]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
ntb_hw_switchtec: NT req id mapping table register entry number should be 512
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124 };
125
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136 };
137
138 /*
139 * cgroup_event represents events which userspace want to receive.
140 */
141 struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176 };
177
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181 /* Stuffs for move charges at task migration. */
182 /*
183 * Types of charges to be moved.
184 */
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205
206 /*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219 };
220
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228 };
229
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
235
236 static inline bool should_force_charge(void)
237 {
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248 }
249
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254
255 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
256 {
257 return (memcg == root_mem_cgroup);
258 }
259
260 #ifndef CONFIG_SLOB
261 /*
262 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
263 * The main reason for not using cgroup id for this:
264 * this works better in sparse environments, where we have a lot of memcgs,
265 * but only a few kmem-limited. Or also, if we have, for instance, 200
266 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
267 * 200 entry array for that.
268 *
269 * The current size of the caches array is stored in memcg_nr_cache_ids. It
270 * will double each time we have to increase it.
271 */
272 static DEFINE_IDA(memcg_cache_ida);
273 int memcg_nr_cache_ids;
274
275 /* Protects memcg_nr_cache_ids */
276 static DECLARE_RWSEM(memcg_cache_ids_sem);
277
278 void memcg_get_cache_ids(void)
279 {
280 down_read(&memcg_cache_ids_sem);
281 }
282
283 void memcg_put_cache_ids(void)
284 {
285 up_read(&memcg_cache_ids_sem);
286 }
287
288 /*
289 * MIN_SIZE is different than 1, because we would like to avoid going through
290 * the alloc/free process all the time. In a small machine, 4 kmem-limited
291 * cgroups is a reasonable guess. In the future, it could be a parameter or
292 * tunable, but that is strictly not necessary.
293 *
294 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
295 * this constant directly from cgroup, but it is understandable that this is
296 * better kept as an internal representation in cgroup.c. In any case, the
297 * cgrp_id space is not getting any smaller, and we don't have to necessarily
298 * increase ours as well if it increases.
299 */
300 #define MEMCG_CACHES_MIN_SIZE 4
301 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
302
303 /*
304 * A lot of the calls to the cache allocation functions are expected to be
305 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
306 * conditional to this static branch, we'll have to allow modules that does
307 * kmem_cache_alloc and the such to see this symbol as well
308 */
309 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
310 EXPORT_SYMBOL(memcg_kmem_enabled_key);
311
312 struct workqueue_struct *memcg_kmem_cache_wq;
313
314 #endif /* !CONFIG_SLOB */
315
316 /**
317 * mem_cgroup_css_from_page - css of the memcg associated with a page
318 * @page: page of interest
319 *
320 * If memcg is bound to the default hierarchy, css of the memcg associated
321 * with @page is returned. The returned css remains associated with @page
322 * until it is released.
323 *
324 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
325 * is returned.
326 */
327 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
328 {
329 struct mem_cgroup *memcg;
330
331 memcg = page->mem_cgroup;
332
333 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
334 memcg = root_mem_cgroup;
335
336 return &memcg->css;
337 }
338
339 /**
340 * page_cgroup_ino - return inode number of the memcg a page is charged to
341 * @page: the page
342 *
343 * Look up the closest online ancestor of the memory cgroup @page is charged to
344 * and return its inode number or 0 if @page is not charged to any cgroup. It
345 * is safe to call this function without holding a reference to @page.
346 *
347 * Note, this function is inherently racy, because there is nothing to prevent
348 * the cgroup inode from getting torn down and potentially reallocated a moment
349 * after page_cgroup_ino() returns, so it only should be used by callers that
350 * do not care (such as procfs interfaces).
351 */
352 ino_t page_cgroup_ino(struct page *page)
353 {
354 struct mem_cgroup *memcg;
355 unsigned long ino = 0;
356
357 rcu_read_lock();
358 memcg = READ_ONCE(page->mem_cgroup);
359 while (memcg && !(memcg->css.flags & CSS_ONLINE))
360 memcg = parent_mem_cgroup(memcg);
361 if (memcg)
362 ino = cgroup_ino(memcg->css.cgroup);
363 rcu_read_unlock();
364 return ino;
365 }
366
367 static struct mem_cgroup_per_node *
368 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
369 {
370 int nid = page_to_nid(page);
371
372 return memcg->nodeinfo[nid];
373 }
374
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_node(int nid)
377 {
378 return soft_limit_tree.rb_tree_per_node[nid];
379 }
380
381 static struct mem_cgroup_tree_per_node *
382 soft_limit_tree_from_page(struct page *page)
383 {
384 int nid = page_to_nid(page);
385
386 return soft_limit_tree.rb_tree_per_node[nid];
387 }
388
389 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
390 struct mem_cgroup_tree_per_node *mctz,
391 unsigned long new_usage_in_excess)
392 {
393 struct rb_node **p = &mctz->rb_root.rb_node;
394 struct rb_node *parent = NULL;
395 struct mem_cgroup_per_node *mz_node;
396 bool rightmost = true;
397
398 if (mz->on_tree)
399 return;
400
401 mz->usage_in_excess = new_usage_in_excess;
402 if (!mz->usage_in_excess)
403 return;
404 while (*p) {
405 parent = *p;
406 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
407 tree_node);
408 if (mz->usage_in_excess < mz_node->usage_in_excess) {
409 p = &(*p)->rb_left;
410 rightmost = false;
411 }
412
413 /*
414 * We can't avoid mem cgroups that are over their soft
415 * limit by the same amount
416 */
417 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
418 p = &(*p)->rb_right;
419 }
420
421 if (rightmost)
422 mctz->rb_rightmost = &mz->tree_node;
423
424 rb_link_node(&mz->tree_node, parent, p);
425 rb_insert_color(&mz->tree_node, &mctz->rb_root);
426 mz->on_tree = true;
427 }
428
429 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
430 struct mem_cgroup_tree_per_node *mctz)
431 {
432 if (!mz->on_tree)
433 return;
434
435 if (&mz->tree_node == mctz->rb_rightmost)
436 mctz->rb_rightmost = rb_prev(&mz->tree_node);
437
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
440 }
441
442 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
443 struct mem_cgroup_tree_per_node *mctz)
444 {
445 unsigned long flags;
446
447 spin_lock_irqsave(&mctz->lock, flags);
448 __mem_cgroup_remove_exceeded(mz, mctz);
449 spin_unlock_irqrestore(&mctz->lock, flags);
450 }
451
452 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
453 {
454 unsigned long nr_pages = page_counter_read(&memcg->memory);
455 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
456 unsigned long excess = 0;
457
458 if (nr_pages > soft_limit)
459 excess = nr_pages - soft_limit;
460
461 return excess;
462 }
463
464 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
465 {
466 unsigned long excess;
467 struct mem_cgroup_per_node *mz;
468 struct mem_cgroup_tree_per_node *mctz;
469
470 mctz = soft_limit_tree_from_page(page);
471 if (!mctz)
472 return;
473 /*
474 * Necessary to update all ancestors when hierarchy is used.
475 * because their event counter is not touched.
476 */
477 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
478 mz = mem_cgroup_page_nodeinfo(memcg, page);
479 excess = soft_limit_excess(memcg);
480 /*
481 * We have to update the tree if mz is on RB-tree or
482 * mem is over its softlimit.
483 */
484 if (excess || mz->on_tree) {
485 unsigned long flags;
486
487 spin_lock_irqsave(&mctz->lock, flags);
488 /* if on-tree, remove it */
489 if (mz->on_tree)
490 __mem_cgroup_remove_exceeded(mz, mctz);
491 /*
492 * Insert again. mz->usage_in_excess will be updated.
493 * If excess is 0, no tree ops.
494 */
495 __mem_cgroup_insert_exceeded(mz, mctz, excess);
496 spin_unlock_irqrestore(&mctz->lock, flags);
497 }
498 }
499 }
500
501 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
502 {
503 struct mem_cgroup_tree_per_node *mctz;
504 struct mem_cgroup_per_node *mz;
505 int nid;
506
507 for_each_node(nid) {
508 mz = mem_cgroup_nodeinfo(memcg, nid);
509 mctz = soft_limit_tree_node(nid);
510 if (mctz)
511 mem_cgroup_remove_exceeded(mz, mctz);
512 }
513 }
514
515 static struct mem_cgroup_per_node *
516 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
517 {
518 struct mem_cgroup_per_node *mz;
519
520 retry:
521 mz = NULL;
522 if (!mctz->rb_rightmost)
523 goto done; /* Nothing to reclaim from */
524
525 mz = rb_entry(mctz->rb_rightmost,
526 struct mem_cgroup_per_node, tree_node);
527 /*
528 * Remove the node now but someone else can add it back,
529 * we will to add it back at the end of reclaim to its correct
530 * position in the tree.
531 */
532 __mem_cgroup_remove_exceeded(mz, mctz);
533 if (!soft_limit_excess(mz->memcg) ||
534 !css_tryget_online(&mz->memcg->css))
535 goto retry;
536 done:
537 return mz;
538 }
539
540 static struct mem_cgroup_per_node *
541 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
542 {
543 struct mem_cgroup_per_node *mz;
544
545 spin_lock_irq(&mctz->lock);
546 mz = __mem_cgroup_largest_soft_limit_node(mctz);
547 spin_unlock_irq(&mctz->lock);
548 return mz;
549 }
550
551 /*
552 * Return page count for single (non recursive) @memcg.
553 *
554 * Implementation Note: reading percpu statistics for memcg.
555 *
556 * Both of vmstat[] and percpu_counter has threshold and do periodic
557 * synchronization to implement "quick" read. There are trade-off between
558 * reading cost and precision of value. Then, we may have a chance to implement
559 * a periodic synchronization of counter in memcg's counter.
560 *
561 * But this _read() function is used for user interface now. The user accounts
562 * memory usage by memory cgroup and he _always_ requires exact value because
563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564 * have to visit all online cpus and make sum. So, for now, unnecessary
565 * synchronization is not implemented. (just implemented for cpu hotplug)
566 *
567 * If there are kernel internal actions which can make use of some not-exact
568 * value, and reading all cpu value can be performance bottleneck in some
569 * common workload, threshold and synchronization as vmstat[] should be
570 * implemented.
571 *
572 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
573 */
574
575 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
576 int event)
577 {
578 unsigned long val = 0;
579 int cpu;
580
581 for_each_possible_cpu(cpu)
582 val += per_cpu(memcg->stat->events[event], cpu);
583 return val;
584 }
585
586 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
587 struct page *page,
588 bool compound, int nr_pages)
589 {
590 /*
591 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
592 * counted as CACHE even if it's on ANON LRU.
593 */
594 if (PageAnon(page))
595 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
596 else {
597 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
598 if (PageSwapBacked(page))
599 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
600 }
601
602 if (compound) {
603 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
604 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
605 }
606
607 /* pagein of a big page is an event. So, ignore page size */
608 if (nr_pages > 0)
609 __this_cpu_inc(memcg->stat->events[PGPGIN]);
610 else {
611 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
612 nr_pages = -nr_pages; /* for event */
613 }
614
615 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
616 }
617
618 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
619 int nid, unsigned int lru_mask)
620 {
621 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
622 unsigned long nr = 0;
623 enum lru_list lru;
624
625 VM_BUG_ON((unsigned)nid >= nr_node_ids);
626
627 for_each_lru(lru) {
628 if (!(BIT(lru) & lru_mask))
629 continue;
630 nr += mem_cgroup_get_lru_size(lruvec, lru);
631 }
632 return nr;
633 }
634
635 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
636 unsigned int lru_mask)
637 {
638 unsigned long nr = 0;
639 int nid;
640
641 for_each_node_state(nid, N_MEMORY)
642 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
643 return nr;
644 }
645
646 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
647 enum mem_cgroup_events_target target)
648 {
649 unsigned long val, next;
650
651 val = __this_cpu_read(memcg->stat->nr_page_events);
652 next = __this_cpu_read(memcg->stat->targets[target]);
653 /* from time_after() in jiffies.h */
654 if ((long)(next - val) < 0) {
655 switch (target) {
656 case MEM_CGROUP_TARGET_THRESH:
657 next = val + THRESHOLDS_EVENTS_TARGET;
658 break;
659 case MEM_CGROUP_TARGET_SOFTLIMIT:
660 next = val + SOFTLIMIT_EVENTS_TARGET;
661 break;
662 case MEM_CGROUP_TARGET_NUMAINFO:
663 next = val + NUMAINFO_EVENTS_TARGET;
664 break;
665 default:
666 break;
667 }
668 __this_cpu_write(memcg->stat->targets[target], next);
669 return true;
670 }
671 return false;
672 }
673
674 /*
675 * Check events in order.
676 *
677 */
678 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
679 {
680 /* threshold event is triggered in finer grain than soft limit */
681 if (unlikely(mem_cgroup_event_ratelimit(memcg,
682 MEM_CGROUP_TARGET_THRESH))) {
683 bool do_softlimit;
684 bool do_numainfo __maybe_unused;
685
686 do_softlimit = mem_cgroup_event_ratelimit(memcg,
687 MEM_CGROUP_TARGET_SOFTLIMIT);
688 #if MAX_NUMNODES > 1
689 do_numainfo = mem_cgroup_event_ratelimit(memcg,
690 MEM_CGROUP_TARGET_NUMAINFO);
691 #endif
692 mem_cgroup_threshold(memcg);
693 if (unlikely(do_softlimit))
694 mem_cgroup_update_tree(memcg, page);
695 #if MAX_NUMNODES > 1
696 if (unlikely(do_numainfo))
697 atomic_inc(&memcg->numainfo_events);
698 #endif
699 }
700 }
701
702 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
703 {
704 /*
705 * mm_update_next_owner() may clear mm->owner to NULL
706 * if it races with swapoff, page migration, etc.
707 * So this can be called with p == NULL.
708 */
709 if (unlikely(!p))
710 return NULL;
711
712 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
713 }
714 EXPORT_SYMBOL(mem_cgroup_from_task);
715
716 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
717 {
718 struct mem_cgroup *memcg = NULL;
719
720 rcu_read_lock();
721 do {
722 /*
723 * Page cache insertions can happen withou an
724 * actual mm context, e.g. during disk probing
725 * on boot, loopback IO, acct() writes etc.
726 */
727 if (unlikely(!mm))
728 memcg = root_mem_cgroup;
729 else {
730 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
731 if (unlikely(!memcg))
732 memcg = root_mem_cgroup;
733 }
734 } while (!css_tryget(&memcg->css));
735 rcu_read_unlock();
736 return memcg;
737 }
738
739 /**
740 * mem_cgroup_iter - iterate over memory cgroup hierarchy
741 * @root: hierarchy root
742 * @prev: previously returned memcg, NULL on first invocation
743 * @reclaim: cookie for shared reclaim walks, NULL for full walks
744 *
745 * Returns references to children of the hierarchy below @root, or
746 * @root itself, or %NULL after a full round-trip.
747 *
748 * Caller must pass the return value in @prev on subsequent
749 * invocations for reference counting, or use mem_cgroup_iter_break()
750 * to cancel a hierarchy walk before the round-trip is complete.
751 *
752 * Reclaimers can specify a zone and a priority level in @reclaim to
753 * divide up the memcgs in the hierarchy among all concurrent
754 * reclaimers operating on the same zone and priority.
755 */
756 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
757 struct mem_cgroup *prev,
758 struct mem_cgroup_reclaim_cookie *reclaim)
759 {
760 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
761 struct cgroup_subsys_state *css = NULL;
762 struct mem_cgroup *memcg = NULL;
763 struct mem_cgroup *pos = NULL;
764
765 if (mem_cgroup_disabled())
766 return NULL;
767
768 if (!root)
769 root = root_mem_cgroup;
770
771 if (prev && !reclaim)
772 pos = prev;
773
774 if (!root->use_hierarchy && root != root_mem_cgroup) {
775 if (prev)
776 goto out;
777 return root;
778 }
779
780 rcu_read_lock();
781
782 if (reclaim) {
783 struct mem_cgroup_per_node *mz;
784
785 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
786 iter = &mz->iter[reclaim->priority];
787
788 if (prev && reclaim->generation != iter->generation)
789 goto out_unlock;
790
791 while (1) {
792 pos = READ_ONCE(iter->position);
793 if (!pos || css_tryget(&pos->css))
794 break;
795 /*
796 * css reference reached zero, so iter->position will
797 * be cleared by ->css_released. However, we should not
798 * rely on this happening soon, because ->css_released
799 * is called from a work queue, and by busy-waiting we
800 * might block it. So we clear iter->position right
801 * away.
802 */
803 (void)cmpxchg(&iter->position, pos, NULL);
804 }
805 }
806
807 if (pos)
808 css = &pos->css;
809
810 for (;;) {
811 css = css_next_descendant_pre(css, &root->css);
812 if (!css) {
813 /*
814 * Reclaimers share the hierarchy walk, and a
815 * new one might jump in right at the end of
816 * the hierarchy - make sure they see at least
817 * one group and restart from the beginning.
818 */
819 if (!prev)
820 continue;
821 break;
822 }
823
824 /*
825 * Verify the css and acquire a reference. The root
826 * is provided by the caller, so we know it's alive
827 * and kicking, and don't take an extra reference.
828 */
829 memcg = mem_cgroup_from_css(css);
830
831 if (css == &root->css)
832 break;
833
834 if (css_tryget(css))
835 break;
836
837 memcg = NULL;
838 }
839
840 if (reclaim) {
841 /*
842 * The position could have already been updated by a competing
843 * thread, so check that the value hasn't changed since we read
844 * it to avoid reclaiming from the same cgroup twice.
845 */
846 (void)cmpxchg(&iter->position, pos, memcg);
847
848 if (pos)
849 css_put(&pos->css);
850
851 if (!memcg)
852 iter->generation++;
853 else if (!prev)
854 reclaim->generation = iter->generation;
855 }
856
857 out_unlock:
858 rcu_read_unlock();
859 out:
860 if (prev && prev != root)
861 css_put(&prev->css);
862
863 return memcg;
864 }
865
866 /**
867 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
868 * @root: hierarchy root
869 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
870 */
871 void mem_cgroup_iter_break(struct mem_cgroup *root,
872 struct mem_cgroup *prev)
873 {
874 if (!root)
875 root = root_mem_cgroup;
876 if (prev && prev != root)
877 css_put(&prev->css);
878 }
879
880 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
881 struct mem_cgroup *dead_memcg)
882 {
883 struct mem_cgroup_reclaim_iter *iter;
884 struct mem_cgroup_per_node *mz;
885 int nid;
886 int i;
887
888 for_each_node(nid) {
889 mz = mem_cgroup_nodeinfo(from, nid);
890 for (i = 0; i <= DEF_PRIORITY; i++) {
891 iter = &mz->iter[i];
892 cmpxchg(&iter->position,
893 dead_memcg, NULL);
894 }
895 }
896 }
897
898 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
899 {
900 struct mem_cgroup *memcg = dead_memcg;
901 struct mem_cgroup *last;
902
903 do {
904 __invalidate_reclaim_iterators(memcg, dead_memcg);
905 last = memcg;
906 } while ((memcg = parent_mem_cgroup(memcg)));
907
908 /*
909 * When cgruop1 non-hierarchy mode is used,
910 * parent_mem_cgroup() does not walk all the way up to the
911 * cgroup root (root_mem_cgroup). So we have to handle
912 * dead_memcg from cgroup root separately.
913 */
914 if (last != root_mem_cgroup)
915 __invalidate_reclaim_iterators(root_mem_cgroup,
916 dead_memcg);
917 }
918
919 /*
920 * Iteration constructs for visiting all cgroups (under a tree). If
921 * loops are exited prematurely (break), mem_cgroup_iter_break() must
922 * be used for reference counting.
923 */
924 #define for_each_mem_cgroup_tree(iter, root) \
925 for (iter = mem_cgroup_iter(root, NULL, NULL); \
926 iter != NULL; \
927 iter = mem_cgroup_iter(root, iter, NULL))
928
929 #define for_each_mem_cgroup(iter) \
930 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
931 iter != NULL; \
932 iter = mem_cgroup_iter(NULL, iter, NULL))
933
934 /**
935 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
936 * @memcg: hierarchy root
937 * @fn: function to call for each task
938 * @arg: argument passed to @fn
939 *
940 * This function iterates over tasks attached to @memcg or to any of its
941 * descendants and calls @fn for each task. If @fn returns a non-zero
942 * value, the function breaks the iteration loop and returns the value.
943 * Otherwise, it will iterate over all tasks and return 0.
944 *
945 * This function must not be called for the root memory cgroup.
946 */
947 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
948 int (*fn)(struct task_struct *, void *), void *arg)
949 {
950 struct mem_cgroup *iter;
951 int ret = 0;
952
953 BUG_ON(memcg == root_mem_cgroup);
954
955 for_each_mem_cgroup_tree(iter, memcg) {
956 struct css_task_iter it;
957 struct task_struct *task;
958
959 css_task_iter_start(&iter->css, 0, &it);
960 while (!ret && (task = css_task_iter_next(&it)))
961 ret = fn(task, arg);
962 css_task_iter_end(&it);
963 if (ret) {
964 mem_cgroup_iter_break(memcg, iter);
965 break;
966 }
967 }
968 return ret;
969 }
970
971 /**
972 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
973 * @page: the page
974 * @zone: zone of the page
975 *
976 * This function is only safe when following the LRU page isolation
977 * and putback protocol: the LRU lock must be held, and the page must
978 * either be PageLRU() or the caller must have isolated/allocated it.
979 */
980 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
981 {
982 struct mem_cgroup_per_node *mz;
983 struct mem_cgroup *memcg;
984 struct lruvec *lruvec;
985
986 if (mem_cgroup_disabled()) {
987 lruvec = &pgdat->lruvec;
988 goto out;
989 }
990
991 memcg = page->mem_cgroup;
992 /*
993 * Swapcache readahead pages are added to the LRU - and
994 * possibly migrated - before they are charged.
995 */
996 if (!memcg)
997 memcg = root_mem_cgroup;
998
999 mz = mem_cgroup_page_nodeinfo(memcg, page);
1000 lruvec = &mz->lruvec;
1001 out:
1002 /*
1003 * Since a node can be onlined after the mem_cgroup was created,
1004 * we have to be prepared to initialize lruvec->zone here;
1005 * and if offlined then reonlined, we need to reinitialize it.
