]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge tag 'block-5.8-2020-07-05' of git://git.kernel.dk/linux-block
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 bool cgroup_memory_noswap __read_mostly;
87 #else
88 #define cgroup_memory_noswap 1
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
224
225 /*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
267 *
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
270 */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277 void memcg_get_cache_ids(void)
278 {
279 down_read(&memcg_cache_ids_sem);
280 }
281
282 void memcg_put_cache_ids(void)
283 {
284 up_read(&memcg_cache_ids_sem);
285 }
286
287 /*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
298 */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301
302 /*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324 {
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350 }
351
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368 }
369
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392 }
393
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret) {
413 mem_cgroup_iter_break(NULL, memcg);
414 goto unlock;
415 }
416 }
417 unlock:
418 if (!ret)
419 memcg_shrinker_map_size = size;
420 mutex_unlock(&memcg_shrinker_map_mutex);
421 return ret;
422 }
423
424 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
425 {
426 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
427 struct memcg_shrinker_map *map;
428
429 rcu_read_lock();
430 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
431 /* Pairs with smp mb in shrink_slab() */
432 smp_mb__before_atomic();
433 set_bit(shrinker_id, map->map);
434 rcu_read_unlock();
435 }
436 }
437
438 /**
439 * mem_cgroup_css_from_page - css of the memcg associated with a page
440 * @page: page of interest
441 *
442 * If memcg is bound to the default hierarchy, css of the memcg associated
443 * with @page is returned. The returned css remains associated with @page
444 * until it is released.
445 *
446 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
447 * is returned.
448 */
449 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
450 {
451 struct mem_cgroup *memcg;
452
453 memcg = page->mem_cgroup;
454
455 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
456 memcg = root_mem_cgroup;
457
458 return &memcg->css;
459 }
460
461 /**
462 * page_cgroup_ino - return inode number of the memcg a page is charged to
463 * @page: the page
464 *
465 * Look up the closest online ancestor of the memory cgroup @page is charged to
466 * and return its inode number or 0 if @page is not charged to any cgroup. It
467 * is safe to call this function without holding a reference to @page.
468 *
469 * Note, this function is inherently racy, because there is nothing to prevent
470 * the cgroup inode from getting torn down and potentially reallocated a moment
471 * after page_cgroup_ino() returns, so it only should be used by callers that
472 * do not care (such as procfs interfaces).
473 */
474 ino_t page_cgroup_ino(struct page *page)
475 {
476 struct mem_cgroup *memcg;
477 unsigned long ino = 0;
478
479 rcu_read_lock();
480 if (PageSlab(page) && !PageTail(page))
481 memcg = memcg_from_slab_page(page);
482 else
483 memcg = READ_ONCE(page->mem_cgroup);
484 while (memcg && !(memcg->css.flags & CSS_ONLINE))
485 memcg = parent_mem_cgroup(memcg);
486 if (memcg)
487 ino = cgroup_ino(memcg->css.cgroup);
488 rcu_read_unlock();
489 return ino;
490 }
491
492 static struct mem_cgroup_per_node *
493 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
494 {
495 int nid = page_to_nid(page);
496
497 return memcg->nodeinfo[nid];
498 }
499
500 static struct mem_cgroup_tree_per_node *
501 soft_limit_tree_node(int nid)
502 {
503 return soft_limit_tree.rb_tree_per_node[nid];
504 }
505
506 static struct mem_cgroup_tree_per_node *
507 soft_limit_tree_from_page(struct page *page)
508 {
509 int nid = page_to_nid(page);
510
511 return soft_limit_tree.rb_tree_per_node[nid];
512 }
513
514 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
515 struct mem_cgroup_tree_per_node *mctz,
516 unsigned long new_usage_in_excess)
517 {
518 struct rb_node **p = &mctz->rb_root.rb_node;
519 struct rb_node *parent = NULL;
520 struct mem_cgroup_per_node *mz_node;
521 bool rightmost = true;
522
523 if (mz->on_tree)
524 return;
525
526 mz->usage_in_excess = new_usage_in_excess;
527 if (!mz->usage_in_excess)
528 return;
529 while (*p) {
530 parent = *p;
531 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
532 tree_node);
533 if (mz->usage_in_excess < mz_node->usage_in_excess) {
534 p = &(*p)->rb_left;
535 rightmost = false;
536 }
537
538 /*
539 * We can't avoid mem cgroups that are over their soft
540 * limit by the same amount
541 */
542 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
543 p = &(*p)->rb_right;
544 }
545
546 if (rightmost)
547 mctz->rb_rightmost = &mz->tree_node;
548
549 rb_link_node(&mz->tree_node, parent, p);
550 rb_insert_color(&mz->tree_node, &mctz->rb_root);
551 mz->on_tree = true;
552 }
553
554 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
555 struct mem_cgroup_tree_per_node *mctz)
556 {
557 if (!mz->on_tree)
558 return;
559
560 if (&mz->tree_node == mctz->rb_rightmost)
561 mctz->rb_rightmost = rb_prev(&mz->tree_node);
562
563 rb_erase(&mz->tree_node, &mctz->rb_root);
564 mz->on_tree = false;
565 }
566
567 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
568 struct mem_cgroup_tree_per_node *mctz)
569 {
570 unsigned long flags;
571
572 spin_lock_irqsave(&mctz->lock, flags);
573 __mem_cgroup_remove_exceeded(mz, mctz);
574 spin_unlock_irqrestore(&mctz->lock, flags);
575 }
576
577 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
578 {
579 unsigned long nr_pages = page_counter_read(&memcg->memory);
580 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
581 unsigned long excess = 0;
582
583 if (nr_pages > soft_limit)
584 excess = nr_pages - soft_limit;
585
586 return excess;
587 }
588
589 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
590 {
591 unsigned long excess;
592 struct mem_cgroup_per_node *mz;
593 struct mem_cgroup_tree_per_node *mctz;
594
595 mctz = soft_limit_tree_from_page(page);
596 if (!mctz)
597 return;
598 /*
599 * Necessary to update all ancestors when hierarchy is used.
600 * because their event counter is not touched.
601 */
602 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
603 mz = mem_cgroup_page_nodeinfo(memcg, page);
604 excess = soft_limit_excess(memcg);
605 /*
606 * We have to update the tree if mz is on RB-tree or
607 * mem is over its softlimit.
608 */
609 if (excess || mz->on_tree) {
610 unsigned long flags;
611
612 spin_lock_irqsave(&mctz->lock, flags);
613 /* if on-tree, remove it */
614 if (mz->on_tree)
615 __mem_cgroup_remove_exceeded(mz, mctz);
616 /*
617 * Insert again. mz->usage_in_excess will be updated.
618 * If excess is 0, no tree ops.
619 */
620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
621 spin_unlock_irqrestore(&mctz->lock, flags);
622 }
623 }
624 }
625
626 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
627 {
628 struct mem_cgroup_tree_per_node *mctz;
629 struct mem_cgroup_per_node *mz;
630 int nid;
631
632 for_each_node(nid) {
633 mz = mem_cgroup_nodeinfo(memcg, nid);
634 mctz = soft_limit_tree_node(nid);
635 if (mctz)
636 mem_cgroup_remove_exceeded(mz, mctz);
637 }
638 }
639
640 static struct mem_cgroup_per_node *
641 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
642 {
643 struct mem_cgroup_per_node *mz;
644
645 retry:
646 mz = NULL;
647 if (!mctz->rb_rightmost)
648 goto done; /* Nothing to reclaim from */
649
650 mz = rb_entry(mctz->rb_rightmost,
651 struct mem_cgroup_per_node, tree_node);
652 /*
653 * Remove the node now but someone else can add it back,
654 * we will to add it back at the end of reclaim to its correct
655 * position in the tree.
656 */
657 __mem_cgroup_remove_exceeded(mz, mctz);
658 if (!soft_limit_excess(mz->memcg) ||
659 !css_tryget(&mz->memcg->css))
660 goto retry;
661 done:
662 return mz;
663 }
664
665 static struct mem_cgroup_per_node *
666 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
667 {
668 struct mem_cgroup_per_node *mz;
669
670 spin_lock_irq(&mctz->lock);
671 mz = __mem_cgroup_largest_soft_limit_node(mctz);
672 spin_unlock_irq(&mctz->lock);
673 return mz;
674 }
675
676 /**
677 * __mod_memcg_state - update cgroup memory statistics
678 * @memcg: the memory cgroup
679 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
680 * @val: delta to add to the counter, can be negative
681 */
682 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
683 {
684 long x;
685
686 if (mem_cgroup_disabled())
687 return;
688
689 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
690 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
691 struct mem_cgroup *mi;
692
693 /*
694 * Batch local counters to keep them in sync with
695 * the hierarchical ones.
696 */
697 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
698 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
699 atomic_long_add(x, &mi->vmstats[idx]);
700 x = 0;
701 }
702 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
703 }
704
705 static struct mem_cgroup_per_node *
706 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
707 {
708 struct mem_cgroup *parent;
709
710 parent = parent_mem_cgroup(pn->memcg);
711 if (!parent)
712 return NULL;
713 return mem_cgroup_nodeinfo(parent, nid);
714 }
715
716 /**
717 * __mod_lruvec_state - update lruvec memory statistics
718 * @lruvec: the lruvec
719 * @idx: the stat item
720 * @val: delta to add to the counter, can be negative
721 *
722 * The lruvec is the intersection of the NUMA node and a cgroup. This
723 * function updates the all three counters that are affected by a
724 * change of state at this level: per-node, per-cgroup, per-lruvec.
725 */
726 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
727 int val)
728 {
729 pg_data_t *pgdat = lruvec_pgdat(lruvec);
730 struct mem_cgroup_per_node *pn;
731 struct mem_cgroup *memcg;
732 long x;
733
734 /* Update node */
735 __mod_node_page_state(pgdat, idx, val);
736
737 if (mem_cgroup_disabled())
738 return;
739
740 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
741 memcg = pn->memcg;
742
743 /* Update memcg */
744 __mod_memcg_state(memcg, idx, val);
745
746 /* Update lruvec */
747 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
748
749 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
750 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
751 struct mem_cgroup_per_node *pi;
752
753 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
754 atomic_long_add(x, &pi->lruvec_stat[idx]);
755 x = 0;
756 }
757 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
758 }
759
760 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
761 {
762 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
763 struct mem_cgroup *memcg;
764 struct lruvec *lruvec;
765
766 rcu_read_lock();
767 memcg = mem_cgroup_from_obj(p);
768
769 /* Untracked pages have no memcg, no lruvec. Update only the node */
770 if (!memcg || memcg == root_mem_cgroup) {
771 __mod_node_page_state(pgdat, idx, val);
772 } else {
773 lruvec = mem_cgroup_lruvec(memcg, pgdat);
774 __mod_lruvec_state(lruvec, idx, val);
775 }
776 rcu_read_unlock();
777 }
778
779 void mod_memcg_obj_state(void *p, int idx, int val)
780 {
781 struct mem_cgroup *memcg;
782
783 rcu_read_lock();
784 memcg = mem_cgroup_from_obj(p);
785 if (memcg)
786 mod_memcg_state(memcg, idx, val);
787 rcu_read_unlock();
788 }
789
790 /**
791 * __count_memcg_events - account VM events in a cgroup
792 * @memcg: the memory cgroup
793 * @idx: the event item
794 * @count: the number of events that occured
795 */
796 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
797 unsigned long count)
798 {
799 unsigned long x;
800
801 if (mem_cgroup_disabled())
802 return;
803
804 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
805 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
806 struct mem_cgroup *mi;
807
808 /*
809 * Batch local counters to keep them in sync with
810 * the hierarchical ones.
811 */
812 __this_cpu_add(memcg->vmstats_local->events[idx], x);
813 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
814 atomic_long_add(x, &mi->vmevents[idx]);
815 x = 0;
816 }
817 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
818 }
819
820 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
821 {
822 return atomic_long_read(&memcg->vmevents[event]);
823 }
824
825 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
826 {
827 long x = 0;
828 int cpu;
829
830 for_each_possible_cpu(cpu)
831 x += per_cpu(memcg->vmstats_local->events[event], cpu);
832 return x;
833 }
834
835 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
836 struct page *page,
837 int nr_pages)
838 {
839 /* pagein of a big page is an event. So, ignore page size */
840 if (nr_pages > 0)
841 __count_memcg_events(memcg, PGPGIN, 1);
842 else {
843 __count_memcg_events(memcg, PGPGOUT, 1);
844 nr_pages = -nr_pages; /* for event */
845 }
846
847 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
848 }
849
850 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
851 enum mem_cgroup_events_target target)
852 {
853 unsigned long val, next;
854
855 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
856 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
857 /* from time_after() in jiffies.h */
858 if ((long)(next - val) < 0) {
859 switch (target) {
860 case MEM_CGROUP_TARGET_THRESH:
861 next = val + THRESHOLDS_EVENTS_TARGET;
862 break;
863 case MEM_CGROUP_TARGET_SOFTLIMIT:
864 next = val + SOFTLIMIT_EVENTS_TARGET;
865 break;
866 default:
867 break;
868 }
869 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
870 return true;
871 }
872 return false;
873 }
874
875 /*
876 * Check events in order.
877 *
878 */
879 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
880 {
881 /* threshold event is triggered in finer grain than soft limit */
882 if (unlikely(mem_cgroup_event_ratelimit(memcg,
883 MEM_CGROUP_TARGET_THRESH))) {
884 bool do_softlimit;
885
886 do_softlimit = mem_cgroup_event_ratelimit(memcg,
887 MEM_CGROUP_TARGET_SOFTLIMIT);
888 mem_cgroup_threshold(memcg);
889 if (unlikely(do_softlimit))
890 mem_cgroup_update_tree(memcg, page);
891 }
892 }
893
894 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
895 {
896 /*
897 * mm_update_next_owner() may clear mm->owner to NULL
898 * if it races with swapoff, page migration, etc.
899 * So this can be called with p == NULL.
900 */
901 if (unlikely(!p))
902 return NULL;
903
904 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
905 }
906 EXPORT_SYMBOL(mem_cgroup_from_task);
907
908 /**
909 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
910 * @mm: mm from which memcg should be extracted. It can be NULL.
911 *
912 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
913 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
914 * returned.
915 */
916 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
917 {
918 struct mem_cgroup *memcg;
919
920 if (mem_cgroup_disabled())
921 return NULL;
922
923 rcu_read_lock();
924 do {
925 /*
926 * Page cache insertions can happen withou an
927 * actual mm context, e.g. during disk probing
928 * on boot, loopback IO, acct() writes etc.
929 */
930 if (unlikely(!mm))
931 memcg = root_mem_cgroup;
932 else {
933 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
934 if (unlikely(!memcg))
935 memcg = root_mem_cgroup;
936 }
937 } while (!css_tryget(&memcg->css));
938 rcu_read_unlock();
939 return memcg;
940 }
941 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
942
943 /**
944 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
945 * @page: page from which memcg should be extracted.
946 *
947 * Obtain a reference on page->memcg and returns it if successful. Otherwise
948 * root_mem_cgroup is returned.
949 */
950 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
951 {
952 struct mem_cgroup *memcg = page->mem_cgroup;
953
954 if (mem_cgroup_disabled())
955 return NULL;
956
957 rcu_read_lock();
958 /* Page should not get uncharged and freed memcg under us. */
959 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
960 memcg = root_mem_cgroup;
961 rcu_read_unlock();
962 return memcg;
963 }
964 EXPORT_SYMBOL(get_mem_cgroup_from_page);
965
966 /**
967 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
968 */
969 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
970 {
971 if (unlikely(current->active_memcg)) {
972 struct mem_cgroup *memcg;
973
974 rcu_read_lock();
975 /* current->active_memcg must hold a ref. */
976 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
977 memcg = root_mem_cgroup;
978 else
979 memcg = current->active_memcg;
980 rcu_read_unlock();
981 return memcg;
982 }
983 return get_mem_cgroup_from_mm(current->mm);
984 }
985
986 /**
987 * mem_cgroup_iter - iterate over memory cgroup hierarchy
988 * @root: hierarchy root
989 * @prev: previously returned memcg, NULL on first invocation
990 * @reclaim: cookie for shared reclaim walks, NULL for full walks
991 *
992 * Returns references to children of the hierarchy below @root, or
993 * @root itself, or %NULL after a full round-trip.
994 *
995 * Caller must pass the return value in @prev on subsequent
996 * invocations for reference counting, or use mem_cgroup_iter_break()
997 * to cancel a hierarchy walk before the round-trip is complete.
998 *
999 * Reclaimers can specify a node and a priority level in @reclaim to
1000 * divide up the memcgs in the hierarchy among all concurrent
1001 * reclaimers operating on the same node and priority.
1002 */
1003 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1004 struct mem_cgroup *prev,
1005 struct mem_cgroup_reclaim_cookie *reclaim)
1006 {
1007 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1008 struct cgroup_subsys_state *css = NULL;
1009 struct mem_cgroup *memcg = NULL;
1010 struct mem_cgroup *pos = NULL;
1011
1012 if (mem_cgroup_disabled())
1013 return NULL;
1014
1015 if (!root)
1016 root = root_mem_cgroup;
1017
1018 if (prev && !reclaim)
1019 pos = prev;
1020
1021 if (!root->use_hierarchy && root != root_mem_cgroup) {
1022 if (prev)
1023 goto out;
1024 return root;
1025 }
1026
1027 rcu_read_lock();
1028
1029 if (reclaim) {
1030 struct mem_cgroup_per_node *mz;
1031
1032 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1033 iter = &mz->iter;
1034
1035 if (prev && reclaim->generation != iter->generation)
1036 goto out_unlock;
1037
1038 while (1) {
1039 pos = READ_ONCE(iter->position);
1040 if (!pos || css_tryget(&pos->css))
1041 break;
1042 /*
1043 * css reference reached zero, so iter->position will
1044 * be cleared by ->css_released. However, we should not
1045 * rely on this happening soon, because ->css_released
1046 * is called from a work queue, and by busy-waiting we
1047 * might block it. So we clear iter->position right
1048 * away.
1049 */
1050 (void)cmpxchg(&iter->position, pos, NULL);
1051 }
1052 }
1053
1054 if (pos)
1055 css = &pos->css;
1056
1057 for (;;) {
1058 css = css_next_descendant_pre(css, &root->css);
1059 if (!css) {
1060 /*
1061 * Reclaimers share the hierarchy walk, and a
1062 * new one might jump in right at the end of
1063 * the hierarchy - make sure they see at least
1064 * one group and restart from the beginning.
1065 */
1066 if (!prev)
1067 continue;
1068 break;
1069 }
1070
1071 /*
1072 * Verify the css and acquire a reference. The root
1073 * is provided by the caller, so we know it's alive
1074 * and kicking, and don't take an extra reference.
1075 */
1076 memcg = mem_cgroup_from_css(css);
1077
1078 if (css == &root->css)
1079 break;
1080
1081 if (css_tryget(css))
1082 break;
1083
1084 memcg = NULL;
1085 }
1086
1087 if (reclaim) {
1088 /*
1089 * The position could have already been updated by a competing
1090 * thread, so check that the value hasn't changed since we read
1091 * it to avoid reclaiming from the same cgroup twice.
1092 */
1093 (void)cmpxchg(&iter->position, pos, memcg);
1094
1095 if (pos)
1096 css_put(&pos->css);
1097
1098 if (!memcg)
1099 iter->generation++;
1100 else if (!prev)
1101 reclaim->generation = iter->generation;
1102 }
1103
1104 out_unlock:
1105 rcu_read_unlock();
1106 out:
1107 if (prev && prev != root)
1108 css_put(&prev->css);
1109
1110 return memcg;
1111 }
1112
1113 /**
1114 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1115 * @root: hierarchy root
1116 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1117 */
1118 void mem_cgroup_iter_break(struct mem_cgroup *root,
1119 struct mem_cgroup *prev)
1120 {
1121 if (!root)
1122 root = root_mem_cgroup;
1123 if (prev && prev != root)
1124 css_put(&prev->css);
1125 }
1126
1127 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1128 struct mem_cgroup *dead_memcg)
1129 {
1130 struct mem_cgroup_reclaim_iter *iter;
1131 struct mem_cgroup_per_node *mz;
1132 int nid;
1133
1134 for_each_node(nid) {
1135 mz = mem_cgroup_nodeinfo(from, nid);
1136 iter = &mz->iter;
1137 cmpxchg(&iter->position, dead_memcg, NULL);
1138 }
1139 }
1140
1141 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1142 {
1143 struct mem_cgroup *memcg = dead_memcg;
1144 struct mem_cgroup *last;
1145
1146 do {
1147 __invalidate_reclaim_iterators(memcg, dead_memcg);
1148 last = memcg;
1149 } while ((memcg = parent_mem_cgroup(memcg)));
1150
1151 /*
1152 * When cgruop1 non-hierarchy mode is used,
1153 * parent_mem_cgroup() does not walk all the way up to the
1154 * cgroup root (root_mem_cgroup). So we have to handle
1155 * dead_memcg from cgroup root separately.
1156 */
1157 if (last != root_mem_cgroup)
1158 __invalidate_reclaim_iterators(root_mem_cgroup,
1159 dead_memcg);
1160 }
1161
1162 /**
1163 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1164 * @memcg: hierarchy root
1165 * @fn: function to call for each task
1166 * @arg: argument passed to @fn
1167 *
1168 * This function iterates over tasks attached to @memcg or to any of its
1169 * descendants and calls @fn for each task. If @fn returns a non-zero
1170 * value, the function breaks the iteration loop and returns the value.
1171 * Otherwise, it will iterate over all tasks and return 0.
1172 *
1173 * This function must not be called for the root memory cgroup.
1174 */
1175 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1176 int (*fn)(struct task_struct *, void *), void *arg)
1177 {
1178 struct mem_cgroup *iter;
1179 int ret = 0;
1180
1181 BUG_ON(memcg == root_mem_cgroup);
1182
1183 for_each_mem_cgroup_tree(iter, memcg) {
1184 struct css_task_iter it;
1185 struct task_struct *task;
1186
1187 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1188 while (!ret && (task = css_task_iter_next(&it)))
1189 ret = fn(task, arg);
1190 css_task_iter_end(&it);
1191 if (ret) {
1192 mem_cgroup_iter_break(memcg, iter);
1193 break;
1194 }
1195 }
1196 return ret;
1197 }
1198
1199 /**
1200 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1201 * @page: the page
1202 * @pgdat: pgdat of the page
1203 *
1204 * This function relies on page->mem_cgroup being stable - see the
1205 * access rules in commit_charge().
1206 */
1207 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1208 {
1209 struct mem_cgroup_per_node *mz;
1210 struct mem_cgroup *memcg;
1211 struct lruvec *lruvec;
1212
1213 if (mem_cgroup_disabled()) {
1214 lruvec = &pgdat->__lruvec;
1215 goto out;
1216 }
1217
1218 memcg = page->mem_cgroup;
1219 /*
1220 * Swapcache readahead pages are added to the LRU - and
1221 * possibly migrated - before they are charged.
1222 */
1223 if (!memcg)
1224 memcg = root_mem_cgroup;
1225
1226 mz = mem_cgroup_page_nodeinfo(memcg, page);
1227 lruvec = &mz->lruvec;
1228 out:
1229 /*
1230 * Since a node can be onlined after the mem_cgroup was created,
1231 * we have to be prepared to initialize lruvec->zone here;
1232 * and if offlined then reonlined, we need to reinitialize it.
1233 */
1234 if (unlikely(lruvec->pgdat != pgdat))
1235 lruvec->pgdat = pgdat;
1236 return lruvec;
1237 }
1238
1239 /**
1240 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1241 * @lruvec: mem_cgroup per zone lru vector
1242 * @lru: index of lru list the page is sitting on
1243 * @zid: zone id of the accounted pages
1244 * @nr_pages: positive when adding or negative when removing
1245 *
1246 * This function must be called under lru_lock, just before a page is added
1247 * to or just after a page is removed from an lru list (that ordering being
1248 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1249 */
1250 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1251 int zid, int nr_pages)
1252 {
1253 struct mem_cgroup_per_node *mz;
1254 unsigned long *lru_size;
1255 long size;
1256
1257 if (mem_cgroup_disabled())
1258 return;
1259
1260 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1261 lru_size = &mz->lru_zone_size[zid][lru];
1262
1263 if (nr_pages < 0)
1264 *lru_size += nr_pages;
1265
1266 size = *lru_size;
1267 if (WARN_ONCE(size < 0,
1268 "%s(%p, %d, %d): lru_size %ld\n",
1269 __func__, lruvec, lru, nr_pages, size)) {
1270 VM_BUG_ON(1);
1271 *lru_size = 0;
1272 }
1273
1274 if (nr_pages > 0)
1275 *lru_size += nr_pages;
1276 }
1277
1278 /**
1279 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1280 * @memcg: the memory cgroup
1281 *
1282 * Returns the maximum amount of memory @mem can be charged with, in
1283 * pages.
