]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
drm/i915: Fix DDI PHY init if it was already on
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124 };
125
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136 };
137
138 /*
139 * cgroup_event represents events which userspace want to receive.
140 */
141 struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176 };
177
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181 /* Stuffs for move charges at task migration. */
182 /*
183 * Types of charges to be moved.
184 */
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205
206 /*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219 };
220
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228 };
229
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
235
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238 {
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242 }
243
244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245 {
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247 }
248
249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250 {
251 return (memcg == root_mem_cgroup);
252 }
253
254 #ifndef CONFIG_SLOB
255 /*
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
262 *
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
265 */
266 static DEFINE_IDA(memcg_cache_ida);
267 int memcg_nr_cache_ids;
268
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272 void memcg_get_cache_ids(void)
273 {
274 down_read(&memcg_cache_ids_sem);
275 }
276
277 void memcg_put_cache_ids(void)
278 {
279 up_read(&memcg_cache_ids_sem);
280 }
281
282 /*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
293 */
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296
297 /*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key);
305
306 struct workqueue_struct *memcg_kmem_cache_wq;
307
308 #endif /* !CONFIG_SLOB */
309
310 /**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
320 */
321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322 {
323 struct mem_cgroup *memcg;
324
325 memcg = page->mem_cgroup;
326
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
329
330 return &memcg->css;
331 }
332
333 /**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346 ino_t page_cgroup_ino(struct page *page)
347 {
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359 }
360
361 static struct mem_cgroup_per_node *
362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363 {
364 int nid = page_to_nid(page);
365
366 return memcg->nodeinfo[nid];
367 }
368
369 static struct mem_cgroup_tree_per_node *
370 soft_limit_tree_node(int nid)
371 {
372 return soft_limit_tree.rb_tree_per_node[nid];
373 }
374
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_from_page(struct page *page)
377 {
378 int nid = page_to_nid(page);
379
380 return soft_limit_tree.rb_tree_per_node[nid];
381 }
382
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
386 {
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 p = &(*p)->rb_left;
404 rightmost = false;
405 }
406
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421 }
422
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425 {
426 if (!mz->on_tree)
427 return;
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
491 }
492 }
493 }
494
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496 {
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
500
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
506 }
507 }
508
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511 {
512 struct mem_cgroup_per_node *mz;
513
514 retry:
515 mz = NULL;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
518
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530 done:
531 return mz;
532 }
533
534 static struct mem_cgroup_per_node *
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536 {
537 struct mem_cgroup_per_node *mz;
538
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
543 }
544
545 /*
546 * Return page count for single (non recursive) @memcg.
547 *
548 * Implementation Note: reading percpu statistics for memcg.
549 *
550 * Both of vmstat[] and percpu_counter has threshold and do periodic
551 * synchronization to implement "quick" read. There are trade-off between
552 * reading cost and precision of value. Then, we may have a chance to implement
553 * a periodic synchronization of counter in memcg's counter.
554 *
555 * But this _read() function is used for user interface now. The user accounts
556 * memory usage by memory cgroup and he _always_ requires exact value because
557 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
558 * have to visit all online cpus and make sum. So, for now, unnecessary
559 * synchronization is not implemented. (just implemented for cpu hotplug)
560 *
561 * If there are kernel internal actions which can make use of some not-exact
562 * value, and reading all cpu value can be performance bottleneck in some
563 * common workload, threshold and synchronization as vmstat[] should be
564 * implemented.
565 *
566 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
567 */
568
569 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
570 int event)
571 {
572 unsigned long val = 0;
573 int cpu;
574
575 for_each_possible_cpu(cpu)
576 val += per_cpu(memcg->stat->events[event], cpu);
577 return val;
578 }
579
580 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
581 struct page *page,
582 bool compound, int nr_pages)
583 {
584 /*
585 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
586 * counted as CACHE even if it's on ANON LRU.
587 */
588 if (PageAnon(page))
589 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
590 else {
591 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
592 if (PageSwapBacked(page))
593 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
594 }
595
596 if (compound) {
597 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
598 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
599 }
600
601 /* pagein of a big page is an event. So, ignore page size */
602 if (nr_pages > 0)
603 __this_cpu_inc(memcg->stat->events[PGPGIN]);
604 else {
605 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
606 nr_pages = -nr_pages; /* for event */
607 }
608
609 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
610 }
611
612 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
613 int nid, unsigned int lru_mask)
614 {
615 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
616 unsigned long nr = 0;
617 enum lru_list lru;
618
619 VM_BUG_ON((unsigned)nid >= nr_node_ids);
620
621 for_each_lru(lru) {
622 if (!(BIT(lru) & lru_mask))
623 continue;
624 nr += mem_cgroup_get_lru_size(lruvec, lru);
625 }
626 return nr;
627 }
628
629 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
630 unsigned int lru_mask)
631 {
632 unsigned long nr = 0;
633 int nid;
634
635 for_each_node_state(nid, N_MEMORY)
636 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
637 return nr;
638 }
639
640 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
641 enum mem_cgroup_events_target target)
642 {
643 unsigned long val, next;
644
645 val = __this_cpu_read(memcg->stat->nr_page_events);
646 next = __this_cpu_read(memcg->stat->targets[target]);
647 /* from time_after() in jiffies.h */
648 if ((long)(next - val) < 0) {
649 switch (target) {
650 case MEM_CGROUP_TARGET_THRESH:
651 next = val + THRESHOLDS_EVENTS_TARGET;
652 break;
653 case MEM_CGROUP_TARGET_SOFTLIMIT:
654 next = val + SOFTLIMIT_EVENTS_TARGET;
655 break;
656 case MEM_CGROUP_TARGET_NUMAINFO:
657 next = val + NUMAINFO_EVENTS_TARGET;
658 break;
659 default:
660 break;
661 }
662 __this_cpu_write(memcg->stat->targets[target], next);
663 return true;
664 }
665 return false;
666 }
667
668 /*
669 * Check events in order.
670 *
671 */
672 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
673 {
674 /* threshold event is triggered in finer grain than soft limit */
675 if (unlikely(mem_cgroup_event_ratelimit(memcg,
676 MEM_CGROUP_TARGET_THRESH))) {
677 bool do_softlimit;
678 bool do_numainfo __maybe_unused;
679
680 do_softlimit = mem_cgroup_event_ratelimit(memcg,
681 MEM_CGROUP_TARGET_SOFTLIMIT);
682 #if MAX_NUMNODES > 1
683 do_numainfo = mem_cgroup_event_ratelimit(memcg,
684 MEM_CGROUP_TARGET_NUMAINFO);
685 #endif
686 mem_cgroup_threshold(memcg);
687 if (unlikely(do_softlimit))
688 mem_cgroup_update_tree(memcg, page);
689 #if MAX_NUMNODES > 1
690 if (unlikely(do_numainfo))
691 atomic_inc(&memcg->numainfo_events);
692 #endif
693 }
694 }
695
696 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
697 {
698 /*
699 * mm_update_next_owner() may clear mm->owner to NULL
700 * if it races with swapoff, page migration, etc.
701 * So this can be called with p == NULL.
702 */
703 if (unlikely(!p))
704 return NULL;
705
706 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
707 }
708 EXPORT_SYMBOL(mem_cgroup_from_task);
709
710 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
711 {
712 struct mem_cgroup *memcg = NULL;
713
714 rcu_read_lock();
715 do {
716 /*
717 * Page cache insertions can happen withou an
718 * actual mm context, e.g. during disk probing
719 * on boot, loopback IO, acct() writes etc.
720 */
721 if (unlikely(!mm))
722 memcg = root_mem_cgroup;
723 else {
724 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
725 if (unlikely(!memcg))
726 memcg = root_mem_cgroup;
727 }
728 } while (!css_tryget_online(&memcg->css));
729 rcu_read_unlock();
730 return memcg;
731 }
732
733 /**
734 * mem_cgroup_iter - iterate over memory cgroup hierarchy
735 * @root: hierarchy root
736 * @prev: previously returned memcg, NULL on first invocation
737 * @reclaim: cookie for shared reclaim walks, NULL for full walks
738 *
739 * Returns references to children of the hierarchy below @root, or
740 * @root itself, or %NULL after a full round-trip.
741 *
742 * Caller must pass the return value in @prev on subsequent
743 * invocations for reference counting, or use mem_cgroup_iter_break()
744 * to cancel a hierarchy walk before the round-trip is complete.
745 *
746 * Reclaimers can specify a zone and a priority level in @reclaim to
747 * divide up the memcgs in the hierarchy among all concurrent
748 * reclaimers operating on the same zone and priority.
749 */
750 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
751 struct mem_cgroup *prev,
752 struct mem_cgroup_reclaim_cookie *reclaim)
753 {
754 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
755 struct cgroup_subsys_state *css = NULL;
756 struct mem_cgroup *memcg = NULL;
757 struct mem_cgroup *pos = NULL;
758
759 if (mem_cgroup_disabled())
760 return NULL;
761
762 if (!root)
763 root = root_mem_cgroup;
764
765 if (prev && !reclaim)
766 pos = prev;
767
768 if (!root->use_hierarchy && root != root_mem_cgroup) {
769 if (prev)
770 goto out;
771 return root;
772 }
773
774 rcu_read_lock();
775
776 if (reclaim) {
777 struct mem_cgroup_per_node *mz;
778
779 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
780 iter = &mz->iter[reclaim->priority];
781
782 if (prev && reclaim->generation != iter->generation)
783 goto out_unlock;
784
785 while (1) {
786 pos = READ_ONCE(iter->position);
787 if (!pos || css_tryget(&pos->css))
788 break;
789 /*
790 * css reference reached zero, so iter->position will
791 * be cleared by ->css_released. However, we should not
792 * rely on this happening soon, because ->css_released
793 * is called from a work queue, and by busy-waiting we
794 * might block it. So we clear iter->position right
795 * away.
796 */
797 (void)cmpxchg(&iter->position, pos, NULL);
798 }
799 }
800
801 if (pos)
802 css = &pos->css;
803
804 for (;;) {
805 css = css_next_descendant_pre(css, &root->css);
806 if (!css) {
807 /*
808 * Reclaimers share the hierarchy walk, and a
809 * new one might jump in right at the end of
810 * the hierarchy - make sure they see at least
811 * one group and restart from the beginning.
812 */
813 if (!prev)
814 continue;
815 break;
816 }
817
818 /*
819 * Verify the css and acquire a reference. The root
820 * is provided by the caller, so we know it's alive
821 * and kicking, and don't take an extra reference.
822 */
823 memcg = mem_cgroup_from_css(css);
824
825 if (css == &root->css)
826 break;
827
828 if (css_tryget(css))
829 break;
830
831 memcg = NULL;
832 }
833
834 if (reclaim) {
835 /*
836 * The position could have already been updated by a competing
837 * thread, so check that the value hasn't changed since we read
838 * it to avoid reclaiming from the same cgroup twice.
839 */
840 (void)cmpxchg(&iter->position, pos, memcg);
841
842 if (pos)
843 css_put(&pos->css);
844
845 if (!memcg)
846 iter->generation++;
847 else if (!prev)
848 reclaim->generation = iter->generation;
849 }
850
851 out_unlock:
852 rcu_read_unlock();
853 out:
854 if (prev && prev != root)
855 css_put(&prev->css);
856
857 return memcg;
858 }
859
860 /**
861 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
862 * @root: hierarchy root
863 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
864 */
865 void mem_cgroup_iter_break(struct mem_cgroup *root,
866 struct mem_cgroup *prev)
867 {
868 if (!root)
869 root = root_mem_cgroup;
870 if (prev && prev != root)
871 css_put(&prev->css);
872 }
873
874 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
875 {
876 struct mem_cgroup *memcg = dead_memcg;
877 struct mem_cgroup_reclaim_iter *iter;
878 struct mem_cgroup_per_node *mz;
879 int nid;
880 int i;
881
882 while ((memcg = parent_mem_cgroup(memcg))) {
883 for_each_node(nid) {
884 mz = mem_cgroup_nodeinfo(memcg, nid);
885 for (i = 0; i <= DEF_PRIORITY; i++) {
886 iter = &mz->iter[i];
887 cmpxchg(&iter->position,
888 dead_memcg, NULL);
889 }
890 }
891 }
892 }
893
894 /*
895 * Iteration constructs for visiting all cgroups (under a tree). If
896 * loops are exited prematurely (break), mem_cgroup_iter_break() must
897 * be used for reference counting.
898 */
899 #define for_each_mem_cgroup_tree(iter, root) \
900 for (iter = mem_cgroup_iter(root, NULL, NULL); \
901 iter != NULL; \
902 iter = mem_cgroup_iter(root, iter, NULL))
903
904 #define for_each_mem_cgroup(iter) \
905 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
906 iter != NULL; \
907 iter = mem_cgroup_iter(NULL, iter, NULL))
908
909 /**
910 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
911 * @memcg: hierarchy root
912 * @fn: function to call for each task
913 * @arg: argument passed to @fn
914 *
915 * This function iterates over tasks attached to @memcg or to any of its
916 * descendants and calls @fn for each task. If @fn returns a non-zero
917 * value, the function breaks the iteration loop and returns the value.
918 * Otherwise, it will iterate over all tasks and return 0.
919 *
920 * This function must not be called for the root memory cgroup.
921 */
922 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
923 int (*fn)(struct task_struct *, void *), void *arg)
924 {
925 struct mem_cgroup *iter;
926 int ret = 0;
927
928 BUG_ON(memcg == root_mem_cgroup);
929
930 for_each_mem_cgroup_tree(iter, memcg) {
931 struct css_task_iter it;
932 struct task_struct *task;
933
934 css_task_iter_start(&iter->css, 0, &it);
935 while (!ret && (task = css_task_iter_next(&it)))
936 ret = fn(task, arg);
937 css_task_iter_end(&it);
938 if (ret) {
939 mem_cgroup_iter_break(memcg, iter);
940 break;
941 }
942 }
943 return ret;
944 }
945
946 /**
947 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
948 * @page: the page
949 * @zone: zone of the page
950 *
951 * This function is only safe when following the LRU page isolation
952 * and putback protocol: the LRU lock must be held, and the page must
953 * either be PageLRU() or the caller must have isolated/allocated it.
954 */
955 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
956 {
957 struct mem_cgroup_per_node *mz;
958 struct mem_cgroup *memcg;
959 struct lruvec *lruvec;
960
961 if (mem_cgroup_disabled()) {
962 lruvec = &pgdat->lruvec;
963 goto out;
964 }
965
966 memcg = page->mem_cgroup;
967 /*
968 * Swapcache readahead pages are added to the LRU - and
969 * possibly migrated - before they are charged.
970 */
971 if (!memcg)
972 memcg = root_mem_cgroup;
973
974 mz = mem_cgroup_page_nodeinfo(memcg, page);
975 lruvec = &mz->lruvec;
976 out:
977 /*
978 * Since a node can be onlined after the mem_cgroup was created,
979 * we have to be prepared to initialize lruvec->zone here;
980 * and if offlined then reonlined, we need to reinitialize it.
981 */
982 if (unlikely(lruvec->pgdat != pgdat))
983 lruvec->pgdat = pgdat;
984 return lruvec;
985 }
986
987 /**
988 * mem_cgroup_update_lru_size - account for adding or removing an lru page
989 * @lruvec: mem_cgroup per zone lru vector
990 * @lru: index of lru list the page is sitting on
991 * @zid: zone id of the accounted pages
992 * @nr_pages: positive when adding or negative when removing
993 *
994 * This function must be called under lru_lock, just before a page is added
995 * to or just after a page is removed from an lru list (that ordering being
996 * so as to allow it to check that lru_size 0 is consistent with list_empty).
997 */
998 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
999 int zid, int nr_pages)
1000 {
1001 struct mem_cgroup_per_node *mz;
1002 unsigned long *lru_size;
1003 long size;
1004
1005 if (mem_cgroup_disabled())
1006 return;
1007
1008 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1009 lru_size = &mz->lru_zone_size[zid][lru];
1010
1011 if (nr_pages < 0)
1012 *lru_size += nr_pages;
1013
1014 size = *lru_size;
1015 if (WARN_ONCE(size < 0,
1016 "%s(%p, %d, %d): lru_size %ld\n",
1017 __func__, lruvec, lru, nr_pages, size)) {
1018 VM_BUG_ON(1);
1019 *lru_size = 0;
1020 }
1021
1022 if (nr_pages > 0)
1023 *lru_size += nr_pages;
1024 }
1025
1026 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1027 {
1028 struct mem_cgroup *task_memcg;
1029 struct task_struct *p;
1030 bool ret;
1031
1032 p = find_lock_task_mm(task);
1033 if (p) {
1034 task_memcg = get_mem_cgroup_from_mm(p->mm);
1035 task_unlock(p);
1036 } else {
1037 /*
1038 * All threads may have already detached their mm's, but the oom
1039 * killer still needs to detect if they have already been oom
1040 * killed to prevent needlessly killing additional tasks.
1041 */
1042 rcu_read_lock();
1043 task_memcg = mem_cgroup_from_task(task);
1044 css_get(&task_memcg->css);
1045 rcu_read_unlock();
1046 }
1047 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1048 css_put(&task_memcg->css);
1049 return ret;
1050 }
1051
1052 /**
1053 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1054 * @memcg: the memory cgroup
1055 *
1056 * Returns the maximum amount of memory @mem can be charged with, in
1057 * pages.
1058 */
1059 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1060 {
1061 unsigned long margin = 0;
1062 unsigned long count;
1063 unsigned long limit;
1064
1065 count = page_counter_read(&memcg->memory);
1066 limit = READ_ONCE(memcg->memory.limit);
1067 if (count < limit)
1068 margin = limit - count;
1069
1070 if (do_memsw_account()) {
1071 count = page_counter_read(&memcg->memsw);
1072 limit = READ_ONCE(memcg->memsw.limit);
1073 if (count <= limit)
1074 margin = min(margin, limit - count);
1075 else
1076 margin = 0;
1077 }
1078
1079 return margin;
1080 }
1081
1082 /*
1083 * A routine for checking "mem" is under move_account() or not.
1084 *
1085 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1086 * moving cgroups. This is for waiting at high-memory pressure
1087 * caused by "move".
1088 */
1089 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1090 {
1091 struct mem_cgroup *from;
1092 struct mem_cgroup *to;
1093 bool ret = false;
1094 /*
1095 * Unlike task_move routines, we access mc.to, mc.from not under
1096 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1097 */
1098 spin_lock(&mc.lock);
1099 from = mc.from;
1100 to = mc.to;
1101 if (!from)
1102 goto unlock;
1103
1104 ret = mem_cgroup_is_descendant(from, memcg) ||
1105 mem_cgroup_is_descendant(to, memcg);
1106 unlock:
1107 spin_unlock(&mc.lock);
1108 return ret;
1109 }
1110
1111 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1112 {
1113 if (mc.moving_task && current != mc.moving_task) {
1114 if (mem_cgroup_under_move(memcg)) {
1115 DEFINE_WAIT(wait);
1116 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1117 /* moving charge context might have finished. */
1118 if (mc.moving_task)
1119 schedule();
1120 finish_wait(&mc.waitq, &wait);
1121 return true;
1122 }
1123 }
1124 return false;
1125 }
1126
1127 unsigned int memcg1_stats[] = {
1128 MEMCG_CACHE,
1129 MEMCG_RSS,
1130 MEMCG_RSS_HUGE,
1131 NR_SHMEM,
1132 NR_FILE_MAPPED,
1133 NR_FILE_DIRTY,
1134 NR_WRITEBACK,
1135 MEMCG_SWAP,
1136 };
1137
1138 static const char *const memcg1_stat_names[] = {
1139 "cache",
1140 "rss",
1141 "rss_huge",
1142 "shmem",
1143 "mapped_file",
1144 "dirty",
1145 "writeback",
1146 "swap",
1147 };
1148
1149 #define K(x) ((x) << (PAGE_SHIFT-10))
1150 /**
1151 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1152 * @memcg: The memory cgroup that went over limit
1153 * @p: Task that is going to be killed
1154 *
1155 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1156 * enabled
1157 */
1158 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1159 {
1160 struct mem_cgroup *iter;
1161 unsigned int i;
1162
1163 rcu_read_lock();
1164
1165 if (p) {
1166 pr_info("Task in ");
1167 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1168 pr_cont(" killed as a result of limit of ");
1169 } else {
1170 pr_info("Memory limit reached of cgroup ");
1171 }
1172
1173 pr_cont_cgroup_path(memcg->css.cgroup);
1174 pr_cont("\n");
1175
1176 rcu_read_unlock();
1177
1178 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memory)),
1180 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1181 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->memsw)),
1183 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1184 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1185 K((u64)page_counter_read(&memcg->kmem)),
1186 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1187
1188 for_each_mem_cgroup_tree(iter, memcg) {
1189 pr_info("Memory cgroup stats for ");
1190 pr_cont_cgroup_path(iter->css.cgroup);
1191 pr_cont(":");
1192
1193 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1194 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1195 continue;
1196 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1197 K(memcg_page_state(iter, memcg1_stats[i])));
1198 }
1199
1200 for (i = 0; i < NR_LRU_LISTS; i++)
1201 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1202 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1203
1204 pr_cont("\n");
1205 }
1206 }
1207
1208 /*
1209 * This function returns the number of memcg under hierarchy tree. Returns
1210 * 1(self count) if no children.