1006 */
1007 if (unlikely(lruvec->pgdat != pgdat))
1008 lruvec->pgdat = pgdat;
1009 return lruvec;
1010 }
1011
1012 /**
1013 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1014 * @lruvec: mem_cgroup per zone lru vector
1015 * @lru: index of lru list the page is sitting on
1016 * @zid: zone id of the accounted pages
1017 * @nr_pages: positive when adding or negative when removing
1018 *
1019 * This function must be called under lru_lock, just before a page is added
1020 * to or just after a page is removed from an lru list (that ordering being
1021 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1022 */
1023 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1024 int zid, int nr_pages)
1025 {
1026 struct mem_cgroup_per_node *mz;
1027 unsigned long *lru_size;
1028 long size;
1029
1030 if (mem_cgroup_disabled())
1031 return;
1032
1033 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1034 lru_size = &mz->lru_zone_size[zid][lru];
1035
1036 if (nr_pages < 0)
1037 *lru_size += nr_pages;
1038
1039 size = *lru_size;
1040 if (WARN_ONCE(size < 0,
1041 "%s(%p, %d, %d): lru_size %ld\n",
1042 __func__, lruvec, lru, nr_pages, size)) {
1043 VM_BUG_ON(1);
1044 *lru_size = 0;
1045 }
1046
1047 if (nr_pages > 0)
1048 *lru_size += nr_pages;
1049 }
1050
1051 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1052 {
1053 struct mem_cgroup *task_memcg;
1054 struct task_struct *p;
1055 bool ret;
1056
1057 p = find_lock_task_mm(task);
1058 if (p) {
1059 task_memcg = get_mem_cgroup_from_mm(p->mm);
1060 task_unlock(p);
1061 } else {
1062 /*
1063 * All threads may have already detached their mm's, but the oom
1064 * killer still needs to detect if they have already been oom
1065 * killed to prevent needlessly killing additional tasks.
1066 */
1067 rcu_read_lock();
1068 task_memcg = mem_cgroup_from_task(task);
1069 css_get(&task_memcg->css);
1070 rcu_read_unlock();
1071 }
1072 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1073 css_put(&task_memcg->css);
1074 return ret;
1075 }
1076
1077 /**
1078 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1079 * @memcg: the memory cgroup
1080 *
1081 * Returns the maximum amount of memory @mem can be charged with, in
1082 * pages.
1083 */
1084 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1085 {
1086 unsigned long margin = 0;
1087 unsigned long count;
1088 unsigned long limit;
1089
1090 count = page_counter_read(&memcg->memory);
1091 limit = READ_ONCE(memcg->memory.limit);
1092 if (count < limit)
1093 margin = limit - count;
1094
1095 if (do_memsw_account()) {
1096 count = page_counter_read(&memcg->memsw);
1097 limit = READ_ONCE(memcg->memsw.limit);
1098 if (count <= limit)
1099 margin = min(margin, limit - count);
1100 else
1101 margin = 0;
1102 }
1103
1104 return margin;
1105 }
1106
1107 /*
1108 * A routine for checking "mem" is under move_account() or not.
1109 *
1110 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1111 * moving cgroups. This is for waiting at high-memory pressure
1112 * caused by "move".
1113 */
1114 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1115 {
1116 struct mem_cgroup *from;
1117 struct mem_cgroup *to;
1118 bool ret = false;
1119 /*
1120 * Unlike task_move routines, we access mc.to, mc.from not under
1121 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1122 */
1123 spin_lock(&mc.lock);
1124 from = mc.from;
1125 to = mc.to;
1126 if (!from)
1127 goto unlock;
1128
1129 ret = mem_cgroup_is_descendant(from, memcg) ||
1130 mem_cgroup_is_descendant(to, memcg);
1131 unlock:
1132 spin_unlock(&mc.lock);
1133 return ret;
1134 }
1135
1136 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1137 {
1138 if (mc.moving_task && current != mc.moving_task) {
1139 if (mem_cgroup_under_move(memcg)) {
1140 DEFINE_WAIT(wait);
1141 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1142 /* moving charge context might have finished. */
1143 if (mc.moving_task)
1144 schedule();
1145 finish_wait(&mc.waitq, &wait);
1146 return true;
1147 }
1148 }
1149 return false;
1150 }
1151
1152 unsigned int memcg1_stats[] = {
1153 MEMCG_CACHE,
1154 MEMCG_RSS,
1155 MEMCG_RSS_HUGE,
1156 NR_SHMEM,
1157 NR_FILE_MAPPED,
1158 NR_FILE_DIRTY,
1159 NR_WRITEBACK,
1160 MEMCG_SWAP,
1161 };
1162
1163 static const char *const memcg1_stat_names[] = {
1164 "cache",
1165 "rss",
1166 "rss_huge",
1167 "shmem",
1168 "mapped_file",
1169 "dirty",
1170 "writeback",
1171 "swap",
1172 };
1173
1174 #define K(x) ((x) << (PAGE_SHIFT-10))
1175 /**
1176 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1177 * @memcg: The memory cgroup that went over limit
1178 * @p: Task that is going to be killed
1179 *
1180 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1181 * enabled
1182 */
1183 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1184 {
1185 struct mem_cgroup *iter;
1186 unsigned int i;
1187
1188 rcu_read_lock();
1189
1190 if (p) {
1191 pr_info("Task in ");
1192 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1193 pr_cont(" killed as a result of limit of ");
1194 } else {
1195 pr_info("Memory limit reached of cgroup ");
1196 }
1197
1198 pr_cont_cgroup_path(memcg->css.cgroup);
1199 pr_cont("\n");
1200
1201 rcu_read_unlock();
1202
1203 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1204 K((u64)page_counter_read(&memcg->memory)),
1205 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1206 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1207 K((u64)page_counter_read(&memcg->memsw)),
1208 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1209 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1210 K((u64)page_counter_read(&memcg->kmem)),
1211 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1212
1213 for_each_mem_cgroup_tree(iter, memcg) {
1214 pr_info("Memory cgroup stats for ");
1215 pr_cont_cgroup_path(iter->css.cgroup);
1216 pr_cont(":");
1217
1218 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1219 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1220 continue;
1221 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1222 K(memcg_page_state(iter, memcg1_stats[i])));
1223 }
1224
1225 for (i = 0; i < NR_LRU_LISTS; i++)
1226 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1227 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1228
1229 pr_cont("\n");
1230 }
1231 }
1232
1233 /*
1234 * This function returns the number of memcg under hierarchy tree. Returns
1235 * 1(self count) if no children.
1236 */
1237 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1238 {
1239 int num = 0;
1240 struct mem_cgroup *iter;
1241
1242 for_each_mem_cgroup_tree(iter, memcg)
1243 num++;
1244 return num;
1245 }
1246
1247 /*
1248 * Return the memory (and swap, if configured) limit for a memcg.
1249 */
1250 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1251 {
1252 unsigned long limit;
1253
1254 limit = memcg->memory.limit;
1255 if (mem_cgroup_swappiness(memcg)) {
1256 unsigned long memsw_limit;
1257 unsigned long swap_limit;
1258
1259 memsw_limit = memcg->memsw.limit;
1260 swap_limit = memcg->swap.limit;
1261 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1262 limit = min(limit + swap_limit, memsw_limit);
1263 }
1264 return limit;
1265 }
1266
1267 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1268 int order)
1269 {
1270 struct oom_control oc = {
1271 .zonelist = NULL,
1272 .nodemask = NULL,
1273 .memcg = memcg,
1274 .gfp_mask = gfp_mask,
1275 .order = order,
1276 };
1277 bool ret;
1278
1279 if (mutex_lock_killable(&oom_lock))
1280 return true;
1281 /*
1282 * A few threads which were not waiting at mutex_lock_killable() can
1283 * fail to bail out. Therefore, check again after holding oom_lock.
1284 */
1285 ret = should_force_charge() || out_of_memory(&oc);
1286 mutex_unlock(&oom_lock);
1287 return ret;
1288 }
1289
1290 #if MAX_NUMNODES > 1
1291
1292 /**
1293 * test_mem_cgroup_node_reclaimable
1294 * @memcg: the target memcg
1295 * @nid: the node ID to be checked.
1296 * @noswap : specify true here if the user wants flle only information.
1297 *
1298 * This function returns whether the specified memcg contains any
1299 * reclaimable pages on a node. Returns true if there are any reclaimable
1300 * pages in the node.
1301 */
1302 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1303 int nid, bool noswap)
1304 {
1305 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1306 return true;
1307 if (noswap || !total_swap_pages)
1308 return false;
1309 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1310 return true;
1311 return false;
1312
1313 }
1314
1315 /*
1316 * Always updating the nodemask is not very good - even if we have an empty
1317 * list or the wrong list here, we can start from some node and traverse all
1318 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1319 *
1320 */
1321 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1322 {
1323 int nid;
1324 /*
1325 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1326 * pagein/pageout changes since the last update.
1327 */
1328 if (!atomic_read(&memcg->numainfo_events))
1329 return;
1330 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1331 return;
1332
1333 /* make a nodemask where this memcg uses memory from */
1334 memcg->scan_nodes = node_states[N_MEMORY];
1335
1336 for_each_node_mask(nid, node_states[N_MEMORY]) {
1337
1338 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1339 node_clear(nid, memcg->scan_nodes);
1340 }
1341
1342 atomic_set(&memcg->numainfo_events, 0);
1343 atomic_set(&memcg->numainfo_updating, 0);
1344 }
1345
1346 /*
1347 * Selecting a node where we start reclaim from. Because what we need is just
1348 * reducing usage counter, start from anywhere is O,K. Considering
1349 * memory reclaim from current node, there are pros. and cons.
1350 *
1351 * Freeing memory from current node means freeing memory from a node which
1352 * we'll use or we've used. So, it may make LRU bad. And if several threads
1353 * hit limits, it will see a contention on a node. But freeing from remote
1354 * node means more costs for memory reclaim because of memory latency.
1355 *
1356 * Now, we use round-robin. Better algorithm is welcomed.
1357 */
1358 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1359 {
1360 int node;
1361
1362 mem_cgroup_may_update_nodemask(memcg);
1363 node = memcg->last_scanned_node;
1364
1365 node = next_node_in(node, memcg->scan_nodes);
1366 /*
1367 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1368 * last time it really checked all the LRUs due to rate limiting.
1369 * Fallback to the current node in that case for simplicity.
1370 */
1371 if (unlikely(node == MAX_NUMNODES))
1372 node = numa_node_id();
1373
1374 memcg->last_scanned_node = node;
1375 return node;
1376 }
1377 #else
1378 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1379 {
1380 return 0;
1381 }
1382 #endif
1383
1384 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1385 pg_data_t *pgdat,
1386 gfp_t gfp_mask,
1387 unsigned long *total_scanned)
1388 {
1389 struct mem_cgroup *victim = NULL;
1390 int total = 0;
1391 int loop = 0;
1392 unsigned long excess;
1393 unsigned long nr_scanned;
1394 struct mem_cgroup_reclaim_cookie reclaim = {
1395 .pgdat = pgdat,
1396 .priority = 0,
1397 };
1398
1399 excess = soft_limit_excess(root_memcg);
1400
1401 while (1) {
1402 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1403 if (!victim) {
1404 loop++;
1405 if (loop >= 2) {
1406 /*
1407 * If we have not been able to reclaim
1408 * anything, it might because there are
1409 * no reclaimable pages under this hierarchy
1410 */
1411 if (!total)
1412 break;
1413 /*
1414 * We want to do more targeted reclaim.
1415 * excess >> 2 is not to excessive so as to
1416 * reclaim too much, nor too less that we keep
1417 * coming back to reclaim from this cgroup
1418 */
1419 if (total >= (excess >> 2) ||
1420 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1421 break;
1422 }
1423 continue;
1424 }
1425 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1426 pgdat, &nr_scanned);
1427 *total_scanned += nr_scanned;
1428 if (!soft_limit_excess(root_memcg))
1429 break;
1430 }
1431 mem_cgroup_iter_break(root_memcg, victim);
1432 return total;
1433 }
1434
1435 #ifdef CONFIG_LOCKDEP
1436 static struct lockdep_map memcg_oom_lock_dep_map = {
1437 .name = "memcg_oom_lock",
1438 };
1439 #endif
1440
1441 static DEFINE_SPINLOCK(memcg_oom_lock);
1442
1443 /*
1444 * Check OOM-Killer is already running under our hierarchy.
1445 * If someone is running, return false.
1446 */
1447 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1448 {
1449 struct mem_cgroup *iter, *failed = NULL;
1450
1451 spin_lock(&memcg_oom_lock);
1452
1453 for_each_mem_cgroup_tree(iter, memcg) {
1454 if (iter->oom_lock) {
1455 /*
1456 * this subtree of our hierarchy is already locked
1457 * so we cannot give a lock.
1458 */
1459 failed = iter;
1460 mem_cgroup_iter_break(memcg, iter);
1461 break;
1462 } else
1463 iter->oom_lock = true;
1464 }
1465
1466 if (failed) {
1467 /*
1468 * OK, we failed to lock the whole subtree so we have
1469 * to clean up what we set up to the failing subtree
1470 */
1471 for_each_mem_cgroup_tree(iter, memcg) {
1472 if (iter == failed) {
1473 mem_cgroup_iter_break(memcg, iter);
1474 break;
1475 }
1476 iter->oom_lock = false;
1477 }
1478 } else
1479 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1480
1481 spin_unlock(&memcg_oom_lock);
1482
1483 return !failed;
1484 }
1485
1486 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1487 {
1488 struct mem_cgroup *iter;
1489
1490 spin_lock(&memcg_oom_lock);
1491 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1492 for_each_mem_cgroup_tree(iter, memcg)
1493 iter->oom_lock = false;
1494 spin_unlock(&memcg_oom_lock);
1495 }
1496
1497 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1498 {
1499 struct mem_cgroup *iter;
1500
1501 spin_lock(&memcg_oom_lock);
1502 for_each_mem_cgroup_tree(iter, memcg)
1503 iter->under_oom++;
1504 spin_unlock(&memcg_oom_lock);
1505 }
1506
1507 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1508 {
1509 struct mem_cgroup *iter;
1510
1511 /*
1512 * When a new child is created while the hierarchy is under oom,
1513 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1514 */
1515 spin_lock(&memcg_oom_lock);
1516 for_each_mem_cgroup_tree(iter, memcg)
1517 if (iter->under_oom > 0)
1518 iter->under_oom--;
1519 spin_unlock(&memcg_oom_lock);
1520 }
1521
1522 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1523
1524 struct oom_wait_info {
1525 struct mem_cgroup *memcg;
1526 wait_queue_entry_t wait;
1527 };
1528
1529 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1530 unsigned mode, int sync, void *arg)
1531 {
1532 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1533 struct mem_cgroup *oom_wait_memcg;
1534 struct oom_wait_info *oom_wait_info;
1535
1536 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1537 oom_wait_memcg = oom_wait_info->memcg;
1538
1539 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1540 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1541 return 0;
1542 return autoremove_wake_function(wait, mode, sync, arg);
1543 }
1544
1545 static void memcg_oom_recover(struct mem_cgroup *memcg)
1546 {
1547 /*
1548 * For the following lockless ->under_oom test, the only required
1549 * guarantee is that it must see the state asserted by an OOM when
1550 * this function is called as a result of userland actions
1551 * triggered by the notification of the OOM. This is trivially
1552 * achieved by invoking mem_cgroup_mark_under_oom() before
1553 * triggering notification.
1554 */
1555 if (memcg && memcg->under_oom)
1556 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1557 }
1558
1559 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1560 {
1561 if (!current->memcg_may_oom)
1562 return;
1563 /*
1564 * We are in the middle of the charge context here, so we
1565 * don't want to block when potentially sitting on a callstack
1566 * that holds all kinds of filesystem and mm locks.
1567 *
1568 * Also, the caller may handle a failed allocation gracefully
1569 * (like optional page cache readahead) and so an OOM killer
1570 * invocation might not even be necessary.
1571 *
1572 * That's why we don't do anything here except remember the
1573 * OOM context and then deal with it at the end of the page
1574 * fault when the stack is unwound, the locks are released,
1575 * and when we know whether the fault was overall successful.
1576 */
1577 css_get(&memcg->css);
1578 current->memcg_in_oom = memcg;
1579 current->memcg_oom_gfp_mask = mask;
1580 current->memcg_oom_order = order;
1581 }
1582
1583 /**
1584 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1585 * @handle: actually kill/wait or just clean up the OOM state
1586 *
1587 * This has to be called at the end of a page fault if the memcg OOM
1588 * handler was enabled.
1589 *
1590 * Memcg supports userspace OOM handling where failed allocations must
1591 * sleep on a waitqueue until the userspace task resolves the
1592 * situation. Sleeping directly in the charge context with all kinds
1593 * of locks held is not a good idea, instead we remember an OOM state
1594 * in the task and mem_cgroup_oom_synchronize() has to be called at
1595 * the end of the page fault to complete the OOM handling.
1596 *
1597 * Returns %true if an ongoing memcg OOM situation was detected and
1598 * completed, %false otherwise.
1599 */
1600 bool mem_cgroup_oom_synchronize(bool handle)
1601 {
1602 struct mem_cgroup *memcg = current->memcg_in_oom;
1603 struct oom_wait_info owait;
1604 bool locked;
1605
1606 /* OOM is global, do not handle */
1607 if (!memcg)
1608 return false;
1609
1610 if (!handle)
1611 goto cleanup;
1612
1613 owait.memcg = memcg;
1614 owait.wait.flags = 0;
1615 owait.wait.func = memcg_oom_wake_function;
1616 owait.wait.private = current;
1617 INIT_LIST_HEAD(&owait.wait.entry);
1618
1619 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1620 mem_cgroup_mark_under_oom(memcg);
1621
1622 locked = mem_cgroup_oom_trylock(memcg);
1623
1624 if (locked)
1625 mem_cgroup_oom_notify(memcg);
1626
1627 if (locked && !memcg->oom_kill_disable) {
1628 mem_cgroup_unmark_under_oom(memcg);
1629 finish_wait(&memcg_oom_waitq, &owait.wait);
1630 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1631 current->memcg_oom_order);
1632 } else {
1633 schedule();
1634 mem_cgroup_unmark_under_oom(memcg);
1635 finish_wait(&memcg_oom_waitq, &owait.wait);
1636 }
1637
1638 if (locked) {
1639 mem_cgroup_oom_unlock(memcg);
1640 /*
1641 * There is no guarantee that an OOM-lock contender
1642 * sees the wakeups triggered by the OOM kill
1643 * uncharges. Wake any sleepers explicitely.
1644 */
1645 memcg_oom_recover(memcg);
1646 }
1647 cleanup:
1648 current->memcg_in_oom = NULL;
1649 css_put(&memcg->css);
1650 return true;
1651 }
1652
1653 /**
1654 * lock_page_memcg - lock a page->mem_cgroup binding
1655 * @page: the page
1656 *
1657 * This function protects unlocked LRU pages from being moved to
1658 * another cgroup.
1659 *
1660 * It ensures lifetime of the returned memcg. Caller is responsible
1661 * for the lifetime of the page; __unlock_page_memcg() is available
1662 * when @page might get freed inside the locked section.
1663 */
1664 struct mem_cgroup *lock_page_memcg(struct page *page)
1665 {
1666 struct mem_cgroup *memcg;
1667 unsigned long flags;
1668
1669 /*
1670 * The RCU lock is held throughout the transaction. The fast
1671 * path can get away without acquiring the memcg->move_lock
1672 * because page moving starts with an RCU grace period.
1673 *
1674 * The RCU lock also protects the memcg from being freed when
1675 * the page state that is going to change is the only thing
1676 * preventing the page itself from being freed. E.g. writeback
1677 * doesn't hold a page reference and relies on PG_writeback to
1678 * keep off truncation, migration and so forth.
1679 */
1680 rcu_read_lock();
1681
1682 if (mem_cgroup_disabled())
1683 return NULL;
1684 again:
1685 memcg = page->mem_cgroup;
1686 if (unlikely(!memcg))
1687 return NULL;
1688
1689 if (atomic_read(&memcg->moving_account) <= 0)
1690 return memcg;
1691
1692 spin_lock_irqsave(&memcg->move_lock, flags);
1693 if (memcg != page->mem_cgroup) {
1694 spin_unlock_irqrestore(&memcg->move_lock, flags);
1695 goto again;
1696 }
1697
1698 /*
1699 * When charge migration first begins, we can have locked and
1700 * unlocked page stat updates happening concurrently. Track
1701 * the task who has the lock for unlock_page_memcg().
1702 */
1703 memcg->move_lock_task = current;
1704 memcg->move_lock_flags = flags;
1705
1706 return memcg;
1707 }
1708 EXPORT_SYMBOL(lock_page_memcg);
1709
1710 /**
1711 * __unlock_page_memcg - unlock and unpin a memcg
1712 * @memcg: the memcg
1713 *
1714 * Unlock and unpin a memcg returned by lock_page_memcg().
1715 */
1716 void __unlock_page_memcg(struct mem_cgroup *memcg)
1717 {
1718 if (memcg && memcg->move_lock_task == current) {
1719 unsigned long flags = memcg->move_lock_flags;
1720
1721 memcg->move_lock_task = NULL;
1722 memcg->move_lock_flags = 0;
1723
1724 spin_unlock_irqrestore(&memcg->move_lock, flags);
1725 }
1726
1727 rcu_read_unlock();
1728 }
1729
1730 /**
1731 * unlock_page_memcg - unlock a page->mem_cgroup binding
1732 * @page: the page
1733 */
1734 void unlock_page_memcg(struct page *page)
1735 {
1736 __unlock_page_memcg(page->mem_cgroup);
1737 }
1738 EXPORT_SYMBOL(unlock_page_memcg);
1739
1740 /*
1741 * size of first charge trial. "32" comes from vmscan.c's magic value.
1742 * TODO: maybe necessary to use big numbers in big irons.
1743 */
1744 #define CHARGE_BATCH 32U
1745 struct memcg_stock_pcp {
1746 struct mem_cgroup *cached; /* this never be root cgroup */
1747 unsigned int nr_pages;
1748 struct work_struct work;
1749 unsigned long flags;
1750 #define FLUSHING_CACHED_CHARGE 0
1751 };
1752 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1753 static DEFINE_MUTEX(percpu_charge_mutex);
1754
1755 /**
1756 * consume_stock: Try to consume stocked charge on this cpu.
