]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/memcontrol.c
mm/memcg: Add folio_memcg_lock() and folio_memcg_unlock()
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81 EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket __ro_after_init;
85
86 /* Kernel memory accounting disabled? */
87 bool cgroup_memory_nokmem __ro_after_init;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 bool cgroup_memory_noswap __ro_after_init;
92 #else
93 #define cgroup_memory_noswap 1
94 #endif
95
96 #ifdef CONFIG_CGROUP_WRITEBACK
97 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
98 #endif
99
100 /* Whether legacy memory+swap accounting is active */
101 static bool do_memsw_account(void)
102 {
103 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
104 }
105
106 /* memcg and lruvec stats flushing */
107 static void flush_memcg_stats_dwork(struct work_struct *w);
108 static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
109 static DEFINE_SPINLOCK(stats_flush_lock);
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113
114 /*
115 * Cgroups above their limits are maintained in a RB-Tree, independent of
116 * their hierarchy representation
117 */
118
119 struct mem_cgroup_tree_per_node {
120 struct rb_root rb_root;
121 struct rb_node *rb_rightmost;
122 spinlock_t lock;
123 };
124
125 struct mem_cgroup_tree {
126 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
127 };
128
129 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
130
131 /* for OOM */
132 struct mem_cgroup_eventfd_list {
133 struct list_head list;
134 struct eventfd_ctx *eventfd;
135 };
136
137 /*
138 * cgroup_event represents events which userspace want to receive.
139 */
140 struct mem_cgroup_event {
141 /*
142 * memcg which the event belongs to.
143 */
144 struct mem_cgroup *memcg;
145 /*
146 * eventfd to signal userspace about the event.
147 */
148 struct eventfd_ctx *eventfd;
149 /*
150 * Each of these stored in a list by the cgroup.
151 */
152 struct list_head list;
153 /*
154 * register_event() callback will be used to add new userspace
155 * waiter for changes related to this event. Use eventfd_signal()
156 * on eventfd to send notification to userspace.
157 */
158 int (*register_event)(struct mem_cgroup *memcg,
159 struct eventfd_ctx *eventfd, const char *args);
160 /*
161 * unregister_event() callback will be called when userspace closes
162 * the eventfd or on cgroup removing. This callback must be set,
163 * if you want provide notification functionality.
164 */
165 void (*unregister_event)(struct mem_cgroup *memcg,
166 struct eventfd_ctx *eventfd);
167 /*
168 * All fields below needed to unregister event when
169 * userspace closes eventfd.
170 */
171 poll_table pt;
172 wait_queue_head_t *wqh;
173 wait_queue_entry_t wait;
174 struct work_struct remove;
175 };
176
177 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
178 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
179
180 /* Stuffs for move charges at task migration. */
181 /*
182 * Types of charges to be moved.
183 */
184 #define MOVE_ANON 0x1U
185 #define MOVE_FILE 0x2U
186 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
187
188 /* "mc" and its members are protected by cgroup_mutex */
189 static struct move_charge_struct {
190 spinlock_t lock; /* for from, to */
191 struct mm_struct *mm;
192 struct mem_cgroup *from;
193 struct mem_cgroup *to;
194 unsigned long flags;
195 unsigned long precharge;
196 unsigned long moved_charge;
197 unsigned long moved_swap;
198 struct task_struct *moving_task; /* a task moving charges */
199 wait_queue_head_t waitq; /* a waitq for other context */
200 } mc = {
201 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
202 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
203 };
204
205 /*
206 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
207 * limit reclaim to prevent infinite loops, if they ever occur.
208 */
209 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
210 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
211
212 /* for encoding cft->private value on file */
213 enum res_type {
214 _MEM,
215 _MEMSWAP,
216 _OOM_TYPE,
217 _KMEM,
218 _TCP,
219 };
220
221 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
222 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
223 #define MEMFILE_ATTR(val) ((val) & 0xffff)
224 /* Used for OOM notifier */
225 #define OOM_CONTROL (0)
226
227 /*
228 * Iteration constructs for visiting all cgroups (under a tree). If
229 * loops are exited prematurely (break), mem_cgroup_iter_break() must
230 * be used for reference counting.
231 */
232 #define for_each_mem_cgroup_tree(iter, root) \
233 for (iter = mem_cgroup_iter(root, NULL, NULL); \
234 iter != NULL; \
235 iter = mem_cgroup_iter(root, iter, NULL))
236
237 #define for_each_mem_cgroup(iter) \
238 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
239 iter != NULL; \
240 iter = mem_cgroup_iter(NULL, iter, NULL))
241
242 static inline bool should_force_charge(void)
243 {
244 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
245 (current->flags & PF_EXITING);
246 }
247
248 /* Some nice accessors for the vmpressure. */
249 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
250 {
251 if (!memcg)
252 memcg = root_mem_cgroup;
253 return &memcg->vmpressure;
254 }
255
256 struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
257 {
258 return container_of(vmpr, struct mem_cgroup, vmpressure);
259 }
260
261 #ifdef CONFIG_MEMCG_KMEM
262 extern spinlock_t css_set_lock;
263
264 bool mem_cgroup_kmem_disabled(void)
265 {
266 return cgroup_memory_nokmem;
267 }
268
269 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
270 unsigned int nr_pages);
271
272 static void obj_cgroup_release(struct percpu_ref *ref)
273 {
274 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
275 unsigned int nr_bytes;
276 unsigned int nr_pages;
277 unsigned long flags;
278
279 /*
280 * At this point all allocated objects are freed, and
281 * objcg->nr_charged_bytes can't have an arbitrary byte value.
282 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
283 *
284 * The following sequence can lead to it:
285 * 1) CPU0: objcg == stock->cached_objcg
286 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
287 * PAGE_SIZE bytes are charged
288 * 3) CPU1: a process from another memcg is allocating something,
289 * the stock if flushed,
290 * objcg->nr_charged_bytes = PAGE_SIZE - 92
291 * 5) CPU0: we do release this object,
292 * 92 bytes are added to stock->nr_bytes
293 * 6) CPU0: stock is flushed,
294 * 92 bytes are added to objcg->nr_charged_bytes
295 *
296 * In the result, nr_charged_bytes == PAGE_SIZE.
297 * This page will be uncharged in obj_cgroup_release().