1211 */
1212 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1213 {
1214 int num = 0;
1215 struct mem_cgroup *iter;
1216
1217 for_each_mem_cgroup_tree(iter, memcg)
1218 num++;
1219 return num;
1220 }
1221
1222 /*
1223 * Return the memory (and swap, if configured) limit for a memcg.
1224 */
1225 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1226 {
1227 unsigned long limit;
1228
1229 limit = memcg->memory.limit;
1230 if (mem_cgroup_swappiness(memcg)) {
1231 unsigned long memsw_limit;
1232 unsigned long swap_limit;
1233
1234 memsw_limit = memcg->memsw.limit;
1235 swap_limit = memcg->swap.limit;
1236 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1237 limit = min(limit + swap_limit, memsw_limit);
1238 }
1239 return limit;
1240 }
1241
1242 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1243 int order)
1244 {
1245 struct oom_control oc = {
1246 .zonelist = NULL,
1247 .nodemask = NULL,
1248 .memcg = memcg,
1249 .gfp_mask = gfp_mask,
1250 .order = order,
1251 };
1252 bool ret;
1253
1254 mutex_lock(&oom_lock);
1255 ret = out_of_memory(&oc);
1256 mutex_unlock(&oom_lock);
1257 return ret;
1258 }
1259
1260 #if MAX_NUMNODES > 1
1261
1262 /**
1263 * test_mem_cgroup_node_reclaimable
1264 * @memcg: the target memcg
1265 * @nid: the node ID to be checked.
1266 * @noswap : specify true here if the user wants flle only information.
1267 *
1268 * This function returns whether the specified memcg contains any
1269 * reclaimable pages on a node. Returns true if there are any reclaimable
1270 * pages in the node.
1271 */
1272 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1273 int nid, bool noswap)
1274 {
1275 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1276 return true;
1277 if (noswap || !total_swap_pages)
1278 return false;
1279 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1280 return true;
1281 return false;
1282
1283 }
1284
1285 /*
1286 * Always updating the nodemask is not very good - even if we have an empty
1287 * list or the wrong list here, we can start from some node and traverse all
1288 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1289 *
1290 */
1291 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1292 {
1293 int nid;
1294 /*
1295 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1296 * pagein/pageout changes since the last update.
1297 */
1298 if (!atomic_read(&memcg->numainfo_events))
1299 return;
1300 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1301 return;
1302
1303 /* make a nodemask where this memcg uses memory from */
1304 memcg->scan_nodes = node_states[N_MEMORY];
1305
1306 for_each_node_mask(nid, node_states[N_MEMORY]) {
1307
1308 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1309 node_clear(nid, memcg->scan_nodes);
1310 }
1311
1312 atomic_set(&memcg->numainfo_events, 0);
1313 atomic_set(&memcg->numainfo_updating, 0);
1314 }
1315
1316 /*
1317 * Selecting a node where we start reclaim from. Because what we need is just
1318 * reducing usage counter, start from anywhere is O,K. Considering
1319 * memory reclaim from current node, there are pros. and cons.
1320 *
1321 * Freeing memory from current node means freeing memory from a node which
1322 * we'll use or we've used. So, it may make LRU bad. And if several threads
1323 * hit limits, it will see a contention on a node. But freeing from remote
1324 * node means more costs for memory reclaim because of memory latency.
1325 *
1326 * Now, we use round-robin. Better algorithm is welcomed.
1327 */
1328 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1329 {
1330 int node;
1331
1332 mem_cgroup_may_update_nodemask(memcg);
1333 node = memcg->last_scanned_node;
1334
1335 node = next_node_in(node, memcg->scan_nodes);
1336 /*
1337 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1338 * last time it really checked all the LRUs due to rate limiting.
1339 * Fallback to the current node in that case for simplicity.
1340 */
1341 if (unlikely(node == MAX_NUMNODES))
1342 node = numa_node_id();
1343
1344 memcg->last_scanned_node = node;
1345 return node;
1346 }
1347 #else
1348 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1349 {
1350 return 0;
1351 }
1352 #endif
1353
1354 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1355 pg_data_t *pgdat,
1356 gfp_t gfp_mask,
1357 unsigned long *total_scanned)
1358 {
1359 struct mem_cgroup *victim = NULL;
1360 int total = 0;
1361 int loop = 0;
1362 unsigned long excess;
1363 unsigned long nr_scanned;
1364 struct mem_cgroup_reclaim_cookie reclaim = {
1365 .pgdat = pgdat,
1366 .priority = 0,
1367 };
1368
1369 excess = soft_limit_excess(root_memcg);
1370
1371 while (1) {
1372 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1373 if (!victim) {
1374 loop++;
1375 if (loop >= 2) {
1376 /*
1377 * If we have not been able to reclaim
1378 * anything, it might because there are
1379 * no reclaimable pages under this hierarchy
1380 */
1381 if (!total)
1382 break;
1383 /*
1384 * We want to do more targeted reclaim.
1385 * excess >> 2 is not to excessive so as to
1386 * reclaim too much, nor too less that we keep
1387 * coming back to reclaim from this cgroup
1388 */
1389 if (total >= (excess >> 2) ||
1390 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1391 break;
1392 }
1393 continue;
1394 }
1395 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1396 pgdat, &nr_scanned);
1397 *total_scanned += nr_scanned;
1398 if (!soft_limit_excess(root_memcg))
1399 break;
1400 }
1401 mem_cgroup_iter_break(root_memcg, victim);
1402 return total;
1403 }
1404
1405 #ifdef CONFIG_LOCKDEP
1406 static struct lockdep_map memcg_oom_lock_dep_map = {
1407 .name = "memcg_oom_lock",
1408 };
1409 #endif
1410
1411 static DEFINE_SPINLOCK(memcg_oom_lock);
1412
1413 /*
1414 * Check OOM-Killer is already running under our hierarchy.
1415 * If someone is running, return false.
1416 */
1417 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1418 {
1419 struct mem_cgroup *iter, *failed = NULL;
1420
1421 spin_lock(&memcg_oom_lock);
1422
1423 for_each_mem_cgroup_tree(iter, memcg) {
1424 if (iter->oom_lock) {
1425 /*
1426 * this subtree of our hierarchy is already locked
1427 * so we cannot give a lock.
1428 */
1429 failed = iter;
1430 mem_cgroup_iter_break(memcg, iter);
1431 break;
1432 } else
1433 iter->oom_lock = true;
1434 }
1435
1436 if (failed) {
1437 /*
1438 * OK, we failed to lock the whole subtree so we have
1439 * to clean up what we set up to the failing subtree
1440 */
1441 for_each_mem_cgroup_tree(iter, memcg) {
1442 if (iter == failed) {
1443 mem_cgroup_iter_break(memcg, iter);
1444 break;
1445 }
1446 iter->oom_lock = false;
1447 }
1448 } else
1449 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1450
1451 spin_unlock(&memcg_oom_lock);
1452
1453 return !failed;
1454 }
1455
1456 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1457 {
1458 struct mem_cgroup *iter;
1459
1460 spin_lock(&memcg_oom_lock);
1461 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1462 for_each_mem_cgroup_tree(iter, memcg)
1463 iter->oom_lock = false;
1464 spin_unlock(&memcg_oom_lock);
1465 }
1466
1467 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1468 {
1469 struct mem_cgroup *iter;
1470
1471 spin_lock(&memcg_oom_lock);
1472 for_each_mem_cgroup_tree(iter, memcg)
1473 iter->under_oom++;
1474 spin_unlock(&memcg_oom_lock);
1475 }
1476
1477 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1478 {
1479 struct mem_cgroup *iter;
1480
1481 /*
1482 * When a new child is created while the hierarchy is under oom,
1483 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1484 */
1485 spin_lock(&memcg_oom_lock);
1486 for_each_mem_cgroup_tree(iter, memcg)
1487 if (iter->under_oom > 0)
1488 iter->under_oom--;
1489 spin_unlock(&memcg_oom_lock);
1490 }
1491
1492 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1493
1494 struct oom_wait_info {
1495 struct mem_cgroup *memcg;
1496 wait_queue_entry_t wait;
1497 };
1498
1499 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1500 unsigned mode, int sync, void *arg)
1501 {
1502 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1503 struct mem_cgroup *oom_wait_memcg;
1504 struct oom_wait_info *oom_wait_info;
1505
1506 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1507 oom_wait_memcg = oom_wait_info->memcg;
1508
1509 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1510 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1511 return 0;
1512 return autoremove_wake_function(wait, mode, sync, arg);
1513 }
1514
1515 static void memcg_oom_recover(struct mem_cgroup *memcg)
1516 {
1517 /*
1518 * For the following lockless ->under_oom test, the only required
1519 * guarantee is that it must see the state asserted by an OOM when
1520 * this function is called as a result of userland actions
1521 * triggered by the notification of the OOM. This is trivially
1522 * achieved by invoking mem_cgroup_mark_under_oom() before
1523 * triggering notification.
1524 */
1525 if (memcg && memcg->under_oom)
1526 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1527 }
1528
1529 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1530 {
1531 if (!current->memcg_may_oom)
1532 return;
1533 /*
1534 * We are in the middle of the charge context here, so we
1535 * don't want to block when potentially sitting on a callstack
1536 * that holds all kinds of filesystem and mm locks.
1537 *
1538 * Also, the caller may handle a failed allocation gracefully
1539 * (like optional page cache readahead) and so an OOM killer
1540 * invocation might not even be necessary.
1541 *
1542 * That's why we don't do anything here except remember the
1543 * OOM context and then deal with it at the end of the page
1544 * fault when the stack is unwound, the locks are released,
1545 * and when we know whether the fault was overall successful.
1546 */
1547 css_get(&memcg->css);
1548 current->memcg_in_oom = memcg;
1549 current->memcg_oom_gfp_mask = mask;
1550 current->memcg_oom_order = order;
1551 }
1552
1553 /**
1554 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1555 * @handle: actually kill/wait or just clean up the OOM state
1556 *
1557 * This has to be called at the end of a page fault if the memcg OOM
1558 * handler was enabled.
1559 *
1560 * Memcg supports userspace OOM handling where failed allocations must
1561 * sleep on a waitqueue until the userspace task resolves the
1562 * situation. Sleeping directly in the charge context with all kinds
1563 * of locks held is not a good idea, instead we remember an OOM state
1564 * in the task and mem_cgroup_oom_synchronize() has to be called at
1565 * the end of the page fault to complete the OOM handling.
1566 *
1567 * Returns %true if an ongoing memcg OOM situation was detected and
1568 * completed, %false otherwise.
1569 */
1570 bool mem_cgroup_oom_synchronize(bool handle)
1571 {
1572 struct mem_cgroup *memcg = current->memcg_in_oom;
1573 struct oom_wait_info owait;
1574 bool locked;
1575
1576 /* OOM is global, do not handle */
1577 if (!memcg)
1578 return false;
1579
1580 if (!handle)
1581 goto cleanup;
1582
1583 owait.memcg = memcg;
1584 owait.wait.flags = 0;
1585 owait.wait.func = memcg_oom_wake_function;
1586 owait.wait.private = current;
1587 INIT_LIST_HEAD(&owait.wait.entry);
1588
1589 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1590 mem_cgroup_mark_under_oom(memcg);
1591
1592 locked = mem_cgroup_oom_trylock(memcg);
1593
1594 if (locked)
1595 mem_cgroup_oom_notify(memcg);
1596
1597 if (locked && !memcg->oom_kill_disable) {
1598 mem_cgroup_unmark_under_oom(memcg);
1599 finish_wait(&memcg_oom_waitq, &owait.wait);
1600 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1601 current->memcg_oom_order);
1602 } else {
1603 schedule();
1604 mem_cgroup_unmark_under_oom(memcg);
1605 finish_wait(&memcg_oom_waitq, &owait.wait);
1606 }
1607
1608 if (locked) {
1609 mem_cgroup_oom_unlock(memcg);
1610 /*
1611 * There is no guarantee that an OOM-lock contender
1612 * sees the wakeups triggered by the OOM kill
1613 * uncharges. Wake any sleepers explicitely.
1614 */
1615 memcg_oom_recover(memcg);
1616 }
1617 cleanup:
1618 current->memcg_in_oom = NULL;
1619 css_put(&memcg->css);
1620 return true;
1621 }
1622
1623 /**
1624 * lock_page_memcg - lock a page->mem_cgroup binding
1625 * @page: the page
1626 *
1627 * This function protects unlocked LRU pages from being moved to
1628 * another cgroup.
1629 *
1630 * It ensures lifetime of the returned memcg. Caller is responsible
1631 * for the lifetime of the page; __unlock_page_memcg() is available
1632 * when @page might get freed inside the locked section.
1633 */
1634 struct mem_cgroup *lock_page_memcg(struct page *page)
1635 {
1636 struct mem_cgroup *memcg;
1637 unsigned long flags;
1638
1639 /*
1640 * The RCU lock is held throughout the transaction. The fast
1641 * path can get away without acquiring the memcg->move_lock
1642 * because page moving starts with an RCU grace period.
1643 *
1644 * The RCU lock also protects the memcg from being freed when
1645 * the page state that is going to change is the only thing
1646 * preventing the page itself from being freed. E.g. writeback
1647 * doesn't hold a page reference and relies on PG_writeback to
1648 * keep off truncation, migration and so forth.
1649 */
1650 rcu_read_lock();
1651
1652 if (mem_cgroup_disabled())
1653 return NULL;
1654 again:
1655 memcg = page->mem_cgroup;
1656 if (unlikely(!memcg))
1657 return NULL;
1658
1659 if (atomic_read(&memcg->moving_account) <= 0)
1660 return memcg;
1661
1662 spin_lock_irqsave(&memcg->move_lock, flags);
1663 if (memcg != page->mem_cgroup) {
1664 spin_unlock_irqrestore(&memcg->move_lock, flags);
1665 goto again;
1666 }
1667
1668 /*
1669 * When charge migration first begins, we can have locked and
1670 * unlocked page stat updates happening concurrently. Track
1671 * the task who has the lock for unlock_page_memcg().
1672 */
1673 memcg->move_lock_task = current;
1674 memcg->move_lock_flags = flags;
1675
1676 return memcg;
1677 }
1678 EXPORT_SYMBOL(lock_page_memcg);
1679
1680 /**
1681 * __unlock_page_memcg - unlock and unpin a memcg
1682 * @memcg: the memcg
1683 *
1684 * Unlock and unpin a memcg returned by lock_page_memcg().
1685 */
1686 void __unlock_page_memcg(struct mem_cgroup *memcg)
1687 {
1688 if (memcg && memcg->move_lock_task == current) {
1689 unsigned long flags = memcg->move_lock_flags;
1690
1691 memcg->move_lock_task = NULL;
1692 memcg->move_lock_flags = 0;
1693
1694 spin_unlock_irqrestore(&memcg->move_lock, flags);
1695 }
1696
1697 rcu_read_unlock();
1698 }
1699
1700 /**
1701 * unlock_page_memcg - unlock a page->mem_cgroup binding
1702 * @page: the page
1703 */
1704 void unlock_page_memcg(struct page *page)
1705 {
1706 __unlock_page_memcg(page->mem_cgroup);
1707 }
1708 EXPORT_SYMBOL(unlock_page_memcg);
1709
1710 /*
1711 * size of first charge trial. "32" comes from vmscan.c's magic value.
1712 * TODO: maybe necessary to use big numbers in big irons.
1713 */
1714 #define CHARGE_BATCH 32U
1715 struct memcg_stock_pcp {
1716 struct mem_cgroup *cached; /* this never be root cgroup */
1717 unsigned int nr_pages;
1718 struct work_struct work;
1719 unsigned long flags;
1720 #define FLUSHING_CACHED_CHARGE 0
1721 };
1722 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1723 static DEFINE_MUTEX(percpu_charge_mutex);
1724
1725 /**
1726 * consume_stock: Try to consume stocked charge on this cpu.
1727 * @memcg: memcg to consume from.
1728 * @nr_pages: how many pages to charge.
1729 *
1730 * The charges will only happen if @memcg matches the current cpu's memcg
1731 * stock, and at least @nr_pages are available in that stock. Failure to
1732 * service an allocation will refill the stock.
1733 *
1734 * returns true if successful, false otherwise.
1735 */
1736 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1737 {
1738 struct memcg_stock_pcp *stock;
1739 unsigned long flags;
1740 bool ret = false;
1741
1742 if (nr_pages > CHARGE_BATCH)
1743 return ret;
1744
1745 local_irq_save(flags);
1746
1747 stock = this_cpu_ptr(&memcg_stock);
1748 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1749 stock->nr_pages -= nr_pages;
1750 ret = true;
1751 }
1752
1753 local_irq_restore(flags);
1754
1755 return ret;
1756 }
1757
1758 /*
1759 * Returns stocks cached in percpu and reset cached information.
1760 */
1761 static void drain_stock(struct memcg_stock_pcp *stock)
1762 {
1763 struct mem_cgroup *old = stock->cached;
1764
1765 if (stock->nr_pages) {
1766 page_counter_uncharge(&old->memory, stock->nr_pages);
1767 if (do_memsw_account())
1768 page_counter_uncharge(&old->memsw, stock->nr_pages);
1769 css_put_many(&old->css, stock->nr_pages);
1770 stock->nr_pages = 0;
1771 }
1772 stock->cached = NULL;
1773 }
1774
1775 static void drain_local_stock(struct work_struct *dummy)
1776 {
1777 struct memcg_stock_pcp *stock;
1778 unsigned long flags;
1779
1780 local_irq_save(flags);
1781
1782 stock = this_cpu_ptr(&memcg_stock);
1783 drain_stock(stock);
1784 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1785
1786 local_irq_restore(flags);
1787 }
1788
1789 /*
1790 * Cache charges(val) to local per_cpu area.
1791 * This will be consumed by consume_stock() function, later.
1792 */
1793 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1794 {
1795 struct memcg_stock_pcp *stock;
1796 unsigned long flags;
1797
1798 local_irq_save(flags);
1799
1800 stock = this_cpu_ptr(&memcg_stock);
1801 if (stock->cached != memcg) { /* reset if necessary */
1802 drain_stock(stock);
1803 stock->cached = memcg;
1804 }
1805 stock->nr_pages += nr_pages;
1806
1807 if (stock->nr_pages > CHARGE_BATCH)
1808 drain_stock(stock);
1809
1810 local_irq_restore(flags);
1811 }
1812
1813 /*
1814 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1815 * of the hierarchy under it.
1816 */
1817 static void drain_all_stock(struct mem_cgroup *root_memcg)
1818 {
1819 int cpu, curcpu;
1820
1821 /* If someone's already draining, avoid adding running more workers. */
1822 if (!mutex_trylock(&percpu_charge_mutex))
1823 return;
1824 /* Notify other cpus that system-wide "drain" is running */
1825 get_online_cpus();
1826 curcpu = get_cpu();
1827 for_each_online_cpu(cpu) {
1828 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1829 struct mem_cgroup *memcg;
1830
1831 memcg = stock->cached;
1832 if (!memcg || !stock->nr_pages)
1833 continue;
1834 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1835 continue;
1836 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1837 if (cpu == curcpu)
1838 drain_local_stock(&stock->work);
1839 else
1840 schedule_work_on(cpu, &stock->work);
1841 }
1842 }
1843 put_cpu();
1844 put_online_cpus();
1845 mutex_unlock(&percpu_charge_mutex);
1846 }
1847
1848 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1849 {
1850 struct memcg_stock_pcp *stock;
1851
1852 stock = &per_cpu(memcg_stock, cpu);
1853 drain_stock(stock);
1854 return 0;
1855 }
1856
1857 static void reclaim_high(struct mem_cgroup *memcg,
1858 unsigned int nr_pages,
1859 gfp_t gfp_mask)
1860 {
1861 do {
1862 if (page_counter_read(&memcg->memory) <= memcg->high)
1863 continue;
1864 mem_cgroup_event(memcg, MEMCG_HIGH);
1865 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1866 } while ((memcg = parent_mem_cgroup(memcg)));
1867 }
1868
1869 static void high_work_func(struct work_struct *work)
1870 {
1871 struct mem_cgroup *memcg;
1872
1873 memcg = container_of(work, struct mem_cgroup, high_work);
1874 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1875 }
1876
1877 /*
1878 * Scheduled by try_charge() to be executed from the userland return path
1879 * and reclaims memory over the high limit.