1284 */
1285 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1286 {
1287 unsigned long margin = 0;
1288 unsigned long count;
1289 unsigned long limit;
1290
1291 count = page_counter_read(&memcg->memory);
1292 limit = READ_ONCE(memcg->memory.max);
1293 if (count < limit)
1294 margin = limit - count;
1295
1296 if (do_memsw_account()) {
1297 count = page_counter_read(&memcg->memsw);
1298 limit = READ_ONCE(memcg->memsw.max);
1299 if (count < limit)
1300 margin = min(margin, limit - count);
1301 else
1302 margin = 0;
1303 }
1304
1305 return margin;
1306 }
1307
1308 /*
1309 * A routine for checking "mem" is under move_account() or not.
1310 *
1311 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1312 * moving cgroups. This is for waiting at high-memory pressure
1313 * caused by "move".
1314 */
1315 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1316 {
1317 struct mem_cgroup *from;
1318 struct mem_cgroup *to;
1319 bool ret = false;
1320 /*
1321 * Unlike task_move routines, we access mc.to, mc.from not under
1322 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1323 */
1324 spin_lock(&mc.lock);
1325 from = mc.from;
1326 to = mc.to;
1327 if (!from)
1328 goto unlock;
1329
1330 ret = mem_cgroup_is_descendant(from, memcg) ||
1331 mem_cgroup_is_descendant(to, memcg);
1332 unlock:
1333 spin_unlock(&mc.lock);
1334 return ret;
1335 }
1336
1337 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1338 {
1339 if (mc.moving_task && current != mc.moving_task) {
1340 if (mem_cgroup_under_move(memcg)) {
1341 DEFINE_WAIT(wait);
1342 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1343 /* moving charge context might have finished. */
1344 if (mc.moving_task)
1345 schedule();
1346 finish_wait(&mc.waitq, &wait);
1347 return true;
1348 }
1349 }
1350 return false;
1351 }
1352
1353 static char *memory_stat_format(struct mem_cgroup *memcg)
1354 {
1355 struct seq_buf s;
1356 int i;
1357
1358 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1359 if (!s.buffer)
1360 return NULL;
1361
1362 /*
1363 * Provide statistics on the state of the memory subsystem as
1364 * well as cumulative event counters that show past behavior.
1365 *
1366 * This list is ordered following a combination of these gradients:
1367 * 1) generic big picture -> specifics and details
1368 * 2) reflecting userspace activity -> reflecting kernel heuristics
1369 *
1370 * Current memory state:
1371 */
1372
1373 seq_buf_printf(&s, "anon %llu\n",
1374 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1375 PAGE_SIZE);
1376 seq_buf_printf(&s, "file %llu\n",
1377 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1378 PAGE_SIZE);
1379 seq_buf_printf(&s, "kernel_stack %llu\n",
1380 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1381 1024);
1382 seq_buf_printf(&s, "slab %llu\n",
1383 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1384 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1385 PAGE_SIZE);
1386 seq_buf_printf(&s, "sock %llu\n",
1387 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1388 PAGE_SIZE);
1389
1390 seq_buf_printf(&s, "shmem %llu\n",
1391 (u64)memcg_page_state(memcg, NR_SHMEM) *
1392 PAGE_SIZE);
1393 seq_buf_printf(&s, "file_mapped %llu\n",
1394 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1395 PAGE_SIZE);
1396 seq_buf_printf(&s, "file_dirty %llu\n",
1397 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1398 PAGE_SIZE);
1399 seq_buf_printf(&s, "file_writeback %llu\n",
1400 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1401 PAGE_SIZE);
1402
1403 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1404 seq_buf_printf(&s, "anon_thp %llu\n",
1405 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1406 HPAGE_PMD_SIZE);
1407 #endif
1408
1409 for (i = 0; i < NR_LRU_LISTS; i++)
1410 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1411 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1412 PAGE_SIZE);
1413
1414 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1415 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1416 PAGE_SIZE);
1417 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1418 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1419 PAGE_SIZE);
1420
1421 /* Accumulated memory events */
1422
1423 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1424 memcg_events(memcg, PGFAULT));
1425 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1426 memcg_events(memcg, PGMAJFAULT));
1427
1428 seq_buf_printf(&s, "workingset_refault %lu\n",
1429 memcg_page_state(memcg, WORKINGSET_REFAULT));
1430 seq_buf_printf(&s, "workingset_activate %lu\n",
1431 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1432 seq_buf_printf(&s, "workingset_restore %lu\n",
1433 memcg_page_state(memcg, WORKINGSET_RESTORE));
1434 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1435 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1436
1437 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1438 memcg_events(memcg, PGREFILL));
1439 seq_buf_printf(&s, "pgscan %lu\n",
1440 memcg_events(memcg, PGSCAN_KSWAPD) +
1441 memcg_events(memcg, PGSCAN_DIRECT));
1442 seq_buf_printf(&s, "pgsteal %lu\n",
1443 memcg_events(memcg, PGSTEAL_KSWAPD) +
1444 memcg_events(memcg, PGSTEAL_DIRECT));
1445 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1446 memcg_events(memcg, PGACTIVATE));
1447 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1448 memcg_events(memcg, PGDEACTIVATE));
1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1450 memcg_events(memcg, PGLAZYFREE));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1452 memcg_events(memcg, PGLAZYFREED));
1453
1454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1456 memcg_events(memcg, THP_FAULT_ALLOC));
1457 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1458 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1459 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1460
1461 /* The above should easily fit into one page */
1462 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1463
1464 return s.buffer;
1465 }
1466
1467 #define K(x) ((x) << (PAGE_SHIFT-10))
1468 /**
1469 * mem_cgroup_print_oom_context: Print OOM information relevant to
1470 * memory controller.
1471 * @memcg: The memory cgroup that went over limit
1472 * @p: Task that is going to be killed
1473 *
1474 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1475 * enabled
1476 */
1477 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1478 {
1479 rcu_read_lock();
1480
1481 if (memcg) {
1482 pr_cont(",oom_memcg=");
1483 pr_cont_cgroup_path(memcg->css.cgroup);
1484 } else
1485 pr_cont(",global_oom");
1486 if (p) {
1487 pr_cont(",task_memcg=");
1488 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1489 }
1490 rcu_read_unlock();
1491 }
1492
1493 /**
1494 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1495 * memory controller.
1496 * @memcg: The memory cgroup that went over limit
1497 */
1498 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1499 {
1500 char *buf;
1501
1502 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1503 K((u64)page_counter_read(&memcg->memory)),
1504 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1505 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1506 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->swap)),
1508 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1509 else {
1510 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 K((u64)page_counter_read(&memcg->memsw)),
1512 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1513 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1514 K((u64)page_counter_read(&memcg->kmem)),
1515 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1516 }
1517
1518 pr_info("Memory cgroup stats for ");
1519 pr_cont_cgroup_path(memcg->css.cgroup);
1520 pr_cont(":");
1521 buf = memory_stat_format(memcg);
1522 if (!buf)
1523 return;
1524 pr_info("%s", buf);
1525 kfree(buf);
1526 }
1527
1528 /*
1529 * Return the memory (and swap, if configured) limit for a memcg.
1530 */
1531 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1532 {
1533 unsigned long max;
1534
1535 max = READ_ONCE(memcg->memory.max);
1536 if (mem_cgroup_swappiness(memcg)) {
1537 unsigned long memsw_max;
1538 unsigned long swap_max;
1539
1540 memsw_max = memcg->memsw.max;
1541 swap_max = READ_ONCE(memcg->swap.max);
1542 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1543 max = min(max + swap_max, memsw_max);
1544 }
1545 return max;
1546 }
1547
1548 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1549 {
1550 return page_counter_read(&memcg->memory);
1551 }
1552
1553 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1554 int order)
1555 {
1556 struct oom_control oc = {
1557 .zonelist = NULL,
1558 .nodemask = NULL,
1559 .memcg = memcg,
1560 .gfp_mask = gfp_mask,
1561 .order = order,
1562 };
1563 bool ret;
1564
1565 if (mutex_lock_killable(&oom_lock))
1566 return true;
1567 /*
1568 * A few threads which were not waiting at mutex_lock_killable() can
1569 * fail to bail out. Therefore, check again after holding oom_lock.
1570 */
1571 ret = should_force_charge() || out_of_memory(&oc);
1572 mutex_unlock(&oom_lock);
1573 return ret;
1574 }
1575
1576 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1577 pg_data_t *pgdat,
1578 gfp_t gfp_mask,
1579 unsigned long *total_scanned)
1580 {
1581 struct mem_cgroup *victim = NULL;
1582 int total = 0;
1583 int loop = 0;
1584 unsigned long excess;
1585 unsigned long nr_scanned;
1586 struct mem_cgroup_reclaim_cookie reclaim = {
1587 .pgdat = pgdat,
1588 };
1589
1590 excess = soft_limit_excess(root_memcg);
1591
1592 while (1) {
1593 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1594 if (!victim) {
1595 loop++;
1596 if (loop >= 2) {
1597 /*
1598 * If we have not been able to reclaim
1599 * anything, it might because there are
1600 * no reclaimable pages under this hierarchy
1601 */
1602 if (!total)
1603 break;
1604 /*
1605 * We want to do more targeted reclaim.
1606 * excess >> 2 is not to excessive so as to
1607 * reclaim too much, nor too less that we keep
1608 * coming back to reclaim from this cgroup
1609 */
1610 if (total >= (excess >> 2) ||
1611 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1612 break;
1613 }
1614 continue;
1615 }
1616 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1617 pgdat, &nr_scanned);
1618 *total_scanned += nr_scanned;
1619 if (!soft_limit_excess(root_memcg))
1620 break;
1621 }
1622 mem_cgroup_iter_break(root_memcg, victim);
1623 return total;
1624 }
1625
1626 #ifdef CONFIG_LOCKDEP
1627 static struct lockdep_map memcg_oom_lock_dep_map = {
1628 .name = "memcg_oom_lock",
1629 };
1630 #endif
1631
1632 static DEFINE_SPINLOCK(memcg_oom_lock);
1633
1634 /*
1635 * Check OOM-Killer is already running under our hierarchy.
1636 * If someone is running, return false.
1637 */
1638 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1639 {
1640 struct mem_cgroup *iter, *failed = NULL;
1641
1642 spin_lock(&memcg_oom_lock);
1643
1644 for_each_mem_cgroup_tree(iter, memcg) {
1645 if (iter->oom_lock) {
1646 /*
1647 * this subtree of our hierarchy is already locked
1648 * so we cannot give a lock.
1649 */
1650 failed = iter;
1651 mem_cgroup_iter_break(memcg, iter);
1652 break;
1653 } else
1654 iter->oom_lock = true;
1655 }
1656
1657 if (failed) {
1658 /*
1659 * OK, we failed to lock the whole subtree so we have
1660 * to clean up what we set up to the failing subtree
1661 */
1662 for_each_mem_cgroup_tree(iter, memcg) {
1663 if (iter == failed) {
1664 mem_cgroup_iter_break(memcg, iter);
1665 break;
1666 }
1667 iter->oom_lock = false;
1668 }
1669 } else
1670 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1671
1672 spin_unlock(&memcg_oom_lock);
1673
1674 return !failed;
1675 }
1676
1677 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1678 {
1679 struct mem_cgroup *iter;
1680
1681 spin_lock(&memcg_oom_lock);
1682 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1683 for_each_mem_cgroup_tree(iter, memcg)
1684 iter->oom_lock = false;
1685 spin_unlock(&memcg_oom_lock);
1686 }
1687
1688 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1689 {
1690 struct mem_cgroup *iter;
1691
1692 spin_lock(&memcg_oom_lock);
1693 for_each_mem_cgroup_tree(iter, memcg)
1694 iter->under_oom++;
1695 spin_unlock(&memcg_oom_lock);
1696 }
1697
1698 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1699 {
1700 struct mem_cgroup *iter;
1701
1702 /*
1703 * When a new child is created while the hierarchy is under oom,
1704 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1705 */
1706 spin_lock(&memcg_oom_lock);
1707 for_each_mem_cgroup_tree(iter, memcg)
1708 if (iter->under_oom > 0)
1709 iter->under_oom--;
1710 spin_unlock(&memcg_oom_lock);
1711 }
1712
1713 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1714
1715 struct oom_wait_info {
1716 struct mem_cgroup *memcg;
1717 wait_queue_entry_t wait;
1718 };
1719
1720 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1721 unsigned mode, int sync, void *arg)
1722 {
1723 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1724 struct mem_cgroup *oom_wait_memcg;
1725 struct oom_wait_info *oom_wait_info;
1726
1727 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1728 oom_wait_memcg = oom_wait_info->memcg;
1729
1730 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1731 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1732 return 0;
1733 return autoremove_wake_function(wait, mode, sync, arg);
1734 }
1735
1736 static void memcg_oom_recover(struct mem_cgroup *memcg)
1737 {
1738 /*
1739 * For the following lockless ->under_oom test, the only required
1740 * guarantee is that it must see the state asserted by an OOM when
1741 * this function is called as a result of userland actions
1742 * triggered by the notification of the OOM. This is trivially
1743 * achieved by invoking mem_cgroup_mark_under_oom() before
1744 * triggering notification.
1745 */
1746 if (memcg && memcg->under_oom)
1747 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1748 }
1749
1750 enum oom_status {
1751 OOM_SUCCESS,
1752 OOM_FAILED,
1753 OOM_ASYNC,
1754 OOM_SKIPPED
1755 };
1756
1757 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1758 {
1759 enum oom_status ret;
1760 bool locked;
1761
1762 if (order > PAGE_ALLOC_COSTLY_ORDER)
1763 return OOM_SKIPPED;
1764
1765 memcg_memory_event(memcg, MEMCG_OOM);
1766
1767 /*
1768 * We are in the middle of the charge context here, so we
1769 * don't want to block when potentially sitting on a callstack
1770 * that holds all kinds of filesystem and mm locks.
1771 *
1772 * cgroup1 allows disabling the OOM killer and waiting for outside
1773 * handling until the charge can succeed; remember the context and put
1774 * the task to sleep at the end of the page fault when all locks are
1775 * released.
1776 *
1777 * On the other hand, in-kernel OOM killer allows for an async victim
1778 * memory reclaim (oom_reaper) and that means that we are not solely
1779 * relying on the oom victim to make a forward progress and we can
1780 * invoke the oom killer here.
1781 *
1782 * Please note that mem_cgroup_out_of_memory might fail to find a
1783 * victim and then we have to bail out from the charge path.
1784 */
1785 if (memcg->oom_kill_disable) {
1786 if (!current->in_user_fault)
1787 return OOM_SKIPPED;
1788 css_get(&memcg->css);
1789 current->memcg_in_oom = memcg;
1790 current->memcg_oom_gfp_mask = mask;
1791 current->memcg_oom_order = order;
1792
1793 return OOM_ASYNC;
1794 }
1795
1796 mem_cgroup_mark_under_oom(memcg);
1797
1798 locked = mem_cgroup_oom_trylock(memcg);
1799
1800 if (locked)
1801 mem_cgroup_oom_notify(memcg);
1802
1803 mem_cgroup_unmark_under_oom(memcg);
1804 if (mem_cgroup_out_of_memory(memcg, mask, order))
1805 ret = OOM_SUCCESS;
1806 else
1807 ret = OOM_FAILED;
1808
1809 if (locked)
1810 mem_cgroup_oom_unlock(memcg);
1811
1812 return ret;
1813 }
1814
1815 /**
1816 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1817 * @handle: actually kill/wait or just clean up the OOM state
1818 *
1819 * This has to be called at the end of a page fault if the memcg OOM
1820 * handler was enabled.
1821 *
1822 * Memcg supports userspace OOM handling where failed allocations must
1823 * sleep on a waitqueue until the userspace task resolves the
1824 * situation. Sleeping directly in the charge context with all kinds
1825 * of locks held is not a good idea, instead we remember an OOM state
1826 * in the task and mem_cgroup_oom_synchronize() has to be called at
1827 * the end of the page fault to complete the OOM handling.
1828 *
1829 * Returns %true if an ongoing memcg OOM situation was detected and
1830 * completed, %false otherwise.
1831 */
1832 bool mem_cgroup_oom_synchronize(bool handle)
1833 {
1834 struct mem_cgroup *memcg = current->memcg_in_oom;
1835 struct oom_wait_info owait;
1836 bool locked;
1837
1838 /* OOM is global, do not handle */
1839 if (!memcg)
1840 return false;
1841
1842 if (!handle)
1843 goto cleanup;
1844
1845 owait.memcg = memcg;
1846 owait.wait.flags = 0;
1847 owait.wait.func = memcg_oom_wake_function;
1848 owait.wait.private = current;
1849 INIT_LIST_HEAD(&owait.wait.entry);
1850
1851 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1852 mem_cgroup_mark_under_oom(memcg);
1853
1854 locked = mem_cgroup_oom_trylock(memcg);
1855
1856 if (locked)
1857 mem_cgroup_oom_notify(memcg);
1858
1859 if (locked && !memcg->oom_kill_disable) {
1860 mem_cgroup_unmark_under_oom(memcg);
1861 finish_wait(&memcg_oom_waitq, &owait.wait);
1862 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1863 current->memcg_oom_order);
1864 } else {
1865 schedule();
1866 mem_cgroup_unmark_under_oom(memcg);
1867 finish_wait(&memcg_oom_waitq, &owait.wait);
1868 }
1869
1870 if (locked) {
1871 mem_cgroup_oom_unlock(memcg);
1872 /*
1873 * There is no guarantee that an OOM-lock contender
1874 * sees the wakeups triggered by the OOM kill
1875 * uncharges. Wake any sleepers explicitely.
1876 */
1877 memcg_oom_recover(memcg);
1878 }
1879 cleanup:
1880 current->memcg_in_oom = NULL;
1881 css_put(&memcg->css);
1882 return true;
1883 }
1884
1885 /**
1886 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1887 * @victim: task to be killed by the OOM killer
1888 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1889 *
1890 * Returns a pointer to a memory cgroup, which has to be cleaned up
1891 * by killing all belonging OOM-killable tasks.
1892 *
1893 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1894 */
1895 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1896 struct mem_cgroup *oom_domain)
1897 {
1898 struct mem_cgroup *oom_group = NULL;
1899 struct mem_cgroup *memcg;
1900
1901 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1902 return NULL;
1903
1904 if (!oom_domain)
1905 oom_domain = root_mem_cgroup;
1906
1907 rcu_read_lock();
1908
1909 memcg = mem_cgroup_from_task(victim);
1910 if (memcg == root_mem_cgroup)
1911 goto out;
1912
1913 /*
1914 * If the victim task has been asynchronously moved to a different
1915 * memory cgroup, we might end up killing tasks outside oom_domain.
1916 * In this case it's better to ignore memory.group.oom.
1917 */
1918 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1919 goto out;
1920
1921 /*
1922 * Traverse the memory cgroup hierarchy from the victim task's
1923 * cgroup up to the OOMing cgroup (or root) to find the
1924 * highest-level memory cgroup with oom.group set.
1925 */
1926 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1927 if (memcg->oom_group)
1928 oom_group = memcg;
1929
1930 if (memcg == oom_domain)
1931 break;
1932 }
1933
1934 if (oom_group)
1935 css_get(&oom_group->css);
1936 out:
1937 rcu_read_unlock();
1938
1939 return oom_group;
1940 }
1941
1942 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1943 {
1944 pr_info("Tasks in ");
1945 pr_cont_cgroup_path(memcg->css.cgroup);
1946 pr_cont(" are going to be killed due to memory.oom.group set\n");
1947 }
1948
1949 /**
1950 * lock_page_memcg - lock a page->mem_cgroup binding
1951 * @page: the page
1952 *
1953 * This function protects unlocked LRU pages from being moved to
1954 * another cgroup.
1955 *
1956 * It ensures lifetime of the returned memcg. Caller is responsible
1957 * for the lifetime of the page; __unlock_page_memcg() is available
1958 * when @page might get freed inside the locked section.
1959 */
1960 struct mem_cgroup *lock_page_memcg(struct page *page)
1961 {
1962 struct page *head = compound_head(page); /* rmap on tail pages */
1963 struct mem_cgroup *memcg;
1964 unsigned long flags;
1965
1966 /*
1967 * The RCU lock is held throughout the transaction. The fast
1968 * path can get away without acquiring the memcg->move_lock
1969 * because page moving starts with an RCU grace period.
1970 *
1971 * The RCU lock also protects the memcg from being freed when
1972 * the page state that is going to change is the only thing
1973 * preventing the page itself from being freed. E.g. writeback
1974 * doesn't hold a page reference and relies on PG_writeback to
1975 * keep off truncation, migration and so forth.
1976 */
1977 rcu_read_lock();
1978
1979 if (mem_cgroup_disabled())
1980 return NULL;
1981 again:
1982 memcg = head->mem_cgroup;
1983 if (unlikely(!memcg))
1984 return NULL;
1985
1986 if (atomic_read(&memcg->moving_account) <= 0)
1987 return memcg;
1988
1989 spin_lock_irqsave(&memcg->move_lock, flags);
1990 if (memcg != head->mem_cgroup) {
1991 spin_unlock_irqrestore(&memcg->move_lock, flags);
1992 goto again;
1993 }
1994
1995 /*
1996 * When charge migration first begins, we can have locked and
1997 * unlocked page stat updates happening concurrently. Track
1998 * the task who has the lock for unlock_page_memcg().
1999 */
2000 memcg->move_lock_task = current;
2001 memcg->move_lock_flags = flags;
2002
2003 return memcg;
2004 }
2005 EXPORT_SYMBOL(lock_page_memcg);
2006
2007 /**
2008 * __unlock_page_memcg - unlock and unpin a memcg
2009 * @memcg: the memcg
2010 *
2011 * Unlock and unpin a memcg returned by lock_page_memcg().
2012 */
2013 void __unlock_page_memcg(struct mem_cgroup *memcg)
2014 {
2015 if (memcg && memcg->move_lock_task == current) {
2016 unsigned long flags = memcg->move_lock_flags;
2017
2018 memcg->move_lock_task = NULL;
2019 memcg->move_lock_flags = 0;
2020
2021 spin_unlock_irqrestore(&memcg->move_lock, flags);
2022 }
2023
2024 rcu_read_unlock();
2025 }
2026
2027 /**
2028 * unlock_page_memcg - unlock a page->mem_cgroup binding
2029 * @page: the page
2030 */
2031 void unlock_page_memcg(struct page *page)
2032 {
2033 struct page *head = compound_head(page);
2034
2035 __unlock_page_memcg(head->mem_cgroup);
2036 }
2037 EXPORT_SYMBOL(unlock_page_memcg);
2038
2039 struct memcg_stock_pcp {
2040 struct mem_cgroup *cached; /* this never be root cgroup */
2041 unsigned int nr_pages;
2042 struct work_struct work;
2043 unsigned long flags;
2044 #define FLUSHING_CACHED_CHARGE 0
2045 };
2046 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2047 static DEFINE_MUTEX(percpu_charge_mutex);
2048
2049 /**
2050 * consume_stock: Try to consume stocked charge on this cpu.
2051 * @memcg: memcg to consume from.
2052 * @nr_pages: how many pages to charge.
2053 *
2054 * The charges will only happen if @memcg matches the current cpu's memcg
2055 * stock, and at least @nr_pages are available in that stock. Failure to
2056 * service an allocation will refill the stock.
2057 *
2058 * returns true if successful, false otherwise.
2059 */
2060 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2061 {
2062 struct memcg_stock_pcp *stock;
2063 unsigned long flags;
2064 bool ret = false;
2065
2066 if (nr_pages > MEMCG_CHARGE_BATCH)
2067 return ret;
2068
2069 local_irq_save(flags);
2070
2071 stock = this_cpu_ptr(&memcg_stock);
2072 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2073 stock->nr_pages -= nr_pages;
2074 ret = true;
2075 }
2076
2077 local_irq_restore(flags);
2078
2079 return ret;
2080 }
2081
2082 /*
2083 * Returns stocks cached in percpu and reset cached information.
2084 */
2085 static void drain_stock(struct memcg_stock_pcp *stock)
2086 {
2087 struct mem_cgroup *old = stock->cached;
2088
2089 if (stock->nr_pages) {
2090 page_counter_uncharge(&old->memory, stock->nr_pages);
2091 if (do_memsw_account())
2092 page_counter_uncharge(&old->memsw, stock->nr_pages);
2093 css_put_many(&old->css, stock->nr_pages);
2094 stock->nr_pages = 0;
2095 }
2096 stock->cached = NULL;
2097 }
2098
2099 static void drain_local_stock(struct work_struct *dummy)
2100 {
2101 struct memcg_stock_pcp *stock;
2102 unsigned long flags;
2103
2104 /*
2105 * The only protection from memory hotplug vs. drain_stock races is
2106 * that we always operate on local CPU stock here with IRQ disabled
2107 */
2108 local_irq_save(flags);
2109
2110 stock = this_cpu_ptr(&memcg_stock);
2111 drain_stock(stock);
2112 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2113
2114 local_irq_restore(flags);
2115 }
2116
2117 /*
2118 * Cache charges(val) to local per_cpu area.