298 */
299 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
300 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
301 nr_pages = nr_bytes >> PAGE_SHIFT;
302
303 if (nr_pages)
304 obj_cgroup_uncharge_pages(objcg, nr_pages);
305
306 spin_lock_irqsave(&css_set_lock, flags);
307 list_del(&objcg->list);
308 spin_unlock_irqrestore(&css_set_lock, flags);
309
310 percpu_ref_exit(ref);
311 kfree_rcu(objcg, rcu);
312 }
313
314 static struct obj_cgroup *obj_cgroup_alloc(void)
315 {
316 struct obj_cgroup *objcg;
317 int ret;
318
319 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
320 if (!objcg)
321 return NULL;
322
323 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
324 GFP_KERNEL);
325 if (ret) {
326 kfree(objcg);
327 return NULL;
328 }
329 INIT_LIST_HEAD(&objcg->list);
330 return objcg;
331 }
332
333 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
334 struct mem_cgroup *parent)
335 {
336 struct obj_cgroup *objcg, *iter;
337
338 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
339
340 spin_lock_irq(&css_set_lock);
341
342 /* 1) Ready to reparent active objcg. */
343 list_add(&objcg->list, &memcg->objcg_list);
344 /* 2) Reparent active objcg and already reparented objcgs to parent. */
345 list_for_each_entry(iter, &memcg->objcg_list, list)
346 WRITE_ONCE(iter->memcg, parent);
347 /* 3) Move already reparented objcgs to the parent's list */
348 list_splice(&memcg->objcg_list, &parent->objcg_list);
349
350 spin_unlock_irq(&css_set_lock);
351
352 percpu_ref_kill(&objcg->refcnt);
353 }
354
355 /*
356 * This will be used as a shrinker list's index.
357 * The main reason for not using cgroup id for this:
358 * this works better in sparse environments, where we have a lot of memcgs,
359 * but only a few kmem-limited. Or also, if we have, for instance, 200
360 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
361 * 200 entry array for that.
362 *
363 * The current size of the caches array is stored in memcg_nr_cache_ids. It
364 * will double each time we have to increase it.
365 */
366 static DEFINE_IDA(memcg_cache_ida);
367 int memcg_nr_cache_ids;
368
369 /* Protects memcg_nr_cache_ids */
370 static DECLARE_RWSEM(memcg_cache_ids_sem);
371
372 void memcg_get_cache_ids(void)
373 {
374 down_read(&memcg_cache_ids_sem);
375 }
376
377 void memcg_put_cache_ids(void)
378 {
379 up_read(&memcg_cache_ids_sem);
380 }
381
382 /*
383 * MIN_SIZE is different than 1, because we would like to avoid going through
384 * the alloc/free process all the time. In a small machine, 4 kmem-limited
385 * cgroups is a reasonable guess. In the future, it could be a parameter or
386 * tunable, but that is strictly not necessary.
387 *
388 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
389 * this constant directly from cgroup, but it is understandable that this is
390 * better kept as an internal representation in cgroup.c. In any case, the
391 * cgrp_id space is not getting any smaller, and we don't have to necessarily
392 * increase ours as well if it increases.
393 */
394 #define MEMCG_CACHES_MIN_SIZE 4
395 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
396
397 /*
398 * A lot of the calls to the cache allocation functions are expected to be
399 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
400 * conditional to this static branch, we'll have to allow modules that does
401 * kmem_cache_alloc and the such to see this symbol as well
402 */
403 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
404 EXPORT_SYMBOL(memcg_kmem_enabled_key);
405 #endif
406
407 /**
408 * mem_cgroup_css_from_page - css of the memcg associated with a page
409 * @page: page of interest
410 *
411 * If memcg is bound to the default hierarchy, css of the memcg associated
412 * with @page is returned. The returned css remains associated with @page
413 * until it is released.
414 *
415 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
416 * is returned.
417 */
418 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
419 {
420 struct mem_cgroup *memcg;
421
422 memcg = page_memcg(page);
423
424 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
425 memcg = root_mem_cgroup;
426
427 return &memcg->css;
428 }
429
430 /**
431 * page_cgroup_ino - return inode number of the memcg a page is charged to
432 * @page: the page
433 *
434 * Look up the closest online ancestor of the memory cgroup @page is charged to
435 * and return its inode number or 0 if @page is not charged to any cgroup. It
436 * is safe to call this function without holding a reference to @page.
437 *
438 * Note, this function is inherently racy, because there is nothing to prevent
439 * the cgroup inode from getting torn down and potentially reallocated a moment
440 * after page_cgroup_ino() returns, so it only should be used by callers that
441 * do not care (such as procfs interfaces).
442 */
443 ino_t page_cgroup_ino(struct page *page)
444 {
445 struct mem_cgroup *memcg;
446 unsigned long ino = 0;
447
448 rcu_read_lock();
449 memcg = page_memcg_check(page);
450
451 while (memcg && !(memcg->css.flags & CSS_ONLINE))
452 memcg = parent_mem_cgroup(memcg);
453 if (memcg)
454 ino = cgroup_ino(memcg->css.cgroup);
455 rcu_read_unlock();
456 return ino;
457 }
458
459 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
460 struct mem_cgroup_tree_per_node *mctz,
461 unsigned long new_usage_in_excess)
462 {
463 struct rb_node **p = &mctz->rb_root.rb_node;
464 struct rb_node *parent = NULL;
465 struct mem_cgroup_per_node *mz_node;
466 bool rightmost = true;
467
468 if (mz->on_tree)
469 return;
470
471 mz->usage_in_excess = new_usage_in_excess;
472 if (!mz->usage_in_excess)
473 return;
474 while (*p) {
475 parent = *p;
476 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
477 tree_node);
478 if (mz->usage_in_excess < mz_node->usage_in_excess) {
479 p = &(*p)->rb_left;
480 rightmost = false;
481 } else {
482 p = &(*p)->rb_right;
483 }
484 }
485
486 if (rightmost)
487 mctz->rb_rightmost = &mz->tree_node;
488
489 rb_link_node(&mz->tree_node, parent, p);
490 rb_insert_color(&mz->tree_node, &mctz->rb_root);
491 mz->on_tree = true;
492 }
493
494 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
495 struct mem_cgroup_tree_per_node *mctz)
496 {
497 if (!mz->on_tree)
498 return;
499
500 if (&mz->tree_node == mctz->rb_rightmost)
501 mctz->rb_rightmost = rb_prev(&mz->tree_node);
502
503 rb_erase(&mz->tree_node, &mctz->rb_root);
504 mz->on_tree = false;
505 }
506
507 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
508 struct mem_cgroup_tree_per_node *mctz)
509 {
510 unsigned long flags;
511
512 spin_lock_irqsave(&mctz->lock, flags);
513 __mem_cgroup_remove_exceeded(mz, mctz);
514 spin_unlock_irqrestore(&mctz->lock, flags);
515 }
516
517 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
518 {
519 unsigned long nr_pages = page_counter_read(&memcg->memory);
520 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
521 unsigned long excess = 0;
522
523 if (nr_pages > soft_limit)
524 excess = nr_pages - soft_limit;
525
526 return excess;
527 }
528
529 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
530 {
531 unsigned long excess;
532 struct mem_cgroup_per_node *mz;
533 struct mem_cgroup_tree_per_node *mctz;
534
535 mctz = soft_limit_tree.rb_tree_per_node[nid];
536 if (!mctz)
537 return;
538 /*
539 * Necessary to update all ancestors when hierarchy is used.