1880 */
1881 void mem_cgroup_handle_over_high(void)
1882 {
1883 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1884 struct mem_cgroup *memcg;
1885
1886 if (likely(!nr_pages))
1887 return;
1888
1889 memcg = get_mem_cgroup_from_mm(current->mm);
1890 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1891 css_put(&memcg->css);
1892 current->memcg_nr_pages_over_high = 0;
1893 }
1894
1895 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1896 unsigned int nr_pages)
1897 {
1898 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1899 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1900 struct mem_cgroup *mem_over_limit;
1901 struct page_counter *counter;
1902 unsigned long nr_reclaimed;
1903 bool may_swap = true;
1904 bool drained = false;
1905
1906 if (mem_cgroup_is_root(memcg))
1907 return 0;
1908 retry:
1909 if (consume_stock(memcg, nr_pages))
1910 return 0;
1911
1912 if (!do_memsw_account() ||
1913 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1914 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1915 goto done_restock;
1916 if (do_memsw_account())
1917 page_counter_uncharge(&memcg->memsw, batch);
1918 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1919 } else {
1920 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1921 may_swap = false;
1922 }
1923
1924 if (batch > nr_pages) {
1925 batch = nr_pages;
1926 goto retry;
1927 }
1928
1929 /*
1930 * Unlike in global OOM situations, memcg is not in a physical
1931 * memory shortage. Allow dying and OOM-killed tasks to
1932 * bypass the last charges so that they can exit quickly and
1933 * free their memory.
1934 */
1935 if (unlikely(tsk_is_oom_victim(current) ||
1936 fatal_signal_pending(current) ||
1937 current->flags & PF_EXITING))
1938 goto force;
1939
1940 /*
1941 * Prevent unbounded recursion when reclaim operations need to
1942 * allocate memory. This might exceed the limits temporarily,
1943 * but we prefer facilitating memory reclaim and getting back
1944 * under the limit over triggering OOM kills in these cases.
1945 */
1946 if (unlikely(current->flags & PF_MEMALLOC))
1947 goto force;
1948
1949 if (unlikely(task_in_memcg_oom(current)))
1950 goto nomem;
1951
1952 if (!gfpflags_allow_blocking(gfp_mask))
1953 goto nomem;
1954
1955 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
1956
1957 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1958 gfp_mask, may_swap);
1959
1960 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1961 goto retry;
1962
1963 if (!drained) {
1964 drain_all_stock(mem_over_limit);
1965 drained = true;
1966 goto retry;
1967 }
1968
1969 if (gfp_mask & __GFP_NORETRY)
1970 goto nomem;
1971 /*
1972 * Even though the limit is exceeded at this point, reclaim
1973 * may have been able to free some pages. Retry the charge
1974 * before killing the task.
1975 *
1976 * Only for regular pages, though: huge pages are rather
1977 * unlikely to succeed so close to the limit, and we fall back
1978 * to regular pages anyway in case of failure.
1979 */
1980 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1981 goto retry;
1982 /*
1983 * At task move, charge accounts can be doubly counted. So, it's
1984 * better to wait until the end of task_move if something is going on.
1985 */
1986 if (mem_cgroup_wait_acct_move(mem_over_limit))
1987 goto retry;
1988
1989 if (nr_retries--)
1990 goto retry;
1991
1992 if (gfp_mask & __GFP_NOFAIL)
1993 goto force;
1994
1995 if (fatal_signal_pending(current))
1996 goto force;
1997
1998 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
1999
2000 mem_cgroup_oom(mem_over_limit, gfp_mask,
2001 get_order(nr_pages * PAGE_SIZE));
2002 nomem:
2003 if (!(gfp_mask & __GFP_NOFAIL))
2004 return -ENOMEM;
2005 force:
2006 /*
2007 * The allocation either can't fail or will lead to more memory
2008 * being freed very soon. Allow memory usage go over the limit
2009 * temporarily by force charging it.
2010 */
2011 page_counter_charge(&memcg->memory, nr_pages);
2012 if (do_memsw_account())
2013 page_counter_charge(&memcg->memsw, nr_pages);
2014 css_get_many(&memcg->css, nr_pages);
2015
2016 return 0;
2017
2018 done_restock:
2019 css_get_many(&memcg->css, batch);
2020 if (batch > nr_pages)
2021 refill_stock(memcg, batch - nr_pages);
2022
2023 /*
2024 * If the hierarchy is above the normal consumption range, schedule
2025 * reclaim on returning to userland. We can perform reclaim here
2026 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2027 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2028 * not recorded as it most likely matches current's and won't
2029 * change in the meantime. As high limit is checked again before
2030 * reclaim, the cost of mismatch is negligible.
2031 */
2032 do {
2033 if (page_counter_read(&memcg->memory) > memcg->high) {
2034 /* Don't bother a random interrupted task */
2035 if (in_interrupt()) {
2036 schedule_work(&memcg->high_work);
2037 break;
2038 }
2039 current->memcg_nr_pages_over_high += batch;
2040 set_notify_resume(current);
2041 break;
2042 }
2043 } while ((memcg = parent_mem_cgroup(memcg)));
2044
2045 return 0;
2046 }
2047
2048 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2049 {
2050 if (mem_cgroup_is_root(memcg))
2051 return;
2052
2053 page_counter_uncharge(&memcg->memory, nr_pages);
2054 if (do_memsw_account())
2055 page_counter_uncharge(&memcg->memsw, nr_pages);
2056
2057 css_put_many(&memcg->css, nr_pages);
2058 }
2059
2060 static void lock_page_lru(struct page *page, int *isolated)
2061 {
2062 struct zone *zone = page_zone(page);
2063
2064 spin_lock_irq(zone_lru_lock(zone));
2065 if (PageLRU(page)) {
2066 struct lruvec *lruvec;
2067
2068 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2069 ClearPageLRU(page);
2070 del_page_from_lru_list(page, lruvec, page_lru(page));
2071 *isolated = 1;
2072 } else
2073 *isolated = 0;
2074 }
2075
2076 static void unlock_page_lru(struct page *page, int isolated)
2077 {
2078 struct zone *zone = page_zone(page);
2079
2080 if (isolated) {
2081 struct lruvec *lruvec;
2082
2083 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2084 VM_BUG_ON_PAGE(PageLRU(page), page);
2085 SetPageLRU(page);
2086 add_page_to_lru_list(page, lruvec, page_lru(page));
2087 }
2088 spin_unlock_irq(zone_lru_lock(zone));
2089 }
2090
2091 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2092 bool lrucare)
2093 {
2094 int isolated;
2095
2096 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2097
2098 /*
2099 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2100 * may already be on some other mem_cgroup's LRU. Take care of it.
2101 */
2102 if (lrucare)
2103 lock_page_lru(page, &isolated);
2104
2105 /*
2106 * Nobody should be changing or seriously looking at
2107 * page->mem_cgroup at this point:
2108 *
2109 * - the page is uncharged
2110 *
2111 * - the page is off-LRU
2112 *
2113 * - an anonymous fault has exclusive page access, except for
2114 * a locked page table
2115 *
2116 * - a page cache insertion, a swapin fault, or a migration
2117 * have the page locked
2118 */
2119 page->mem_cgroup = memcg;
2120
2121 if (lrucare)
2122 unlock_page_lru(page, isolated);
2123 }
2124
2125 #ifndef CONFIG_SLOB
2126 static int memcg_alloc_cache_id(void)
2127 {
2128 int id, size;
2129 int err;
2130
2131 id = ida_simple_get(&memcg_cache_ida,
2132 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2133 if (id < 0)
2134 return id;
2135
2136 if (id < memcg_nr_cache_ids)
2137 return id;
2138
2139 /*
2140 * There's no space for the new id in memcg_caches arrays,
2141 * so we have to grow them.
2142 */
2143 down_write(&memcg_cache_ids_sem);
2144
2145 size = 2 * (id + 1);
2146 if (size < MEMCG_CACHES_MIN_SIZE)
2147 size = MEMCG_CACHES_MIN_SIZE;
2148 else if (size > MEMCG_CACHES_MAX_SIZE)
2149 size = MEMCG_CACHES_MAX_SIZE;
2150
2151 err = memcg_update_all_caches(size);
2152 if (!err)
2153 err = memcg_update_all_list_lrus(size);
2154 if (!err)
2155 memcg_nr_cache_ids = size;
2156
2157 up_write(&memcg_cache_ids_sem);
2158
2159 if (err) {
2160 ida_simple_remove(&memcg_cache_ida, id);
2161 return err;
2162 }
2163 return id;
2164 }
2165
2166 static void memcg_free_cache_id(int id)
2167 {
2168 ida_simple_remove(&memcg_cache_ida, id);
2169 }
2170
2171 struct memcg_kmem_cache_create_work {
2172 struct mem_cgroup *memcg;
2173 struct kmem_cache *cachep;
2174 struct work_struct work;
2175 };
2176
2177 static void memcg_kmem_cache_create_func(struct work_struct *w)
2178 {
2179 struct memcg_kmem_cache_create_work *cw =
2180 container_of(w, struct memcg_kmem_cache_create_work, work);
2181 struct mem_cgroup *memcg = cw->memcg;
2182 struct kmem_cache *cachep = cw->cachep;
2183
2184 memcg_create_kmem_cache(memcg, cachep);
2185
2186 css_put(&memcg->css);
2187 kfree(cw);
2188 }
2189
2190 /*
2191 * Enqueue the creation of a per-memcg kmem_cache.
2192 */
2193 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2194 struct kmem_cache *cachep)
2195 {
2196 struct memcg_kmem_cache_create_work *cw;
2197
2198 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2199 if (!cw)
2200 return;
2201
2202 css_get(&memcg->css);
2203
2204 cw->memcg = memcg;
2205 cw->cachep = cachep;
2206 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2207
2208 queue_work(memcg_kmem_cache_wq, &cw->work);
2209 }
2210
2211 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2212 struct kmem_cache *cachep)
2213 {
2214 /*
2215 * We need to stop accounting when we kmalloc, because if the
2216 * corresponding kmalloc cache is not yet created, the first allocation
2217 * in __memcg_schedule_kmem_cache_create will recurse.
2218 *
2219 * However, it is better to enclose the whole function. Depending on
2220 * the debugging options enabled, INIT_WORK(), for instance, can
2221 * trigger an allocation. This too, will make us recurse. Because at
2222 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2223 * the safest choice is to do it like this, wrapping the whole function.
2224 */
2225 current->memcg_kmem_skip_account = 1;
2226 __memcg_schedule_kmem_cache_create(memcg, cachep);
2227 current->memcg_kmem_skip_account = 0;
2228 }
2229
2230 static inline bool memcg_kmem_bypass(void)
2231 {
2232 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2233 return true;
2234 return false;
2235 }
2236
2237 /**
2238 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2239 * @cachep: the original global kmem cache
2240 *
2241 * Return the kmem_cache we're supposed to use for a slab allocation.
2242 * We try to use the current memcg's version of the cache.
2243 *
2244 * If the cache does not exist yet, if we are the first user of it, we
2245 * create it asynchronously in a workqueue and let the current allocation
2246 * go through with the original cache.
2247 *
2248 * This function takes a reference to the cache it returns to assure it
2249 * won't get destroyed while we are working with it. Once the caller is
2250 * done with it, memcg_kmem_put_cache() must be called to release the
2251 * reference.
2252 */
2253 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2254 {
2255 struct mem_cgroup *memcg;
2256 struct kmem_cache *memcg_cachep;
2257 int kmemcg_id;
2258
2259 VM_BUG_ON(!is_root_cache(cachep));
2260
2261 if (memcg_kmem_bypass())
2262 return cachep;
2263
2264 if (current->memcg_kmem_skip_account)
2265 return cachep;
2266
2267 memcg = get_mem_cgroup_from_mm(current->mm);
2268 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2269 if (kmemcg_id < 0)
2270 goto out;
2271
2272 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2273 if (likely(memcg_cachep))
2274 return memcg_cachep;
2275
2276 /*
2277 * If we are in a safe context (can wait, and not in interrupt
2278 * context), we could be be predictable and return right away.
2279 * This would guarantee that the allocation being performed
2280 * already belongs in the new cache.
2281 *
2282 * However, there are some clashes that can arrive from locking.
2283 * For instance, because we acquire the slab_mutex while doing
2284 * memcg_create_kmem_cache, this means no further allocation
2285 * could happen with the slab_mutex held. So it's better to
2286 * defer everything.
2287 */
2288 memcg_schedule_kmem_cache_create(memcg, cachep);
2289 out:
2290 css_put(&memcg->css);
2291 return cachep;
2292 }
2293
2294 /**
2295 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2296 * @cachep: the cache returned by memcg_kmem_get_cache
2297 */
2298 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2299 {
2300 if (!is_root_cache(cachep))
2301 css_put(&cachep->memcg_params.memcg->css);
2302 }
2303
2304 /**
2305 * memcg_kmem_charge: charge a kmem page
2306 * @page: page to charge
2307 * @gfp: reclaim mode
2308 * @order: allocation order
2309 * @memcg: memory cgroup to charge
2310 *
2311 * Returns 0 on success, an error code on failure.
2312 */
2313 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2314 struct mem_cgroup *memcg)
2315 {
2316 unsigned int nr_pages = 1 << order;
2317 struct page_counter *counter;
2318 int ret;
2319
2320 ret = try_charge(memcg, gfp, nr_pages);
2321 if (ret)
2322 return ret;
2323
2324 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2325 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2326 cancel_charge(memcg, nr_pages);
2327 return -ENOMEM;
2328 }
2329
2330 page->mem_cgroup = memcg;
2331
2332 return 0;
2333 }
2334
2335 /**
2336 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2337 * @page: page to charge
2338 * @gfp: reclaim mode
2339 * @order: allocation order
2340 *
2341 * Returns 0 on success, an error code on failure.
2342 */
2343 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2344 {
2345 struct mem_cgroup *memcg;
2346 int ret = 0;
2347
2348 if (memcg_kmem_bypass())
2349 return 0;
2350
2351 memcg = get_mem_cgroup_from_mm(current->mm);
2352 if (!mem_cgroup_is_root(memcg)) {
2353 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2354 if (!ret)
2355 __SetPageKmemcg(page);
2356 }
2357 css_put(&memcg->css);
2358 return ret;
2359 }
2360 /**
2361 * memcg_kmem_uncharge: uncharge a kmem page
2362 * @page: page to uncharge
2363 * @order: allocation order
2364 */
2365 void memcg_kmem_uncharge(struct page *page, int order)
2366 {
2367 struct mem_cgroup *memcg = page->mem_cgroup;
2368 unsigned int nr_pages = 1 << order;
2369
2370 if (!memcg)
2371 return;
2372
2373 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2374
2375 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2376 page_counter_uncharge(&memcg->kmem, nr_pages);
2377
2378 page_counter_uncharge(&memcg->memory, nr_pages);
2379 if (do_memsw_account())
2380 page_counter_uncharge(&memcg->memsw, nr_pages);
2381
2382 page->mem_cgroup = NULL;
2383
2384 /* slab pages do not have PageKmemcg flag set */
2385 if (PageKmemcg(page))
2386 __ClearPageKmemcg(page);
2387
2388 css_put_many(&memcg->css, nr_pages);
2389 }
2390 #endif /* !CONFIG_SLOB */
2391
2392 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2393
2394 /*
2395 * Because tail pages are not marked as "used", set it. We're under
2396 * zone_lru_lock and migration entries setup in all page mappings.
2397 */
2398 void mem_cgroup_split_huge_fixup(struct page *head)
2399 {
2400 int i;
2401
2402 if (mem_cgroup_disabled())
2403 return;
2404
2405 for (i = 1; i < HPAGE_PMD_NR; i++)
2406 head[i].mem_cgroup = head->mem_cgroup;
2407
2408 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2409 HPAGE_PMD_NR);
2410 }
2411 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2412
2413 #ifdef CONFIG_MEMCG_SWAP
2414 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2415 int nr_entries)
2416 {
2417 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2418 }
2419
2420 /**
2421 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2422 * @entry: swap entry to be moved
2423 * @from: mem_cgroup which the entry is moved from
2424 * @to: mem_cgroup which the entry is moved to
2425 *
2426 * It succeeds only when the swap_cgroup's record for this entry is the same
2427 * as the mem_cgroup's id of @from.
2428 *
2429 * Returns 0 on success, -EINVAL on failure.
2430 *
2431 * The caller must have charged to @to, IOW, called page_counter_charge() about
2432 * both res and memsw, and called css_get().
2433 */
2434 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2435 struct mem_cgroup *from, struct mem_cgroup *to)
2436 {
2437 unsigned short old_id, new_id;
2438
2439 old_id = mem_cgroup_id(from);
2440 new_id = mem_cgroup_id(to);
2441
2442 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2443 mem_cgroup_swap_statistics(from, -1);
2444 mem_cgroup_swap_statistics(to, 1);
2445 return 0;
2446 }
2447 return -EINVAL;
2448 }
2449 #else
2450 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2451 struct mem_cgroup *from, struct mem_cgroup *to)
2452 {
2453 return -EINVAL;
2454 }
2455 #endif
2456
2457 static DEFINE_MUTEX(memcg_limit_mutex);
2458
2459 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2460 unsigned long limit)
2461 {
2462 unsigned long curusage;
2463 unsigned long oldusage;
2464 bool enlarge = false;
2465 int retry_count;
2466 int ret;
2467
2468 /*
2469 * For keeping hierarchical_reclaim simple, how long we should retry
2470 * is depends on callers. We set our retry-count to be function
2471 * of # of children which we should visit in this loop.
2472 */
2473 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2474 mem_cgroup_count_children(memcg);
2475
2476 oldusage = page_counter_read(&memcg->memory);
2477
2478 do {
2479 if (signal_pending(current)) {
2480 ret = -EINTR;
2481 break;
2482 }
2483
2484 mutex_lock(&memcg_limit_mutex);
2485 if (limit > memcg->memsw.limit) {
2486 mutex_unlock(&memcg_limit_mutex);
2487 ret = -EINVAL;
2488 break;
2489 }
2490 if (limit > memcg->memory.limit)
2491 enlarge = true;
2492 ret = page_counter_limit(&memcg->memory, limit);
2493 mutex_unlock(&memcg_limit_mutex);
2494
2495 if (!ret)
2496 break;
2497
2498 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2499
2500 curusage = page_counter_read(&memcg->memory);
2501 /* Usage is reduced ? */
2502 if (curusage >= oldusage)
2503 retry_count--;
2504 else
2505 oldusage = curusage;
2506 } while (retry_count);
2507
2508 if (!ret && enlarge)
2509 memcg_oom_recover(memcg);
2510
2511 return ret;
2512 }
2513
2514 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2515 unsigned long limit)
2516 {
2517 unsigned long curusage;
2518 unsigned long oldusage;
2519 bool enlarge = false;
2520 int retry_count;
2521 int ret;
2522
2523 /* see mem_cgroup_resize_res_limit */
2524 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2525 mem_cgroup_count_children(memcg);
2526
2527 oldusage = page_counter_read(&memcg->memsw);
2528
2529 do {
2530 if (signal_pending(current)) {
2531 ret = -EINTR;
2532 break;
2533 }
2534
2535 mutex_lock(&memcg_limit_mutex);
2536 if (limit < memcg->memory.limit) {
2537 mutex_unlock(&memcg_limit_mutex);
2538 ret = -EINVAL;
2539 break;
2540 }
2541 if (limit > memcg->memsw.limit)
2542 enlarge = true;
2543 ret = page_counter_limit(&memcg->memsw, limit);
2544 mutex_unlock(&memcg_limit_mutex);
2545
2546 if (!ret)
2547 break;
2548
2549 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2550
2551 curusage = page_counter_read(&memcg->memsw);
2552 /* Usage is reduced ? */
2553 if (curusage >= oldusage)
2554 retry_count--;
2555 else
2556 oldusage = curusage;
2557 } while (retry_count);
2558
2559 if (!ret && enlarge)
2560 memcg_oom_recover(memcg);
2561
2562 return ret;
2563 }
2564
2565 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2566 gfp_t gfp_mask,
2567 unsigned long *total_scanned)
2568 {
2569 unsigned long nr_reclaimed = 0;
2570 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2571 unsigned long reclaimed;
2572 int loop = 0;
2573 struct mem_cgroup_tree_per_node *mctz;
2574 unsigned long excess;
2575 unsigned long nr_scanned;
2576
2577 if (order > 0)
2578 return 0;
2579
2580 mctz = soft_limit_tree_node(pgdat->node_id);
2581
2582 /*
2583 * Do not even bother to check the largest node if the root
2584 * is empty. Do it lockless to prevent lock bouncing. Races
2585 * are acceptable as soft limit is best effort anyway.
2586 */
2587 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2588 return 0;
2589
2590 /*
2591 * This loop can run a while, specially if mem_cgroup's continuously
2592 * keep exceeding their soft limit and putting the system under
2593 * pressure
2594 */
2595 do {
2596 if (next_mz)
2597 mz = next_mz;
2598 else
2599 mz = mem_cgroup_largest_soft_limit_node(mctz);
2600 if (!mz)
2601 break;
2602
2603 nr_scanned = 0;
2604 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2605 gfp_mask, &nr_scanned);
2606 nr_reclaimed += reclaimed;
2607 *total_scanned += nr_scanned;
2608 spin_lock_irq(&mctz->lock);
2609 __mem_cgroup_remove_exceeded(mz, mctz);
2610
2611 /*
2612 * If we failed to reclaim anything from this memory cgroup
2613 * it is time to move on to the next cgroup
2614 */
2615 next_mz = NULL;
2616 if (!reclaimed)
2617 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2618
2619 excess = soft_limit_excess(mz->memcg);
2620 /*
2621 * One school of thought says that we should not add
2622 * back the node to the tree if reclaim returns 0.