2119 * This will be consumed by consume_stock() function, later.
2120 */
2121 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2122 {
2123 struct memcg_stock_pcp *stock;
2124 unsigned long flags;
2125
2126 local_irq_save(flags);
2127
2128 stock = this_cpu_ptr(&memcg_stock);
2129 if (stock->cached != memcg) { /* reset if necessary */
2130 drain_stock(stock);
2131 stock->cached = memcg;
2132 }
2133 stock->nr_pages += nr_pages;
2134
2135 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2136 drain_stock(stock);
2137
2138 local_irq_restore(flags);
2139 }
2140
2141 /*
2142 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2143 * of the hierarchy under it.
2144 */
2145 static void drain_all_stock(struct mem_cgroup *root_memcg)
2146 {
2147 int cpu, curcpu;
2148
2149 /* If someone's already draining, avoid adding running more workers. */
2150 if (!mutex_trylock(&percpu_charge_mutex))
2151 return;
2152 /*
2153 * Notify other cpus that system-wide "drain" is running
2154 * We do not care about races with the cpu hotplug because cpu down
2155 * as well as workers from this path always operate on the local
2156 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2157 */
2158 curcpu = get_cpu();
2159 for_each_online_cpu(cpu) {
2160 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2161 struct mem_cgroup *memcg;
2162 bool flush = false;
2163
2164 rcu_read_lock();
2165 memcg = stock->cached;
2166 if (memcg && stock->nr_pages &&
2167 mem_cgroup_is_descendant(memcg, root_memcg))
2168 flush = true;
2169 rcu_read_unlock();
2170
2171 if (flush &&
2172 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2173 if (cpu == curcpu)
2174 drain_local_stock(&stock->work);
2175 else
2176 schedule_work_on(cpu, &stock->work);
2177 }
2178 }
2179 put_cpu();
2180 mutex_unlock(&percpu_charge_mutex);
2181 }
2182
2183 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2184 {
2185 struct memcg_stock_pcp *stock;
2186 struct mem_cgroup *memcg, *mi;
2187
2188 stock = &per_cpu(memcg_stock, cpu);
2189 drain_stock(stock);
2190
2191 for_each_mem_cgroup(memcg) {
2192 int i;
2193
2194 for (i = 0; i < MEMCG_NR_STAT; i++) {
2195 int nid;
2196 long x;
2197
2198 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2199 if (x)
2200 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2201 atomic_long_add(x, &memcg->vmstats[i]);
2202
2203 if (i >= NR_VM_NODE_STAT_ITEMS)
2204 continue;
2205
2206 for_each_node(nid) {
2207 struct mem_cgroup_per_node *pn;
2208
2209 pn = mem_cgroup_nodeinfo(memcg, nid);
2210 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2211 if (x)
2212 do {
2213 atomic_long_add(x, &pn->lruvec_stat[i]);
2214 } while ((pn = parent_nodeinfo(pn, nid)));
2215 }
2216 }
2217
2218 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2219 long x;
2220
2221 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2222 if (x)
2223 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2224 atomic_long_add(x, &memcg->vmevents[i]);
2225 }
2226 }
2227
2228 return 0;
2229 }
2230
2231 static void reclaim_high(struct mem_cgroup *memcg,
2232 unsigned int nr_pages,
2233 gfp_t gfp_mask)
2234 {
2235 do {
2236 if (page_counter_read(&memcg->memory) <=
2237 READ_ONCE(memcg->memory.high))
2238 continue;
2239 memcg_memory_event(memcg, MEMCG_HIGH);
2240 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2241 } while ((memcg = parent_mem_cgroup(memcg)) &&
2242 !mem_cgroup_is_root(memcg));
2243 }
2244
2245 static void high_work_func(struct work_struct *work)
2246 {
2247 struct mem_cgroup *memcg;
2248
2249 memcg = container_of(work, struct mem_cgroup, high_work);
2250 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2251 }
2252
2253 /*
2254 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2255 * enough to still cause a significant slowdown in most cases, while still
2256 * allowing diagnostics and tracing to proceed without becoming stuck.
2257 */
2258 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2259
2260 /*
2261 * When calculating the delay, we use these either side of the exponentiation to
2262 * maintain precision and scale to a reasonable number of jiffies (see the table
2263 * below.
2264 *
2265 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2266 * overage ratio to a delay.
2267 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2268 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2269 * to produce a reasonable delay curve.
2270 *
2271 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2272 * reasonable delay curve compared to precision-adjusted overage, not
2273 * penalising heavily at first, but still making sure that growth beyond the
2274 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2275 * example, with a high of 100 megabytes:
2276 *
2277 * +-------+------------------------+
2278 * | usage | time to allocate in ms |
2279 * +-------+------------------------+
2280 * | 100M | 0 |
2281 * | 101M | 6 |
2282 * | 102M | 25 |
2283 * | 103M | 57 |
2284 * | 104M | 102 |
2285 * | 105M | 159 |
2286 * | 106M | 230 |
2287 * | 107M | 313 |
2288 * | 108M | 409 |
2289 * | 109M | 518 |
2290 * | 110M | 639 |
2291 * | 111M | 774 |
2292 * | 112M | 921 |
2293 * | 113M | 1081 |
2294 * | 114M | 1254 |
2295 * | 115M | 1439 |
2296 * | 116M | 1638 |
2297 * | 117M | 1849 |
2298 * | 118M | 2000 |
2299 * | 119M | 2000 |
2300 * | 120M | 2000 |
2301 * +-------+------------------------+
2302 */
2303 #define MEMCG_DELAY_PRECISION_SHIFT 20
2304 #define MEMCG_DELAY_SCALING_SHIFT 14
2305
2306 static u64 calculate_overage(unsigned long usage, unsigned long high)
2307 {
2308 u64 overage;
2309
2310 if (usage <= high)
2311 return 0;
2312
2313 /*
2314 * Prevent division by 0 in overage calculation by acting as if
2315 * it was a threshold of 1 page
2316 */
2317 high = max(high, 1UL);
2318
2319 overage = usage - high;
2320 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2321 return div64_u64(overage, high);
2322 }
2323
2324 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2325 {
2326 u64 overage, max_overage = 0;
2327
2328 do {
2329 overage = calculate_overage(page_counter_read(&memcg->memory),
2330 READ_ONCE(memcg->memory.high));
2331 max_overage = max(overage, max_overage);
2332 } while ((memcg = parent_mem_cgroup(memcg)) &&
2333 !mem_cgroup_is_root(memcg));
2334
2335 return max_overage;
2336 }
2337
2338 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2339 {
2340 u64 overage, max_overage = 0;
2341
2342 do {
2343 overage = calculate_overage(page_counter_read(&memcg->swap),
2344 READ_ONCE(memcg->swap.high));
2345 if (overage)
2346 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2347 max_overage = max(overage, max_overage);
2348 } while ((memcg = parent_mem_cgroup(memcg)) &&
2349 !mem_cgroup_is_root(memcg));
2350
2351 return max_overage;
2352 }
2353
2354 /*
2355 * Get the number of jiffies that we should penalise a mischievous cgroup which
2356 * is exceeding its memory.high by checking both it and its ancestors.
2357 */
2358 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2359 unsigned int nr_pages,
2360 u64 max_overage)
2361 {
2362 unsigned long penalty_jiffies;
2363
2364 if (!max_overage)
2365 return 0;
2366
2367 /*
2368 * We use overage compared to memory.high to calculate the number of
2369 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2370 * fairly lenient on small overages, and increasingly harsh when the
2371 * memcg in question makes it clear that it has no intention of stopping
2372 * its crazy behaviour, so we exponentially increase the delay based on
2373 * overage amount.
2374 */
2375 penalty_jiffies = max_overage * max_overage * HZ;
2376 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2377 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2378
2379 /*
2380 * Factor in the task's own contribution to the overage, such that four
2381 * N-sized allocations are throttled approximately the same as one
2382 * 4N-sized allocation.
2383 *
2384 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2385 * larger the current charge patch is than that.
2386 */
2387 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2388 }
2389
2390 /*
2391 * Scheduled by try_charge() to be executed from the userland return path
2392 * and reclaims memory over the high limit.
2393 */
2394 void mem_cgroup_handle_over_high(void)
2395 {
2396 unsigned long penalty_jiffies;
2397 unsigned long pflags;
2398 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2399 struct mem_cgroup *memcg;
2400
2401 if (likely(!nr_pages))
2402 return;
2403
2404 memcg = get_mem_cgroup_from_mm(current->mm);
2405 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2406 current->memcg_nr_pages_over_high = 0;
2407
2408 /*
2409 * memory.high is breached and reclaim is unable to keep up. Throttle
2410 * allocators proactively to slow down excessive growth.
2411 */
2412 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2413 mem_find_max_overage(memcg));
2414
2415 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2416 swap_find_max_overage(memcg));
2417
2418 /*
2419 * Clamp the max delay per usermode return so as to still keep the
2420 * application moving forwards and also permit diagnostics, albeit
2421 * extremely slowly.
2422 */
2423 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2424
2425 /*
2426 * Don't sleep if the amount of jiffies this memcg owes us is so low
2427 * that it's not even worth doing, in an attempt to be nice to those who
2428 * go only a small amount over their memory.high value and maybe haven't
2429 * been aggressively reclaimed enough yet.
2430 */
2431 if (penalty_jiffies <= HZ / 100)
2432 goto out;
2433
2434 /*
2435 * If we exit early, we're guaranteed to die (since
2436 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2437 * need to account for any ill-begotten jiffies to pay them off later.
2438 */
2439 psi_memstall_enter(&pflags);
2440 schedule_timeout_killable(penalty_jiffies);
2441 psi_memstall_leave(&pflags);
2442
2443 out:
2444 css_put(&memcg->css);
2445 }
2446
2447 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2448 unsigned int nr_pages)
2449 {
2450 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2451 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2452 struct mem_cgroup *mem_over_limit;
2453 struct page_counter *counter;
2454 unsigned long nr_reclaimed;
2455 bool may_swap = true;
2456 bool drained = false;
2457 enum oom_status oom_status;
2458
2459 if (mem_cgroup_is_root(memcg))
2460 return 0;
2461 retry:
2462 if (consume_stock(memcg, nr_pages))
2463 return 0;
2464
2465 if (!do_memsw_account() ||
2466 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2467 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2468 goto done_restock;
2469 if (do_memsw_account())
2470 page_counter_uncharge(&memcg->memsw, batch);
2471 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2472 } else {
2473 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2474 may_swap = false;
2475 }
2476
2477 if (batch > nr_pages) {
2478 batch = nr_pages;
2479 goto retry;
2480 }
2481
2482 /*
2483 * Memcg doesn't have a dedicated reserve for atomic
2484 * allocations. But like the global atomic pool, we need to
2485 * put the burden of reclaim on regular allocation requests
2486 * and let these go through as privileged allocations.
2487 */
2488 if (gfp_mask & __GFP_ATOMIC)
2489 goto force;
2490
2491 /*
2492 * Unlike in global OOM situations, memcg is not in a physical
2493 * memory shortage. Allow dying and OOM-killed tasks to
2494 * bypass the last charges so that they can exit quickly and
2495 * free their memory.
2496 */
2497 if (unlikely(should_force_charge()))
2498 goto force;
2499
2500 /*
2501 * Prevent unbounded recursion when reclaim operations need to
2502 * allocate memory. This might exceed the limits temporarily,
2503 * but we prefer facilitating memory reclaim and getting back
2504 * under the limit over triggering OOM kills in these cases.
2505 */
2506 if (unlikely(current->flags & PF_MEMALLOC))
2507 goto force;
2508
2509 if (unlikely(task_in_memcg_oom(current)))
2510 goto nomem;
2511
2512 if (!gfpflags_allow_blocking(gfp_mask))
2513 goto nomem;
2514
2515 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2516
2517 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2518 gfp_mask, may_swap);
2519
2520 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2521 goto retry;
2522
2523 if (!drained) {
2524 drain_all_stock(mem_over_limit);
2525 drained = true;
2526 goto retry;
2527 }
2528
2529 if (gfp_mask & __GFP_NORETRY)
2530 goto nomem;
2531 /*
2532 * Even though the limit is exceeded at this point, reclaim
2533 * may have been able to free some pages. Retry the charge
2534 * before killing the task.
2535 *
2536 * Only for regular pages, though: huge pages are rather
2537 * unlikely to succeed so close to the limit, and we fall back
2538 * to regular pages anyway in case of failure.
2539 */
2540 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2541 goto retry;
2542 /*
2543 * At task move, charge accounts can be doubly counted. So, it's
2544 * better to wait until the end of task_move if something is going on.
2545 */
2546 if (mem_cgroup_wait_acct_move(mem_over_limit))
2547 goto retry;
2548
2549 if (nr_retries--)
2550 goto retry;
2551
2552 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2553 goto nomem;
2554
2555 if (gfp_mask & __GFP_NOFAIL)
2556 goto force;
2557
2558 if (fatal_signal_pending(current))
2559 goto force;
2560
2561 /*
2562 * keep retrying as long as the memcg oom killer is able to make
2563 * a forward progress or bypass the charge if the oom killer
2564 * couldn't make any progress.
2565 */
2566 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2567 get_order(nr_pages * PAGE_SIZE));
2568 switch (oom_status) {
2569 case OOM_SUCCESS:
2570 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2571 goto retry;
2572 case OOM_FAILED:
2573 goto force;
2574 default:
2575 goto nomem;
2576 }
2577 nomem:
2578 if (!(gfp_mask & __GFP_NOFAIL))
2579 return -ENOMEM;
2580 force:
2581 /*
2582 * The allocation either can't fail or will lead to more memory
2583 * being freed very soon. Allow memory usage go over the limit
2584 * temporarily by force charging it.
2585 */
2586 page_counter_charge(&memcg->memory, nr_pages);
2587 if (do_memsw_account())
2588 page_counter_charge(&memcg->memsw, nr_pages);
2589 css_get_many(&memcg->css, nr_pages);
2590
2591 return 0;
2592
2593 done_restock:
2594 css_get_many(&memcg->css, batch);
2595 if (batch > nr_pages)
2596 refill_stock(memcg, batch - nr_pages);
2597
2598 /*
2599 * If the hierarchy is above the normal consumption range, schedule
2600 * reclaim on returning to userland. We can perform reclaim here
2601 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2602 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2603 * not recorded as it most likely matches current's and won't
2604 * change in the meantime. As high limit is checked again before
2605 * reclaim, the cost of mismatch is negligible.
2606 */
2607 do {
2608 bool mem_high, swap_high;
2609
2610 mem_high = page_counter_read(&memcg->memory) >
2611 READ_ONCE(memcg->memory.high);
2612 swap_high = page_counter_read(&memcg->swap) >
2613 READ_ONCE(memcg->swap.high);
2614
2615 /* Don't bother a random interrupted task */
2616 if (in_interrupt()) {
2617 if (mem_high) {
2618 schedule_work(&memcg->high_work);
2619 break;
2620 }
2621 continue;
2622 }
2623
2624 if (mem_high || swap_high) {
2625 /*
2626 * The allocating tasks in this cgroup will need to do
2627 * reclaim or be throttled to prevent further growth
2628 * of the memory or swap footprints.
2629 *
2630 * Target some best-effort fairness between the tasks,
2631 * and distribute reclaim work and delay penalties
2632 * based on how much each task is actually allocating.
2633 */
2634 current->memcg_nr_pages_over_high += batch;
2635 set_notify_resume(current);
2636 break;
2637 }
2638 } while ((memcg = parent_mem_cgroup(memcg)));
2639
2640 return 0;
2641 }
2642
2643 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2644 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2645 {
2646 if (mem_cgroup_is_root(memcg))
2647 return;
2648
2649 page_counter_uncharge(&memcg->memory, nr_pages);
2650 if (do_memsw_account())
2651 page_counter_uncharge(&memcg->memsw, nr_pages);
2652
2653 css_put_many(&memcg->css, nr_pages);
2654 }
2655 #endif
2656
2657 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2658 {
2659 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2660 /*
2661 * Any of the following ensures page->mem_cgroup stability:
2662 *
2663 * - the page lock
2664 * - LRU isolation
2665 * - lock_page_memcg()
2666 * - exclusive reference
2667 */
2668 page->mem_cgroup = memcg;
2669 }
2670
2671 #ifdef CONFIG_MEMCG_KMEM
2672 /*
2673 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2674 *
2675 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2676 * cgroup_mutex, etc.
2677 */
2678 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2679 {
2680 struct page *page;
2681
2682 if (mem_cgroup_disabled())
2683 return NULL;
2684
2685 page = virt_to_head_page(p);
2686
2687 /*
2688 * Slab pages don't have page->mem_cgroup set because corresponding
2689 * kmem caches can be reparented during the lifetime. That's why
2690 * memcg_from_slab_page() should be used instead.
2691 */
2692 if (PageSlab(page))
2693 return memcg_from_slab_page(page);
2694
2695 /* All other pages use page->mem_cgroup */
2696 return page->mem_cgroup;
2697 }
2698
2699 static int memcg_alloc_cache_id(void)
2700 {
2701 int id, size;
2702 int err;
2703
2704 id = ida_simple_get(&memcg_cache_ida,
2705 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2706 if (id < 0)
2707 return id;
2708
2709 if (id < memcg_nr_cache_ids)
2710 return id;
2711
2712 /*
2713 * There's no space for the new id in memcg_caches arrays,
2714 * so we have to grow them.
2715 */
2716 down_write(&memcg_cache_ids_sem);
2717
2718 size = 2 * (id + 1);
2719 if (size < MEMCG_CACHES_MIN_SIZE)
2720 size = MEMCG_CACHES_MIN_SIZE;
2721 else if (size > MEMCG_CACHES_MAX_SIZE)
2722 size = MEMCG_CACHES_MAX_SIZE;
2723
2724 err = memcg_update_all_caches(size);
2725 if (!err)
2726 err = memcg_update_all_list_lrus(size);
2727 if (!err)
2728 memcg_nr_cache_ids = size;
2729
2730 up_write(&memcg_cache_ids_sem);
2731
2732 if (err) {
2733 ida_simple_remove(&memcg_cache_ida, id);
2734 return err;
2735 }
2736 return id;
2737 }
2738
2739 static void memcg_free_cache_id(int id)
2740 {
2741 ida_simple_remove(&memcg_cache_ida, id);
2742 }
2743
2744 struct memcg_kmem_cache_create_work {
2745 struct mem_cgroup *memcg;
2746 struct kmem_cache *cachep;
2747 struct work_struct work;
2748 };
2749
2750 static void memcg_kmem_cache_create_func(struct work_struct *w)
2751 {
2752 struct memcg_kmem_cache_create_work *cw =
2753 container_of(w, struct memcg_kmem_cache_create_work, work);
2754 struct mem_cgroup *memcg = cw->memcg;
2755 struct kmem_cache *cachep = cw->cachep;
2756
2757 memcg_create_kmem_cache(memcg, cachep);
2758
2759 css_put(&memcg->css);
2760 kfree(cw);
2761 }
2762
2763 /*
2764 * Enqueue the creation of a per-memcg kmem_cache.
2765 */
2766 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2767 struct kmem_cache *cachep)
2768 {
2769 struct memcg_kmem_cache_create_work *cw;
2770
2771 if (!css_tryget_online(&memcg->css))
2772 return;
2773
2774 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2775 if (!cw) {
2776 css_put(&memcg->css);
2777 return;
2778 }
2779
2780 cw->memcg = memcg;
2781 cw->cachep = cachep;
2782 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2783
2784 queue_work(memcg_kmem_cache_wq, &cw->work);
2785 }
2786
2787 static inline bool memcg_kmem_bypass(void)
2788 {
2789 if (in_interrupt())
2790 return true;
2791
2792 /* Allow remote memcg charging in kthread contexts. */
2793 if ((!current->mm || (current->flags & PF_KTHREAD)) &&
2794 !current->active_memcg)
2795 return true;
2796 return false;
2797 }
2798
2799 /**
2800 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2801 * @cachep: the original global kmem cache
2802 *
2803 * Return the kmem_cache we're supposed to use for a slab allocation.
2804 * We try to use the current memcg's version of the cache.
2805 *
2806 * If the cache does not exist yet, if we are the first user of it, we
2807 * create it asynchronously in a workqueue and let the current allocation
2808 * go through with the original cache.
2809 *
2810 * This function takes a reference to the cache it returns to assure it
2811 * won't get destroyed while we are working with it. Once the caller is
2812 * done with it, memcg_kmem_put_cache() must be called to release the
2813 * reference.
2814 */
2815 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2816 {
2817 struct mem_cgroup *memcg;
2818 struct kmem_cache *memcg_cachep;
2819 struct memcg_cache_array *arr;
2820 int kmemcg_id;
2821
2822 VM_BUG_ON(!is_root_cache(cachep));
2823
2824 if (memcg_kmem_bypass())
2825 return cachep;
2826
2827 rcu_read_lock();
2828
2829 if (unlikely(current->active_memcg))
2830 memcg = current->active_memcg;
2831 else
2832 memcg = mem_cgroup_from_task(current);
2833
2834 if (!memcg || memcg == root_mem_cgroup)
2835 goto out_unlock;
2836
2837 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2838 if (kmemcg_id < 0)
2839 goto out_unlock;
2840
2841 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2842
2843 /*
2844 * Make sure we will access the up-to-date value. The code updating
2845 * memcg_caches issues a write barrier to match the data dependency
2846 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2847 */
2848 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2849
2850 /*
2851 * If we are in a safe context (can wait, and not in interrupt
2852 * context), we could be be predictable and return right away.
2853 * This would guarantee that the allocation being performed
2854 * already belongs in the new cache.
2855 *
2856 * However, there are some clashes that can arrive from locking.
2857 * For instance, because we acquire the slab_mutex while doing
2858 * memcg_create_kmem_cache, this means no further allocation
2859 * could happen with the slab_mutex held. So it's better to
2860 * defer everything.
2861 *
2862 * If the memcg is dying or memcg_cache is about to be released,
2863 * don't bother creating new kmem_caches. Because memcg_cachep
2864 * is ZEROed as the fist step of kmem offlining, we don't need
2865 * percpu_ref_tryget_live() here. css_tryget_online() check in
2866 * memcg_schedule_kmem_cache_create() will prevent us from
2867 * creation of a new kmem_cache.
2868 */
2869 if (unlikely(!memcg_cachep))
2870 memcg_schedule_kmem_cache_create(memcg, cachep);
2871 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2872 cachep = memcg_cachep;
2873 out_unlock:
2874 rcu_read_unlock();
2875 return cachep;
2876 }
2877
2878 /**
2879 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2880 * @cachep: the cache returned by memcg_kmem_get_cache
2881 */
2882 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2883 {
2884 if (!is_root_cache(cachep))
2885 percpu_ref_put(&cachep->memcg_params.refcnt);
2886 }
2887
2888 /**
2889 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2890 * @memcg: memory cgroup to charge
2891 * @gfp: reclaim mode
2892 * @nr_pages: number of pages to charge
2893 *
2894 * Returns 0 on success, an error code on failure.
2895 */
2896 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2897 unsigned int nr_pages)
2898 {
2899 struct page_counter *counter;
2900 int ret;
2901
2902 ret = try_charge(memcg, gfp, nr_pages);
2903 if (ret)
2904 return ret;
2905
2906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2907 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2908
2909 /*
2910 * Enforce __GFP_NOFAIL allocation because callers are not
2911 * prepared to see failures and likely do not have any failure
2912 * handling code.
2913 */
2914 if (gfp & __GFP_NOFAIL) {
2915 page_counter_charge(&memcg->kmem, nr_pages);
2916 return 0;
2917 }
2918 cancel_charge(memcg, nr_pages);
2919 return -ENOMEM;
2920 }
2921 return 0;
2922 }
2923
2924 /**
2925 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2926 * @memcg: memcg to uncharge
2927 * @nr_pages: number of pages to uncharge
2928 */
2929 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
2930 {
2931 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2932 page_counter_uncharge(&memcg->kmem, nr_pages);
2933
2934 page_counter_uncharge(&memcg->memory, nr_pages);
2935 if (do_memsw_account())
2936 page_counter_uncharge(&memcg->memsw, nr_pages);
2937 }
2938
2939 /**
2940 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2941 * @page: page to charge
2942 * @gfp: reclaim mode
2943 * @order: allocation order
2944 *
2945 * Returns 0 on success, an error code on failure.