540 * because their event counter is not touched.
541 */
542 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
543 mz = memcg->nodeinfo[nid];
544 excess = soft_limit_excess(memcg);
545 /*
546 * We have to update the tree if mz is on RB-tree or
547 * mem is over its softlimit.
548 */
549 if (excess || mz->on_tree) {
550 unsigned long flags;
551
552 spin_lock_irqsave(&mctz->lock, flags);
553 /* if on-tree, remove it */
554 if (mz->on_tree)
555 __mem_cgroup_remove_exceeded(mz, mctz);
556 /*
557 * Insert again. mz->usage_in_excess will be updated.
558 * If excess is 0, no tree ops.
559 */
560 __mem_cgroup_insert_exceeded(mz, mctz, excess);
561 spin_unlock_irqrestore(&mctz->lock, flags);
562 }
563 }
564 }
565
566 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
567 {
568 struct mem_cgroup_tree_per_node *mctz;
569 struct mem_cgroup_per_node *mz;
570 int nid;
571
572 for_each_node(nid) {
573 mz = memcg->nodeinfo[nid];
574 mctz = soft_limit_tree.rb_tree_per_node[nid];
575 if (mctz)
576 mem_cgroup_remove_exceeded(mz, mctz);
577 }
578 }
579
580 static struct mem_cgroup_per_node *
581 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
582 {
583 struct mem_cgroup_per_node *mz;
584
585 retry:
586 mz = NULL;
587 if (!mctz->rb_rightmost)
588 goto done; /* Nothing to reclaim from */
589
590 mz = rb_entry(mctz->rb_rightmost,
591 struct mem_cgroup_per_node, tree_node);
592 /*
593 * Remove the node now but someone else can add it back,
594 * we will to add it back at the end of reclaim to its correct
595 * position in the tree.
596 */
597 __mem_cgroup_remove_exceeded(mz, mctz);
598 if (!soft_limit_excess(mz->memcg) ||
599 !css_tryget(&mz->memcg->css))
600 goto retry;
601 done:
602 return mz;
603 }
604
605 static struct mem_cgroup_per_node *
606 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
607 {
608 struct mem_cgroup_per_node *mz;
609
610 spin_lock_irq(&mctz->lock);
611 mz = __mem_cgroup_largest_soft_limit_node(mctz);
612 spin_unlock_irq(&mctz->lock);
613 return mz;
614 }
615
616 /**
617 * __mod_memcg_state - update cgroup memory statistics
618 * @memcg: the memory cgroup
619 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
620 * @val: delta to add to the counter, can be negative
621 */
622 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
623 {
624 if (mem_cgroup_disabled())
625 return;
626
627 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
628 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
629 }
630
631 /* idx can be of type enum memcg_stat_item or node_stat_item. */
632 static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
633 {
634 long x = 0;
635 int cpu;
636
637 for_each_possible_cpu(cpu)
638 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
639 #ifdef CONFIG_SMP
640 if (x < 0)
641 x = 0;
642 #endif
643 return x;
644 }
645
646 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
647 int val)
648 {
649 struct mem_cgroup_per_node *pn;
650 struct mem_cgroup *memcg;
651
652 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
653 memcg = pn->memcg;
654
655 /* Update memcg */
656 __mod_memcg_state(memcg, idx, val);
657
658 /* Update lruvec */
659 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
660 }
661
662 /**
663 * __mod_lruvec_state - update lruvec memory statistics
664 * @lruvec: the lruvec
665 * @idx: the stat item
666 * @val: delta to add to the counter, can be negative
667 *
668 * The lruvec is the intersection of the NUMA node and a cgroup. This
669 * function updates the all three counters that are affected by a
670 * change of state at this level: per-node, per-cgroup, per-lruvec.
671 */
672 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
673 int val)
674 {
675 /* Update node */
676 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
677
678 /* Update memcg and lruvec */
679 if (!mem_cgroup_disabled())
680 __mod_memcg_lruvec_state(lruvec, idx, val);
681 }
682
683 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
684 int val)
685 {
686 struct page *head = compound_head(page); /* rmap on tail pages */
687 struct mem_cgroup *memcg;
688 pg_data_t *pgdat = page_pgdat(page);
689 struct lruvec *lruvec;
690
691 rcu_read_lock();
692 memcg = page_memcg(head);
693 /* Untracked pages have no memcg, no lruvec. Update only the node */
694 if (!memcg) {
695 rcu_read_unlock();
696 __mod_node_page_state(pgdat, idx, val);
697 return;
698 }
699
700 lruvec = mem_cgroup_lruvec(memcg, pgdat);
701 __mod_lruvec_state(lruvec, idx, val);
702 rcu_read_unlock();
703 }
704 EXPORT_SYMBOL(__mod_lruvec_page_state);
705
706 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
707 {
708 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
709 struct mem_cgroup *memcg;
710 struct lruvec *lruvec;
711
712 rcu_read_lock();
713 memcg = mem_cgroup_from_obj(p);
714
715 /*
716 * Untracked pages have no memcg, no lruvec. Update only the
717 * node. If we reparent the slab objects to the root memcg,
718 * when we free the slab object, we need to update the per-memcg
719 * vmstats to keep it correct for the root memcg.
720 */
721 if (!memcg) {
722 __mod_node_page_state(pgdat, idx, val);
723 } else {
724 lruvec = mem_cgroup_lruvec(memcg, pgdat);
725 __mod_lruvec_state(lruvec, idx, val);
726 }
727 rcu_read_unlock();
728 }
729
730 /*
731 * mod_objcg_mlstate() may be called with irq enabled, so
732 * mod_memcg_lruvec_state() should be used.