2623 * But our reclaim could return 0, simply because due
2624 * to priority we are exposing a smaller subset of
2625 * memory to reclaim from. Consider this as a longer
2626 * term TODO.
2627 */
2628 /* If excess == 0, no tree ops */
2629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2630 spin_unlock_irq(&mctz->lock);
2631 css_put(&mz->memcg->css);
2632 loop++;
2633 /*
2634 * Could not reclaim anything and there are no more
2635 * mem cgroups to try or we seem to be looping without
2636 * reclaiming anything.
2637 */
2638 if (!nr_reclaimed &&
2639 (next_mz == NULL ||
2640 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2641 break;
2642 } while (!nr_reclaimed);
2643 if (next_mz)
2644 css_put(&next_mz->memcg->css);
2645 return nr_reclaimed;
2646 }
2647
2648 /*
2649 * Test whether @memcg has children, dead or alive. Note that this
2650 * function doesn't care whether @memcg has use_hierarchy enabled and
2651 * returns %true if there are child csses according to the cgroup
2652 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2653 */
2654 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2655 {
2656 bool ret;
2657
2658 rcu_read_lock();
2659 ret = css_next_child(NULL, &memcg->css);
2660 rcu_read_unlock();
2661 return ret;
2662 }
2663
2664 /*
2665 * Reclaims as many pages from the given memcg as possible.
2666 *
2667 * Caller is responsible for holding css reference for memcg.
2668 */
2669 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2670 {
2671 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2672
2673 /* we call try-to-free pages for make this cgroup empty */
2674 lru_add_drain_all();
2675 /* try to free all pages in this cgroup */
2676 while (nr_retries && page_counter_read(&memcg->memory)) {
2677 int progress;
2678
2679 if (signal_pending(current))
2680 return -EINTR;
2681
2682 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2683 GFP_KERNEL, true);
2684 if (!progress) {
2685 nr_retries--;
2686 /* maybe some writeback is necessary */
2687 congestion_wait(BLK_RW_ASYNC, HZ/10);
2688 }
2689
2690 }
2691
2692 return 0;
2693 }
2694
2695 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2696 char *buf, size_t nbytes,
2697 loff_t off)
2698 {
2699 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2700
2701 if (mem_cgroup_is_root(memcg))
2702 return -EINVAL;
2703 return mem_cgroup_force_empty(memcg) ?: nbytes;
2704 }
2705
2706 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2707 struct cftype *cft)
2708 {
2709 return mem_cgroup_from_css(css)->use_hierarchy;
2710 }
2711
2712 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2713 struct cftype *cft, u64 val)
2714 {
2715 int retval = 0;
2716 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2717 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2718
2719 if (memcg->use_hierarchy == val)
2720 return 0;
2721
2722 /*
2723 * If parent's use_hierarchy is set, we can't make any modifications
2724 * in the child subtrees. If it is unset, then the change can
2725 * occur, provided the current cgroup has no children.
2726 *
2727 * For the root cgroup, parent_mem is NULL, we allow value to be
2728 * set if there are no children.
2729 */
2730 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2731 (val == 1 || val == 0)) {
2732 if (!memcg_has_children(memcg))
2733 memcg->use_hierarchy = val;
2734 else
2735 retval = -EBUSY;
2736 } else
2737 retval = -EINVAL;
2738
2739 return retval;
2740 }
2741
2742 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2743 {
2744 struct mem_cgroup *iter;
2745 int i;
2746
2747 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2748
2749 for_each_mem_cgroup_tree(iter, memcg) {
2750 for (i = 0; i < MEMCG_NR_STAT; i++)
2751 stat[i] += memcg_page_state(iter, i);
2752 }
2753 }
2754
2755 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2756 {
2757 struct mem_cgroup *iter;
2758 int i;
2759
2760 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2761
2762 for_each_mem_cgroup_tree(iter, memcg) {
2763 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2764 events[i] += memcg_sum_events(iter, i);
2765 }
2766 }
2767
2768 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2769 {
2770 unsigned long val = 0;
2771
2772 if (mem_cgroup_is_root(memcg)) {
2773 struct mem_cgroup *iter;
2774
2775 for_each_mem_cgroup_tree(iter, memcg) {
2776 val += memcg_page_state(iter, MEMCG_CACHE);
2777 val += memcg_page_state(iter, MEMCG_RSS);
2778 if (swap)
2779 val += memcg_page_state(iter, MEMCG_SWAP);
2780 }
2781 } else {
2782 if (!swap)
2783 val = page_counter_read(&memcg->memory);
2784 else
2785 val = page_counter_read(&memcg->memsw);
2786 }
2787 return val;
2788 }
2789
2790 enum {
2791 RES_USAGE,
2792 RES_LIMIT,
2793 RES_MAX_USAGE,
2794 RES_FAILCNT,
2795 RES_SOFT_LIMIT,
2796 };
2797
2798 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2799 struct cftype *cft)
2800 {
2801 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2802 struct page_counter *counter;
2803
2804 switch (MEMFILE_TYPE(cft->private)) {
2805 case _MEM:
2806 counter = &memcg->memory;
2807 break;
2808 case _MEMSWAP:
2809 counter = &memcg->memsw;
2810 break;
2811 case _KMEM:
2812 counter = &memcg->kmem;
2813 break;
2814 case _TCP:
2815 counter = &memcg->tcpmem;
2816 break;
2817 default:
2818 BUG();
2819 }
2820
2821 switch (MEMFILE_ATTR(cft->private)) {
2822 case RES_USAGE:
2823 if (counter == &memcg->memory)
2824 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2825 if (counter == &memcg->memsw)
2826 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2827 return (u64)page_counter_read(counter) * PAGE_SIZE;
2828 case RES_LIMIT:
2829 return (u64)counter->limit * PAGE_SIZE;
2830 case RES_MAX_USAGE:
2831 return (u64)counter->watermark * PAGE_SIZE;
2832 case RES_FAILCNT:
2833 return counter->failcnt;
2834 case RES_SOFT_LIMIT:
2835 return (u64)memcg->soft_limit * PAGE_SIZE;
2836 default:
2837 BUG();
2838 }
2839 }
2840
2841 #ifndef CONFIG_SLOB
2842 static int memcg_online_kmem(struct mem_cgroup *memcg)
2843 {
2844 int memcg_id;
2845
2846 if (cgroup_memory_nokmem)
2847 return 0;
2848
2849 BUG_ON(memcg->kmemcg_id >= 0);
2850 BUG_ON(memcg->kmem_state);
2851
2852 memcg_id = memcg_alloc_cache_id();
2853 if (memcg_id < 0)
2854 return memcg_id;
2855
2856 static_branch_inc(&memcg_kmem_enabled_key);
2857 /*
2858 * A memory cgroup is considered kmem-online as soon as it gets
2859 * kmemcg_id. Setting the id after enabling static branching will
2860 * guarantee no one starts accounting before all call sites are
2861 * patched.
2862 */
2863 memcg->kmemcg_id = memcg_id;
2864 memcg->kmem_state = KMEM_ONLINE;
2865 INIT_LIST_HEAD(&memcg->kmem_caches);
2866
2867 return 0;
2868 }
2869
2870 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2871 {
2872 struct cgroup_subsys_state *css;
2873 struct mem_cgroup *parent, *child;
2874 int kmemcg_id;
2875
2876 if (memcg->kmem_state != KMEM_ONLINE)
2877 return;
2878 /*
2879 * Clear the online state before clearing memcg_caches array
2880 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2881 * guarantees that no cache will be created for this cgroup
2882 * after we are done (see memcg_create_kmem_cache()).
2883 */
2884 memcg->kmem_state = KMEM_ALLOCATED;
2885
2886 memcg_deactivate_kmem_caches(memcg);
2887
2888 kmemcg_id = memcg->kmemcg_id;
2889 BUG_ON(kmemcg_id < 0);
2890
2891 parent = parent_mem_cgroup(memcg);
2892 if (!parent)
2893 parent = root_mem_cgroup;
2894
2895 /*
2896 * Change kmemcg_id of this cgroup and all its descendants to the
2897 * parent's id, and then move all entries from this cgroup's list_lrus
2898 * to ones of the parent. After we have finished, all list_lrus
2899 * corresponding to this cgroup are guaranteed to remain empty. The
2900 * ordering is imposed by list_lru_node->lock taken by
2901 * memcg_drain_all_list_lrus().
2902 */
2903 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2904 css_for_each_descendant_pre(css, &memcg->css) {
2905 child = mem_cgroup_from_css(css);
2906 BUG_ON(child->kmemcg_id != kmemcg_id);
2907 child->kmemcg_id = parent->kmemcg_id;
2908 if (!memcg->use_hierarchy)
2909 break;
2910 }
2911 rcu_read_unlock();
2912
2913 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2914
2915 memcg_free_cache_id(kmemcg_id);
2916 }
2917
2918 static void memcg_free_kmem(struct mem_cgroup *memcg)
2919 {
2920 /* css_alloc() failed, offlining didn't happen */
2921 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2922 memcg_offline_kmem(memcg);
2923
2924 if (memcg->kmem_state == KMEM_ALLOCATED) {
2925 memcg_destroy_kmem_caches(memcg);
2926 static_branch_dec(&memcg_kmem_enabled_key);
2927 WARN_ON(page_counter_read(&memcg->kmem));
2928 }
2929 }
2930 #else
2931 static int memcg_online_kmem(struct mem_cgroup *memcg)
2932 {
2933 return 0;
2934 }
2935 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2936 {
2937 }
2938 static void memcg_free_kmem(struct mem_cgroup *memcg)
2939 {
2940 }
2941 #endif /* !CONFIG_SLOB */
2942
2943 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2944 unsigned long limit)
2945 {
2946 int ret;
2947
2948 mutex_lock(&memcg_limit_mutex);
2949 ret = page_counter_limit(&memcg->kmem, limit);
2950 mutex_unlock(&memcg_limit_mutex);
2951 return ret;
2952 }
2953
2954 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2955 {
2956 int ret;
2957
2958 mutex_lock(&memcg_limit_mutex);
2959
2960 ret = page_counter_limit(&memcg->tcpmem, limit);
2961 if (ret)
2962 goto out;
2963
2964 if (!memcg->tcpmem_active) {
2965 /*
2966 * The active flag needs to be written after the static_key
2967 * update. This is what guarantees that the socket activation
2968 * function is the last one to run. See mem_cgroup_sk_alloc()
2969 * for details, and note that we don't mark any socket as
2970 * belonging to this memcg until that flag is up.
2971 *
2972 * We need to do this, because static_keys will span multiple
2973 * sites, but we can't control their order. If we mark a socket
2974 * as accounted, but the accounting functions are not patched in
2975 * yet, we'll lose accounting.
2976 *
2977 * We never race with the readers in mem_cgroup_sk_alloc(),
2978 * because when this value change, the code to process it is not
2979 * patched in yet.
2980 */
2981 static_branch_inc(&memcg_sockets_enabled_key);
2982 memcg->tcpmem_active = true;
2983 }
2984 out:
2985 mutex_unlock(&memcg_limit_mutex);
2986 return ret;
2987 }
2988
2989 /*
2990 * The user of this function is...
2991 * RES_LIMIT.
2992 */
2993 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2994 char *buf, size_t nbytes, loff_t off)
2995 {
2996 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2997 unsigned long nr_pages;
2998 int ret;
2999
3000 buf = strstrip(buf);
3001 ret = page_counter_memparse(buf, "-1", &nr_pages);
3002 if (ret)
3003 return ret;
3004
3005 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3006 case RES_LIMIT:
3007 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3008 ret = -EINVAL;
3009 break;
3010 }
3011 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3012 case _MEM:
3013 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3014 break;
3015 case _MEMSWAP:
3016 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3017 break;
3018 case _KMEM:
3019 ret = memcg_update_kmem_limit(memcg, nr_pages);
3020 break;
3021 case _TCP:
3022 ret = memcg_update_tcp_limit(memcg, nr_pages);
3023 break;
3024 }
3025 break;
3026 case RES_SOFT_LIMIT:
3027 memcg->soft_limit = nr_pages;
3028 ret = 0;
3029 break;
3030 }
3031 return ret ?: nbytes;
3032 }
3033
3034 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3035 size_t nbytes, loff_t off)
3036 {
3037 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3038 struct page_counter *counter;
3039
3040 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3041 case _MEM:
3042 counter = &memcg->memory;
3043 break;
3044 case _MEMSWAP:
3045 counter = &memcg->memsw;
3046 break;
3047 case _KMEM:
3048 counter = &memcg->kmem;
3049 break;
3050 case _TCP:
3051 counter = &memcg->tcpmem;
3052 break;
3053 default:
3054 BUG();
3055 }
3056
3057 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3058 case RES_MAX_USAGE:
3059 page_counter_reset_watermark(counter);
3060 break;
3061 case RES_FAILCNT:
3062 counter->failcnt = 0;
3063 break;
3064 default:
3065 BUG();
3066 }
3067
3068 return nbytes;
3069 }
3070
3071 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3072 struct cftype *cft)
3073 {
3074 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3075 }
3076
3077 #ifdef CONFIG_MMU
3078 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3079 struct cftype *cft, u64 val)
3080 {
3081 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3082
3083 if (val & ~MOVE_MASK)
3084 return -EINVAL;
3085
3086 /*
3087 * No kind of locking is needed in here, because ->can_attach() will
3088 * check this value once in the beginning of the process, and then carry
3089 * on with stale data. This means that changes to this value will only
3090 * affect task migrations starting after the change.
3091 */
3092 memcg->move_charge_at_immigrate = val;
3093 return 0;
3094 }
3095 #else
3096 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3097 struct cftype *cft, u64 val)
3098 {
3099 return -ENOSYS;
3100 }
3101 #endif
3102
3103 #ifdef CONFIG_NUMA
3104 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3105 {
3106 struct numa_stat {
3107 const char *name;
3108 unsigned int lru_mask;
3109 };
3110
3111 static const struct numa_stat stats[] = {
3112 { "total", LRU_ALL },
3113 { "file", LRU_ALL_FILE },
3114 { "anon", LRU_ALL_ANON },
3115 { "unevictable", BIT(LRU_UNEVICTABLE) },
3116 };
3117 const struct numa_stat *stat;
3118 int nid;
3119 unsigned long nr;
3120 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3121
3122 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3123 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3124 seq_printf(m, "%s=%lu", stat->name, nr);
3125 for_each_node_state(nid, N_MEMORY) {
3126 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3127 stat->lru_mask);
3128 seq_printf(m, " N%d=%lu", nid, nr);
3129 }
3130 seq_putc(m, '\n');
3131 }
3132
3133 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3134 struct mem_cgroup *iter;
3135
3136 nr = 0;
3137 for_each_mem_cgroup_tree(iter, memcg)
3138 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3139 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3140 for_each_node_state(nid, N_MEMORY) {
3141 nr = 0;
3142 for_each_mem_cgroup_tree(iter, memcg)
3143 nr += mem_cgroup_node_nr_lru_pages(
3144 iter, nid, stat->lru_mask);
3145 seq_printf(m, " N%d=%lu", nid, nr);
3146 }
3147 seq_putc(m, '\n');
3148 }
3149
3150 return 0;
3151 }
3152 #endif /* CONFIG_NUMA */
3153
3154 /* Universal VM events cgroup1 shows, original sort order */
3155 unsigned int memcg1_events[] = {
3156 PGPGIN,
3157 PGPGOUT,
3158 PGFAULT,
3159 PGMAJFAULT,
3160 };
3161
3162 static const char *const memcg1_event_names[] = {
3163 "pgpgin",
3164 "pgpgout",
3165 "pgfault",
3166 "pgmajfault",
3167 };
3168
3169 static int memcg_stat_show(struct seq_file *m, void *v)
3170 {
3171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3172 unsigned long memory, memsw;
3173 struct mem_cgroup *mi;
3174 unsigned int i;
3175
3176 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3177 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3178
3179 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3180 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3181 continue;
3182 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3183 memcg_page_state(memcg, memcg1_stats[i]) *
3184 PAGE_SIZE);
3185 }
3186
3187 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3188 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3189 memcg_sum_events(memcg, memcg1_events[i]));
3190
3191 for (i = 0; i < NR_LRU_LISTS; i++)
3192 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3193 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3194
3195 /* Hierarchical information */
3196 memory = memsw = PAGE_COUNTER_MAX;
3197 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3198 memory = min(memory, mi->memory.limit);
3199 memsw = min(memsw, mi->memsw.limit);
3200 }
3201 seq_printf(m, "hierarchical_memory_limit %llu\n",
3202 (u64)memory * PAGE_SIZE);
3203 if (do_memsw_account())
3204 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3205 (u64)memsw * PAGE_SIZE);
3206
3207 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3208 unsigned long long val = 0;
3209
3210 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3211 continue;
3212 for_each_mem_cgroup_tree(mi, memcg)
3213 val += memcg_page_state(mi, memcg1_stats[i]) *
3214 PAGE_SIZE;
3215 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3216 }
3217
3218 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3219 unsigned long long val = 0;
3220
3221 for_each_mem_cgroup_tree(mi, memcg)
3222 val += memcg_sum_events(mi, memcg1_events[i]);
3223 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3224 }
3225
3226 for (i = 0; i < NR_LRU_LISTS; i++) {
3227 unsigned long long val = 0;
3228
3229 for_each_mem_cgroup_tree(mi, memcg)
3230 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3231 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3232 }
3233
3234 #ifdef CONFIG_DEBUG_VM
3235 {
3236 pg_data_t *pgdat;
3237 struct mem_cgroup_per_node *mz;
3238 struct zone_reclaim_stat *rstat;
3239 unsigned long recent_rotated[2] = {0, 0};
3240 unsigned long recent_scanned[2] = {0, 0};
3241
3242 for_each_online_pgdat(pgdat) {
3243 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3244 rstat = &mz->lruvec.reclaim_stat;
3245
3246 recent_rotated[0] += rstat->recent_rotated[0];
3247 recent_rotated[1] += rstat->recent_rotated[1];
3248 recent_scanned[0] += rstat->recent_scanned[0];
3249 recent_scanned[1] += rstat->recent_scanned[1];
3250 }
3251 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3252 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3253 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3254 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3255 }
3256 #endif
3257
3258 return 0;
3259 }
3260
3261 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3262 struct cftype *cft)
3263 {
3264 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3265
3266 return mem_cgroup_swappiness(memcg);
3267 }
3268
3269 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3270 struct cftype *cft, u64 val)
3271 {
3272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3273
3274 if (val > 100)
3275 return -EINVAL;
3276
3277 if (css->parent)
3278 memcg->swappiness = val;
3279 else
3280 vm_swappiness = val;
3281
3282 return 0;
3283 }
3284
3285 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3286 {
3287 struct mem_cgroup_threshold_ary *t;
3288 unsigned long usage;
3289 int i;
3290
3291 rcu_read_lock();
3292 if (!swap)
3293 t = rcu_dereference(memcg->thresholds.primary);
3294 else
3295 t = rcu_dereference(memcg->memsw_thresholds.primary);
3296
3297 if (!t)
3298 goto unlock;
3299
3300 usage = mem_cgroup_usage(memcg, swap);
3301
3302 /*
3303 * current_threshold points to threshold just below or equal to usage.
3304 * If it's not true, a threshold was crossed after last
3305 * call of __mem_cgroup_threshold().
3306 */
3307 i = t->current_threshold;
3308
3309 /*
3310 * Iterate backward over array of thresholds starting from
3311 * current_threshold and check if a threshold is crossed.
3312 * If none of thresholds below usage is crossed, we read
3313 * only one element of the array here.
3314 */
3315 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3316 eventfd_signal(t->entries[i].eventfd, 1);
3317
3318 /* i = current_threshold + 1 */
3319 i++;
3320
3321 /*
3322 * Iterate forward over array of thresholds starting from
3323 * current_threshold+1 and check if a threshold is crossed.
3324 * If none of thresholds above usage is crossed, we read
3325 * only one element of the array here.