2946 */
2947 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2948 {
2949 struct mem_cgroup *memcg;
2950 int ret = 0;
2951
2952 if (memcg_kmem_bypass())
2953 return 0;
2954
2955 memcg = get_mem_cgroup_from_current();
2956 if (!mem_cgroup_is_root(memcg)) {
2957 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
2958 if (!ret) {
2959 page->mem_cgroup = memcg;
2960 __SetPageKmemcg(page);
2961 }
2962 }
2963 css_put(&memcg->css);
2964 return ret;
2965 }
2966
2967 /**
2968 * __memcg_kmem_uncharge_page: uncharge a kmem page
2969 * @page: page to uncharge
2970 * @order: allocation order
2971 */
2972 void __memcg_kmem_uncharge_page(struct page *page, int order)
2973 {
2974 struct mem_cgroup *memcg = page->mem_cgroup;
2975 unsigned int nr_pages = 1 << order;
2976
2977 if (!memcg)
2978 return;
2979
2980 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2981 __memcg_kmem_uncharge(memcg, nr_pages);
2982 page->mem_cgroup = NULL;
2983
2984 /* slab pages do not have PageKmemcg flag set */
2985 if (PageKmemcg(page))
2986 __ClearPageKmemcg(page);
2987
2988 css_put_many(&memcg->css, nr_pages);
2989 }
2990 #endif /* CONFIG_MEMCG_KMEM */
2991
2992 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2993
2994 /*
2995 * Because tail pages are not marked as "used", set it. We're under
2996 * pgdat->lru_lock and migration entries setup in all page mappings.
2997 */
2998 void mem_cgroup_split_huge_fixup(struct page *head)
2999 {
3000 int i;
3001
3002 if (mem_cgroup_disabled())
3003 return;
3004
3005 for (i = 1; i < HPAGE_PMD_NR; i++)
3006 head[i].mem_cgroup = head->mem_cgroup;
3007 }
3008 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3009
3010 #ifdef CONFIG_MEMCG_SWAP
3011 /**
3012 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3013 * @entry: swap entry to be moved
3014 * @from: mem_cgroup which the entry is moved from
3015 * @to: mem_cgroup which the entry is moved to
3016 *
3017 * It succeeds only when the swap_cgroup's record for this entry is the same
3018 * as the mem_cgroup's id of @from.
3019 *
3020 * Returns 0 on success, -EINVAL on failure.
3021 *
3022 * The caller must have charged to @to, IOW, called page_counter_charge() about
3023 * both res and memsw, and called css_get().
3024 */
3025 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3026 struct mem_cgroup *from, struct mem_cgroup *to)
3027 {
3028 unsigned short old_id, new_id;
3029
3030 old_id = mem_cgroup_id(from);
3031 new_id = mem_cgroup_id(to);
3032
3033 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3034 mod_memcg_state(from, MEMCG_SWAP, -1);
3035 mod_memcg_state(to, MEMCG_SWAP, 1);
3036 return 0;
3037 }
3038 return -EINVAL;
3039 }
3040 #else
3041 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3042 struct mem_cgroup *from, struct mem_cgroup *to)
3043 {
3044 return -EINVAL;
3045 }
3046 #endif
3047
3048 static DEFINE_MUTEX(memcg_max_mutex);
3049
3050 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3051 unsigned long max, bool memsw)
3052 {
3053 bool enlarge = false;
3054 bool drained = false;
3055 int ret;
3056 bool limits_invariant;
3057 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3058
3059 do {
3060 if (signal_pending(current)) {
3061 ret = -EINTR;
3062 break;
3063 }
3064
3065 mutex_lock(&memcg_max_mutex);
3066 /*
3067 * Make sure that the new limit (memsw or memory limit) doesn't
3068 * break our basic invariant rule memory.max <= memsw.max.
3069 */
3070 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3071 max <= memcg->memsw.max;
3072 if (!limits_invariant) {
3073 mutex_unlock(&memcg_max_mutex);
3074 ret = -EINVAL;
3075 break;
3076 }
3077 if (max > counter->max)
3078 enlarge = true;
3079 ret = page_counter_set_max(counter, max);
3080 mutex_unlock(&memcg_max_mutex);
3081
3082 if (!ret)
3083 break;
3084
3085 if (!drained) {
3086 drain_all_stock(memcg);
3087 drained = true;
3088 continue;
3089 }
3090
3091 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3092 GFP_KERNEL, !memsw)) {
3093 ret = -EBUSY;
3094 break;
3095 }
3096 } while (true);
3097
3098 if (!ret && enlarge)
3099 memcg_oom_recover(memcg);
3100
3101 return ret;
3102 }
3103
3104 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3105 gfp_t gfp_mask,
3106 unsigned long *total_scanned)
3107 {
3108 unsigned long nr_reclaimed = 0;
3109 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3110 unsigned long reclaimed;
3111 int loop = 0;
3112 struct mem_cgroup_tree_per_node *mctz;
3113 unsigned long excess;
3114 unsigned long nr_scanned;
3115
3116 if (order > 0)
3117 return 0;
3118
3119 mctz = soft_limit_tree_node(pgdat->node_id);
3120
3121 /*
3122 * Do not even bother to check the largest node if the root
3123 * is empty. Do it lockless to prevent lock bouncing. Races
3124 * are acceptable as soft limit is best effort anyway.
3125 */
3126 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3127 return 0;
3128
3129 /*
3130 * This loop can run a while, specially if mem_cgroup's continuously
3131 * keep exceeding their soft limit and putting the system under
3132 * pressure
3133 */
3134 do {
3135 if (next_mz)
3136 mz = next_mz;
3137 else
3138 mz = mem_cgroup_largest_soft_limit_node(mctz);
3139 if (!mz)
3140 break;
3141
3142 nr_scanned = 0;
3143 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3144 gfp_mask, &nr_scanned);
3145 nr_reclaimed += reclaimed;
3146 *total_scanned += nr_scanned;
3147 spin_lock_irq(&mctz->lock);
3148 __mem_cgroup_remove_exceeded(mz, mctz);
3149
3150 /*
3151 * If we failed to reclaim anything from this memory cgroup
3152 * it is time to move on to the next cgroup
3153 */
3154 next_mz = NULL;
3155 if (!reclaimed)
3156 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3157
3158 excess = soft_limit_excess(mz->memcg);
3159 /*
3160 * One school of thought says that we should not add
3161 * back the node to the tree if reclaim returns 0.
3162 * But our reclaim could return 0, simply because due
3163 * to priority we are exposing a smaller subset of
3164 * memory to reclaim from. Consider this as a longer
3165 * term TODO.
3166 */
3167 /* If excess == 0, no tree ops */
3168 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3169 spin_unlock_irq(&mctz->lock);
3170 css_put(&mz->memcg->css);
3171 loop++;
3172 /*
3173 * Could not reclaim anything and there are no more
3174 * mem cgroups to try or we seem to be looping without
3175 * reclaiming anything.
3176 */
3177 if (!nr_reclaimed &&
3178 (next_mz == NULL ||
3179 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3180 break;
3181 } while (!nr_reclaimed);
3182 if (next_mz)
3183 css_put(&next_mz->memcg->css);
3184 return nr_reclaimed;
3185 }
3186
3187 /*
3188 * Test whether @memcg has children, dead or alive. Note that this
3189 * function doesn't care whether @memcg has use_hierarchy enabled and
3190 * returns %true if there are child csses according to the cgroup
3191 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3192 */
3193 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3194 {
3195 bool ret;
3196
3197 rcu_read_lock();
3198 ret = css_next_child(NULL, &memcg->css);
3199 rcu_read_unlock();
3200 return ret;
3201 }
3202
3203 /*
3204 * Reclaims as many pages from the given memcg as possible.
3205 *
3206 * Caller is responsible for holding css reference for memcg.
3207 */
3208 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3209 {
3210 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3211
3212 /* we call try-to-free pages for make this cgroup empty */
3213 lru_add_drain_all();
3214
3215 drain_all_stock(memcg);
3216
3217 /* try to free all pages in this cgroup */
3218 while (nr_retries && page_counter_read(&memcg->memory)) {
3219 int progress;
3220
3221 if (signal_pending(current))
3222 return -EINTR;
3223
3224 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3225 GFP_KERNEL, true);
3226 if (!progress) {
3227 nr_retries--;
3228 /* maybe some writeback is necessary */
3229 congestion_wait(BLK_RW_ASYNC, HZ/10);
3230 }
3231
3232 }
3233
3234 return 0;
3235 }
3236
3237 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3238 char *buf, size_t nbytes,
3239 loff_t off)
3240 {
3241 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3242
3243 if (mem_cgroup_is_root(memcg))
3244 return -EINVAL;
3245 return mem_cgroup_force_empty(memcg) ?: nbytes;
3246 }
3247
3248 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3249 struct cftype *cft)
3250 {
3251 return mem_cgroup_from_css(css)->use_hierarchy;
3252 }
3253
3254 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3255 struct cftype *cft, u64 val)
3256 {
3257 int retval = 0;
3258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3259 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3260
3261 if (memcg->use_hierarchy == val)
3262 return 0;
3263
3264 /*
3265 * If parent's use_hierarchy is set, we can't make any modifications
3266 * in the child subtrees. If it is unset, then the change can
3267 * occur, provided the current cgroup has no children.
3268 *
3269 * For the root cgroup, parent_mem is NULL, we allow value to be
3270 * set if there are no children.
3271 */
3272 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3273 (val == 1 || val == 0)) {
3274 if (!memcg_has_children(memcg))
3275 memcg->use_hierarchy = val;
3276 else
3277 retval = -EBUSY;
3278 } else
3279 retval = -EINVAL;
3280
3281 return retval;
3282 }
3283
3284 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3285 {
3286 unsigned long val;
3287
3288 if (mem_cgroup_is_root(memcg)) {
3289 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3290 memcg_page_state(memcg, NR_ANON_MAPPED);
3291 if (swap)
3292 val += memcg_page_state(memcg, MEMCG_SWAP);
3293 } else {
3294 if (!swap)
3295 val = page_counter_read(&memcg->memory);
3296 else
3297 val = page_counter_read(&memcg->memsw);
3298 }
3299 return val;
3300 }
3301
3302 enum {
3303 RES_USAGE,
3304 RES_LIMIT,
3305 RES_MAX_USAGE,
3306 RES_FAILCNT,
3307 RES_SOFT_LIMIT,
3308 };
3309
3310 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3311 struct cftype *cft)
3312 {
3313 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3314 struct page_counter *counter;
3315
3316 switch (MEMFILE_TYPE(cft->private)) {
3317 case _MEM:
3318 counter = &memcg->memory;
3319 break;
3320 case _MEMSWAP:
3321 counter = &memcg->memsw;
3322 break;
3323 case _KMEM:
3324 counter = &memcg->kmem;
3325 break;
3326 case _TCP:
3327 counter = &memcg->tcpmem;
3328 break;
3329 default:
3330 BUG();
3331 }
3332
3333 switch (MEMFILE_ATTR(cft->private)) {
3334 case RES_USAGE:
3335 if (counter == &memcg->memory)
3336 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3337 if (counter == &memcg->memsw)
3338 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3339 return (u64)page_counter_read(counter) * PAGE_SIZE;
3340 case RES_LIMIT:
3341 return (u64)counter->max * PAGE_SIZE;
3342 case RES_MAX_USAGE:
3343 return (u64)counter->watermark * PAGE_SIZE;
3344 case RES_FAILCNT:
3345 return counter->failcnt;
3346 case RES_SOFT_LIMIT:
3347 return (u64)memcg->soft_limit * PAGE_SIZE;
3348 default:
3349 BUG();
3350 }
3351 }
3352
3353 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3354 {
3355 unsigned long stat[MEMCG_NR_STAT] = {0};
3356 struct mem_cgroup *mi;
3357 int node, cpu, i;
3358
3359 for_each_online_cpu(cpu)
3360 for (i = 0; i < MEMCG_NR_STAT; i++)
3361 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3362
3363 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3364 for (i = 0; i < MEMCG_NR_STAT; i++)
3365 atomic_long_add(stat[i], &mi->vmstats[i]);
3366
3367 for_each_node(node) {
3368 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3369 struct mem_cgroup_per_node *pi;
3370
3371 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3372 stat[i] = 0;
3373
3374 for_each_online_cpu(cpu)
3375 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3376 stat[i] += per_cpu(
3377 pn->lruvec_stat_cpu->count[i], cpu);
3378
3379 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3380 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3381 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3382 }
3383 }
3384
3385 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3386 {
3387 unsigned long events[NR_VM_EVENT_ITEMS];
3388 struct mem_cgroup *mi;
3389 int cpu, i;
3390
3391 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3392 events[i] = 0;
3393
3394 for_each_online_cpu(cpu)
3395 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3396 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3397 cpu);
3398
3399 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3400 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3401 atomic_long_add(events[i], &mi->vmevents[i]);
3402 }
3403
3404 #ifdef CONFIG_MEMCG_KMEM
3405 static int memcg_online_kmem(struct mem_cgroup *memcg)
3406 {
3407 int memcg_id;
3408
3409 if (cgroup_memory_nokmem)
3410 return 0;
3411
3412 BUG_ON(memcg->kmemcg_id >= 0);
3413 BUG_ON(memcg->kmem_state);
3414
3415 memcg_id = memcg_alloc_cache_id();
3416 if (memcg_id < 0)
3417 return memcg_id;
3418
3419 static_branch_inc(&memcg_kmem_enabled_key);
3420 /*
3421 * A memory cgroup is considered kmem-online as soon as it gets
3422 * kmemcg_id. Setting the id after enabling static branching will
3423 * guarantee no one starts accounting before all call sites are
3424 * patched.
3425 */
3426 memcg->kmemcg_id = memcg_id;
3427 memcg->kmem_state = KMEM_ONLINE;
3428 INIT_LIST_HEAD(&memcg->kmem_caches);
3429
3430 return 0;
3431 }
3432
3433 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3434 {
3435 struct cgroup_subsys_state *css;
3436 struct mem_cgroup *parent, *child;
3437 int kmemcg_id;
3438
3439 if (memcg->kmem_state != KMEM_ONLINE)
3440 return;
3441 /*
3442 * Clear the online state before clearing memcg_caches array
3443 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3444 * guarantees that no cache will be created for this cgroup
3445 * after we are done (see memcg_create_kmem_cache()).
3446 */
3447 memcg->kmem_state = KMEM_ALLOCATED;
3448
3449 parent = parent_mem_cgroup(memcg);
3450 if (!parent)
3451 parent = root_mem_cgroup;
3452
3453 /*
3454 * Deactivate and reparent kmem_caches.
3455 */
3456 memcg_deactivate_kmem_caches(memcg, parent);
3457
3458 kmemcg_id = memcg->kmemcg_id;
3459 BUG_ON(kmemcg_id < 0);
3460
3461 /*
3462 * Change kmemcg_id of this cgroup and all its descendants to the
3463 * parent's id, and then move all entries from this cgroup's list_lrus
3464 * to ones of the parent. After we have finished, all list_lrus
3465 * corresponding to this cgroup are guaranteed to remain empty. The
3466 * ordering is imposed by list_lru_node->lock taken by
3467 * memcg_drain_all_list_lrus().
3468 */
3469 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3470 css_for_each_descendant_pre(css, &memcg->css) {
3471 child = mem_cgroup_from_css(css);
3472 BUG_ON(child->kmemcg_id != kmemcg_id);
3473 child->kmemcg_id = parent->kmemcg_id;
3474 if (!memcg->use_hierarchy)
3475 break;
3476 }
3477 rcu_read_unlock();
3478
3479 memcg_drain_all_list_lrus(kmemcg_id, parent);
3480
3481 memcg_free_cache_id(kmemcg_id);
3482 }
3483
3484 static void memcg_free_kmem(struct mem_cgroup *memcg)
3485 {
3486 /* css_alloc() failed, offlining didn't happen */
3487 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3488 memcg_offline_kmem(memcg);
3489
3490 if (memcg->kmem_state == KMEM_ALLOCATED) {
3491 WARN_ON(!list_empty(&memcg->kmem_caches));
3492 static_branch_dec(&memcg_kmem_enabled_key);
3493 }
3494 }
3495 #else
3496 static int memcg_online_kmem(struct mem_cgroup *memcg)
3497 {
3498 return 0;
3499 }
3500 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3501 {
3502 }
3503 static void memcg_free_kmem(struct mem_cgroup *memcg)
3504 {
3505 }
3506 #endif /* CONFIG_MEMCG_KMEM */
3507
3508 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3509 unsigned long max)
3510 {
3511 int ret;
3512
3513 mutex_lock(&memcg_max_mutex);
3514 ret = page_counter_set_max(&memcg->kmem, max);
3515 mutex_unlock(&memcg_max_mutex);
3516 return ret;
3517 }
3518
3519 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3520 {
3521 int ret;
3522
3523 mutex_lock(&memcg_max_mutex);
3524
3525 ret = page_counter_set_max(&memcg->tcpmem, max);
3526 if (ret)
3527 goto out;
3528
3529 if (!memcg->tcpmem_active) {
3530 /*
3531 * The active flag needs to be written after the static_key
3532 * update. This is what guarantees that the socket activation
3533 * function is the last one to run. See mem_cgroup_sk_alloc()
3534 * for details, and note that we don't mark any socket as
3535 * belonging to this memcg until that flag is up.
3536 *
3537 * We need to do this, because static_keys will span multiple
3538 * sites, but we can't control their order. If we mark a socket
3539 * as accounted, but the accounting functions are not patched in
3540 * yet, we'll lose accounting.
3541 *
3542 * We never race with the readers in mem_cgroup_sk_alloc(),
3543 * because when this value change, the code to process it is not
3544 * patched in yet.
3545 */
3546 static_branch_inc(&memcg_sockets_enabled_key);
3547 memcg->tcpmem_active = true;
3548 }
3549 out:
3550 mutex_unlock(&memcg_max_mutex);
3551 return ret;
3552 }
3553
3554 /*
3555 * The user of this function is...
3556 * RES_LIMIT.
3557 */
3558 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3559 char *buf, size_t nbytes, loff_t off)
3560 {
3561 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3562 unsigned long nr_pages;
3563 int ret;
3564
3565 buf = strstrip(buf);
3566 ret = page_counter_memparse(buf, "-1", &nr_pages);
3567 if (ret)
3568 return ret;
3569
3570 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3571 case RES_LIMIT:
3572 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3573 ret = -EINVAL;
3574 break;
3575 }
3576 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3577 case _MEM:
3578 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3579 break;
3580 case _MEMSWAP:
3581 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3582 break;
3583 case _KMEM:
3584 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3585 "Please report your usecase to linux-mm@kvack.org if you "
3586 "depend on this functionality.\n");
3587 ret = memcg_update_kmem_max(memcg, nr_pages);
3588 break;
3589 case _TCP:
3590 ret = memcg_update_tcp_max(memcg, nr_pages);
3591 break;
3592 }
3593 break;
3594 case RES_SOFT_LIMIT:
3595 memcg->soft_limit = nr_pages;
3596 ret = 0;
3597 break;
3598 }
3599 return ret ?: nbytes;
3600 }
3601
3602 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3603 size_t nbytes, loff_t off)
3604 {
3605 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3606 struct page_counter *counter;
3607
3608 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3609 case _MEM:
3610 counter = &memcg->memory;
3611 break;
3612 case _MEMSWAP:
3613 counter = &memcg->memsw;
3614 break;
3615 case _KMEM:
3616 counter = &memcg->kmem;
3617 break;
3618 case _TCP:
3619 counter = &memcg->tcpmem;
3620 break;
3621 default:
3622 BUG();
3623 }
3624
3625 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3626 case RES_MAX_USAGE:
3627 page_counter_reset_watermark(counter);
3628 break;
3629 case RES_FAILCNT:
3630 counter->failcnt = 0;
3631 break;
3632 default:
3633 BUG();
3634 }
3635
3636 return nbytes;
3637 }
3638
3639 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3640 struct cftype *cft)
3641 {
3642 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3643 }
3644
3645 #ifdef CONFIG_MMU
3646 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3647 struct cftype *cft, u64 val)
3648 {
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3650
3651 if (val & ~MOVE_MASK)
3652 return -EINVAL;
3653
3654 /*
3655 * No kind of locking is needed in here, because ->can_attach() will
3656 * check this value once in the beginning of the process, and then carry
3657 * on with stale data. This means that changes to this value will only
3658 * affect task migrations starting after the change.
3659 */
3660 memcg->move_charge_at_immigrate = val;
3661 return 0;
3662 }
3663 #else
3664 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3665 struct cftype *cft, u64 val)
3666 {
3667 return -ENOSYS;
3668 }
3669 #endif
3670
3671 #ifdef CONFIG_NUMA
3672
3673 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3674 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3675 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3676
3677 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3678 int nid, unsigned int lru_mask, bool tree)
3679 {
3680 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3681 unsigned long nr = 0;
3682 enum lru_list lru;
3683
3684 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3685
3686 for_each_lru(lru) {
3687 if (!(BIT(lru) & lru_mask))
3688 continue;
3689 if (tree)
3690 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3691 else
3692 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3693 }
3694 return nr;
3695 }
3696
3697 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3698 unsigned int lru_mask,
3699 bool tree)
3700 {
3701 unsigned long nr = 0;
3702 enum lru_list lru;
3703
3704 for_each_lru(lru) {
3705 if (!(BIT(lru) & lru_mask))
3706 continue;
3707 if (tree)
3708 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3709 else
3710 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3711 }
3712 return nr;
3713 }
3714
3715 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3716 {
3717 struct numa_stat {
3718 const char *name;
3719 unsigned int lru_mask;
3720 };
3721
3722 static const struct numa_stat stats[] = {
3723 { "total", LRU_ALL },
3724 { "file", LRU_ALL_FILE },
3725 { "anon", LRU_ALL_ANON },
3726 { "unevictable", BIT(LRU_UNEVICTABLE) },
3727 };
3728 const struct numa_stat *stat;
3729 int nid;
3730 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3731
3732 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3733 seq_printf(m, "%s=%lu", stat->name,
3734 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3735 false));
3736 for_each_node_state(nid, N_MEMORY)
3737 seq_printf(m, " N%d=%lu", nid,
3738 mem_cgroup_node_nr_lru_pages(memcg, nid,
3739 stat->lru_mask, false));
3740 seq_putc(m, '\n');
3741 }
3742
3743 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3744
3745 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3746 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3747 true));
3748 for_each_node_state(nid, N_MEMORY)
3749 seq_printf(m, " N%d=%lu", nid,
3750 mem_cgroup_node_nr_lru_pages(memcg, nid,
3751 stat->lru_mask, true));
3752 seq_putc(m, '\n');
3753 }
3754
3755 return 0;
3756 }
3757 #endif /* CONFIG_NUMA */
3758
3759 static const unsigned int memcg1_stats[] = {
3760 NR_FILE_PAGES,
3761 NR_ANON_MAPPED,
3762 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3763 NR_ANON_THPS,
3764 #endif
3765 NR_SHMEM,
3766 NR_FILE_MAPPED,
3767 NR_FILE_DIRTY,
3768 NR_WRITEBACK,
3769 MEMCG_SWAP,
3770 };
3771
3772 static const char *const memcg1_stat_names[] = {
3773 "cache",
3774 "rss",
3775 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3776 "rss_huge",
3777 #endif
3778 "shmem",
3779 "mapped_file",
3780 "dirty",
3781 "writeback",
3782 "swap",
3783 };
3784
3785 /* Universal VM events cgroup1 shows, original sort order */
3786 static const unsigned int memcg1_events[] = {
3787 PGPGIN,
3788 PGPGOUT,
3789 PGFAULT,
3790 PGMAJFAULT,
3791 };
3792
3793 static int memcg_stat_show(struct seq_file *m, void *v)
3794 {
3795 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3796 unsigned long memory, memsw;
3797 struct mem_cgroup *mi;
3798 unsigned int i;
3799
3800 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3801
3802 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3803 unsigned long nr;
3804
3805 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3806 continue;
3807 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3808 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3809 if (memcg1_stats[i] == NR_ANON_THPS)
3810 nr *= HPAGE_PMD_NR;
3811 #endif
3812 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3813 }
3814
3815 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3816 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3817 memcg_events_local(memcg, memcg1_events[i]));
3818
3819 for (i = 0; i < NR_LRU_LISTS; i++)
3820 seq_printf(m, "%s %lu\n", lru_list_name(i),
3821 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3822 PAGE_SIZE);
3823
3824 /* Hierarchical information */
3825 memory = memsw = PAGE_COUNTER_MAX;
3826 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3827 memory = min(memory, READ_ONCE(mi->memory.max));
3828 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3829 }
3830 seq_printf(m, "hierarchical_memory_limit %llu\n",
3831 (u64)memory * PAGE_SIZE);
3832 if (do_memsw_account())
3833 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3834 (u64)memsw * PAGE_SIZE);
3835
3836 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3837 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3838 continue;
3839 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3840 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3841 PAGE_SIZE);
3842 }
3843
3844 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3845 seq_printf(m, "total_%s %llu\n",
3846 vm_event_name(memcg1_events[i]),
3847 (u64)memcg_events(memcg, memcg1_events[i]));
3848
3849 for (i = 0; i < NR_LRU_LISTS; i++)
3850 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3851 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3852 PAGE_SIZE);
3853
3854 #ifdef CONFIG_DEBUG_VM
3855 {
3856 pg_data_t *pgdat;
3857 struct mem_cgroup_per_node *mz;
3858 unsigned long anon_cost = 0;
3859 unsigned long file_cost = 0;
3860
3861 for_each_online_pgdat(pgdat) {
3862 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3863
3864 anon_cost += mz->lruvec.anon_cost;
3865 file_cost += mz->lruvec.file_cost;
3866 }
3867 seq_printf(m, "anon_cost %lu\n", anon_cost);
3868 seq_printf(m, "file_cost %lu\n", file_cost);
3869 }
3870 #endif
3871
3872 return 0;
3873 }
3874
3875 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3876 struct cftype *cft)
3877 {
3878 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3879
3880 return mem_cgroup_swappiness(memcg);
3881 }
3882
3883 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3884 struct cftype *cft, u64 val)
3885 {
3886 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3887
3888 if (val > 100)
3889 return -EINVAL;
3890
3891 if (css->parent)
3892 memcg->swappiness = val;
3893 else
3894 vm_swappiness = val;
3895
3896 return 0;
3897 }
3898
3899 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3900 {
3901 struct mem_cgroup_threshold_ary *t;
3902 unsigned long usage;
3903 int i;
3904
3905 rcu_read_lock();
3906 if (!swap)
3907 t = rcu_dereference(memcg->thresholds.primary);
3908 else
3909 t = rcu_dereference(memcg->memsw_thresholds.primary);
3910
3911 if (!t)
3912 goto unlock;
3913
3914 usage = mem_cgroup_usage(memcg, swap);
3915
3916 /*
3917 * current_threshold points to threshold just below or equal to usage.
