237 .gfp_mask = gfp_mask,
1238 .order = order,
1239 };
1240 bool ret;
1241
1242 mutex_lock(&oom_lock);
1243 ret = out_of_memory(&oc);
1244 mutex_unlock(&oom_lock);
1245 return ret;
1246 }
1247
1248 #if MAX_NUMNODES > 1
1249
1250 /**
1251 * test_mem_cgroup_node_reclaimable
1252 * @memcg: the target memcg
1253 * @nid: the node ID to be checked.
1254 * @noswap : specify true here if the user wants flle only information.
1255 *
1256 * This function returns whether the specified memcg contains any
1257 * reclaimable pages on a node. Returns true if there are any reclaimable
1258 * pages in the node.
1259 */
1260 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1261 int nid, bool noswap)
1262 {
1263 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1264 return true;
1265 if (noswap || !total_swap_pages)
1266 return false;
1267 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1268 return true;
1269 return false;
1270
1271 }
1272
1273 /*
1274 * Always updating the nodemask is not very good - even if we have an empty
1275 * list or the wrong list here, we can start from some node and traverse all
1276 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1277 *
1278 */
1279 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1280 {
1281 int nid;
1282 /*
1283 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1284 * pagein/pageout changes since the last update.
1285 */
1286 if (!atomic_read(&memcg->numainfo_events))
1287 return;
1288 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1289 return;
1290
1291 /* make a nodemask where this memcg uses memory from */
1292 memcg->scan_nodes = node_states[N_MEMORY];
1293
1294 for_each_node_mask(nid, node_states[N_MEMORY]) {
1295
1296 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1297 node_clear(nid, memcg->scan_nodes);
1298 }
1299
1300 atomic_set(&memcg->numainfo_events, 0);
1301 atomic_set(&memcg->numainfo_updating, 0);
1302 }
1303
1304 /*
1305 * Selecting a node where we start reclaim from. Because what we need is just
1306 * reducing usage counter, start from anywhere is O,K. Considering
1307 * memory reclaim from current node, there are pros. and cons.
1308 *
1309 * Freeing memory from current node means freeing memory from a node which
1310 * we'll use or we've used. So, it may make LRU bad. And if several threads
1311 * hit limits, it will see a contention on a node. But freeing from remote
1312 * node means more costs for memory reclaim because of memory latency.
1313 *
1314 * Now, we use round-robin. Better algorithm is welcomed.
1315 */
1316 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1317 {
1318 int node;
1319
1320 mem_cgroup_may_update_nodemask(memcg);
1321 node = memcg->last_scanned_node;
1322
1323 node = next_node_in(node, memcg->scan_nodes);
1324 /*
1325 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1326 * last time it really checked all the LRUs due to rate limiting.
1327 * Fallback to the current node in that case for simplicity.
1328 */
1329 if (unlikely(node == MAX_NUMNODES))
1330 node = numa_node_id();
1331
1332 memcg->last_scanned_node = node;
1333 return node;
1334 }
1335 #else
1336 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1337 {
1338 return 0;
1339 }
1340 #endif
1341
1342 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1343 pg_data_t *pgdat,
1344 gfp_t gfp_mask,
1345 unsigned long *total_scanned)
1346 {
1347 struct mem_cgroup *victim = NULL;
1348 int total = 0;
1349 int loop = 0;
1350 unsigned long excess;
1351 unsigned long nr_scanned;
1352 struct mem_cgroup_reclaim_cookie reclaim = {
1353 .pgdat = pgdat,
1354 .priority = 0,
1355 };
1356
1357 excess = soft_limit_excess(root_memcg);
1358
1359 while (1) {
1360 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1361 if (!victim) {
1362 loop++;
1363 if (loop >= 2) {
1364 /*
1365 * If we have not been able to reclaim
1366 * anything, it might because there are
1367 * no reclaimable pages under this hierarchy
1368 */
1369 if (!total)
1370 break;
1371 /*
1372 * We want to do more targeted reclaim.
1373 * excess >> 2 is not to excessive so as to
1374 * reclaim too much, nor too less that we keep
1375 * coming back to reclaim from this cgroup
1376 */
1377 if (total >= (excess >> 2) ||
1378 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1379 break;
1380 }
1381 continue;
1382 }
1383 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1384 pgdat, &nr_scanned);
1385 *total_scanned += nr_scanned;
1386 if (!soft_limit_excess(root_memcg))
1387 break;
1388 }
1389 mem_cgroup_iter_break(root_memcg, victim);
1390 return total;
1391 }
1392
1393 #ifdef CONFIG_LOCKDEP
1394 static struct lockdep_map memcg_oom_lock_dep_map = {
1395 .name = "memcg_oom_lock",
1396 };
1397 #endif
1398
1399 static DEFINE_SPINLOCK(memcg_oom_lock);
1400
1401 /*
1402 * Check OOM-Killer is already running under our hierarchy.
1403 * If someone is running, return false.
1404 */
1405 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1406 {
1407 struct mem_cgroup *iter, *failed = NULL;
1408
1409 spin_lock(&memcg_oom_lock);
1410
1411 for_each_mem_cgroup_tree(iter, memcg) {
1412 if (iter->oom_lock) {
1413 /*
1414 * this subtree of our hierarchy is already locked
1415 * so we cannot give a lock.
1416 */
1417 failed = iter;
1418 mem_cgroup_iter_break(memcg, iter);
1419 break;
1420 } else
1421 iter->oom_lock = true;
1422 }
1423
1424 if (failed) {
1425 /*
1426 * OK, we failed to lock the whole subtree so we have
1427 * to clean up what we set up to the failing subtree
1428 */
1429 for_each_mem_cgroup_tree(iter, memcg) {
1430 if (iter == failed) {
1431 mem_cgroup_iter_break(memcg, iter);
1432 break;
1433 }
1434 iter->oom_lock = false;
1435 }
1436 } else
1437 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1438
1439 spin_unlock(&memcg_oom_lock);
1440
1441 return !failed;
1442 }
1443
1444 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1445 {
1446 struct mem_cgroup *iter;
1447
1448 spin_lock(&memcg_oom_lock);
1449 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1450 for_each_mem_cgroup_tree(iter, memcg)
1451 iter->oom_lock = false;
1452 spin_unlock(&memcg_oom_lock);
1453 }
1454
1455 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1456 {
1457 struct mem_cgroup *iter;
1458
1459 spin_lock(&memcg_oom_lock);
1460 for_each_mem_cgroup_tree(iter, memcg)
1461 iter->under_oom++;
1462 spin_unlock(&memcg_oom_lock);
1463 }
1464
1465 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1466 {
1467 struct mem_cgroup *iter;
1468
1469 /*
1470 * When a new child is created while the hierarchy is under oom,
1471 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1472 */
1473 spin_lock(&memcg_oom_lock);
1474 for_each_mem_cgroup_tree(iter, memcg)
1475 if (iter->under_oom > 0)
1476 iter->under_oom--;
1477 spin_unlock(&memcg_oom_lock);
1478 }
1479
1480 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1481
1482 struct oom_wait_info {
1483 struct mem_cgroup *memcg;
1484 wait_queue_entry_t wait;
1485 };
1486
1487 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1488 unsigned mode, int sync, void *arg)
1489 {
1490 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1491 struct mem_cgroup *oom_wait_memcg;
1492 struct oom_wait_info *oom_wait_info;
1493
1494 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1495 oom_wait_memcg = oom_wait_info->memcg;
1496
1497 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1498 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1499 return 0;
1500 return autoremove_wake_function(wait, mode, sync, arg);
1501 }
1502
1503 static void memcg_oom_recover(struct mem_cgroup *memcg)
1504 {
1505 /*
1506 * For the following lockless ->under_oom test, the only required
1507 * guarantee is that it must see the state asserted by an OOM when
1508 * this function is called as a result of userland actions
1509 * triggered by the notification of the OOM. This is trivially
1510 * achieved by invoking mem_cgroup_mark_under_oom() before
1511 * triggering notification.
1512 */
1513 if (memcg && memcg->under_oom)
1514 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1515 }
1516
1517 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1518 {
1519 if (!current->memcg_may_oom)
1520 return;
1521 /*
1522 * We are in the middle of the charge context here, so we
1523 * don't want to block when potentially sitting on a callstack
1524 * that holds all kinds of filesystem and mm locks.
1525 *
1526 * Also, the caller may handle a failed allocation gracefully
1527 * (like optional page cache readahead) and so an OOM killer
1528 * invocation might not even be necessary.
1529 *
1530 * That's why we don't do anything here except remember the
1531 * OOM context and then deal with it at the end of the page
1532 * fault when the stack is unwound, the locks are released,
1533 * and when we know whether the fault was overall successful.
1534 */
1535 css_get(&memcg->css);
1536 current->memcg_in_oom = memcg;
1537 current->memcg_oom_gfp_mask = mask;
1538 current->memcg_oom_order = order;
1539 }
1540
1541 /**
1542 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1543 * @handle: actually kill/wait or just clean up the OOM state
1544 *
1545 * This has to be called at the end of a page fault if the memcg OOM
1546 * handler was enabled.
1547 *
1548 * Memcg supports userspace OOM handling where failed allocations must
1549 * sleep on a waitqueue until the userspace task resolves the
1550 * situation. Sleeping directly in the charge context with all kinds
1551 * of locks held is not a good idea, instead we remember an OOM state
1552 * in the task and mem_cgroup_oom_synchronize() has to be called at
1553 * the end of the page fault to complete the OOM handling.
1554 *
1555 * Returns %true if an ongoing memcg OOM situation was detected and
1556 * completed, %false otherwise.
1557 */
1558 bool mem_cgroup_oom_synchronize(bool handle)
1559 {
1560 struct mem_cgroup *memcg = current->memcg_in_oom;
1561 struct oom_wait_info owait;
1562 bool locked;
1563
1564 /* OOM is global, do not handle */
1565 if (!memcg)
1566 return false;
1567
1568 if (!handle)
1569 goto cleanup;
1570
1571 owait.memcg = memcg;
1572 owait.wait.flags = 0;
1573 owait.wait.func = memcg_oom_wake_function;
1574 owait.wait.private = current;
1575 INIT_LIST_HEAD(&owait.wait.entry);
1576
1577 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1578 mem_cgroup_mark_under_oom(memcg);
1579
1580 locked = mem_cgroup_oom_trylock(memcg);
1581
1582 if (locked)
1583 mem_cgroup_oom_notify(memcg);
1584
1585 if (locked && !memcg->oom_kill_disable) {
1586 mem_cgroup_unmark_under_oom(memcg);
1587 finish_wait(&memcg_oom_waitq, &owait.wait);
1588 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1589 current->memcg_oom_order);
1590 } else {
1591 schedule();
1592 mem_cgroup_unmark_under_oom(memcg);
1593 finish_wait(&memcg_oom_waitq, &owait.wait);
1594 }
1595
1596 if (locked) {
1597 mem_cgroup_oom_unlock(memcg);
1598 /*
1599 * There is no guarantee that an OOM-lock contender
1600 * sees the wakeups triggered by the OOM kill
1601 * uncharges. Wake any sleepers explicitely.
1602 */
1603 memcg_oom_recover(memcg);
1604 }
1605 cleanup:
1606 current->memcg_in_oom = NULL;
1607 css_put(&memcg->css);
1608 return true;
1609 }
1610
1611 /**
1612 * lock_page_memcg - lock a page->mem_cgroup binding
1613 * @page: the page
1614 *
1615 * This function protects unlocked LRU pages from being moved to
1616 * another cgroup.
1617 *
1618 * It ensures lifetime of the returned memcg. Caller is responsible
1619 * for the lifetime of the page; __unlock_page_memcg() is available
1620 * when @page might get freed inside the locked section.
1621 */
1622 struct mem_cgroup *lock_page_memcg(struct page *page)
1623 {
1624 struct mem_cgroup *memcg;
1625 unsigned long flags;
1626
1627 /*
1628 * The RCU lock is held throughout the transaction. The fast
1629 * path can get away without acquiring the memcg->move_lock
1630 * because page moving starts with an RCU grace period.
1631 *
1632 * The RCU lock also protects the memcg from being freed when
1633 * the page state that is going to change is the only thing
1634 * preventing the page itself from being freed. E.g. writeback
1635 * doesn't hold a page reference and relies on PG_writeback to
1636 * keep off truncation, migration and so forth.
1637 */
1638 rcu_read_lock();
1639
1640 if (mem_cgroup_disabled())
1641 return NULL;
1642 again:
1643 memcg = page->mem_cgroup;
1644 if (unlikely(!memcg))
1645 return NULL;
1646
1647 if (atomic_read(&memcg->moving_account) <= 0)
1648 return memcg;
1649
1650 spin_lock_irqsave(&memcg->move_lock, flags);
1651 if (memcg != page->mem_cgroup) {
1652 spin_unlock_irqrestore(&memcg->move_lock, flags);
1653 goto again;
1654 }
1655
1656 /*
1657 * When charge migration first begins, we can have locked and
1658 * unlocked page stat updates happening concurrently. Track
1659 * the task who has the lock for unlock_page_memcg().
1660 */
1661 memcg->move_lock_task = current;
1662 memcg->move_lock_flags = flags;
1663
1664 return memcg;
1665 }
1666 EXPORT_SYMBOL(lock_page_memcg);
1667
1668 /**
1669 * __unlock_page_memcg - unlock and unpin a memcg
1670 * @memcg: the memcg
1671 *
1672 * Unlock and unpin a memcg returned by lock_page_memcg().
1673 */
1674 void __unlock_page_memcg(struct mem_cgroup *memcg)
1675 {
1676 if (memcg && memcg->move_lock_task == current) {
1677 unsigned long flags = memcg->move_lock_flags;
1678
1679 memcg->move_lock_task = NULL;
1680 memcg->move_lock_flags = 0;
1681
1682 spin_unlock_irqrestore(&memcg->move_lock, flags);
1683 }
1684
1685 rcu_read_unlock();
1686 }
1687
1688 /**
1689 * unlock_page_memcg - unlock a page->mem_cgroup binding
1690 * @page: the page
1691 */
1692 void unlock_page_memcg(struct page *page)
1693 {
1694 __unlock_page_memcg(page->mem_cgroup);
1695 }
1696 EXPORT_SYMBOL(unlock_page_memcg);
1697
1698 /*
1699 * size of first charge trial. "32" comes from vmscan.c's magic value.
1700 * TODO: maybe necessary to use big numbers in big irons.
1701 */
1702 #define CHARGE_BATCH 32U
1703 struct memcg_stock_pcp {
1704 struct mem_cgroup *cached; /* this never be root cgroup */
1705 unsigned int nr_pages;
1706 struct work_struct work;
1707 unsigned long flags;
1708 #define FLUSHING_CACHED_CHARGE 0
1709 };
1710 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1711 static DEFINE_MUTEX(percpu_charge_mutex);
1712
1713 /**
1714 * consume_stock: Try to consume stocked charge on this cpu.
1715 * @memcg: memcg to consume from.
1716 * @nr_pages: how many pages to charge.
1717 *
1718 * The charges will only happen if @memcg matches the current cpu's memcg
1719 * stock, and at least @nr_pages are available in that stock. Failure to
1720 * service an allocation will refill the stock.
1721 *
1722 * returns true if successful, false otherwise.
1723 */
1724 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1725 {
1726 struct memcg_stock_pcp *stock;
1727 unsigned long flags;
1728 bool ret = false;
1729
1730 if (nr_pages > CHARGE_BATCH)
1731 return ret;
1732
1733 local_irq_save(flags);
1734
1735 stock = this_cpu_ptr(&memcg_stock);
1736 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1737 stock->nr_pages -= nr_pages;
1738 ret = true;
1739 }
1740
1741 local_irq_restore(flags);
1742
1743 return ret;
1744 }
1745
1746 /*
1747 * Returns stocks cached in percpu and reset cached information.
1748 */
1749 static void drain_stock(struct memcg_stock_pcp *stock)
1750 {
1751 struct mem_cgroup *old = stock->cached;
1752
1753 if (stock->nr_pages) {
1754 page_counter_uncharge(&old->memory, stock->nr_pages);
1755 if (do_memsw_account())
1756 page_counter_uncharge(&old->memsw, stock->nr_pages);
1757 css_put_many(&old->css, stock->nr_pages);
1758 stock->nr_pages = 0;
1759 }
1760 stock->cached = NULL;
1761 }
1762
1763 static void drain_local_stock(struct work_struct *dummy)
1764 {
1765 struct memcg_stock_pcp *stock;
1766 unsigned long flags;
1767
1768 local_irq_save(flags);
1769
1770 stock = this_cpu_ptr(&memcg_stock);
1771 drain_stock(stock);
1772 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1773
1774 local_irq_restore(flags);
1775 }
1776
1777 /*
1778 * Cache charges(val) to local per_cpu area.
1779 * This will be consumed by consume_stock() function, later.
1780 */
1781 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1782 {
1783 struct memcg_stock_pcp *stock;
1784 unsigned long flags;
1785
1786 local_irq_save(flags);
1787
1788 stock = this_cpu_ptr(&memcg_stock);
1789 if (stock->cached != memcg) { /* reset if necessary */
1790 drain_stock(stock);
1791 stock->cached = memcg;
1792 }
1793 stock->nr_pages += nr_pages;
1794
1795 local_irq_restore(flags);
1796 }
1797
1798 /*
1799 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1800 * of the hierarchy under it.
1801 */
1802 static void drain_all_stock(struct mem_cgroup *root_memcg)
1803 {
1804 int cpu, curcpu;
1805
1806 /* If someone's already draining, avoid adding running more workers. */
1807 if (!mutex_trylock(&percpu_charge_mutex))
1808 return;
1809 /* Notify other cpus that system-wide "drain" is running */
1810 get_online_cpus();
1811 curcpu = get_cpu();
1812 for_each_online_cpu(cpu) {
1813 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1814 struct mem_cgroup *memcg;
1815
1816 memcg = stock->cached;
1817 if (!memcg || !stock->nr_pages)
1818 continue;
1819 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1820 continue;
1821 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1822 if (cpu == curcpu)
1823 drain_local_stock(&stock->work);
1824 else
1825 schedule_work_on(cpu, &stock->work);
1826 }
1827 }
1828 put_cpu();
1829 put_online_cpus();
1830 mutex_unlock(&percpu_charge_mutex);
1831 }
1832
1833 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1834 {
1835 struct memcg_stock_pcp *stock;
1836
1837 stock = &per_cpu(memcg_stock, cpu);
1838 drain_stock(stock);
1839 return 0;
1840 }
1841
1842 static void reclaim_high(struct mem_cgroup *memcg,
1843 unsigned int nr_pages,
1844 gfp_t gfp_mask)
1845 {
1846 do {
1847 if (page_counter_read(&memcg->memory) <= memcg->high)
1848 continue;
1849 mem_cgroup_event(memcg, MEMCG_HIGH);
1850 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1851 } while ((memcg = parent_mem_cgroup(memcg)));
1852 }
1853
1854 static void high_work_func(struct work_struct *work)
1855 {
1856 struct mem_cgroup *memcg;
1857
1858 memcg = container_of(work, struct mem_cgroup, high_work);
1859 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1860 }
1861
1862 /*
1863 * Scheduled by try_charge() to be executed from the userland return path
1864 * and reclaims memory over the high limit.