1757 * @memcg: memcg to consume from.
1758 * @nr_pages: how many pages to charge.
1759 *
1760 * The charges will only happen if @memcg matches the current cpu's memcg
1761 * stock, and at least @nr_pages are available in that stock. Failure to
1762 * service an allocation will refill the stock.
1763 *
1764 * returns true if successful, false otherwise.
1765 */
1766 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1767 {
1768 struct memcg_stock_pcp *stock;
1769 unsigned long flags;
1770 bool ret = false;
1771
1772 if (nr_pages > CHARGE_BATCH)
1773 return ret;
1774
1775 local_irq_save(flags);
1776
1777 stock = this_cpu_ptr(&memcg_stock);
1778 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1779 stock->nr_pages -= nr_pages;
1780 ret = true;
1781 }
1782
1783 local_irq_restore(flags);
1784
1785 return ret;
1786 }
1787
1788 /*
1789 * Returns stocks cached in percpu and reset cached information.
1790 */
1791 static void drain_stock(struct memcg_stock_pcp *stock)
1792 {
1793 struct mem_cgroup *old = stock->cached;
1794
1795 if (stock->nr_pages) {
1796 page_counter_uncharge(&old->memory, stock->nr_pages);
1797 if (do_memsw_account())
1798 page_counter_uncharge(&old->memsw, stock->nr_pages);
1799 css_put_many(&old->css, stock->nr_pages);
1800 stock->nr_pages = 0;
1801 }
1802 stock->cached = NULL;
1803 }
1804
1805 static void drain_local_stock(struct work_struct *dummy)
1806 {
1807 struct memcg_stock_pcp *stock;
1808 unsigned long flags;
1809
1810 /*
1811 * The only protection from memory hotplug vs. drain_stock races is
1812 * that we always operate on local CPU stock here with IRQ disabled
1813 */
1814 local_irq_save(flags);
1815
1816 stock = this_cpu_ptr(&memcg_stock);
1817 drain_stock(stock);
1818 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1819
1820 local_irq_restore(flags);
1821 }
1822
1823 /*
1824 * Cache charges(val) to local per_cpu area.
1825 * This will be consumed by consume_stock() function, later.
1826 */
1827 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1828 {
1829 struct memcg_stock_pcp *stock;
1830 unsigned long flags;
1831
1832 local_irq_save(flags);
1833
1834 stock = this_cpu_ptr(&memcg_stock);
1835 if (stock->cached != memcg) { /* reset if necessary */
1836 drain_stock(stock);
1837 stock->cached = memcg;
1838 }
1839 stock->nr_pages += nr_pages;
1840
1841 if (stock->nr_pages > CHARGE_BATCH)
1842 drain_stock(stock);
1843
1844 local_irq_restore(flags);
1845 }
1846
1847 /*
1848 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1849 * of the hierarchy under it.
1850 */
1851 static void drain_all_stock(struct mem_cgroup *root_memcg)
1852 {
1853 int cpu, curcpu;
1854
1855 /* If someone's already draining, avoid adding running more workers. */
1856 if (!mutex_trylock(&percpu_charge_mutex))
1857 return;
1858 /*
1859 * Notify other cpus that system-wide "drain" is running
1860 * We do not care about races with the cpu hotplug because cpu down
1861 * as well as workers from this path always operate on the local
1862 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1863 */
1864 curcpu = get_cpu();
1865 for_each_online_cpu(cpu) {
1866 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1867 struct mem_cgroup *memcg;
1868
1869 memcg = stock->cached;
1870 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1871 continue;
1872 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1873 css_put(&memcg->css);
1874 continue;
1875 }
1876 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1877 if (cpu == curcpu)
1878 drain_local_stock(&stock->work);
1879 else
1880 schedule_work_on(cpu, &stock->work);
1881 }
1882 css_put(&memcg->css);
1883 }
1884 put_cpu();
1885 mutex_unlock(&percpu_charge_mutex);
1886 }
1887
1888 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1889 {
1890 struct memcg_stock_pcp *stock;
1891
1892 stock = &per_cpu(memcg_stock, cpu);
1893 drain_stock(stock);
1894 return 0;
1895 }
1896
1897 static void reclaim_high(struct mem_cgroup *memcg,
1898 unsigned int nr_pages,
1899 gfp_t gfp_mask)
1900 {
1901 do {
1902 if (page_counter_read(&memcg->memory) <= memcg->high)
1903 continue;
1904 mem_cgroup_event(memcg, MEMCG_HIGH);
1905 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1906 } while ((memcg = parent_mem_cgroup(memcg)));
1907 }
1908
1909 static void high_work_func(struct work_struct *work)
1910 {
1911 struct mem_cgroup *memcg;
1912
1913 memcg = container_of(work, struct mem_cgroup, high_work);
1914 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1915 }
1916
1917 /*
1918 * Scheduled by try_charge() to be executed from the userland return path
1919 * and reclaims memory over the high limit.
1920 */
1921 void mem_cgroup_handle_over_high(void)
1922 {
1923 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1924 struct mem_cgroup *memcg;
1925
1926 if (likely(!nr_pages))
1927 return;
1928
1929 memcg = get_mem_cgroup_from_mm(current->mm);
1930 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1931 css_put(&memcg->css);
1932 current->memcg_nr_pages_over_high = 0;
1933 }
1934
1935 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1936 unsigned int nr_pages)
1937 {
1938 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1939 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1940 struct mem_cgroup *mem_over_limit;
1941 struct page_counter *counter;
1942 unsigned long nr_reclaimed;
1943 bool may_swap = true;
1944 bool drained = false;
1945
1946 if (mem_cgroup_is_root(memcg))
1947 return 0;
1948 retry:
1949 if (consume_stock(memcg, nr_pages))
1950 return 0;
1951
1952 if (!do_memsw_account() ||
1953 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1954 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1955 goto done_restock;
1956 if (do_memsw_account())
1957 page_counter_uncharge(&memcg->memsw, batch);
1958 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1959 } else {
1960 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1961 may_swap = false;
1962 }
1963
1964 if (batch > nr_pages) {
1965 batch = nr_pages;
1966 goto retry;
1967 }
1968
1969 /*
1970 * Memcg doesn't have a dedicated reserve for atomic
1971 * allocations. But like the global atomic pool, we need to
1972 * put the burden of reclaim on regular allocation requests
1973 * and let these go through as privileged allocations.
1974 */
1975 if (gfp_mask & __GFP_ATOMIC)
1976 goto force;
1977
1978 /*
1979 * Unlike in global OOM situations, memcg is not in a physical
1980 * memory shortage. Allow dying and OOM-killed tasks to
1981 * bypass the last charges so that they can exit quickly and
1982 * free their memory.
1983 */
1984 if (unlikely(should_force_charge()))
1985 goto force;
1986
1987 /*
1988 * Prevent unbounded recursion when reclaim operations need to
1989 * allocate memory. This might exceed the limits temporarily,
1990 * but we prefer facilitating memory reclaim and getting back
1991 * under the limit over triggering OOM kills in these cases.
1992 */
1993 if (unlikely(current->flags & PF_MEMALLOC))
1994 goto force;
1995
1996 if (unlikely(task_in_memcg_oom(current)))
1997 goto nomem;
1998
1999 if (!gfpflags_allow_blocking(gfp_mask))
2000 goto nomem;
2001
2002 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
2003
2004 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2005 gfp_mask, may_swap);
2006
2007 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2008 goto retry;
2009
2010 if (!drained) {
2011 drain_all_stock(mem_over_limit);
2012 drained = true;
2013 goto retry;
2014 }
2015
2016 if (gfp_mask & __GFP_NORETRY)
2017 goto nomem;
2018 /*
2019 * Even though the limit is exceeded at this point, reclaim
2020 * may have been able to free some pages. Retry the charge
2021 * before killing the task.
2022 *
2023 * Only for regular pages, though: huge pages are rather
2024 * unlikely to succeed so close to the limit, and we fall back
2025 * to regular pages anyway in case of failure.
2026 */
2027 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2028 goto retry;
2029 /*
2030 * At task move, charge accounts can be doubly counted. So, it's
2031 * better to wait until the end of task_move if something is going on.
2032 */
2033 if (mem_cgroup_wait_acct_move(mem_over_limit))
2034 goto retry;
2035
2036 if (nr_retries--)
2037 goto retry;
2038
2039 if (gfp_mask & __GFP_NOFAIL)
2040 goto force;
2041
2042 if (fatal_signal_pending(current))
2043 goto force;
2044
2045 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
2046
2047 mem_cgroup_oom(mem_over_limit, gfp_mask,
2048 get_order(nr_pages * PAGE_SIZE));
2049 nomem:
2050 if (!(gfp_mask & __GFP_NOFAIL))
2051 return -ENOMEM;
2052 force:
2053 /*
2054 * The allocation either can't fail or will lead to more memory
2055 * being freed very soon. Allow memory usage go over the limit
2056 * temporarily by force charging it.
2057 */
2058 page_counter_charge(&memcg->memory, nr_pages);
2059 if (do_memsw_account())
2060 page_counter_charge(&memcg->memsw, nr_pages);
2061 css_get_many(&memcg->css, nr_pages);
2062
2063 return 0;
2064
2065 done_restock:
2066 css_get_many(&memcg->css, batch);
2067 if (batch > nr_pages)
2068 refill_stock(memcg, batch - nr_pages);
2069
2070 /*
2071 * If the hierarchy is above the normal consumption range, schedule
2072 * reclaim on returning to userland. We can perform reclaim here
2073 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2074 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2075 * not recorded as it most likely matches current's and won't
2076 * change in the meantime. As high limit is checked again before
2077 * reclaim, the cost of mismatch is negligible.
2078 */
2079 do {
2080 if (page_counter_read(&memcg->memory) > memcg->high) {
2081 /* Don't bother a random interrupted task */
2082 if (in_interrupt()) {
2083 schedule_work(&memcg->high_work);
2084 break;
2085 }
2086 current->memcg_nr_pages_over_high += batch;
2087 set_notify_resume(current);
2088 break;
2089 }
2090 } while ((memcg = parent_mem_cgroup(memcg)));
2091
2092 return 0;
2093 }
2094
2095 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2096 {
2097 if (mem_cgroup_is_root(memcg))
2098 return;
2099
2100 page_counter_uncharge(&memcg->memory, nr_pages);
2101 if (do_memsw_account())
2102 page_counter_uncharge(&memcg->memsw, nr_pages);
2103
2104 css_put_many(&memcg->css, nr_pages);
2105 }
2106
2107 static void lock_page_lru(struct page *page, int *isolated)
2108 {
2109 struct zone *zone = page_zone(page);
2110
2111 spin_lock_irq(zone_lru_lock(zone));
2112 if (PageLRU(page)) {
2113 struct lruvec *lruvec;
2114
2115 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2116 ClearPageLRU(page);
2117 del_page_from_lru_list(page, lruvec, page_lru(page));
2118 *isolated = 1;
2119 } else
2120 *isolated = 0;
2121 }
2122
2123 static void unlock_page_lru(struct page *page, int isolated)
2124 {
2125 struct zone *zone = page_zone(page);
2126
2127 if (isolated) {
2128 struct lruvec *lruvec;
2129
2130 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2131 VM_BUG_ON_PAGE(PageLRU(page), page);
2132 SetPageLRU(page);
2133 add_page_to_lru_list(page, lruvec, page_lru(page));
2134 }
2135 spin_unlock_irq(zone_lru_lock(zone));
2136 }
2137
2138 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2139 bool lrucare)
2140 {
2141 int isolated;
2142
2143 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2144
2145 /*
2146 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2147 * may already be on some other mem_cgroup's LRU. Take care of it.
2148 */
2149 if (lrucare)
2150 lock_page_lru(page, &isolated);
2151
2152 /*
2153 * Nobody should be changing or seriously looking at
2154 * page->mem_cgroup at this point:
2155 *
2156 * - the page is uncharged
2157 *
2158 * - the page is off-LRU
2159 *
2160 * - an anonymous fault has exclusive page access, except for
2161 * a locked page table
2162 *
2163 * - a page cache insertion, a swapin fault, or a migration
2164 * have the page locked
2165 */
2166 page->mem_cgroup = memcg;
2167
2168 if (lrucare)
2169 unlock_page_lru(page, isolated);
2170 }
2171
2172 #ifndef CONFIG_SLOB
2173 static int memcg_alloc_cache_id(void)
2174 {
2175 int id, size;
2176 int err;
2177
2178 id = ida_simple_get(&memcg_cache_ida,
2179 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2180 if (id < 0)
2181 return id;
2182
2183 if (id < memcg_nr_cache_ids)
2184 return id;
2185
2186 /*
2187 * There's no space for the new id in memcg_caches arrays,
2188 * so we have to grow them.
2189 */
2190 down_write(&memcg_cache_ids_sem);
2191
2192 size = 2 * (id + 1);
2193 if (size < MEMCG_CACHES_MIN_SIZE)
2194 size = MEMCG_CACHES_MIN_SIZE;
2195 else if (size > MEMCG_CACHES_MAX_SIZE)
2196 size = MEMCG_CACHES_MAX_SIZE;
2197
2198 err = memcg_update_all_caches(size);
2199 if (!err)
2200 err = memcg_update_all_list_lrus(size);
2201 if (!err)
2202 memcg_nr_cache_ids = size;
2203
2204 up_write(&memcg_cache_ids_sem);
2205
2206 if (err) {
2207 ida_simple_remove(&memcg_cache_ida, id);
2208 return err;
2209 }
2210 return id;
2211 }
2212
2213 static void memcg_free_cache_id(int id)
2214 {
2215 ida_simple_remove(&memcg_cache_ida, id);
2216 }
2217
2218 struct memcg_kmem_cache_create_work {
2219 struct mem_cgroup *memcg;
2220 struct kmem_cache *cachep;
2221 struct work_struct work;
2222 };
2223
2224 static void memcg_kmem_cache_create_func(struct work_struct *w)
2225 {
2226 struct memcg_kmem_cache_create_work *cw =
2227 container_of(w, struct memcg_kmem_cache_create_work, work);
2228 struct mem_cgroup *memcg = cw->memcg;
2229 struct kmem_cache *cachep = cw->cachep;
2230
2231 memcg_create_kmem_cache(memcg, cachep);
2232
2233 css_put(&memcg->css);
2234 kfree(cw);
2235 }
2236
2237 /*
2238 * Enqueue the creation of a per-memcg kmem_cache.
2239 */
2240 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2241 struct kmem_cache *cachep)
2242 {
2243 struct memcg_kmem_cache_create_work *cw;
2244
2245 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2246 if (!cw)
2247 return;
2248
2249 css_get(&memcg->css);
2250
2251 cw->memcg = memcg;
2252 cw->cachep = cachep;
2253 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2254
2255 queue_work(memcg_kmem_cache_wq, &cw->work);
2256 }
2257
2258 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2259 struct kmem_cache *cachep)
2260 {
2261 /*
2262 * We need to stop accounting when we kmalloc, because if the
2263 * corresponding kmalloc cache is not yet created, the first allocation
2264 * in __memcg_schedule_kmem_cache_create will recurse.
2265 *
2266 * However, it is better to enclose the whole function. Depending on
2267 * the debugging options enabled, INIT_WORK(), for instance, can
2268 * trigger an allocation. This too, will make us recurse. Because at
2269 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2270 * the safest choice is to do it like this, wrapping the whole function.
2271 */
2272 current->memcg_kmem_skip_account = 1;
2273 __memcg_schedule_kmem_cache_create(memcg, cachep);
2274 current->memcg_kmem_skip_account = 0;
2275 }
2276
2277 static inline bool memcg_kmem_bypass(void)
2278 {
2279 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2280 return true;
2281 return false;
2282 }
2283
2284 /**
2285 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2286 * @cachep: the original global kmem cache
2287 *
2288 * Return the kmem_cache we're supposed to use for a slab allocation.
2289 * We try to use the current memcg's version of the cache.
2290 *
2291 * If the cache does not exist yet, if we are the first user of it, we
2292 * create it asynchronously in a workqueue and let the current allocation
2293 * go through with the original cache.
2294 *
2295 * This function takes a reference to the cache it returns to assure it
2296 * won't get destroyed while we are working with it. Once the caller is
2297 * done with it, memcg_kmem_put_cache() must be called to release the
2298 * reference.
2299 */
2300 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2301 {
2302 struct mem_cgroup *memcg;
2303 struct kmem_cache *memcg_cachep;
2304 int kmemcg_id;
2305
2306 VM_BUG_ON(!is_root_cache(cachep));
2307
2308 if (memcg_kmem_bypass())
2309 return cachep;
2310
2311 if (current->memcg_kmem_skip_account)
2312 return cachep;
2313
2314 memcg = get_mem_cgroup_from_mm(current->mm);
2315 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2316 if (kmemcg_id < 0)
2317 goto out;
2318
2319 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2320 if (likely(memcg_cachep))
2321 return memcg_cachep;
2322
2323 /*
2324 * If we are in a safe context (can wait, and not in interrupt
2325 * context), we could be be predictable and return right away.
2326 * This would guarantee that the allocation being performed
2327 * already belongs in the new cache.
2328 *
2329 * However, there are some clashes that can arrive from locking.
2330 * For instance, because we acquire the slab_mutex while doing
2331 * memcg_create_kmem_cache, this means no further allocation
2332 * could happen with the slab_mutex held. So it's better to
2333 * defer everything.
2334 */
2335 memcg_schedule_kmem_cache_create(memcg, cachep);
2336 out:
2337 css_put(&memcg->css);
2338 return cachep;
2339 }
2340
2341 /**
2342 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2343 * @cachep: the cache returned by memcg_kmem_get_cache
2344 */
2345 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2346 {
2347 if (!is_root_cache(cachep))
2348 css_put(&cachep->memcg_params.memcg->css);
2349 }
2350
2351 /**
2352 * memcg_kmem_charge: charge a kmem page
2353 * @page: page to charge
2354 * @gfp: reclaim mode
2355 * @order: allocation order
2356 * @memcg: memory cgroup to charge
2357 *
2358 * Returns 0 on success, an error code on failure.
2359 */
2360 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2361 struct mem_cgroup *memcg)
2362 {
2363 unsigned int nr_pages = 1 << order;
2364 struct page_counter *counter;
2365 int ret;
2366
2367 ret = try_charge(memcg, gfp, nr_pages);
2368 if (ret)
2369 return ret;
2370
2371 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2372 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2373
2374 /*
2375 * Enforce __GFP_NOFAIL allocation because callers are not
2376 * prepared to see failures and likely do not have any failure
2377 * handling code.
2378 */
2379 if (gfp & __GFP_NOFAIL) {
2380 page_counter_charge(&memcg->kmem, nr_pages);
2381 return 0;
2382 }
2383 cancel_charge(memcg, nr_pages);
2384 return -ENOMEM;
2385 }
2386
2387 page->mem_cgroup = memcg;
2388
2389 return 0;
2390 }
2391
2392 /**
2393 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2394 * @page: page to charge
2395 * @gfp: reclaim mode
2396 * @order: allocation order
2397 *
2398 * Returns 0 on success, an error code on failure.
2399 */
2400 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2401 {
2402 struct mem_cgroup *memcg;
2403 int ret = 0;
2404
2405 if (mem_cgroup_disabled() || memcg_kmem_bypass())
2406 return 0;
2407
2408 memcg = get_mem_cgroup_from_mm(current->mm);
2409 if (!mem_cgroup_is_root(memcg)) {
2410 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2411 if (!ret)
2412 __SetPageKmemcg(page);
2413 }
2414 css_put(&memcg->css);
2415 return ret;
2416 }
2417 /**
2418 * memcg_kmem_uncharge: uncharge a kmem page
2419 * @page: page to uncharge
2420 * @order: allocation order
2421 */
2422 void memcg_kmem_uncharge(struct page *page, int order)
2423 {
2424 struct mem_cgroup *memcg = page->mem_cgroup;
2425 unsigned int nr_pages = 1 << order;
2426
2427 if (!memcg)
2428 return;
2429
2430 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2431
2432 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2433 page_counter_uncharge(&memcg->kmem, nr_pages);
2434
2435 page_counter_uncharge(&memcg->memory, nr_pages);
2436 if (do_memsw_account())
2437 page_counter_uncharge(&memcg->memsw, nr_pages);
2438
2439 page->mem_cgroup = NULL;
2440
2441 /* slab pages do not have PageKmemcg flag set */
2442 if (PageKmemcg(page))
2443 __ClearPageKmemcg(page);
2444
2445 css_put_many(&memcg->css, nr_pages);
2446 }
2447 #endif /* !CONFIG_SLOB */
2448
2449 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2450
2451 /*
2452 * Because tail pages are not marked as "used", set it. We're under
2453 * zone_lru_lock and migration entries setup in all page mappings.
2454 */
2455 void mem_cgroup_split_huge_fixup(struct page *head)
2456 {
2457 int i;
2458
2459 if (mem_cgroup_disabled())
2460 return;
2461
2462 for (i = 1; i < HPAGE_PMD_NR; i++)
2463 head[i].mem_cgroup = head->mem_cgroup;
2464
2465 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
2466 HPAGE_PMD_NR);
2467 }
2468 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2469
2470 #ifdef CONFIG_MEMCG_SWAP
2471 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2472 int nr_entries)
2473 {
2474 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
2475 }
2476
2477 /**
2478 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2479 * @entry: swap entry to be moved
2480 * @from: mem_cgroup which the entry is moved from
2481 * @to: mem_cgroup which the entry is moved to
2482 *
2483 * It succeeds only when the swap_cgroup's record for this entry is the same
2484 * as the mem_cgroup's id of @from.
2485 *
2486 * Returns 0 on success, -EINVAL on failure.
2487 *
2488 * The caller must have charged to @to, IOW, called page_counter_charge() about
2489 * both res and memsw, and called css_get().