3326 */
3327 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3328 eventfd_signal(t->entries[i].eventfd, 1);
3329
3330 /* Update current_threshold */
3331 t->current_threshold = i - 1;
3332 unlock:
3333 rcu_read_unlock();
3334 }
3335
3336 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3337 {
3338 while (memcg) {
3339 __mem_cgroup_threshold(memcg, false);
3340 if (do_memsw_account())
3341 __mem_cgroup_threshold(memcg, true);
3342
3343 memcg = parent_mem_cgroup(memcg);
3344 }
3345 }
3346
3347 static int compare_thresholds(const void *a, const void *b)
3348 {
3349 const struct mem_cgroup_threshold *_a = a;
3350 const struct mem_cgroup_threshold *_b = b;
3351
3352 if (_a->threshold > _b->threshold)
3353 return 1;
3354
3355 if (_a->threshold < _b->threshold)
3356 return -1;
3357
3358 return 0;
3359 }
3360
3361 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3362 {
3363 struct mem_cgroup_eventfd_list *ev;
3364
3365 spin_lock(&memcg_oom_lock);
3366
3367 list_for_each_entry(ev, &memcg->oom_notify, list)
3368 eventfd_signal(ev->eventfd, 1);
3369
3370 spin_unlock(&memcg_oom_lock);
3371 return 0;
3372 }
3373
3374 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3375 {
3376 struct mem_cgroup *iter;
3377
3378 for_each_mem_cgroup_tree(iter, memcg)
3379 mem_cgroup_oom_notify_cb(iter);
3380 }
3381
3382 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3383 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3384 {
3385 struct mem_cgroup_thresholds *thresholds;
3386 struct mem_cgroup_threshold_ary *new;
3387 unsigned long threshold;
3388 unsigned long usage;
3389 int i, size, ret;
3390
3391 ret = page_counter_memparse(args, "-1", &threshold);
3392 if (ret)
3393 return ret;
3394
3395 mutex_lock(&memcg->thresholds_lock);
3396
3397 if (type == _MEM) {
3398 thresholds = &memcg->thresholds;
3399 usage = mem_cgroup_usage(memcg, false);
3400 } else if (type == _MEMSWAP) {
3401 thresholds = &memcg->memsw_thresholds;
3402 usage = mem_cgroup_usage(memcg, true);
3403 } else
3404 BUG();
3405
3406 /* Check if a threshold crossed before adding a new one */
3407 if (thresholds->primary)
3408 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3409
3410 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3411
3412 /* Allocate memory for new array of thresholds */
3413 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3414 GFP_KERNEL);
3415 if (!new) {
3416 ret = -ENOMEM;
3417 goto unlock;
3418 }
3419 new->size = size;
3420
3421 /* Copy thresholds (if any) to new array */
3422 if (thresholds->primary) {
3423 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3424 sizeof(struct mem_cgroup_threshold));
3425 }
3426
3427 /* Add new threshold */
3428 new->entries[size - 1].eventfd = eventfd;
3429 new->entries[size - 1].threshold = threshold;
3430
3431 /* Sort thresholds. Registering of new threshold isn't time-critical */
3432 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3433 compare_thresholds, NULL);
3434
3435 /* Find current threshold */
3436 new->current_threshold = -1;
3437 for (i = 0; i < size; i++) {
3438 if (new->entries[i].threshold <= usage) {
3439 /*
3440 * new->current_threshold will not be used until
3441 * rcu_assign_pointer(), so it's safe to increment
3442 * it here.
3443 */
3444 ++new->current_threshold;
3445 } else
3446 break;
3447 }
3448
3449 /* Free old spare buffer and save old primary buffer as spare */
3450 kfree(thresholds->spare);
3451 thresholds->spare = thresholds->primary;
3452
3453 rcu_assign_pointer(thresholds->primary, new);
3454
3455 /* To be sure that nobody uses thresholds */
3456 synchronize_rcu();
3457
3458 unlock:
3459 mutex_unlock(&memcg->thresholds_lock);
3460
3461 return ret;
3462 }
3463
3464 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3465 struct eventfd_ctx *eventfd, const char *args)
3466 {
3467 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3468 }
3469
3470 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3471 struct eventfd_ctx *eventfd, const char *args)
3472 {
3473 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3474 }
3475
3476 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3477 struct eventfd_ctx *eventfd, enum res_type type)
3478 {
3479 struct mem_cgroup_thresholds *thresholds;
3480 struct mem_cgroup_threshold_ary *new;
3481 unsigned long usage;
3482 int i, j, size;
3483
3484 mutex_lock(&memcg->thresholds_lock);
3485
3486 if (type == _MEM) {
3487 thresholds = &memcg->thresholds;
3488 usage = mem_cgroup_usage(memcg, false);
3489 } else if (type == _MEMSWAP) {
3490 thresholds = &memcg->memsw_thresholds;
3491 usage = mem_cgroup_usage(memcg, true);
3492 } else
3493 BUG();
3494
3495 if (!thresholds->primary)
3496 goto unlock;
3497
3498 /* Check if a threshold crossed before removing */
3499 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3500
3501 /* Calculate new number of threshold */
3502 size = 0;
3503 for (i = 0; i < thresholds->primary->size; i++) {
3504 if (thresholds->primary->entries[i].eventfd != eventfd)
3505 size++;
3506 }
3507
3508 new = thresholds->spare;
3509
3510 /* Set thresholds array to NULL if we don't have thresholds */
3511 if (!size) {
3512 kfree(new);
3513 new = NULL;
3514 goto swap_buffers;
3515 }
3516
3517 new->size = size;
3518
3519 /* Copy thresholds and find current threshold */
3520 new->current_threshold = -1;
3521 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3522 if (thresholds->primary->entries[i].eventfd == eventfd)
3523 continue;
3524
3525 new->entries[j] = thresholds->primary->entries[i];
3526 if (new->entries[j].threshold <= usage) {
3527 /*
3528 * new->current_threshold will not be used
3529 * until rcu_assign_pointer(), so it's safe to increment
3530 * it here.
3531 */
3532 ++new->current_threshold;
3533 }
3534 j++;
3535 }
3536
3537 swap_buffers:
3538 /* Swap primary and spare array */
3539 thresholds->spare = thresholds->primary;
3540
3541 rcu_assign_pointer(thresholds->primary, new);
3542
3543 /* To be sure that nobody uses thresholds */
3544 synchronize_rcu();
3545
3546 /* If all events are unregistered, free the spare array */
3547 if (!new) {
3548 kfree(thresholds->spare);
3549 thresholds->spare = NULL;
3550 }
3551 unlock:
3552 mutex_unlock(&memcg->thresholds_lock);
3553 }
3554
3555 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3556 struct eventfd_ctx *eventfd)
3557 {
3558 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3559 }
3560
3561 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3562 struct eventfd_ctx *eventfd)
3563 {
3564 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3565 }
3566
3567 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3568 struct eventfd_ctx *eventfd, const char *args)
3569 {
3570 struct mem_cgroup_eventfd_list *event;
3571
3572 event = kmalloc(sizeof(*event), GFP_KERNEL);
3573 if (!event)
3574 return -ENOMEM;
3575
3576 spin_lock(&memcg_oom_lock);
3577
3578 event->eventfd = eventfd;
3579 list_add(&event->list, &memcg->oom_notify);
3580
3581 /* already in OOM ? */
3582 if (memcg->under_oom)
3583 eventfd_signal(eventfd, 1);
3584 spin_unlock(&memcg_oom_lock);
3585
3586 return 0;
3587 }
3588
3589 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3590 struct eventfd_ctx *eventfd)
3591 {
3592 struct mem_cgroup_eventfd_list *ev, *tmp;
3593
3594 spin_lock(&memcg_oom_lock);
3595
3596 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3597 if (ev->eventfd == eventfd) {
3598 list_del(&ev->list);
3599 kfree(ev);
3600 }
3601 }
3602
3603 spin_unlock(&memcg_oom_lock);
3604 }
3605
3606 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3607 {
3608 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3609
3610 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3611 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3612 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3613 return 0;
3614 }
3615
3616 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3617 struct cftype *cft, u64 val)
3618 {
3619 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3620
3621 /* cannot set to root cgroup and only 0 and 1 are allowed */
3622 if (!css->parent || !((val == 0) || (val == 1)))
3623 return -EINVAL;
3624
3625 memcg->oom_kill_disable = val;
3626 if (!val)
3627 memcg_oom_recover(memcg);
3628
3629 return 0;
3630 }
3631
3632 #ifdef CONFIG_CGROUP_WRITEBACK
3633
3634 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3635 {
3636 return &memcg->cgwb_list;
3637 }
3638
3639 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3640 {
3641 return wb_domain_init(&memcg->cgwb_domain, gfp);
3642 }
3643
3644 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3645 {
3646 wb_domain_exit(&memcg->cgwb_domain);
3647 }
3648
3649 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3650 {
3651 wb_domain_size_changed(&memcg->cgwb_domain);
3652 }
3653
3654 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3655 {
3656 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3657
3658 if (!memcg->css.parent)
3659 return NULL;
3660
3661 return &memcg->cgwb_domain;
3662 }
3663
3664 /**
3665 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3666 * @wb: bdi_writeback in question
3667 * @pfilepages: out parameter for number of file pages
3668 * @pheadroom: out parameter for number of allocatable pages according to memcg
3669 * @pdirty: out parameter for number of dirty pages
3670 * @pwriteback: out parameter for number of pages under writeback
3671 *
3672 * Determine the numbers of file, headroom, dirty, and writeback pages in
3673 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3674 * is a bit more involved.
3675 *
3676 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3677 * headroom is calculated as the lowest headroom of itself and the
3678 * ancestors. Note that this doesn't consider the actual amount of
3679 * available memory in the system. The caller should further cap
3680 * *@pheadroom accordingly.
3681 */
3682 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3683 unsigned long *pheadroom, unsigned long *pdirty,
3684 unsigned long *pwriteback)
3685 {
3686 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3687 struct mem_cgroup *parent;
3688
3689 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3690
3691 /* this should eventually include NR_UNSTABLE_NFS */
3692 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3693 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3694 (1 << LRU_ACTIVE_FILE));
3695 *pheadroom = PAGE_COUNTER_MAX;
3696
3697 while ((parent = parent_mem_cgroup(memcg))) {
3698 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3699 unsigned long used = page_counter_read(&memcg->memory);
3700
3701 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3702 memcg = parent;
3703 }
3704 }
3705
3706 #else /* CONFIG_CGROUP_WRITEBACK */
3707
3708 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3709 {
3710 return 0;
3711 }
3712
3713 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3714 {
3715 }
3716
3717 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3718 {
3719 }
3720
3721 #endif /* CONFIG_CGROUP_WRITEBACK */
3722
3723 /*
3724 * DO NOT USE IN NEW FILES.
3725 *
3726 * "cgroup.event_control" implementation.
3727 *
3728 * This is way over-engineered. It tries to support fully configurable
3729 * events for each user. Such level of flexibility is completely
3730 * unnecessary especially in the light of the planned unified hierarchy.
3731 *
3732 * Please deprecate this and replace with something simpler if at all
3733 * possible.
3734 */
3735
3736 /*
3737 * Unregister event and free resources.
3738 *
3739 * Gets called from workqueue.
3740 */
3741 static void memcg_event_remove(struct work_struct *work)
3742 {
3743 struct mem_cgroup_event *event =
3744 container_of(work, struct mem_cgroup_event, remove);
3745 struct mem_cgroup *memcg = event->memcg;
3746
3747 remove_wait_queue(event->wqh, &event->wait);
3748
3749 event->unregister_event(memcg, event->eventfd);
3750
3751 /* Notify userspace the event is going away. */
3752 eventfd_signal(event->eventfd, 1);
3753
3754 eventfd_ctx_put(event->eventfd);
3755 kfree(event);
3756 css_put(&memcg->css);
3757 }
3758
3759 /*
3760 * Gets called on POLLHUP on eventfd when user closes it.
3761 *
3762 * Called with wqh->lock held and interrupts disabled.
3763 */
3764 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3765 int sync, void *key)
3766 {
3767 struct mem_cgroup_event *event =
3768 container_of(wait, struct mem_cgroup_event, wait);
3769 struct mem_cgroup *memcg = event->memcg;
3770 unsigned long flags = (unsigned long)key;
3771
3772 if (flags & POLLHUP) {
3773 /*
3774 * If the event has been detached at cgroup removal, we
3775 * can simply return knowing the other side will cleanup
3776 * for us.
3777 *
3778 * We can't race against event freeing since the other
3779 * side will require wqh->lock via remove_wait_queue(),
3780 * which we hold.
3781 */
3782 spin_lock(&memcg->event_list_lock);
3783 if (!list_empty(&event->list)) {
3784 list_del_init(&event->list);
3785 /*
3786 * We are in atomic context, but cgroup_event_remove()
3787 * may sleep, so we have to call it in workqueue.
3788 */
3789 schedule_work(&event->remove);
3790 }
3791 spin_unlock(&memcg->event_list_lock);
3792 }
3793
3794 return 0;
3795 }
3796
3797 static void memcg_event_ptable_queue_proc(struct file *file,
3798 wait_queue_head_t *wqh, poll_table *pt)
3799 {
3800 struct mem_cgroup_event *event =
3801 container_of(pt, struct mem_cgroup_event, pt);
3802
3803 event->wqh = wqh;
3804 add_wait_queue(wqh, &event->wait);
3805 }
3806
3807 /*
3808 * DO NOT USE IN NEW FILES.
3809 *
3810 * Parse input and register new cgroup event handler.
3811 *
3812 * Input must be in format '<event_fd> <control_fd> <args>'.
3813 * Interpretation of args is defined by control file implementation.
3814 */
3815 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3816 char *buf, size_t nbytes, loff_t off)
3817 {
3818 struct cgroup_subsys_state *css = of_css(of);
3819 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3820 struct mem_cgroup_event *event;
3821 struct cgroup_subsys_state *cfile_css;
3822 unsigned int efd, cfd;
3823 struct fd efile;
3824 struct fd cfile;
3825 const char *name;
3826 char *endp;
3827 int ret;
3828
3829 buf = strstrip(buf);
3830
3831 efd = simple_strtoul(buf, &endp, 10);
3832 if (*endp != ' ')
3833 return -EINVAL;
3834 buf = endp + 1;
3835
3836 cfd = simple_strtoul(buf, &endp, 10);
3837 if ((*endp != ' ') && (*endp != '\0'))
3838 return -EINVAL;
3839 buf = endp + 1;
3840
3841 event = kzalloc(sizeof(*event), GFP_KERNEL);
3842 if (!event)
3843 return -ENOMEM;
3844
3845 event->memcg = memcg;
3846 INIT_LIST_HEAD(&event->list);
3847 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3848 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3849 INIT_WORK(&event->remove, memcg_event_remove);
3850
3851 efile = fdget(efd);
3852 if (!efile.file) {
3853 ret = -EBADF;
3854 goto out_kfree;
3855 }
3856
3857 event->eventfd = eventfd_ctx_fileget(efile.file);
3858 if (IS_ERR(event->eventfd)) {
3859 ret = PTR_ERR(event->eventfd);
3860 goto out_put_efile;
3861 }
3862
3863 cfile = fdget(cfd);
3864 if (!cfile.file) {
3865 ret = -EBADF;
3866 goto out_put_eventfd;
3867 }
3868
3869 /* the process need read permission on control file */
3870 /* AV: shouldn't we check that it's been opened for read instead? */
3871 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3872 if (ret < 0)
3873 goto out_put_cfile;
3874
3875 /*
3876 * Determine the event callbacks and set them in @event. This used
3877 * to be done via struct cftype but cgroup core no longer knows
3878 * about these events. The following is crude but the whole thing
3879 * is for compatibility anyway.
3880 *
3881 * DO NOT ADD NEW FILES.
3882 */
3883 name = cfile.file->f_path.dentry->d_name.name;
3884
3885 if (!strcmp(name, "memory.usage_in_bytes")) {
3886 event->register_event = mem_cgroup_usage_register_event;
3887 event->unregister_event = mem_cgroup_usage_unregister_event;
3888 } else if (!strcmp(name, "memory.oom_control")) {
3889 event->register_event = mem_cgroup_oom_register_event;
3890 event->unregister_event = mem_cgroup_oom_unregister_event;
3891 } else if (!strcmp(name, "memory.pressure_level")) {
3892 event->register_event = vmpressure_register_event;
3893 event->unregister_event = vmpressure_unregister_event;
3894 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3895 event->register_event = memsw_cgroup_usage_register_event;
3896 event->unregister_event = memsw_cgroup_usage_unregister_event;
3897 } else {
3898 ret = -EINVAL;
3899 goto out_put_cfile;
3900 }
3901
3902 /*
3903 * Verify @cfile should belong to @css. Also, remaining events are
3904 * automatically removed on cgroup destruction but the removal is
3905 * asynchronous, so take an extra ref on @css.
3906 */
3907 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3908 &memory_cgrp_subsys);
3909 ret = -EINVAL;
3910 if (IS_ERR(cfile_css))
3911 goto out_put_cfile;
3912 if (cfile_css != css) {
3913 css_put(cfile_css);
3914 goto out_put_cfile;
3915 }
3916
3917 ret = event->register_event(memcg, event->eventfd, buf);
3918 if (ret)
3919 goto out_put_css;
3920
3921 efile.file->f_op->poll(efile.file, &event->pt);
3922
3923 spin_lock(&memcg->event_list_lock);
3924 list_add(&event->list, &memcg->event_list);
3925 spin_unlock(&memcg->event_list_lock);
3926
3927 fdput(cfile);
3928 fdput(efile);
3929
3930 return nbytes;
3931
3932 out_put_css:
3933 css_put(css);
3934 out_put_cfile:
3935 fdput(cfile);
3936 out_put_eventfd:
3937 eventfd_ctx_put(event->eventfd);
3938 out_put_efile:
3939 fdput(efile);
3940 out_kfree:
3941 kfree(event);
3942
3943 return ret;
3944 }
3945
3946 static struct cftype mem_cgroup_legacy_files[] = {
3947 {
3948 .name = "usage_in_bytes",
3949 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3950 .read_u64 = mem_cgroup_read_u64,
3951 },
3952 {
3953 .name = "max_usage_in_bytes",
3954 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3955 .write = mem_cgroup_reset,
3956 .read_u64 = mem_cgroup_read_u64,
3957 },
3958 {
3959 .name = "limit_in_bytes",
3960 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3961 .write = mem_cgroup_write,
3962 .read_u64 = mem_cgroup_read_u64,
3963 },
3964 {
3965 .name = "soft_limit_in_bytes",
3966 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3967 .write = mem_cgroup_write,
3968 .read_u64 = mem_cgroup_read_u64,
3969 },
3970 {
3971 .name = "failcnt",
3972 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3973 .write = mem_cgroup_reset,
3974 .read_u64 = mem_cgroup_read_u64,
3975 },
3976 {
3977 .name = "stat",
3978 .seq_show = memcg_stat_show,
3979 },
3980 {
3981 .name = "force_empty",
3982 .write = mem_cgroup_force_empty_write,
3983 },
3984 {
3985 .name = "use_hierarchy",
3986 .write_u64 = mem_cgroup_hierarchy_write,
3987 .read_u64 = mem_cgroup_hierarchy_read,
3988 },
3989 {
3990 .name = "cgroup.event_control", /* XXX: for compat */
3991 .write = memcg_write_event_control,
3992 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3993 },
3994 {
3995 .name = "swappiness",
3996 .read_u64 = mem_cgroup_swappiness_read,
3997 .write_u64 = mem_cgroup_swappiness_write,
3998 },
3999 {
4000 .name = "move_charge_at_immigrate",
4001 .read_u64 = mem_cgroup_move_charge_read,
4002 .write_u64 = mem_cgroup_move_charge_write,
4003 },
4004 {
4005 .name = "oom_control",
4006 .seq_show = mem_cgroup_oom_control_read,
4007 .write_u64 = mem_cgroup_oom_control_write,
4008 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4009 },
4010 {
4011 .name = "pressure_level",
4012 },
4013 #ifdef CONFIG_NUMA
4014 {
4015 .name = "numa_stat",
4016 .seq_show = memcg_numa_stat_show,
4017 },
4018 #endif
4019 {
4020 .name = "kmem.limit_in_bytes",
4021 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4022 .write = mem_cgroup_write,
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "kmem.usage_in_bytes",
4027 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4028 .read_u64 = mem_cgroup_read_u64,
4029 },
4030 {
4031 .name = "kmem.failcnt",
4032 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4033 .write = mem_cgroup_reset,
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
4036 {
4037 .name = "kmem.max_usage_in_bytes",
4038 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4039 .write = mem_cgroup_reset,
4040 .read_u64 = mem_cgroup_read_u64,
4041 },
4042 #ifdef CONFIG_SLABINFO
4043 {
4044 .name = "kmem.slabinfo",
4045 .seq_start = memcg_slab_start,
4046 .seq_next = memcg_slab_next,
4047 .seq_stop = memcg_slab_stop,
4048 .seq_show = memcg_slab_show,
4049 },
4050 #endif
4051 {
4052 .name = "kmem.tcp.limit_in_bytes",
4053 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4054 .write = mem_cgroup_write,
4055 .read_u64 = mem_cgroup_read_u64,
4056 },
4057 {
4058 .name = "kmem.tcp.usage_in_bytes",
4059 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4060 .read_u64 = mem_cgroup_read_u64,
4061 },
4062 {
4063 .name = "kmem.tcp.failcnt",
4064 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4065 .write = mem_cgroup_reset,
4066 .read_u64 = mem_cgroup_read_u64,
4067 },
4068 {
4069 .name = "kmem.tcp.max_usage_in_bytes",
4070 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4071 .write = mem_cgroup_reset,
4072 .read_u64 = mem_cgroup_read_u64,
4073 },
4074 { }, /* terminate */
4075 };
4076
4077 /*
4078 * Private memory cgroup IDR
4079 *
4080 * Swap-out records and page cache shadow entries need to store memcg
4081 * references in constrained space, so we maintain an ID space that is
4082 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4083 * memory-controlled cgroups to 64k.
4084 *
4085 * However, there usually are many references to the oflline CSS after
4086 * the cgroup has been destroyed, such as page cache or reclaimable
4087 * slab objects, that don't need to hang on to the ID. We want to keep
4088 * those dead CSS from occupying IDs, or we might quickly exhaust the
4089 * relatively small ID space and prevent the creation of new cgroups
4090 * even when there are much fewer than 64k cgroups - possibly none.