1865 */
1866 void mem_cgroup_handle_over_high(void)
1867 {
1868 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1869 struct mem_cgroup *memcg;
1870
1871 if (likely(!nr_pages))
1872 return;
1873
1874 memcg = get_mem_cgroup_from_mm(current->mm);
1875 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1876 css_put(&memcg->css);
1877 current->memcg_nr_pages_over_high = 0;
1878 }
1879
1880 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1881 unsigned int nr_pages)
1882 {
1883 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1884 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1885 struct mem_cgroup *mem_over_limit;
1886 struct page_counter *counter;
1887 unsigned long nr_reclaimed;
1888 bool may_swap = true;
1889 bool drained = false;
1890
1891 if (mem_cgroup_is_root(memcg))
1892 return 0;
1893 retry:
1894 if (consume_stock(memcg, nr_pages))
1895 return 0;
1896
1897 if (!do_memsw_account() ||
1898 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1899 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1900 goto done_restock;
1901 if (do_memsw_account())
1902 page_counter_uncharge(&memcg->memsw, batch);
1903 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1904 } else {
1905 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1906 may_swap = false;
1907 }
1908
1909 if (batch > nr_pages) {
1910 batch = nr_pages;
1911 goto retry;
1912 }
1913
1914 /*
1915 * Unlike in global OOM situations, memcg is not in a physical
1916 * memory shortage. Allow dying and OOM-killed tasks to
1917 * bypass the last charges so that they can exit quickly and
1918 * free their memory.
1919 */
1920 if (unlikely(tsk_is_oom_victim(current) ||
1921 fatal_signal_pending(current) ||
1922 current->flags & PF_EXITING))
1923 goto force;
1924
1925 /*
1926 * Prevent unbounded recursion when reclaim operations need to
1927 * allocate memory. This might exceed the limits temporarily,
1928 * but we prefer facilitating memory reclaim and getting back
1929 * under the limit over triggering OOM kills in these cases.
1930 */
1931 if (unlikely(current->flags & PF_MEMALLOC))
1932 goto force;
1933
1934 if (unlikely(task_in_memcg_oom(current)))
1935 goto nomem;
1936
1937 if (!gfpflags_allow_blocking(gfp_mask))
1938 goto nomem;
1939
1940 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1941
1942 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1943 gfp_mask, may_swap);
1944
1945 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1946 goto retry;
1947
1948 if (!drained) {
1949 drain_all_stock(mem_over_limit);
1950 drained = true;
1951 goto retry;
1952 }
1953
1954 if (gfp_mask & __GFP_NORETRY)
1955 goto nomem;
1956 /*
1957 * Even though the limit is exceeded at this point, reclaim
1958 * may have been able to free some pages. Retry the charge
1959 * before killing the task.
1960 *
1961 * Only for regular pages, though: huge pages are rather
1962 * unlikely to succeed so close to the limit, and we fall back
1963 * to regular pages anyway in case of failure.
1964 */
1965 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1966 goto retry;
1967 /*
1968 * At task move, charge accounts can be doubly counted. So, it's
1969 * better to wait until the end of task_move if something is going on.
1970 */
1971 if (mem_cgroup_wait_acct_move(mem_over_limit))
1972 goto retry;
1973
1974 if (nr_retries--)
1975 goto retry;
1976
1977 if (gfp_mask & __GFP_NOFAIL)
1978 goto force;
1979
1980 if (fatal_signal_pending(current))
1981 goto force;
1982
1983 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1984
1985 mem_cgroup_oom(mem_over_limit, gfp_mask,
1986 get_order(nr_pages * PAGE_SIZE));
1987 nomem:
1988 if (!(gfp_mask & __GFP_NOFAIL))
1989 return -ENOMEM;
1990 force:
1991 /*
1992 * The allocation either can't fail or will lead to more memory
1993 * being freed very soon. Allow memory usage go over the limit
1994 * temporarily by force charging it.
1995 */
1996 page_counter_charge(&memcg->memory, nr_pages);
1997 if (do_memsw_account())
1998 page_counter_charge(&memcg->memsw, nr_pages);
1999 css_get_many(&memcg->css, nr_pages);
2000
2001 return 0;
2002
2003 done_restock:
2004 css_get_many(&memcg->css, batch);
2005 if (batch > nr_pages)
2006 refill_stock(memcg, batch - nr_pages);
2007
2008 /*
2009 * If the hierarchy is above the normal consumption range, schedule
2010 * reclaim on returning to userland. We can perform reclaim here
2011 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2012 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2013 * not recorded as it most likely matches current's and won't
2014 * change in the meantime. As high limit is checked again before
2015 * reclaim, the cost of mismatch is negligible.
2016 */
2017 do {
2018 if (page_counter_read(&memcg->memory) > memcg->high) {
2019 /* Don't bother a random interrupted task */
2020 if (in_interrupt()) {
2021 schedule_work(&memcg->high_work);
2022 break;
2023 }
2024 current->memcg_nr_pages_over_high += batch;
2025 set_notify_resume(current);
2026 break;
2027 }
2028 } while ((memcg = parent_mem_cgroup(memcg)));
2029
2030 return 0;
2031 }
2032
2033 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2034 {
2035 if (mem_cgroup_is_root(memcg))
2036 return;
2037
2038 page_counter_uncharge(&memcg->memory, nr_pages);
2039 if (do_memsw_account())
2040 page_counter_uncharge(&memcg->memsw, nr_pages);
2041
2042 css_put_many(&memcg->css, nr_pages);
2043 }
2044
2045 static void lock_page_lru(struct page *page, int *isolated)
2046 {
2047 struct zone *zone = page_zone(page);
2048
2049 spin_lock_irq(zone_lru_lock(zone));
2050 if (PageLRU(page)) {
2051 struct lruvec *lruvec;
2052
2053 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2054 ClearPageLRU(page);
2055 del_page_from_lru_list(page, lruvec, page_lru(page));
2056 *isolated = 1;
2057 } else
2058 *isolated = 0;
2059 }
2060
2061 static void unlock_page_lru(struct page *page, int isolated)
2062 {
2063 struct zone *zone = page_zone(page);
2064
2065 if (isolated) {
2066 struct lruvec *lruvec;
2067
2068 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2069 VM_BUG_ON_PAGE(PageLRU(page), page);
2070 SetPageLRU(page);
2071 add_page_to_lru_list(page, lruvec, page_lru(page));
2072 }
2073 spin_unlock_irq(zone_lru_lock(zone));
2074 }
2075
2076 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2077 bool lrucare)
2078 {
2079 int isolated;
2080
2081 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2082
2083 /*
2084 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2085 * may already be on some other mem_cgroup's LRU. Take care of it.
2086 */
2087 if (lrucare)
2088 lock_page_lru(page, &isolated);
2089
2090 /*
2091 * Nobody should be changing or seriously looking at
2092 * page->mem_cgroup at this point:
2093 *
2094 * - the page is uncharged
2095 *
2096 * - the page is off-LRU
2097 *
2098 * - an anonymous fault has exclusive page access, except for
2099 * a locked page table
2100 *
2101 * - a page cache insertion, a swapin fault, or a migration
2102 * have the page locked
2103 */
2104 page->mem_cgroup = memcg;
2105
2106 if (lrucare)
2107 unlock_page_lru(page, isolated);
2108 }
2109
2110 #ifndef CONFIG_SLOB
2111 static int memcg_alloc_cache_id(void)
2112 {
2113 int id, size;
2114 int err;
2115
2116 id = ida_simple_get(&memcg_cache_ida,
2117 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2118 if (id < 0)
2119 return id;
2120
2121 if (id < memcg_nr_cache_ids)
2122 return id;
2123
2124 /*
2125 * There's no space for the new id in memcg_caches arrays,
2126 * so we have to grow them.
2127 */
2128 down_write(&memcg_cache_ids_sem);
2129
2130 size = 2 * (id + 1);
2131 if (size < MEMCG_CACHES_MIN_SIZE)
2132 size = MEMCG_CACHES_MIN_SIZE;
2133 else if (size > MEMCG_CACHES_MAX_SIZE)
2134 size = MEMCG_CACHES_MAX_SIZE;
2135
2136 err = memcg_update_all_caches(size);
2137 if (!err)
2138 err = memcg_update_all_list_lrus(size);
2139 if (!err)
2140 memcg_nr_cache_ids = size;
2141
2142 up_write(&memcg_cache_ids_sem);
2143
2144 if (err) {
2145 ida_simple_remove(&memcg_cache_ida, id);
2146 return err;
2147 }
2148 return id;
2149 }
2150
2151 static void memcg_free_cache_id(int id)
2152 {
2153 ida_simple_remove(&memcg_cache_ida, id);
2154 }
2155
2156 struct memcg_kmem_cache_create_work {
2157 struct mem_cgroup *memcg;
2158 struct kmem_cache *cachep;
2159 struct work_struct work;
2160 };
2161
2162 static void memcg_kmem_cache_create_func(struct work_struct *w)
2163 {
2164 struct memcg_kmem_cache_create_work *cw =
2165 container_of(w, struct memcg_kmem_cache_create_work, work);
2166 struct mem_cgroup *memcg = cw->memcg;
2167 struct kmem_cache *cachep = cw->cachep;
2168
2169 memcg_create_kmem_cache(memcg, cachep);
2170
2171 css_put(&memcg->css);
2172 kfree(cw);
2173 }
2174
2175 /*
2176 * Enqueue the creation of a per-memcg kmem_cache.
2177 */
2178 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2179 struct kmem_cache *cachep)
2180 {
2181 struct memcg_kmem_cache_create_work *cw;
2182
2183 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2184 if (!cw)
2185 return;
2186
2187 css_get(&memcg->css);
2188
2189 cw->memcg = memcg;
2190 cw->cachep = cachep;
2191 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2192
2193 queue_work(memcg_kmem_cache_wq, &cw->work);
2194 }
2195
2196 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2197 struct kmem_cache *cachep)
2198 {
2199 /*
2200 * We need to stop accounting when we kmalloc, because if the
2201 * corresponding kmalloc cache is not yet created, the first allocation
2202 * in __memcg_schedule_kmem_cache_create will recurse.
2203 *
2204 * However, it is better to enclose the whole function. Depending on
2205 * the debugging options enabled, INIT_WORK(), for instance, can
2206 * trigger an allocation. This too, will make us recurse. Because at
2207 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2208 * the safest choice is to do it like this, wrapping the whole function.
2209 */
2210 current->memcg_kmem_skip_account = 1;
2211 __memcg_schedule_kmem_cache_create(memcg, cachep);
2212 current->memcg_kmem_skip_account = 0;
2213 }
2214
2215 static inline bool memcg_kmem_bypass(void)
2216 {
2217 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2218 return true;
2219 return false;
2220 }
2221
2222 /**
2223 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2224 * @cachep: the original global kmem cache
2225 *
2226 * Return the kmem_cache we're supposed to use for a slab allocation.
2227 * We try to use the current memcg's version of the cache.
2228 *
2229 * If the cache does not exist yet, if we are the first user of it, we
2230 * create it asynchronously in a workqueue and let the current allocation
2231 * go through with the original cache.
2232 *
2233 * This function takes a reference to the cache it returns to assure it
2234 * won't get destroyed while we are working with it. Once the caller is
2235 * done with it, memcg_kmem_put_cache() must be called to release the
2236 * reference.
2237 */
2238 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2239 {
2240 struct mem_cgroup *memcg;
2241 struct kmem_cache *memcg_cachep;
2242 int kmemcg_id;
2243
2244 VM_BUG_ON(!is_root_cache(cachep));
2245
2246 if (memcg_kmem_bypass())
2247 return cachep;
2248
2249 if (current->memcg_kmem_skip_account)
2250 return cachep;
2251
2252 memcg = get_mem_cgroup_from_mm(current->mm);
2253 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2254 if (kmemcg_id < 0)
2255 goto out;
2256
2257 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2258 if (likely(memcg_cachep))
2259 return memcg_cachep;
2260
2261 /*
2262 * If we are in a safe context (can wait, and not in interrupt
2263 * context), we could be be predictable and return right away.
2264 * This would guarantee that the allocation being performed
2265 * already belongs in the new cache.
2266 *
2267 * However, there are some clashes that can arrive from locking.
2268 * For instance, because we acquire the slab_mutex while doing
2269 * memcg_create_kmem_cache, this means no further allocation
2270 * could happen with the slab_mutex held. So it's better to
2271 * defer everything.
2272 */
2273 memcg_schedule_kmem_cache_create(memcg, cachep);
2274 out:
2275 css_put(&memcg->css);
2276 return cachep;
2277 }
2278
2279 /**
2280 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2281 * @cachep: the cache returned by memcg_kmem_get_cache
2282 */
2283 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2284 {
2285 if (!is_root_cache(cachep))
2286 css_put(&cachep->memcg_params.memcg->css);
2287 }
2288
2289 /**
2290 * memcg_kmem_charge: charge a kmem page
2291 * @page: page to charge
2292 * @gfp: reclaim mode
2293 * @order: allocation order
2294 * @memcg: memory cgroup to charge
2295 *
2296 * Returns 0 on success, an error code on failure.
2297 */
2298 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2299 struct mem_cgroup *memcg)
2300 {
2301 unsigned int nr_pages = 1 << order;
2302 struct page_counter *counter;
2303 int ret;
2304
2305 ret = try_charge(memcg, gfp, nr_pages);
2306 if (ret)
2307 return ret;
2308
2309 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2310 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2311 cancel_charge(memcg, nr_pages);
2312 return -ENOMEM;
2313 }
2314
2315 page->mem_cgroup = memcg;
2316
2317 return 0;
2318 }
2319
2320 /**
2321 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2322 * @page: page to charge
2323 * @gfp: reclaim mode
2324 * @order: allocation order
2325 *
2326 * Returns 0 on success, an error code on failure.
2327 */
2328 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2329 {
2330 struct mem_cgroup *memcg;
2331 int ret = 0;
2332
2333 if (memcg_kmem_bypass())
2334 return 0;
2335
2336 memcg = get_mem_cgroup_from_mm(current->mm);
2337 if (!mem_cgroup_is_root(memcg)) {
2338 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2339 if (!ret)
2340 __SetPageKmemcg(page);
2341 }
2342 css_put(&memcg->css);
2343 return ret;
2344 }
2345 /**
2346 * memcg_kmem_uncharge: uncharge a kmem page
2347 * @page: page to uncharge
2348 * @order: allocation order
2349 */
2350 void memcg_kmem_uncharge(struct page *page, int order)
2351 {
2352 struct mem_cgroup *memcg = page->mem_cgroup;
2353 unsigned int nr_pages = 1 << order;
2354
2355 if (!memcg)
2356 return;
2357
2358 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2359
2360 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2361 page_counter_uncharge(&memcg->kmem, nr_pages);
2362
2363 page_counter_uncharge(&memcg->memory, nr_pages);
2364 if (do_memsw_account())
2365 page_counter_uncharge(&memcg->memsw, nr_pages);
2366
2367 page->mem_cgroup = NULL;
2368
2369 /* slab pages do not have PageKmemcg flag set */
2370 if (PageKmemcg(page))
2371 __ClearPageKmemcg(page);
2372
2373 css_put_many(&memcg->css, nr_pages);
2374 }
2375 #endif /* !CONFIG_SLOB */
2376
2377 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2378
2379 /*
2380 * Because tail pages are not marked as "used", set it. We're under
2381 * zone_lru_lock and migration entries setup in all page mappings.
2382 */
2383 void mem_cgroup_split_huge_fixup(struct page *head)
2384 {
2385 int i;
2386
2387 if (mem_cgroup_disabled())
2388 return;
2389
2390 for (i = 1; i < HPAGE_PMD_NR; i++)
2391 head[i].mem_cgroup = head->mem_cgroup;
2392
2393 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2394 HPAGE_PMD_NR);
2395 }
2396 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2397
2398 #ifdef CONFIG_MEMCG_SWAP
2399 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2400 int nr_entries)
2401 {
2402 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2403 }
2404
2405 /**
2406 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2407 * @entry: swap entry to be moved
2408 * @from: mem_cgroup which the entry is moved from
2409 * @to: mem_cgroup which the entry is moved to
2410 *
2411 * It succeeds only when the swap_cgroup's record for this entry is the same
2412 * as the mem_cgroup's id of @from.
2413 *
2414 * Returns 0 on success, -EINVAL on failure.
2415 *
2416 * The caller must have charged to @to, IOW, called page_counter_charge() about
2417 * both res and memsw, and called css_get().
2418 */
2419 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2420 struct mem_cgroup *from, struct mem_cgroup *to)
2421 {
2422 unsigned short old_id, new_id;
2423
2424 old_id = mem_cgroup_id(from);
2425 new_id = mem_cgroup_id(to);
2426
2427 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2428 mem_cgroup_swap_statistics(from, -1);
2429 mem_cgroup_swap_statistics(to, 1);
2430 return 0;
2431 }
2432 return -EINVAL;
2433 }
2434 #else
2435 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2436 struct mem_cgroup *from, struct mem_cgroup *to)
2437 {
2438 return -EINVAL;
2439 }
2440 #endif
2441
2442 static DEFINE_MUTEX(memcg_limit_mutex);
2443
2444 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2445 unsigned long limit)
2446 {
2447 unsigned long curusage;
2448 unsigned long oldusage;
2449 bool enlarge = false;
2450 int retry_count;
2451 int ret;
2452
2453 /*
2454 * For keeping hierarchical_reclaim simple, how long we should retry
2455 * is depends on callers. We set our retry-count to be function
2456 * of # of children which we should visit in this loop.