2490 */
2491 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2492 struct mem_cgroup *from, struct mem_cgroup *to)
2493 {
2494 unsigned short old_id, new_id;
2495
2496 old_id = mem_cgroup_id(from);
2497 new_id = mem_cgroup_id(to);
2498
2499 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2500 mem_cgroup_swap_statistics(from, -1);
2501 mem_cgroup_swap_statistics(to, 1);
2502 return 0;
2503 }
2504 return -EINVAL;
2505 }
2506 #else
2507 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2508 struct mem_cgroup *from, struct mem_cgroup *to)
2509 {
2510 return -EINVAL;
2511 }
2512 #endif
2513
2514 static DEFINE_MUTEX(memcg_limit_mutex);
2515
2516 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2517 unsigned long limit)
2518 {
2519 unsigned long curusage;
2520 unsigned long oldusage;
2521 bool enlarge = false;
2522 int retry_count;
2523 int ret;
2524
2525 /*
2526 * For keeping hierarchical_reclaim simple, how long we should retry
2527 * is depends on callers. We set our retry-count to be function
2528 * of # of children which we should visit in this loop.
2529 */
2530 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2531 mem_cgroup_count_children(memcg);
2532
2533 oldusage = page_counter_read(&memcg->memory);
2534
2535 do {
2536 if (signal_pending(current)) {
2537 ret = -EINTR;
2538 break;
2539 }
2540
2541 mutex_lock(&memcg_limit_mutex);
2542 if (limit > memcg->memsw.limit) {
2543 mutex_unlock(&memcg_limit_mutex);
2544 ret = -EINVAL;
2545 break;
2546 }
2547 if (limit > memcg->memory.limit)
2548 enlarge = true;
2549 ret = page_counter_limit(&memcg->memory, limit);
2550 mutex_unlock(&memcg_limit_mutex);
2551
2552 if (!ret)
2553 break;
2554
2555 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2556
2557 curusage = page_counter_read(&memcg->memory);
2558 /* Usage is reduced ? */
2559 if (curusage >= oldusage)
2560 retry_count--;
2561 else
2562 oldusage = curusage;
2563 } while (retry_count);
2564
2565 if (!ret && enlarge)
2566 memcg_oom_recover(memcg);
2567
2568 return ret;
2569 }
2570
2571 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2572 unsigned long limit)
2573 {
2574 unsigned long curusage;
2575 unsigned long oldusage;
2576 bool enlarge = false;
2577 int retry_count;
2578 int ret;
2579
2580 /* see mem_cgroup_resize_res_limit */
2581 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2582 mem_cgroup_count_children(memcg);
2583
2584 oldusage = page_counter_read(&memcg->memsw);
2585
2586 do {
2587 if (signal_pending(current)) {
2588 ret = -EINTR;
2589 break;
2590 }
2591
2592 mutex_lock(&memcg_limit_mutex);
2593 if (limit < memcg->memory.limit) {
2594 mutex_unlock(&memcg_limit_mutex);
2595 ret = -EINVAL;
2596 break;
2597 }
2598 if (limit > memcg->memsw.limit)
2599 enlarge = true;
2600 ret = page_counter_limit(&memcg->memsw, limit);
2601 mutex_unlock(&memcg_limit_mutex);
2602
2603 if (!ret)
2604 break;
2605
2606 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2607
2608 curusage = page_counter_read(&memcg->memsw);
2609 /* Usage is reduced ? */
2610 if (curusage >= oldusage)
2611 retry_count--;
2612 else
2613 oldusage = curusage;
2614 } while (retry_count);
2615
2616 if (!ret && enlarge)
2617 memcg_oom_recover(memcg);
2618
2619 return ret;
2620 }
2621
2622 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2623 gfp_t gfp_mask,
2624 unsigned long *total_scanned)
2625 {
2626 unsigned long nr_reclaimed = 0;
2627 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2628 unsigned long reclaimed;
2629 int loop = 0;
2630 struct mem_cgroup_tree_per_node *mctz;
2631 unsigned long excess;
2632 unsigned long nr_scanned;
2633
2634 if (order > 0)
2635 return 0;
2636
2637 mctz = soft_limit_tree_node(pgdat->node_id);
2638
2639 /*
2640 * Do not even bother to check the largest node if the root
2641 * is empty. Do it lockless to prevent lock bouncing. Races
2642 * are acceptable as soft limit is best effort anyway.
2643 */
2644 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2645 return 0;
2646
2647 /*
2648 * This loop can run a while, specially if mem_cgroup's continuously
2649 * keep exceeding their soft limit and putting the system under
2650 * pressure
2651 */
2652 do {
2653 if (next_mz)
2654 mz = next_mz;
2655 else
2656 mz = mem_cgroup_largest_soft_limit_node(mctz);
2657 if (!mz)
2658 break;
2659
2660 nr_scanned = 0;
2661 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2662 gfp_mask, &nr_scanned);
2663 nr_reclaimed += reclaimed;
2664 *total_scanned += nr_scanned;
2665 spin_lock_irq(&mctz->lock);
2666 __mem_cgroup_remove_exceeded(mz, mctz);
2667
2668 /*
2669 * If we failed to reclaim anything from this memory cgroup
2670 * it is time to move on to the next cgroup
2671 */
2672 next_mz = NULL;
2673 if (!reclaimed)
2674 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2675
2676 excess = soft_limit_excess(mz->memcg);
2677 /*
2678 * One school of thought says that we should not add
2679 * back the node to the tree if reclaim returns 0.
2680 * But our reclaim could return 0, simply because due
2681 * to priority we are exposing a smaller subset of
2682 * memory to reclaim from. Consider this as a longer
2683 * term TODO.
2684 */
2685 /* If excess == 0, no tree ops */
2686 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2687 spin_unlock_irq(&mctz->lock);
2688 css_put(&mz->memcg->css);
2689 loop++;
2690 /*
2691 * Could not reclaim anything and there are no more
2692 * mem cgroups to try or we seem to be looping without
2693 * reclaiming anything.
2694 */
2695 if (!nr_reclaimed &&
2696 (next_mz == NULL ||
2697 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2698 break;
2699 } while (!nr_reclaimed);
2700 if (next_mz)
2701 css_put(&next_mz->memcg->css);
2702 return nr_reclaimed;
2703 }
2704
2705 /*
2706 * Test whether @memcg has children, dead or alive. Note that this
2707 * function doesn't care whether @memcg has use_hierarchy enabled and
2708 * returns %true if there are child csses according to the cgroup
2709 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2710 */
2711 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2712 {
2713 bool ret;
2714
2715 rcu_read_lock();
2716 ret = css_next_child(NULL, &memcg->css);
2717 rcu_read_unlock();
2718 return ret;
2719 }
2720
2721 /*
2722 * Reclaims as many pages from the given memcg as possible.
2723 *
2724 * Caller is responsible for holding css reference for memcg.
2725 */
2726 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2727 {
2728 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2729
2730 /* we call try-to-free pages for make this cgroup empty */
2731 lru_add_drain_all();
2732 /* try to free all pages in this cgroup */
2733 while (nr_retries && page_counter_read(&memcg->memory)) {
2734 int progress;
2735
2736 if (signal_pending(current))
2737 return -EINTR;
2738
2739 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2740 GFP_KERNEL, true);
2741 if (!progress) {
2742 nr_retries--;
2743 /* maybe some writeback is necessary */
2744 congestion_wait(BLK_RW_ASYNC, HZ/10);
2745 }
2746
2747 }
2748
2749 return 0;
2750 }
2751
2752 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2753 char *buf, size_t nbytes,
2754 loff_t off)
2755 {
2756 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2757
2758 if (mem_cgroup_is_root(memcg))
2759 return -EINVAL;
2760 return mem_cgroup_force_empty(memcg) ?: nbytes;
2761 }
2762
2763 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2764 struct cftype *cft)
2765 {
2766 return mem_cgroup_from_css(css)->use_hierarchy;
2767 }
2768
2769 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2770 struct cftype *cft, u64 val)
2771 {
2772 int retval = 0;
2773 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2774 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2775
2776 if (memcg->use_hierarchy == val)
2777 return 0;
2778
2779 /*
2780 * If parent's use_hierarchy is set, we can't make any modifications
2781 * in the child subtrees. If it is unset, then the change can
2782 * occur, provided the current cgroup has no children.
2783 *
2784 * For the root cgroup, parent_mem is NULL, we allow value to be
2785 * set if there are no children.
2786 */
2787 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2788 (val == 1 || val == 0)) {
2789 if (!memcg_has_children(memcg))
2790 memcg->use_hierarchy = val;
2791 else
2792 retval = -EBUSY;
2793 } else
2794 retval = -EINVAL;
2795
2796 return retval;
2797 }
2798
2799 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2800 {
2801 struct mem_cgroup *iter;
2802 int i;
2803
2804 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2805
2806 for_each_mem_cgroup_tree(iter, memcg) {
2807 for (i = 0; i < MEMCG_NR_STAT; i++)
2808 stat[i] += memcg_page_state(iter, i);
2809 }
2810 }
2811
2812 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2813 {
2814 struct mem_cgroup *iter;
2815 int i;
2816
2817 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2818
2819 for_each_mem_cgroup_tree(iter, memcg) {
2820 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2821 events[i] += memcg_sum_events(iter, i);
2822 }
2823 }
2824
2825 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2826 {
2827 unsigned long val = 0;
2828
2829 if (mem_cgroup_is_root(memcg)) {
2830 struct mem_cgroup *iter;
2831
2832 for_each_mem_cgroup_tree(iter, memcg) {
2833 val += memcg_page_state(iter, MEMCG_CACHE);
2834 val += memcg_page_state(iter, MEMCG_RSS);
2835 if (swap)
2836 val += memcg_page_state(iter, MEMCG_SWAP);
2837 }
2838 } else {
2839 if (!swap)
2840 val = page_counter_read(&memcg->memory);
2841 else
2842 val = page_counter_read(&memcg->memsw);
2843 }
2844 return val;
2845 }
2846
2847 enum {
2848 RES_USAGE,
2849 RES_LIMIT,
2850 RES_MAX_USAGE,
2851 RES_FAILCNT,
2852 RES_SOFT_LIMIT,
2853 };
2854
2855 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2856 struct cftype *cft)
2857 {
2858 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2859 struct page_counter *counter;
2860
2861 switch (MEMFILE_TYPE(cft->private)) {
2862 case _MEM:
2863 counter = &memcg->memory;
2864 break;
2865 case _MEMSWAP:
2866 counter = &memcg->memsw;
2867 break;
2868 case _KMEM:
2869 counter = &memcg->kmem;
2870 break;
2871 case _TCP:
2872 counter = &memcg->tcpmem;
2873 break;
2874 default:
2875 BUG();
2876 }
2877
2878 switch (MEMFILE_ATTR(cft->private)) {
2879 case RES_USAGE:
2880 if (counter == &memcg->memory)
2881 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2882 if (counter == &memcg->memsw)
2883 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2884 return (u64)page_counter_read(counter) * PAGE_SIZE;
2885 case RES_LIMIT:
2886 return (u64)counter->limit * PAGE_SIZE;
2887 case RES_MAX_USAGE:
2888 return (u64)counter->watermark * PAGE_SIZE;
2889 case RES_FAILCNT:
2890 return counter->failcnt;
2891 case RES_SOFT_LIMIT:
2892 return (u64)memcg->soft_limit * PAGE_SIZE;
2893 default:
2894 BUG();
2895 }
2896 }
2897
2898 #ifndef CONFIG_SLOB
2899 static int memcg_online_kmem(struct mem_cgroup *memcg)
2900 {
2901 int memcg_id;
2902
2903 if (cgroup_memory_nokmem)
2904 return 0;
2905
2906 BUG_ON(memcg->kmemcg_id >= 0);
2907 BUG_ON(memcg->kmem_state);
2908
2909 memcg_id = memcg_alloc_cache_id();
2910 if (memcg_id < 0)
2911 return memcg_id;
2912
2913 static_branch_inc(&memcg_kmem_enabled_key);
2914 /*
2915 * A memory cgroup is considered kmem-online as soon as it gets
2916 * kmemcg_id. Setting the id after enabling static branching will
2917 * guarantee no one starts accounting before all call sites are
2918 * patched.
2919 */
2920 memcg->kmemcg_id = memcg_id;
2921 memcg->kmem_state = KMEM_ONLINE;
2922 INIT_LIST_HEAD(&memcg->kmem_caches);
2923
2924 return 0;
2925 }
2926
2927 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2928 {
2929 struct cgroup_subsys_state *css;
2930 struct mem_cgroup *parent, *child;
2931 int kmemcg_id;
2932
2933 if (memcg->kmem_state != KMEM_ONLINE)
2934 return;
2935 /*
2936 * Clear the online state before clearing memcg_caches array
2937 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2938 * guarantees that no cache will be created for this cgroup
2939 * after we are done (see memcg_create_kmem_cache()).
2940 */
2941 memcg->kmem_state = KMEM_ALLOCATED;
2942
2943 memcg_deactivate_kmem_caches(memcg);
2944
2945 kmemcg_id = memcg->kmemcg_id;
2946 BUG_ON(kmemcg_id < 0);
2947
2948 parent = parent_mem_cgroup(memcg);
2949 if (!parent)
2950 parent = root_mem_cgroup;
2951
2952 /*
2953 * Change kmemcg_id of this cgroup and all its descendants to the
2954 * parent's id, and then move all entries from this cgroup's list_lrus
2955 * to ones of the parent. After we have finished, all list_lrus
2956 * corresponding to this cgroup are guaranteed to remain empty. The
2957 * ordering is imposed by list_lru_node->lock taken by
2958 * memcg_drain_all_list_lrus().
2959 */
2960 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2961 css_for_each_descendant_pre(css, &memcg->css) {
2962 child = mem_cgroup_from_css(css);
2963 BUG_ON(child->kmemcg_id != kmemcg_id);
2964 child->kmemcg_id = parent->kmemcg_id;
2965 if (!memcg->use_hierarchy)
2966 break;
2967 }
2968 rcu_read_unlock();
2969
2970 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2971
2972 memcg_free_cache_id(kmemcg_id);
2973 }
2974
2975 static void memcg_free_kmem(struct mem_cgroup *memcg)
2976 {
2977 /* css_alloc() failed, offlining didn't happen */
2978 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2979 memcg_offline_kmem(memcg);
2980
2981 if (memcg->kmem_state == KMEM_ALLOCATED) {
2982 memcg_destroy_kmem_caches(memcg);
2983 static_branch_dec(&memcg_kmem_enabled_key);
2984 WARN_ON(page_counter_read(&memcg->kmem));
2985 }
2986 }
2987 #else
2988 static int memcg_online_kmem(struct mem_cgroup *memcg)
2989 {
2990 return 0;
2991 }
2992 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2993 {
2994 }
2995 static void memcg_free_kmem(struct mem_cgroup *memcg)
2996 {
2997 }
2998 #endif /* !CONFIG_SLOB */
2999
3000 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3001 unsigned long limit)
3002 {
3003 int ret;
3004
3005 mutex_lock(&memcg_limit_mutex);
3006 ret = page_counter_limit(&memcg->kmem, limit);
3007 mutex_unlock(&memcg_limit_mutex);
3008 return ret;
3009 }
3010
3011 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
3012 {
3013 int ret;
3014
3015 mutex_lock(&memcg_limit_mutex);
3016
3017 ret = page_counter_limit(&memcg->tcpmem, limit);
3018 if (ret)
3019 goto out;
3020
3021 if (!memcg->tcpmem_active) {
3022 /*
3023 * The active flag needs to be written after the static_key
3024 * update. This is what guarantees that the socket activation
3025 * function is the last one to run. See mem_cgroup_sk_alloc()
3026 * for details, and note that we don't mark any socket as
3027 * belonging to this memcg until that flag is up.
3028 *
3029 * We need to do this, because static_keys will span multiple
3030 * sites, but we can't control their order. If we mark a socket
3031 * as accounted, but the accounting functions are not patched in
3032 * yet, we'll lose accounting.
3033 *
3034 * We never race with the readers in mem_cgroup_sk_alloc(),
3035 * because when this value change, the code to process it is not
3036 * patched in yet.
3037 */
3038 static_branch_inc(&memcg_sockets_enabled_key);
3039 memcg->tcpmem_active = true;
3040 }
3041 out:
3042 mutex_unlock(&memcg_limit_mutex);
3043 return ret;
3044 }
3045
3046 /*
3047 * The user of this function is...
3048 * RES_LIMIT.
3049 */
3050 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3051 char *buf, size_t nbytes, loff_t off)
3052 {
3053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3054 unsigned long nr_pages;
3055 int ret;
3056
3057 buf = strstrip(buf);
3058 ret = page_counter_memparse(buf, "-1", &nr_pages);
3059 if (ret)
3060 return ret;
3061
3062 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3063 case RES_LIMIT:
3064 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3065 ret = -EINVAL;
3066 break;
3067 }
3068 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3069 case _MEM:
3070 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3071 break;
3072 case _MEMSWAP:
3073 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3074 break;
3075 case _KMEM:
3076 ret = memcg_update_kmem_limit(memcg, nr_pages);
3077 break;
3078 case _TCP:
3079 ret = memcg_update_tcp_limit(memcg, nr_pages);
3080 break;
3081 }
3082 break;
3083 case RES_SOFT_LIMIT:
3084 memcg->soft_limit = nr_pages;
3085 ret = 0;
3086 break;
3087 }
3088 return ret ?: nbytes;
3089 }
3090
3091 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3092 size_t nbytes, loff_t off)
3093 {
3094 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3095 struct page_counter *counter;
3096
3097 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3098 case _MEM:
3099 counter = &memcg->memory;
3100 break;
3101 case _MEMSWAP:
3102 counter = &memcg->memsw;
3103 break;
3104 case _KMEM:
3105 counter = &memcg->kmem;
3106 break;
3107 case _TCP:
3108 counter = &memcg->tcpmem;
3109 break;
3110 default:
3111 BUG();
3112 }
3113
3114 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3115 case RES_MAX_USAGE:
3116 page_counter_reset_watermark(counter);
3117 break;
3118 case RES_FAILCNT:
3119 counter->failcnt = 0;
3120 break;
3121 default:
3122 BUG();
3123 }
3124
3125 return nbytes;
3126 }
3127
3128 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3129 struct cftype *cft)
3130 {
3131 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3132 }
3133
3134 #ifdef CONFIG_MMU
3135 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3136 struct cftype *cft, u64 val)
3137 {
3138 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3139
3140 if (val & ~MOVE_MASK)
3141 return -EINVAL;
3142
3143 /*
3144 * No kind of locking is needed in here, because ->can_attach() will
3145 * check this value once in the beginning of the process, and then carry
3146 * on with stale data. This means that changes to this value will only
3147 * affect task migrations starting after the change.
3148 */
3149 memcg->move_charge_at_immigrate = val;
3150 return 0;
3151 }
3152 #else
3153 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3154 struct cftype *cft, u64 val)
3155 {
3156 return -ENOSYS;
3157 }
3158 #endif
3159
3160 #ifdef CONFIG_NUMA
3161 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3162 {
3163 struct numa_stat {
3164 const char *name;
3165 unsigned int lru_mask;
3166 };
3167
3168 static const struct numa_stat stats[] = {
3169 { "total", LRU_ALL },
3170 { "file", LRU_ALL_FILE },
3171 { "anon", LRU_ALL_ANON },
3172 { "unevictable", BIT(LRU_UNEVICTABLE) },
3173 };
3174 const struct numa_stat *stat;
3175 int nid;
3176 unsigned long nr;
3177 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3178
3179 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3180 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3181 seq_printf(m, "%s=%lu", stat->name, nr);
3182 for_each_node_state(nid, N_MEMORY) {
3183 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3184 stat->lru_mask);
3185 seq_printf(m, " N%d=%lu", nid, nr);
3186 }
3187 seq_putc(m, '\n');
3188 }
3189
3190 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3191 struct mem_cgroup *iter;
3192
3193 nr = 0;
3194 for_each_mem_cgroup_tree(iter, memcg)
3195 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3196 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3197 for_each_node_state(nid, N_MEMORY) {
3198 nr = 0;
3199 for_each_mem_cgroup_tree(iter, memcg)
3200 nr += mem_cgroup_node_nr_lru_pages(
3201 iter, nid, stat->lru_mask);
3202 seq_printf(m, " N%d=%lu", nid, nr);
3203 }
3204 seq_putc(m, '\n');
3205 }
3206
3207 return 0;
3208 }
3209 #endif /* CONFIG_NUMA */
3210
3211 /* Universal VM events cgroup1 shows, original sort order */
3212 unsigned int memcg1_events[] = {
3213 PGPGIN,
3214 PGPGOUT,
3215 PGFAULT,
3216 PGMAJFAULT,
3217 };
3218
3219 static const char *const memcg1_event_names[] = {
3220 "pgpgin",
3221 "pgpgout",
3222 "pgfault",
3223 "pgmajfault",
3224 };
3225
3226 static int memcg_stat_show(struct seq_file *m, void *v)
3227 {
3228 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3229 unsigned long memory, memsw;
3230 struct mem_cgroup *mi;
3231 unsigned int i;
3232
3233 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3234 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3235
3236 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3237 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3238 continue;
3239 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3240 memcg_page_state(memcg, memcg1_stats[i]) *
3241 PAGE_SIZE);
3242 }
3243
3244 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3245 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3246 memcg_sum_events(memcg, memcg1_events[i]));
3247
3248 for (i = 0; i < NR_LRU_LISTS; i++)
3249 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3250 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3251
3252 /* Hierarchical information */
3253 memory = memsw = PAGE_COUNTER_MAX;
3254 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3255 memory = min(memory, mi->memory.limit);
3256 memsw = min(memsw, mi->memsw.limit);
3257 }
3258 seq_printf(m, "hierarchical_memory_limit %llu\n",
3259 (u64)memory * PAGE_SIZE);
3260 if (do_memsw_account())
3261 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3262 (u64)memsw * PAGE_SIZE);
3263
3264 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3265 unsigned long long val = 0;
3266
3267 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3268 continue;
3269 for_each_mem_cgroup_tree(mi, memcg)
3270 val += memcg_page_state(mi, memcg1_stats[i]) *
3271 PAGE_SIZE;
3272 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3273 }
3274
3275 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3276 unsigned long long val = 0;
3277
3278 for_each_mem_cgroup_tree(mi, memcg)
3279 val += memcg_sum_events(mi, memcg1_events[i]);
3280 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3281 }
3282
3283 for (i = 0; i < NR_LRU_LISTS; i++) {
3284 unsigned long long val = 0;
3285
3286 for_each_mem_cgroup_tree(mi, memcg)
3287 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3288 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3289 }
3290
3291 #ifdef CONFIG_DEBUG_VM
3292 {
3293 pg_data_t *pgdat;
3294 struct mem_cgroup_per_node *mz;
3295 struct zone_reclaim_stat *rstat;
3296 unsigned long recent_rotated[2] = {0, 0};
3297 unsigned long recent_scanned[2] = {0, 0};
3298
3299 for_each_online_pgdat(pgdat) {
3300 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3301 rstat = &mz->lruvec.reclaim_stat;
3302
3303 recent_rotated[0] += rstat->recent_rotated[0];
3304 recent_rotated[1] += rstat->recent_rotated[1];
3305 recent_scanned[0] += rstat->recent_scanned[0];
3306 recent_scanned[1] += rstat->recent_scanned[1];
3307 }
3308 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3309 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3310 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3311 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3312 }
3313 #endif
3314
3315 return 0;
3316 }
3317
3318 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3319 struct cftype *cft)
3320 {
3321 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3322
3323 return mem_cgroup_swappiness(memcg);
3324 }
3325
3326 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3327 struct cftype *cft, u64 val)
3328 {
3329 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3330
3331 if (val > 100)
3332 return -EINVAL;
3333
3334 if (css->parent)
3335 memcg->swappiness = val;
3336 else
3337 vm_swappiness = val;
3338
3339 return 0;
3340 }
3341
3342 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3343 {
3344 struct mem_cgroup_threshold_ary *t;
3345 unsigned long usage;
3346 int i;
3347
3348 rcu_read_lock();
3349 if (!swap)
3350 t = rcu_dereference(memcg->thresholds.primary);
3351 else
3352 t = rcu_dereference(memcg->memsw_thresholds.primary);
3353
3354 if (!t)
3355 goto unlock;
3356
3357 usage = mem_cgroup_usage(memcg, swap);
3358
3359 /*
3360 * current_threshold points to threshold just below or equal to usage.