733 */
734 static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
735 struct pglist_data *pgdat,
736 enum node_stat_item idx, int nr)
737 {
738 struct mem_cgroup *memcg;
739 struct lruvec *lruvec;
740
741 rcu_read_lock();
742 memcg = obj_cgroup_memcg(objcg);
743 lruvec = mem_cgroup_lruvec(memcg, pgdat);
744 mod_memcg_lruvec_state(lruvec, idx, nr);
745 rcu_read_unlock();
746 }
747
748 /**
749 * __count_memcg_events - account VM events in a cgroup
750 * @memcg: the memory cgroup
751 * @idx: the event item
752 * @count: the number of events that occurred
753 */
754 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
755 unsigned long count)
756 {
757 if (mem_cgroup_disabled())
758 return;
759
760 __this_cpu_add(memcg->vmstats_percpu->events[idx], count);
761 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
762 }
763
764 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
765 {
766 return READ_ONCE(memcg->vmstats.events[event]);
767 }
768
769 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
770 {
771 long x = 0;
772 int cpu;
773
774 for_each_possible_cpu(cpu)
775 x += per_cpu(memcg->vmstats_percpu->events[event], cpu);
776 return x;
777 }
778
779 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
780 int nr_pages)
781 {
782 /* pagein of a big page is an event. So, ignore page size */
783 if (nr_pages > 0)
784 __count_memcg_events(memcg, PGPGIN, 1);
785 else {
786 __count_memcg_events(memcg, PGPGOUT, 1);
787 nr_pages = -nr_pages; /* for event */
788 }
789
790 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
791 }
792
793 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
794 enum mem_cgroup_events_target target)
795 {
796 unsigned long val, next;
797
798 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
799 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
800 /* from time_after() in jiffies.h */
801 if ((long)(next - val) < 0) {
802 switch (target) {
803 case MEM_CGROUP_TARGET_THRESH:
804 next = val + THRESHOLDS_EVENTS_TARGET;
805 break;
806 case MEM_CGROUP_TARGET_SOFTLIMIT:
807 next = val + SOFTLIMIT_EVENTS_TARGET;
808 break;
809 default:
810 break;
811 }
812 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
813 return true;
814 }
815 return false;
816 }
817
818 /*
819 * Check events in order.
820 *
821 */
822 static void memcg_check_events(struct mem_cgroup *memcg, int nid)
823 {
824 /* threshold event is triggered in finer grain than soft limit */
825 if (unlikely(mem_cgroup_event_ratelimit(memcg,
826 MEM_CGROUP_TARGET_THRESH))) {
827 bool do_softlimit;
828
829 do_softlimit = mem_cgroup_event_ratelimit(memcg,
830 MEM_CGROUP_TARGET_SOFTLIMIT);
831 mem_cgroup_threshold(memcg);
832 if (unlikely(do_softlimit))
833 mem_cgroup_update_tree(memcg, nid);
834 }
835 }
836
837 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
838 {
839 /*
840 * mm_update_next_owner() may clear mm->owner to NULL
841 * if it races with swapoff, page migration, etc.
842 * So this can be called with p == NULL.
843 */
844 if (unlikely(!p))
845 return NULL;
846
847 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
848 }
849 EXPORT_SYMBOL(mem_cgroup_from_task);
850
851 static __always_inline struct mem_cgroup *active_memcg(void)
852 {
853 if (!in_task())
854 return this_cpu_read(int_active_memcg);
855 else
856 return current->active_memcg;
857 }
858
859 /**
860 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
861 * @mm: mm from which memcg should be extracted. It can be NULL.
862 *
863 * Obtain a reference on mm->memcg and returns it if successful. If mm
864 * is NULL, then the memcg is chosen as follows:
865 * 1) The active memcg, if set.
866 * 2) current->mm->memcg, if available
867 * 3) root memcg
868 * If mem_cgroup is disabled, NULL is returned.
869 */
870 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
871 {
872 struct mem_cgroup *memcg;
873
874 if (mem_cgroup_disabled())
875 return NULL;
876
877 /*
878 * Page cache insertions can happen without an
879 * actual mm context, e.g. during disk probing
880 * on boot, loopback IO, acct() writes etc.
881 *
882 * No need to css_get on root memcg as the reference
883 * counting is disabled on the root level in the
884 * cgroup core. See CSS_NO_REF.
885 */
886 if (unlikely(!mm)) {
887 memcg = active_memcg();
888 if (unlikely(memcg)) {
889 /* remote memcg must hold a ref */
890 css_get(&memcg->css);
891 return memcg;
892 }
893 mm = current->mm;
894 if (unlikely(!mm))
895 return root_mem_cgroup;
896 }
897
898 rcu_read_lock();
899 do {
900 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
901 if (unlikely(!memcg))
902 memcg = root_mem_cgroup;
903 } while (!css_tryget(&memcg->css));
904 rcu_read_unlock();
905 return memcg;
906 }
907 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
908
909 static __always_inline bool memcg_kmem_bypass(void)
910 {
911 /* Allow remote memcg charging from any context. */
912 if (unlikely(active_memcg()))
913 return false;
914
915 /* Memcg to charge can't be determined. */
916 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
917 return true;
918
919 return false;
920 }
921
922 /**
923 * mem_cgroup_iter - iterate over memory cgroup hierarchy
924 * @root: hierarchy root
925 * @prev: previously returned memcg, NULL on first invocation
926 * @reclaim: cookie for shared reclaim walks, NULL for full walks
927 *
928 * Returns references to children of the hierarchy below @root, or
929 * @root itself, or %NULL after a full round-trip.
930 *
931 * Caller must pass the return value in @prev on subsequent
932 * invocations for reference counting, or use mem_cgroup_iter_break()
933 * to cancel a hierarchy walk before the round-trip is complete.
934 *
935 * Reclaimers can specify a node in @reclaim to divide up the memcgs
936 * in the hierarchy among all concurrent reclaimers operating on the
937 * same node.
938 */
939 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
940 struct mem_cgroup *prev,
941 struct mem_cgroup_reclaim_cookie *reclaim)
942 {
943 struct mem_cgroup_reclaim_iter *iter;
944 struct cgroup_subsys_state *css = NULL;
945 struct mem_cgroup *memcg = NULL;
946 struct mem_cgroup *pos = NULL;
947
948 if (mem_cgroup_disabled())
949 return NULL;
950
951 if (!root)
952 root = root_mem_cgroup;
953
954 if (prev && !reclaim)
955 pos = prev;
956
957 rcu_read_lock();
958
959 if (reclaim) {
960 struct mem_cgroup_per_node *mz;
961
962 mz = root->nodeinfo[reclaim->pgdat->node_id];
963 iter = &mz->iter;
964
965 if (prev && reclaim->generation != iter->generation)
966 goto out_unlock;
967
968 while (1) {
969 pos = READ_ONCE(iter->position);
970 if (!pos || css_tryget(&pos->css))
971 break;
972 /*
973 * css reference reached zero, so iter->position will
974 * be cleared by ->css_released. However, we should not
975 * rely on this happening soon, because ->css_released
976 * is called from a work queue, and by busy-waiting we
977 * might block it. So we clear iter->position right
978 * away.