2457 */
2458 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2459 mem_cgroup_count_children(memcg);
2460
2461 oldusage = page_counter_read(&memcg->memory);
2462
2463 do {
2464 if (signal_pending(current)) {
2465 ret = -EINTR;
2466 break;
2467 }
2468
2469 mutex_lock(&memcg_limit_mutex);
2470 if (limit > memcg->memsw.limit) {
2471 mutex_unlock(&memcg_limit_mutex);
2472 ret = -EINVAL;
2473 break;
2474 }
2475 if (limit > memcg->memory.limit)
2476 enlarge = true;
2477 ret = page_counter_limit(&memcg->memory, limit);
2478 mutex_unlock(&memcg_limit_mutex);
2479
2480 if (!ret)
2481 break;
2482
2483 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2484
2485 curusage = page_counter_read(&memcg->memory);
2486 /* Usage is reduced ? */
2487 if (curusage >= oldusage)
2488 retry_count--;
2489 else
2490 oldusage = curusage;
2491 } while (retry_count);
2492
2493 if (!ret && enlarge)
2494 memcg_oom_recover(memcg);
2495
2496 return ret;
2497 }
2498
2499 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2500 unsigned long limit)
2501 {
2502 unsigned long curusage;
2503 unsigned long oldusage;
2504 bool enlarge = false;
2505 int retry_count;
2506 int ret;
2507
2508 /* see mem_cgroup_resize_res_limit */
2509 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2510 mem_cgroup_count_children(memcg);
2511
2512 oldusage = page_counter_read(&memcg->memsw);
2513
2514 do {
2515 if (signal_pending(current)) {
2516 ret = -EINTR;
2517 break;
2518 }
2519
2520 mutex_lock(&memcg_limit_mutex);
2521 if (limit < memcg->memory.limit) {
2522 mutex_unlock(&memcg_limit_mutex);
2523 ret = -EINVAL;
2524 break;
2525 }
2526 if (limit > memcg->memsw.limit)
2527 enlarge = true;
2528 ret = page_counter_limit(&memcg->memsw, limit);
2529 mutex_unlock(&memcg_limit_mutex);
2530
2531 if (!ret)
2532 break;
2533
2534 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2535
2536 curusage = page_counter_read(&memcg->memsw);
2537 /* Usage is reduced ? */
2538 if (curusage >= oldusage)
2539 retry_count--;
2540 else
2541 oldusage = curusage;
2542 } while (retry_count);
2543
2544 if (!ret && enlarge)
2545 memcg_oom_recover(memcg);
2546
2547 return ret;
2548 }
2549
2550 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2551 gfp_t gfp_mask,
2552 unsigned long *total_scanned)
2553 {
2554 unsigned long nr_reclaimed = 0;
2555 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2556 unsigned long reclaimed;
2557 int loop = 0;
2558 struct mem_cgroup_tree_per_node *mctz;
2559 unsigned long excess;
2560 unsigned long nr_scanned;
2561
2562 if (order > 0)
2563 return 0;
2564
2565 mctz = soft_limit_tree_node(pgdat->node_id);
2566
2567 /*
2568 * Do not even bother to check the largest node if the root
2569 * is empty. Do it lockless to prevent lock bouncing. Races
2570 * are acceptable as soft limit is best effort anyway.
2571 */
2572 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2573 return 0;
2574
2575 /*
2576 * This loop can run a while, specially if mem_cgroup's continuously
2577 * keep exceeding their soft limit and putting the system under
2578 * pressure
2579 */
2580 do {
2581 if (next_mz)
2582 mz = next_mz;
2583 else
2584 mz = mem_cgroup_largest_soft_limit_node(mctz);
2585 if (!mz)
2586 break;
2587
2588 nr_scanned = 0;
2589 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2590 gfp_mask, &nr_scanned);
2591 nr_reclaimed += reclaimed;
2592 *total_scanned += nr_scanned;
2593 spin_lock_irq(&mctz->lock);
2594 __mem_cgroup_remove_exceeded(mz, mctz);
2595
2596 /*
2597 * If we failed to reclaim anything from this memory cgroup
2598 * it is time to move on to the next cgroup
2599 */
2600 next_mz = NULL;
2601 if (!reclaimed)
2602 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2603
2604 excess = soft_limit_excess(mz->memcg);
2605 /*
2606 * One school of thought says that we should not add
2607 * back the node to the tree if reclaim returns 0.
2608 * But our reclaim could return 0, simply because due
2609 * to priority we are exposing a smaller subset of
2610 * memory to reclaim from. Consider this as a longer
2611 * term TODO.
2612 */
2613 /* If excess == 0, no tree ops */
2614 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2615 spin_unlock_irq(&mctz->lock);
2616 css_put(&mz->memcg->css);
2617 loop++;
2618 /*
2619 * Could not reclaim anything and there are no more
2620 * mem cgroups to try or we seem to be looping without
2621 * reclaiming anything.
2622 */
2623 if (!nr_reclaimed &&
2624 (next_mz == NULL ||
2625 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2626 break;
2627 } while (!nr_reclaimed);
2628 if (next_mz)
2629 css_put(&next_mz->memcg->css);
2630 return nr_reclaimed;
2631 }
2632
2633 /*
2634 * Test whether @memcg has children, dead or alive. Note that this
2635 * function doesn't care whether @memcg has use_hierarchy enabled and
2636 * returns %true if there are child csses according to the cgroup
2637 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2638 */
2639 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2640 {
2641 bool ret;
2642
2643 rcu_read_lock();
2644 ret = css_next_child(NULL, &memcg->css);
2645 rcu_read_unlock();
2646 return ret;
2647 }
2648
2649 /*
2650 * Reclaims as many pages from the given memcg as possible.
2651 *
2652 * Caller is responsible for holding css reference for memcg.
2653 */
2654 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2655 {
2656 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2657
2658 /* we call try-to-free pages for make this cgroup empty */
2659 lru_add_drain_all();
2660 /* try to free all pages in this cgroup */
2661 while (nr_retries && page_counter_read(&memcg->memory)) {
2662 int progress;
2663
2664 if (signal_pending(current))
2665 return -EINTR;
2666
2667 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2668 GFP_KERNEL, true);
2669 if (!progress) {
2670 nr_retries--;
2671 /* maybe some writeback is necessary */
2672 congestion_wait(BLK_RW_ASYNC, HZ/10);
2673 }
2674
2675 }
2676
2677 return 0;
2678 }
2679
2680 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2681 char *buf, size_t nbytes,
2682 loff_t off)
2683 {
2684 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2685
2686 if (mem_cgroup_is_root(memcg))
2687 return -EINVAL;
2688 return mem_cgroup_force_empty(memcg) ?: nbytes;
2689 }
2690
2691 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2692 struct cftype *cft)
2693 {
2694 return mem_cgroup_from_css(css)->use_hierarchy;
2695 }
2696
2697 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2698 struct cftype *cft, u64 val)
2699 {
2700 int retval = 0;
2701 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2702 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2703
2704 if (memcg->use_hierarchy == val)
2705 return 0;
2706
2707 /*
2708 * If parent's use_hierarchy is set, we can't make any modifications
2709 * in the child subtrees. If it is unset, then the change can
2710 * occur, provided the current cgroup has no children.
2711 *
2712 * For the root cgroup, parent_mem is NULL, we allow value to be
2713 * set if there are no children.
2714 */
2715 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2716 (val == 1 || val == 0)) {
2717 if (!memcg_has_children(memcg))
2718 memcg->use_hierarchy = val;
2719 else
2720 retval = -EBUSY;
2721 } else
2722 retval = -EINVAL;
2723
2724 return retval;
2725 }
2726
2727 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2728 {
2729 struct mem_cgroup *iter;
2730 int i;
2731
2732 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2733
2734 for_each_mem_cgroup_tree(iter, memcg) {
2735 for (i = 0; i < MEMCG_NR_STAT; i++)
2736 stat[i] += memcg_page_state(iter, i);
2737 }
2738 }
2739
2740 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2741 {
2742 struct mem_cgroup *iter;
2743 int i;
2744
2745 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2746
2747 for_each_mem_cgroup_tree(iter, memcg) {
2748 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2749 events[i] += memcg_sum_events(iter, i);
2750 }
2751 }
2752
2753 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2754 {
2755 unsigned long val = 0;
2756
2757 if (mem_cgroup_is_root(memcg)) {
2758 struct mem_cgroup *iter;
2759
2760 for_each_mem_cgroup_tree(iter, memcg) {
2761 val += memcg_page_state(iter, MEMCG_CACHE);
2762 val += memcg_page_state(iter, MEMCG_RSS);
2763 if (swap)
2764 val += memcg_page_state(iter, MEMCG_SWAP);
2765 }
2766 } else {
2767 if (!swap)
2768 val = page_counter_read(&memcg->memory);
2769 else
2770 val = page_counter_read(&memcg->memsw);
2771 }
2772 return val;
2773 }
2774
2775 enum {
2776 RES_USAGE,
2777 RES_LIMIT,
2778 RES_MAX_USAGE,
2779 RES_FAILCNT,
2780 RES_SOFT_LIMIT,
2781 };
2782
2783 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2784 struct cftype *cft)
2785 {
2786 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2787 struct page_counter *counter;
2788
2789 switch (MEMFILE_TYPE(cft->private)) {
2790 case _MEM:
2791 counter = &memcg->memory;
2792 break;
2793 case _MEMSWAP:
2794 counter = &memcg->memsw;
2795 break;
2796 case _KMEM:
2797 counter = &memcg->kmem;
2798 break;
2799 case _TCP:
2800 counter = &memcg->tcpmem;
2801 break;
2802 default:
2803 BUG();
2804 }
2805
2806 switch (MEMFILE_ATTR(cft->private)) {
2807 case RES_USAGE:
2808 if (counter == &memcg->memory)
2809 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2810 if (counter == &memcg->memsw)
2811 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2812 return (u64)page_counter_read(counter) * PAGE_SIZE;
2813 case RES_LIMIT:
2814 return (u64)counter->limit * PAGE_SIZE;
2815 case RES_MAX_USAGE:
2816 return (u64)counter->watermark * PAGE_SIZE;
2817 case RES_FAILCNT:
2818 return counter->failcnt;
2819 case RES_SOFT_LIMIT:
2820 return (u64)memcg->soft_limit * PAGE_SIZE;
2821 default:
2822 BUG();
2823 }
2824 }
2825
2826 #ifndef CONFIG_SLOB
2827 static int memcg_online_kmem(struct mem_cgroup *memcg)
2828 {
2829 int memcg_id;
2830
2831 if (cgroup_memory_nokmem)
2832 return 0;
2833
2834 BUG_ON(memcg->kmemcg_id >= 0);
2835 BUG_ON(memcg->kmem_state);
2836
2837 memcg_id = memcg_alloc_cache_id();
2838 if (memcg_id < 0)
2839 return memcg_id;
2840
2841 static_branch_inc(&memcg_kmem_enabled_key);
2842 /*
2843 * A memory cgroup is considered kmem-online as soon as it gets
2844 * kmemcg_id. Setting the id after enabling static branching will
2845 * guarantee no one starts accounting before all call sites are
2846 * patched.
2847 */
2848 memcg->kmemcg_id = memcg_id;
2849 memcg->kmem_state = KMEM_ONLINE;
2850 INIT_LIST_HEAD(&memcg->kmem_caches);
2851
2852 return 0;
2853 }
2854
2855 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2856 {
2857 struct cgroup_subsys_state *css;
2858 struct mem_cgroup *parent, *child;
2859 int kmemcg_id;
2860
2861 if (memcg->kmem_state != KMEM_ONLINE)
2862 return;
2863 /*
2864 * Clear the online state before clearing memcg_caches array
2865 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2866 * guarantees that no cache will be created for this cgroup
2867 * after we are done (see memcg_create_kmem_cache()).
2868 */
2869 memcg->kmem_state = KMEM_ALLOCATED;
2870
2871 memcg_deactivate_kmem_caches(memcg);
2872
2873 kmemcg_id = memcg->kmemcg_id;
2874 BUG_ON(kmemcg_id < 0);
2875
2876 parent = parent_mem_cgroup(memcg);
2877 if (!parent)
2878 parent = root_mem_cgroup;
2879
2880 /*
2881 * Change kmemcg_id of this cgroup and all its descendants to the
2882 * parent's id, and then move all entries from this cgroup's list_lrus
2883 * to ones of the parent. After we have finished, all list_lrus
2884 * corresponding to this cgroup are guaranteed to remain empty. The
2885 * ordering is imposed by list_lru_node->lock taken by
2886 * memcg_drain_all_list_lrus().
2887 */
2888 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2889 css_for_each_descendant_pre(css, &memcg->css) {
2890 child = mem_cgroup_from_css(css);
2891 BUG_ON(child->kmemcg_id != kmemcg_id);
2892 child->kmemcg_id = parent->kmemcg_id;
2893 if (!memcg->use_hierarchy)
2894 break;
2895 }
2896 rcu_read_unlock();
2897
2898 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2899
2900 memcg_free_cache_id(kmemcg_id);
2901 }
2902
2903 static void memcg_free_kmem(struct mem_cgroup *memcg)
2904 {
2905 /* css_alloc() failed, offlining didn't happen */
2906 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2907 memcg_offline_kmem(memcg);
2908
2909 if (memcg->kmem_state == KMEM_ALLOCATED) {
2910 memcg_destroy_kmem_caches(memcg);
2911 static_branch_dec(&memcg_kmem_enabled_key);
2912 WARN_ON(page_counter_read(&memcg->kmem));
2913 }
2914 }
2915 #else
2916 static int memcg_online_kmem(struct mem_cgroup *memcg)
2917 {
2918 return 0;
2919 }
2920 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2921 {
2922 }
2923 static void memcg_free_kmem(struct mem_cgroup *memcg)
2924 {
2925 }
2926 #endif /* !CONFIG_SLOB */
2927
2928 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2929 unsigned long limit)
2930 {
2931 int ret;
2932
2933 mutex_lock(&memcg_limit_mutex);
2934 ret = page_counter_limit(&memcg->kmem, limit);
2935 mutex_unlock(&memcg_limit_mutex);
2936 return ret;
2937 }
2938
2939 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2940 {
2941 int ret;
2942
2943 mutex_lock(&memcg_limit_mutex);
2944
2945 ret = page_counter_limit(&memcg->tcpmem, limit);
2946 if (ret)
2947 goto out;
2948
2949 if (!memcg->tcpmem_active) {
2950 /*
2951 * The active flag needs to be written after the static_key
2952 * update. This is what guarantees that the socket activation
2953 * function is the last one to run. See mem_cgroup_sk_alloc()
2954 * for details, and note that we don't mark any socket as
2955 * belonging to this memcg until that flag is up.
2956 *
2957 * We need to do this, because static_keys will span multiple
2958 * sites, but we can't control their order. If we mark a socket
2959 * as accounted, but the accounting functions are not patched in
2960 * yet, we'll lose accounting.
2961 *
2962 * We never race with the readers in mem_cgroup_sk_alloc(),
2963 * because when this value change, the code to process it is not
2964 * patched in yet.
2965 */
2966 static_branch_inc(&memcg_sockets_enabled_key);
2967 memcg->tcpmem_active = true;
2968 }
2969 out:
2970 mutex_unlock(&memcg_limit_mutex);
2971 return ret;
2972 }
2973
2974 /*
2975 * The user of this function is...
2976 * RES_LIMIT.
2977 */
2978 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2979 char *buf, size_t nbytes, loff_t off)
2980 {
2981 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2982 unsigned long nr_pages;
2983 int ret;
2984
2985 buf = strstrip(buf);
2986 ret = page_counter_memparse(buf, "-1", &nr_pages);
2987 if (ret)
2988 return ret;
2989
2990 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2991 case RES_LIMIT:
2992 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2993 ret = -EINVAL;
2994 break;
2995 }
2996 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2997 case _MEM:
2998 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2999 break;
3000 case _MEMSWAP:
3001 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3002 break;
3003 case _KMEM:
3004 ret = memcg_update_kmem_limit(memcg, nr_pages);
3005 break;
3006 case _TCP:
3007 ret = memcg_update_tcp_limit(memcg, nr_pages);
3008 break;
3009 }
3010 break;
3011 case RES_SOFT_LIMIT:
3012 memcg->soft_limit = nr_pages;
3013 ret = 0;
3014 break;
3015 }
3016 return ret ?: nbytes;
3017 }
3018
3019 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3020 size_t nbytes, loff_t off)
3021 {
3022 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3023 struct page_counter *counter;
3024
3025 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3026 case _MEM:
3027 counter = &memcg->memory;
3028 break;
3029 case _MEMSWAP:
3030 counter = &memcg->memsw;
3031 break;
3032 case _KMEM:
3033 counter = &memcg->kmem;
3034 break;
3035 case _TCP:
3036 counter = &memcg->tcpmem;
3037 break;
3038 default:
3039 BUG();
3040 }
3041
3042 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3043 case RES_MAX_USAGE:
3044 page_counter_reset_watermark(counter);
3045 break;
3046 case RES_FAILCNT:
3047 counter->failcnt = 0;
3048 break;
3049 default:
3050 BUG();
3051 }
3052
3053 return nbytes;
3054 }
3055
3056 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3057 struct cftype *cft)
3058 {
3059 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3060 }
3061
3062 #ifdef CONFIG_MMU
3063 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3064 struct cftype *cft, u64 val)
3065 {
3066 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3067
3068 if (val & ~MOVE_MASK)
3069 return -EINVAL;
3070
3071 /*
3072 * No kind of locking is needed in here, because ->can_attach() will
3073 * check this value once in the beginning of the process, and then carry
3074 * on with stale data. This means that changes to this value will only
3075 * affect task migrations starting after the change.