3918 * If it's not true, a threshold was crossed after last
3919 * call of __mem_cgroup_threshold().
3920 */
3921 i = t->current_threshold;
3922
3923 /*
3924 * Iterate backward over array of thresholds starting from
3925 * current_threshold and check if a threshold is crossed.
3926 * If none of thresholds below usage is crossed, we read
3927 * only one element of the array here.
3928 */
3929 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3930 eventfd_signal(t->entries[i].eventfd, 1);
3931
3932 /* i = current_threshold + 1 */
3933 i++;
3934
3935 /*
3936 * Iterate forward over array of thresholds starting from
3937 * current_threshold+1 and check if a threshold is crossed.
3938 * If none of thresholds above usage is crossed, we read
3939 * only one element of the array here.
3940 */
3941 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3942 eventfd_signal(t->entries[i].eventfd, 1);
3943
3944 /* Update current_threshold */
3945 t->current_threshold = i - 1;
3946 unlock:
3947 rcu_read_unlock();
3948 }
3949
3950 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3951 {
3952 while (memcg) {
3953 __mem_cgroup_threshold(memcg, false);
3954 if (do_memsw_account())
3955 __mem_cgroup_threshold(memcg, true);
3956
3957 memcg = parent_mem_cgroup(memcg);
3958 }
3959 }
3960
3961 static int compare_thresholds(const void *a, const void *b)
3962 {
3963 const struct mem_cgroup_threshold *_a = a;
3964 const struct mem_cgroup_threshold *_b = b;
3965
3966 if (_a->threshold > _b->threshold)
3967 return 1;
3968
3969 if (_a->threshold < _b->threshold)
3970 return -1;
3971
3972 return 0;
3973 }
3974
3975 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3976 {
3977 struct mem_cgroup_eventfd_list *ev;
3978
3979 spin_lock(&memcg_oom_lock);
3980
3981 list_for_each_entry(ev, &memcg->oom_notify, list)
3982 eventfd_signal(ev->eventfd, 1);
3983
3984 spin_unlock(&memcg_oom_lock);
3985 return 0;
3986 }
3987
3988 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3989 {
3990 struct mem_cgroup *iter;
3991
3992 for_each_mem_cgroup_tree(iter, memcg)
3993 mem_cgroup_oom_notify_cb(iter);
3994 }
3995
3996 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3997 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3998 {
3999 struct mem_cgroup_thresholds *thresholds;
4000 struct mem_cgroup_threshold_ary *new;
4001 unsigned long threshold;
4002 unsigned long usage;
4003 int i, size, ret;
4004
4005 ret = page_counter_memparse(args, "-1", &threshold);
4006 if (ret)
4007 return ret;
4008
4009 mutex_lock(&memcg->thresholds_lock);
4010
4011 if (type == _MEM) {
4012 thresholds = &memcg->thresholds;
4013 usage = mem_cgroup_usage(memcg, false);
4014 } else if (type == _MEMSWAP) {
4015 thresholds = &memcg->memsw_thresholds;
4016 usage = mem_cgroup_usage(memcg, true);
4017 } else
4018 BUG();
4019
4020 /* Check if a threshold crossed before adding a new one */
4021 if (thresholds->primary)
4022 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4023
4024 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4025
4026 /* Allocate memory for new array of thresholds */
4027 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4028 if (!new) {
4029 ret = -ENOMEM;
4030 goto unlock;
4031 }
4032 new->size = size;
4033
4034 /* Copy thresholds (if any) to new array */
4035 if (thresholds->primary) {
4036 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4037 sizeof(struct mem_cgroup_threshold));
4038 }
4039
4040 /* Add new threshold */
4041 new->entries[size - 1].eventfd = eventfd;
4042 new->entries[size - 1].threshold = threshold;
4043
4044 /* Sort thresholds. Registering of new threshold isn't time-critical */
4045 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4046 compare_thresholds, NULL);
4047
4048 /* Find current threshold */
4049 new->current_threshold = -1;
4050 for (i = 0; i < size; i++) {
4051 if (new->entries[i].threshold <= usage) {
4052 /*
4053 * new->current_threshold will not be used until
4054 * rcu_assign_pointer(), so it's safe to increment
4055 * it here.
4056 */
4057 ++new->current_threshold;
4058 } else
4059 break;
4060 }
4061
4062 /* Free old spare buffer and save old primary buffer as spare */
4063 kfree(thresholds->spare);
4064 thresholds->spare = thresholds->primary;
4065
4066 rcu_assign_pointer(thresholds->primary, new);
4067
4068 /* To be sure that nobody uses thresholds */
4069 synchronize_rcu();
4070
4071 unlock:
4072 mutex_unlock(&memcg->thresholds_lock);
4073
4074 return ret;
4075 }
4076
4077 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4078 struct eventfd_ctx *eventfd, const char *args)
4079 {
4080 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4081 }
4082
4083 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4084 struct eventfd_ctx *eventfd, const char *args)
4085 {
4086 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4087 }
4088
4089 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4090 struct eventfd_ctx *eventfd, enum res_type type)
4091 {
4092 struct mem_cgroup_thresholds *thresholds;
4093 struct mem_cgroup_threshold_ary *new;
4094 unsigned long usage;
4095 int i, j, size, entries;
4096
4097 mutex_lock(&memcg->thresholds_lock);
4098
4099 if (type == _MEM) {
4100 thresholds = &memcg->thresholds;
4101 usage = mem_cgroup_usage(memcg, false);
4102 } else if (type == _MEMSWAP) {
4103 thresholds = &memcg->memsw_thresholds;
4104 usage = mem_cgroup_usage(memcg, true);
4105 } else
4106 BUG();
4107
4108 if (!thresholds->primary)
4109 goto unlock;
4110
4111 /* Check if a threshold crossed before removing */
4112 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4113
4114 /* Calculate new number of threshold */
4115 size = entries = 0;
4116 for (i = 0; i < thresholds->primary->size; i++) {
4117 if (thresholds->primary->entries[i].eventfd != eventfd)
4118 size++;
4119 else
4120 entries++;
4121 }
4122
4123 new = thresholds->spare;
4124
4125 /* If no items related to eventfd have been cleared, nothing to do */
4126 if (!entries)
4127 goto unlock;
4128
4129 /* Set thresholds array to NULL if we don't have thresholds */
4130 if (!size) {
4131 kfree(new);
4132 new = NULL;
4133 goto swap_buffers;
4134 }
4135
4136 new->size = size;
4137
4138 /* Copy thresholds and find current threshold */
4139 new->current_threshold = -1;
4140 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4141 if (thresholds->primary->entries[i].eventfd == eventfd)
4142 continue;
4143
4144 new->entries[j] = thresholds->primary->entries[i];
4145 if (new->entries[j].threshold <= usage) {
4146 /*
4147 * new->current_threshold will not be used
4148 * until rcu_assign_pointer(), so it's safe to increment
4149 * it here.
4150 */
4151 ++new->current_threshold;
4152 }
4153 j++;
4154 }
4155
4156 swap_buffers:
4157 /* Swap primary and spare array */
4158 thresholds->spare = thresholds->primary;
4159
4160 rcu_assign_pointer(thresholds->primary, new);
4161
4162 /* To be sure that nobody uses thresholds */
4163 synchronize_rcu();
4164
4165 /* If all events are unregistered, free the spare array */
4166 if (!new) {
4167 kfree(thresholds->spare);
4168 thresholds->spare = NULL;
4169 }
4170 unlock:
4171 mutex_unlock(&memcg->thresholds_lock);
4172 }
4173
4174 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4175 struct eventfd_ctx *eventfd)
4176 {
4177 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4178 }
4179
4180 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4181 struct eventfd_ctx *eventfd)
4182 {
4183 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4184 }
4185
4186 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4187 struct eventfd_ctx *eventfd, const char *args)
4188 {
4189 struct mem_cgroup_eventfd_list *event;
4190
4191 event = kmalloc(sizeof(*event), GFP_KERNEL);
4192 if (!event)
4193 return -ENOMEM;
4194
4195 spin_lock(&memcg_oom_lock);
4196
4197 event->eventfd = eventfd;
4198 list_add(&event->list, &memcg->oom_notify);
4199
4200 /* already in OOM ? */
4201 if (memcg->under_oom)
4202 eventfd_signal(eventfd, 1);
4203 spin_unlock(&memcg_oom_lock);
4204
4205 return 0;
4206 }
4207
4208 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4209 struct eventfd_ctx *eventfd)
4210 {
4211 struct mem_cgroup_eventfd_list *ev, *tmp;
4212
4213 spin_lock(&memcg_oom_lock);
4214
4215 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4216 if (ev->eventfd == eventfd) {
4217 list_del(&ev->list);
4218 kfree(ev);
4219 }
4220 }
4221
4222 spin_unlock(&memcg_oom_lock);
4223 }
4224
4225 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4226 {
4227 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4228
4229 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4230 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4231 seq_printf(sf, "oom_kill %lu\n",
4232 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4233 return 0;
4234 }
4235
4236 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4237 struct cftype *cft, u64 val)
4238 {
4239 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4240
4241 /* cannot set to root cgroup and only 0 and 1 are allowed */
4242 if (!css->parent || !((val == 0) || (val == 1)))
4243 return -EINVAL;
4244
4245 memcg->oom_kill_disable = val;
4246 if (!val)
4247 memcg_oom_recover(memcg);
4248
4249 return 0;
4250 }
4251
4252 #ifdef CONFIG_CGROUP_WRITEBACK
4253
4254 #include <trace/events/writeback.h>
4255
4256 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4257 {
4258 return wb_domain_init(&memcg->cgwb_domain, gfp);
4259 }
4260
4261 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4262 {
4263 wb_domain_exit(&memcg->cgwb_domain);
4264 }
4265
4266 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4267 {
4268 wb_domain_size_changed(&memcg->cgwb_domain);
4269 }
4270
4271 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4272 {
4273 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4274
4275 if (!memcg->css.parent)
4276 return NULL;
4277
4278 return &memcg->cgwb_domain;
4279 }
4280
4281 /*
4282 * idx can be of type enum memcg_stat_item or node_stat_item.
4283 * Keep in sync with memcg_exact_page().
4284 */
4285 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4286 {
4287 long x = atomic_long_read(&memcg->vmstats[idx]);
4288 int cpu;
4289
4290 for_each_online_cpu(cpu)
4291 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4292 if (x < 0)
4293 x = 0;
4294 return x;
4295 }
4296
4297 /**
4298 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4299 * @wb: bdi_writeback in question
4300 * @pfilepages: out parameter for number of file pages
4301 * @pheadroom: out parameter for number of allocatable pages according to memcg
4302 * @pdirty: out parameter for number of dirty pages
4303 * @pwriteback: out parameter for number of pages under writeback
4304 *
4305 * Determine the numbers of file, headroom, dirty, and writeback pages in
4306 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4307 * is a bit more involved.
4308 *
4309 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4310 * headroom is calculated as the lowest headroom of itself and the
4311 * ancestors. Note that this doesn't consider the actual amount of
4312 * available memory in the system. The caller should further cap
4313 * *@pheadroom accordingly.
4314 */
4315 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4316 unsigned long *pheadroom, unsigned long *pdirty,
4317 unsigned long *pwriteback)
4318 {
4319 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4320 struct mem_cgroup *parent;
4321
4322 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4323
4324 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4325 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4326 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4327 *pheadroom = PAGE_COUNTER_MAX;
4328
4329 while ((parent = parent_mem_cgroup(memcg))) {
4330 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4331 READ_ONCE(memcg->memory.high));
4332 unsigned long used = page_counter_read(&memcg->memory);
4333
4334 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4335 memcg = parent;
4336 }
4337 }
4338
4339 /*
4340 * Foreign dirty flushing
4341 *
4342 * There's an inherent mismatch between memcg and writeback. The former
4343 * trackes ownership per-page while the latter per-inode. This was a
4344 * deliberate design decision because honoring per-page ownership in the
4345 * writeback path is complicated, may lead to higher CPU and IO overheads
4346 * and deemed unnecessary given that write-sharing an inode across
4347 * different cgroups isn't a common use-case.
4348 *
4349 * Combined with inode majority-writer ownership switching, this works well
4350 * enough in most cases but there are some pathological cases. For
4351 * example, let's say there are two cgroups A and B which keep writing to
4352 * different but confined parts of the same inode. B owns the inode and
4353 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4354 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4355 * triggering background writeback. A will be slowed down without a way to
4356 * make writeback of the dirty pages happen.
4357 *
4358 * Conditions like the above can lead to a cgroup getting repatedly and
4359 * severely throttled after making some progress after each
4360 * dirty_expire_interval while the underyling IO device is almost
4361 * completely idle.
4362 *
4363 * Solving this problem completely requires matching the ownership tracking
4364 * granularities between memcg and writeback in either direction. However,
4365 * the more egregious behaviors can be avoided by simply remembering the
4366 * most recent foreign dirtying events and initiating remote flushes on
4367 * them when local writeback isn't enough to keep the memory clean enough.
4368 *
4369 * The following two functions implement such mechanism. When a foreign
4370 * page - a page whose memcg and writeback ownerships don't match - is
4371 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4372 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4373 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4374 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4375 * foreign bdi_writebacks which haven't expired. Both the numbers of
4376 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4377 * limited to MEMCG_CGWB_FRN_CNT.
4378 *
4379 * The mechanism only remembers IDs and doesn't hold any object references.
4380 * As being wrong occasionally doesn't matter, updates and accesses to the
4381 * records are lockless and racy.
4382 */
4383 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4384 struct bdi_writeback *wb)
4385 {
4386 struct mem_cgroup *memcg = page->mem_cgroup;
4387 struct memcg_cgwb_frn *frn;
4388 u64 now = get_jiffies_64();
4389 u64 oldest_at = now;
4390 int oldest = -1;
4391 int i;
4392
4393 trace_track_foreign_dirty(page, wb);
4394
4395 /*
4396 * Pick the slot to use. If there is already a slot for @wb, keep
4397 * using it. If not replace the oldest one which isn't being
4398 * written out.
4399 */
4400 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4401 frn = &memcg->cgwb_frn[i];
4402 if (frn->bdi_id == wb->bdi->id &&
4403 frn->memcg_id == wb->memcg_css->id)
4404 break;
4405 if (time_before64(frn->at, oldest_at) &&
4406 atomic_read(&frn->done.cnt) == 1) {
4407 oldest = i;
4408 oldest_at = frn->at;
4409 }
4410 }
4411
4412 if (i < MEMCG_CGWB_FRN_CNT) {
4413 /*
4414 * Re-using an existing one. Update timestamp lazily to
4415 * avoid making the cacheline hot. We want them to be
4416 * reasonably up-to-date and significantly shorter than
4417 * dirty_expire_interval as that's what expires the record.
4418 * Use the shorter of 1s and dirty_expire_interval / 8.
4419 */
4420 unsigned long update_intv =
4421 min_t(unsigned long, HZ,
4422 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4423
4424 if (time_before64(frn->at, now - update_intv))
4425 frn->at = now;
4426 } else if (oldest >= 0) {
4427 /* replace the oldest free one */
4428 frn = &memcg->cgwb_frn[oldest];
4429 frn->bdi_id = wb->bdi->id;
4430 frn->memcg_id = wb->memcg_css->id;
4431 frn->at = now;
4432 }
4433 }
4434
4435 /* issue foreign writeback flushes for recorded foreign dirtying events */
4436 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4437 {
4438 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4439 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4440 u64 now = jiffies_64;
4441 int i;
4442
4443 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4444 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4445
4446 /*
4447 * If the record is older than dirty_expire_interval,
4448 * writeback on it has already started. No need to kick it
4449 * off again. Also, don't start a new one if there's
4450 * already one in flight.
4451 */
4452 if (time_after64(frn->at, now - intv) &&
4453 atomic_read(&frn->done.cnt) == 1) {
4454 frn->at = 0;
4455 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4456 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4457 WB_REASON_FOREIGN_FLUSH,
4458 &frn->done);
4459 }
4460 }
4461 }
4462
4463 #else /* CONFIG_CGROUP_WRITEBACK */
4464
4465 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4466 {
4467 return 0;
4468 }
4469
4470 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4471 {
4472 }
4473
4474 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4475 {
4476 }
4477
4478 #endif /* CONFIG_CGROUP_WRITEBACK */
4479
4480 /*
4481 * DO NOT USE IN NEW FILES.
4482 *
4483 * "cgroup.event_control" implementation.
4484 *
4485 * This is way over-engineered. It tries to support fully configurable
4486 * events for each user. Such level of flexibility is completely
4487 * unnecessary especially in the light of the planned unified hierarchy.
4488 *
4489 * Please deprecate this and replace with something simpler if at all
4490 * possible.
4491 */
4492
4493 /*
4494 * Unregister event and free resources.
4495 *
4496 * Gets called from workqueue.
4497 */
4498 static void memcg_event_remove(struct work_struct *work)
4499 {
4500 struct mem_cgroup_event *event =
4501 container_of(work, struct mem_cgroup_event, remove);
4502 struct mem_cgroup *memcg = event->memcg;
4503
4504 remove_wait_queue(event->wqh, &event->wait);
4505
4506 event->unregister_event(memcg, event->eventfd);
4507
4508 /* Notify userspace the event is going away. */
4509 eventfd_signal(event->eventfd, 1);
4510
4511 eventfd_ctx_put(event->eventfd);
4512 kfree(event);
4513 css_put(&memcg->css);
4514 }
4515
4516 /*
4517 * Gets called on EPOLLHUP on eventfd when user closes it.
4518 *
4519 * Called with wqh->lock held and interrupts disabled.
4520 */
4521 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4522 int sync, void *key)
4523 {
4524 struct mem_cgroup_event *event =
4525 container_of(wait, struct mem_cgroup_event, wait);
4526 struct mem_cgroup *memcg = event->memcg;
4527 __poll_t flags = key_to_poll(key);
4528
4529 if (flags & EPOLLHUP) {
4530 /*
4531 * If the event has been detached at cgroup removal, we
4532 * can simply return knowing the other side will cleanup
4533 * for us.
4534 *
4535 * We can't race against event freeing since the other
4536 * side will require wqh->lock via remove_wait_queue(),
4537 * which we hold.
4538 */
4539 spin_lock(&memcg->event_list_lock);
4540 if (!list_empty(&event->list)) {
4541 list_del_init(&event->list);
4542 /*
4543 * We are in atomic context, but cgroup_event_remove()
4544 * may sleep, so we have to call it in workqueue.
4545 */
4546 schedule_work(&event->remove);
4547 }
4548 spin_unlock(&memcg->event_list_lock);
4549 }
4550
4551 return 0;
4552 }
4553
4554 static void memcg_event_ptable_queue_proc(struct file *file,
4555 wait_queue_head_t *wqh, poll_table *pt)
4556 {
4557 struct mem_cgroup_event *event =
4558 container_of(pt, struct mem_cgroup_event, pt);
4559
4560 event->wqh = wqh;
4561 add_wait_queue(wqh, &event->wait);
4562 }
4563
4564 /*
4565 * DO NOT USE IN NEW FILES.
4566 *
4567 * Parse input and register new cgroup event handler.
4568 *
4569 * Input must be in format '<event_fd> <control_fd> <args>'.
4570 * Interpretation of args is defined by control file implementation.
4571 */
4572 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4573 char *buf, size_t nbytes, loff_t off)
4574 {
4575 struct cgroup_subsys_state *css = of_css(of);
4576 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4577 struct mem_cgroup_event *event;
4578 struct cgroup_subsys_state *cfile_css;
4579 unsigned int efd, cfd;
4580 struct fd efile;
4581 struct fd cfile;
4582 const char *name;
4583 char *endp;
4584 int ret;
4585
4586 buf = strstrip(buf);
4587
4588 efd = simple_strtoul(buf, &endp, 10);
4589 if (*endp != ' ')
4590 return -EINVAL;
4591 buf = endp + 1;
4592
4593 cfd = simple_strtoul(buf, &endp, 10);
4594 if ((*endp != ' ') && (*endp != '\0'))
4595 return -EINVAL;
4596 buf = endp + 1;
4597
4598 event = kzalloc(sizeof(*event), GFP_KERNEL);
4599 if (!event)
4600 return -ENOMEM;
4601
4602 event->memcg = memcg;
4603 INIT_LIST_HEAD(&event->list);
4604 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4605 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4606 INIT_WORK(&event->remove, memcg_event_remove);
4607
4608 efile = fdget(efd);
4609 if (!efile.file) {
4610 ret = -EBADF;
4611 goto out_kfree;
4612 }
4613
4614 event->eventfd = eventfd_ctx_fileget(efile.file);
4615 if (IS_ERR(event->eventfd)) {
4616 ret = PTR_ERR(event->eventfd);
4617 goto out_put_efile;
4618 }
4619
4620 cfile = fdget(cfd);
4621 if (!cfile.file) {
4622 ret = -EBADF;
4623 goto out_put_eventfd;
4624 }
4625
4626 /* the process need read permission on control file */
4627 /* AV: shouldn't we check that it's been opened for read instead? */
4628 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4629 if (ret < 0)
4630 goto out_put_cfile;
4631
4632 /*
4633 * Determine the event callbacks and set them in @event. This used
4634 * to be done via struct cftype but cgroup core no longer knows
4635 * about these events. The following is crude but the whole thing
4636 * is for compatibility anyway.
4637 *
4638 * DO NOT ADD NEW FILES.
4639 */
4640 name = cfile.file->f_path.dentry->d_name.name;
4641
4642 if (!strcmp(name, "memory.usage_in_bytes")) {
4643 event->register_event = mem_cgroup_usage_register_event;
4644 event->unregister_event = mem_cgroup_usage_unregister_event;
4645 } else if (!strcmp(name, "memory.oom_control")) {
4646 event->register_event = mem_cgroup_oom_register_event;
4647 event->unregister_event = mem_cgroup_oom_unregister_event;
4648 } else if (!strcmp(name, "memory.pressure_level")) {
4649 event->register_event = vmpressure_register_event;
4650 event->unregister_event = vmpressure_unregister_event;
4651 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4652 event->register_event = memsw_cgroup_usage_register_event;
4653 event->unregister_event = memsw_cgroup_usage_unregister_event;
4654 } else {
4655 ret = -EINVAL;
4656 goto out_put_cfile;
4657 }
4658
4659 /*
4660 * Verify @cfile should belong to @css. Also, remaining events are
4661 * automatically removed on cgroup destruction but the removal is
4662 * asynchronous, so take an extra ref on @css.