3361 * If it's not true, a threshold was crossed after last
3362 * call of __mem_cgroup_threshold().
3363 */
3364 i = t->current_threshold;
3365
3366 /*
3367 * Iterate backward over array of thresholds starting from
3368 * current_threshold and check if a threshold is crossed.
3369 * If none of thresholds below usage is crossed, we read
3370 * only one element of the array here.
3371 */
3372 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3373 eventfd_signal(t->entries[i].eventfd, 1);
3374
3375 /* i = current_threshold + 1 */
3376 i++;
3377
3378 /*
3379 * Iterate forward over array of thresholds starting from
3380 * current_threshold+1 and check if a threshold is crossed.
3381 * If none of thresholds above usage is crossed, we read
3382 * only one element of the array here.
3383 */
3384 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3385 eventfd_signal(t->entries[i].eventfd, 1);
3386
3387 /* Update current_threshold */
3388 t->current_threshold = i - 1;
3389 unlock:
3390 rcu_read_unlock();
3391 }
3392
3393 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3394 {
3395 while (memcg) {
3396 __mem_cgroup_threshold(memcg, false);
3397 if (do_memsw_account())
3398 __mem_cgroup_threshold(memcg, true);
3399
3400 memcg = parent_mem_cgroup(memcg);
3401 }
3402 }
3403
3404 static int compare_thresholds(const void *a, const void *b)
3405 {
3406 const struct mem_cgroup_threshold *_a = a;
3407 const struct mem_cgroup_threshold *_b = b;
3408
3409 if (_a->threshold > _b->threshold)
3410 return 1;
3411
3412 if (_a->threshold < _b->threshold)
3413 return -1;
3414
3415 return 0;
3416 }
3417
3418 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3419 {
3420 struct mem_cgroup_eventfd_list *ev;
3421
3422 spin_lock(&memcg_oom_lock);
3423
3424 list_for_each_entry(ev, &memcg->oom_notify, list)
3425 eventfd_signal(ev->eventfd, 1);
3426
3427 spin_unlock(&memcg_oom_lock);
3428 return 0;
3429 }
3430
3431 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3432 {
3433 struct mem_cgroup *iter;
3434
3435 for_each_mem_cgroup_tree(iter, memcg)
3436 mem_cgroup_oom_notify_cb(iter);
3437 }
3438
3439 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3440 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3441 {
3442 struct mem_cgroup_thresholds *thresholds;
3443 struct mem_cgroup_threshold_ary *new;
3444 unsigned long threshold;
3445 unsigned long usage;
3446 int i, size, ret;
3447
3448 ret = page_counter_memparse(args, "-1", &threshold);
3449 if (ret)
3450 return ret;
3451
3452 mutex_lock(&memcg->thresholds_lock);
3453
3454 if (type == _MEM) {
3455 thresholds = &memcg->thresholds;
3456 usage = mem_cgroup_usage(memcg, false);
3457 } else if (type == _MEMSWAP) {
3458 thresholds = &memcg->memsw_thresholds;
3459 usage = mem_cgroup_usage(memcg, true);
3460 } else
3461 BUG();
3462
3463 /* Check if a threshold crossed before adding a new one */
3464 if (thresholds->primary)
3465 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3466
3467 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3468
3469 /* Allocate memory for new array of thresholds */
3470 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3471 GFP_KERNEL);
3472 if (!new) {
3473 ret = -ENOMEM;
3474 goto unlock;
3475 }
3476 new->size = size;
3477
3478 /* Copy thresholds (if any) to new array */
3479 if (thresholds->primary) {
3480 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3481 sizeof(struct mem_cgroup_threshold));
3482 }
3483
3484 /* Add new threshold */
3485 new->entries[size - 1].eventfd = eventfd;
3486 new->entries[size - 1].threshold = threshold;
3487
3488 /* Sort thresholds. Registering of new threshold isn't time-critical */
3489 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3490 compare_thresholds, NULL);
3491
3492 /* Find current threshold */
3493 new->current_threshold = -1;
3494 for (i = 0; i < size; i++) {
3495 if (new->entries[i].threshold <= usage) {
3496 /*
3497 * new->current_threshold will not be used until
3498 * rcu_assign_pointer(), so it's safe to increment
3499 * it here.
3500 */
3501 ++new->current_threshold;
3502 } else
3503 break;
3504 }
3505
3506 /* Free old spare buffer and save old primary buffer as spare */
3507 kfree(thresholds->spare);
3508 thresholds->spare = thresholds->primary;
3509
3510 rcu_assign_pointer(thresholds->primary, new);
3511
3512 /* To be sure that nobody uses thresholds */
3513 synchronize_rcu();
3514
3515 unlock:
3516 mutex_unlock(&memcg->thresholds_lock);
3517
3518 return ret;
3519 }
3520
3521 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3522 struct eventfd_ctx *eventfd, const char *args)
3523 {
3524 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3525 }
3526
3527 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3528 struct eventfd_ctx *eventfd, const char *args)
3529 {
3530 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3531 }
3532
3533 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3534 struct eventfd_ctx *eventfd, enum res_type type)
3535 {
3536 struct mem_cgroup_thresholds *thresholds;
3537 struct mem_cgroup_threshold_ary *new;
3538 unsigned long usage;
3539 int i, j, size;
3540
3541 mutex_lock(&memcg->thresholds_lock);
3542
3543 if (type == _MEM) {
3544 thresholds = &memcg->thresholds;
3545 usage = mem_cgroup_usage(memcg, false);
3546 } else if (type == _MEMSWAP) {
3547 thresholds = &memcg->memsw_thresholds;
3548 usage = mem_cgroup_usage(memcg, true);
3549 } else
3550 BUG();
3551
3552 if (!thresholds->primary)
3553 goto unlock;
3554
3555 /* Check if a threshold crossed before removing */
3556 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3557
3558 /* Calculate new number of threshold */
3559 size = 0;
3560 for (i = 0; i < thresholds->primary->size; i++) {
3561 if (thresholds->primary->entries[i].eventfd != eventfd)
3562 size++;
3563 }
3564
3565 new = thresholds->spare;
3566
3567 /* Set thresholds array to NULL if we don't have thresholds */
3568 if (!size) {
3569 kfree(new);
3570 new = NULL;
3571 goto swap_buffers;
3572 }
3573
3574 new->size = size;
3575
3576 /* Copy thresholds and find current threshold */
3577 new->current_threshold = -1;
3578 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3579 if (thresholds->primary->entries[i].eventfd == eventfd)
3580 continue;
3581
3582 new->entries[j] = thresholds->primary->entries[i];
3583 if (new->entries[j].threshold <= usage) {
3584 /*
3585 * new->current_threshold will not be used
3586 * until rcu_assign_pointer(), so it's safe to increment
3587 * it here.
3588 */
3589 ++new->current_threshold;
3590 }
3591 j++;
3592 }
3593
3594 swap_buffers:
3595 /* Swap primary and spare array */
3596 thresholds->spare = thresholds->primary;
3597
3598 rcu_assign_pointer(thresholds->primary, new);
3599
3600 /* To be sure that nobody uses thresholds */
3601 synchronize_rcu();
3602
3603 /* If all events are unregistered, free the spare array */
3604 if (!new) {
3605 kfree(thresholds->spare);
3606 thresholds->spare = NULL;
3607 }
3608 unlock:
3609 mutex_unlock(&memcg->thresholds_lock);
3610 }
3611
3612 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3613 struct eventfd_ctx *eventfd)
3614 {
3615 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3616 }
3617
3618 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3619 struct eventfd_ctx *eventfd)
3620 {
3621 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3622 }
3623
3624 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3625 struct eventfd_ctx *eventfd, const char *args)
3626 {
3627 struct mem_cgroup_eventfd_list *event;
3628
3629 event = kmalloc(sizeof(*event), GFP_KERNEL);
3630 if (!event)
3631 return -ENOMEM;
3632
3633 spin_lock(&memcg_oom_lock);
3634
3635 event->eventfd = eventfd;
3636 list_add(&event->list, &memcg->oom_notify);
3637
3638 /* already in OOM ? */
3639 if (memcg->under_oom)
3640 eventfd_signal(eventfd, 1);
3641 spin_unlock(&memcg_oom_lock);
3642
3643 return 0;
3644 }
3645
3646 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3647 struct eventfd_ctx *eventfd)
3648 {
3649 struct mem_cgroup_eventfd_list *ev, *tmp;
3650
3651 spin_lock(&memcg_oom_lock);
3652
3653 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3654 if (ev->eventfd == eventfd) {
3655 list_del(&ev->list);
3656 kfree(ev);
3657 }
3658 }
3659
3660 spin_unlock(&memcg_oom_lock);
3661 }
3662
3663 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3664 {
3665 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3666
3667 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3668 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3669 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3670 return 0;
3671 }
3672
3673 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3674 struct cftype *cft, u64 val)
3675 {
3676 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3677
3678 /* cannot set to root cgroup and only 0 and 1 are allowed */
3679 if (!css->parent || !((val == 0) || (val == 1)))
3680 return -EINVAL;
3681
3682 memcg->oom_kill_disable = val;
3683 if (!val)
3684 memcg_oom_recover(memcg);
3685
3686 return 0;
3687 }
3688
3689 #ifdef CONFIG_CGROUP_WRITEBACK
3690
3691 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3692 {
3693 return &memcg->cgwb_list;
3694 }
3695
3696 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3697 {
3698 return wb_domain_init(&memcg->cgwb_domain, gfp);
3699 }
3700
3701 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3702 {
3703 wb_domain_exit(&memcg->cgwb_domain);
3704 }
3705
3706 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3707 {
3708 wb_domain_size_changed(&memcg->cgwb_domain);
3709 }
3710
3711 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3712 {
3713 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3714
3715 if (!memcg->css.parent)
3716 return NULL;
3717
3718 return &memcg->cgwb_domain;
3719 }
3720
3721 /**
3722 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3723 * @wb: bdi_writeback in question
3724 * @pfilepages: out parameter for number of file pages
3725 * @pheadroom: out parameter for number of allocatable pages according to memcg
3726 * @pdirty: out parameter for number of dirty pages
3727 * @pwriteback: out parameter for number of pages under writeback
3728 *
3729 * Determine the numbers of file, headroom, dirty, and writeback pages in
3730 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3731 * is a bit more involved.
3732 *
3733 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3734 * headroom is calculated as the lowest headroom of itself and the
3735 * ancestors. Note that this doesn't consider the actual amount of
3736 * available memory in the system. The caller should further cap
3737 * *@pheadroom accordingly.
3738 */
3739 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3740 unsigned long *pheadroom, unsigned long *pdirty,
3741 unsigned long *pwriteback)
3742 {
3743 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3744 struct mem_cgroup *parent;
3745
3746 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3747
3748 /* this should eventually include NR_UNSTABLE_NFS */
3749 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3750 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3751 (1 << LRU_ACTIVE_FILE));
3752 *pheadroom = PAGE_COUNTER_MAX;
3753
3754 while ((parent = parent_mem_cgroup(memcg))) {
3755 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3756 unsigned long used = page_counter_read(&memcg->memory);
3757
3758 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3759 memcg = parent;
3760 }
3761 }
3762
3763 #else /* CONFIG_CGROUP_WRITEBACK */
3764
3765 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3766 {
3767 return 0;
3768 }
3769
3770 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3771 {
3772 }
3773
3774 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3775 {
3776 }
3777
3778 #endif /* CONFIG_CGROUP_WRITEBACK */
3779
3780 /*
3781 * DO NOT USE IN NEW FILES.
3782 *
3783 * "cgroup.event_control" implementation.
3784 *
3785 * This is way over-engineered. It tries to support fully configurable
3786 * events for each user. Such level of flexibility is completely
3787 * unnecessary especially in the light of the planned unified hierarchy.
3788 *
3789 * Please deprecate this and replace with something simpler if at all
3790 * possible.
3791 */
3792
3793 /*
3794 * Unregister event and free resources.
3795 *
3796 * Gets called from workqueue.
3797 */
3798 static void memcg_event_remove(struct work_struct *work)
3799 {
3800 struct mem_cgroup_event *event =
3801 container_of(work, struct mem_cgroup_event, remove);
3802 struct mem_cgroup *memcg = event->memcg;
3803
3804 remove_wait_queue(event->wqh, &event->wait);
3805
3806 event->unregister_event(memcg, event->eventfd);
3807
3808 /* Notify userspace the event is going away. */
3809 eventfd_signal(event->eventfd, 1);
3810
3811 eventfd_ctx_put(event->eventfd);
3812 kfree(event);
3813 css_put(&memcg->css);
3814 }
3815
3816 /*
3817 * Gets called on POLLHUP on eventfd when user closes it.
3818 *
3819 * Called with wqh->lock held and interrupts disabled.
3820 */
3821 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3822 int sync, void *key)
3823 {
3824 struct mem_cgroup_event *event =
3825 container_of(wait, struct mem_cgroup_event, wait);
3826 struct mem_cgroup *memcg = event->memcg;
3827 unsigned long flags = (unsigned long)key;
3828
3829 if (flags & POLLHUP) {
3830 /*
3831 * If the event has been detached at cgroup removal, we
3832 * can simply return knowing the other side will cleanup
3833 * for us.
3834 *
3835 * We can't race against event freeing since the other
3836 * side will require wqh->lock via remove_wait_queue(),
3837 * which we hold.
3838 */
3839 spin_lock(&memcg->event_list_lock);
3840 if (!list_empty(&event->list)) {
3841 list_del_init(&event->list);
3842 /*
3843 * We are in atomic context, but cgroup_event_remove()
3844 * may sleep, so we have to call it in workqueue.
3845 */
3846 schedule_work(&event->remove);
3847 }
3848 spin_unlock(&memcg->event_list_lock);
3849 }
3850
3851 return 0;
3852 }
3853
3854 static void memcg_event_ptable_queue_proc(struct file *file,
3855 wait_queue_head_t *wqh, poll_table *pt)
3856 {
3857 struct mem_cgroup_event *event =
3858 container_of(pt, struct mem_cgroup_event, pt);
3859
3860 event->wqh = wqh;
3861 add_wait_queue(wqh, &event->wait);
3862 }
3863
3864 /*
3865 * DO NOT USE IN NEW FILES.
3866 *
3867 * Parse input and register new cgroup event handler.
3868 *
3869 * Input must be in format '<event_fd> <control_fd> <args>'.
3870 * Interpretation of args is defined by control file implementation.
3871 */
3872 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3873 char *buf, size_t nbytes, loff_t off)
3874 {
3875 struct cgroup_subsys_state *css = of_css(of);
3876 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3877 struct mem_cgroup_event *event;
3878 struct cgroup_subsys_state *cfile_css;
3879 unsigned int efd, cfd;
3880 struct fd efile;
3881 struct fd cfile;
3882 const char *name;
3883 char *endp;
3884 int ret;
3885
3886 buf = strstrip(buf);
3887
3888 efd = simple_strtoul(buf, &endp, 10);
3889 if (*endp != ' ')
3890 return -EINVAL;
3891 buf = endp + 1;
3892
3893 cfd = simple_strtoul(buf, &endp, 10);
3894 if ((*endp != ' ') && (*endp != '\0'))
3895 return -EINVAL;
3896 buf = endp + 1;
3897
3898 event = kzalloc(sizeof(*event), GFP_KERNEL);
3899 if (!event)
3900 return -ENOMEM;
3901
3902 event->memcg = memcg;
3903 INIT_LIST_HEAD(&event->list);
3904 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3905 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3906 INIT_WORK(&event->remove, memcg_event_remove);
3907
3908 efile = fdget(efd);
3909 if (!efile.file) {
3910 ret = -EBADF;
3911 goto out_kfree;
3912 }
3913
3914 event->eventfd = eventfd_ctx_fileget(efile.file);
3915 if (IS_ERR(event->eventfd)) {
3916 ret = PTR_ERR(event->eventfd);
3917 goto out_put_efile;
3918 }
3919
3920 cfile = fdget(cfd);
3921 if (!cfile.file) {
3922 ret = -EBADF;
3923 goto out_put_eventfd;
3924 }
3925
3926 /* the process need read permission on control file */
3927 /* AV: shouldn't we check that it's been opened for read instead? */
3928 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3929 if (ret < 0)
3930 goto out_put_cfile;
3931
3932 /*
3933 * Determine the event callbacks and set them in @event. This used
3934 * to be done via struct cftype but cgroup core no longer knows
3935 * about these events. The following is crude but the whole thing
3936 * is for compatibility anyway.
3937 *
3938 * DO NOT ADD NEW FILES.
3939 */
3940 name = cfile.file->f_path.dentry->d_name.name;
3941
3942 if (!strcmp(name, "memory.usage_in_bytes")) {
3943 event->register_event = mem_cgroup_usage_register_event;
3944 event->unregister_event = mem_cgroup_usage_unregister_event;
3945 } else if (!strcmp(name, "memory.oom_control")) {
3946 event->register_event = mem_cgroup_oom_register_event;
3947 event->unregister_event = mem_cgroup_oom_unregister_event;
3948 } else if (!strcmp(name, "memory.pressure_level")) {
3949 event->register_event = vmpressure_register_event;
3950 event->unregister_event = vmpressure_unregister_event;
3951 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3952 event->register_event = memsw_cgroup_usage_register_event;
3953 event->unregister_event = memsw_cgroup_usage_unregister_event;
3954 } else {
3955 ret = -EINVAL;
3956 goto out_put_cfile;
3957 }
3958
3959 /*
3960 * Verify @cfile should belong to @css. Also, remaining events are
3961 * automatically removed on cgroup destruction but the removal is
3962 * asynchronous, so take an extra ref on @css.