3076 */
3077 memcg->move_charge_at_immigrate = val;
3078 return 0;
3079 }
3080 #else
3081 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3082 struct cftype *cft, u64 val)
3083 {
3084 return -ENOSYS;
3085 }
3086 #endif
3087
3088 #ifdef CONFIG_NUMA
3089 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3090 {
3091 struct numa_stat {
3092 const char *name;
3093 unsigned int lru_mask;
3094 };
3095
3096 static const struct numa_stat stats[] = {
3097 { "total", LRU_ALL },
3098 { "file", LRU_ALL_FILE },
3099 { "anon", LRU_ALL_ANON },
3100 { "unevictable", BIT(LRU_UNEVICTABLE) },
3101 };
3102 const struct numa_stat *stat;
3103 int nid;
3104 unsigned long nr;
3105 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3106
3107 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3108 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3109 seq_printf(m, "%s=%lu", stat->name, nr);
3110 for_each_node_state(nid, N_MEMORY) {
3111 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3112 stat->lru_mask);
3113 seq_printf(m, " N%d=%lu", nid, nr);
3114 }
3115 seq_putc(m, '\n');
3116 }
3117
3118 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3119 struct mem_cgroup *iter;
3120
3121 nr = 0;
3122 for_each_mem_cgroup_tree(iter, memcg)
3123 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3124 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3125 for_each_node_state(nid, N_MEMORY) {
3126 nr = 0;
3127 for_each_mem_cgroup_tree(iter, memcg)
3128 nr += mem_cgroup_node_nr_lru_pages(
3129 iter, nid, stat->lru_mask);
3130 seq_printf(m, " N%d=%lu", nid, nr);
3131 }
3132 seq_putc(m, '\n');
3133 }
3134
3135 return 0;
3136 }
3137 #endif /* CONFIG_NUMA */
3138
3139 /* Universal VM events cgroup1 shows, original sort order */
3140 unsigned int memcg1_events[] = {
3141 PGPGIN,
3142 PGPGOUT,
3143 PGFAULT,
3144 PGMAJFAULT,
3145 };
3146
3147 static const char *const memcg1_event_names[] = {
3148 "pgpgin",
3149 "pgpgout",
3150 "pgfault",
3151 "pgmajfault",
3152 };
3153
3154 static int memcg_stat_show(struct seq_file *m, void *v)
3155 {
3156 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3157 unsigned long memory, memsw;
3158 struct mem_cgroup *mi;
3159 unsigned int i;
3160
3161 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3162 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3163
3164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3165 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3166 continue;
3167 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3168 memcg_page_state(memcg, memcg1_stats[i]) *
3169 PAGE_SIZE);
3170 }
3171
3172 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3173 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3174 memcg_sum_events(memcg, memcg1_events[i]));
3175
3176 for (i = 0; i < NR_LRU_LISTS; i++)
3177 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3178 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3179
3180 /* Hierarchical information */
3181 memory = memsw = PAGE_COUNTER_MAX;
3182 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3183 memory = min(memory, mi->memory.limit);
3184 memsw = min(memsw, mi->memsw.limit);
3185 }
3186 seq_printf(m, "hierarchical_memory_limit %llu\n",
3187 (u64)memory * PAGE_SIZE);
3188 if (do_memsw_account())
3189 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3190 (u64)memsw * PAGE_SIZE);
3191
3192 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3193 unsigned long long val = 0;
3194
3195 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3196 continue;
3197 for_each_mem_cgroup_tree(mi, memcg)
3198 val += memcg_page_state(mi, memcg1_stats[i]) *
3199 PAGE_SIZE;
3200 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3201 }
3202
3203 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3204 unsigned long long val = 0;
3205
3206 for_each_mem_cgroup_tree(mi, memcg)
3207 val += memcg_sum_events(mi, memcg1_events[i]);
3208 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3209 }
3210
3211 for (i = 0; i < NR_LRU_LISTS; i++) {
3212 unsigned long long val = 0;
3213
3214 for_each_mem_cgroup_tree(mi, memcg)
3215 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3216 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3217 }
3218
3219 #ifdef CONFIG_DEBUG_VM
3220 {
3221 pg_data_t *pgdat;
3222 struct mem_cgroup_per_node *mz;
3223 struct zone_reclaim_stat *rstat;
3224 unsigned long recent_rotated[2] = {0, 0};
3225 unsigned long recent_scanned[2] = {0, 0};
3226
3227 for_each_online_pgdat(pgdat) {
3228 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3229 rstat = &mz->lruvec.reclaim_stat;
3230
3231 recent_rotated[0] += rstat->recent_rotated[0];
3232 recent_rotated[1] += rstat->recent_rotated[1];
3233 recent_scanned[0] += rstat->recent_scanned[0];
3234 recent_scanned[1] += rstat->recent_scanned[1];
3235 }
3236 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3237 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3238 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3239 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3240 }
3241 #endif
3242
3243 return 0;
3244 }
3245
3246 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3247 struct cftype *cft)
3248 {
3249 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3250
3251 return mem_cgroup_swappiness(memcg);
3252 }
3253
3254 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3255 struct cftype *cft, u64 val)
3256 {
3257 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3258
3259 if (val > 100)
3260 return -EINVAL;
3261
3262 if (css->parent)
3263 memcg->swappiness = val;
3264 else
3265 vm_swappiness = val;
3266
3267 return 0;
3268 }
3269
3270 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3271 {
3272 struct mem_cgroup_threshold_ary *t;
3273 unsigned long usage;
3274 int i;
3275
3276 rcu_read_lock();
3277 if (!swap)
3278 t = rcu_dereference(memcg->thresholds.primary);
3279 else
3280 t = rcu_dereference(memcg->memsw_thresholds.primary);
3281
3282 if (!t)
3283 goto unlock;
3284
3285 usage = mem_cgroup_usage(memcg, swap);
3286
3287 /*
3288 * current_threshold points to threshold just below or equal to usage.
3289 * If it's not true, a threshold was crossed after last
3290 * call of __mem_cgroup_threshold().
3291 */
3292 i = t->current_threshold;
3293
3294 /*
3295 * Iterate backward over array of thresholds starting from
3296 * current_threshold and check if a threshold is crossed.
3297 * If none of thresholds below usage is crossed, we read
3298 * only one element of the array here.
3299 */
3300 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3301 eventfd_signal(t->entries[i].eventfd, 1);
3302
3303 /* i = current_threshold + 1 */
3304 i++;
3305
3306 /*
3307 * Iterate forward over array of thresholds starting from
3308 * current_threshold+1 and check if a threshold is crossed.
3309 * If none of thresholds above usage is crossed, we read
3310 * only one element of the array here.
3311 */
3312 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3313 eventfd_signal(t->entries[i].eventfd, 1);
3314
3315 /* Update current_threshold */
3316 t->current_threshold = i - 1;
3317 unlock:
3318 rcu_read_unlock();
3319 }
3320
3321 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3322 {
3323 while (memcg) {
3324 __mem_cgroup_threshold(memcg, false);
3325 if (do_memsw_account())
3326 __mem_cgroup_threshold(memcg, true);
3327
3328 memcg = parent_mem_cgroup(memcg);
3329 }
3330 }
3331
3332 static int compare_thresholds(const void *a, const void *b)
3333 {
3334 const struct mem_cgroup_threshold *_a = a;
3335 const struct mem_cgroup_threshold *_b = b;
3336
3337 if (_a->threshold > _b->threshold)
3338 return 1;
3339
3340 if (_a->threshold < _b->threshold)
3341 return -1;
3342
3343 return 0;
3344 }
3345
3346 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3347 {
3348 struct mem_cgroup_eventfd_list *ev;
3349
3350 spin_lock(&memcg_oom_lock);
3351
3352 list_for_each_entry(ev, &memcg->oom_notify, list)
3353 eventfd_signal(ev->eventfd, 1);
3354
3355 spin_unlock(&memcg_oom_lock);
3356 return 0;
3357 }
3358
3359 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3360 {
3361 struct mem_cgroup *iter;
3362
3363 for_each_mem_cgroup_tree(iter, memcg)
3364 mem_cgroup_oom_notify_cb(iter);
3365 }
3366
3367 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3368 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3369 {
3370 struct mem_cgroup_thresholds *thresholds;
3371 struct mem_cgroup_threshold_ary *new;
3372 unsigned long threshold;
3373 unsigned long usage;
3374 int i, size, ret;
3375
3376 ret = page_counter_memparse(args, "-1", &threshold);
3377 if (ret)
3378 return ret;
3379
3380 mutex_lock(&memcg->thresholds_lock);
3381
3382 if (type == _MEM) {
3383 thresholds = &memcg->thresholds;
3384 usage = mem_cgroup_usage(memcg, false);
3385 } else if (type == _MEMSWAP) {
3386 thresholds = &memcg->memsw_thresholds;
3387 usage = mem_cgroup_usage(memcg, true);
3388 } else
3389 BUG();
3390
3391 /* Check if a threshold crossed before adding a new one */
3392 if (thresholds->primary)
3393 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3394
3395 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3396
3397 /* Allocate memory for new array of thresholds */
3398 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3399 GFP_KERNEL);
3400 if (!new) {
3401 ret = -ENOMEM;
3402 goto unlock;
3403 }
3404 new->size = size;
3405
3406 /* Copy thresholds (if any) to new array */
3407 if (thresholds->primary) {
3408 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3409 sizeof(struct mem_cgroup_threshold));
3410 }
3411
3412 /* Add new threshold */
3413 new->entries[size - 1].eventfd = eventfd;
3414 new->entries[size - 1].threshold = threshold;
3415
3416 /* Sort thresholds. Registering of new threshold isn't time-critical */
3417 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3418 compare_thresholds, NULL);
3419
3420 /* Find current threshold */
3421 new->current_threshold = -1;
3422 for (i = 0; i < size; i++) {
3423 if (new->entries[i].threshold <= usage) {
3424 /*
3425 * new->current_threshold will not be used until
3426 * rcu_assign_pointer(), so it's safe to increment
3427 * it here.
3428 */
3429 ++new->current_threshold;
3430 } else
3431 break;
3432 }
3433
3434 /* Free old spare buffer and save old primary buffer as spare */
3435 kfree(thresholds->spare);
3436 thresholds->spare = thresholds->primary;
3437
3438 rcu_assign_pointer(thresholds->primary, new);
3439
3440 /* To be sure that nobody uses thresholds */
3441 synchronize_rcu();
3442
3443 unlock:
3444 mutex_unlock(&memcg->thresholds_lock);
3445
3446 return ret;
3447 }
3448
3449 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3450 struct eventfd_ctx *eventfd, const char *args)
3451 {
3452 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3453 }
3454
3455 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3456 struct eventfd_ctx *eventfd, const char *args)
3457 {
3458 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3459 }
3460
3461 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3462 struct eventfd_ctx *eventfd, enum res_type type)
3463 {
3464 struct mem_cgroup_thresholds *thresholds;
3465 struct mem_cgroup_threshold_ary *new;
3466 unsigned long usage;
3467 int i, j, size;
3468
3469 mutex_lock(&memcg->thresholds_lock);
3470
3471 if (type == _MEM) {
3472 thresholds = &memcg->thresholds;
3473 usage = mem_cgroup_usage(memcg, false);
3474 } else if (type == _MEMSWAP) {
3475 thresholds = &memcg->memsw_thresholds;
3476 usage = mem_cgroup_usage(memcg, true);
3477 } else
3478 BUG();
3479
3480 if (!thresholds->primary)
3481 goto unlock;
3482
3483 /* Check if a threshold crossed before removing */
3484 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3485
3486 /* Calculate new number of threshold */
3487 size = 0;
3488 for (i = 0; i < thresholds->primary->size; i++) {
3489 if (thresholds->primary->entries[i].eventfd != eventfd)
3490 size++;
3491 }
3492
3493 new = thresholds->spare;
3494
3495 /* Set thresholds array to NULL if we don't have thresholds */
3496 if (!size) {
3497 kfree(new);
3498 new = NULL;
3499 goto swap_buffers;
3500 }
3501
3502 new->size = size;
3503
3504 /* Copy thresholds and find current threshold */
3505 new->current_threshold = -1;
3506 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3507 if (thresholds->primary->entries[i].eventfd == eventfd)
3508 continue;
3509
3510 new->entries[j] = thresholds->primary->entries[i];
3511 if (new->entries[j].threshold <= usage) {
3512 /*
3513 * new->current_threshold will not be used
3514 * until rcu_assign_pointer(), so it's safe to increment
3515 * it here.
3516 */
3517 ++new->current_threshold;
3518 }
3519 j++;
3520 }
3521
3522 swap_buffers:
3523 /* Swap primary and spare array */
3524 thresholds->spare = thresholds->primary;
3525
3526 rcu_assign_pointer(thresholds->primary, new);
3527
3528 /* To be sure that nobody uses thresholds */
3529 synchronize_rcu();
3530
3531 /* If all events are unregistered, free the spare array */
3532 if (!new) {
3533 kfree(thresholds->spare);
3534 thresholds->spare = NULL;
3535 }
3536 unlock:
3537 mutex_unlock(&memcg->thresholds_lock);
3538 }
3539
3540 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3541 struct eventfd_ctx *eventfd)
3542 {
3543 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3544 }
3545
3546 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3547 struct eventfd_ctx *eventfd)
3548 {
3549 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3550 }
3551
3552 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3553 struct eventfd_ctx *eventfd, const char *args)
3554 {
3555 struct mem_cgroup_eventfd_list *event;
3556
3557 event = kmalloc(sizeof(*event), GFP_KERNEL);
3558 if (!event)
3559 return -ENOMEM;
3560
3561 spin_lock(&memcg_oom_lock);
3562
3563 event->eventfd = eventfd;
3564 list_add(&event->list, &memcg->oom_notify);
3565
3566 /* already in OOM ? */
3567 if (memcg->under_oom)
3568 eventfd_signal(eventfd, 1);
3569 spin_unlock(&memcg_oom_lock);
3570
3571 return 0;
3572 }
3573
3574 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3575 struct eventfd_ctx *eventfd)
3576 {
3577 struct mem_cgroup_eventfd_list *ev, *tmp;
3578
3579 spin_lock(&memcg_oom_lock);
3580
3581 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3582 if (ev->eventfd == eventfd) {
3583 list_del(&ev->list);
3584 kfree(ev);
3585 }
3586 }
3587
3588 spin_unlock(&memcg_oom_lock);
3589 }
3590
3591 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3592 {
3593 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3594
3595 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3596 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3597 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3598 return 0;
3599 }
3600
3601 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3602 struct cftype *cft, u64 val)
3603 {
3604 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3605
3606 /* cannot set to root cgroup and only 0 and 1 are allowed */
3607 if (!css->parent || !((val == 0) || (val == 1)))
3608 return -EINVAL;
3609
3610 memcg->oom_kill_disable = val;
3611 if (!val)
3612 memcg_oom_recover(memcg);
3613
3614 return 0;
3615 }
3616
3617 #ifdef CONFIG_CGROUP_WRITEBACK
3618
3619 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3620 {
3621 return &memcg->cgwb_list;
3622 }
3623
3624 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3625 {
3626 return wb_domain_init(&memcg->cgwb_domain, gfp);
3627 }
3628
3629 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3630 {
3631 wb_domain_exit(&memcg->cgwb_domain);
3632 }
3633
3634 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3635 {
3636 wb_domain_size_changed(&memcg->cgwb_domain);
3637 }
3638
3639 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3640 {
3641 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3642
3643 if (!memcg->css.parent)
3644 return NULL;
3645
3646 return &memcg->cgwb_domain;
3647 }
3648
3649 /**
3650 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3651 * @wb: bdi_writeback in question
3652 * @pfilepages: out parameter for number of file pages
3653 * @pheadroom: out parameter for number of allocatable pages according to memcg
3654 * @pdirty: out parameter for number of dirty pages
3655 * @pwriteback: out parameter for number of pages under writeback
3656 *
3657 * Determine the numbers of file, headroom, dirty, and writeback pages in
3658 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3659 * is a bit more involved.
3660 *
3661 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3662 * headroom is calculated as the lowest headroom of itself and the
3663 * ancestors. Note that this doesn't consider the actual amount of
3664 * available memory in the system. The caller should further cap
3665 * *@pheadroom accordingly.
3666 */
3667 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3668 unsigned long *pheadroom, unsigned long *pdirty,
3669 unsigned long *pwriteback)
3670 {
3671 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3672 struct mem_cgroup *parent;
3673
3674 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3675
3676 /* this should eventually include NR_UNSTABLE_NFS */
3677 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3678 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3679 (1 << LRU_ACTIVE_FILE));
3680 *pheadroom = PAGE_COUNTER_MAX;
3681
3682 while ((parent = parent_mem_cgroup(memcg))) {
3683 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3684 unsigned long used = page_counter_read(&memcg->memory);
3685
3686 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3687 memcg = parent;
3688 }
3689 }
3690
3691 #else /* CONFIG_CGROUP_WRITEBACK */
3692
3693 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3694 {
3695 return 0;
3696 }
3697
3698 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3699 {
3700 }
3701
3702 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3703 {
3704 }
3705
3706 #endif /* CONFIG_CGROUP_WRITEBACK */
3707
3708 /*
3709 * DO NOT USE IN NEW FILES.
3710 *
3711 * "cgroup.event_control" implementation.
3712 *
3713 * This is way over-engineered. It tries to support fully configurable
3714 * events for each user. Such level of flexibility is completely
3715 * unnecessary especially in the light of the planned unified hierarchy.
3716 *
3717 * Please deprecate this and replace with something simpler if at all
3718 * possible.
3719 */
3720
3721 /*
3722 * Unregister event and free resources.
3723 *
3724 * Gets called from workqueue.
3725 */
3726 static void memcg_event_remove(struct work_struct *work)
3727 {
3728 struct mem_cgroup_event *event =
3729 container_of(work, struct mem_cgroup_event, remove);
3730 struct mem_cgroup *memcg = event->memcg;
3731
3732 remove_wait_queue(event->wqh, &event->wait);
3733
3734 event->unregister_event(memcg, event->eventfd);
3735
3736 /* Notify userspace the event is going away. */
3737 eventfd_signal(event->eventfd, 1);
3738
3739 eventfd_ctx_put(event->eventfd);
3740 kfree(event);
3741 css_put(&memcg->css);
3742 }
3743
3744 /*
3745 * Gets called on POLLHUP on eventfd when user closes it.
3746 *
3747 * Called with wqh->lock held and interrupts disabled.
3748 */
3749 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3750 int sync, void *key)
3751 {
3752 struct mem_cgroup_event *event =
3753 container_of(wait, struct mem_cgroup_event, wait);
3754 struct mem_cgroup *memcg = event->memcg;
3755 unsigned long flags = (unsigned long)key;
3756
3757 if (flags & POLLHUP) {
3758 /*
3759 * If the event has been detached at cgroup removal, we
3760 * can simply return knowing the other side will cleanup
3761 * for us.