4663 */
4664 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4665 &memory_cgrp_subsys);
4666 ret = -EINVAL;
4667 if (IS_ERR(cfile_css))
4668 goto out_put_cfile;
4669 if (cfile_css != css) {
4670 css_put(cfile_css);
4671 goto out_put_cfile;
4672 }
4673
4674 ret = event->register_event(memcg, event->eventfd, buf);
4675 if (ret)
4676 goto out_put_css;
4677
4678 vfs_poll(efile.file, &event->pt);
4679
4680 spin_lock(&memcg->event_list_lock);
4681 list_add(&event->list, &memcg->event_list);
4682 spin_unlock(&memcg->event_list_lock);
4683
4684 fdput(cfile);
4685 fdput(efile);
4686
4687 return nbytes;
4688
4689 out_put_css:
4690 css_put(css);
4691 out_put_cfile:
4692 fdput(cfile);
4693 out_put_eventfd:
4694 eventfd_ctx_put(event->eventfd);
4695 out_put_efile:
4696 fdput(efile);
4697 out_kfree:
4698 kfree(event);
4699
4700 return ret;
4701 }
4702
4703 static struct cftype mem_cgroup_legacy_files[] = {
4704 {
4705 .name = "usage_in_bytes",
4706 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4707 .read_u64 = mem_cgroup_read_u64,
4708 },
4709 {
4710 .name = "max_usage_in_bytes",
4711 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4712 .write = mem_cgroup_reset,
4713 .read_u64 = mem_cgroup_read_u64,
4714 },
4715 {
4716 .name = "limit_in_bytes",
4717 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4718 .write = mem_cgroup_write,
4719 .read_u64 = mem_cgroup_read_u64,
4720 },
4721 {
4722 .name = "soft_limit_in_bytes",
4723 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4724 .write = mem_cgroup_write,
4725 .read_u64 = mem_cgroup_read_u64,
4726 },
4727 {
4728 .name = "failcnt",
4729 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4730 .write = mem_cgroup_reset,
4731 .read_u64 = mem_cgroup_read_u64,
4732 },
4733 {
4734 .name = "stat",
4735 .seq_show = memcg_stat_show,
4736 },
4737 {
4738 .name = "force_empty",
4739 .write = mem_cgroup_force_empty_write,
4740 },
4741 {
4742 .name = "use_hierarchy",
4743 .write_u64 = mem_cgroup_hierarchy_write,
4744 .read_u64 = mem_cgroup_hierarchy_read,
4745 },
4746 {
4747 .name = "cgroup.event_control", /* XXX: for compat */
4748 .write = memcg_write_event_control,
4749 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4750 },
4751 {
4752 .name = "swappiness",
4753 .read_u64 = mem_cgroup_swappiness_read,
4754 .write_u64 = mem_cgroup_swappiness_write,
4755 },
4756 {
4757 .name = "move_charge_at_immigrate",
4758 .read_u64 = mem_cgroup_move_charge_read,
4759 .write_u64 = mem_cgroup_move_charge_write,
4760 },
4761 {
4762 .name = "oom_control",
4763 .seq_show = mem_cgroup_oom_control_read,
4764 .write_u64 = mem_cgroup_oom_control_write,
4765 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4766 },
4767 {
4768 .name = "pressure_level",
4769 },
4770 #ifdef CONFIG_NUMA
4771 {
4772 .name = "numa_stat",
4773 .seq_show = memcg_numa_stat_show,
4774 },
4775 #endif
4776 {
4777 .name = "kmem.limit_in_bytes",
4778 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4779 .write = mem_cgroup_write,
4780 .read_u64 = mem_cgroup_read_u64,
4781 },
4782 {
4783 .name = "kmem.usage_in_bytes",
4784 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4785 .read_u64 = mem_cgroup_read_u64,
4786 },
4787 {
4788 .name = "kmem.failcnt",
4789 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4790 .write = mem_cgroup_reset,
4791 .read_u64 = mem_cgroup_read_u64,
4792 },
4793 {
4794 .name = "kmem.max_usage_in_bytes",
4795 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4796 .write = mem_cgroup_reset,
4797 .read_u64 = mem_cgroup_read_u64,
4798 },
4799 #if defined(CONFIG_MEMCG_KMEM) && \
4800 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4801 {
4802 .name = "kmem.slabinfo",
4803 .seq_start = memcg_slab_start,
4804 .seq_next = memcg_slab_next,
4805 .seq_stop = memcg_slab_stop,
4806 .seq_show = memcg_slab_show,
4807 },
4808 #endif
4809 {
4810 .name = "kmem.tcp.limit_in_bytes",
4811 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4812 .write = mem_cgroup_write,
4813 .read_u64 = mem_cgroup_read_u64,
4814 },
4815 {
4816 .name = "kmem.tcp.usage_in_bytes",
4817 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4818 .read_u64 = mem_cgroup_read_u64,
4819 },
4820 {
4821 .name = "kmem.tcp.failcnt",
4822 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4823 .write = mem_cgroup_reset,
4824 .read_u64 = mem_cgroup_read_u64,
4825 },
4826 {
4827 .name = "kmem.tcp.max_usage_in_bytes",
4828 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4829 .write = mem_cgroup_reset,
4830 .read_u64 = mem_cgroup_read_u64,
4831 },
4832 { }, /* terminate */
4833 };
4834
4835 /*
4836 * Private memory cgroup IDR
4837 *
4838 * Swap-out records and page cache shadow entries need to store memcg
4839 * references in constrained space, so we maintain an ID space that is
4840 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4841 * memory-controlled cgroups to 64k.
4842 *
4843 * However, there usually are many references to the offline CSS after
4844 * the cgroup has been destroyed, such as page cache or reclaimable
4845 * slab objects, that don't need to hang on to the ID. We want to keep
4846 * those dead CSS from occupying IDs, or we might quickly exhaust the
4847 * relatively small ID space and prevent the creation of new cgroups
4848 * even when there are much fewer than 64k cgroups - possibly none.
4849 *
4850 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4851 * be freed and recycled when it's no longer needed, which is usually
4852 * when the CSS is offlined.
4853 *
4854 * The only exception to that are records of swapped out tmpfs/shmem
4855 * pages that need to be attributed to live ancestors on swapin. But
4856 * those references are manageable from userspace.
4857 */
4858
4859 static DEFINE_IDR(mem_cgroup_idr);
4860
4861 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4862 {
4863 if (memcg->id.id > 0) {
4864 idr_remove(&mem_cgroup_idr, memcg->id.id);
4865 memcg->id.id = 0;
4866 }
4867 }
4868
4869 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
4870 unsigned int n)
4871 {
4872 refcount_add(n, &memcg->id.ref);
4873 }
4874
4875 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4876 {
4877 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4878 mem_cgroup_id_remove(memcg);
4879
4880 /* Memcg ID pins CSS */
4881 css_put(&memcg->css);
4882 }
4883 }
4884
4885 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4886 {
4887 mem_cgroup_id_put_many(memcg, 1);
4888 }
4889
4890 /**
4891 * mem_cgroup_from_id - look up a memcg from a memcg id
4892 * @id: the memcg id to look up
4893 *
4894 * Caller must hold rcu_read_lock().
4895 */
4896 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4897 {
4898 WARN_ON_ONCE(!rcu_read_lock_held());
4899 return idr_find(&mem_cgroup_idr, id);
4900 }
4901
4902 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4903 {
4904 struct mem_cgroup_per_node *pn;
4905 int tmp = node;
4906 /*
4907 * This routine is called against possible nodes.
4908 * But it's BUG to call kmalloc() against offline node.
4909 *
4910 * TODO: this routine can waste much memory for nodes which will
4911 * never be onlined. It's better to use memory hotplug callback
4912 * function.
4913 */
4914 if (!node_state(node, N_NORMAL_MEMORY))
4915 tmp = -1;
4916 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4917 if (!pn)
4918 return 1;
4919
4920 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4921 if (!pn->lruvec_stat_local) {
4922 kfree(pn);
4923 return 1;
4924 }
4925
4926 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4927 if (!pn->lruvec_stat_cpu) {
4928 free_percpu(pn->lruvec_stat_local);
4929 kfree(pn);
4930 return 1;
4931 }
4932
4933 lruvec_init(&pn->lruvec);
4934 pn->usage_in_excess = 0;
4935 pn->on_tree = false;
4936 pn->memcg = memcg;
4937
4938 memcg->nodeinfo[node] = pn;
4939 return 0;
4940 }
4941
4942 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4943 {
4944 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4945
4946 if (!pn)
4947 return;
4948
4949 free_percpu(pn->lruvec_stat_cpu);
4950 free_percpu(pn->lruvec_stat_local);
4951 kfree(pn);
4952 }
4953
4954 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4955 {
4956 int node;
4957
4958 for_each_node(node)
4959 free_mem_cgroup_per_node_info(memcg, node);
4960 free_percpu(memcg->vmstats_percpu);
4961 free_percpu(memcg->vmstats_local);
4962 kfree(memcg);
4963 }
4964
4965 static void mem_cgroup_free(struct mem_cgroup *memcg)
4966 {
4967 memcg_wb_domain_exit(memcg);
4968 /*
4969 * Flush percpu vmstats and vmevents to guarantee the value correctness
4970 * on parent's and all ancestor levels.
4971 */
4972 memcg_flush_percpu_vmstats(memcg);
4973 memcg_flush_percpu_vmevents(memcg);
4974 __mem_cgroup_free(memcg);
4975 }
4976
4977 static struct mem_cgroup *mem_cgroup_alloc(void)
4978 {
4979 struct mem_cgroup *memcg;
4980 unsigned int size;
4981 int node;
4982 int __maybe_unused i;
4983 long error = -ENOMEM;
4984
4985 size = sizeof(struct mem_cgroup);
4986 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4987
4988 memcg = kzalloc(size, GFP_KERNEL);
4989 if (!memcg)
4990 return ERR_PTR(error);
4991
4992 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4993 1, MEM_CGROUP_ID_MAX,
4994 GFP_KERNEL);
4995 if (memcg->id.id < 0) {
4996 error = memcg->id.id;
4997 goto fail;
4998 }
4999
5000 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5001 if (!memcg->vmstats_local)
5002 goto fail;
5003
5004 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5005 if (!memcg->vmstats_percpu)
5006 goto fail;
5007
5008 for_each_node(node)
5009 if (alloc_mem_cgroup_per_node_info(memcg, node))
5010 goto fail;
5011
5012 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5013 goto fail;
5014
5015 INIT_WORK(&memcg->high_work, high_work_func);
5016 INIT_LIST_HEAD(&memcg->oom_notify);
5017 mutex_init(&memcg->thresholds_lock);
5018 spin_lock_init(&memcg->move_lock);
5019 vmpressure_init(&memcg->vmpressure);
5020 INIT_LIST_HEAD(&memcg->event_list);
5021 spin_lock_init(&memcg->event_list_lock);
5022 memcg->socket_pressure = jiffies;
5023 #ifdef CONFIG_MEMCG_KMEM
5024 memcg->kmemcg_id = -1;
5025 #endif
5026 #ifdef CONFIG_CGROUP_WRITEBACK
5027 INIT_LIST_HEAD(&memcg->cgwb_list);
5028 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5029 memcg->cgwb_frn[i].done =
5030 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5031 #endif
5032 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5033 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5034 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5035 memcg->deferred_split_queue.split_queue_len = 0;
5036 #endif
5037 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5038 return memcg;
5039 fail:
5040 mem_cgroup_id_remove(memcg);
5041 __mem_cgroup_free(memcg);
5042 return ERR_PTR(error);
5043 }
5044
5045 static struct cgroup_subsys_state * __ref
5046 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5047 {
5048 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5049 struct mem_cgroup *memcg;
5050 long error = -ENOMEM;
5051
5052 memcg = mem_cgroup_alloc();
5053 if (IS_ERR(memcg))
5054 return ERR_CAST(memcg);
5055
5056 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5057 memcg->soft_limit = PAGE_COUNTER_MAX;
5058 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5059 if (parent) {
5060 memcg->swappiness = mem_cgroup_swappiness(parent);
5061 memcg->oom_kill_disable = parent->oom_kill_disable;
5062 }
5063 if (parent && parent->use_hierarchy) {
5064 memcg->use_hierarchy = true;
5065 page_counter_init(&memcg->memory, &parent->memory);
5066 page_counter_init(&memcg->swap, &parent->swap);
5067 page_counter_init(&memcg->memsw, &parent->memsw);
5068 page_counter_init(&memcg->kmem, &parent->kmem);
5069 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5070 } else {
5071 page_counter_init(&memcg->memory, NULL);
5072 page_counter_init(&memcg->swap, NULL);
5073 page_counter_init(&memcg->memsw, NULL);
5074 page_counter_init(&memcg->kmem, NULL);
5075 page_counter_init(&memcg->tcpmem, NULL);
5076 /*
5077 * Deeper hierachy with use_hierarchy == false doesn't make
5078 * much sense so let cgroup subsystem know about this
5079 * unfortunate state in our controller.
5080 */
5081 if (parent != root_mem_cgroup)
5082 memory_cgrp_subsys.broken_hierarchy = true;
5083 }
5084
5085 /* The following stuff does not apply to the root */
5086 if (!parent) {
5087 #ifdef CONFIG_MEMCG_KMEM
5088 INIT_LIST_HEAD(&memcg->kmem_caches);
5089 #endif
5090 root_mem_cgroup = memcg;
5091 return &memcg->css;
5092 }
5093
5094 error = memcg_online_kmem(memcg);
5095 if (error)
5096 goto fail;
5097
5098 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5099 static_branch_inc(&memcg_sockets_enabled_key);
5100
5101 return &memcg->css;
5102 fail:
5103 mem_cgroup_id_remove(memcg);
5104 mem_cgroup_free(memcg);
5105 return ERR_PTR(error);
5106 }
5107
5108 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5109 {
5110 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5111
5112 /*
5113 * A memcg must be visible for memcg_expand_shrinker_maps()
5114 * by the time the maps are allocated. So, we allocate maps
5115 * here, when for_each_mem_cgroup() can't skip it.
5116 */
5117 if (memcg_alloc_shrinker_maps(memcg)) {
5118 mem_cgroup_id_remove(memcg);
5119 return -ENOMEM;
5120 }
5121
5122 /* Online state pins memcg ID, memcg ID pins CSS */
5123 refcount_set(&memcg->id.ref, 1);
5124 css_get(css);
5125 return 0;
5126 }
5127
5128 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5129 {
5130 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5131 struct mem_cgroup_event *event, *tmp;
5132
5133 /*
5134 * Unregister events and notify userspace.
5135 * Notify userspace about cgroup removing only after rmdir of cgroup
5136 * directory to avoid race between userspace and kernelspace.
5137 */
5138 spin_lock(&memcg->event_list_lock);
5139 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5140 list_del_init(&event->list);
5141 schedule_work(&event->remove);
5142 }
5143 spin_unlock(&memcg->event_list_lock);
5144
5145 page_counter_set_min(&memcg->memory, 0);
5146 page_counter_set_low(&memcg->memory, 0);
5147
5148 memcg_offline_kmem(memcg);
5149 wb_memcg_offline(memcg);
5150
5151 drain_all_stock(memcg);
5152
5153 mem_cgroup_id_put(memcg);
5154 }
5155
5156 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5157 {
5158 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5159
5160 invalidate_reclaim_iterators(memcg);
5161 }
5162
5163 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5164 {
5165 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5166 int __maybe_unused i;
5167
5168 #ifdef CONFIG_CGROUP_WRITEBACK
5169 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5170 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5171 #endif
5172 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5173 static_branch_dec(&memcg_sockets_enabled_key);
5174
5175 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5176 static_branch_dec(&memcg_sockets_enabled_key);
5177
5178 vmpressure_cleanup(&memcg->vmpressure);
5179 cancel_work_sync(&memcg->high_work);
5180 mem_cgroup_remove_from_trees(memcg);
5181 memcg_free_shrinker_maps(memcg);
5182 memcg_free_kmem(memcg);
5183 mem_cgroup_free(memcg);
5184 }
5185
5186 /**
5187 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5188 * @css: the target css
5189 *
5190 * Reset the states of the mem_cgroup associated with @css. This is
5191 * invoked when the userland requests disabling on the default hierarchy
5192 * but the memcg is pinned through dependency. The memcg should stop
5193 * applying policies and should revert to the vanilla state as it may be
5194 * made visible again.
5195 *
5196 * The current implementation only resets the essential configurations.
5197 * This needs to be expanded to cover all the visible parts.
5198 */
5199 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5200 {
5201 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5202
5203 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5204 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5205 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5206 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5207 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5208 page_counter_set_min(&memcg->memory, 0);
5209 page_counter_set_low(&memcg->memory, 0);
5210 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5211 memcg->soft_limit = PAGE_COUNTER_MAX;
5212 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5213 memcg_wb_domain_size_changed(memcg);
5214 }
5215
5216 #ifdef CONFIG_MMU
5217 /* Handlers for move charge at task migration. */
5218 static int mem_cgroup_do_precharge(unsigned long count)
5219 {
5220 int ret;
5221
5222 /* Try a single bulk charge without reclaim first, kswapd may wake */
5223 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5224 if (!ret) {
5225 mc.precharge += count;
5226 return ret;
5227 }
5228
5229 /* Try charges one by one with reclaim, but do not retry */
5230 while (count--) {
5231 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5232 if (ret)
5233 return ret;
5234 mc.precharge++;
5235 cond_resched();
5236 }
5237 return 0;
5238 }
5239
5240 union mc_target {
5241 struct page *page;
5242 swp_entry_t ent;
5243 };
5244
5245 enum mc_target_type {
5246 MC_TARGET_NONE = 0,
5247 MC_TARGET_PAGE,
5248 MC_TARGET_SWAP,
5249 MC_TARGET_DEVICE,
5250 };
5251
5252 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5253 unsigned long addr, pte_t ptent)
5254 {
5255 struct page *page = vm_normal_page(vma, addr, ptent);
5256
5257 if (!page || !page_mapped(page))
5258 return NULL;
5259 if (PageAnon(page)) {
5260 if (!(mc.flags & MOVE_ANON))
5261 return NULL;
5262 } else {
5263 if (!(mc.flags & MOVE_FILE))
5264 return NULL;
5265 }
5266 if (!get_page_unless_zero(page))
5267 return NULL;
5268
5269 return page;
5270 }
5271
5272 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5273 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5274 pte_t ptent, swp_entry_t *entry)
5275 {
5276 struct page *page = NULL;
5277 swp_entry_t ent = pte_to_swp_entry(ptent);
5278
5279 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5280 return NULL;
5281
5282 /*
5283 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5284 * a device and because they are not accessible by CPU they are store
5285 * as special swap entry in the CPU page table.
5286 */
5287 if (is_device_private_entry(ent)) {
5288 page = device_private_entry_to_page(ent);
5289 /*
5290 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5291 * a refcount of 1 when free (unlike normal page)
5292 */
5293 if (!page_ref_add_unless(page, 1, 1))
5294 return NULL;
5295 return page;
5296 }
5297
5298 /*
5299 * Because lookup_swap_cache() updates some statistics counter,
5300 * we call find_get_page() with swapper_space directly.
5301 */
5302 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5303 entry->val = ent.val;
5304
5305 return page;
5306 }
5307 #else
5308 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5309 pte_t ptent, swp_entry_t *entry)
5310 {
5311 return NULL;
5312 }
5313 #endif
5314
5315 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5316 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5317 {
5318 struct page *page = NULL;
5319 struct address_space *mapping;
5320 pgoff_t pgoff;
5321
5322 if (!vma->vm_file) /* anonymous vma */
5323 return NULL;
5324 if (!(mc.flags & MOVE_FILE))
5325 return NULL;
5326
5327 mapping = vma->vm_file->f_mapping;
5328 pgoff = linear_page_index(vma, addr);
5329
5330 /* page is moved even if it's not RSS of this task(page-faulted). */
5331 #ifdef CONFIG_SWAP
5332 /* shmem/tmpfs may report page out on swap: account for that too. */
5333 if (shmem_mapping(mapping)) {
5334 page = find_get_entry(mapping, pgoff);
5335 if (xa_is_value(page)) {
5336 swp_entry_t swp = radix_to_swp_entry(page);
5337 *entry = swp;
5338 page = find_get_page(swap_address_space(swp),
5339 swp_offset(swp));
5340 }
5341 } else
5342 page = find_get_page(mapping, pgoff);
5343 #else
5344 page = find_get_page(mapping, pgoff);
5345 #endif
5346 return page;
5347 }
5348
5349 /**
5350 * mem_cgroup_move_account - move account of the page
5351 * @page: the page
5352 * @compound: charge the page as compound or small page
5353 * @from: mem_cgroup which the page is moved from.
5354 * @to: mem_cgroup which the page is moved to. @from != @to.
5355 *
5356 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5357 *
5358 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5359 * from old cgroup.
5360 */
5361 static int mem_cgroup_move_account(struct page *page,
5362 bool compound,
5363 struct mem_cgroup *from,
5364 struct mem_cgroup *to)
5365 {
5366 struct lruvec *from_vec, *to_vec;
5367 struct pglist_data *pgdat;
5368 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5369 int ret;
5370
5371 VM_BUG_ON(from == to);
5372 VM_BUG_ON_PAGE(PageLRU(page), page);
5373 VM_BUG_ON(compound && !PageTransHuge(page));
5374
5375 /*
5376 * Prevent mem_cgroup_migrate() from looking at
5377 * page->mem_cgroup of its source page while we change it.
5378 */
5379 ret = -EBUSY;
5380 if (!trylock_page(page))
5381 goto out;
5382
5383 ret = -EINVAL;
5384 if (page->mem_cgroup != from)
5385 goto out_unlock;
5386
5387 pgdat = page_pgdat(page);
5388 from_vec = mem_cgroup_lruvec(from, pgdat);
5389 to_vec = mem_cgroup_lruvec(to, pgdat);
5390
5391 lock_page_memcg(page);
5392
5393 if (PageAnon(page)) {
5394 if (page_mapped(page)) {
5395 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5396 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5397 if (PageTransHuge(page)) {
5398 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5399 -nr_pages);
5400 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5401 nr_pages);
5402 }
5403
5404 }
5405 } else {
5406 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5407 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5408
5409 if (PageSwapBacked(page)) {
5410 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5411 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5412 }
5413
5414 if (page_mapped(page)) {
5415 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5416 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5417 }
5418
5419 if (PageDirty(page)) {
5420 struct address_space *mapping = page_mapping(page);
5421
5422 if (mapping_cap_account_dirty(mapping)) {
5423 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5424 -nr_pages);
5425 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5426 nr_pages);
5427 }
5428 }
5429 }
5430
5431 if (PageWriteback(page)) {
5432 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5433 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5434 }
5435
5436 /*
5437 * All state has been migrated, let's switch to the new memcg.
5438 *
5439 * It is safe to change page->mem_cgroup here because the page
5440 * is referenced, charged, isolated, and locked: we can't race
5441 * with (un)charging, migration, LRU putback, or anything else
5442 * that would rely on a stable page->mem_cgroup.
5443 *
5444 * Note that lock_page_memcg is a memcg lock, not a page lock,
5445 * to save space. As soon as we switch page->mem_cgroup to a
5446 * new memcg that isn't locked, the above state can change
5447 * concurrently again. Make sure we're truly done with it.
5448 */
5449 smp_mb();
5450
5451 page->mem_cgroup = to; /* caller should have done css_get */
5452
5453 __unlock_page_memcg(from);
5454
5455 ret = 0;
5456
5457 local_irq_disable();
5458 mem_cgroup_charge_statistics(to, page, nr_pages);
5459 memcg_check_events(to, page);
5460 mem_cgroup_charge_statistics(from, page, -nr_pages);
5461 memcg_check_events(from, page);
5462 local_irq_enable();
5463 out_unlock:
5464 unlock_page(page);
5465 out:
5466 return ret;
5467 }
5468
5469 /**
5470 * get_mctgt_type - get target type of moving charge
5471 * @vma: the vma the pte to be checked belongs
5472 * @addr: the address corresponding to the pte to be checked
5473 * @ptent: the pte to be checked
5474 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5475 *
5476 * Returns
5477 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5478 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5479 * move charge. if @target is not NULL, the page is stored in target->page
5480 * with extra refcnt got(Callers should handle it).
5481 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5482 * target for charge migration. if @target is not NULL, the entry is stored
5483 * in target->ent.
5484 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5485 * (so ZONE_DEVICE page and thus not on the lru).
5486 * For now we such page is charge like a regular page would be as for all
5487 * intent and purposes it is just special memory taking the place of a
5488 * regular page.
5489 *
5490 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5491 *
5492 * Called with pte lock held.
5493 */
5494
5495 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5496 unsigned long addr, pte_t ptent, union mc_target *target)
5497 {
5498 struct page *page = NULL;
5499 enum mc_target_type ret = MC_TARGET_NONE;
5500 swp_entry_t ent = { .val = 0 };
5501
5502 if (pte_present(ptent))
5503 page = mc_handle_present_pte(vma, addr, ptent);
5504 else if (is_swap_pte(ptent))
5505 page = mc_handle_swap_pte(vma, ptent, &ent);
5506 else if (pte_none(ptent))
5507 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5508
5509 if (!page && !ent.val)
5510 return ret;
5511 if (page) {
5512 /*
5513 * Do only loose check w/o serialization.