979 */
980 (void)cmpxchg(&iter->position, pos, NULL);
981 }
982 }
983
984 if (pos)
985 css = &pos->css;
986
987 for (;;) {
988 css = css_next_descendant_pre(css, &root->css);
989 if (!css) {
990 /*
991 * Reclaimers share the hierarchy walk, and a
992 * new one might jump in right at the end of
993 * the hierarchy - make sure they see at least
994 * one group and restart from the beginning.
995 */
996 if (!prev)
997 continue;
998 break;
999 }
1000
1001 /*
1002 * Verify the css and acquire a reference. The root
1003 * is provided by the caller, so we know it's alive
1004 * and kicking, and don't take an extra reference.
1005 */
1006 memcg = mem_cgroup_from_css(css);
1007
1008 if (css == &root->css)
1009 break;
1010
1011 if (css_tryget(css))
1012 break;
1013
1014 memcg = NULL;
1015 }
1016
1017 if (reclaim) {
1018 /*
1019 * The position could have already been updated by a competing
1020 * thread, so check that the value hasn't changed since we read
1021 * it to avoid reclaiming from the same cgroup twice.
1022 */
1023 (void)cmpxchg(&iter->position, pos, memcg);
1024
1025 if (pos)
1026 css_put(&pos->css);
1027
1028 if (!memcg)
1029 iter->generation++;
1030 else if (!prev)
1031 reclaim->generation = iter->generation;
1032 }
1033
1034 out_unlock:
1035 rcu_read_unlock();
1036 if (prev && prev != root)
1037 css_put(&prev->css);
1038
1039 return memcg;
1040 }
1041
1042 /**
1043 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1044 * @root: hierarchy root
1045 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1046 */
1047 void mem_cgroup_iter_break(struct mem_cgroup *root,
1048 struct mem_cgroup *prev)
1049 {
1050 if (!root)
1051 root = root_mem_cgroup;
1052 if (prev && prev != root)
1053 css_put(&prev->css);
1054 }
1055
1056 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1057 struct mem_cgroup *dead_memcg)
1058 {
1059 struct mem_cgroup_reclaim_iter *iter;
1060 struct mem_cgroup_per_node *mz;
1061 int nid;
1062
1063 for_each_node(nid) {
1064 mz = from->nodeinfo[nid];
1065 iter = &mz->iter;
1066 cmpxchg(&iter->position, dead_memcg, NULL);
1067 }
1068 }
1069
1070 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1071 {
1072 struct mem_cgroup *memcg = dead_memcg;
1073 struct mem_cgroup *last;
1074
1075 do {
1076 __invalidate_reclaim_iterators(memcg, dead_memcg);
1077 last = memcg;
1078 } while ((memcg = parent_mem_cgroup(memcg)));
1079
1080 /*
1081 * When cgruop1 non-hierarchy mode is used,
1082 * parent_mem_cgroup() does not walk all the way up to the
1083 * cgroup root (root_mem_cgroup). So we have to handle
1084 * dead_memcg from cgroup root separately.
1085 */
1086 if (last != root_mem_cgroup)
1087 __invalidate_reclaim_iterators(root_mem_cgroup,
1088 dead_memcg);
1089 }
1090
1091 /**
1092 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1093 * @memcg: hierarchy root
1094 * @fn: function to call for each task
1095 * @arg: argument passed to @fn
1096 *
1097 * This function iterates over tasks attached to @memcg or to any of its
1098 * descendants and calls @fn for each task. If @fn returns a non-zero
1099 * value, the function breaks the iteration loop and returns the value.
1100 * Otherwise, it will iterate over all tasks and return 0.
1101 *
1102 * This function must not be called for the root memory cgroup.
1103 */
1104 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1105 int (*fn)(struct task_struct *, void *), void *arg)
1106 {
1107 struct mem_cgroup *iter;
1108 int ret = 0;
1109
1110 BUG_ON(memcg == root_mem_cgroup);
1111
1112 for_each_mem_cgroup_tree(iter, memcg) {
1113 struct css_task_iter it;
1114 struct task_struct *task;
1115
1116 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1117 while (!ret && (task = css_task_iter_next(&it)))
1118 ret = fn(task, arg);
1119 css_task_iter_end(&it);
1120 if (ret) {
1121 mem_cgroup_iter_break(memcg, iter);
1122 break;
1123 }
1124 }
1125 return ret;
1126 }
1127
1128 #ifdef CONFIG_DEBUG_VM
1129 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1130 {
1131 struct mem_cgroup *memcg;
1132
1133 if (mem_cgroup_disabled())
1134 return;
1135
1136 memcg = page_memcg(page);
1137
1138 if (!memcg)
1139 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1140 else
1141 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1142 }
1143 #endif
1144
1145 /**
1146 * lock_page_lruvec - lock and return lruvec for a given page.