4091 *
4092 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4093 * be freed and recycled when it's no longer needed, which is usually
4094 * when the CSS is offlined.
4095 *
4096 * The only exception to that are records of swapped out tmpfs/shmem
4097 * pages that need to be attributed to live ancestors on swapin. But
4098 * those references are manageable from userspace.
4099 */
4100
4101 static DEFINE_IDR(mem_cgroup_idr);
4102
4103 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4104 {
4105 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4106 atomic_add(n, &memcg->id.ref);
4107 }
4108
4109 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4110 {
4111 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4112 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4113 idr_remove(&mem_cgroup_idr, memcg->id.id);
4114 memcg->id.id = 0;
4115
4116 /* Memcg ID pins CSS */
4117 css_put(&memcg->css);
4118 }
4119 }
4120
4121 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4122 {
4123 mem_cgroup_id_get_many(memcg, 1);
4124 }
4125
4126 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4127 {
4128 mem_cgroup_id_put_many(memcg, 1);
4129 }
4130
4131 /**
4132 * mem_cgroup_from_id - look up a memcg from a memcg id
4133 * @id: the memcg id to look up
4134 *
4135 * Caller must hold rcu_read_lock().
4136 */
4137 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4138 {
4139 WARN_ON_ONCE(!rcu_read_lock_held());
4140 return idr_find(&mem_cgroup_idr, id);
4141 }
4142
4143 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4144 {
4145 struct mem_cgroup_per_node *pn;
4146 int tmp = node;
4147 /*
4148 * This routine is called against possible nodes.
4149 * But it's BUG to call kmalloc() against offline node.
4150 *
4151 * TODO: this routine can waste much memory for nodes which will
4152 * never be onlined. It's better to use memory hotplug callback
4153 * function.
4154 */
4155 if (!node_state(node, N_NORMAL_MEMORY))
4156 tmp = -1;
4157 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4158 if (!pn)
4159 return 1;
4160
4161 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4162 if (!pn->lruvec_stat) {
4163 kfree(pn);
4164 return 1;
4165 }
4166
4167 lruvec_init(&pn->lruvec);
4168 pn->usage_in_excess = 0;
4169 pn->on_tree = false;
4170 pn->memcg = memcg;
4171
4172 memcg->nodeinfo[node] = pn;
4173 return 0;
4174 }
4175
4176 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4177 {
4178 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4179
4180 free_percpu(pn->lruvec_stat);
4181 kfree(pn);
4182 }
4183
4184 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4185 {
4186 int node;
4187
4188 for_each_node(node)
4189 free_mem_cgroup_per_node_info(memcg, node);
4190 free_percpu(memcg->stat);
4191 kfree(memcg);
4192 }
4193
4194 static void mem_cgroup_free(struct mem_cgroup *memcg)
4195 {
4196 memcg_wb_domain_exit(memcg);
4197 __mem_cgroup_free(memcg);
4198 }
4199
4200 static struct mem_cgroup *mem_cgroup_alloc(void)
4201 {
4202 struct mem_cgroup *memcg;
4203 size_t size;
4204 int node;
4205
4206 size = sizeof(struct mem_cgroup);
4207 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4208
4209 memcg = kzalloc(size, GFP_KERNEL);
4210 if (!memcg)
4211 return NULL;
4212
4213 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4214 1, MEM_CGROUP_ID_MAX,
4215 GFP_KERNEL);
4216 if (memcg->id.id < 0)
4217 goto fail;
4218
4219 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4220 if (!memcg->stat)
4221 goto fail;
4222
4223 for_each_node(node)
4224 if (alloc_mem_cgroup_per_node_info(memcg, node))
4225 goto fail;
4226
4227 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4228 goto fail;
4229
4230 INIT_WORK(&memcg->high_work, high_work_func);
4231 memcg->last_scanned_node = MAX_NUMNODES;
4232 INIT_LIST_HEAD(&memcg->oom_notify);
4233 mutex_init(&memcg->thresholds_lock);
4234 spin_lock_init(&memcg->move_lock);
4235 vmpressure_init(&memcg->vmpressure);
4236 INIT_LIST_HEAD(&memcg->event_list);
4237 spin_lock_init(&memcg->event_list_lock);
4238 memcg->socket_pressure = jiffies;
4239 #ifndef CONFIG_SLOB
4240 memcg->kmemcg_id = -1;
4241 #endif
4242 #ifdef CONFIG_CGROUP_WRITEBACK
4243 INIT_LIST_HEAD(&memcg->cgwb_list);
4244 #endif
4245 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4246 return memcg;
4247 fail:
4248 if (memcg->id.id > 0)
4249 idr_remove(&mem_cgroup_idr, memcg->id.id);
4250 __mem_cgroup_free(memcg);
4251 return NULL;
4252 }
4253
4254 static struct cgroup_subsys_state * __ref
4255 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4256 {
4257 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4258 struct mem_cgroup *memcg;
4259 long error = -ENOMEM;
4260
4261 memcg = mem_cgroup_alloc();
4262 if (!memcg)
4263 return ERR_PTR(error);
4264
4265 memcg->high = PAGE_COUNTER_MAX;
4266 memcg->soft_limit = PAGE_COUNTER_MAX;
4267 if (parent) {
4268 memcg->swappiness = mem_cgroup_swappiness(parent);
4269 memcg->oom_kill_disable = parent->oom_kill_disable;
4270 }
4271 if (parent && parent->use_hierarchy) {
4272 memcg->use_hierarchy = true;
4273 page_counter_init(&memcg->memory, &parent->memory);
4274 page_counter_init(&memcg->swap, &parent->swap);
4275 page_counter_init(&memcg->memsw, &parent->memsw);
4276 page_counter_init(&memcg->kmem, &parent->kmem);
4277 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4278 } else {
4279 page_counter_init(&memcg->memory, NULL);
4280 page_counter_init(&memcg->swap, NULL);
4281 page_counter_init(&memcg->memsw, NULL);
4282 page_counter_init(&memcg->kmem, NULL);
4283 page_counter_init(&memcg->tcpmem, NULL);
4284 /*
4285 * Deeper hierachy with use_hierarchy == false doesn't make
4286 * much sense so let cgroup subsystem know about this
4287 * unfortunate state in our controller.
4288 */
4289 if (parent != root_mem_cgroup)
4290 memory_cgrp_subsys.broken_hierarchy = true;
4291 }
4292
4293 /* The following stuff does not apply to the root */
4294 if (!parent) {
4295 root_mem_cgroup = memcg;
4296 return &memcg->css;
4297 }
4298
4299 error = memcg_online_kmem(memcg);
4300 if (error)
4301 goto fail;
4302
4303 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4304 static_branch_inc(&memcg_sockets_enabled_key);
4305
4306 return &memcg->css;
4307 fail:
4308 mem_cgroup_free(memcg);
4309 return ERR_PTR(-ENOMEM);
4310 }
4311
4312 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4313 {
4314 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4315
4316 /* Online state pins memcg ID, memcg ID pins CSS */
4317 atomic_set(&memcg->id.ref, 1);
4318 css_get(css);
4319 return 0;
4320 }
4321
4322 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4323 {
4324 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4325 struct mem_cgroup_event *event, *tmp;
4326
4327 /*
4328 * Unregister events and notify userspace.
4329 * Notify userspace about cgroup removing only after rmdir of cgroup
4330 * directory to avoid race between userspace and kernelspace.
4331 */
4332 spin_lock(&memcg->event_list_lock);
4333 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4334 list_del_init(&event->list);
4335 schedule_work(&event->remove);
4336 }
4337 spin_unlock(&memcg->event_list_lock);
4338
4339 memcg->low = 0;
4340
4341 memcg_offline_kmem(memcg);
4342 wb_memcg_offline(memcg);
4343
4344 mem_cgroup_id_put(memcg);
4345 }
4346
4347 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4348 {
4349 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4350
4351 invalidate_reclaim_iterators(memcg);
4352 }
4353
4354 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4355 {
4356 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4357
4358 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4359 static_branch_dec(&memcg_sockets_enabled_key);
4360
4361 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4362 static_branch_dec(&memcg_sockets_enabled_key);
4363
4364 vmpressure_cleanup(&memcg->vmpressure);
4365 cancel_work_sync(&memcg->high_work);
4366 mem_cgroup_remove_from_trees(memcg);
4367 memcg_free_kmem(memcg);
4368 mem_cgroup_free(memcg);
4369 }
4370
4371 /**
4372 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4373 * @css: the target css
4374 *
4375 * Reset the states of the mem_cgroup associated with @css. This is
4376 * invoked when the userland requests disabling on the default hierarchy
4377 * but the memcg is pinned through dependency. The memcg should stop
4378 * applying policies and should revert to the vanilla state as it may be
4379 * made visible again.
4380 *
4381 * The current implementation only resets the essential configurations.
4382 * This needs to be expanded to cover all the visible parts.
4383 */
4384 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4385 {
4386 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4387
4388 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4389 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4390 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4391 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4392 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4393 memcg->low = 0;
4394 memcg->high = PAGE_COUNTER_MAX;
4395 memcg->soft_limit = PAGE_COUNTER_MAX;
4396 memcg_wb_domain_size_changed(memcg);
4397 }
4398
4399 #ifdef CONFIG_MMU
4400 /* Handlers for move charge at task migration. */
4401 static int mem_cgroup_do_precharge(unsigned long count)
4402 {
4403 int ret;
4404
4405 /* Try a single bulk charge without reclaim first, kswapd may wake */
4406 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4407 if (!ret) {
4408 mc.precharge += count;
4409 return ret;
4410 }
4411
4412 /* Try charges one by one with reclaim, but do not retry */
4413 while (count--) {
4414 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4415 if (ret)
4416 return ret;
4417 mc.precharge++;
4418 cond_resched();
4419 }
4420 return 0;
4421 }
4422
4423 union mc_target {
4424 struct page *page;
4425 swp_entry_t ent;
4426 };
4427
4428 enum mc_target_type {
4429 MC_TARGET_NONE = 0,
4430 MC_TARGET_PAGE,
4431 MC_TARGET_SWAP,
4432 MC_TARGET_DEVICE,
4433 };
4434
4435 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4436 unsigned long addr, pte_t ptent)
4437 {
4438 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4439
4440 if (!page || !page_mapped(page))
4441 return NULL;
4442 if (PageAnon(page)) {
4443 if (!(mc.flags & MOVE_ANON))
4444 return NULL;
4445 } else {
4446 if (!(mc.flags & MOVE_FILE))
4447 return NULL;
4448 }
4449 if (!get_page_unless_zero(page))
4450 return NULL;
4451
4452 return page;
4453 }
4454
4455 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4456 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4457 pte_t ptent, swp_entry_t *entry)
4458 {
4459 struct page *page = NULL;
4460 swp_entry_t ent = pte_to_swp_entry(ptent);
4461
4462 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4463 return NULL;
4464
4465 /*
4466 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4467 * a device and because they are not accessible by CPU they are store
4468 * as special swap entry in the CPU page table.
4469 */
4470 if (is_device_private_entry(ent)) {
4471 page = device_private_entry_to_page(ent);
4472 /*
4473 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4474 * a refcount of 1 when free (unlike normal page)
4475 */
4476 if (!page_ref_add_unless(page, 1, 1))
4477 return NULL;
4478 return page;
4479 }
4480
4481 /*
4482 * Because lookup_swap_cache() updates some statistics counter,
4483 * we call find_get_page() with swapper_space directly.
4484 */
4485 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4486 if (do_memsw_account())
4487 entry->val = ent.val;
4488
4489 return page;
4490 }
4491 #else
4492 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4493 pte_t ptent, swp_entry_t *entry)
4494 {
4495 return NULL;
4496 }
4497 #endif
4498
4499 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4500 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4501 {
4502 struct page *page = NULL;
4503 struct address_space *mapping;
4504 pgoff_t pgoff;
4505
4506 if (!vma->vm_file) /* anonymous vma */
4507 return NULL;
4508 if (!(mc.flags & MOVE_FILE))
4509 return NULL;
4510
4511 mapping = vma->vm_file->f_mapping;
4512 pgoff = linear_page_index(vma, addr);
4513
4514 /* page is moved even if it's not RSS of this task(page-faulted). */
4515 #ifdef CONFIG_SWAP
4516 /* shmem/tmpfs may report page out on swap: account for that too. */
4517 if (shmem_mapping(mapping)) {
4518 page = find_get_entry(mapping, pgoff);
4519 if (radix_tree_exceptional_entry(page)) {
4520 swp_entry_t swp = radix_to_swp_entry(page);
4521 if (do_memsw_account())
4522 *entry = swp;
4523 page = find_get_page(swap_address_space(swp),
4524 swp_offset(swp));
4525 }
4526 } else
4527 page = find_get_page(mapping, pgoff);
4528 #else
4529 page = find_get_page(mapping, pgoff);
4530 #endif
4531 return page;
4532 }
4533
4534 /**
4535 * mem_cgroup_move_account - move account of the page
4536 * @page: the page
4537 * @compound: charge the page as compound or small page
4538 * @from: mem_cgroup which the page is moved from.
4539 * @to: mem_cgroup which the page is moved to. @from != @to.
4540 *
4541 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4542 *
4543 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4544 * from old cgroup.
4545 */
4546 static int mem_cgroup_move_account(struct page *page,
4547 bool compound,
4548 struct mem_cgroup *from,
4549 struct mem_cgroup *to)
4550 {
4551 unsigned long flags;
4552 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4553 int ret;
4554 bool anon;
4555
4556 VM_BUG_ON(from == to);
4557 VM_BUG_ON_PAGE(PageLRU(page), page);
4558 VM_BUG_ON(compound && !PageTransHuge(page));
4559
4560 /*
4561 * Prevent mem_cgroup_migrate() from looking at
4562 * page->mem_cgroup of its source page while we change it.
4563 */
4564 ret = -EBUSY;
4565 if (!trylock_page(page))
4566 goto out;
4567
4568 ret = -EINVAL;
4569 if (page->mem_cgroup != from)
4570 goto out_unlock;
4571
4572 anon = PageAnon(page);
4573
4574 spin_lock_irqsave(&from->move_lock, flags);
4575
4576 if (!anon && page_mapped(page)) {
4577 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4578 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4579 }
4580
4581 /*
4582 * move_lock grabbed above and caller set from->moving_account, so
4583 * mod_memcg_page_state will serialize updates to PageDirty.
4584 * So mapping should be stable for dirty pages.
4585 */
4586 if (!anon && PageDirty(page)) {
4587 struct address_space *mapping = page_mapping(page);
4588
4589 if (mapping_cap_account_dirty(mapping)) {
4590 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4591 nr_pages);
4592 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4593 nr_pages);
4594 }
4595 }
4596
4597 if (PageWriteback(page)) {
4598 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4599 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4600 }
4601
4602 /*
4603 * It is safe to change page->mem_cgroup here because the page
4604 * is referenced, charged, and isolated - we can't race with
4605 * uncharging, charging, migration, or LRU putback.
4606 */
4607
4608 /* caller should have done css_get */
4609 page->mem_cgroup = to;
4610 spin_unlock_irqrestore(&from->move_lock, flags);
4611
4612 ret = 0;
4613
4614 local_irq_disable();
4615 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4616 memcg_check_events(to, page);
4617 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4618 memcg_check_events(from, page);
4619 local_irq_enable();
4620 out_unlock:
4621 unlock_page(page);
4622 out:
4623 return ret;
4624 }
4625
4626 /**
4627 * get_mctgt_type - get target type of moving charge
4628 * @vma: the vma the pte to be checked belongs
4629 * @addr: the address corresponding to the pte to be checked
4630 * @ptent: the pte to be checked
4631 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4632 *
4633 * Returns
4634 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4635 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4636 * move charge. if @target is not NULL, the page is stored in target->page
4637 * with extra refcnt got(Callers should handle it).
4638 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4639 * target for charge migration. if @target is not NULL, the entry is stored
4640 * in target->ent.
4641 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4642 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4643 * For now we such page is charge like a regular page would be as for all
4644 * intent and purposes it is just special memory taking the place of a
4645 * regular page.
4646 *
4647 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4648 *
4649 * Called with pte lock held.
4650 */
4651
4652 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4653 unsigned long addr, pte_t ptent, union mc_target *target)
4654 {
4655 struct page *page = NULL;
4656 enum mc_target_type ret = MC_TARGET_NONE;
4657 swp_entry_t ent = { .val = 0 };
4658
4659 if (pte_present(ptent))
4660 page = mc_handle_present_pte(vma, addr, ptent);
4661 else if (is_swap_pte(ptent))
4662 page = mc_handle_swap_pte(vma, ptent, &ent);
4663 else if (pte_none(ptent))
4664 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4665
4666 if (!page && !ent.val)
4667 return ret;
4668 if (page) {
4669 /*
4670 * Do only loose check w/o serialization.
4671 * mem_cgroup_move_account() checks the page is valid or
4672 * not under LRU exclusion.
4673 */
4674 if (page->mem_cgroup == mc.from) {
4675 ret = MC_TARGET_PAGE;
4676 if (is_device_private_page(page) ||
4677 is_device_public_page(page))
4678 ret = MC_TARGET_DEVICE;
4679 if (target)
4680 target->page = page;
4681 }
4682 if (!ret || !target)
4683 put_page(page);
4684 }
4685 /*
4686 * There is a swap entry and a page doesn't exist or isn't charged.
4687 * But we cannot move a tail-page in a THP.
4688 */
4689 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4690 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4691 ret = MC_TARGET_SWAP;
4692 if (target)
4693 target->ent = ent;
4694 }
4695 return ret;
4696 }
4697
4698 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4699 /*
4700 * We don't consider PMD mapped swapping or file mapped pages because THP does
4701 * not support them for now.
4702 * Caller should make sure that pmd_trans_huge(pmd) is true.
4703 */
4704 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4705 unsigned long addr, pmd_t pmd, union mc_target *target)
4706 {
4707 struct page *page = NULL;
4708 enum mc_target_type ret = MC_TARGET_NONE;
4709
4710 if (unlikely(is_swap_pmd(pmd))) {
4711 VM_BUG_ON(thp_migration_supported() &&
4712 !is_pmd_migration_entry(pmd));
4713 return ret;
4714 }
4715 page = pmd_page(pmd);
4716 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4717 if (!(mc.flags & MOVE_ANON))
4718 return ret;
4719 if (page->mem_cgroup == mc.from) {
4720 ret = MC_TARGET_PAGE;
4721 if (target) {
4722 get_page(page);
4723 target->page = page;
4724 }
4725 }
4726 return ret;
4727 }
4728 #else
4729 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4730 unsigned long addr, pmd_t pmd, union mc_target *target)
4731 {
4732 return MC_TARGET_NONE;
4733 }
4734 #endif
4735
4736 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4737 unsigned long addr, unsigned long end,
4738 struct mm_walk *walk)
4739 {
4740 struct vm_area_struct *vma = walk->vma;
4741 pte_t *pte;
4742 spinlock_t *ptl;
4743
4744 ptl = pmd_trans_huge_lock(pmd, vma);
4745 if (ptl) {
4746 /*
4747 * Note their can not be MC_TARGET_DEVICE for now as we do not
4748 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4749 * MEMORY_DEVICE_PRIVATE but this might change.
4750 */
4751 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4752 mc.precharge += HPAGE_PMD_NR;
4753 spin_unlock(ptl);
4754 return 0;
4755 }
4756
4757 if (pmd_trans_unstable(pmd))
4758 return 0;
4759 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4760 for (; addr != end; pte++, addr += PAGE_SIZE)
4761 if (get_mctgt_type(vma, addr, *pte, NULL))
4762 mc.precharge++; /* increment precharge temporarily */
4763 pte_unmap_unlock(pte - 1, ptl);
4764 cond_resched();
4765
4766 return 0;
4767 }
4768
4769 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4770 {
4771 unsigned long precharge;
4772
4773 struct mm_walk mem_cgroup_count_precharge_walk = {
4774 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4775 .mm = mm,
4776 };
4777 down_read(&mm->mmap_sem);
4778 walk_page_range(0, mm->highest_vm_end,
4779 &mem_cgroup_count_precharge_walk);
4780 up_read(&mm->mmap_sem);
4781
4782 precharge = mc.precharge;
4783 mc.precharge = 0;
4784
4785 return precharge;
4786 }
4787
4788 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4789 {
4790 unsigned long precharge = mem_cgroup_count_precharge(mm);
4791
4792 VM_BUG_ON(mc.moving_task);
4793 mc.moving_task = current;
4794 return mem_cgroup_do_precharge(precharge);
4795 }
4796
4797 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4798 static void __mem_cgroup_clear_mc(void)
4799 {
4800 struct mem_cgroup *from = mc.from;
4801 struct mem_cgroup *to = mc.to;
4802
4803 /* we must uncharge all the leftover precharges from mc.to */
4804 if (mc.precharge) {
4805 cancel_charge(mc.to, mc.precharge);
4806 mc.precharge = 0;
4807 }
4808 /*
4809 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4810 * we must uncharge here.