3963 */
3964 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3965 &memory_cgrp_subsys);
3966 ret = -EINVAL;
3967 if (IS_ERR(cfile_css))
3968 goto out_put_cfile;
3969 if (cfile_css != css) {
3970 css_put(cfile_css);
3971 goto out_put_cfile;
3972 }
3973
3974 ret = event->register_event(memcg, event->eventfd, buf);
3975 if (ret)
3976 goto out_put_css;
3977
3978 efile.file->f_op->poll(efile.file, &event->pt);
3979
3980 spin_lock(&memcg->event_list_lock);
3981 list_add(&event->list, &memcg->event_list);
3982 spin_unlock(&memcg->event_list_lock);
3983
3984 fdput(cfile);
3985 fdput(efile);
3986
3987 return nbytes;
3988
3989 out_put_css:
3990 css_put(css);
3991 out_put_cfile:
3992 fdput(cfile);
3993 out_put_eventfd:
3994 eventfd_ctx_put(event->eventfd);
3995 out_put_efile:
3996 fdput(efile);
3997 out_kfree:
3998 kfree(event);
3999
4000 return ret;
4001 }
4002
4003 static struct cftype mem_cgroup_legacy_files[] = {
4004 {
4005 .name = "usage_in_bytes",
4006 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4007 .read_u64 = mem_cgroup_read_u64,
4008 },
4009 {
4010 .name = "max_usage_in_bytes",
4011 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4012 .write = mem_cgroup_reset,
4013 .read_u64 = mem_cgroup_read_u64,
4014 },
4015 {
4016 .name = "limit_in_bytes",
4017 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4018 .write = mem_cgroup_write,
4019 .read_u64 = mem_cgroup_read_u64,
4020 },
4021 {
4022 .name = "soft_limit_in_bytes",
4023 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4024 .write = mem_cgroup_write,
4025 .read_u64 = mem_cgroup_read_u64,
4026 },
4027 {
4028 .name = "failcnt",
4029 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4030 .write = mem_cgroup_reset,
4031 .read_u64 = mem_cgroup_read_u64,
4032 },
4033 {
4034 .name = "stat",
4035 .seq_show = memcg_stat_show,
4036 },
4037 {
4038 .name = "force_empty",
4039 .write = mem_cgroup_force_empty_write,
4040 },
4041 {
4042 .name = "use_hierarchy",
4043 .write_u64 = mem_cgroup_hierarchy_write,
4044 .read_u64 = mem_cgroup_hierarchy_read,
4045 },
4046 {
4047 .name = "cgroup.event_control", /* XXX: for compat */
4048 .write = memcg_write_event_control,
4049 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4050 },
4051 {
4052 .name = "swappiness",
4053 .read_u64 = mem_cgroup_swappiness_read,
4054 .write_u64 = mem_cgroup_swappiness_write,
4055 },
4056 {
4057 .name = "move_charge_at_immigrate",
4058 .read_u64 = mem_cgroup_move_charge_read,
4059 .write_u64 = mem_cgroup_move_charge_write,
4060 },
4061 {
4062 .name = "oom_control",
4063 .seq_show = mem_cgroup_oom_control_read,
4064 .write_u64 = mem_cgroup_oom_control_write,
4065 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4066 },
4067 {
4068 .name = "pressure_level",
4069 },
4070 #ifdef CONFIG_NUMA
4071 {
4072 .name = "numa_stat",
4073 .seq_show = memcg_numa_stat_show,
4074 },
4075 #endif
4076 {
4077 .name = "kmem.limit_in_bytes",
4078 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4079 .write = mem_cgroup_write,
4080 .read_u64 = mem_cgroup_read_u64,
4081 },
4082 {
4083 .name = "kmem.usage_in_bytes",
4084 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4085 .read_u64 = mem_cgroup_read_u64,
4086 },
4087 {
4088 .name = "kmem.failcnt",
4089 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4090 .write = mem_cgroup_reset,
4091 .read_u64 = mem_cgroup_read_u64,
4092 },
4093 {
4094 .name = "kmem.max_usage_in_bytes",
4095 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4096 .write = mem_cgroup_reset,
4097 .read_u64 = mem_cgroup_read_u64,
4098 },
4099 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4100 {
4101 .name = "kmem.slabinfo",
4102 .seq_start = memcg_slab_start,
4103 .seq_next = memcg_slab_next,
4104 .seq_stop = memcg_slab_stop,
4105 .seq_show = memcg_slab_show,
4106 },
4107 #endif
4108 {
4109 .name = "kmem.tcp.limit_in_bytes",
4110 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4111 .write = mem_cgroup_write,
4112 .read_u64 = mem_cgroup_read_u64,
4113 },
4114 {
4115 .name = "kmem.tcp.usage_in_bytes",
4116 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4117 .read_u64 = mem_cgroup_read_u64,
4118 },
4119 {
4120 .name = "kmem.tcp.failcnt",
4121 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4122 .write = mem_cgroup_reset,
4123 .read_u64 = mem_cgroup_read_u64,
4124 },
4125 {
4126 .name = "kmem.tcp.max_usage_in_bytes",
4127 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4128 .write = mem_cgroup_reset,
4129 .read_u64 = mem_cgroup_read_u64,
4130 },
4131 { }, /* terminate */
4132 };
4133
4134 /*
4135 * Private memory cgroup IDR
4136 *
4137 * Swap-out records and page cache shadow entries need to store memcg
4138 * references in constrained space, so we maintain an ID space that is
4139 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4140 * memory-controlled cgroups to 64k.
4141 *
4142 * However, there usually are many references to the oflline CSS after
4143 * the cgroup has been destroyed, such as page cache or reclaimable
4144 * slab objects, that don't need to hang on to the ID. We want to keep
4145 * those dead CSS from occupying IDs, or we might quickly exhaust the
4146 * relatively small ID space and prevent the creation of new cgroups
4147 * even when there are much fewer than 64k cgroups - possibly none.
4148 *
4149 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4150 * be freed and recycled when it's no longer needed, which is usually
4151 * when the CSS is offlined.
4152 *
4153 * The only exception to that are records of swapped out tmpfs/shmem
4154 * pages that need to be attributed to live ancestors on swapin. But
4155 * those references are manageable from userspace.
4156 */
4157
4158 static DEFINE_IDR(mem_cgroup_idr);
4159
4160 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4161 {
4162 if (memcg->id.id > 0) {
4163 idr_remove(&mem_cgroup_idr, memcg->id.id);
4164 memcg->id.id = 0;
4165 }
4166 }
4167
4168 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4169 {
4170 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4171 atomic_add(n, &memcg->id.ref);
4172 }
4173
4174 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4175 {
4176 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4177 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4178 mem_cgroup_id_remove(memcg);
4179
4180 /* Memcg ID pins CSS */
4181 css_put(&memcg->css);
4182 }
4183 }
4184
4185 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4186 {
4187 mem_cgroup_id_get_many(memcg, 1);
4188 }
4189
4190 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4191 {
4192 mem_cgroup_id_put_many(memcg, 1);
4193 }
4194
4195 /**
4196 * mem_cgroup_from_id - look up a memcg from a memcg id
4197 * @id: the memcg id to look up
4198 *
4199 * Caller must hold rcu_read_lock().
4200 */
4201 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4202 {
4203 WARN_ON_ONCE(!rcu_read_lock_held());
4204 return idr_find(&mem_cgroup_idr, id);
4205 }
4206
4207 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4208 {
4209 struct mem_cgroup_per_node *pn;
4210 int tmp = node;
4211 /*
4212 * This routine is called against possible nodes.
4213 * But it's BUG to call kmalloc() against offline node.
4214 *
4215 * TODO: this routine can waste much memory for nodes which will
4216 * never be onlined. It's better to use memory hotplug callback
4217 * function.
4218 */
4219 if (!node_state(node, N_NORMAL_MEMORY))
4220 tmp = -1;
4221 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4222 if (!pn)
4223 return 1;
4224
4225 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4226 if (!pn->lruvec_stat) {
4227 kfree(pn);
4228 return 1;
4229 }
4230
4231 lruvec_init(&pn->lruvec);
4232 pn->usage_in_excess = 0;
4233 pn->on_tree = false;
4234 pn->memcg = memcg;
4235
4236 memcg->nodeinfo[node] = pn;
4237 return 0;
4238 }
4239
4240 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4241 {
4242 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4243
4244 if (!pn)
4245 return;
4246
4247 free_percpu(pn->lruvec_stat);
4248 kfree(pn);
4249 }
4250
4251 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4252 {
4253 int node;
4254
4255 for_each_node(node)
4256 free_mem_cgroup_per_node_info(memcg, node);
4257 free_percpu(memcg->stat);
4258 kfree(memcg);
4259 }
4260
4261 static void mem_cgroup_free(struct mem_cgroup *memcg)
4262 {
4263 memcg_wb_domain_exit(memcg);
4264 __mem_cgroup_free(memcg);
4265 }
4266
4267 static struct mem_cgroup *mem_cgroup_alloc(void)
4268 {
4269 struct mem_cgroup *memcg;
4270 size_t size;
4271 int node;
4272
4273 size = sizeof(struct mem_cgroup);
4274 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4275
4276 memcg = kzalloc(size, GFP_KERNEL);
4277 if (!memcg)
4278 return NULL;
4279
4280 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4281 1, MEM_CGROUP_ID_MAX,
4282 GFP_KERNEL);
4283 if (memcg->id.id < 0)
4284 goto fail;
4285
4286 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4287 if (!memcg->stat)
4288 goto fail;
4289
4290 for_each_node(node)
4291 if (alloc_mem_cgroup_per_node_info(memcg, node))
4292 goto fail;
4293
4294 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4295 goto fail;
4296
4297 INIT_WORK(&memcg->high_work, high_work_func);
4298 memcg->last_scanned_node = MAX_NUMNODES;
4299 INIT_LIST_HEAD(&memcg->oom_notify);
4300 mutex_init(&memcg->thresholds_lock);
4301 spin_lock_init(&memcg->move_lock);
4302 vmpressure_init(&memcg->vmpressure);
4303 INIT_LIST_HEAD(&memcg->event_list);
4304 spin_lock_init(&memcg->event_list_lock);
4305 memcg->socket_pressure = jiffies;
4306 #ifndef CONFIG_SLOB
4307 memcg->kmemcg_id = -1;
4308 #endif
4309 #ifdef CONFIG_CGROUP_WRITEBACK
4310 INIT_LIST_HEAD(&memcg->cgwb_list);
4311 #endif
4312 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4313 return memcg;
4314 fail:
4315 mem_cgroup_id_remove(memcg);
4316 __mem_cgroup_free(memcg);
4317 return NULL;
4318 }
4319
4320 static struct cgroup_subsys_state * __ref
4321 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4322 {
4323 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4324 struct mem_cgroup *memcg;
4325 long error = -ENOMEM;
4326
4327 memcg = mem_cgroup_alloc();
4328 if (!memcg)
4329 return ERR_PTR(error);
4330
4331 memcg->high = PAGE_COUNTER_MAX;
4332 memcg->soft_limit = PAGE_COUNTER_MAX;
4333 if (parent) {
4334 memcg->swappiness = mem_cgroup_swappiness(parent);
4335 memcg->oom_kill_disable = parent->oom_kill_disable;
4336 }
4337 if (parent && parent->use_hierarchy) {
4338 memcg->use_hierarchy = true;
4339 page_counter_init(&memcg->memory, &parent->memory);
4340 page_counter_init(&memcg->swap, &parent->swap);
4341 page_counter_init(&memcg->memsw, &parent->memsw);
4342 page_counter_init(&memcg->kmem, &parent->kmem);
4343 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4344 } else {
4345 page_counter_init(&memcg->memory, NULL);
4346 page_counter_init(&memcg->swap, NULL);
4347 page_counter_init(&memcg->memsw, NULL);
4348 page_counter_init(&memcg->kmem, NULL);
4349 page_counter_init(&memcg->tcpmem, NULL);
4350 /*
4351 * Deeper hierachy with use_hierarchy == false doesn't make
4352 * much sense so let cgroup subsystem know about this
4353 * unfortunate state in our controller.
4354 */
4355 if (parent != root_mem_cgroup)
4356 memory_cgrp_subsys.broken_hierarchy = true;
4357 }
4358
4359 /* The following stuff does not apply to the root */
4360 if (!parent) {
4361 root_mem_cgroup = memcg;
4362 return &memcg->css;
4363 }
4364
4365 error = memcg_online_kmem(memcg);
4366 if (error)
4367 goto fail;
4368
4369 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4370 static_branch_inc(&memcg_sockets_enabled_key);
4371
4372 return &memcg->css;
4373 fail:
4374 mem_cgroup_id_remove(memcg);
4375 mem_cgroup_free(memcg);
4376 return ERR_PTR(-ENOMEM);
4377 }
4378
4379 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4380 {
4381 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4382
4383 /* Online state pins memcg ID, memcg ID pins CSS */
4384 atomic_set(&memcg->id.ref, 1);
4385 css_get(css);
4386 return 0;
4387 }
4388
4389 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4390 {
4391 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4392 struct mem_cgroup_event *event, *tmp;
4393
4394 /*
4395 * Unregister events and notify userspace.
4396 * Notify userspace about cgroup removing only after rmdir of cgroup
4397 * directory to avoid race between userspace and kernelspace.
4398 */
4399 spin_lock(&memcg->event_list_lock);
4400 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4401 list_del_init(&event->list);
4402 schedule_work(&event->remove);
4403 }
4404 spin_unlock(&memcg->event_list_lock);
4405
4406 memcg->low = 0;
4407
4408 memcg_offline_kmem(memcg);
4409 wb_memcg_offline(memcg);
4410
4411 mem_cgroup_id_put(memcg);
4412 }
4413
4414 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4415 {
4416 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4417
4418 invalidate_reclaim_iterators(memcg);
4419 }
4420
4421 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4422 {
4423 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4424
4425 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4426 static_branch_dec(&memcg_sockets_enabled_key);
4427
4428 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4429 static_branch_dec(&memcg_sockets_enabled_key);
4430
4431 vmpressure_cleanup(&memcg->vmpressure);
4432 cancel_work_sync(&memcg->high_work);
4433 mem_cgroup_remove_from_trees(memcg);
4434 memcg_free_kmem(memcg);
4435 mem_cgroup_free(memcg);
4436 }
4437
4438 /**
4439 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4440 * @css: the target css
4441 *
4442 * Reset the states of the mem_cgroup associated with @css. This is
4443 * invoked when the userland requests disabling on the default hierarchy
4444 * but the memcg is pinned through dependency. The memcg should stop
4445 * applying policies and should revert to the vanilla state as it may be
4446 * made visible again.
4447 *
4448 * The current implementation only resets the essential configurations.
4449 * This needs to be expanded to cover all the visible parts.
4450 */
4451 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4452 {
4453 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4454
4455 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4456 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4457 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4458 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4459 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4460 memcg->low = 0;
4461 memcg->high = PAGE_COUNTER_MAX;
4462 memcg->soft_limit = PAGE_COUNTER_MAX;
4463 memcg_wb_domain_size_changed(memcg);
4464 }
4465
4466 #ifdef CONFIG_MMU
4467 /* Handlers for move charge at task migration. */
4468 static int mem_cgroup_do_precharge(unsigned long count)
4469 {
4470 int ret;
4471
4472 /* Try a single bulk charge without reclaim first, kswapd may wake */
4473 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4474 if (!ret) {
4475 mc.precharge += count;
4476 return ret;
4477 }
4478
4479 /* Try charges one by one with reclaim, but do not retry */
4480 while (count--) {
4481 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4482 if (ret)
4483 return ret;
4484 mc.precharge++;
4485 cond_resched();
4486 }
4487 return 0;
4488 }
4489
4490 union mc_target {
4491 struct page *page;
4492 swp_entry_t ent;
4493 };
4494
4495 enum mc_target_type {
4496 MC_TARGET_NONE = 0,
4497 MC_TARGET_PAGE,
4498 MC_TARGET_SWAP,
4499 MC_TARGET_DEVICE,
4500 };
4501
4502 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4503 unsigned long addr, pte_t ptent)
4504 {
4505 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4506
4507 if (!page || !page_mapped(page))
4508 return NULL;
4509 if (PageAnon(page)) {
4510 if (!(mc.flags & MOVE_ANON))
4511 return NULL;
4512 } else {
4513 if (!(mc.flags & MOVE_FILE))
4514 return NULL;
4515 }
4516 if (!get_page_unless_zero(page))
4517 return NULL;
4518
4519 return page;
4520 }
4521
4522 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4523 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4524 pte_t ptent, swp_entry_t *entry)
4525 {
4526 struct page *page = NULL;
4527 swp_entry_t ent = pte_to_swp_entry(ptent);
4528
4529 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4530 return NULL;
4531
4532 /*
4533 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4534 * a device and because they are not accessible by CPU they are store
4535 * as special swap entry in the CPU page table.
4536 */
4537 if (is_device_private_entry(ent)) {
4538 page = device_private_entry_to_page(ent);
4539 /*
4540 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4541 * a refcount of 1 when free (unlike normal page)
4542 */
4543 if (!page_ref_add_unless(page, 1, 1))
4544 return NULL;
4545 return page;
4546 }
4547
4548 /*
4549 * Because lookup_swap_cache() updates some statistics counter,
4550 * we call find_get_page() with swapper_space directly.
4551 */
4552 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4553 if (do_memsw_account())
4554 entry->val = ent.val;
4555
4556 return page;
4557 }
4558 #else
4559 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4560 pte_t ptent, swp_entry_t *entry)
4561 {
4562 return NULL;
4563 }
4564 #endif
4565
4566 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4567 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4568 {
4569 struct page *page = NULL;
4570 struct address_space *mapping;
4571 pgoff_t pgoff;
4572
4573 if (!vma->vm_file) /* anonymous vma */
4574 return NULL;
4575 if (!(mc.flags & MOVE_FILE))
4576 return NULL;
4577
4578 mapping = vma->vm_file->f_mapping;
4579 pgoff = linear_page_index(vma, addr);
4580
4581 /* page is moved even if it's not RSS of this task(page-faulted). */
4582 #ifdef CONFIG_SWAP
4583 /* shmem/tmpfs may report page out on swap: account for that too. */
4584 if (shmem_mapping(mapping)) {
4585 page = find_get_entry(mapping, pgoff);
4586 if (radix_tree_exceptional_entry(page)) {
4587 swp_entry_t swp = radix_to_swp_entry(page);
4588 if (do_memsw_account())
4589 *entry = swp;
4590 page = find_get_page(swap_address_space(swp),
4591 swp_offset(swp));
4592 }
4593 } else
4594 page = find_get_page(mapping, pgoff);
4595 #else
4596 page = find_get_page(mapping, pgoff);
4597 #endif
4598 return page;
4599 }
4600
4601 /**
4602 * mem_cgroup_move_account - move account of the page
4603 * @page: the page
4604 * @compound: charge the page as compound or small page
4605 * @from: mem_cgroup which the page is moved from.
4606 * @to: mem_cgroup which the page is moved to. @from != @to.
4607 *
4608 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4609 *
4610 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4611 * from old cgroup.
4612 */
4613 static int mem_cgroup_move_account(struct page *page,
4614 bool compound,
4615 struct mem_cgroup *from,
4616 struct mem_cgroup *to)
4617 {
4618 unsigned long flags;
4619 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4620 int ret;
4621 bool anon;
4622
4623 VM_BUG_ON(from == to);
4624 VM_BUG_ON_PAGE(PageLRU(page), page);
4625 VM_BUG_ON(compound && !PageTransHuge(page));
4626
4627 /*
4628 * Prevent mem_cgroup_migrate() from looking at
4629 * page->mem_cgroup of its source page while we change it.
4630 */
4631 ret = -EBUSY;
4632 if (!trylock_page(page))
4633 goto out;
4634
4635 ret = -EINVAL;
4636 if (page->mem_cgroup != from)
4637 goto out_unlock;
4638
4639 anon = PageAnon(page);
4640
4641 spin_lock_irqsave(&from->move_lock, flags);
4642
4643 if (!anon && page_mapped(page)) {
4644 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4645 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
4646 }
4647
4648 /*
4649 * move_lock grabbed above and caller set from->moving_account, so
4650 * mod_memcg_page_state will serialize updates to PageDirty.
4651 * So mapping should be stable for dirty pages.
4652 */
4653 if (!anon && PageDirty(page)) {
4654 struct address_space *mapping = page_mapping(page);
4655
4656 if (mapping_cap_account_dirty(mapping)) {
4657 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
4658 nr_pages);
4659 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
4660 nr_pages);
4661 }
4662 }
4663
4664 if (PageWriteback(page)) {
4665 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4666 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
4667 }
4668
4669 /*
4670 * It is safe to change page->mem_cgroup here because the page
4671 * is referenced, charged, and isolated - we can't race with
4672 * uncharging, charging, migration, or LRU putback.
4673 */
4674
4675 /* caller should have done css_get */
4676 page->mem_cgroup = to;
4677 spin_unlock_irqrestore(&from->move_lock, flags);
4678
4679 ret = 0;
4680
4681 local_irq_disable();
4682 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4683 memcg_check_events(to, page);
4684 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4685 memcg_check_events(from, page);
4686 local_irq_enable();
4687 out_unlock:
4688 unlock_page(page);
4689 out:
4690 return ret;
4691 }
4692
4693 /**
4694 * get_mctgt_type - get target type of moving charge
4695 * @vma: the vma the pte to be checked belongs
4696 * @addr: the address corresponding to the pte to be checked
4697 * @ptent: the pte to be checked
4698 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4699 *
4700 * Returns
4701 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4702 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4703 * move charge. if @target is not NULL, the page is stored in target->page
4704 * with extra refcnt got(Callers should handle it).
4705 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4706 * target for charge migration. if @target is not NULL, the entry is stored
4707 * in target->ent.
4708 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4709 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4710 * For now we such page is charge like a regular page would be as for all
4711 * intent and purposes it is just special memory taking the place of a
4712 * regular page.
4713 *
4714 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4715 *
4716 * Called with pte lock held.
4717 */
4718
4719 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4720 unsigned long addr, pte_t ptent, union mc_target *target)
4721 {
4722 struct page *page = NULL;
4723 enum mc_target_type ret = MC_TARGET_NONE;
4724 swp_entry_t ent = { .val = 0 };
4725
4726 if (pte_present(ptent))
4727 page = mc_handle_present_pte(vma, addr, ptent);
4728 else if (is_swap_pte(ptent))
4729 page = mc_handle_swap_pte(vma, ptent, &ent);
4730 else if (pte_none(ptent))
4731 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4732
4733 if (!page && !ent.val)
4734 return ret;
4735 if (page) {
4736 /*
4737 * Do only loose check w/o serialization.
4738 * mem_cgroup_move_account() checks the page is valid or
4739 * not under LRU exclusion.
4740 */
4741 if (page->mem_cgroup == mc.from) {
4742 ret = MC_TARGET_PAGE;
4743 if (is_device_private_page(page) ||
4744 is_device_public_page(page))
4745 ret = MC_TARGET_DEVICE;
4746 if (target)
4747 target->page = page;
4748 }
4749 if (!ret || !target)
4750 put_page(page);
4751 }
4752 /*
4753 * There is a swap entry and a page doesn't exist or isn't charged.
4754 * But we cannot move a tail-page in a THP.
4755 */
4756 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4757 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4758 ret = MC_TARGET_SWAP;
4759 if (target)
4760 target->ent = ent;
4761 }
4762 return ret;
4763 }
4764
4765 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4766 /*
4767 * We don't consider PMD mapped swapping or file mapped pages because THP does
4768 * not support them for now.
4769 * Caller should make sure that pmd_trans_huge(pmd) is true.
4770 */
4771 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4772 unsigned long addr, pmd_t pmd, union mc_target *target)
4773 {
4774 struct page *page = NULL;
4775 enum mc_target_type ret = MC_TARGET_NONE;
4776
4777 if (unlikely(is_swap_pmd(pmd))) {
4778 VM_BUG_ON(thp_migration_supported() &&
4779 !is_pmd_migration_entry(pmd));
4780 return ret;
4781 }
4782 page = pmd_page(pmd);
4783 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4784 if (!(mc.flags & MOVE_ANON))
4785 return ret;
4786 if (page->mem_cgroup == mc.from) {
4787 ret = MC_TARGET_PAGE;
4788 if (target) {
4789 get_page(page);
4790 target->page = page;
4791 }
4792 }
4793 return ret;
4794 }
4795 #else
4796 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4797 unsigned long addr, pmd_t pmd, union mc_target *target)
4798 {
4799 return MC_TARGET_NONE;
4800 }
4801 #endif
4802
4803 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4804 unsigned long addr, unsigned long end,
4805 struct mm_walk *walk)
4806 {
4807 struct vm_area_struct *vma = walk->vma;
4808 pte_t *pte;
4809 spinlock_t *ptl;
4810
4811 ptl = pmd_trans_huge_lock(pmd, vma);
4812 if (ptl) {
4813 /*
4814 * Note their can not be MC_TARGET_DEVICE for now as we do not
4815 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4816 * MEMORY_DEVICE_PRIVATE but this might change.