3762 *
3763 * We can't race against event freeing since the other
3764 * side will require wqh->lock via remove_wait_queue(),
3765 * which we hold.
3766 */
3767 spin_lock(&memcg->event_list_lock);
3768 if (!list_empty(&event->list)) {
3769 list_del_init(&event->list);
3770 /*
3771 * We are in atomic context, but cgroup_event_remove()
3772 * may sleep, so we have to call it in workqueue.
3773 */
3774 schedule_work(&event->remove);
3775 }
3776 spin_unlock(&memcg->event_list_lock);
3777 }
3778
3779 return 0;
3780 }
3781
3782 static void memcg_event_ptable_queue_proc(struct file *file,
3783 wait_queue_head_t *wqh, poll_table *pt)
3784 {
3785 struct mem_cgroup_event *event =
3786 container_of(pt, struct mem_cgroup_event, pt);
3787
3788 event->wqh = wqh;
3789 add_wait_queue(wqh, &event->wait);
3790 }
3791
3792 /*
3793 * DO NOT USE IN NEW FILES.
3794 *
3795 * Parse input and register new cgroup event handler.
3796 *
3797 * Input must be in format '<event_fd> <control_fd> <args>'.
3798 * Interpretation of args is defined by control file implementation.
3799 */
3800 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3801 char *buf, size_t nbytes, loff_t off)
3802 {
3803 struct cgroup_subsys_state *css = of_css(of);
3804 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3805 struct mem_cgroup_event *event;
3806 struct cgroup_subsys_state *cfile_css;
3807 unsigned int efd, cfd;
3808 struct fd efile;
3809 struct fd cfile;
3810 const char *name;
3811 char *endp;
3812 int ret;
3813
3814 buf = strstrip(buf);
3815
3816 efd = simple_strtoul(buf, &endp, 10);
3817 if (*endp != ' ')
3818 return -EINVAL;
3819 buf = endp + 1;
3820
3821 cfd = simple_strtoul(buf, &endp, 10);
3822 if ((*endp != ' ') && (*endp != '\0'))
3823 return -EINVAL;
3824 buf = endp + 1;
3825
3826 event = kzalloc(sizeof(*event), GFP_KERNEL);
3827 if (!event)
3828 return -ENOMEM;
3829
3830 event->memcg = memcg;
3831 INIT_LIST_HEAD(&event->list);
3832 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3833 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3834 INIT_WORK(&event->remove, memcg_event_remove);
3835
3836 efile = fdget(efd);
3837 if (!efile.file) {
3838 ret = -EBADF;
3839 goto out_kfree;
3840 }
3841
3842 event->eventfd = eventfd_ctx_fileget(efile.file);
3843 if (IS_ERR(event->eventfd)) {
3844 ret = PTR_ERR(event->eventfd);
3845 goto out_put_efile;
3846 }
3847
3848 cfile = fdget(cfd);
3849 if (!cfile.file) {
3850 ret = -EBADF;
3851 goto out_put_eventfd;
3852 }
3853
3854 /* the process need read permission on control file */
3855 /* AV: shouldn't we check that it's been opened for read instead? */
3856 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3857 if (ret < 0)
3858 goto out_put_cfile;
3859
3860 /*
3861 * Determine the event callbacks and set them in @event. This used
3862 * to be done via struct cftype but cgroup core no longer knows
3863 * about these events. The following is crude but the whole thing
3864 * is for compatibility anyway.
3865 *
3866 * DO NOT ADD NEW FILES.
3867 */
3868 name = cfile.file->f_path.dentry->d_name.name;
3869
3870 if (!strcmp(name, "memory.usage_in_bytes")) {
3871 event->register_event = mem_cgroup_usage_register_event;
3872 event->unregister_event = mem_cgroup_usage_unregister_event;
3873 } else if (!strcmp(name, "memory.oom_control")) {
3874 event->register_event = mem_cgroup_oom_register_event;
3875 event->unregister_event = mem_cgroup_oom_unregister_event;
3876 } else if (!strcmp(name, "memory.pressure_level")) {
3877 event->register_event = vmpressure_register_event;
3878 event->unregister_event = vmpressure_unregister_event;
3879 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3880 event->register_event = memsw_cgroup_usage_register_event;
3881 event->unregister_event = memsw_cgroup_usage_unregister_event;
3882 } else {
3883 ret = -EINVAL;
3884 goto out_put_cfile;
3885 }
3886
3887 /*
3888 * Verify @cfile should belong to @css. Also, remaining events are
3889 * automatically removed on cgroup destruction but the removal is
3890 * asynchronous, so take an extra ref on @css.
3891 */
3892 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3893 &memory_cgrp_subsys);
3894 ret = -EINVAL;
3895 if (IS_ERR(cfile_css))
3896 goto out_put_cfile;
3897 if (cfile_css != css) {
3898 css_put(cfile_css);
3899 goto out_put_cfile;
3900 }
3901
3902 ret = event->register_event(memcg, event->eventfd, buf);
3903 if (ret)
3904 goto out_put_css;
3905
3906 efile.file->f_op->poll(efile.file, &event->pt);
3907
3908 spin_lock(&memcg->event_list_lock);
3909 list_add(&event->list, &memcg->event_list);
3910 spin_unlock(&memcg->event_list_lock);
3911
3912 fdput(cfile);
3913 fdput(efile);
3914
3915 return nbytes;
3916
3917 out_put_css:
3918 css_put(css);
3919 out_put_cfile:
3920 fdput(cfile);
3921 out_put_eventfd:
3922 eventfd_ctx_put(event->eventfd);
3923 out_put_efile:
3924 fdput(efile);
3925 out_kfree:
3926 kfree(event);
3927
3928 return ret;
3929 }
3930
3931 static struct cftype mem_cgroup_legacy_files[] = {
3932 {
3933 .name = "usage_in_bytes",
3934 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3935 .read_u64 = mem_cgroup_read_u64,
3936 },
3937 {
3938 .name = "max_usage_in_bytes",
3939 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3940 .write = mem_cgroup_reset,
3941 .read_u64 = mem_cgroup_read_u64,
3942 },
3943 {
3944 .name = "limit_in_bytes",
3945 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3946 .write = mem_cgroup_write,
3947 .read_u64 = mem_cgroup_read_u64,
3948 },
3949 {
3950 .name = "soft_limit_in_bytes",
3951 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3952 .write = mem_cgroup_write,
3953 .read_u64 = mem_cgroup_read_u64,
3954 },
3955 {
3956 .name = "failcnt",
3957 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3958 .write = mem_cgroup_reset,
3959 .read_u64 = mem_cgroup_read_u64,
3960 },
3961 {
3962 .name = "stat",
3963 .seq_show = memcg_stat_show,
3964 },
3965 {
3966 .name = "force_empty",
3967 .write = mem_cgroup_force_empty_write,
3968 },
3969 {
3970 .name = "use_hierarchy",
3971 .write_u64 = mem_cgroup_hierarchy_write,
3972 .read_u64 = mem_cgroup_hierarchy_read,
3973 },
3974 {
3975 .name = "cgroup.event_control", /* XXX: for compat */
3976 .write = memcg_write_event_control,
3977 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3978 },
3979 {
3980 .name = "swappiness",
3981 .read_u64 = mem_cgroup_swappiness_read,
3982 .write_u64 = mem_cgroup_swappiness_write,
3983 },
3984 {
3985 .name = "move_charge_at_immigrate",
3986 .read_u64 = mem_cgroup_move_charge_read,
3987 .write_u64 = mem_cgroup_move_charge_write,
3988 },
3989 {
3990 .name = "oom_control",
3991 .seq_show = mem_cgroup_oom_control_read,
3992 .write_u64 = mem_cgroup_oom_control_write,
3993 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3994 },
3995 {
3996 .name = "pressure_level",
3997 },
3998 #ifdef CONFIG_NUMA
3999 {
4000 .name = "numa_stat",
4001 .seq_show = memcg_numa_stat_show,
4002 },
4003 #endif
4004 {
4005 .name = "kmem.limit_in_bytes",
4006 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4007 .write = mem_cgroup_write,
4008 .read_u64 = mem_cgroup_read_u64,
4009 },
4010 {
4011 .name = "kmem.usage_in_bytes",
4012 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "kmem.failcnt",
4017 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4018 .write = mem_cgroup_reset,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 {
4022 .name = "kmem.max_usage_in_bytes",
4023 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4024 .write = mem_cgroup_reset,
4025 .read_u64 = mem_cgroup_read_u64,
4026 },
4027 #ifdef CONFIG_SLABINFO
4028 {
4029 .name = "kmem.slabinfo",
4030 .seq_start = memcg_slab_start,
4031 .seq_next = memcg_slab_next,
4032 .seq_stop = memcg_slab_stop,
4033 .seq_show = memcg_slab_show,
4034 },
4035 #endif
4036 {
4037 .name = "kmem.tcp.limit_in_bytes",
4038 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4039 .write = mem_cgroup_write,
4040 .read_u64 = mem_cgroup_read_u64,
4041 },
4042 {
4043 .name = "kmem.tcp.usage_in_bytes",
4044 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4045 .read_u64 = mem_cgroup_read_u64,
4046 },
4047 {
4048 .name = "kmem.tcp.failcnt",
4049 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4050 .write = mem_cgroup_reset,
4051 .read_u64 = mem_cgroup_read_u64,
4052 },
4053 {
4054 .name = "kmem.tcp.max_usage_in_bytes",
4055 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4056 .write = mem_cgroup_reset,
4057 .read_u64 = mem_cgroup_read_u64,
4058 },
4059 { }, /* terminate */
4060 };
4061
4062 /*
4063 * Private memory cgroup IDR
4064 *
4065 * Swap-out records and page cache shadow entries need to store memcg
4066 * references in constrained space, so we maintain an ID space that is
4067 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4068 * memory-controlled cgroups to 64k.
4069 *
4070 * However, there usually are many references to the oflline CSS after
4071 * the cgroup has been destroyed, such as page cache or reclaimable
4072 * slab objects, that don't need to hang on to the ID. We want to keep
4073 * those dead CSS from occupying IDs, or we might quickly exhaust the
4074 * relatively small ID space and prevent the creation of new cgroups
4075 * even when there are much fewer than 64k cgroups - possibly none.
4076 *
4077 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4078 * be freed and recycled when it's no longer needed, which is usually
4079 * when the CSS is offlined.
4080 *
4081 * The only exception to that are records of swapped out tmpfs/shmem
4082 * pages that need to be attributed to live ancestors on swapin. But
4083 * those references are manageable from userspace.
4084 */
4085
4086 static DEFINE_IDR(mem_cgroup_idr);
4087
4088 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4089 {
4090 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4091 atomic_add(n, &memcg->id.ref);
4092 }
4093
4094 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4095 {
4096 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4097 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4098 idr_remove(&mem_cgroup_idr, memcg->id.id);
4099 memcg->id.id = 0;
4100
4101 /* Memcg ID pins CSS */
4102 css_put(&memcg->css);
4103 }
4104 }
4105
4106 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4107 {
4108 mem_cgroup_id_get_many(memcg, 1);
4109 }
4110
4111 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4112 {
4113 mem_cgroup_id_put_many(memcg, 1);
4114 }
4115
4116 /**
4117 * mem_cgroup_from_id - look up a memcg from a memcg id
4118 * @id: the memcg id to look up
4119 *
4120 * Caller must hold rcu_read_lock().
4121 */
4122 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4123 {
4124 WARN_ON_ONCE(!rcu_read_lock_held());
4125 return idr_find(&mem_cgroup_idr, id);
4126 }
4127
4128 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4129 {
4130 struct mem_cgroup_per_node *pn;
4131 int tmp = node;
4132 /*
4133 * This routine is called against possible nodes.
4134 * But it's BUG to call kmalloc() against offline node.
4135 *
4136 * TODO: this routine can waste much memory for nodes which will
4137 * never be onlined. It's better to use memory hotplug callback
4138 * function.
4139 */
4140 if (!node_state(node, N_NORMAL_MEMORY))
4141 tmp = -1;
4142 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4143 if (!pn)
4144 return 1;
4145
4146 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4147 if (!pn->lruvec_stat) {
4148 kfree(pn);
4149 return 1;
4150 }
4151
4152 lruvec_init(&pn->lruvec);
4153 pn->usage_in_excess = 0;
4154 pn->on_tree = false;
4155 pn->memcg = memcg;
4156
4157 memcg->nodeinfo[node] = pn;
4158 return 0;
4159 }
4160
4161 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4162 {
4163 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4164
4165 free_percpu(pn->lruvec_stat);
4166 kfree(pn);
4167 }
4168
4169 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4170 {
4171 int node;
4172
4173 for_each_node(node)
4174 free_mem_cgroup_per_node_info(memcg, node);
4175 free_percpu(memcg->stat);
4176 kfree(memcg);
4177 }
4178
4179 static void mem_cgroup_free(struct mem_cgroup *memcg)
4180 {
4181 memcg_wb_domain_exit(memcg);
4182 __mem_cgroup_free(memcg);
4183 }
4184
4185 static struct mem_cgroup *mem_cgroup_alloc(void)
4186 {
4187 struct mem_cgroup *memcg;
4188 size_t size;
4189 int node;
4190
4191 size = sizeof(struct mem_cgroup);
4192 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4193
4194 memcg = kzalloc(size, GFP_KERNEL);
4195 if (!memcg)
4196 return NULL;
4197
4198 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4199 1, MEM_CGROUP_ID_MAX,
4200 GFP_KERNEL);
4201 if (memcg->id.id < 0)
4202 goto fail;
4203
4204 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4205 if (!memcg->stat)
4206 goto fail;
4207
4208 for_each_node(node)
4209 if (alloc_mem_cgroup_per_node_info(memcg, node))
4210 goto fail;
4211
4212 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4213 goto fail;
4214
4215 INIT_WORK(&memcg->high_work, high_work_func);
4216 memcg->last_scanned_node = MAX_NUMNODES;
4217 INIT_LIST_HEAD(&memcg->oom_notify);
4218 mutex_init(&memcg->thresholds_lock);
4219 spin_lock_init(&memcg->move_lock);
4220 vmpressure_init(&memcg->vmpressure);
4221 INIT_LIST_HEAD(&memcg->event_list);
4222 spin_lock_init(&memcg->event_list_lock);
4223 memcg->socket_pressure = jiffies;
4224 #ifndef CONFIG_SLOB
4225 memcg->kmemcg_id = -1;
4226 #endif
4227 #ifdef CONFIG_CGROUP_WRITEBACK
4228 INIT_LIST_HEAD(&memcg->cgwb_list);
4229 #endif
4230 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4231 return memcg;
4232 fail:
4233 if (memcg->id.id > 0)
4234 idr_remove(&mem_cgroup_idr, memcg->id.id);
4235 __mem_cgroup_free(memcg);
4236 return NULL;
4237 }
4238
4239 static struct cgroup_subsys_state * __ref
4240 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4241 {
4242 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4243 struct mem_cgroup *memcg;
4244 long error = -ENOMEM;
4245
4246 memcg = mem_cgroup_alloc();
4247 if (!memcg)
4248 return ERR_PTR(error);
4249
4250 memcg->high = PAGE_COUNTER_MAX;
4251 memcg->soft_limit = PAGE_COUNTER_MAX;
4252 if (parent) {
4253 memcg->swappiness = mem_cgroup_swappiness(parent);
4254 memcg->oom_kill_disable = parent->oom_kill_disable;
4255 }
4256 if (parent && parent->use_hierarchy) {
4257 memcg->use_hierarchy = true;
4258 page_counter_init(&memcg->memory, &parent->memory);
4259 page_counter_init(&memcg->swap, &parent->swap);
4260 page_counter_init(&memcg->memsw, &parent->memsw);
4261 page_counter_init(&memcg->kmem, &parent->kmem);
4262 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4263 } else {
4264 page_counter_init(&memcg->memory, NULL);
4265 page_counter_init(&memcg->swap, NULL);
4266 page_counter_init(&memcg->memsw, NULL);
4267 page_counter_init(&memcg->kmem, NULL);
4268 page_counter_init(&memcg->tcpmem, NULL);
4269 /*
4270 * Deeper hierachy with use_hierarchy == false doesn't make
4271 * much sense so let cgroup subsystem know about this
4272 * unfortunate state in our controller.
4273 */
4274 if (parent != root_mem_cgroup)
4275 memory_cgrp_subsys.broken_hierarchy = true;
4276 }
4277
4278 /* The following stuff does not apply to the root */
4279 if (!parent) {
4280 root_mem_cgroup = memcg;
4281 return &memcg->css;
4282 }
4283
4284 error = memcg_online_kmem(memcg);
4285 if (error)
4286 goto fail;
4287
4288 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4289 static_branch_inc(&memcg_sockets_enabled_key);
4290
4291 return &memcg->css;
4292 fail:
4293 mem_cgroup_free(memcg);
4294 return ERR_PTR(-ENOMEM);
4295 }
4296
4297 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4298 {
4299 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4300
4301 /* Online state pins memcg ID, memcg ID pins CSS */
4302 atomic_set(&memcg->id.ref, 1);
4303 css_get(css);
4304 return 0;
4305 }
4306
4307 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4308 {
4309 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4310 struct mem_cgroup_event *event, *tmp;
4311
4312 /*
4313 * Unregister events and notify userspace.
4314 * Notify userspace about cgroup removing only after rmdir of cgroup
4315 * directory to avoid race between userspace and kernelspace.
4316 */
4317 spin_lock(&memcg->event_list_lock);
4318 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4319 list_del_init(&event->list);
4320 schedule_work(&event->remove);
4321 }
4322 spin_unlock(&memcg->event_list_lock);
4323
4324 memcg->low = 0;
4325
4326 memcg_offline_kmem(memcg);
4327 wb_memcg_offline(memcg);
4328
4329 mem_cgroup_id_put(memcg);
4330 }
4331
4332 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4333 {
4334 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4335
4336 invalidate_reclaim_iterators(memcg);
4337 }
4338
4339 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4340 {
4341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4342
4343 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4344 static_branch_dec(&memcg_sockets_enabled_key);
4345
4346 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4347 static_branch_dec(&memcg_sockets_enabled_key);
4348
4349 vmpressure_cleanup(&memcg->vmpressure);
4350 cancel_work_sync(&memcg->high_work);
4351 mem_cgroup_remove_from_trees(memcg);
4352 memcg_free_kmem(memcg);
4353 mem_cgroup_free(memcg);
4354 }
4355
4356 /**
4357 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4358 * @css: the target css
4359 *
4360 * Reset the states of the mem_cgroup associated with @css. This is
4361 * invoked when the userland requests disabling on the default hierarchy
4362 * but the memcg is pinned through dependency. The memcg should stop
4363 * applying policies and should revert to the vanilla state as it may be
4364 * made visible again.