1147 * @page: the page
1148 *
1149 * These functions are safe to use under any of the following conditions:
1150 * - page locked
1151 * - PageLRU cleared
1152 * - lock_page_memcg()
1153 * - page->_refcount is zero
1154 */
1155 struct lruvec *lock_page_lruvec(struct page *page)
1156 {
1157 struct lruvec *lruvec;
1158
1159 lruvec = mem_cgroup_page_lruvec(page);
1160 spin_lock(&lruvec->lru_lock);
1161
1162 lruvec_memcg_debug(lruvec, page);
1163
1164 return lruvec;
1165 }
1166
1167 struct lruvec *lock_page_lruvec_irq(struct page *page)
1168 {
1169 struct lruvec *lruvec;
1170
1171 lruvec = mem_cgroup_page_lruvec(page);
1172 spin_lock_irq(&lruvec->lru_lock);
1173
1174 lruvec_memcg_debug(lruvec, page);
1175
1176 return lruvec;
1177 }
1178
1179 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1180 {
1181 struct lruvec *lruvec;
1182
1183 lruvec = mem_cgroup_page_lruvec(page);
1184 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1185
1186 lruvec_memcg_debug(lruvec, page);
1187
1188 return lruvec;
1189 }
1190
1191 /**
1192 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1193 * @lruvec: mem_cgroup per zone lru vector
1194 * @lru: index of lru list the page is sitting on
1195 * @zid: zone id of the accounted pages
1196 * @nr_pages: positive when adding or negative when removing
1197 *
1198 * This function must be called under lru_lock, just before a page is added
1199 * to or just after a page is removed from an lru list (that ordering being
1200 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1201 */
1202 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1203 int zid, int nr_pages)
1204 {
1205 struct mem_cgroup_per_node *mz;
1206 unsigned long *lru_size;
1207 long size;
1208
1209 if (mem_cgroup_disabled())
1210 return;
1211
1212 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1213 lru_size = &mz->lru_zone_size[zid][lru];
1214
1215 if (nr_pages < 0)
1216 *lru_size += nr_pages;
1217
1218 size = *lru_size;
1219 if (WARN_ONCE(size < 0,
1220 "%s(%p, %d, %d): lru_size %ld\n",
1221 __func__, lruvec, lru, nr_pages, size)) {
1222 VM_BUG_ON(1);
1223 *lru_size = 0;
1224 }
1225
1226 if (nr_pages > 0)
1227 *lru_size += nr_pages;
1228 }
1229
1230 /**
1231 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1232 * @memcg: the memory cgroup
1233 *
1234 * Returns the maximum amount of memory @mem can be charged with, in
1235 * pages.
1236 */
1237 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1238 {
1239 unsigned long margin = 0;
1240 unsigned long count;
1241 unsigned long limit;
1242
1243 count = page_counter_read(&memcg->memory);
1244 limit = READ_ONCE(memcg->memory.max);
1245 if (count < limit)
1246 margin = limit - count;
1247
1248 if (do_memsw_account()) {
1249 count = page_counter_read(&memcg->memsw);
1250 limit = READ_ONCE(memcg->memsw.max);
1251 if (count < limit)
1252 margin = min(margin, limit - count);
1253 else
1254 margin = 0;
1255 }
1256
1257 return margin;
1258 }
1259
1260 /*
1261 * A routine for checking "mem" is under move_account() or not.
1262 *
1263 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1264 * moving cgroups. This is for waiting at high-memory pressure
1265 * caused by "move".
1266 */
1267 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1268 {
1269 struct mem_cgroup *from;
1270 struct mem_cgroup *to;
1271 bool ret = false;
1272 /*
1273 * Unlike task_move routines, we access mc.to, mc.from not under
1274 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1275 */
1276 spin_lock(&mc.lock);
1277 from = mc.from;
1278 to = mc.to;
1279 if (!from)
1280 goto unlock;
1281
1282 ret = mem_cgroup_is_descendant(from, memcg) ||
1283 mem_cgroup_is_descendant(to, memcg);
1284 unlock:
1285 spin_unlock(&mc.lock);
1286 return ret;
1287 }
1288
1289 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1290 {
1291 if (mc.moving_task && current != mc.moving_task) {
1292 if (mem_cgroup_under_move(memcg)) {
1293 DEFINE_WAIT(wait);
1294 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1295 /* moving charge context might have finished. */
1296 if (mc.moving_task)
1297 schedule();
1298 finish_wait(&mc.waitq, &wait);
1299 return true;
1300 }
1301 }
1302 return false;
1303 }
1304
1305 struct memory_stat {
1306 const char *name;
1307 unsigned int idx;
1308 };
1309
1310 static const struct memory_stat memory_stats[] = {
1311 { "anon", NR_ANON_MAPPED },
1312 { "file", NR_FILE_PAGES },
1313 { "kernel_stack", NR_KERNEL_STACK_KB },
1314 { "pagetables", NR_PAGETABLE },
1315 { "percpu", MEMCG_PERCPU_B },
1316 { "sock", MEMCG_SOCK },
1317 { "shmem", NR_SHMEM },
1318 { "file_mapped", NR_FILE_MAPPED },
1319 { "file_dirty", NR_FILE_DIRTY },
1320 { "file_writeback", NR_WRITEBACK },
1321 #ifdef CONFIG_SWAP
1322 { "swapcached", NR_SWAPCACHE },
1323 #endif
1324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1325 { "anon_thp", NR_ANON_THPS },
1326 { "file_thp", NR_FILE_THPS },
1327 { "shmem_thp", NR_SHMEM_THPS },
1328 #endif
1329 { "inactive_anon", NR_INACTIVE_ANON },
1330 { "active_anon", NR_ACTIVE_ANON },
1331 { "inactive_file", NR_INACTIVE_FILE },
1332 { "active_file", NR_ACTIVE_FILE },
1333 { "unevictable", NR_UNEVICTABLE },
1334 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1335 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1336
1337 /* The memory events */
1338 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1339 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1340 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1341 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1342 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1343 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1344 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1345 };
1346
1347 /* Translate stat items to the correct unit for memory.stat output */
1348 static int memcg_page_state_unit(int item)
1349 {
1350 switch (item) {
1351 case MEMCG_PERCPU_B:
1352 case NR_SLAB_RECLAIMABLE_B:
1353 case NR_SLAB_UNRECLAIMABLE_B:
1354 case WORKINGSET_REFAULT_ANON:
1355 case WORKINGSET_REFAULT_FILE:
1356 case WORKINGSET_ACTIVATE_ANON:
1357 case WORKINGSET_ACTIVATE_FILE:
1358 case WORKINGSET_RESTORE_ANON:
1359 case WORKINGSET_RESTORE_FILE:
1360 case WORKINGSET_NODERECLAIM:
1361 return 1;
1362 case NR_KERNEL_STACK_KB:
1363 return SZ_1K;
1364 default:
1365 return PAGE_SIZE;
1366 }
1367 }
1368
1369 static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1370 int item)
1371 {
1372 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1373 }
1374
1375 static char *memory_stat_format(struct mem_cgroup *memcg)
1376 {
1377 struct seq_buf s;
1378 int i;
1379
1380 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1381 if (!s.buffer)
1382 return NULL;
1383
1384 /*
1385 * Provide statistics on the state of the memory subsystem as
1386 * well as cumulative event counters that show past behavior.