5514 * mem_cgroup_move_account() checks the page is valid or
5515 * not under LRU exclusion.
5516 */
5517 if (page->mem_cgroup == mc.from) {
5518 ret = MC_TARGET_PAGE;
5519 if (is_device_private_page(page))
5520 ret = MC_TARGET_DEVICE;
5521 if (target)
5522 target->page = page;
5523 }
5524 if (!ret || !target)
5525 put_page(page);
5526 }
5527 /*
5528 * There is a swap entry and a page doesn't exist or isn't charged.
5529 * But we cannot move a tail-page in a THP.
5530 */
5531 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5532 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5533 ret = MC_TARGET_SWAP;
5534 if (target)
5535 target->ent = ent;
5536 }
5537 return ret;
5538 }
5539
5540 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5541 /*
5542 * We don't consider PMD mapped swapping or file mapped pages because THP does
5543 * not support them for now.
5544 * Caller should make sure that pmd_trans_huge(pmd) is true.
5545 */
5546 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5547 unsigned long addr, pmd_t pmd, union mc_target *target)
5548 {
5549 struct page *page = NULL;
5550 enum mc_target_type ret = MC_TARGET_NONE;
5551
5552 if (unlikely(is_swap_pmd(pmd))) {
5553 VM_BUG_ON(thp_migration_supported() &&
5554 !is_pmd_migration_entry(pmd));
5555 return ret;
5556 }
5557 page = pmd_page(pmd);
5558 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5559 if (!(mc.flags & MOVE_ANON))
5560 return ret;
5561 if (page->mem_cgroup == mc.from) {
5562 ret = MC_TARGET_PAGE;
5563 if (target) {
5564 get_page(page);
5565 target->page = page;
5566 }
5567 }
5568 return ret;
5569 }
5570 #else
5571 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5572 unsigned long addr, pmd_t pmd, union mc_target *target)
5573 {
5574 return MC_TARGET_NONE;
5575 }
5576 #endif
5577
5578 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5579 unsigned long addr, unsigned long end,
5580 struct mm_walk *walk)
5581 {
5582 struct vm_area_struct *vma = walk->vma;
5583 pte_t *pte;
5584 spinlock_t *ptl;
5585
5586 ptl = pmd_trans_huge_lock(pmd, vma);
5587 if (ptl) {
5588 /*
5589 * Note their can not be MC_TARGET_DEVICE for now as we do not
5590 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5591 * this might change.
5592 */
5593 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5594 mc.precharge += HPAGE_PMD_NR;
5595 spin_unlock(ptl);
5596 return 0;
5597 }
5598
5599 if (pmd_trans_unstable(pmd))
5600 return 0;
5601 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5602 for (; addr != end; pte++, addr += PAGE_SIZE)
5603 if (get_mctgt_type(vma, addr, *pte, NULL))
5604 mc.precharge++; /* increment precharge temporarily */
5605 pte_unmap_unlock(pte - 1, ptl);
5606 cond_resched();
5607
5608 return 0;
5609 }
5610
5611 static const struct mm_walk_ops precharge_walk_ops = {
5612 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5613 };
5614
5615 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5616 {
5617 unsigned long precharge;
5618
5619 mmap_read_lock(mm);
5620 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5621 mmap_read_unlock(mm);
5622
5623 precharge = mc.precharge;
5624 mc.precharge = 0;
5625
5626 return precharge;
5627 }
5628
5629 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5630 {
5631 unsigned long precharge = mem_cgroup_count_precharge(mm);
5632
5633 VM_BUG_ON(mc.moving_task);
5634 mc.moving_task = current;
5635 return mem_cgroup_do_precharge(precharge);
5636 }
5637
5638 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5639 static void __mem_cgroup_clear_mc(void)
5640 {
5641 struct mem_cgroup *from = mc.from;
5642 struct mem_cgroup *to = mc.to;
5643
5644 /* we must uncharge all the leftover precharges from mc.to */
5645 if (mc.precharge) {
5646 cancel_charge(mc.to, mc.precharge);
5647 mc.precharge = 0;
5648 }
5649 /*
5650 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5651 * we must uncharge here.
5652 */
5653 if (mc.moved_charge) {
5654 cancel_charge(mc.from, mc.moved_charge);
5655 mc.moved_charge = 0;
5656 }
5657 /* we must fixup refcnts and charges */
5658 if (mc.moved_swap) {
5659 /* uncharge swap account from the old cgroup */
5660 if (!mem_cgroup_is_root(mc.from))
5661 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5662
5663 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5664
5665 /*
5666 * we charged both to->memory and to->memsw, so we
5667 * should uncharge to->memory.
5668 */
5669 if (!mem_cgroup_is_root(mc.to))
5670 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5671
5672 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5673 css_put_many(&mc.to->css, mc.moved_swap);
5674
5675 mc.moved_swap = 0;
5676 }
5677 memcg_oom_recover(from);
5678 memcg_oom_recover(to);
5679 wake_up_all(&mc.waitq);
5680 }
5681
5682 static void mem_cgroup_clear_mc(void)
5683 {
5684 struct mm_struct *mm = mc.mm;
5685
5686 /*
5687 * we must clear moving_task before waking up waiters at the end of
5688 * task migration.
5689 */
5690 mc.moving_task = NULL;
5691 __mem_cgroup_clear_mc();
5692 spin_lock(&mc.lock);
5693 mc.from = NULL;
5694 mc.to = NULL;
5695 mc.mm = NULL;
5696 spin_unlock(&mc.lock);
5697
5698 mmput(mm);
5699 }
5700
5701 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5702 {
5703 struct cgroup_subsys_state *css;
5704 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5705 struct mem_cgroup *from;
5706 struct task_struct *leader, *p;
5707 struct mm_struct *mm;
5708 unsigned long move_flags;
5709 int ret = 0;
5710
5711 /* charge immigration isn't supported on the default hierarchy */
5712 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5713 return 0;
5714
5715 /*
5716 * Multi-process migrations only happen on the default hierarchy
5717 * where charge immigration is not used. Perform charge
5718 * immigration if @tset contains a leader and whine if there are
5719 * multiple.
5720 */
5721 p = NULL;
5722 cgroup_taskset_for_each_leader(leader, css, tset) {
5723 WARN_ON_ONCE(p);
5724 p = leader;
5725 memcg = mem_cgroup_from_css(css);
5726 }
5727 if (!p)
5728 return 0;
5729
5730 /*
5731 * We are now commited to this value whatever it is. Changes in this
5732 * tunable will only affect upcoming migrations, not the current one.
5733 * So we need to save it, and keep it going.
5734 */
5735 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5736 if (!move_flags)
5737 return 0;
5738
5739 from = mem_cgroup_from_task(p);
5740
5741 VM_BUG_ON(from == memcg);
5742
5743 mm = get_task_mm(p);
5744 if (!mm)
5745 return 0;
5746 /* We move charges only when we move a owner of the mm */
5747 if (mm->owner == p) {
5748 VM_BUG_ON(mc.from);
5749 VM_BUG_ON(mc.to);
5750 VM_BUG_ON(mc.precharge);
5751 VM_BUG_ON(mc.moved_charge);
5752 VM_BUG_ON(mc.moved_swap);
5753
5754 spin_lock(&mc.lock);
5755 mc.mm = mm;
5756 mc.from = from;
5757 mc.to = memcg;
5758 mc.flags = move_flags;
5759 spin_unlock(&mc.lock);
5760 /* We set mc.moving_task later */
5761
5762 ret = mem_cgroup_precharge_mc(mm);
5763 if (ret)
5764 mem_cgroup_clear_mc();
5765 } else {
5766 mmput(mm);
5767 }
5768 return ret;
5769 }
5770
5771 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5772 {
5773 if (mc.to)
5774 mem_cgroup_clear_mc();
5775 }
5776
5777 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5778 unsigned long addr, unsigned long end,
5779 struct mm_walk *walk)
5780 {
5781 int ret = 0;
5782 struct vm_area_struct *vma = walk->vma;
5783 pte_t *pte;
5784 spinlock_t *ptl;
5785 enum mc_target_type target_type;
5786 union mc_target target;
5787 struct page *page;
5788
5789 ptl = pmd_trans_huge_lock(pmd, vma);
5790 if (ptl) {
5791 if (mc.precharge < HPAGE_PMD_NR) {
5792 spin_unlock(ptl);
5793 return 0;
5794 }
5795 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5796 if (target_type == MC_TARGET_PAGE) {
5797 page = target.page;
5798 if (!isolate_lru_page(page)) {
5799 if (!mem_cgroup_move_account(page, true,
5800 mc.from, mc.to)) {
5801 mc.precharge -= HPAGE_PMD_NR;
5802 mc.moved_charge += HPAGE_PMD_NR;
5803 }
5804 putback_lru_page(page);
5805 }
5806 put_page(page);
5807 } else if (target_type == MC_TARGET_DEVICE) {
5808 page = target.page;
5809 if (!mem_cgroup_move_account(page, true,
5810 mc.from, mc.to)) {
5811 mc.precharge -= HPAGE_PMD_NR;
5812 mc.moved_charge += HPAGE_PMD_NR;
5813 }
5814 put_page(page);
5815 }
5816 spin_unlock(ptl);
5817 return 0;
5818 }
5819
5820 if (pmd_trans_unstable(pmd))
5821 return 0;
5822 retry:
5823 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5824 for (; addr != end; addr += PAGE_SIZE) {
5825 pte_t ptent = *(pte++);
5826 bool device = false;
5827 swp_entry_t ent;
5828
5829 if (!mc.precharge)
5830 break;
5831
5832 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5833 case MC_TARGET_DEVICE:
5834 device = true;
5835 fallthrough;
5836 case MC_TARGET_PAGE:
5837 page = target.page;
5838 /*
5839 * We can have a part of the split pmd here. Moving it
5840 * can be done but it would be too convoluted so simply
5841 * ignore such a partial THP and keep it in original
5842 * memcg. There should be somebody mapping the head.
5843 */
5844 if (PageTransCompound(page))
5845 goto put;
5846 if (!device && isolate_lru_page(page))
5847 goto put;
5848 if (!mem_cgroup_move_account(page, false,
5849 mc.from, mc.to)) {
5850 mc.precharge--;
5851 /* we uncharge from mc.from later. */
5852 mc.moved_charge++;
5853 }
5854 if (!device)
5855 putback_lru_page(page);
5856 put: /* get_mctgt_type() gets the page */
5857 put_page(page);
5858 break;
5859 case MC_TARGET_SWAP:
5860 ent = target.ent;
5861 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5862 mc.precharge--;
5863 /* we fixup refcnts and charges later. */
5864 mc.moved_swap++;
5865 }
5866 break;
5867 default:
5868 break;
5869 }
5870 }
5871 pte_unmap_unlock(pte - 1, ptl);
5872 cond_resched();
5873
5874 if (addr != end) {
5875 /*
5876 * We have consumed all precharges we got in can_attach().
5877 * We try charge one by one, but don't do any additional
5878 * charges to mc.to if we have failed in charge once in attach()
5879 * phase.
5880 */
5881 ret = mem_cgroup_do_precharge(1);
5882 if (!ret)
5883 goto retry;
5884 }
5885
5886 return ret;
5887 }
5888
5889 static const struct mm_walk_ops charge_walk_ops = {
5890 .pmd_entry = mem_cgroup_move_charge_pte_range,
5891 };
5892
5893 static void mem_cgroup_move_charge(void)
5894 {
5895 lru_add_drain_all();
5896 /*
5897 * Signal lock_page_memcg() to take the memcg's move_lock
5898 * while we're moving its pages to another memcg. Then wait
5899 * for already started RCU-only updates to finish.
5900 */
5901 atomic_inc(&mc.from->moving_account);
5902 synchronize_rcu();
5903 retry:
5904 if (unlikely(!mmap_read_trylock(mc.mm))) {
5905 /*
5906 * Someone who are holding the mmap_lock might be waiting in
5907 * waitq. So we cancel all extra charges, wake up all waiters,
5908 * and retry. Because we cancel precharges, we might not be able
5909 * to move enough charges, but moving charge is a best-effort
5910 * feature anyway, so it wouldn't be a big problem.
5911 */
5912 __mem_cgroup_clear_mc();
5913 cond_resched();
5914 goto retry;
5915 }
5916 /*
5917 * When we have consumed all precharges and failed in doing
5918 * additional charge, the page walk just aborts.
5919 */
5920 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5921 NULL);
5922
5923 mmap_read_unlock(mc.mm);
5924 atomic_dec(&mc.from->moving_account);
5925 }
5926
5927 static void mem_cgroup_move_task(void)
5928 {
5929 if (mc.to) {
5930 mem_cgroup_move_charge();
5931 mem_cgroup_clear_mc();
5932 }
5933 }
5934 #else /* !CONFIG_MMU */
5935 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5936 {
5937 return 0;
5938 }
5939 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5940 {
5941 }
5942 static void mem_cgroup_move_task(void)
5943 {
5944 }
5945 #endif
5946
5947 /*
5948 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5949 * to verify whether we're attached to the default hierarchy on each mount
5950 * attempt.
5951 */
5952 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5953 {
5954 /*
5955 * use_hierarchy is forced on the default hierarchy. cgroup core
5956 * guarantees that @root doesn't have any children, so turning it
5957 * on for the root memcg is enough.
5958 */
5959 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5960 root_mem_cgroup->use_hierarchy = true;
5961 else
5962 root_mem_cgroup->use_hierarchy = false;
5963 }
5964
5965 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5966 {
5967 if (value == PAGE_COUNTER_MAX)
5968 seq_puts(m, "max\n");
5969 else
5970 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5971
5972 return 0;
5973 }
5974
5975 static u64 memory_current_read(struct cgroup_subsys_state *css,
5976 struct cftype *cft)
5977 {
5978 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5979
5980 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5981 }
5982
5983 static int memory_min_show(struct seq_file *m, void *v)
5984 {
5985 return seq_puts_memcg_tunable(m,
5986 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5987 }
5988
5989 static ssize_t memory_min_write(struct kernfs_open_file *of,
5990 char *buf, size_t nbytes, loff_t off)
5991 {
5992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5993 unsigned long min;
5994 int err;
5995
5996 buf = strstrip(buf);
5997 err = page_counter_memparse(buf, "max", &min);
5998 if (err)
5999 return err;
6000
6001 page_counter_set_min(&memcg->memory, min);
6002
6003 return nbytes;
6004 }
6005
6006 static int memory_low_show(struct seq_file *m, void *v)
6007 {
6008 return seq_puts_memcg_tunable(m,
6009 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6010 }
6011
6012 static ssize_t memory_low_write(struct kernfs_open_file *of,
6013 char *buf, size_t nbytes, loff_t off)
6014 {
6015 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6016 unsigned long low;
6017 int err;
6018
6019 buf = strstrip(buf);
6020 err = page_counter_memparse(buf, "max", &low);
6021 if (err)
6022 return err;
6023
6024 page_counter_set_low(&memcg->memory, low);
6025
6026 return nbytes;
6027 }
6028
6029 static int memory_high_show(struct seq_file *m, void *v)
6030 {
6031 return seq_puts_memcg_tunable(m,
6032 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6033 }
6034
6035 static ssize_t memory_high_write(struct kernfs_open_file *of,
6036 char *buf, size_t nbytes, loff_t off)
6037 {
6038 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6039 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6040 bool drained = false;
6041 unsigned long high;
6042 int err;
6043
6044 buf = strstrip(buf);
6045 err = page_counter_memparse(buf, "max", &high);
6046 if (err)
6047 return err;
6048
6049 page_counter_set_high(&memcg->memory, high);
6050
6051 for (;;) {
6052 unsigned long nr_pages = page_counter_read(&memcg->memory);
6053 unsigned long reclaimed;
6054
6055 if (nr_pages <= high)
6056 break;
6057
6058 if (signal_pending(current))
6059 break;
6060
6061 if (!drained) {
6062 drain_all_stock(memcg);
6063 drained = true;
6064 continue;
6065 }
6066
6067 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6068 GFP_KERNEL, true);
6069
6070 if (!reclaimed && !nr_retries--)
6071 break;
6072 }
6073
6074 return nbytes;
6075 }
6076
6077 static int memory_max_show(struct seq_file *m, void *v)
6078 {
6079 return seq_puts_memcg_tunable(m,
6080 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6081 }
6082
6083 static ssize_t memory_max_write(struct kernfs_open_file *of,
6084 char *buf, size_t nbytes, loff_t off)
6085 {
6086 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6087 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
6088 bool drained = false;
6089 unsigned long max;
6090 int err;
6091
6092 buf = strstrip(buf);
6093 err = page_counter_memparse(buf, "max", &max);
6094 if (err)
6095 return err;
6096
6097 xchg(&memcg->memory.max, max);
6098
6099 for (;;) {
6100 unsigned long nr_pages = page_counter_read(&memcg->memory);
6101
6102 if (nr_pages <= max)
6103 break;
6104
6105 if (signal_pending(current))
6106 break;
6107
6108 if (!drained) {
6109 drain_all_stock(memcg);
6110 drained = true;
6111 continue;
6112 }
6113
6114 if (nr_reclaims) {
6115 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6116 GFP_KERNEL, true))
6117 nr_reclaims--;
6118 continue;
6119 }
6120
6121 memcg_memory_event(memcg, MEMCG_OOM);
6122 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6123 break;
6124 }
6125
6126 memcg_wb_domain_size_changed(memcg);
6127 return nbytes;
6128 }
6129
6130 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6131 {
6132 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6133 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6134 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6135 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6136 seq_printf(m, "oom_kill %lu\n",
6137 atomic_long_read(&events[MEMCG_OOM_KILL]));
6138 }
6139
6140 static int memory_events_show(struct seq_file *m, void *v)
6141 {
6142 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6143
6144 __memory_events_show(m, memcg->memory_events);
6145 return 0;
6146 }
6147
6148 static int memory_events_local_show(struct seq_file *m, void *v)
6149 {
6150 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6151
6152 __memory_events_show(m, memcg->memory_events_local);
6153 return 0;
6154 }
6155
6156 static int memory_stat_show(struct seq_file *m, void *v)
6157 {
6158 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6159 char *buf;
6160
6161 buf = memory_stat_format(memcg);
6162 if (!buf)
6163 return -ENOMEM;
6164 seq_puts(m, buf);
6165 kfree(buf);
6166 return 0;
6167 }
6168
6169 static int memory_oom_group_show(struct seq_file *m, void *v)
6170 {
6171 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6172
6173 seq_printf(m, "%d\n", memcg->oom_group);
6174
6175 return 0;
6176 }
6177
6178 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6179 char *buf, size_t nbytes, loff_t off)
6180 {
6181 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6182 int ret, oom_group;
6183
6184 buf = strstrip(buf);
6185 if (!buf)
6186 return -EINVAL;
6187
6188 ret = kstrtoint(buf, 0, &oom_group);
6189 if (ret)
6190 return ret;
6191
6192 if (oom_group != 0 && oom_group != 1)
6193 return -EINVAL;
6194
6195 memcg->oom_group = oom_group;
6196
6197 return nbytes;
6198 }
6199
6200 static struct cftype memory_files[] = {
6201 {
6202 .name = "current",
6203 .flags = CFTYPE_NOT_ON_ROOT,
6204 .read_u64 = memory_current_read,
6205 },
6206 {
6207 .name = "min",
6208 .flags = CFTYPE_NOT_ON_ROOT,
6209 .seq_show = memory_min_show,
6210 .write = memory_min_write,
6211 },
6212 {
6213 .name = "low",
6214 .flags = CFTYPE_NOT_ON_ROOT,
6215 .seq_show = memory_low_show,
6216 .write = memory_low_write,
6217 },
6218 {
6219 .name = "high",
6220 .flags = CFTYPE_NOT_ON_ROOT,
6221 .seq_show = memory_high_show,
6222 .write = memory_high_write,
6223 },
6224 {
6225 .name = "max",
6226 .flags = CFTYPE_NOT_ON_ROOT,
6227 .seq_show = memory_max_show,
6228 .write = memory_max_write,
6229 },
6230 {
6231 .name = "events",
6232 .flags = CFTYPE_NOT_ON_ROOT,
6233 .file_offset = offsetof(struct mem_cgroup, events_file),
6234 .seq_show = memory_events_show,
6235 },
6236 {
6237 .name = "events.local",
6238 .flags = CFTYPE_NOT_ON_ROOT,
6239 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6240 .seq_show = memory_events_local_show,
6241 },
6242 {
6243 .name = "stat",
6244 .seq_show = memory_stat_show,
6245 },
6246 {
6247 .name = "oom.group",
6248 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6249 .seq_show = memory_oom_group_show,
6250 .write = memory_oom_group_write,
6251 },
6252 { } /* terminate */
6253 };
6254
6255 struct cgroup_subsys memory_cgrp_subsys = {
6256 .css_alloc = mem_cgroup_css_alloc,
6257 .css_online = mem_cgroup_css_online,
6258 .css_offline = mem_cgroup_css_offline,
6259 .css_released = mem_cgroup_css_released,
6260 .css_free = mem_cgroup_css_free,
6261 .css_reset = mem_cgroup_css_reset,
6262 .can_attach = mem_cgroup_can_attach,
6263 .cancel_attach = mem_cgroup_cancel_attach,
6264 .post_attach = mem_cgroup_move_task,
6265 .bind = mem_cgroup_bind,
6266 .dfl_cftypes = memory_files,
6267 .legacy_cftypes = mem_cgroup_legacy_files,
6268 .early_init = 0,
6269 };
6270
6271 /*
6272 * This function calculates an individual cgroup's effective
6273 * protection which is derived from its own memory.min/low, its
6274 * parent's and siblings' settings, as well as the actual memory
6275 * distribution in the tree.
6276 *
6277 * The following rules apply to the effective protection values:
6278 *
6279 * 1. At the first level of reclaim, effective protection is equal to
6280 * the declared protection in memory.min and memory.low.
6281 *
6282 * 2. To enable safe delegation of the protection configuration, at
6283 * subsequent levels the effective protection is capped to the
6284 * parent's effective protection.
6285 *
6286 * 3. To make complex and dynamic subtrees easier to configure, the
6287 * user is allowed to overcommit the declared protection at a given
6288 * level. If that is the case, the parent's effective protection is
6289 * distributed to the children in proportion to how much protection
6290 * they have declared and how much of it they are utilizing.
6291 *
6292 * This makes distribution proportional, but also work-conserving:
6293 * if one cgroup claims much more protection than it uses memory,
6294 * the unused remainder is available to its siblings.
6295 *
6296 * 4. Conversely, when the declared protection is undercommitted at a
6297 * given level, the distribution of the larger parental protection
6298 * budget is NOT proportional. A cgroup's protection from a sibling
6299 * is capped to its own memory.min/low setting.
6300 *
6301 * 5. However, to allow protecting recursive subtrees from each other
6302 * without having to declare each individual cgroup's fixed share
6303 * of the ancestor's claim to protection, any unutilized -
6304 * "floating" - protection from up the tree is distributed in
6305 * proportion to each cgroup's *usage*. This makes the protection
6306 * neutral wrt sibling cgroups and lets them compete freely over
6307 * the shared parental protection budget, but it protects the
6308 * subtree as a whole from neighboring subtrees.
6309 *
6310 * Note that 4. and 5. are not in conflict: 4. is about protecting
6311 * against immediate siblings whereas 5. is about protecting against
6312 * neighboring subtrees.
6313 */
6314 static unsigned long effective_protection(unsigned long usage,
6315 unsigned long parent_usage,
6316 unsigned long setting,
6317 unsigned long parent_effective,
6318 unsigned long siblings_protected)
6319 {
6320 unsigned long protected;
6321 unsigned long ep;
6322
6323 protected = min(usage, setting);
6324 /*
6325 * If all cgroups at this level combined claim and use more
6326 * protection then what the parent affords them, distribute
6327 * shares in proportion to utilization.
6328 *
6329 * We are using actual utilization rather than the statically
6330 * claimed protection in order to be work-conserving: claimed
6331 * but unused protection is available to siblings that would
6332 * otherwise get a smaller chunk than what they claimed.
6333 */
6334 if (siblings_protected > parent_effective)
6335 return protected * parent_effective / siblings_protected;
6336
6337 /*
6338 * Ok, utilized protection of all children is within what the
6339 * parent affords them, so we know whatever this child claims
6340 * and utilizes is effectively protected.
6341 *
6342 * If there is unprotected usage beyond this value, reclaim
6343 * will apply pressure in proportion to that amount.