4365 *
4366 * The current implementation only resets the essential configurations.
4367 * This needs to be expanded to cover all the visible parts.
4368 */
4369 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4370 {
4371 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4372
4373 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4374 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4375 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4376 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4377 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4378 memcg->low = 0;
4379 memcg->high = PAGE_COUNTER_MAX;
4380 memcg->soft_limit = PAGE_COUNTER_MAX;
4381 memcg_wb_domain_size_changed(memcg);
4382 }
4383
4384 #ifdef CONFIG_MMU
4385 /* Handlers for move charge at task migration. */
4386 static int mem_cgroup_do_precharge(unsigned long count)
4387 {
4388 int ret;
4389
4390 /* Try a single bulk charge without reclaim first, kswapd may wake */
4391 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4392 if (!ret) {
4393 mc.precharge += count;
4394 return ret;
4395 }
4396
4397 /* Try charges one by one with reclaim, but do not retry */
4398 while (count--) {
4399 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4400 if (ret)
4401 return ret;
4402 mc.precharge++;
4403 cond_resched();
4404 }
4405 return 0;
4406 }
4407
4408 union mc_target {
4409 struct page *page;
4410 swp_entry_t ent;
4411 };
4412
4413 enum mc_target_type {
4414 MC_TARGET_NONE = 0,
4415 MC_TARGET_PAGE,
4416 MC_TARGET_SWAP,
4417 MC_TARGET_DEVICE,
4418 };
4419
4420 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4421 unsigned long addr, pte_t ptent)
4422 {
4423 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4424
4425 if (!page || !page_mapped(page))
4426 return NULL;
4427 if (PageAnon(page)) {
4428 if (!(mc.flags & MOVE_ANON))
4429 return NULL;
4430 } else {
4431 if (!(mc.flags & MOVE_FILE))
4432 return NULL;
4433 }
4434 if (!get_page_unless_zero(page))
4435 return NULL;
4436
4437 return page;
4438 }
4439
4440 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4441 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4442 pte_t ptent, swp_entry_t *entry)
4443 {
4444 struct page *page = NULL;
4445 swp_entry_t ent = pte_to_swp_entry(ptent);
4446
4447 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4448 return NULL;
4449
4450 /*
4451 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4452 * a device and because they are not accessible by CPU they are store
4453 * as special swap entry in the CPU page table.
4454 */
4455 if (is_device_private_entry(ent)) {
4456 page = device_private_entry_to_page(ent);
4457 /*
4458 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4459 * a refcount of 1 when free (unlike normal page)
4460 */
4461 if (!page_ref_add_unless(page, 1, 1))
4462 return NULL;
4463 return page;
4464 }
4465
4466 /*
4467 * Because lookup_swap_cache() updates some statistics counter,
4468 * we call find_get_page() with swapper_space directly.
4469 */
4470 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4471 if (do_memsw_account())
4472 entry->val = ent.val;
4473
4474 return page;
4475 }
4476 #else
4477 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4478 pte_t ptent, swp_entry_t *entry)
4479 {
4480 return NULL;
4481 }
4482 #endif
4483
4484 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4485 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4486 {
4487 struct page *page = NULL;
4488 struct address_space *mapping;
4489 pgoff_t pgoff;
4490
4491 if (!vma->vm_file) /* anonymous vma */
4492 return NULL;
4493 if (!(mc.flags & MOVE_FILE))
4494 return NULL;
4495
4496 mapping = vma->vm_file->f_mapping;
4497 pgoff = linear_page_index(vma, addr);
4498
4499 /* page is moved even if it's not RSS of this task(page-faulted). */
4500 #ifdef CONFIG_SWAP
4501 /* shmem/tmpfs may report page out on swap: account for that too. */
4502 if (shmem_mapping(mapping)) {
4503 page = find_get_entry(mapping, pgoff);
4504 if (radix_tree_exceptional_entry(page)) {
4505 swp_entry_t swp = radix_to_swp_entry(page);
4506 if (do_memsw_account())
4507 *entry = swp;
4508 page = find_get_page(swap_address_space(swp),
4509 swp_offset(swp));
4510 }
4511 } else
4512 page = find_get_page(mapping, pgoff);
4513 #else
4514 page = find_get_page(mapping, pgoff);
4515 #endif
4516 return page;
4517 }
4518
4519 /**
4520 * mem_cgroup_move_account - move account of the page
4521 * @page: the page
4522 * @compound: charge the page as compound or small page
4523 * @from: mem_cgroup which the page is moved from.
4524 * @to: mem_cgroup which the page is moved to. @from != @to.
4525 *
4526 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4527 *
4528 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4529 * from old cgroup.
4530 */
4531 static int mem_cgroup_move_account(struct page *page,
4532 bool compound,
4533 struct mem_cgroup *from,
4534 struct mem_cgroup *to)
4535 {
4536 unsigned long flags;
4537 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4538 int ret;
4539 bool anon;
4540
4541 VM_BUG_ON(from == to);
4542 VM_BUG_ON_PAGE(PageLRU(page), page);
4543 VM_BUG_ON(compound && !PageTransHuge(page));
4544
4545 /*
4546 * Prevent mem_cgroup_migrate() from looking at
4547 * page->mem_cgroup of its source page while we change it.
4548 */
4549 ret = -EBUSY;
4550 if (!trylock_page(page))
4551 goto out;
4552
4553 ret = -EINVAL;
4554 if (page->mem_cgroup != from)
4555 goto out_unlock;
4556
4557 anon = PageAnon(page);
4558
4559 spin_lock_irqsave(&from->move_lock, flags);
4560
4561 if (!anon && page_mapped(page)) {
4562 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4563 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4564 }
4565
4566 /*
4567 * move_lock grabbed above and caller set from->moving_account, so
4568 * mod_memcg_page_state will serialize updates to PageDirty.
4569 * So mapping should be stable for dirty pages.
4570 */
4571 if (!anon && PageDirty(page)) {
4572 struct address_space *mapping = page_mapping(page);
4573
4574 if (mapping_cap_account_dirty(mapping)) {
4575 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4576 nr_pages);
4577 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4578 nr_pages);
4579 }
4580 }
4581
4582 if (PageWriteback(page)) {
4583 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4584 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4585 }
4586
4587 /*
4588 * It is safe to change page->mem_cgroup here because the page
4589 * is referenced, charged, and isolated - we can't race with
4590 * uncharging, charging, migration, or LRU putback.
4591 */
4592
4593 /* caller should have done css_get */
4594 page->mem_cgroup = to;
4595 spin_unlock_irqrestore(&from->move_lock, flags);
4596
4597 ret = 0;
4598
4599 local_irq_disable();
4600 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4601 memcg_check_events(to, page);
4602 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4603 memcg_check_events(from, page);
4604 local_irq_enable();
4605 out_unlock:
4606 unlock_page(page);
4607 out:
4608 return ret;
4609 }
4610
4611 /**
4612 * get_mctgt_type - get target type of moving charge
4613 * @vma: the vma the pte to be checked belongs
4614 * @addr: the address corresponding to the pte to be checked
4615 * @ptent: the pte to be checked
4616 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4617 *
4618 * Returns
4619 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4620 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4621 * move charge. if @target is not NULL, the page is stored in target->page
4622 * with extra refcnt got(Callers should handle it).
4623 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4624 * target for charge migration. if @target is not NULL, the entry is stored
4625 * in target->ent.
4626 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4627 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4628 * For now we such page is charge like a regular page would be as for all
4629 * intent and purposes it is just special memory taking the place of a
4630 * regular page.
4631 *
4632 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4633 *
4634 * Called with pte lock held.
4635 */
4636
4637 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4638 unsigned long addr, pte_t ptent, union mc_target *target)
4639 {
4640 struct page *page = NULL;
4641 enum mc_target_type ret = MC_TARGET_NONE;
4642 swp_entry_t ent = { .val = 0 };
4643
4644 if (pte_present(ptent))
4645 page = mc_handle_present_pte(vma, addr, ptent);
4646 else if (is_swap_pte(ptent))
4647 page = mc_handle_swap_pte(vma, ptent, &ent);
4648 else if (pte_none(ptent))
4649 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4650
4651 if (!page && !ent.val)
4652 return ret;
4653 if (page) {
4654 /*
4655 * Do only loose check w/o serialization.
4656 * mem_cgroup_move_account() checks the page is valid or
4657 * not under LRU exclusion.
4658 */
4659 if (page->mem_cgroup == mc.from) {
4660 ret = MC_TARGET_PAGE;
4661 if (is_device_private_page(page) ||
4662 is_device_public_page(page))
4663 ret = MC_TARGET_DEVICE;
4664 if (target)
4665 target->page = page;
4666 }
4667 if (!ret || !target)
4668 put_page(page);
4669 }
4670 /*
4671 * There is a swap entry and a page doesn't exist or isn't charged.
4672 * But we cannot move a tail-page in a THP.
4673 */
4674 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4675 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4676 ret = MC_TARGET_SWAP;
4677 if (target)
4678 target->ent = ent;
4679 }
4680 return ret;
4681 }
4682
4683 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4684 /*
4685 * We don't consider PMD mapped swapping or file mapped pages because THP does
4686 * not support them for now.
4687 * Caller should make sure that pmd_trans_huge(pmd) is true.
4688 */
4689 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4690 unsigned long addr, pmd_t pmd, union mc_target *target)
4691 {
4692 struct page *page = NULL;
4693 enum mc_target_type ret = MC_TARGET_NONE;
4694
4695 if (unlikely(is_swap_pmd(pmd))) {
4696 VM_BUG_ON(thp_migration_supported() &&
4697 !is_pmd_migration_entry(pmd));
4698 return ret;
4699 }
4700 page = pmd_page(pmd);
4701 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4702 if (!(mc.flags & MOVE_ANON))
4703 return ret;
4704 if (page->mem_cgroup == mc.from) {
4705 ret = MC_TARGET_PAGE;
4706 if (target) {
4707 get_page(page);
4708 target->page = page;
4709 }
4710 }
4711 return ret;
4712 }
4713 #else
4714 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4715 unsigned long addr, pmd_t pmd, union mc_target *target)
4716 {
4717 return MC_TARGET_NONE;
4718 }
4719 #endif
4720
4721 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4722 unsigned long addr, unsigned long end,
4723 struct mm_walk *walk)
4724 {
4725 struct vm_area_struct *vma = walk->vma;
4726 pte_t *pte;
4727 spinlock_t *ptl;
4728
4729 ptl = pmd_trans_huge_lock(pmd, vma);
4730 if (ptl) {
4731 /*
4732 * Note their can not be MC_TARGET_DEVICE for now as we do not
4733 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4734 * MEMORY_DEVICE_PRIVATE but this might change.
4735 */
4736 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4737 mc.precharge += HPAGE_PMD_NR;
4738 spin_unlock(ptl);
4739 return 0;
4740 }
4741
4742 if (pmd_trans_unstable(pmd))
4743 return 0;
4744 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4745 for (; addr != end; pte++, addr += PAGE_SIZE)
4746 if (get_mctgt_type(vma, addr, *pte, NULL))
4747 mc.precharge++; /* increment precharge temporarily */
4748 pte_unmap_unlock(pte - 1, ptl);
4749 cond_resched();
4750
4751 return 0;
4752 }
4753
4754 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4755 {
4756 unsigned long precharge;
4757
4758 struct mm_walk mem_cgroup_count_precharge_walk = {
4759 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4760 .mm = mm,
4761 };
4762 down_read(&mm->mmap_sem);
4763 walk_page_range(0, mm->highest_vm_end,
4764 &mem_cgroup_count_precharge_walk);
4765 up_read(&mm->mmap_sem);
4766
4767 precharge = mc.precharge;
4768 mc.precharge = 0;
4769
4770 return precharge;
4771 }
4772
4773 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4774 {
4775 unsigned long precharge = mem_cgroup_count_precharge(mm);
4776
4777 VM_BUG_ON(mc.moving_task);
4778 mc.moving_task = current;
4779 return mem_cgroup_do_precharge(precharge);
4780 }
4781
4782 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4783 static void __mem_cgroup_clear_mc(void)
4784 {
4785 struct mem_cgroup *from = mc.from;
4786 struct mem_cgroup *to = mc.to;
4787
4788 /* we must uncharge all the leftover precharges from mc.to */
4789 if (mc.precharge) {
4790 cancel_charge(mc.to, mc.precharge);
4791 mc.precharge = 0;
4792 }
4793 /*
4794 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4795 * we must uncharge here.
4796 */
4797 if (mc.moved_charge) {
4798 cancel_charge(mc.from, mc.moved_charge);
4799 mc.moved_charge = 0;
4800 }
4801 /* we must fixup refcnts and charges */
4802 if (mc.moved_swap) {
4803 /* uncharge swap account from the old cgroup */
4804 if (!mem_cgroup_is_root(mc.from))
4805 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4806
4807 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4808
4809 /*
4810 * we charged both to->memory and to->memsw, so we
4811 * should uncharge to->memory.
4812 */
4813 if (!mem_cgroup_is_root(mc.to))
4814 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4815
4816 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4817 css_put_many(&mc.to->css, mc.moved_swap);
4818
4819 mc.moved_swap = 0;
4820 }
4821 memcg_oom_recover(from);
4822 memcg_oom_recover(to);
4823 wake_up_all(&mc.waitq);
4824 }
4825
4826 static void mem_cgroup_clear_mc(void)
4827 {
4828 struct mm_struct *mm = mc.mm;
4829
4830 /*
4831 * we must clear moving_task before waking up waiters at the end of
4832 * task migration.
4833 */
4834 mc.moving_task = NULL;
4835 __mem_cgroup_clear_mc();
4836 spin_lock(&mc.lock);
4837 mc.from = NULL;
4838 mc.to = NULL;
4839 mc.mm = NULL;
4840 spin_unlock(&mc.lock);
4841
4842 mmput(mm);
4843 }
4844
4845 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4846 {
4847 struct cgroup_subsys_state *css;
4848 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4849 struct mem_cgroup *from;
4850 struct task_struct *leader, *p;
4851 struct mm_struct *mm;
4852 unsigned long move_flags;
4853 int ret = 0;
4854
4855 /* charge immigration isn't supported on the default hierarchy */
4856 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4857 return 0;
4858
4859 /*
4860 * Multi-process migrations only happen on the default hierarchy
4861 * where charge immigration is not used. Perform charge
4862 * immigration if @tset contains a leader and whine if there are
4863 * multiple.
4864 */
4865 p = NULL;
4866 cgroup_taskset_for_each_leader(leader, css, tset) {
4867 WARN_ON_ONCE(p);
4868 p = leader;
4869 memcg = mem_cgroup_from_css(css);
4870 }
4871 if (!p)
4872 return 0;
4873
4874 /*
4875 * We are now commited to this value whatever it is. Changes in this
4876 * tunable will only affect upcoming migrations, not the current one.
4877 * So we need to save it, and keep it going.
4878 */
4879 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4880 if (!move_flags)
4881 return 0;
4882
4883 from = mem_cgroup_from_task(p);
4884
4885 VM_BUG_ON(from == memcg);
4886
4887 mm = get_task_mm(p);
4888 if (!mm)
4889 return 0;
4890 /* We move charges only when we move a owner of the mm */
4891 if (mm->owner == p) {
4892 VM_BUG_ON(mc.from);
4893 VM_BUG_ON(mc.to);
4894 VM_BUG_ON(mc.precharge);
4895 VM_BUG_ON(mc.moved_charge);
4896 VM_BUG_ON(mc.moved_swap);
4897
4898 spin_lock(&mc.lock);
4899 mc.mm = mm;
4900 mc.from = from;
4901 mc.to = memcg;
4902 mc.flags = move_flags;
4903 spin_unlock(&mc.lock);
4904 /* We set mc.moving_task later */
4905
4906 ret = mem_cgroup_precharge_mc(mm);
4907 if (ret)
4908 mem_cgroup_clear_mc();
4909 } else {
4910 mmput(mm);
4911 }
4912 return ret;
4913 }
4914
4915 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4916 {
4917 if (mc.to)
4918 mem_cgroup_clear_mc();
4919 }
4920
4921 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4922 unsigned long addr, unsigned long end,
4923 struct mm_walk *walk)
4924 {
4925 int ret = 0;
4926 struct vm_area_struct *vma = walk->vma;
4927 pte_t *pte;
4928 spinlock_t *ptl;
4929 enum mc_target_type target_type;
4930 union mc_target target;
4931 struct page *page;
4932
4933 ptl = pmd_trans_huge_lock(pmd, vma);
4934 if (ptl) {
4935 if (mc.precharge < HPAGE_PMD_NR) {
4936 spin_unlock(ptl);
4937 return 0;
4938 }
4939 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4940 if (target_type == MC_TARGET_PAGE) {
4941 page = target.page;
4942 if (!isolate_lru_page(page)) {
4943 if (!mem_cgroup_move_account(page, true,
4944 mc.from, mc.to)) {
4945 mc.precharge -= HPAGE_PMD_NR;
4946 mc.moved_charge += HPAGE_PMD_NR;
4947 }
4948 putback_lru_page(page);
4949 }
4950 put_page(page);
4951 } else if (target_type == MC_TARGET_DEVICE) {
4952 page = target.page;
4953 if (!mem_cgroup_move_account(page, true,
4954 mc.from, mc.to)) {
4955 mc.precharge -= HPAGE_PMD_NR;
4956 mc.moved_charge += HPAGE_PMD_NR;
4957 }
4958 put_page(page);
4959 }
4960 spin_unlock(ptl);
4961 return 0;
4962 }
4963
4964 if (pmd_trans_unstable(pmd))
4965 return 0;
4966 retry:
4967 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4968 for (; addr != end; addr += PAGE_SIZE) {
4969 pte_t ptent = *(pte++);
4970 bool device = false;
4971 swp_entry_t ent;
4972
4973 if (!mc.precharge)
4974 break;
4975
4976 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4977 case MC_TARGET_DEVICE:
4978 device = true;
4979 /* fall through */
4980 case MC_TARGET_PAGE:
4981 page = target.page;
4982 /*
4983 * We can have a part of the split pmd here. Moving it
4984 * can be done but it would be too convoluted so simply
4985 * ignore such a partial THP and keep it in original
4986 * memcg. There should be somebody mapping the head.