1387 *
1388 * This list is ordered following a combination of these gradients:
1389 * 1) generic big picture -> specifics and details
1390 * 2) reflecting userspace activity -> reflecting kernel heuristics
1391 *
1392 * Current memory state:
1393 */
1394 cgroup_rstat_flush(memcg->css.cgroup);
1395
1396 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1397 u64 size;
1398
1399 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1400 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1401
1402 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1403 size += memcg_page_state_output(memcg,
1404 NR_SLAB_RECLAIMABLE_B);
1405 seq_buf_printf(&s, "slab %llu\n", size);
1406 }
1407 }
1408
1409 /* Accumulated memory events */
1410
1411 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1412 memcg_events(memcg, PGFAULT));
1413 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1414 memcg_events(memcg, PGMAJFAULT));
1415 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1416 memcg_events(memcg, PGREFILL));
1417 seq_buf_printf(&s, "pgscan %lu\n",
1418 memcg_events(memcg, PGSCAN_KSWAPD) +
1419 memcg_events(memcg, PGSCAN_DIRECT));
1420 seq_buf_printf(&s, "pgsteal %lu\n",
1421 memcg_events(memcg, PGSTEAL_KSWAPD) +
1422 memcg_events(memcg, PGSTEAL_DIRECT));
1423 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1424 memcg_events(memcg, PGACTIVATE));
1425 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1426 memcg_events(memcg, PGDEACTIVATE));
1427 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1428 memcg_events(memcg, PGLAZYFREE));
1429 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1430 memcg_events(memcg, PGLAZYFREED));
1431
1432 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1433 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1434 memcg_events(memcg, THP_FAULT_ALLOC));
1435 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1436 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1437 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1438
1439 /* The above should easily fit into one page */
1440 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1441
1442 return s.buffer;
1443 }
1444
1445 #define K(x) ((x) << (PAGE_SHIFT-10))
1446 /**
1447 * mem_cgroup_print_oom_context: Print OOM information relevant to
1448 * memory controller.
1449 * @memcg: The memory cgroup that went over limit
1450 * @p: Task that is going to be killed
1451 *
1452 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1453 * enabled
1454 */
1455 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1456 {
1457 rcu_read_lock();
1458
1459 if (memcg) {
1460 pr_cont(",oom_memcg=");
1461 pr_cont_cgroup_path(memcg->css.cgroup);
1462 } else
1463 pr_cont(",global_oom");
1464 if (p) {
1465 pr_cont(",task_memcg=");
1466 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1467 }
1468 rcu_read_unlock();
1469 }
1470
1471 /**
1472 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1473 * memory controller.
1474 * @memcg: The memory cgroup that went over limit
1475 */
1476 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1477 {
1478 char *buf;
1479
1480 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1481 K((u64)page_counter_read(&memcg->memory)),
1482 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1483 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1484 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1485 K((u64)page_counter_read(&memcg->swap)),
1486 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1487 else {
1488 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1489 K((u64)page_counter_read(&memcg->memsw)),
1490 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1491 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1492 K((u64)page_counter_read(&memcg->kmem)),
1493 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1494 }
1495
1496 pr_info("Memory cgroup stats for ");
1497 pr_cont_cgroup_path(memcg->css.cgroup);
1498 pr_cont(":");
1499 buf = memory_stat_format(memcg);
1500 if (!buf)
1501 return;
1502 pr_info("%s", buf);
1503 kfree(buf);
1504 }
1505
1506 /*
1507 * Return the memory (and swap, if configured) limit for a memcg.
1508 */
1509 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1510 {
1511 unsigned long max = READ_ONCE(memcg->memory.max);
1512
1513 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1514 if (mem_cgroup_swappiness(memcg))
1515 max += min(READ_ONCE(memcg->swap.max),
1516 (unsigned long)total_swap_pages);
1517 } else { /* v1 */
1518 if (mem_cgroup_swappiness(memcg)) {
1519 /* Calculate swap excess capacity from memsw limit */
1520 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1521
1522 max += min(swap, (unsigned long)total_swap_pages);
1523 }
1524 }
1525 return max;
1526 }
1527
1528 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1529 {
1530 return page_counter_read(&memcg->memory);
1531 }
1532
1533 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1534 int order)
1535 {
1536 struct oom_control oc = {
1537 .zonelist = NULL,
1538 .nodemask = NULL,
1539 .memcg = memcg,
1540 .gfp_mask = gfp_mask,
1541 .order = order,
1542 };
1543 bool ret = true;
1544
1545 if (mutex_lock_killable(&oom_lock))
1546 return true;
1547
1548 if (mem_cgroup_margin(memcg) >= (1 << order))
1549 goto unlock;
1550
1551 /*
1552 * A few threads which were not waiting at mutex_lock_killable() can
1553 * fail to bail out. Therefore, check again after holding oom_lock.
1554 */
1555 ret = should_force_charge() || out_of_memory(&oc);
1556
1557 unlock:
1558 mutex_unlock(&oom_lock);
1559 return ret;
1560 }
1561
1562 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1563 pg_data_t *pgdat,
1564 gfp_t gfp_mask,
1565 unsigned long *total_scanned)
1566 {
1567 struct mem_cgroup *victim = NULL;
1568 int total = 0;
1569 int loop = 0;
1570 unsigned long excess;
1571 unsigned long nr_scanned;
1572 struct mem_cgroup_reclaim_cookie reclaim = {
1573 .pgdat = pgdat,
1574 };
1575
1576 excess = soft_limit_excess(root_memcg);
1577
1578 while (1) {
1579 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1580 if (!victim) {
1581 loop++;
1582 if (loop >= 2) {
1583 /*
1584 * If we have not been able to reclaim
1585 * anything, it might because there are
1586 * no reclaimable pages under this hierarchy
1587 */
1588 if (!total)
1589 break;
1590 /*
1591 * We want to do more targeted reclaim.
1592 * excess >> 2 is not to excessive so as to
1593 * reclaim too much, nor too less that we keep
1594 * coming back to reclaim from this cgroup
1595 */
1596 if (total >= (excess >> 2) ||
1597 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1598 break;
1599 }
1600 continue;
1601 }
1602 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1603 pgdat, &nr_scanned);
1604 *total_scanned += nr_scanned;
1605 if (!soft_limit_excess(root_memcg))
1606 break;
1607 }
1608 mem_cgroup_iter_break(root_memcg, victim);
1609 return total;
1610 }
1611
1612 #ifdef CONFIG_LOCKDEP
1613 static struct lockdep_map memcg_oom_lock_dep_map = {
1614 .name = "memcg_oom_lock",
1615 };
1616 #endif
1617
1618 static DEFINE_SPINLOCK(memcg_oom_lock);
1619
1620 /*
1621 * Check OOM-Killer is already running under our hierarchy.
1622 * If someone is running, return false.