6344 *
6345 * If there is unutilized protection, the cgroup will be fully
6346 * shielded from reclaim, but we do return a smaller value for
6347 * protection than what the group could enjoy in theory. This
6348 * is okay. With the overcommit distribution above, effective
6349 * protection is always dependent on how memory is actually
6350 * consumed among the siblings anyway.
6351 */
6352 ep = protected;
6353
6354 /*
6355 * If the children aren't claiming (all of) the protection
6356 * afforded to them by the parent, distribute the remainder in
6357 * proportion to the (unprotected) memory of each cgroup. That
6358 * way, cgroups that aren't explicitly prioritized wrt each
6359 * other compete freely over the allowance, but they are
6360 * collectively protected from neighboring trees.
6361 *
6362 * We're using unprotected memory for the weight so that if
6363 * some cgroups DO claim explicit protection, we don't protect
6364 * the same bytes twice.
6365 *
6366 * Check both usage and parent_usage against the respective
6367 * protected values. One should imply the other, but they
6368 * aren't read atomically - make sure the division is sane.
6369 */
6370 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6371 return ep;
6372 if (parent_effective > siblings_protected &&
6373 parent_usage > siblings_protected &&
6374 usage > protected) {
6375 unsigned long unclaimed;
6376
6377 unclaimed = parent_effective - siblings_protected;
6378 unclaimed *= usage - protected;
6379 unclaimed /= parent_usage - siblings_protected;
6380
6381 ep += unclaimed;
6382 }
6383
6384 return ep;
6385 }
6386
6387 /**
6388 * mem_cgroup_protected - check if memory consumption is in the normal range
6389 * @root: the top ancestor of the sub-tree being checked
6390 * @memcg: the memory cgroup to check
6391 *
6392 * WARNING: This function is not stateless! It can only be used as part
6393 * of a top-down tree iteration, not for isolated queries.
6394 *
6395 * Returns one of the following:
6396 * MEMCG_PROT_NONE: cgroup memory is not protected
6397 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6398 * an unprotected supply of reclaimable memory from other cgroups.
6399 * MEMCG_PROT_MIN: cgroup memory is protected
6400 */
6401 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6402 struct mem_cgroup *memcg)
6403 {
6404 unsigned long usage, parent_usage;
6405 struct mem_cgroup *parent;
6406
6407 if (mem_cgroup_disabled())
6408 return MEMCG_PROT_NONE;
6409
6410 if (!root)
6411 root = root_mem_cgroup;
6412 if (memcg == root)
6413 return MEMCG_PROT_NONE;
6414
6415 usage = page_counter_read(&memcg->memory);
6416 if (!usage)
6417 return MEMCG_PROT_NONE;
6418
6419 parent = parent_mem_cgroup(memcg);
6420 /* No parent means a non-hierarchical mode on v1 memcg */
6421 if (!parent)
6422 return MEMCG_PROT_NONE;
6423
6424 if (parent == root) {
6425 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6426 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6427 goto out;
6428 }
6429
6430 parent_usage = page_counter_read(&parent->memory);
6431
6432 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6433 READ_ONCE(memcg->memory.min),
6434 READ_ONCE(parent->memory.emin),
6435 atomic_long_read(&parent->memory.children_min_usage)));
6436
6437 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6438 READ_ONCE(memcg->memory.low),
6439 READ_ONCE(parent->memory.elow),
6440 atomic_long_read(&parent->memory.children_low_usage)));
6441
6442 out:
6443 if (usage <= memcg->memory.emin)
6444 return MEMCG_PROT_MIN;
6445 else if (usage <= memcg->memory.elow)
6446 return MEMCG_PROT_LOW;
6447 else
6448 return MEMCG_PROT_NONE;
6449 }
6450
6451 /**
6452 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6453 * @page: page to charge
6454 * @mm: mm context of the victim
6455 * @gfp_mask: reclaim mode
6456 *
6457 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6458 * pages according to @gfp_mask if necessary.
6459 *
6460 * Returns 0 on success. Otherwise, an error code is returned.
6461 */
6462 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6463 {
6464 unsigned int nr_pages = hpage_nr_pages(page);
6465 struct mem_cgroup *memcg = NULL;
6466 int ret = 0;
6467
6468 if (mem_cgroup_disabled())
6469 goto out;
6470
6471 if (PageSwapCache(page)) {
6472 swp_entry_t ent = { .val = page_private(page), };
6473 unsigned short id;
6474
6475 /*
6476 * Every swap fault against a single page tries to charge the
6477 * page, bail as early as possible. shmem_unuse() encounters
6478 * already charged pages, too. page->mem_cgroup is protected
6479 * by the page lock, which serializes swap cache removal, which
6480 * in turn serializes uncharging.
6481 */
6482 VM_BUG_ON_PAGE(!PageLocked(page), page);
6483 if (compound_head(page)->mem_cgroup)
6484 goto out;
6485
6486 id = lookup_swap_cgroup_id(ent);
6487 rcu_read_lock();
6488 memcg = mem_cgroup_from_id(id);
6489 if (memcg && !css_tryget_online(&memcg->css))
6490 memcg = NULL;
6491 rcu_read_unlock();
6492 }
6493
6494 if (!memcg)
6495 memcg = get_mem_cgroup_from_mm(mm);
6496
6497 ret = try_charge(memcg, gfp_mask, nr_pages);
6498 if (ret)
6499 goto out_put;
6500
6501 commit_charge(page, memcg);
6502
6503 local_irq_disable();
6504 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6505 memcg_check_events(memcg, page);
6506 local_irq_enable();
6507
6508 if (PageSwapCache(page)) {
6509 swp_entry_t entry = { .val = page_private(page) };
6510 /*
6511 * The swap entry might not get freed for a long time,
6512 * let's not wait for it. The page already received a
6513 * memory+swap charge, drop the swap entry duplicate.
6514 */
6515 mem_cgroup_uncharge_swap(entry, nr_pages);
6516 }
6517
6518 out_put:
6519 css_put(&memcg->css);
6520 out:
6521 return ret;
6522 }
6523
6524 struct uncharge_gather {
6525 struct mem_cgroup *memcg;
6526 unsigned long nr_pages;
6527 unsigned long pgpgout;
6528 unsigned long nr_kmem;
6529 struct page *dummy_page;
6530 };
6531
6532 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6533 {
6534 memset(ug, 0, sizeof(*ug));
6535 }
6536
6537 static void uncharge_batch(const struct uncharge_gather *ug)
6538 {
6539 unsigned long flags;
6540
6541 if (!mem_cgroup_is_root(ug->memcg)) {
6542 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6543 if (do_memsw_account())
6544 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6545 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6546 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6547 memcg_oom_recover(ug->memcg);
6548 }
6549
6550 local_irq_save(flags);
6551 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6552 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6553 memcg_check_events(ug->memcg, ug->dummy_page);
6554 local_irq_restore(flags);
6555
6556 if (!mem_cgroup_is_root(ug->memcg))
6557 css_put_many(&ug->memcg->css, ug->nr_pages);
6558 }
6559
6560 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6561 {
6562 unsigned long nr_pages;
6563
6564 VM_BUG_ON_PAGE(PageLRU(page), page);
6565
6566 if (!page->mem_cgroup)
6567 return;
6568
6569 /*
6570 * Nobody should be changing or seriously looking at
6571 * page->mem_cgroup at this point, we have fully
6572 * exclusive access to the page.
6573 */
6574
6575 if (ug->memcg != page->mem_cgroup) {
6576 if (ug->memcg) {
6577 uncharge_batch(ug);
6578 uncharge_gather_clear(ug);
6579 }
6580 ug->memcg = page->mem_cgroup;
6581 }
6582
6583 nr_pages = compound_nr(page);
6584 ug->nr_pages += nr_pages;
6585
6586 if (!PageKmemcg(page)) {
6587 ug->pgpgout++;
6588 } else {
6589 ug->nr_kmem += nr_pages;
6590 __ClearPageKmemcg(page);
6591 }
6592
6593 ug->dummy_page = page;
6594 page->mem_cgroup = NULL;
6595 }
6596
6597 static void uncharge_list(struct list_head *page_list)
6598 {
6599 struct uncharge_gather ug;
6600 struct list_head *next;
6601
6602 uncharge_gather_clear(&ug);
6603
6604 /*
6605 * Note that the list can be a single page->lru; hence the
6606 * do-while loop instead of a simple list_for_each_entry().
6607 */
6608 next = page_list->next;
6609 do {
6610 struct page *page;
6611
6612 page = list_entry(next, struct page, lru);
6613 next = page->lru.next;
6614
6615 uncharge_page(page, &ug);
6616 } while (next != page_list);
6617
6618 if (ug.memcg)
6619 uncharge_batch(&ug);
6620 }
6621
6622 /**
6623 * mem_cgroup_uncharge - uncharge a page
6624 * @page: page to uncharge
6625 *
6626 * Uncharge a page previously charged with mem_cgroup_charge().
6627 */
6628 void mem_cgroup_uncharge(struct page *page)
6629 {
6630 struct uncharge_gather ug;
6631
6632 if (mem_cgroup_disabled())
6633 return;
6634
6635 /* Don't touch page->lru of any random page, pre-check: */
6636 if (!page->mem_cgroup)
6637 return;
6638
6639 uncharge_gather_clear(&ug);
6640 uncharge_page(page, &ug);
6641 uncharge_batch(&ug);
6642 }
6643
6644 /**
6645 * mem_cgroup_uncharge_list - uncharge a list of page
6646 * @page_list: list of pages to uncharge
6647 *
6648 * Uncharge a list of pages previously charged with
6649 * mem_cgroup_charge().
6650 */
6651 void mem_cgroup_uncharge_list(struct list_head *page_list)
6652 {
6653 if (mem_cgroup_disabled())
6654 return;
6655
6656 if (!list_empty(page_list))
6657 uncharge_list(page_list);
6658 }
6659
6660 /**
6661 * mem_cgroup_migrate - charge a page's replacement
6662 * @oldpage: currently circulating page
6663 * @newpage: replacement page
6664 *
6665 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6666 * be uncharged upon free.
6667 *
6668 * Both pages must be locked, @newpage->mapping must be set up.
6669 */
6670 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6671 {
6672 struct mem_cgroup *memcg;
6673 unsigned int nr_pages;
6674 unsigned long flags;
6675
6676 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6677 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6678 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6679 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6680 newpage);
6681
6682 if (mem_cgroup_disabled())
6683 return;
6684
6685 /* Page cache replacement: new page already charged? */
6686 if (newpage->mem_cgroup)
6687 return;
6688
6689 /* Swapcache readahead pages can get replaced before being charged */
6690 memcg = oldpage->mem_cgroup;
6691 if (!memcg)
6692 return;
6693
6694 /* Force-charge the new page. The old one will be freed soon */
6695 nr_pages = hpage_nr_pages(newpage);
6696
6697 page_counter_charge(&memcg->memory, nr_pages);
6698 if (do_memsw_account())
6699 page_counter_charge(&memcg->memsw, nr_pages);
6700 css_get_many(&memcg->css, nr_pages);
6701
6702 commit_charge(newpage, memcg);
6703
6704 local_irq_save(flags);
6705 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6706 memcg_check_events(memcg, newpage);
6707 local_irq_restore(flags);
6708 }
6709
6710 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6711 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6712
6713 void mem_cgroup_sk_alloc(struct sock *sk)
6714 {
6715 struct mem_cgroup *memcg;
6716
6717 if (!mem_cgroup_sockets_enabled)
6718 return;
6719
6720 /* Do not associate the sock with unrelated interrupted task's memcg. */
6721 if (in_interrupt())
6722 return;
6723
6724 rcu_read_lock();
6725 memcg = mem_cgroup_from_task(current);
6726 if (memcg == root_mem_cgroup)
6727 goto out;
6728 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6729 goto out;
6730 if (css_tryget(&memcg->css))
6731 sk->sk_memcg = memcg;
6732 out:
6733 rcu_read_unlock();
6734 }
6735
6736 void mem_cgroup_sk_free(struct sock *sk)
6737 {
6738 if (sk->sk_memcg)
6739 css_put(&sk->sk_memcg->css);
6740 }
6741
6742 /**
6743 * mem_cgroup_charge_skmem - charge socket memory
6744 * @memcg: memcg to charge
6745 * @nr_pages: number of pages to charge
6746 *
6747 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6748 * @memcg's configured limit, %false if the charge had to be forced.
6749 */
6750 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6751 {
6752 gfp_t gfp_mask = GFP_KERNEL;
6753
6754 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6755 struct page_counter *fail;
6756
6757 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6758 memcg->tcpmem_pressure = 0;
6759 return true;
6760 }
6761 page_counter_charge(&memcg->tcpmem, nr_pages);
6762 memcg->tcpmem_pressure = 1;
6763 return false;
6764 }
6765
6766 /* Don't block in the packet receive path */
6767 if (in_softirq())
6768 gfp_mask = GFP_NOWAIT;
6769
6770 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6771
6772 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6773 return true;
6774
6775 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6776 return false;
6777 }
6778
6779 /**
6780 * mem_cgroup_uncharge_skmem - uncharge socket memory
6781 * @memcg: memcg to uncharge
6782 * @nr_pages: number of pages to uncharge
6783 */
6784 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6785 {
6786 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6787 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6788 return;
6789 }
6790
6791 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6792
6793 refill_stock(memcg, nr_pages);
6794 }
6795
6796 static int __init cgroup_memory(char *s)
6797 {
6798 char *token;
6799
6800 while ((token = strsep(&s, ",")) != NULL) {
6801 if (!*token)
6802 continue;
6803 if (!strcmp(token, "nosocket"))
6804 cgroup_memory_nosocket = true;
6805 if (!strcmp(token, "nokmem"))
6806 cgroup_memory_nokmem = true;
6807 }
6808 return 0;
6809 }
6810 __setup("cgroup.memory=", cgroup_memory);
6811
6812 /*
6813 * subsys_initcall() for memory controller.
6814 *
6815 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6816 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6817 * basically everything that doesn't depend on a specific mem_cgroup structure
6818 * should be initialized from here.
6819 */
6820 static int __init mem_cgroup_init(void)
6821 {
6822 int cpu, node;
6823
6824 #ifdef CONFIG_MEMCG_KMEM
6825 /*
6826 * Kmem cache creation is mostly done with the slab_mutex held,
6827 * so use a workqueue with limited concurrency to avoid stalling
6828 * all worker threads in case lots of cgroups are created and
6829 * destroyed simultaneously.
6830 */
6831 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6832 BUG_ON(!memcg_kmem_cache_wq);
6833 #endif
6834
6835 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6836 memcg_hotplug_cpu_dead);
6837
6838 for_each_possible_cpu(cpu)
6839 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6840 drain_local_stock);
6841
6842 for_each_node(node) {
6843 struct mem_cgroup_tree_per_node *rtpn;
6844
6845 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6846 node_online(node) ? node : NUMA_NO_NODE);
6847
6848 rtpn->rb_root = RB_ROOT;
6849 rtpn->rb_rightmost = NULL;
6850 spin_lock_init(&rtpn->lock);
6851 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6852 }
6853
6854 return 0;
6855 }
6856 subsys_initcall(mem_cgroup_init);
6857
6858 #ifdef CONFIG_MEMCG_SWAP
6859 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6860 {
6861 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6862 /*
6863 * The root cgroup cannot be destroyed, so it's refcount must
6864 * always be >= 1.
6865 */
6866 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6867 VM_BUG_ON(1);
6868 break;
6869 }
6870 memcg = parent_mem_cgroup(memcg);
6871 if (!memcg)
6872 memcg = root_mem_cgroup;
6873 }
6874 return memcg;
6875 }
6876
6877 /**
6878 * mem_cgroup_swapout - transfer a memsw charge to swap
6879 * @page: page whose memsw charge to transfer
6880 * @entry: swap entry to move the charge to
6881 *
6882 * Transfer the memsw charge of @page to @entry.
6883 */
6884 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6885 {
6886 struct mem_cgroup *memcg, *swap_memcg;
6887 unsigned int nr_entries;
6888 unsigned short oldid;
6889
6890 VM_BUG_ON_PAGE(PageLRU(page), page);
6891 VM_BUG_ON_PAGE(page_count(page), page);
6892
6893 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6894 return;
6895
6896 memcg = page->mem_cgroup;
6897
6898 /* Readahead page, never charged */
6899 if (!memcg)
6900 return;
6901
6902 /*
6903 * In case the memcg owning these pages has been offlined and doesn't
6904 * have an ID allocated to it anymore, charge the closest online
6905 * ancestor for the swap instead and transfer the memory+swap charge.
6906 */
6907 swap_memcg = mem_cgroup_id_get_online(memcg);
6908 nr_entries = hpage_nr_pages(page);
6909 /* Get references for the tail pages, too */
6910 if (nr_entries > 1)
6911 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6912 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6913 nr_entries);
6914 VM_BUG_ON_PAGE(oldid, page);
6915 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6916
6917 page->mem_cgroup = NULL;
6918
6919 if (!mem_cgroup_is_root(memcg))
6920 page_counter_uncharge(&memcg->memory, nr_entries);
6921
6922 if (!cgroup_memory_noswap && memcg != swap_memcg) {
6923 if (!mem_cgroup_is_root(swap_memcg))
6924 page_counter_charge(&swap_memcg->memsw, nr_entries);
6925 page_counter_uncharge(&memcg->memsw, nr_entries);
6926 }
6927
6928 /*
6929 * Interrupts should be disabled here because the caller holds the
6930 * i_pages lock which is taken with interrupts-off. It is
6931 * important here to have the interrupts disabled because it is the
6932 * only synchronisation we have for updating the per-CPU variables.
6933 */
6934 VM_BUG_ON(!irqs_disabled());
6935 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
6936 memcg_check_events(memcg, page);
6937
6938 if (!mem_cgroup_is_root(memcg))
6939 css_put_many(&memcg->css, nr_entries);
6940 }
6941
6942 /**
6943 * mem_cgroup_try_charge_swap - try charging swap space for a page
6944 * @page: page being added to swap
6945 * @entry: swap entry to charge
6946 *
6947 * Try to charge @page's memcg for the swap space at @entry.
6948 *
6949 * Returns 0 on success, -ENOMEM on failure.
6950 */
6951 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6952 {
6953 unsigned int nr_pages = hpage_nr_pages(page);
6954 struct page_counter *counter;
6955 struct mem_cgroup *memcg;
6956 unsigned short oldid;
6957
6958 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
6959 return 0;
6960
6961 memcg = page->mem_cgroup;
6962
6963 /* Readahead page, never charged */
6964 if (!memcg)
6965 return 0;
6966
6967 if (!entry.val) {
6968 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6969 return 0;
6970 }
6971
6972 memcg = mem_cgroup_id_get_online(memcg);
6973
6974 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
6975 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6976 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6977 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6978 mem_cgroup_id_put(memcg);
6979 return -ENOMEM;
6980 }
6981
6982 /* Get references for the tail pages, too */
6983 if (nr_pages > 1)
6984 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6985 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6986 VM_BUG_ON_PAGE(oldid, page);
6987 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6988
6989 return 0;
6990 }
6991
6992 /**
6993 * mem_cgroup_uncharge_swap - uncharge swap space
6994 * @entry: swap entry to uncharge
6995 * @nr_pages: the amount of swap space to uncharge
6996 */
6997 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6998 {
6999 struct mem_cgroup *memcg;
7000 unsigned short id;
7001
7002 id = swap_cgroup_record(entry, 0, nr_pages);
7003 rcu_read_lock();
7004 memcg = mem_cgroup_from_id(id);
7005 if (memcg) {
7006 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7007 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7008 page_counter_uncharge(&memcg->swap, nr_pages);
7009 else
7010 page_counter_uncharge(&memcg->memsw, nr_pages);
7011 }
7012 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7013 mem_cgroup_id_put_many(memcg, nr_pages);
7014 }
7015 rcu_read_unlock();
7016 }
7017
7018 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7019 {
7020 long nr_swap_pages = get_nr_swap_pages();
7021
7022 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7023 return nr_swap_pages;
7024 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7025 nr_swap_pages = min_t(long, nr_swap_pages,
7026 READ_ONCE(memcg->swap.max) -
7027 page_counter_read(&memcg->swap));
7028 return nr_swap_pages;
7029 }
7030
7031 bool mem_cgroup_swap_full(struct page *page)
7032 {
7033 struct mem_cgroup *memcg;
7034
7035 VM_BUG_ON_PAGE(!PageLocked(page), page);
7036
7037 if (vm_swap_full())
7038 return true;
7039 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7040 return false;
7041
7042 memcg = page->mem_cgroup;
7043 if (!memcg)
7044 return false;
7045
7046 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7047 unsigned long usage = page_counter_read(&memcg->swap);
7048
7049 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7050 usage * 2 >= READ_ONCE(memcg->swap.max))
7051 return true;
7052 }
7053
7054 return false;
7055 }
7056
7057 static int __init setup_swap_account(char *s)
7058 {
7059 if (!strcmp(s, "1"))
7060 cgroup_memory_noswap = 0;
7061 else if (!strcmp(s, "0"))
7062 cgroup_memory_noswap = 1;
7063 return 1;
7064 }
7065 __setup("swapaccount=", setup_swap_account);
7066
7067 static u64 swap_current_read(struct cgroup_subsys_state *css,
7068 struct cftype *cft)
7069 {
7070 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7071
7072 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7073 }
7074
7075 static int swap_high_show(struct seq_file *m, void *v)
7076 {
7077 return seq_puts_memcg_tunable(m,
7078 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7079 }
7080
7081 static ssize_t swap_high_write(struct kernfs_open_file *of,
7082 char *buf, size_t nbytes, loff_t off)
7083 {
7084 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7085 unsigned long high;
7086 int err;
7087
7088 buf = strstrip(buf);
7089 err = page_counter_memparse(buf, "max", &high);
7090 if (err)
7091 return err;
7092
7093 page_counter_set_high(&memcg->swap, high);
7094
7095 return nbytes;
7096 }
7097
7098 static int swap_max_show(struct seq_file *m, void *v)
7099 {
7100 return seq_puts_memcg_tunable(m,
7101 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7102 }
7103
7104 static ssize_t swap_max_write(struct kernfs_open_file *of,
7105 char *buf, size_t nbytes, loff_t off)
7106 {
7107 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7108 unsigned long max;
7109 int err;
7110
7111 buf = strstrip(buf);
7112 err = page_counter_memparse(buf, "max", &max);
7113 if (err)
7114 return err;
7115
7116 xchg(&memcg->swap.max, max);
7117
7118 return nbytes;
7119 }
7120
7121 static int swap_events_show(struct seq_file *m, void *v)
7122 {
7123 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7124
7125 seq_printf(m, "high %lu\n",
7126 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7127 seq_printf(m, "max %lu\n",
7128 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7129 seq_printf(m, "fail %lu\n",
7130 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7131
7132 return 0;
7133 }
7134
7135 static struct cftype swap_files[] = {
7136 {
7137 .name = "swap.current",
7138 .flags = CFTYPE_NOT_ON_ROOT,
7139 .read_u64 = swap_current_read,
7140 },
7141 {
7142 .name = "swap.high",
7143 .flags = CFTYPE_NOT_ON_ROOT,
7144 .seq_show = swap_high_show,
7145 .write = swap_high_write,
7146 },
7147 {
7148 .name = "swap.max",
7149 .flags = CFTYPE_NOT_ON_ROOT,
7150 .seq_show = swap_max_show,
7151 .write = swap_max_write,
7152 },
7153 {
7154 .name = "swap.events",
7155 .flags = CFTYPE_NOT_ON_ROOT,
7156 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7157 .seq_show = swap_events_show,
7158 },
7159 { } /* terminate */
7160 };
7161
7162 static struct cftype memsw_files[] = {
7163 {
7164 .name = "memsw.usage_in_bytes",
7165 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7166 .read_u64 = mem_cgroup_read_u64,
7167 },
7168 {
7169 .name = "memsw.max_usage_in_bytes",
7170 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7171 .write = mem_cgroup_reset,
7172 .read_u64 = mem_cgroup_read_u64,
7173 },
7174 {
7175 .name = "memsw.limit_in_bytes",
7176 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7177 .write = mem_cgroup_write,
7178 .read_u64 = mem_cgroup_read_u64,
7179 },
7180 {
7181 .name = "memsw.failcnt",
7182 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7183 .write = mem_cgroup_reset,
7184 .read_u64 = mem_cgroup_read_u64,
7185 },
7186 { }, /* terminate */
7187 };
7188
7189 static int __init mem_cgroup_swap_init(void)
7190 {
7191 /* No memory control -> no swap control */
7192 if (mem_cgroup_disabled())
7193 cgroup_memory_noswap = true;
7194
7195 if (cgroup_memory_noswap)
7196 return 0;
7197
7198 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7199 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7200
7201 return 0;
7202 }
7203 subsys_initcall(mem_cgroup_swap_init);
7204
7205 #endif /* CONFIG_MEMCG_SWAP */