4987 */
4988 if (PageTransCompound(page))
4989 goto put;
4990 if (!device && isolate_lru_page(page))
4991 goto put;
4992 if (!mem_cgroup_move_account(page, false,
4993 mc.from, mc.to)) {
4994 mc.precharge--;
4995 /* we uncharge from mc.from later. */
4996 mc.moved_charge++;
4997 }
4998 if (!device)
4999 putback_lru_page(page);
5000 put: /* get_mctgt_type() gets the page */
5001 put_page(page);
5002 break;
5003 case MC_TARGET_SWAP:
5004 ent = target.ent;
5005 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5006 mc.precharge--;
5007 /* we fixup refcnts and charges later. */
5008 mc.moved_swap++;
5009 }
5010 break;
5011 default:
5012 break;
5013 }
5014 }
5015 pte_unmap_unlock(pte - 1, ptl);
5016 cond_resched();
5017
5018 if (addr != end) {
5019 /*
5020 * We have consumed all precharges we got in can_attach().
5021 * We try charge one by one, but don't do any additional
5022 * charges to mc.to if we have failed in charge once in attach()
5023 * phase.
5024 */
5025 ret = mem_cgroup_do_precharge(1);
5026 if (!ret)
5027 goto retry;
5028 }
5029
5030 return ret;
5031 }
5032
5033 static void mem_cgroup_move_charge(void)
5034 {
5035 struct mm_walk mem_cgroup_move_charge_walk = {
5036 .pmd_entry = mem_cgroup_move_charge_pte_range,
5037 .mm = mc.mm,
5038 };
5039
5040 lru_add_drain_all();
5041 /*
5042 * Signal lock_page_memcg() to take the memcg's move_lock
5043 * while we're moving its pages to another memcg. Then wait
5044 * for already started RCU-only updates to finish.
5045 */
5046 atomic_inc(&mc.from->moving_account);
5047 synchronize_rcu();
5048 retry:
5049 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5050 /*
5051 * Someone who are holding the mmap_sem might be waiting in
5052 * waitq. So we cancel all extra charges, wake up all waiters,
5053 * and retry. Because we cancel precharges, we might not be able
5054 * to move enough charges, but moving charge is a best-effort
5055 * feature anyway, so it wouldn't be a big problem.
5056 */
5057 __mem_cgroup_clear_mc();
5058 cond_resched();
5059 goto retry;
5060 }
5061 /*
5062 * When we have consumed all precharges and failed in doing
5063 * additional charge, the page walk just aborts.
5064 */
5065 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5066
5067 up_read(&mc.mm->mmap_sem);
5068 atomic_dec(&mc.from->moving_account);
5069 }
5070
5071 static void mem_cgroup_move_task(void)
5072 {
5073 if (mc.to) {
5074 mem_cgroup_move_charge();
5075 mem_cgroup_clear_mc();
5076 }
5077 }
5078 #else /* !CONFIG_MMU */
5079 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5080 {
5081 return 0;
5082 }
5083 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5084 {
5085 }
5086 static void mem_cgroup_move_task(void)
5087 {
5088 }
5089 #endif
5090
5091 /*
5092 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5093 * to verify whether we're attached to the default hierarchy on each mount
5094 * attempt.
5095 */
5096 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5097 {
5098 /*
5099 * use_hierarchy is forced on the default hierarchy. cgroup core
5100 * guarantees that @root doesn't have any children, so turning it
5101 * on for the root memcg is enough.
5102 */
5103 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5104 root_mem_cgroup->use_hierarchy = true;
5105 else
5106 root_mem_cgroup->use_hierarchy = false;
5107 }
5108
5109 static u64 memory_current_read(struct cgroup_subsys_state *css,
5110 struct cftype *cft)
5111 {
5112 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5113
5114 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5115 }
5116
5117 static int memory_low_show(struct seq_file *m, void *v)
5118 {
5119 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5120 unsigned long low = READ_ONCE(memcg->low);
5121
5122 if (low == PAGE_COUNTER_MAX)
5123 seq_puts(m, "max\n");
5124 else
5125 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5126
5127 return 0;
5128 }
5129
5130 static ssize_t memory_low_write(struct kernfs_open_file *of,
5131 char *buf, size_t nbytes, loff_t off)
5132 {
5133 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5134 unsigned long low;
5135 int err;
5136
5137 buf = strstrip(buf);
5138 err = page_counter_memparse(buf, "max", &low);
5139 if (err)
5140 return err;
5141
5142 memcg->low = low;
5143
5144 return nbytes;
5145 }
5146
5147 static int memory_high_show(struct seq_file *m, void *v)
5148 {
5149 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5150 unsigned long high = READ_ONCE(memcg->high);
5151
5152 if (high == PAGE_COUNTER_MAX)
5153 seq_puts(m, "max\n");
5154 else
5155 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5156
5157 return 0;
5158 }
5159
5160 static ssize_t memory_high_write(struct kernfs_open_file *of,
5161 char *buf, size_t nbytes, loff_t off)
5162 {
5163 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5164 unsigned long nr_pages;
5165 unsigned long high;
5166 int err;
5167
5168 buf = strstrip(buf);
5169 err = page_counter_memparse(buf, "max", &high);
5170 if (err)
5171 return err;
5172
5173 memcg->high = high;
5174
5175 nr_pages = page_counter_read(&memcg->memory);
5176 if (nr_pages > high)
5177 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5178 GFP_KERNEL, true);
5179
5180 memcg_wb_domain_size_changed(memcg);
5181 return nbytes;
5182 }
5183
5184 static int memory_max_show(struct seq_file *m, void *v)
5185 {
5186 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5187 unsigned long max = READ_ONCE(memcg->memory.limit);
5188
5189 if (max == PAGE_COUNTER_MAX)
5190 seq_puts(m, "max\n");
5191 else
5192 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5193
5194 return 0;
5195 }
5196
5197 static ssize_t memory_max_write(struct kernfs_open_file *of,
5198 char *buf, size_t nbytes, loff_t off)
5199 {
5200 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5201 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5202 bool drained = false;
5203 unsigned long max;
5204 int err;
5205
5206 buf = strstrip(buf);
5207 err = page_counter_memparse(buf, "max", &max);
5208 if (err)
5209 return err;
5210
5211 xchg(&memcg->memory.limit, max);
5212
5213 for (;;) {
5214 unsigned long nr_pages = page_counter_read(&memcg->memory);
5215
5216 if (nr_pages <= max)
5217 break;
5218
5219 if (signal_pending(current)) {
5220 err = -EINTR;
5221 break;
5222 }
5223
5224 if (!drained) {
5225 drain_all_stock(memcg);
5226 drained = true;
5227 continue;
5228 }
5229
5230 if (nr_reclaims) {
5231 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5232 GFP_KERNEL, true))
5233 nr_reclaims--;
5234 continue;
5235 }
5236
5237 mem_cgroup_event(memcg, MEMCG_OOM);
5238 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5239 break;
5240 }
5241
5242 memcg_wb_domain_size_changed(memcg);
5243 return nbytes;
5244 }
5245
5246 static int memory_events_show(struct seq_file *m, void *v)
5247 {
5248 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5249
5250 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5251 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5252 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5253 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5254 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5255
5256 return 0;
5257 }
5258
5259 static int memory_stat_show(struct seq_file *m, void *v)
5260 {
5261 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5262 unsigned long stat[MEMCG_NR_STAT];
5263 unsigned long events[MEMCG_NR_EVENTS];
5264 int i;
5265
5266 /*
5267 * Provide statistics on the state of the memory subsystem as
5268 * well as cumulative event counters that show past behavior.
5269 *
5270 * This list is ordered following a combination of these gradients:
5271 * 1) generic big picture -> specifics and details
5272 * 2) reflecting userspace activity -> reflecting kernel heuristics
5273 *
5274 * Current memory state:
5275 */
5276
5277 tree_stat(memcg, stat);
5278 tree_events(memcg, events);
5279
5280 seq_printf(m, "anon %llu\n",
5281 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5282 seq_printf(m, "file %llu\n",
5283 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5284 seq_printf(m, "kernel_stack %llu\n",
5285 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5286 seq_printf(m, "slab %llu\n",
5287 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5288 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5289 seq_printf(m, "sock %llu\n",
5290 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5291
5292 seq_printf(m, "shmem %llu\n",
5293 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5294 seq_printf(m, "file_mapped %llu\n",
5295 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5296 seq_printf(m, "file_dirty %llu\n",
5297 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5298 seq_printf(m, "file_writeback %llu\n",
5299 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5300
5301 for (i = 0; i < NR_LRU_LISTS; i++) {
5302 struct mem_cgroup *mi;
5303 unsigned long val = 0;
5304
5305 for_each_mem_cgroup_tree(mi, memcg)
5306 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5307 seq_printf(m, "%s %llu\n",
5308 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5309 }
5310
5311 seq_printf(m, "slab_reclaimable %llu\n",
5312 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5313 seq_printf(m, "slab_unreclaimable %llu\n",
5314 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5315
5316 /* Accumulated memory events */
5317
5318 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5319 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5320
5321 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5322 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5323 events[PGSCAN_DIRECT]);
5324 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5325 events[PGSTEAL_DIRECT]);
5326 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5327 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5328 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5329 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5330
5331 seq_printf(m, "workingset_refault %lu\n",
5332 stat[WORKINGSET_REFAULT]);
5333 seq_printf(m, "workingset_activate %lu\n",
5334 stat[WORKINGSET_ACTIVATE]);
5335 seq_printf(m, "workingset_nodereclaim %lu\n",
5336 stat[WORKINGSET_NODERECLAIM]);
5337
5338 return 0;
5339 }
5340
5341 static struct cftype memory_files[] = {
5342 {
5343 .name = "current",
5344 .flags = CFTYPE_NOT_ON_ROOT,
5345 .read_u64 = memory_current_read,
5346 },
5347 {
5348 .name = "low",
5349 .flags = CFTYPE_NOT_ON_ROOT,
5350 .seq_show = memory_low_show,
5351 .write = memory_low_write,
5352 },
5353 {
5354 .name = "high",
5355 .flags = CFTYPE_NOT_ON_ROOT,
5356 .seq_show = memory_high_show,
5357 .write = memory_high_write,
5358 },
5359 {
5360 .name = "max",
5361 .flags = CFTYPE_NOT_ON_ROOT,
5362 .seq_show = memory_max_show,
5363 .write = memory_max_write,
5364 },
5365 {
5366 .name = "events",
5367 .flags = CFTYPE_NOT_ON_ROOT,
5368 .file_offset = offsetof(struct mem_cgroup, events_file),
5369 .seq_show = memory_events_show,
5370 },
5371 {
5372 .name = "stat",
5373 .flags = CFTYPE_NOT_ON_ROOT,
5374 .seq_show = memory_stat_show,
5375 },
5376 { } /* terminate */
5377 };
5378
5379 struct cgroup_subsys memory_cgrp_subsys = {
5380 .css_alloc = mem_cgroup_css_alloc,
5381 .css_online = mem_cgroup_css_online,
5382 .css_offline = mem_cgroup_css_offline,
5383 .css_released = mem_cgroup_css_released,
5384 .css_free = mem_cgroup_css_free,
5385 .css_reset = mem_cgroup_css_reset,
5386 .can_attach = mem_cgroup_can_attach,
5387 .cancel_attach = mem_cgroup_cancel_attach,
5388 .post_attach = mem_cgroup_move_task,
5389 .bind = mem_cgroup_bind,
5390 .dfl_cftypes = memory_files,
5391 .legacy_cftypes = mem_cgroup_legacy_files,
5392 .early_init = 0,
5393 };
5394
5395 /**
5396 * mem_cgroup_low - check if memory consumption is below the normal range
5397 * @root: the top ancestor of the sub-tree being checked
5398 * @memcg: the memory cgroup to check
5399 *
5400 * Returns %true if memory consumption of @memcg, and that of all
5401 * ancestors up to (but not including) @root, is below the normal range.
5402 *
5403 * @root is exclusive; it is never low when looked at directly and isn't
5404 * checked when traversing the hierarchy.
5405 *
5406 * Excluding @root enables using memory.low to prioritize memory usage
5407 * between cgroups within a subtree of the hierarchy that is limited by
5408 * memory.high or memory.max.
5409 *
5410 * For example, given cgroup A with children B and C:
5411 *
5412 * A
5413 * / \
5414 * B C
5415 *
5416 * and
5417 *
5418 * 1. A/memory.current > A/memory.high
5419 * 2. A/B/memory.current < A/B/memory.low
5420 * 3. A/C/memory.current >= A/C/memory.low
5421 *
5422 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5423 * should reclaim from 'C' until 'A' is no longer high or until we can
5424 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5425 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5426 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5427 */
5428 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5429 {
5430 if (mem_cgroup_disabled())
5431 return false;
5432
5433 if (!root)
5434 root = root_mem_cgroup;
5435 if (memcg == root)
5436 return false;
5437
5438 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5439 if (page_counter_read(&memcg->memory) >= memcg->low)
5440 return false;
5441 }
5442
5443 return true;
5444 }
5445
5446 /**
5447 * mem_cgroup_try_charge - try charging a page
5448 * @page: page to charge
5449 * @mm: mm context of the victim
5450 * @gfp_mask: reclaim mode
5451 * @memcgp: charged memcg return
5452 * @compound: charge the page as compound or small page
5453 *
5454 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5455 * pages according to @gfp_mask if necessary.
5456 *
5457 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5458 * Otherwise, an error code is returned.
5459 *
5460 * After page->mapping has been set up, the caller must finalize the
5461 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5462 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5463 */
5464 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5465 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5466 bool compound)
5467 {
5468 struct mem_cgroup *memcg = NULL;
5469 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5470 int ret = 0;
5471
5472 if (mem_cgroup_disabled())
5473 goto out;
5474
5475 if (PageSwapCache(page)) {
5476 /*
5477 * Every swap fault against a single page tries to charge the
5478 * page, bail as early as possible. shmem_unuse() encounters
5479 * already charged pages, too. The USED bit is protected by
5480 * the page lock, which serializes swap cache removal, which
5481 * in turn serializes uncharging.
5482 */
5483 VM_BUG_ON_PAGE(!PageLocked(page), page);
5484 if (compound_head(page)->mem_cgroup)
5485 goto out;
5486
5487 if (do_swap_account) {
5488 swp_entry_t ent = { .val = page_private(page), };
5489 unsigned short id = lookup_swap_cgroup_id(ent);
5490
5491 rcu_read_lock();
5492 memcg = mem_cgroup_from_id(id);
5493 if (memcg && !css_tryget_online(&memcg->css))
5494 memcg = NULL;
5495 rcu_read_unlock();
5496 }
5497 }
5498
5499 if (!memcg)
5500 memcg = get_mem_cgroup_from_mm(mm);
5501
5502 ret = try_charge(memcg, gfp_mask, nr_pages);
5503
5504 css_put(&memcg->css);
5505 out:
5506 *memcgp = memcg;
5507 return ret;
5508 }
5509
5510 /**
5511 * mem_cgroup_commit_charge - commit a page charge
5512 * @page: page to charge
5513 * @memcg: memcg to charge the page to
5514 * @lrucare: page might be on LRU already
5515 * @compound: charge the page as compound or small page
5516 *
5517 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5518 * after page->mapping has been set up. This must happen atomically
5519 * as part of the page instantiation, i.e. under the page table lock
5520 * for anonymous pages, under the page lock for page and swap cache.
5521 *
5522 * In addition, the page must not be on the LRU during the commit, to
5523 * prevent racing with task migration. If it might be, use @lrucare.
5524 *
5525 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5526 */
5527 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5528 bool lrucare, bool compound)
5529 {
5530 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5531
5532 VM_BUG_ON_PAGE(!page->mapping, page);
5533 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5534
5535 if (mem_cgroup_disabled())
5536 return;
5537 /*
5538 * Swap faults will attempt to charge the same page multiple
5539 * times. But reuse_swap_page() might have removed the page
5540 * from swapcache already, so we can't check PageSwapCache().
5541 */
5542 if (!memcg)
5543 return;
5544
5545 commit_charge(page, memcg, lrucare);
5546
5547 local_irq_disable();
5548 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5549 memcg_check_events(memcg, page);
5550 local_irq_enable();
5551
5552 if (do_memsw_account() && PageSwapCache(page)) {
5553 swp_entry_t entry = { .val = page_private(page) };
5554 /*
5555 * The swap entry might not get freed for a long time,
5556 * let's not wait for it. The page already received a
5557 * memory+swap charge, drop the swap entry duplicate.
5558 */
5559 mem_cgroup_uncharge_swap(entry, nr_pages);
5560 }
5561 }
5562
5563 /**
5564 * mem_cgroup_cancel_charge - cancel a page charge
5565 * @page: page to charge
5566 * @memcg: memcg to charge the page to
5567 * @compound: charge the page as compound or small page
5568 *
5569 * Cancel a charge transaction started by mem_cgroup_try_charge().
5570 */
5571 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5572 bool compound)
5573 {
5574 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5575
5576 if (mem_cgroup_disabled())
5577 return;
5578 /*
5579 * Swap faults will attempt to charge the same page multiple
5580 * times. But reuse_swap_page() might have removed the page
5581 * from swapcache already, so we can't check PageSwapCache().
5582 */
5583 if (!memcg)
5584 return;
5585
5586 cancel_charge(memcg, nr_pages);
5587 }
5588
5589 struct uncharge_gather {
5590 struct mem_cgroup *memcg;
5591 unsigned long pgpgout;
5592 unsigned long nr_anon;
5593 unsigned long nr_file;
5594 unsigned long nr_kmem;
5595 unsigned long nr_huge;
5596 unsigned long nr_shmem;
5597 struct page *dummy_page;
5598 };
5599
5600 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5601 {
5602 memset(ug, 0, sizeof(*ug));
5603 }
5604
5605 static void uncharge_batch(const struct uncharge_gather *ug)
5606 {
5607 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5608 unsigned long flags;
5609
5610 if (!mem_cgroup_is_root(ug->memcg)) {
5611 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5612 if (do_memsw_account())
5613 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5614 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5615 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5616 memcg_oom_recover(ug->memcg);
5617 }
5618
5619 local_irq_save(flags);
5620 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5621 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5622 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5623 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5624 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5625 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5626 memcg_check_events(ug->memcg, ug->dummy_page);
5627 local_irq_restore(flags);
5628
5629 if (!mem_cgroup_is_root(ug->memcg))
5630 css_put_many(&ug->memcg->css, nr_pages);
5631 }
5632
5633 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5634 {
5635 VM_BUG_ON_PAGE(PageLRU(page), page);
5636 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5637
5638 if (!page->mem_cgroup)
5639 return;
5640
5641 /*
5642 * Nobody should be changing or seriously looking at
5643 * page->mem_cgroup at this point, we have fully
5644 * exclusive access to the page.