4811 */
4812 if (mc.moved_charge) {
4813 cancel_charge(mc.from, mc.moved_charge);
4814 mc.moved_charge = 0;
4815 }
4816 /* we must fixup refcnts and charges */
4817 if (mc.moved_swap) {
4818 /* uncharge swap account from the old cgroup */
4819 if (!mem_cgroup_is_root(mc.from))
4820 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4821
4822 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4823
4824 /*
4825 * we charged both to->memory and to->memsw, so we
4826 * should uncharge to->memory.
4827 */
4828 if (!mem_cgroup_is_root(mc.to))
4829 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4830
4831 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4832 css_put_many(&mc.to->css, mc.moved_swap);
4833
4834 mc.moved_swap = 0;
4835 }
4836 memcg_oom_recover(from);
4837 memcg_oom_recover(to);
4838 wake_up_all(&mc.waitq);
4839 }
4840
4841 static void mem_cgroup_clear_mc(void)
4842 {
4843 struct mm_struct *mm = mc.mm;
4844
4845 /*
4846 * we must clear moving_task before waking up waiters at the end of
4847 * task migration.
4848 */
4849 mc.moving_task = NULL;
4850 __mem_cgroup_clear_mc();
4851 spin_lock(&mc.lock);
4852 mc.from = NULL;
4853 mc.to = NULL;
4854 mc.mm = NULL;
4855 spin_unlock(&mc.lock);
4856
4857 mmput(mm);
4858 }
4859
4860 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4861 {
4862 struct cgroup_subsys_state *css;
4863 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4864 struct mem_cgroup *from;
4865 struct task_struct *leader, *p;
4866 struct mm_struct *mm;
4867 unsigned long move_flags;
4868 int ret = 0;
4869
4870 /* charge immigration isn't supported on the default hierarchy */
4871 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4872 return 0;
4873
4874 /*
4875 * Multi-process migrations only happen on the default hierarchy
4876 * where charge immigration is not used. Perform charge
4877 * immigration if @tset contains a leader and whine if there are
4878 * multiple.
4879 */
4880 p = NULL;
4881 cgroup_taskset_for_each_leader(leader, css, tset) {
4882 WARN_ON_ONCE(p);
4883 p = leader;
4884 memcg = mem_cgroup_from_css(css);
4885 }
4886 if (!p)
4887 return 0;
4888
4889 /*
4890 * We are now commited to this value whatever it is. Changes in this
4891 * tunable will only affect upcoming migrations, not the current one.
4892 * So we need to save it, and keep it going.
4893 */
4894 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4895 if (!move_flags)
4896 return 0;
4897
4898 from = mem_cgroup_from_task(p);
4899
4900 VM_BUG_ON(from == memcg);
4901
4902 mm = get_task_mm(p);
4903 if (!mm)
4904 return 0;
4905 /* We move charges only when we move a owner of the mm */
4906 if (mm->owner == p) {
4907 VM_BUG_ON(mc.from);
4908 VM_BUG_ON(mc.to);
4909 VM_BUG_ON(mc.precharge);
4910 VM_BUG_ON(mc.moved_charge);
4911 VM_BUG_ON(mc.moved_swap);
4912
4913 spin_lock(&mc.lock);
4914 mc.mm = mm;
4915 mc.from = from;
4916 mc.to = memcg;
4917 mc.flags = move_flags;
4918 spin_unlock(&mc.lock);
4919 /* We set mc.moving_task later */
4920
4921 ret = mem_cgroup_precharge_mc(mm);
4922 if (ret)
4923 mem_cgroup_clear_mc();
4924 } else {
4925 mmput(mm);
4926 }
4927 return ret;
4928 }
4929
4930 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4931 {
4932 if (mc.to)
4933 mem_cgroup_clear_mc();
4934 }
4935
4936 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4937 unsigned long addr, unsigned long end,
4938 struct mm_walk *walk)
4939 {
4940 int ret = 0;
4941 struct vm_area_struct *vma = walk->vma;
4942 pte_t *pte;
4943 spinlock_t *ptl;
4944 enum mc_target_type target_type;
4945 union mc_target target;
4946 struct page *page;
4947
4948 ptl = pmd_trans_huge_lock(pmd, vma);
4949 if (ptl) {
4950 if (mc.precharge < HPAGE_PMD_NR) {
4951 spin_unlock(ptl);
4952 return 0;
4953 }
4954 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4955 if (target_type == MC_TARGET_PAGE) {
4956 page = target.page;
4957 if (!isolate_lru_page(page)) {
4958 if (!mem_cgroup_move_account(page, true,
4959 mc.from, mc.to)) {
4960 mc.precharge -= HPAGE_PMD_NR;
4961 mc.moved_charge += HPAGE_PMD_NR;
4962 }
4963 putback_lru_page(page);
4964 }
4965 put_page(page);
4966 } else if (target_type == MC_TARGET_DEVICE) {
4967 page = target.page;
4968 if (!mem_cgroup_move_account(page, true,
4969 mc.from, mc.to)) {
4970 mc.precharge -= HPAGE_PMD_NR;
4971 mc.moved_charge += HPAGE_PMD_NR;
4972 }
4973 put_page(page);
4974 }
4975 spin_unlock(ptl);
4976 return 0;
4977 }
4978
4979 if (pmd_trans_unstable(pmd))
4980 return 0;
4981 retry:
4982 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4983 for (; addr != end; addr += PAGE_SIZE) {
4984 pte_t ptent = *(pte++);
4985 bool device = false;
4986 swp_entry_t ent;
4987
4988 if (!mc.precharge)
4989 break;
4990
4991 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4992 case MC_TARGET_DEVICE:
4993 device = true;
4994 /* fall through */
4995 case MC_TARGET_PAGE:
4996 page = target.page;
4997 /*
4998 * We can have a part of the split pmd here. Moving it
4999 * can be done but it would be too convoluted so simply
5000 * ignore such a partial THP and keep it in original
5001 * memcg. There should be somebody mapping the head.
5002 */
5003 if (PageTransCompound(page))
5004 goto put;
5005 if (!device && isolate_lru_page(page))
5006 goto put;
5007 if (!mem_cgroup_move_account(page, false,
5008 mc.from, mc.to)) {
5009 mc.precharge--;
5010 /* we uncharge from mc.from later. */
5011 mc.moved_charge++;
5012 }
5013 if (!device)
5014 putback_lru_page(page);
5015 put: /* get_mctgt_type() gets the page */
5016 put_page(page);
5017 break;
5018 case MC_TARGET_SWAP:
5019 ent = target.ent;
5020 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5021 mc.precharge--;
5022 /* we fixup refcnts and charges later. */
5023 mc.moved_swap++;
5024 }
5025 break;
5026 default:
5027 break;
5028 }
5029 }
5030 pte_unmap_unlock(pte - 1, ptl);
5031 cond_resched();
5032
5033 if (addr != end) {
5034 /*
5035 * We have consumed all precharges we got in can_attach().
5036 * We try charge one by one, but don't do any additional
5037 * charges to mc.to if we have failed in charge once in attach()
5038 * phase.
5039 */
5040 ret = mem_cgroup_do_precharge(1);
5041 if (!ret)
5042 goto retry;
5043 }
5044
5045 return ret;
5046 }
5047
5048 static void mem_cgroup_move_charge(void)
5049 {
5050 struct mm_walk mem_cgroup_move_charge_walk = {
5051 .pmd_entry = mem_cgroup_move_charge_pte_range,
5052 .mm = mc.mm,
5053 };
5054
5055 lru_add_drain_all();
5056 /*
5057 * Signal lock_page_memcg() to take the memcg's move_lock
5058 * while we're moving its pages to another memcg. Then wait
5059 * for already started RCU-only updates to finish.
5060 */
5061 atomic_inc(&mc.from->moving_account);
5062 synchronize_rcu();
5063 retry:
5064 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5065 /*
5066 * Someone who are holding the mmap_sem might be waiting in
5067 * waitq. So we cancel all extra charges, wake up all waiters,
5068 * and retry. Because we cancel precharges, we might not be able
5069 * to move enough charges, but moving charge is a best-effort
5070 * feature anyway, so it wouldn't be a big problem.
5071 */
5072 __mem_cgroup_clear_mc();
5073 cond_resched();
5074 goto retry;
5075 }
5076 /*
5077 * When we have consumed all precharges and failed in doing
5078 * additional charge, the page walk just aborts.
5079 */
5080 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5081
5082 up_read(&mc.mm->mmap_sem);
5083 atomic_dec(&mc.from->moving_account);
5084 }
5085
5086 static void mem_cgroup_move_task(void)
5087 {
5088 if (mc.to) {
5089 mem_cgroup_move_charge();
5090 mem_cgroup_clear_mc();
5091 }
5092 }
5093 #else /* !CONFIG_MMU */
5094 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5095 {
5096 return 0;
5097 }
5098 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5099 {
5100 }
5101 static void mem_cgroup_move_task(void)
5102 {
5103 }
5104 #endif
5105
5106 /*
5107 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5108 * to verify whether we're attached to the default hierarchy on each mount
5109 * attempt.
5110 */
5111 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5112 {
5113 /*
5114 * use_hierarchy is forced on the default hierarchy. cgroup core
5115 * guarantees that @root doesn't have any children, so turning it
5116 * on for the root memcg is enough.
5117 */
5118 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5119 root_mem_cgroup->use_hierarchy = true;
5120 else
5121 root_mem_cgroup->use_hierarchy = false;
5122 }
5123
5124 static u64 memory_current_read(struct cgroup_subsys_state *css,
5125 struct cftype *cft)
5126 {
5127 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5128
5129 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5130 }
5131
5132 static int memory_low_show(struct seq_file *m, void *v)
5133 {
5134 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5135 unsigned long low = READ_ONCE(memcg->low);
5136
5137 if (low == PAGE_COUNTER_MAX)
5138 seq_puts(m, "max\n");
5139 else
5140 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5141
5142 return 0;
5143 }
5144
5145 static ssize_t memory_low_write(struct kernfs_open_file *of,
5146 char *buf, size_t nbytes, loff_t off)
5147 {
5148 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5149 unsigned long low;
5150 int err;
5151
5152 buf = strstrip(buf);
5153 err = page_counter_memparse(buf, "max", &low);
5154 if (err)
5155 return err;
5156
5157 memcg->low = low;
5158
5159 return nbytes;
5160 }
5161
5162 static int memory_high_show(struct seq_file *m, void *v)
5163 {
5164 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5165 unsigned long high = READ_ONCE(memcg->high);
5166
5167 if (high == PAGE_COUNTER_MAX)
5168 seq_puts(m, "max\n");
5169 else
5170 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5171
5172 return 0;
5173 }
5174
5175 static ssize_t memory_high_write(struct kernfs_open_file *of,
5176 char *buf, size_t nbytes, loff_t off)
5177 {
5178 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5179 unsigned long nr_pages;
5180 unsigned long high;
5181 int err;
5182
5183 buf = strstrip(buf);
5184 err = page_counter_memparse(buf, "max", &high);
5185 if (err)
5186 return err;
5187
5188 memcg->high = high;
5189
5190 nr_pages = page_counter_read(&memcg->memory);
5191 if (nr_pages > high)
5192 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5193 GFP_KERNEL, true);
5194
5195 memcg_wb_domain_size_changed(memcg);
5196 return nbytes;
5197 }
5198
5199 static int memory_max_show(struct seq_file *m, void *v)
5200 {
5201 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5202 unsigned long max = READ_ONCE(memcg->memory.limit);
5203
5204 if (max == PAGE_COUNTER_MAX)
5205 seq_puts(m, "max\n");
5206 else
5207 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5208
5209 return 0;
5210 }
5211
5212 static ssize_t memory_max_write(struct kernfs_open_file *of,
5213 char *buf, size_t nbytes, loff_t off)
5214 {
5215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5216 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5217 bool drained = false;
5218 unsigned long max;
5219 int err;
5220
5221 buf = strstrip(buf);
5222 err = page_counter_memparse(buf, "max", &max);
5223 if (err)
5224 return err;
5225
5226 xchg(&memcg->memory.limit, max);
5227
5228 for (;;) {
5229 unsigned long nr_pages = page_counter_read(&memcg->memory);
5230
5231 if (nr_pages <= max)
5232 break;
5233
5234 if (signal_pending(current)) {
5235 err = -EINTR;
5236 break;
5237 }
5238
5239 if (!drained) {
5240 drain_all_stock(memcg);
5241 drained = true;
5242 continue;
5243 }
5244
5245 if (nr_reclaims) {
5246 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5247 GFP_KERNEL, true))
5248 nr_reclaims--;
5249 continue;
5250 }
5251
5252 mem_cgroup_event(memcg, MEMCG_OOM);
5253 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5254 break;
5255 }
5256
5257 memcg_wb_domain_size_changed(memcg);
5258 return nbytes;
5259 }
5260
5261 static int memory_events_show(struct seq_file *m, void *v)
5262 {
5263 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5264
5265 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5266 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5267 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5268 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5269 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5270
5271 return 0;
5272 }
5273
5274 static int memory_stat_show(struct seq_file *m, void *v)
5275 {
5276 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5277 unsigned long stat[MEMCG_NR_STAT];
5278 unsigned long events[MEMCG_NR_EVENTS];
5279 int i;
5280
5281 /*
5282 * Provide statistics on the state of the memory subsystem as
5283 * well as cumulative event counters that show past behavior.
5284 *
5285 * This list is ordered following a combination of these gradients:
5286 * 1) generic big picture -> specifics and details
5287 * 2) reflecting userspace activity -> reflecting kernel heuristics
5288 *
5289 * Current memory state:
5290 */
5291
5292 tree_stat(memcg, stat);
5293 tree_events(memcg, events);
5294
5295 seq_printf(m, "anon %llu\n",
5296 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5297 seq_printf(m, "file %llu\n",
5298 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5299 seq_printf(m, "kernel_stack %llu\n",
5300 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5301 seq_printf(m, "slab %llu\n",
5302 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5303 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5304 seq_printf(m, "sock %llu\n",
5305 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5306
5307 seq_printf(m, "shmem %llu\n",
5308 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5309 seq_printf(m, "file_mapped %llu\n",
5310 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5311 seq_printf(m, "file_dirty %llu\n",
5312 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5313 seq_printf(m, "file_writeback %llu\n",
5314 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5315
5316 for (i = 0; i < NR_LRU_LISTS; i++) {
5317 struct mem_cgroup *mi;
5318 unsigned long val = 0;
5319
5320 for_each_mem_cgroup_tree(mi, memcg)
5321 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5322 seq_printf(m, "%s %llu\n",
5323 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5324 }
5325
5326 seq_printf(m, "slab_reclaimable %llu\n",
5327 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5328 seq_printf(m, "slab_unreclaimable %llu\n",
5329 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5330
5331 /* Accumulated memory events */
5332
5333 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5334 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5335
5336 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5337 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5338 events[PGSCAN_DIRECT]);
5339 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5340 events[PGSTEAL_DIRECT]);
5341 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5342 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5343 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5344 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5345
5346 seq_printf(m, "workingset_refault %lu\n",
5347 stat[WORKINGSET_REFAULT]);
5348 seq_printf(m, "workingset_activate %lu\n",
5349 stat[WORKINGSET_ACTIVATE]);
5350 seq_printf(m, "workingset_nodereclaim %lu\n",
5351 stat[WORKINGSET_NODERECLAIM]);
5352
5353 return 0;
5354 }
5355
5356 static struct cftype memory_files[] = {
5357 {
5358 .name = "current",
5359 .flags = CFTYPE_NOT_ON_ROOT,
5360 .read_u64 = memory_current_read,
5361 },
5362 {
5363 .name = "low",
5364 .flags = CFTYPE_NOT_ON_ROOT,
5365 .seq_show = memory_low_show,
5366 .write = memory_low_write,
5367 },
5368 {
5369 .name = "high",
5370 .flags = CFTYPE_NOT_ON_ROOT,
5371 .seq_show = memory_high_show,
5372 .write = memory_high_write,
5373 },
5374 {
5375 .name = "max",
5376 .flags = CFTYPE_NOT_ON_ROOT,
5377 .seq_show = memory_max_show,
5378 .write = memory_max_write,
5379 },
5380 {
5381 .name = "events",
5382 .flags = CFTYPE_NOT_ON_ROOT,
5383 .file_offset = offsetof(struct mem_cgroup, events_file),
5384 .seq_show = memory_events_show,
5385 },
5386 {
5387 .name = "stat",
5388 .flags = CFTYPE_NOT_ON_ROOT,
5389 .seq_show = memory_stat_show,
5390 },
5391 { } /* terminate */
5392 };
5393
5394 struct cgroup_subsys memory_cgrp_subsys = {
5395 .css_alloc = mem_cgroup_css_alloc,
5396 .css_online = mem_cgroup_css_online,
5397 .css_offline = mem_cgroup_css_offline,
5398 .css_released = mem_cgroup_css_released,
5399 .css_free = mem_cgroup_css_free,
5400 .css_reset = mem_cgroup_css_reset,
5401 .can_attach = mem_cgroup_can_attach,
5402 .cancel_attach = mem_cgroup_cancel_attach,
5403 .post_attach = mem_cgroup_move_task,
5404 .bind = mem_cgroup_bind,
5405 .dfl_cftypes = memory_files,
5406 .legacy_cftypes = mem_cgroup_legacy_files,
5407 .early_init = 0,
5408 };
5409
5410 /**
5411 * mem_cgroup_low - check if memory consumption is below the normal range
5412 * @root: the top ancestor of the sub-tree being checked
5413 * @memcg: the memory cgroup to check
5414 *
5415 * Returns %true if memory consumption of @memcg, and that of all
5416 * ancestors up to (but not including) @root, is below the normal range.
5417 *
5418 * @root is exclusive; it is never low when looked at directly and isn't
5419 * checked when traversing the hierarchy.
5420 *
5421 * Excluding @root enables using memory.low to prioritize memory usage
5422 * between cgroups within a subtree of the hierarchy that is limited by
5423 * memory.high or memory.max.
5424 *
5425 * For example, given cgroup A with children B and C:
5426 *
5427 * A
5428 * / \
5429 * B C
5430 *
5431 * and
5432 *
5433 * 1. A/memory.current > A/memory.high
5434 * 2. A/B/memory.current < A/B/memory.low
5435 * 3. A/C/memory.current >= A/C/memory.low
5436 *
5437 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5438 * should reclaim from 'C' until 'A' is no longer high or until we can
5439 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5440 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5441 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5442 */
5443 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5444 {
5445 if (mem_cgroup_disabled())
5446 return false;
5447
5448 if (!root)
5449 root = root_mem_cgroup;
5450 if (memcg == root)
5451 return false;
5452
5453 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5454 if (page_counter_read(&memcg->memory) >= memcg->low)
5455 return false;
5456 }
5457
5458 return true;
5459 }
5460
5461 /**
5462 * mem_cgroup_try_charge - try charging a page
5463 * @page: page to charge
5464 * @mm: mm context of the victim
5465 * @gfp_mask: reclaim mode
5466 * @memcgp: charged memcg return
5467 * @compound: charge the page as compound or small page
5468 *
5469 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5470 * pages according to @gfp_mask if necessary.
5471 *
5472 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5473 * Otherwise, an error code is returned.
5474 *
5475 * After page->mapping has been set up, the caller must finalize the
5476 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5477 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5478 */
5479 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5480 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5481 bool compound)
5482 {
5483 struct mem_cgroup *memcg = NULL;
5484 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5485 int ret = 0;
5486
5487 if (mem_cgroup_disabled())
5488 goto out;
5489
5490 if (PageSwapCache(page)) {
5491 /*
5492 * Every swap fault against a single page tries to charge the
5493 * page, bail as early as possible. shmem_unuse() encounters
5494 * already charged pages, too. The USED bit is protected by
5495 * the page lock, which serializes swap cache removal, which
5496 * in turn serializes uncharging.
5497 */
5498 VM_BUG_ON_PAGE(!PageLocked(page), page);
5499 if (compound_head(page)->mem_cgroup)
5500 goto out;
5501
5502 if (do_swap_account) {
5503 swp_entry_t ent = { .val = page_private(page), };
5504 unsigned short id = lookup_swap_cgroup_id(ent);
5505
5506 rcu_read_lock();
5507 memcg = mem_cgroup_from_id(id);
5508 if (memcg && !css_tryget_online(&memcg->css))
5509 memcg = NULL;
5510 rcu_read_unlock();
5511 }
5512 }
5513
5514 if (!memcg)
5515 memcg = get_mem_cgroup_from_mm(mm);
5516
5517 ret = try_charge(memcg, gfp_mask, nr_pages);
5518
5519 css_put(&memcg->css);
5520 out:
5521 *memcgp = memcg;
5522 return ret;
5523 }
5524
5525 /**
5526 * mem_cgroup_commit_charge - commit a page charge
5527 * @page: page to charge
5528 * @memcg: memcg to charge the page to
5529 * @lrucare: page might be on LRU already
5530 * @compound: charge the page as compound or small page
5531 *
5532 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5533 * after page->mapping has been set up. This must happen atomically
5534 * as part of the page instantiation, i.e. under the page table lock
5535 * for anonymous pages, under the page lock for page and swap cache.