4817 */
4818 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4819 mc.precharge += HPAGE_PMD_NR;
4820 spin_unlock(ptl);
4821 return 0;
4822 }
4823
4824 if (pmd_trans_unstable(pmd))
4825 return 0;
4826 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4827 for (; addr != end; pte++, addr += PAGE_SIZE)
4828 if (get_mctgt_type(vma, addr, *pte, NULL))
4829 mc.precharge++; /* increment precharge temporarily */
4830 pte_unmap_unlock(pte - 1, ptl);
4831 cond_resched();
4832
4833 return 0;
4834 }
4835
4836 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4837 {
4838 unsigned long precharge;
4839
4840 struct mm_walk mem_cgroup_count_precharge_walk = {
4841 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4842 .mm = mm,
4843 };
4844 down_read(&mm->mmap_sem);
4845 walk_page_range(0, mm->highest_vm_end,
4846 &mem_cgroup_count_precharge_walk);
4847 up_read(&mm->mmap_sem);
4848
4849 precharge = mc.precharge;
4850 mc.precharge = 0;
4851
4852 return precharge;
4853 }
4854
4855 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4856 {
4857 unsigned long precharge = mem_cgroup_count_precharge(mm);
4858
4859 VM_BUG_ON(mc.moving_task);
4860 mc.moving_task = current;
4861 return mem_cgroup_do_precharge(precharge);
4862 }
4863
4864 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4865 static void __mem_cgroup_clear_mc(void)
4866 {
4867 struct mem_cgroup *from = mc.from;
4868 struct mem_cgroup *to = mc.to;
4869
4870 /* we must uncharge all the leftover precharges from mc.to */
4871 if (mc.precharge) {
4872 cancel_charge(mc.to, mc.precharge);
4873 mc.precharge = 0;
4874 }
4875 /*
4876 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4877 * we must uncharge here.
4878 */
4879 if (mc.moved_charge) {
4880 cancel_charge(mc.from, mc.moved_charge);
4881 mc.moved_charge = 0;
4882 }
4883 /* we must fixup refcnts and charges */
4884 if (mc.moved_swap) {
4885 /* uncharge swap account from the old cgroup */
4886 if (!mem_cgroup_is_root(mc.from))
4887 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4888
4889 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4890
4891 /*
4892 * we charged both to->memory and to->memsw, so we
4893 * should uncharge to->memory.
4894 */
4895 if (!mem_cgroup_is_root(mc.to))
4896 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4897
4898 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4899 css_put_many(&mc.to->css, mc.moved_swap);
4900
4901 mc.moved_swap = 0;
4902 }
4903 memcg_oom_recover(from);
4904 memcg_oom_recover(to);
4905 wake_up_all(&mc.waitq);
4906 }
4907
4908 static void mem_cgroup_clear_mc(void)
4909 {
4910 struct mm_struct *mm = mc.mm;
4911
4912 /*
4913 * we must clear moving_task before waking up waiters at the end of
4914 * task migration.
4915 */
4916 mc.moving_task = NULL;
4917 __mem_cgroup_clear_mc();
4918 spin_lock(&mc.lock);
4919 mc.from = NULL;
4920 mc.to = NULL;
4921 mc.mm = NULL;
4922 spin_unlock(&mc.lock);
4923
4924 mmput(mm);
4925 }
4926
4927 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4928 {
4929 struct cgroup_subsys_state *css;
4930 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4931 struct mem_cgroup *from;
4932 struct task_struct *leader, *p;
4933 struct mm_struct *mm;
4934 unsigned long move_flags;
4935 int ret = 0;
4936
4937 /* charge immigration isn't supported on the default hierarchy */
4938 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4939 return 0;
4940
4941 /*
4942 * Multi-process migrations only happen on the default hierarchy
4943 * where charge immigration is not used. Perform charge
4944 * immigration if @tset contains a leader and whine if there are
4945 * multiple.
4946 */
4947 p = NULL;
4948 cgroup_taskset_for_each_leader(leader, css, tset) {
4949 WARN_ON_ONCE(p);
4950 p = leader;
4951 memcg = mem_cgroup_from_css(css);
4952 }
4953 if (!p)
4954 return 0;
4955
4956 /*
4957 * We are now commited to this value whatever it is. Changes in this
4958 * tunable will only affect upcoming migrations, not the current one.
4959 * So we need to save it, and keep it going.
4960 */
4961 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4962 if (!move_flags)
4963 return 0;
4964
4965 from = mem_cgroup_from_task(p);
4966
4967 VM_BUG_ON(from == memcg);
4968
4969 mm = get_task_mm(p);
4970 if (!mm)
4971 return 0;
4972 /* We move charges only when we move a owner of the mm */
4973 if (mm->owner == p) {
4974 VM_BUG_ON(mc.from);
4975 VM_BUG_ON(mc.to);
4976 VM_BUG_ON(mc.precharge);
4977 VM_BUG_ON(mc.moved_charge);
4978 VM_BUG_ON(mc.moved_swap);
4979
4980 spin_lock(&mc.lock);
4981 mc.mm = mm;
4982 mc.from = from;
4983 mc.to = memcg;
4984 mc.flags = move_flags;
4985 spin_unlock(&mc.lock);
4986 /* We set mc.moving_task later */
4987
4988 ret = mem_cgroup_precharge_mc(mm);
4989 if (ret)
4990 mem_cgroup_clear_mc();
4991 } else {
4992 mmput(mm);
4993 }
4994 return ret;
4995 }
4996
4997 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4998 {
4999 if (mc.to)
5000 mem_cgroup_clear_mc();
5001 }
5002
5003 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5004 unsigned long addr, unsigned long end,
5005 struct mm_walk *walk)
5006 {
5007 int ret = 0;
5008 struct vm_area_struct *vma = walk->vma;
5009 pte_t *pte;
5010 spinlock_t *ptl;
5011 enum mc_target_type target_type;
5012 union mc_target target;
5013 struct page *page;
5014
5015 ptl = pmd_trans_huge_lock(pmd, vma);
5016 if (ptl) {
5017 if (mc.precharge < HPAGE_PMD_NR) {
5018 spin_unlock(ptl);
5019 return 0;
5020 }
5021 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5022 if (target_type == MC_TARGET_PAGE) {
5023 page = target.page;
5024 if (!isolate_lru_page(page)) {
5025 if (!mem_cgroup_move_account(page, true,
5026 mc.from, mc.to)) {
5027 mc.precharge -= HPAGE_PMD_NR;
5028 mc.moved_charge += HPAGE_PMD_NR;
5029 }
5030 putback_lru_page(page);
5031 }
5032 put_page(page);
5033 } else if (target_type == MC_TARGET_DEVICE) {
5034 page = target.page;
5035 if (!mem_cgroup_move_account(page, true,
5036 mc.from, mc.to)) {
5037 mc.precharge -= HPAGE_PMD_NR;
5038 mc.moved_charge += HPAGE_PMD_NR;
5039 }
5040 put_page(page);
5041 }
5042 spin_unlock(ptl);
5043 return 0;
5044 }
5045
5046 if (pmd_trans_unstable(pmd))
5047 return 0;
5048 retry:
5049 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5050 for (; addr != end; addr += PAGE_SIZE) {
5051 pte_t ptent = *(pte++);
5052 bool device = false;
5053 swp_entry_t ent;
5054
5055 if (!mc.precharge)
5056 break;
5057
5058 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5059 case MC_TARGET_DEVICE:
5060 device = true;
5061 /* fall through */
5062 case MC_TARGET_PAGE:
5063 page = target.page;
5064 /*
5065 * We can have a part of the split pmd here. Moving it
5066 * can be done but it would be too convoluted so simply
5067 * ignore such a partial THP and keep it in original
5068 * memcg. There should be somebody mapping the head.
5069 */
5070 if (PageTransCompound(page))
5071 goto put;
5072 if (!device && isolate_lru_page(page))
5073 goto put;
5074 if (!mem_cgroup_move_account(page, false,
5075 mc.from, mc.to)) {
5076 mc.precharge--;
5077 /* we uncharge from mc.from later. */
5078 mc.moved_charge++;
5079 }
5080 if (!device)
5081 putback_lru_page(page);
5082 put: /* get_mctgt_type() gets the page */
5083 put_page(page);
5084 break;
5085 case MC_TARGET_SWAP:
5086 ent = target.ent;
5087 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5088 mc.precharge--;
5089 /* we fixup refcnts and charges later. */
5090 mc.moved_swap++;
5091 }
5092 break;
5093 default:
5094 break;
5095 }
5096 }
5097 pte_unmap_unlock(pte - 1, ptl);
5098 cond_resched();
5099
5100 if (addr != end) {
5101 /*
5102 * We have consumed all precharges we got in can_attach().
5103 * We try charge one by one, but don't do any additional
5104 * charges to mc.to if we have failed in charge once in attach()
5105 * phase.
5106 */
5107 ret = mem_cgroup_do_precharge(1);
5108 if (!ret)
5109 goto retry;
5110 }
5111
5112 return ret;
5113 }
5114
5115 static void mem_cgroup_move_charge(void)
5116 {
5117 struct mm_walk mem_cgroup_move_charge_walk = {
5118 .pmd_entry = mem_cgroup_move_charge_pte_range,
5119 .mm = mc.mm,
5120 };
5121
5122 lru_add_drain_all();
5123 /*
5124 * Signal lock_page_memcg() to take the memcg's move_lock
5125 * while we're moving its pages to another memcg. Then wait
5126 * for already started RCU-only updates to finish.
5127 */
5128 atomic_inc(&mc.from->moving_account);
5129 synchronize_rcu();
5130 retry:
5131 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5132 /*
5133 * Someone who are holding the mmap_sem might be waiting in
5134 * waitq. So we cancel all extra charges, wake up all waiters,
5135 * and retry. Because we cancel precharges, we might not be able
5136 * to move enough charges, but moving charge is a best-effort
5137 * feature anyway, so it wouldn't be a big problem.
5138 */
5139 __mem_cgroup_clear_mc();
5140 cond_resched();
5141 goto retry;
5142 }
5143 /*
5144 * When we have consumed all precharges and failed in doing
5145 * additional charge, the page walk just aborts.
5146 */
5147 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5148
5149 up_read(&mc.mm->mmap_sem);
5150 atomic_dec(&mc.from->moving_account);
5151 }
5152
5153 static void mem_cgroup_move_task(void)
5154 {
5155 if (mc.to) {
5156 mem_cgroup_move_charge();
5157 mem_cgroup_clear_mc();
5158 }
5159 }
5160 #else /* !CONFIG_MMU */
5161 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5162 {
5163 return 0;
5164 }
5165 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5166 {
5167 }
5168 static void mem_cgroup_move_task(void)
5169 {
5170 }
5171 #endif
5172
5173 /*
5174 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5175 * to verify whether we're attached to the default hierarchy on each mount
5176 * attempt.
5177 */
5178 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5179 {
5180 /*
5181 * use_hierarchy is forced on the default hierarchy. cgroup core
5182 * guarantees that @root doesn't have any children, so turning it
5183 * on for the root memcg is enough.
5184 */
5185 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5186 root_mem_cgroup->use_hierarchy = true;
5187 else
5188 root_mem_cgroup->use_hierarchy = false;
5189 }
5190
5191 static u64 memory_current_read(struct cgroup_subsys_state *css,
5192 struct cftype *cft)
5193 {
5194 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5195
5196 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5197 }
5198
5199 static int memory_low_show(struct seq_file *m, void *v)
5200 {
5201 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5202 unsigned long low = READ_ONCE(memcg->low);
5203
5204 if (low == PAGE_COUNTER_MAX)
5205 seq_puts(m, "max\n");
5206 else
5207 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5208
5209 return 0;
5210 }
5211
5212 static ssize_t memory_low_write(struct kernfs_open_file *of,
5213 char *buf, size_t nbytes, loff_t off)
5214 {
5215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5216 unsigned long low;
5217 int err;
5218
5219 buf = strstrip(buf);
5220 err = page_counter_memparse(buf, "max", &low);
5221 if (err)
5222 return err;
5223
5224 memcg->low = low;
5225
5226 return nbytes;
5227 }
5228
5229 static int memory_high_show(struct seq_file *m, void *v)
5230 {
5231 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5232 unsigned long high = READ_ONCE(memcg->high);
5233
5234 if (high == PAGE_COUNTER_MAX)
5235 seq_puts(m, "max\n");
5236 else
5237 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5238
5239 return 0;
5240 }
5241
5242 static ssize_t memory_high_write(struct kernfs_open_file *of,
5243 char *buf, size_t nbytes, loff_t off)
5244 {
5245 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5246 unsigned long nr_pages;
5247 unsigned long high;
5248 int err;
5249
5250 buf = strstrip(buf);
5251 err = page_counter_memparse(buf, "max", &high);
5252 if (err)
5253 return err;
5254
5255 memcg->high = high;
5256
5257 nr_pages = page_counter_read(&memcg->memory);
5258 if (nr_pages > high)
5259 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5260 GFP_KERNEL, true);
5261
5262 memcg_wb_domain_size_changed(memcg);
5263 return nbytes;
5264 }
5265
5266 static int memory_max_show(struct seq_file *m, void *v)
5267 {
5268 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5269 unsigned long max = READ_ONCE(memcg->memory.limit);
5270
5271 if (max == PAGE_COUNTER_MAX)
5272 seq_puts(m, "max\n");
5273 else
5274 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5275
5276 return 0;
5277 }
5278
5279 static ssize_t memory_max_write(struct kernfs_open_file *of,
5280 char *buf, size_t nbytes, loff_t off)
5281 {
5282 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5283 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5284 bool drained = false;
5285 unsigned long max;
5286 int err;
5287
5288 buf = strstrip(buf);
5289 err = page_counter_memparse(buf, "max", &max);
5290 if (err)
5291 return err;
5292
5293 xchg(&memcg->memory.limit, max);
5294
5295 for (;;) {
5296 unsigned long nr_pages = page_counter_read(&memcg->memory);
5297
5298 if (nr_pages <= max)
5299 break;
5300
5301 if (signal_pending(current)) {
5302 err = -EINTR;
5303 break;
5304 }
5305
5306 if (!drained) {
5307 drain_all_stock(memcg);
5308 drained = true;
5309 continue;
5310 }
5311
5312 if (nr_reclaims) {
5313 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5314 GFP_KERNEL, true))
5315 nr_reclaims--;
5316 continue;
5317 }
5318
5319 mem_cgroup_event(memcg, MEMCG_OOM);
5320 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5321 break;
5322 }
5323
5324 memcg_wb_domain_size_changed(memcg);
5325 return nbytes;
5326 }
5327
5328 static int memory_events_show(struct seq_file *m, void *v)
5329 {
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5331
5332 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5333 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5334 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5335 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
5336 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5337
5338 return 0;
5339 }
5340
5341 static int memory_stat_show(struct seq_file *m, void *v)
5342 {
5343 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5344 unsigned long stat[MEMCG_NR_STAT];
5345 unsigned long events[MEMCG_NR_EVENTS];
5346 int i;
5347
5348 /*
5349 * Provide statistics on the state of the memory subsystem as
5350 * well as cumulative event counters that show past behavior.
5351 *
5352 * This list is ordered following a combination of these gradients:
5353 * 1) generic big picture -> specifics and details
5354 * 2) reflecting userspace activity -> reflecting kernel heuristics
5355 *
5356 * Current memory state:
5357 */
5358
5359 tree_stat(memcg, stat);
5360 tree_events(memcg, events);
5361
5362 seq_printf(m, "anon %llu\n",
5363 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5364 seq_printf(m, "file %llu\n",
5365 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5366 seq_printf(m, "kernel_stack %llu\n",
5367 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5368 seq_printf(m, "slab %llu\n",
5369 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5370 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5371 seq_printf(m, "sock %llu\n",
5372 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5373
5374 seq_printf(m, "shmem %llu\n",
5375 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5376 seq_printf(m, "file_mapped %llu\n",
5377 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5378 seq_printf(m, "file_dirty %llu\n",
5379 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5380 seq_printf(m, "file_writeback %llu\n",
5381 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5382
5383 for (i = 0; i < NR_LRU_LISTS; i++) {
5384 struct mem_cgroup *mi;
5385 unsigned long val = 0;
5386
5387 for_each_mem_cgroup_tree(mi, memcg)
5388 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5389 seq_printf(m, "%s %llu\n",
5390 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5391 }
5392
5393 seq_printf(m, "slab_reclaimable %llu\n",
5394 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5395 seq_printf(m, "slab_unreclaimable %llu\n",
5396 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5397
5398 /* Accumulated memory events */
5399
5400 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5401 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5402
5403 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5404 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5405 events[PGSCAN_DIRECT]);
5406 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5407 events[PGSTEAL_DIRECT]);
5408 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5409 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5410 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5411 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5412
5413 seq_printf(m, "workingset_refault %lu\n",
5414 stat[WORKINGSET_REFAULT]);
5415 seq_printf(m, "workingset_activate %lu\n",
5416 stat[WORKINGSET_ACTIVATE]);
5417 seq_printf(m, "workingset_nodereclaim %lu\n",
5418 stat[WORKINGSET_NODERECLAIM]);
5419
5420 return 0;
5421 }
5422
5423 static struct cftype memory_files[] = {
5424 {
5425 .name = "current",
5426 .flags = CFTYPE_NOT_ON_ROOT,
5427 .read_u64 = memory_current_read,
5428 },
5429 {
5430 .name = "low",
5431 .flags = CFTYPE_NOT_ON_ROOT,
5432 .seq_show = memory_low_show,
5433 .write = memory_low_write,
5434 },
5435 {
5436 .name = "high",
5437 .flags = CFTYPE_NOT_ON_ROOT,
5438 .seq_show = memory_high_show,
5439 .write = memory_high_write,
5440 },
5441 {
5442 .name = "max",
5443 .flags = CFTYPE_NOT_ON_ROOT,
5444 .seq_show = memory_max_show,
5445 .write = memory_max_write,
5446 },
5447 {
5448 .name = "events",
5449 .flags = CFTYPE_NOT_ON_ROOT,
5450 .file_offset = offsetof(struct mem_cgroup, events_file),
5451 .seq_show = memory_events_show,
5452 },
5453 {
5454 .name = "stat",
5455 .flags = CFTYPE_NOT_ON_ROOT,
5456 .seq_show = memory_stat_show,
5457 },
5458 { } /* terminate */
5459 };
5460
5461 struct cgroup_subsys memory_cgrp_subsys = {
5462 .css_alloc = mem_cgroup_css_alloc,
5463 .css_online = mem_cgroup_css_online,
5464 .css_offline = mem_cgroup_css_offline,
5465 .css_released = mem_cgroup_css_released,
5466 .css_free = mem_cgroup_css_free,
5467 .css_reset = mem_cgroup_css_reset,
5468 .can_attach = mem_cgroup_can_attach,
5469 .cancel_attach = mem_cgroup_cancel_attach,
5470 .post_attach = mem_cgroup_move_task,
5471 .bind = mem_cgroup_bind,
5472 .dfl_cftypes = memory_files,
5473 .legacy_cftypes = mem_cgroup_legacy_files,
5474 .early_init = 0,
5475 };
5476
5477 /**
5478 * mem_cgroup_low - check if memory consumption is below the normal range
5479 * @root: the top ancestor of the sub-tree being checked
5480 * @memcg: the memory cgroup to check
5481 *
5482 * Returns %true if memory consumption of @memcg, and that of all
5483 * ancestors up to (but not including) @root, is below the normal range.
5484 *
5485 * @root is exclusive; it is never low when looked at directly and isn't
5486 * checked when traversing the hierarchy.
5487 *
5488 * Excluding @root enables using memory.low to prioritize memory usage
5489 * between cgroups within a subtree of the hierarchy that is limited by
5490 * memory.high or memory.max.
5491 *
5492 * For example, given cgroup A with children B and C:
5493 *
5494 * A
5495 * / \
5496 * B C
5497 *
5498 * and
5499 *
5500 * 1. A/memory.current > A/memory.high
5501 * 2. A/B/memory.current < A/B/memory.low
5502 * 3. A/C/memory.current >= A/C/memory.low
5503 *
5504 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5505 * should reclaim from 'C' until 'A' is no longer high or until we can
5506 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5507 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5508 * low and we will reclaim indiscriminately from both 'B' and 'C'.
5509 */
5510 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5511 {
5512 if (mem_cgroup_disabled())
5513 return false;
5514
5515 if (!root)
5516 root = root_mem_cgroup;
5517 if (memcg == root)
5518 return false;
5519
5520 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
5521 if (page_counter_read(&memcg->memory) >= memcg->low)
5522 return false;
5523 }
5524
5525 return true;
5526 }
5527
5528 /**
5529 * mem_cgroup_try_charge - try charging a page
5530 * @page: page to charge
5531 * @mm: mm context of the victim
5532 * @gfp_mask: reclaim mode
5533 * @memcgp: charged memcg return
5534 * @compound: charge the page as compound or small page
5535 *
5536 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5537 * pages according to @gfp_mask if necessary.
5538 *
5539 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5540 * Otherwise, an error code is returned.
5541 *
5542 * After page->mapping has been set up, the caller must finalize the
5543 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5544 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5545 */
5546 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5547 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5548 bool compound)
5549 {
5550 struct mem_cgroup *memcg = NULL;
5551 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5552 int ret = 0;
5553
5554 if (mem_cgroup_disabled())
5555 goto out;
5556
5557 if (PageSwapCache(page)) {
5558 /*
5559 * Every swap fault against a single page tries to charge the
5560 * page, bail as early as possible. shmem_unuse() encounters
5561 * already charged pages, too. The USED bit is protected by
5562 * the page lock, which serializes swap cache removal, which
5563 * in turn serializes uncharging.