5645 */
5646
5647 if (ug->memcg != page->mem_cgroup) {
5648 if (ug->memcg) {
5649 uncharge_batch(ug);
5650 uncharge_gather_clear(ug);
5651 }
5652 ug->memcg = page->mem_cgroup;
5653 }
5654
5655 if (!PageKmemcg(page)) {
5656 unsigned int nr_pages = 1;
5657
5658 if (PageTransHuge(page)) {
5659 nr_pages <<= compound_order(page);
5660 ug->nr_huge += nr_pages;
5661 }
5662 if (PageAnon(page))
5663 ug->nr_anon += nr_pages;
5664 else {
5665 ug->nr_file += nr_pages;
5666 if (PageSwapBacked(page))
5667 ug->nr_shmem += nr_pages;
5668 }
5669 ug->pgpgout++;
5670 } else {
5671 ug->nr_kmem += 1 << compound_order(page);
5672 __ClearPageKmemcg(page);
5673 }
5674
5675 ug->dummy_page = page;
5676 page->mem_cgroup = NULL;
5677 }
5678
5679 static void uncharge_list(struct list_head *page_list)
5680 {
5681 struct uncharge_gather ug;
5682 struct list_head *next;
5683
5684 uncharge_gather_clear(&ug);
5685
5686 /*
5687 * Note that the list can be a single page->lru; hence the
5688 * do-while loop instead of a simple list_for_each_entry().
5689 */
5690 next = page_list->next;
5691 do {
5692 struct page *page;
5693
5694 page = list_entry(next, struct page, lru);
5695 next = page->lru.next;
5696
5697 uncharge_page(page, &ug);
5698 } while (next != page_list);
5699
5700 if (ug.memcg)
5701 uncharge_batch(&ug);
5702 }
5703
5704 /**
5705 * mem_cgroup_uncharge - uncharge a page
5706 * @page: page to uncharge
5707 *
5708 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5709 * mem_cgroup_commit_charge().
5710 */
5711 void mem_cgroup_uncharge(struct page *page)
5712 {
5713 struct uncharge_gather ug;
5714
5715 if (mem_cgroup_disabled())
5716 return;
5717
5718 /* Don't touch page->lru of any random page, pre-check: */
5719 if (!page->mem_cgroup)
5720 return;
5721
5722 uncharge_gather_clear(&ug);
5723 uncharge_page(page, &ug);
5724 uncharge_batch(&ug);
5725 }
5726
5727 /**
5728 * mem_cgroup_uncharge_list - uncharge a list of page
5729 * @page_list: list of pages to uncharge
5730 *
5731 * Uncharge a list of pages previously charged with
5732 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5733 */
5734 void mem_cgroup_uncharge_list(struct list_head *page_list)
5735 {
5736 if (mem_cgroup_disabled())
5737 return;
5738
5739 if (!list_empty(page_list))
5740 uncharge_list(page_list);
5741 }
5742
5743 /**
5744 * mem_cgroup_migrate - charge a page's replacement
5745 * @oldpage: currently circulating page
5746 * @newpage: replacement page
5747 *
5748 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5749 * be uncharged upon free.
5750 *
5751 * Both pages must be locked, @newpage->mapping must be set up.
5752 */
5753 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5754 {
5755 struct mem_cgroup *memcg;
5756 unsigned int nr_pages;
5757 bool compound;
5758 unsigned long flags;
5759
5760 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5761 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5762 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5763 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5764 newpage);
5765
5766 if (mem_cgroup_disabled())
5767 return;
5768
5769 /* Page cache replacement: new page already charged? */
5770 if (newpage->mem_cgroup)
5771 return;
5772
5773 /* Swapcache readahead pages can get replaced before being charged */
5774 memcg = oldpage->mem_cgroup;
5775 if (!memcg)
5776 return;
5777
5778 /* Force-charge the new page. The old one will be freed soon */
5779 compound = PageTransHuge(newpage);
5780 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5781
5782 page_counter_charge(&memcg->memory, nr_pages);
5783 if (do_memsw_account())
5784 page_counter_charge(&memcg->memsw, nr_pages);
5785 css_get_many(&memcg->css, nr_pages);
5786
5787 commit_charge(newpage, memcg, false);
5788
5789 local_irq_save(flags);
5790 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5791 memcg_check_events(memcg, newpage);
5792 local_irq_restore(flags);
5793 }
5794
5795 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5796 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5797
5798 void mem_cgroup_sk_alloc(struct sock *sk)
5799 {
5800 struct mem_cgroup *memcg;
5801
5802 if (!mem_cgroup_sockets_enabled)
5803 return;
5804
5805 /*
5806 * Socket cloning can throw us here with sk_memcg already
5807 * filled. It won't however, necessarily happen from
5808 * process context. So the test for root memcg given
5809 * the current task's memcg won't help us in this case.
5810 *
5811 * Respecting the original socket's memcg is a better
5812 * decision in this case.
5813 */
5814 if (sk->sk_memcg) {
5815 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5816 css_get(&sk->sk_memcg->css);
5817 return;
5818 }
5819
5820 rcu_read_lock();
5821 memcg = mem_cgroup_from_task(current);
5822 if (memcg == root_mem_cgroup)
5823 goto out;
5824 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5825 goto out;
5826 if (css_tryget_online(&memcg->css))
5827 sk->sk_memcg = memcg;
5828 out:
5829 rcu_read_unlock();
5830 }
5831
5832 void mem_cgroup_sk_free(struct sock *sk)
5833 {
5834 if (sk->sk_memcg)
5835 css_put(&sk->sk_memcg->css);
5836 }
5837
5838 /**
5839 * mem_cgroup_charge_skmem - charge socket memory
5840 * @memcg: memcg to charge
5841 * @nr_pages: number of pages to charge
5842 *
5843 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5844 * @memcg's configured limit, %false if the charge had to be forced.
5845 */
5846 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5847 {
5848 gfp_t gfp_mask = GFP_KERNEL;
5849
5850 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5851 struct page_counter *fail;
5852
5853 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5854 memcg->tcpmem_pressure = 0;
5855 return true;
5856 }
5857 page_counter_charge(&memcg->tcpmem, nr_pages);
5858 memcg->tcpmem_pressure = 1;
5859 return false;
5860 }
5861
5862 /* Don't block in the packet receive path */
5863 if (in_softirq())
5864 gfp_mask = GFP_NOWAIT;
5865
5866 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5867
5868 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5869 return true;
5870
5871 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5872 return false;
5873 }
5874
5875 /**
5876 * mem_cgroup_uncharge_skmem - uncharge socket memory
5877 * @memcg - memcg to uncharge
5878 * @nr_pages - number of pages to uncharge
5879 */
5880 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5881 {
5882 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5883 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5884 return;
5885 }
5886
5887 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5888
5889 page_counter_uncharge(&memcg->memory, nr_pages);
5890 css_put_many(&memcg->css, nr_pages);
5891 }
5892
5893 static int __init cgroup_memory(char *s)
5894 {
5895 char *token;
5896
5897 while ((token = strsep(&s, ",")) != NULL) {
5898 if (!*token)
5899 continue;
5900 if (!strcmp(token, "nosocket"))
5901 cgroup_memory_nosocket = true;
5902 if (!strcmp(token, "nokmem"))
5903 cgroup_memory_nokmem = true;
5904 }
5905 return 0;
5906 }
5907 __setup("cgroup.memory=", cgroup_memory);
5908
5909 /*
5910 * subsys_initcall() for memory controller.
5911 *
5912 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5913 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5914 * basically everything that doesn't depend on a specific mem_cgroup structure
5915 * should be initialized from here.
5916 */
5917 static int __init mem_cgroup_init(void)
5918 {
5919 int cpu, node;
5920
5921 #ifndef CONFIG_SLOB
5922 /*
5923 * Kmem cache creation is mostly done with the slab_mutex held,
5924 * so use a workqueue with limited concurrency to avoid stalling
5925 * all worker threads in case lots of cgroups are created and
5926 * destroyed simultaneously.
5927 */
5928 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5929 BUG_ON(!memcg_kmem_cache_wq);
5930 #endif
5931
5932 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5933 memcg_hotplug_cpu_dead);
5934
5935 for_each_possible_cpu(cpu)
5936 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5937 drain_local_stock);
5938
5939 for_each_node(node) {
5940 struct mem_cgroup_tree_per_node *rtpn;
5941
5942 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5943 node_online(node) ? node : NUMA_NO_NODE);
5944
5945 rtpn->rb_root = RB_ROOT;
5946 spin_lock_init(&rtpn->lock);
5947 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5948 }
5949
5950 return 0;
5951 }
5952 subsys_initcall(mem_cgroup_init);
5953
5954 #ifdef CONFIG_MEMCG_SWAP
5955 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5956 {
5957 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5958 /*
5959 * The root cgroup cannot be destroyed, so it's refcount must
5960 * always be >= 1.
5961 */
5962 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5963 VM_BUG_ON(1);
5964 break;
5965 }
5966 memcg = parent_mem_cgroup(memcg);
5967 if (!memcg)
5968 memcg = root_mem_cgroup;
5969 }
5970 return memcg;
5971 }
5972
5973 /**
5974 * mem_cgroup_swapout - transfer a memsw charge to swap
5975 * @page: page whose memsw charge to transfer
5976 * @entry: swap entry to move the charge to
5977 *
5978 * Transfer the memsw charge of @page to @entry.
5979 */
5980 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5981 {
5982 struct mem_cgroup *memcg, *swap_memcg;
5983 unsigned int nr_entries;
5984 unsigned short oldid;
5985
5986 VM_BUG_ON_PAGE(PageLRU(page), page);
5987 VM_BUG_ON_PAGE(page_count(page), page);
5988
5989 if (!do_memsw_account())
5990 return;
5991
5992 memcg = page->mem_cgroup;
5993
5994 /* Readahead page, never charged */
5995 if (!memcg)
5996 return;
5997
5998 /*
5999 * In case the memcg owning these pages has been offlined and doesn't
6000 * have an ID allocated to it anymore, charge the closest online
6001 * ancestor for the swap instead and transfer the memory+swap charge.
6002 */
6003 swap_memcg = mem_cgroup_id_get_online(memcg);
6004 nr_entries = hpage_nr_pages(page);
6005 /* Get references for the tail pages, too */
6006 if (nr_entries > 1)
6007 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6008 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6009 nr_entries);
6010 VM_BUG_ON_PAGE(oldid, page);
6011 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6012
6013 page->mem_cgroup = NULL;
6014
6015 if (!mem_cgroup_is_root(memcg))
6016 page_counter_uncharge(&memcg->memory, nr_entries);
6017
6018 if (memcg != swap_memcg) {
6019 if (!mem_cgroup_is_root(swap_memcg))
6020 page_counter_charge(&swap_memcg->memsw, nr_entries);
6021 page_counter_uncharge(&memcg->memsw, nr_entries);
6022 }
6023
6024 /*
6025 * Interrupts should be disabled here because the caller holds the
6026 * mapping->tree_lock lock which is taken with interrupts-off. It is
6027 * important here to have the interrupts disabled because it is the
6028 * only synchronisation we have for udpating the per-CPU variables.
6029 */
6030 VM_BUG_ON(!irqs_disabled());
6031 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6032 -nr_entries);
6033 memcg_check_events(memcg, page);
6034
6035 if (!mem_cgroup_is_root(memcg))
6036 css_put(&memcg->css);
6037 }
6038
6039 /**
6040 * mem_cgroup_try_charge_swap - try charging swap space for a page
6041 * @page: page being added to swap
6042 * @entry: swap entry to charge
6043 *
6044 * Try to charge @page's memcg for the swap space at @entry.
6045 *
6046 * Returns 0 on success, -ENOMEM on failure.
6047 */
6048 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6049 {
6050 unsigned int nr_pages = hpage_nr_pages(page);
6051 struct page_counter *counter;
6052 struct mem_cgroup *memcg;
6053 unsigned short oldid;
6054
6055 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6056 return 0;
6057
6058 memcg = page->mem_cgroup;
6059
6060 /* Readahead page, never charged */
6061 if (!memcg)
6062 return 0;
6063
6064 memcg = mem_cgroup_id_get_online(memcg);
6065
6066 if (!mem_cgroup_is_root(memcg) &&
6067 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6068 mem_cgroup_id_put(memcg);
6069 return -ENOMEM;
6070 }
6071
6072 /* Get references for the tail pages, too */
6073 if (nr_pages > 1)
6074 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6075 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6076 VM_BUG_ON_PAGE(oldid, page);
6077 mem_cgroup_swap_statistics(memcg, nr_pages);
6078
6079 return 0;
6080 }
6081
6082 /**
6083 * mem_cgroup_uncharge_swap - uncharge swap space
6084 * @entry: swap entry to uncharge
6085 * @nr_pages: the amount of swap space to uncharge
6086 */
6087 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6088 {
6089 struct mem_cgroup *memcg;
6090 unsigned short id;
6091
6092 if (!do_swap_account)
6093 return;
6094
6095 id = swap_cgroup_record(entry, 0, nr_pages);
6096 rcu_read_lock();
6097 memcg = mem_cgroup_from_id(id);
6098 if (memcg) {
6099 if (!mem_cgroup_is_root(memcg)) {
6100 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6101 page_counter_uncharge(&memcg->swap, nr_pages);
6102 else
6103 page_counter_uncharge(&memcg->memsw, nr_pages);
6104 }
6105 mem_cgroup_swap_statistics(memcg, -nr_pages);
6106 mem_cgroup_id_put_many(memcg, nr_pages);
6107 }
6108 rcu_read_unlock();
6109 }
6110
6111 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6112 {
6113 long nr_swap_pages = get_nr_swap_pages();
6114
6115 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6116 return nr_swap_pages;
6117 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6118 nr_swap_pages = min_t(long, nr_swap_pages,
6119 READ_ONCE(memcg->swap.limit) -
6120 page_counter_read(&memcg->swap));
6121 return nr_swap_pages;
6122 }
6123
6124 bool mem_cgroup_swap_full(struct page *page)
6125 {
6126 struct mem_cgroup *memcg;
6127
6128 VM_BUG_ON_PAGE(!PageLocked(page), page);
6129
6130 if (vm_swap_full())
6131 return true;
6132 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6133 return false;
6134
6135 memcg = page->mem_cgroup;
6136 if (!memcg)
6137 return false;
6138
6139 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6140 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6141 return true;
6142
6143 return false;
6144 }
6145
6146 /* for remember boot option*/
6147 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6148 static int really_do_swap_account __initdata = 1;
6149 #else
6150 static int really_do_swap_account __initdata;
6151 #endif
6152
6153 static int __init enable_swap_account(char *s)
6154 {
6155 if (!strcmp(s, "1"))
6156 really_do_swap_account = 1;
6157 else if (!strcmp(s, "0"))
6158 really_do_swap_account = 0;
6159 return 1;
6160 }
6161 __setup("swapaccount=", enable_swap_account);
6162
6163 static u64 swap_current_read(struct cgroup_subsys_state *css,
6164 struct cftype *cft)
6165 {
6166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6167
6168 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6169 }
6170
6171 static int swap_max_show(struct seq_file *m, void *v)
6172 {
6173 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6174 unsigned long max = READ_ONCE(memcg->swap.limit);
6175
6176 if (max == PAGE_COUNTER_MAX)
6177 seq_puts(m, "max\n");
6178 else
6179 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6180
6181 return 0;
6182 }
6183
6184 static ssize_t swap_max_write(struct kernfs_open_file *of,
6185 char *buf, size_t nbytes, loff_t off)
6186 {
6187 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6188 unsigned long max;
6189 int err;
6190
6191 buf = strstrip(buf);
6192 err = page_counter_memparse(buf, "max", &max);
6193 if (err)
6194 return err;
6195
6196 mutex_lock(&memcg_limit_mutex);
6197 err = page_counter_limit(&memcg->swap, max);
6198 mutex_unlock(&memcg_limit_mutex);
6199 if (err)
6200 return err;
6201
6202 return nbytes;
6203 }
6204
6205 static struct cftype swap_files[] = {
6206 {
6207 .name = "swap.current",
6208 .flags = CFTYPE_NOT_ON_ROOT,
6209 .read_u64 = swap_current_read,
6210 },
6211 {
6212 .name = "swap.max",
6213 .flags = CFTYPE_NOT_ON_ROOT,
6214 .seq_show = swap_max_show,
6215 .write = swap_max_write,
6216 },
6217 { } /* terminate */
6218 };
6219
6220 static struct cftype memsw_cgroup_files[] = {
6221 {
6222 .name = "memsw.usage_in_bytes",
6223 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6224 .read_u64 = mem_cgroup_read_u64,
6225 },
6226 {
6227 .name = "memsw.max_usage_in_bytes",
6228 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6229 .write = mem_cgroup_reset,
6230 .read_u64 = mem_cgroup_read_u64,
6231 },
6232 {
6233 .name = "memsw.limit_in_bytes",
6234 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6235 .write = mem_cgroup_write,
6236 .read_u64 = mem_cgroup_read_u64,
6237 },
6238 {
6239 .name = "memsw.failcnt",
6240 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6241 .write = mem_cgroup_reset,
6242 .read_u64 = mem_cgroup_read_u64,
6243 },
6244 { }, /* terminate */
6245 };
6246
6247 static int __init mem_cgroup_swap_init(void)
6248 {
6249 if (!mem_cgroup_disabled() && really_do_swap_account) {
6250 do_swap_account = 1;
6251 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6252 swap_files));
6253 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6254 memsw_cgroup_files));
6255 }
6256 return 0;
6257 }
6258 subsys_initcall(mem_cgroup_swap_init);
6259
6260 #endif /* CONFIG_MEMCG_SWAP */