5536 *
5537 * In addition, the page must not be on the LRU during the commit, to
5538 * prevent racing with task migration. If it might be, use @lrucare.
5539 *
5540 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5541 */
5542 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5543 bool lrucare, bool compound)
5544 {
5545 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5546
5547 VM_BUG_ON_PAGE(!page->mapping, page);
5548 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5549
5550 if (mem_cgroup_disabled())
5551 return;
5552 /*
5553 * Swap faults will attempt to charge the same page multiple
5554 * times. But reuse_swap_page() might have removed the page
5555 * from swapcache already, so we can't check PageSwapCache().
5556 */
5557 if (!memcg)
5558 return;
5559
5560 commit_charge(page, memcg, lrucare);
5561
5562 local_irq_disable();
5563 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5564 memcg_check_events(memcg, page);
5565 local_irq_enable();
5566
5567 if (do_memsw_account() && PageSwapCache(page)) {
5568 swp_entry_t entry = { .val = page_private(page) };
5569 /*
5570 * The swap entry might not get freed for a long time,
5571 * let's not wait for it. The page already received a
5572 * memory+swap charge, drop the swap entry duplicate.
5573 */
5574 mem_cgroup_uncharge_swap(entry, nr_pages);
5575 }
5576 }
5577
5578 /**
5579 * mem_cgroup_cancel_charge - cancel a page charge
5580 * @page: page to charge
5581 * @memcg: memcg to charge the page to
5582 * @compound: charge the page as compound or small page
5583 *
5584 * Cancel a charge transaction started by mem_cgroup_try_charge().
5585 */
5586 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5587 bool compound)
5588 {
5589 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5590
5591 if (mem_cgroup_disabled())
5592 return;
5593 /*
5594 * Swap faults will attempt to charge the same page multiple
5595 * times. But reuse_swap_page() might have removed the page
5596 * from swapcache already, so we can't check PageSwapCache().
5597 */
5598 if (!memcg)
5599 return;
5600
5601 cancel_charge(memcg, nr_pages);
5602 }
5603
5604 struct uncharge_gather {
5605 struct mem_cgroup *memcg;
5606 unsigned long pgpgout;
5607 unsigned long nr_anon;
5608 unsigned long nr_file;
5609 unsigned long nr_kmem;
5610 unsigned long nr_huge;
5611 unsigned long nr_shmem;
5612 struct page *dummy_page;
5613 };
5614
5615 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5616 {
5617 memset(ug, 0, sizeof(*ug));
5618 }
5619
5620 static void uncharge_batch(const struct uncharge_gather *ug)
5621 {
5622 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5623 unsigned long flags;
5624
5625 if (!mem_cgroup_is_root(ug->memcg)) {
5626 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5627 if (do_memsw_account())
5628 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5629 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5630 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5631 memcg_oom_recover(ug->memcg);
5632 }
5633
5634 local_irq_save(flags);
5635 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5636 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5637 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5638 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5639 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5640 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5641 memcg_check_events(ug->memcg, ug->dummy_page);
5642 local_irq_restore(flags);
5643
5644 if (!mem_cgroup_is_root(ug->memcg))
5645 css_put_many(&ug->memcg->css, nr_pages);
5646 }
5647
5648 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5649 {
5650 VM_BUG_ON_PAGE(PageLRU(page), page);
5651 VM_BUG_ON_PAGE(!PageHWPoison(page) && page_count(page), page);
5652
5653 if (!page->mem_cgroup)
5654 return;
5655
5656 /*
5657 * Nobody should be changing or seriously looking at
5658 * page->mem_cgroup at this point, we have fully
5659 * exclusive access to the page.
5660 */
5661
5662 if (ug->memcg != page->mem_cgroup) {
5663 if (ug->memcg) {
5664 uncharge_batch(ug);
5665 uncharge_gather_clear(ug);
5666 }
5667 ug->memcg = page->mem_cgroup;
5668 }
5669
5670 if (!PageKmemcg(page)) {
5671 unsigned int nr_pages = 1;
5672
5673 if (PageTransHuge(page)) {
5674 nr_pages <<= compound_order(page);
5675 ug->nr_huge += nr_pages;
5676 }
5677 if (PageAnon(page))
5678 ug->nr_anon += nr_pages;
5679 else {
5680 ug->nr_file += nr_pages;
5681 if (PageSwapBacked(page))
5682 ug->nr_shmem += nr_pages;
5683 }
5684 ug->pgpgout++;
5685 } else {
5686 ug->nr_kmem += 1 << compound_order(page);
5687 __ClearPageKmemcg(page);
5688 }
5689
5690 ug->dummy_page = page;
5691 page->mem_cgroup = NULL;
5692 }
5693
5694 static void uncharge_list(struct list_head *page_list)
5695 {
5696 struct uncharge_gather ug;
5697 struct list_head *next;
5698
5699 uncharge_gather_clear(&ug);
5700
5701 /*
5702 * Note that the list can be a single page->lru; hence the
5703 * do-while loop instead of a simple list_for_each_entry().
5704 */
5705 next = page_list->next;
5706 do {
5707 struct page *page;
5708
5709 page = list_entry(next, struct page, lru);
5710 next = page->lru.next;
5711
5712 uncharge_page(page, &ug);
5713 } while (next != page_list);
5714
5715 if (ug.memcg)
5716 uncharge_batch(&ug);
5717 }
5718
5719 /**
5720 * mem_cgroup_uncharge - uncharge a page
5721 * @page: page to uncharge
5722 *
5723 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5724 * mem_cgroup_commit_charge().
5725 */
5726 void mem_cgroup_uncharge(struct page *page)
5727 {
5728 struct uncharge_gather ug;
5729
5730 if (mem_cgroup_disabled())
5731 return;
5732
5733 /* Don't touch page->lru of any random page, pre-check: */
5734 if (!page->mem_cgroup)
5735 return;
5736
5737 uncharge_gather_clear(&ug);
5738 uncharge_page(page, &ug);
5739 uncharge_batch(&ug);
5740 }
5741
5742 /**
5743 * mem_cgroup_uncharge_list - uncharge a list of page
5744 * @page_list: list of pages to uncharge
5745 *
5746 * Uncharge a list of pages previously charged with
5747 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5748 */
5749 void mem_cgroup_uncharge_list(struct list_head *page_list)
5750 {
5751 if (mem_cgroup_disabled())
5752 return;
5753
5754 if (!list_empty(page_list))
5755 uncharge_list(page_list);
5756 }
5757
5758 /**
5759 * mem_cgroup_migrate - charge a page's replacement
5760 * @oldpage: currently circulating page
5761 * @newpage: replacement page
5762 *
5763 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5764 * be uncharged upon free.
5765 *
5766 * Both pages must be locked, @newpage->mapping must be set up.
5767 */
5768 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5769 {
5770 struct mem_cgroup *memcg;
5771 unsigned int nr_pages;
5772 bool compound;
5773 unsigned long flags;
5774
5775 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5776 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5777 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5778 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5779 newpage);
5780
5781 if (mem_cgroup_disabled())
5782 return;
5783
5784 /* Page cache replacement: new page already charged? */
5785 if (newpage->mem_cgroup)
5786 return;
5787
5788 /* Swapcache readahead pages can get replaced before being charged */
5789 memcg = oldpage->mem_cgroup;
5790 if (!memcg)
5791 return;
5792
5793 /* Force-charge the new page. The old one will be freed soon */
5794 compound = PageTransHuge(newpage);
5795 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5796
5797 page_counter_charge(&memcg->memory, nr_pages);
5798 if (do_memsw_account())
5799 page_counter_charge(&memcg->memsw, nr_pages);
5800 css_get_many(&memcg->css, nr_pages);
5801
5802 commit_charge(newpage, memcg, false);
5803
5804 local_irq_save(flags);
5805 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5806 memcg_check_events(memcg, newpage);
5807 local_irq_restore(flags);
5808 }
5809
5810 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5811 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5812
5813 void mem_cgroup_sk_alloc(struct sock *sk)
5814 {
5815 struct mem_cgroup *memcg;
5816
5817 if (!mem_cgroup_sockets_enabled)
5818 return;
5819
5820 /*
5821 * Socket cloning can throw us here with sk_memcg already
5822 * filled. It won't however, necessarily happen from
5823 * process context. So the test for root memcg given
5824 * the current task's memcg won't help us in this case.
5825 *
5826 * Respecting the original socket's memcg is a better
5827 * decision in this case.
5828 */
5829 if (sk->sk_memcg) {
5830 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5831 css_get(&sk->sk_memcg->css);
5832 return;
5833 }
5834
5835 rcu_read_lock();
5836 memcg = mem_cgroup_from_task(current);
5837 if (memcg == root_mem_cgroup)
5838 goto out;
5839 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5840 goto out;
5841 if (css_tryget_online(&memcg->css))
5842 sk->sk_memcg = memcg;
5843 out:
5844 rcu_read_unlock();
5845 }
5846
5847 void mem_cgroup_sk_free(struct sock *sk)
5848 {
5849 if (sk->sk_memcg)
5850 css_put(&sk->sk_memcg->css);
5851 }
5852
5853 /**
5854 * mem_cgroup_charge_skmem - charge socket memory
5855 * @memcg: memcg to charge
5856 * @nr_pages: number of pages to charge
5857 *
5858 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5859 * @memcg's configured limit, %false if the charge had to be forced.
5860 */
5861 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5862 {
5863 gfp_t gfp_mask = GFP_KERNEL;
5864
5865 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5866 struct page_counter *fail;
5867
5868 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5869 memcg->tcpmem_pressure = 0;
5870 return true;
5871 }
5872 page_counter_charge(&memcg->tcpmem, nr_pages);
5873 memcg->tcpmem_pressure = 1;
5874 return false;
5875 }
5876
5877 /* Don't block in the packet receive path */
5878 if (in_softirq())
5879 gfp_mask = GFP_NOWAIT;
5880
5881 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5882
5883 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5884 return true;
5885
5886 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5887 return false;
5888 }
5889
5890 /**
5891 * mem_cgroup_uncharge_skmem - uncharge socket memory
5892 * @memcg - memcg to uncharge
5893 * @nr_pages - number of pages to uncharge
5894 */
5895 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5896 {
5897 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5898 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5899 return;
5900 }
5901
5902 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5903
5904 refill_stock(memcg, nr_pages);
5905 }
5906
5907 static int __init cgroup_memory(char *s)
5908 {
5909 char *token;
5910
5911 while ((token = strsep(&s, ",")) != NULL) {
5912 if (!*token)
5913 continue;
5914 if (!strcmp(token, "nosocket"))
5915 cgroup_memory_nosocket = true;
5916 if (!strcmp(token, "nokmem"))
5917 cgroup_memory_nokmem = true;
5918 }
5919 return 0;
5920 }
5921 __setup("cgroup.memory=", cgroup_memory);
5922
5923 /*
5924 * subsys_initcall() for memory controller.
5925 *
5926 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5927 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5928 * basically everything that doesn't depend on a specific mem_cgroup structure
5929 * should be initialized from here.
5930 */
5931 static int __init mem_cgroup_init(void)
5932 {
5933 int cpu, node;
5934
5935 #ifndef CONFIG_SLOB
5936 /*
5937 * Kmem cache creation is mostly done with the slab_mutex held,
5938 * so use a workqueue with limited concurrency to avoid stalling
5939 * all worker threads in case lots of cgroups are created and
5940 * destroyed simultaneously.
5941 */
5942 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5943 BUG_ON(!memcg_kmem_cache_wq);
5944 #endif
5945
5946 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5947 memcg_hotplug_cpu_dead);
5948
5949 for_each_possible_cpu(cpu)
5950 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5951 drain_local_stock);
5952
5953 for_each_node(node) {
5954 struct mem_cgroup_tree_per_node *rtpn;
5955
5956 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5957 node_online(node) ? node : NUMA_NO_NODE);
5958
5959 rtpn->rb_root = RB_ROOT;
5960 rtpn->rb_rightmost = NULL;
5961 spin_lock_init(&rtpn->lock);
5962 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5963 }
5964
5965 return 0;
5966 }
5967 subsys_initcall(mem_cgroup_init);
5968
5969 #ifdef CONFIG_MEMCG_SWAP
5970 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5971 {
5972 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5973 /*
5974 * The root cgroup cannot be destroyed, so it's refcount must
5975 * always be >= 1.
5976 */
5977 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5978 VM_BUG_ON(1);
5979 break;
5980 }
5981 memcg = parent_mem_cgroup(memcg);
5982 if (!memcg)
5983 memcg = root_mem_cgroup;
5984 }
5985 return memcg;
5986 }
5987
5988 /**
5989 * mem_cgroup_swapout - transfer a memsw charge to swap
5990 * @page: page whose memsw charge to transfer
5991 * @entry: swap entry to move the charge to
5992 *
5993 * Transfer the memsw charge of @page to @entry.
5994 */
5995 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5996 {
5997 struct mem_cgroup *memcg, *swap_memcg;
5998 unsigned int nr_entries;
5999 unsigned short oldid;
6000
6001 VM_BUG_ON_PAGE(PageLRU(page), page);
6002 VM_BUG_ON_PAGE(page_count(page), page);
6003
6004 if (!do_memsw_account())
6005 return;
6006
6007 memcg = page->mem_cgroup;
6008
6009 /* Readahead page, never charged */
6010 if (!memcg)
6011 return;
6012
6013 /*
6014 * In case the memcg owning these pages has been offlined and doesn't
6015 * have an ID allocated to it anymore, charge the closest online
6016 * ancestor for the swap instead and transfer the memory+swap charge.
6017 */
6018 swap_memcg = mem_cgroup_id_get_online(memcg);
6019 nr_entries = hpage_nr_pages(page);
6020 /* Get references for the tail pages, too */
6021 if (nr_entries > 1)
6022 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6023 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6024 nr_entries);
6025 VM_BUG_ON_PAGE(oldid, page);
6026 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6027
6028 page->mem_cgroup = NULL;
6029
6030 if (!mem_cgroup_is_root(memcg))
6031 page_counter_uncharge(&memcg->memory, nr_entries);
6032
6033 if (memcg != swap_memcg) {
6034 if (!mem_cgroup_is_root(swap_memcg))
6035 page_counter_charge(&swap_memcg->memsw, nr_entries);
6036 page_counter_uncharge(&memcg->memsw, nr_entries);
6037 }
6038
6039 /*
6040 * Interrupts should be disabled here because the caller holds the
6041 * mapping->tree_lock lock which is taken with interrupts-off. It is
6042 * important here to have the interrupts disabled because it is the
6043 * only synchronisation we have for udpating the per-CPU variables.
6044 */
6045 VM_BUG_ON(!irqs_disabled());
6046 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6047 -nr_entries);
6048 memcg_check_events(memcg, page);
6049
6050 if (!mem_cgroup_is_root(memcg))
6051 css_put(&memcg->css);
6052 }
6053
6054 /**
6055 * mem_cgroup_try_charge_swap - try charging swap space for a page
6056 * @page: page being added to swap
6057 * @entry: swap entry to charge
6058 *
6059 * Try to charge @page's memcg for the swap space at @entry.
6060 *
6061 * Returns 0 on success, -ENOMEM on failure.
6062 */
6063 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6064 {
6065 unsigned int nr_pages = hpage_nr_pages(page);
6066 struct page_counter *counter;
6067 struct mem_cgroup *memcg;
6068 unsigned short oldid;
6069
6070 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6071 return 0;
6072
6073 memcg = page->mem_cgroup;
6074
6075 /* Readahead page, never charged */
6076 if (!memcg)
6077 return 0;
6078
6079 memcg = mem_cgroup_id_get_online(memcg);
6080
6081 if (!mem_cgroup_is_root(memcg) &&
6082 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6083 mem_cgroup_id_put(memcg);
6084 return -ENOMEM;
6085 }
6086
6087 /* Get references for the tail pages, too */
6088 if (nr_pages > 1)
6089 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6090 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6091 VM_BUG_ON_PAGE(oldid, page);
6092 mem_cgroup_swap_statistics(memcg, nr_pages);
6093
6094 return 0;
6095 }
6096
6097 /**
6098 * mem_cgroup_uncharge_swap - uncharge swap space
6099 * @entry: swap entry to uncharge
6100 * @nr_pages: the amount of swap space to uncharge
6101 */
6102 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6103 {
6104 struct mem_cgroup *memcg;
6105 unsigned short id;
6106
6107 if (!do_swap_account)
6108 return;
6109
6110 id = swap_cgroup_record(entry, 0, nr_pages);
6111 rcu_read_lock();
6112 memcg = mem_cgroup_from_id(id);
6113 if (memcg) {
6114 if (!mem_cgroup_is_root(memcg)) {
6115 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6116 page_counter_uncharge(&memcg->swap, nr_pages);
6117 else
6118 page_counter_uncharge(&memcg->memsw, nr_pages);
6119 }
6120 mem_cgroup_swap_statistics(memcg, -nr_pages);
6121 mem_cgroup_id_put_many(memcg, nr_pages);
6122 }
6123 rcu_read_unlock();
6124 }
6125
6126 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6127 {
6128 long nr_swap_pages = get_nr_swap_pages();
6129
6130 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6131 return nr_swap_pages;
6132 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6133 nr_swap_pages = min_t(long, nr_swap_pages,
6134 READ_ONCE(memcg->swap.limit) -
6135 page_counter_read(&memcg->swap));
6136 return nr_swap_pages;
6137 }
6138
6139 bool mem_cgroup_swap_full(struct page *page)
6140 {
6141 struct mem_cgroup *memcg;
6142
6143 VM_BUG_ON_PAGE(!PageLocked(page), page);
6144
6145 if (vm_swap_full())
6146 return true;
6147 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6148 return false;
6149
6150 memcg = page->mem_cgroup;
6151 if (!memcg)
6152 return false;
6153
6154 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6155 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6156 return true;
6157
6158 return false;
6159 }
6160
6161 /* for remember boot option*/
6162 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6163 static int really_do_swap_account __initdata = 1;
6164 #else
6165 static int really_do_swap_account __initdata;
6166 #endif
6167
6168 static int __init enable_swap_account(char *s)
6169 {
6170 if (!strcmp(s, "1"))
6171 really_do_swap_account = 1;
6172 else if (!strcmp(s, "0"))
6173 really_do_swap_account = 0;
6174 return 1;
6175 }
6176 __setup("swapaccount=", enable_swap_account);
6177
6178 static u64 swap_current_read(struct cgroup_subsys_state *css,
6179 struct cftype *cft)
6180 {
6181 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6182
6183 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6184 }
6185
6186 static int swap_max_show(struct seq_file *m, void *v)
6187 {
6188 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6189 unsigned long max = READ_ONCE(memcg->swap.limit);
6190
6191 if (max == PAGE_COUNTER_MAX)
6192 seq_puts(m, "max\n");
6193 else
6194 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6195
6196 return 0;
6197 }
6198
6199 static ssize_t swap_max_write(struct kernfs_open_file *of,
6200 char *buf, size_t nbytes, loff_t off)
6201 {
6202 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6203 unsigned long max;
6204 int err;
6205
6206 buf = strstrip(buf);
6207 err = page_counter_memparse(buf, "max", &max);
6208 if (err)
6209 return err;
6210
6211 mutex_lock(&memcg_limit_mutex);
6212 err = page_counter_limit(&memcg->swap, max);
6213 mutex_unlock(&memcg_limit_mutex);
6214 if (err)
6215 return err;
6216
6217 return nbytes;
6218 }
6219
6220 static struct cftype swap_files[] = {
6221 {
6222 .name = "swap.current",
6223 .flags = CFTYPE_NOT_ON_ROOT,
6224 .read_u64 = swap_current_read,
6225 },
6226 {
6227 .name = "swap.max",
6228 .flags = CFTYPE_NOT_ON_ROOT,
6229 .seq_show = swap_max_show,
6230 .write = swap_max_write,
6231 },
6232 { } /* terminate */
6233 };
6234
6235 static struct cftype memsw_cgroup_files[] = {
6236 {
6237 .name = "memsw.usage_in_bytes",
6238 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6239 .read_u64 = mem_cgroup_read_u64,
6240 },
6241 {
6242 .name = "memsw.max_usage_in_bytes",
6243 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6244 .write = mem_cgroup_reset,
6245 .read_u64 = mem_cgroup_read_u64,
6246 },
6247 {
6248 .name = "memsw.limit_in_bytes",
6249 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6250 .write = mem_cgroup_write,
6251 .read_u64 = mem_cgroup_read_u64,
6252 },
6253 {
6254 .name = "memsw.failcnt",
6255 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6256 .write = mem_cgroup_reset,
6257 .read_u64 = mem_cgroup_read_u64,
6258 },
6259 { }, /* terminate */
6260 };
6261
6262 static int __init mem_cgroup_swap_init(void)
6263 {
6264 if (!mem_cgroup_disabled() && really_do_swap_account) {
6265 do_swap_account = 1;
6266 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6267 swap_files));
6268 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6269 memsw_cgroup_files));
6270 }
6271 return 0;
6272 }
6273 subsys_initcall(mem_cgroup_swap_init);
6274
6275 #endif /* CONFIG_MEMCG_SWAP */