5564 */
5565 VM_BUG_ON_PAGE(!PageLocked(page), page);
5566 if (compound_head(page)->mem_cgroup)
5567 goto out;
5568
5569 if (do_swap_account) {
5570 swp_entry_t ent = { .val = page_private(page), };
5571 unsigned short id = lookup_swap_cgroup_id(ent);
5572
5573 rcu_read_lock();
5574 memcg = mem_cgroup_from_id(id);
5575 if (memcg && !css_tryget_online(&memcg->css))
5576 memcg = NULL;
5577 rcu_read_unlock();
5578 }
5579 }
5580
5581 if (!memcg)
5582 memcg = get_mem_cgroup_from_mm(mm);
5583
5584 ret = try_charge(memcg, gfp_mask, nr_pages);
5585
5586 css_put(&memcg->css);
5587 out:
5588 *memcgp = memcg;
5589 return ret;
5590 }
5591
5592 /**
5593 * mem_cgroup_commit_charge - commit a page charge
5594 * @page: page to charge
5595 * @memcg: memcg to charge the page to
5596 * @lrucare: page might be on LRU already
5597 * @compound: charge the page as compound or small page
5598 *
5599 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5600 * after page->mapping has been set up. This must happen atomically
5601 * as part of the page instantiation, i.e. under the page table lock
5602 * for anonymous pages, under the page lock for page and swap cache.
5603 *
5604 * In addition, the page must not be on the LRU during the commit, to
5605 * prevent racing with task migration. If it might be, use @lrucare.
5606 *
5607 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5608 */
5609 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5610 bool lrucare, bool compound)
5611 {
5612 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5613
5614 VM_BUG_ON_PAGE(!page->mapping, page);
5615 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5616
5617 if (mem_cgroup_disabled())
5618 return;
5619 /*
5620 * Swap faults will attempt to charge the same page multiple
5621 * times. But reuse_swap_page() might have removed the page
5622 * from swapcache already, so we can't check PageSwapCache().
5623 */
5624 if (!memcg)
5625 return;
5626
5627 commit_charge(page, memcg, lrucare);
5628
5629 local_irq_disable();
5630 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5631 memcg_check_events(memcg, page);
5632 local_irq_enable();
5633
5634 if (do_memsw_account() && PageSwapCache(page)) {
5635 swp_entry_t entry = { .val = page_private(page) };
5636 /*
5637 * The swap entry might not get freed for a long time,
5638 * let's not wait for it. The page already received a
5639 * memory+swap charge, drop the swap entry duplicate.
5640 */
5641 mem_cgroup_uncharge_swap(entry, nr_pages);
5642 }
5643 }
5644
5645 /**
5646 * mem_cgroup_cancel_charge - cancel a page charge
5647 * @page: page to charge
5648 * @memcg: memcg to charge the page to
5649 * @compound: charge the page as compound or small page
5650 *
5651 * Cancel a charge transaction started by mem_cgroup_try_charge().
5652 */
5653 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5654 bool compound)
5655 {
5656 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5657
5658 if (mem_cgroup_disabled())
5659 return;
5660 /*
5661 * Swap faults will attempt to charge the same page multiple
5662 * times. But reuse_swap_page() might have removed the page
5663 * from swapcache already, so we can't check PageSwapCache().
5664 */
5665 if (!memcg)
5666 return;
5667
5668 cancel_charge(memcg, nr_pages);
5669 }
5670
5671 struct uncharge_gather {
5672 struct mem_cgroup *memcg;
5673 unsigned long pgpgout;
5674 unsigned long nr_anon;
5675 unsigned long nr_file;
5676 unsigned long nr_kmem;
5677 unsigned long nr_huge;
5678 unsigned long nr_shmem;
5679 struct page *dummy_page;
5680 };
5681
5682 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5683 {
5684 memset(ug, 0, sizeof(*ug));
5685 }
5686
5687 static void uncharge_batch(const struct uncharge_gather *ug)
5688 {
5689 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5690 unsigned long flags;
5691
5692 if (!mem_cgroup_is_root(ug->memcg)) {
5693 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5694 if (do_memsw_account())
5695 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5696 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5697 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5698 memcg_oom_recover(ug->memcg);
5699 }
5700
5701 local_irq_save(flags);
5702 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5703 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5704 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5705 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5706 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5707 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5708 memcg_check_events(ug->memcg, ug->dummy_page);
5709 local_irq_restore(flags);
5710
5711 if (!mem_cgroup_is_root(ug->memcg))
5712 css_put_many(&ug->memcg->css, nr_pages);
5713 }
5714
5715 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5716 {
5717 VM_BUG_ON_PAGE(PageLRU(page), page);
5718 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5719 !PageHWPoison(page) , page);
5720
5721 if (!page->mem_cgroup)
5722 return;
5723
5724 /*
5725 * Nobody should be changing or seriously looking at
5726 * page->mem_cgroup at this point, we have fully
5727 * exclusive access to the page.
5728 */
5729
5730 if (ug->memcg != page->mem_cgroup) {
5731 if (ug->memcg) {
5732 uncharge_batch(ug);
5733 uncharge_gather_clear(ug);
5734 }
5735 ug->memcg = page->mem_cgroup;
5736 }
5737
5738 if (!PageKmemcg(page)) {
5739 unsigned int nr_pages = 1;
5740
5741 if (PageTransHuge(page)) {
5742 nr_pages <<= compound_order(page);
5743 ug->nr_huge += nr_pages;
5744 }
5745 if (PageAnon(page))
5746 ug->nr_anon += nr_pages;
5747 else {
5748 ug->nr_file += nr_pages;
5749 if (PageSwapBacked(page))
5750 ug->nr_shmem += nr_pages;
5751 }
5752 ug->pgpgout++;
5753 } else {
5754 ug->nr_kmem += 1 << compound_order(page);
5755 __ClearPageKmemcg(page);
5756 }
5757
5758 ug->dummy_page = page;
5759 page->mem_cgroup = NULL;
5760 }
5761
5762 static void uncharge_list(struct list_head *page_list)
5763 {
5764 struct uncharge_gather ug;
5765 struct list_head *next;
5766
5767 uncharge_gather_clear(&ug);
5768
5769 /*
5770 * Note that the list can be a single page->lru; hence the
5771 * do-while loop instead of a simple list_for_each_entry().
5772 */
5773 next = page_list->next;
5774 do {
5775 struct page *page;
5776
5777 page = list_entry(next, struct page, lru);
5778 next = page->lru.next;
5779
5780 uncharge_page(page, &ug);
5781 } while (next != page_list);
5782
5783 if (ug.memcg)
5784 uncharge_batch(&ug);
5785 }
5786
5787 /**
5788 * mem_cgroup_uncharge - uncharge a page
5789 * @page: page to uncharge
5790 *
5791 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5792 * mem_cgroup_commit_charge().
5793 */
5794 void mem_cgroup_uncharge(struct page *page)
5795 {
5796 struct uncharge_gather ug;
5797
5798 if (mem_cgroup_disabled())
5799 return;
5800
5801 /* Don't touch page->lru of any random page, pre-check: */
5802 if (!page->mem_cgroup)
5803 return;
5804
5805 uncharge_gather_clear(&ug);
5806 uncharge_page(page, &ug);
5807 uncharge_batch(&ug);
5808 }
5809
5810 /**
5811 * mem_cgroup_uncharge_list - uncharge a list of page
5812 * @page_list: list of pages to uncharge
5813 *
5814 * Uncharge a list of pages previously charged with
5815 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5816 */
5817 void mem_cgroup_uncharge_list(struct list_head *page_list)
5818 {
5819 if (mem_cgroup_disabled())
5820 return;
5821
5822 if (!list_empty(page_list))
5823 uncharge_list(page_list);
5824 }
5825
5826 /**
5827 * mem_cgroup_migrate - charge a page's replacement
5828 * @oldpage: currently circulating page
5829 * @newpage: replacement page
5830 *
5831 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5832 * be uncharged upon free.
5833 *
5834 * Both pages must be locked, @newpage->mapping must be set up.
5835 */
5836 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5837 {
5838 struct mem_cgroup *memcg;
5839 unsigned int nr_pages;
5840 bool compound;
5841 unsigned long flags;
5842
5843 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5844 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5845 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5846 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5847 newpage);
5848
5849 if (mem_cgroup_disabled())
5850 return;
5851
5852 /* Page cache replacement: new page already charged? */
5853 if (newpage->mem_cgroup)
5854 return;
5855
5856 /* Swapcache readahead pages can get replaced before being charged */
5857 memcg = oldpage->mem_cgroup;
5858 if (!memcg)
5859 return;
5860
5861 /* Force-charge the new page. The old one will be freed soon */
5862 compound = PageTransHuge(newpage);
5863 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5864
5865 page_counter_charge(&memcg->memory, nr_pages);
5866 if (do_memsw_account())
5867 page_counter_charge(&memcg->memsw, nr_pages);
5868 css_get_many(&memcg->css, nr_pages);
5869
5870 commit_charge(newpage, memcg, false);
5871
5872 local_irq_save(flags);
5873 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5874 memcg_check_events(memcg, newpage);
5875 local_irq_restore(flags);
5876 }
5877
5878 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5879 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5880
5881 void mem_cgroup_sk_alloc(struct sock *sk)
5882 {
5883 struct mem_cgroup *memcg;
5884
5885 if (!mem_cgroup_sockets_enabled)
5886 return;
5887
5888 /*
5889 * Socket cloning can throw us here with sk_memcg already
5890 * filled. It won't however, necessarily happen from
5891 * process context. So the test for root memcg given
5892 * the current task's memcg won't help us in this case.
5893 *
5894 * Respecting the original socket's memcg is a better
5895 * decision in this case.
5896 */
5897 if (sk->sk_memcg) {
5898 css_get(&sk->sk_memcg->css);
5899 return;
5900 }
5901
5902 rcu_read_lock();
5903 memcg = mem_cgroup_from_task(current);
5904 if (memcg == root_mem_cgroup)
5905 goto out;
5906 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5907 goto out;
5908 if (css_tryget_online(&memcg->css))
5909 sk->sk_memcg = memcg;
5910 out:
5911 rcu_read_unlock();
5912 }
5913
5914 void mem_cgroup_sk_free(struct sock *sk)
5915 {
5916 if (sk->sk_memcg)
5917 css_put(&sk->sk_memcg->css);
5918 }
5919
5920 /**
5921 * mem_cgroup_charge_skmem - charge socket memory
5922 * @memcg: memcg to charge
5923 * @nr_pages: number of pages to charge
5924 *
5925 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5926 * @memcg's configured limit, %false if the charge had to be forced.
5927 */
5928 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5929 {
5930 gfp_t gfp_mask = GFP_KERNEL;
5931
5932 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5933 struct page_counter *fail;
5934
5935 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5936 memcg->tcpmem_pressure = 0;
5937 return true;
5938 }
5939 page_counter_charge(&memcg->tcpmem, nr_pages);
5940 memcg->tcpmem_pressure = 1;
5941 return false;
5942 }
5943
5944 /* Don't block in the packet receive path */
5945 if (in_softirq())
5946 gfp_mask = GFP_NOWAIT;
5947
5948 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5949
5950 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5951 return true;
5952
5953 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5954 return false;
5955 }
5956
5957 /**
5958 * mem_cgroup_uncharge_skmem - uncharge socket memory
5959 * @memcg - memcg to uncharge
5960 * @nr_pages - number of pages to uncharge
5961 */
5962 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5963 {
5964 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5965 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5966 return;
5967 }
5968
5969 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5970
5971 refill_stock(memcg, nr_pages);
5972 }
5973
5974 static int __init cgroup_memory(char *s)
5975 {
5976 char *token;
5977
5978 while ((token = strsep(&s, ",")) != NULL) {
5979 if (!*token)
5980 continue;
5981 if (!strcmp(token, "nosocket"))
5982 cgroup_memory_nosocket = true;
5983 if (!strcmp(token, "nokmem"))
5984 cgroup_memory_nokmem = true;
5985 }
5986 return 0;
5987 }
5988 __setup("cgroup.memory=", cgroup_memory);
5989
5990 /*
5991 * subsys_initcall() for memory controller.
5992 *
5993 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5994 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5995 * basically everything that doesn't depend on a specific mem_cgroup structure
5996 * should be initialized from here.
5997 */
5998 static int __init mem_cgroup_init(void)
5999 {
6000 int cpu, node;
6001
6002 #ifndef CONFIG_SLOB
6003 /*
6004 * Kmem cache creation is mostly done with the slab_mutex held,
6005 * so use a workqueue with limited concurrency to avoid stalling
6006 * all worker threads in case lots of cgroups are created and
6007 * destroyed simultaneously.
6008 */
6009 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6010 BUG_ON(!memcg_kmem_cache_wq);
6011 #endif
6012
6013 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6014 memcg_hotplug_cpu_dead);
6015
6016 for_each_possible_cpu(cpu)
6017 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6018 drain_local_stock);
6019
6020 for_each_node(node) {
6021 struct mem_cgroup_tree_per_node *rtpn;
6022
6023 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6024 node_online(node) ? node : NUMA_NO_NODE);
6025
6026 rtpn->rb_root = RB_ROOT;
6027 rtpn->rb_rightmost = NULL;
6028 spin_lock_init(&rtpn->lock);
6029 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6030 }
6031
6032 return 0;
6033 }
6034 subsys_initcall(mem_cgroup_init);
6035
6036 #ifdef CONFIG_MEMCG_SWAP
6037 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6038 {
6039 while (!atomic_inc_not_zero(&memcg->id.ref)) {
6040 /*
6041 * The root cgroup cannot be destroyed, so it's refcount must
6042 * always be >= 1.
6043 */
6044 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6045 VM_BUG_ON(1);
6046 break;
6047 }
6048 memcg = parent_mem_cgroup(memcg);
6049 if (!memcg)
6050 memcg = root_mem_cgroup;
6051 }
6052 return memcg;
6053 }
6054
6055 /**
6056 * mem_cgroup_swapout - transfer a memsw charge to swap
6057 * @page: page whose memsw charge to transfer
6058 * @entry: swap entry to move the charge to
6059 *
6060 * Transfer the memsw charge of @page to @entry.
6061 */
6062 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6063 {
6064 struct mem_cgroup *memcg, *swap_memcg;
6065 unsigned int nr_entries;
6066 unsigned short oldid;
6067
6068 VM_BUG_ON_PAGE(PageLRU(page), page);
6069 VM_BUG_ON_PAGE(page_count(page), page);
6070
6071 if (!do_memsw_account())
6072 return;
6073
6074 memcg = page->mem_cgroup;
6075
6076 /* Readahead page, never charged */
6077 if (!memcg)
6078 return;
6079
6080 /*
6081 * In case the memcg owning these pages has been offlined and doesn't
6082 * have an ID allocated to it anymore, charge the closest online
6083 * ancestor for the swap instead and transfer the memory+swap charge.
6084 */
6085 swap_memcg = mem_cgroup_id_get_online(memcg);
6086 nr_entries = hpage_nr_pages(page);
6087 /* Get references for the tail pages, too */
6088 if (nr_entries > 1)
6089 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6090 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6091 nr_entries);
6092 VM_BUG_ON_PAGE(oldid, page);
6093 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
6094
6095 page->mem_cgroup = NULL;
6096
6097 if (!mem_cgroup_is_root(memcg))
6098 page_counter_uncharge(&memcg->memory, nr_entries);
6099
6100 if (memcg != swap_memcg) {
6101 if (!mem_cgroup_is_root(swap_memcg))
6102 page_counter_charge(&swap_memcg->memsw, nr_entries);
6103 page_counter_uncharge(&memcg->memsw, nr_entries);
6104 }
6105
6106 /*
6107 * Interrupts should be disabled here because the caller holds the
6108 * mapping->tree_lock lock which is taken with interrupts-off. It is
6109 * important here to have the interrupts disabled because it is the
6110 * only synchronisation we have for udpating the per-CPU variables.
6111 */
6112 VM_BUG_ON(!irqs_disabled());
6113 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6114 -nr_entries);
6115 memcg_check_events(memcg, page);
6116
6117 if (!mem_cgroup_is_root(memcg))
6118 css_put_many(&memcg->css, nr_entries);
6119 }
6120
6121 /**
6122 * mem_cgroup_try_charge_swap - try charging swap space for a page
6123 * @page: page being added to swap
6124 * @entry: swap entry to charge
6125 *
6126 * Try to charge @page's memcg for the swap space at @entry.
6127 *
6128 * Returns 0 on success, -ENOMEM on failure.
6129 */
6130 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6131 {
6132 unsigned int nr_pages = hpage_nr_pages(page);
6133 struct page_counter *counter;
6134 struct mem_cgroup *memcg;
6135 unsigned short oldid;
6136
6137 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6138 return 0;
6139
6140 memcg = page->mem_cgroup;
6141
6142 /* Readahead page, never charged */
6143 if (!memcg)
6144 return 0;
6145
6146 memcg = mem_cgroup_id_get_online(memcg);
6147
6148 if (!mem_cgroup_is_root(memcg) &&
6149 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6150 mem_cgroup_id_put(memcg);
6151 return -ENOMEM;
6152 }
6153
6154 /* Get references for the tail pages, too */
6155 if (nr_pages > 1)
6156 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6157 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6158 VM_BUG_ON_PAGE(oldid, page);
6159 mem_cgroup_swap_statistics(memcg, nr_pages);
6160
6161 return 0;
6162 }
6163
6164 /**
6165 * mem_cgroup_uncharge_swap - uncharge swap space
6166 * @entry: swap entry to uncharge
6167 * @nr_pages: the amount of swap space to uncharge
6168 */
6169 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6170 {
6171 struct mem_cgroup *memcg;
6172 unsigned short id;
6173
6174 if (!do_swap_account)
6175 return;
6176
6177 id = swap_cgroup_record(entry, 0, nr_pages);
6178 rcu_read_lock();
6179 memcg = mem_cgroup_from_id(id);
6180 if (memcg) {
6181 if (!mem_cgroup_is_root(memcg)) {
6182 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6183 page_counter_uncharge(&memcg->swap, nr_pages);
6184 else
6185 page_counter_uncharge(&memcg->memsw, nr_pages);
6186 }
6187 mem_cgroup_swap_statistics(memcg, -nr_pages);
6188 mem_cgroup_id_put_many(memcg, nr_pages);
6189 }
6190 rcu_read_unlock();
6191 }
6192
6193 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6194 {
6195 long nr_swap_pages = get_nr_swap_pages();
6196
6197 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6198 return nr_swap_pages;
6199 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6200 nr_swap_pages = min_t(long, nr_swap_pages,
6201 READ_ONCE(memcg->swap.limit) -
6202 page_counter_read(&memcg->swap));
6203 return nr_swap_pages;
6204 }
6205
6206 bool mem_cgroup_swap_full(struct page *page)
6207 {
6208 struct mem_cgroup *memcg;
6209
6210 VM_BUG_ON_PAGE(!PageLocked(page), page);
6211
6212 if (vm_swap_full())
6213 return true;
6214 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6215 return false;
6216
6217 memcg = page->mem_cgroup;
6218 if (!memcg)
6219 return false;
6220
6221 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6222 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6223 return true;
6224
6225 return false;
6226 }
6227
6228 /* for remember boot option*/
6229 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6230 static int really_do_swap_account __initdata = 1;
6231 #else
6232 static int really_do_swap_account __initdata;
6233 #endif
6234
6235 static int __init enable_swap_account(char *s)
6236 {
6237 if (!strcmp(s, "1"))
6238 really_do_swap_account = 1;
6239 else if (!strcmp(s, "0"))
6240 really_do_swap_account = 0;
6241 return 1;
6242 }
6243 __setup("swapaccount=", enable_swap_account);
6244
6245 static u64 swap_current_read(struct cgroup_subsys_state *css,
6246 struct cftype *cft)
6247 {
6248 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6249
6250 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6251 }
6252
6253 static int swap_max_show(struct seq_file *m, void *v)
6254 {
6255 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6256 unsigned long max = READ_ONCE(memcg->swap.limit);
6257
6258 if (max == PAGE_COUNTER_MAX)
6259 seq_puts(m, "max\n");
6260 else
6261 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6262
6263 return 0;
6264 }
6265
6266 static ssize_t swap_max_write(struct kernfs_open_file *of,
6267 char *buf, size_t nbytes, loff_t off)
6268 {
6269 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6270 unsigned long max;
6271 int err;
6272
6273 buf = strstrip(buf);
6274 err = page_counter_memparse(buf, "max", &max);
6275 if (err)
6276 return err;
6277
6278 mutex_lock(&memcg_limit_mutex);
6279 err = page_counter_limit(&memcg->swap, max);
6280 mutex_unlock(&memcg_limit_mutex);
6281 if (err)
6282 return err;
6283
6284 return nbytes;
6285 }
6286
6287 static struct cftype swap_files[] = {
6288 {
6289 .name = "swap.current",
6290 .flags = CFTYPE_NOT_ON_ROOT,
6291 .read_u64 = swap_current_read,
6292 },
6293 {
6294 .name = "swap.max",
6295 .flags = CFTYPE_NOT_ON_ROOT,
6296 .seq_show = swap_max_show,
6297 .write = swap_max_write,
6298 },
6299 { } /* terminate */
6300 };
6301
6302 static struct cftype memsw_cgroup_files[] = {
6303 {
6304 .name = "memsw.usage_in_bytes",
6305 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6306 .read_u64 = mem_cgroup_read_u64,
6307 },
6308 {
6309 .name = "memsw.max_usage_in_bytes",
6310 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6311 .write = mem_cgroup_reset,
6312 .read_u64 = mem_cgroup_read_u64,
6313 },
6314 {
6315 .name = "memsw.limit_in_bytes",
6316 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6317 .write = mem_cgroup_write,
6318 .read_u64 = mem_cgroup_read_u64,
6319 },
6320 {
6321 .name = "memsw.failcnt",
6322 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6323 .write = mem_cgroup_reset,
6324 .read_u64 = mem_cgroup_read_u64,
6325 },
6326 { }, /* terminate */
6327 };
6328
6329 static int __init mem_cgroup_swap_init(void)
6330 {
6331 if (!mem_cgroup_disabled() && really_do_swap_account) {
6332 do_swap_account = 1;
6333 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6334 swap_files));
6335 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6336 memsw_cgroup_files));
6337 }
6338 return 0;
6339 }
6340 subsys_initcall(mem_cgroup_swap_init);
6341
6342 #endif /* CONFIG_MEMCG_SWAP */