1623 */
1624 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1625 {
1626 struct mem_cgroup *iter, *failed = NULL;
1627
1628 spin_lock(&memcg_oom_lock);
1629
1630 for_each_mem_cgroup_tree(iter, memcg) {
1631 if (iter->oom_lock) {
1632 /*
1633 * this subtree of our hierarchy is already locked
1634 * so we cannot give a lock.
1635 */
1636 failed = iter;
1637 mem_cgroup_iter_break(memcg, iter);
1638 break;
1639 } else
1640 iter->oom_lock = true;
1641 }
1642
1643 if (failed) {
1644 /*
1645 * OK, we failed to lock the whole subtree so we have
1646 * to clean up what we set up to the failing subtree
1647 */
1648 for_each_mem_cgroup_tree(iter, memcg) {
1649 if (iter == failed) {
1650 mem_cgroup_iter_break(memcg, iter);
1651 break;
1652 }
1653 iter->oom_lock = false;
1654 }
1655 } else
1656 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1657
1658 spin_unlock(&memcg_oom_lock);
1659
1660 return !failed;
1661 }
1662
1663 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1664 {
1665 struct mem_cgroup *iter;
1666
1667 spin_lock(&memcg_oom_lock);
1668 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1669 for_each_mem_cgroup_tree(iter, memcg)
1670 iter->oom_lock = false;
1671 spin_unlock(&memcg_oom_lock);
1672 }
1673
1674 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1675 {
1676 struct mem_cgroup *iter;
1677
1678 spin_lock(&memcg_oom_lock);
1679 for_each_mem_cgroup_tree(iter, memcg)
1680 iter->under_oom++;
1681 spin_unlock(&memcg_oom_lock);
1682 }
1683
1684 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1685 {
1686 struct mem_cgroup *iter;
1687
1688 /*
1689 * Be careful about under_oom underflows because a child memcg
1690 * could have been added after mem_cgroup_mark_under_oom.
1691 */
1692 spin_lock(&memcg_oom_lock);
1693 for_each_mem_cgroup_tree(iter, memcg)
1694 if (iter->under_oom > 0)
1695 iter->under_oom--;
1696 spin_unlock(&memcg_oom_lock);
1697 }
1698
1699 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1700
1701 struct oom_wait_info {
1702 struct mem_cgroup *memcg;
1703 wait_queue_entry_t wait;
1704 };
1705
1706 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1707 unsigned mode, int sync, void *arg)
1708 {
1709 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1710 struct mem_cgroup *oom_wait_memcg;
1711 struct oom_wait_info *oom_wait_info;
1712
1713 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1714 oom_wait_memcg = oom_wait_info->memcg;
1715
1716 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1717 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1718 return 0;
1719 return autoremove_wake_function(wait, mode, sync, arg);
1720 }
1721
1722 static void memcg_oom_recover(struct mem_cgroup *memcg)
1723 {
1724 /*
1725 * For the following lockless ->under_oom test, the only required
1726 * guarantee is that it must see the state asserted by an OOM when
1727 * this function is called as a result of userland actions
1728 * triggered by the notification of the OOM. This is trivially
1729 * achieved by invoking mem_cgroup_mark_under_oom() before
1730 * triggering notification.
1731 */
1732 if (memcg && memcg->under_oom)
1733 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1734 }
1735
1736 enum oom_status {
1737 OOM_SUCCESS,
1738 OOM_FAILED,
1739 OOM_ASYNC,
1740 OOM_SKIPPED
1741 };
1742
1743 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1744 {
1745 enum oom_status ret;
1746 bool locked;
1747
1748 if (order > PAGE_ALLOC_COSTLY_ORDER)
1749 return OOM_SKIPPED;
1750
1751 memcg_memory_event(memcg, MEMCG_OOM);
1752
1753 /*
1754 * We are in the middle of the charge context here, so we
1755 * don't want to block when potentially sitting on a callstack
1756 * that holds all kinds of filesystem and mm locks.
1757 *
1758 * cgroup1 allows disabling the OOM killer and waiting for outside
1759 * handling until the charge can succeed; remember the context and put
1760 * the task to sleep at the end of the page fault when all locks are
1761 * released.
1762 *
1763 * On the other hand, in-kernel OOM killer allows for an async victim
1764 * memory reclaim (oom_reaper) and that means that we are not solely
1765 * relying on the oom victim to make a forward progress and we can
1766 * invoke the oom killer here.
1767 *
1768 * Please note that mem_cgroup_out_of_memory might fail to find a
1769 * victim and then we have to bail out from the charge path.
1770 */
1771 if (memcg->oom_kill_disable) {
1772 if (!current->in_user_fault)
1773 return OOM_SKIPPED;
1774 css_get(&memcg->css);
1775 current->memcg_in_oom = memcg;
1776 current->memcg_oom_gfp_mask = mask;
1777 current->memcg_oom_order = order;
1778
1779 return OOM_ASYNC;
1780 }
1781
1782 mem_cgroup_mark_under_oom(memcg);
1783
1784 locked = mem_cgroup_oom_trylock(memcg);
1785
1786 if (locked)
1787 mem_cgroup_oom_notify(memcg);
1788
1789 mem_cgroup_unmark_under_oom(memcg);
1790 if (mem_cgroup_out_of_memory(memcg, mask, order))
1791 ret = OOM_SUCCESS;
1792 else
1793 ret = OOM_FAILED;
1794
1795 if (locked)
1796 mem_cgroup_oom_unlock(memcg);
1797
1798 return ret;
1799 }
1800
1801 /**
1802 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1803 * @handle: actually kill/wait or just clean up the OOM state
1804 *
1805 * This has to be called at the end of a page fault if the memcg OOM
1806 * handler was enabled.
1807 *
1808 * Memcg supports userspace OOM handling where failed allocations must
1809 * sleep on a waitqueue until the userspace task resolves the
1810 * situation. Sleeping directly in the charge context with all kinds
1811 * of locks held is not a good idea, instead we remember an OOM state
1812 * in the task and mem_cgroup_oom_synchronize() has to be called at
1813 * the end of the page fault to complete the OOM handling.
1814 *
1815 * Returns %true if an ongoing memcg OOM situation was detected and
1816 * completed, %false otherwise.
1817 */
1818 bool mem_cgroup_oom_synchronize(bool handle)
1819 {
1820 struct mem_cgroup *memcg = current->memcg_in_oom;
1821 struct oom_wait_info owait;
1822 bool locked;
1823
1824 /* OOM is global, do not handle */
1825 if (!memcg)
1826 return false;
1827
1828 if (!handle)
1829 goto cleanup;
1830
1831 owait.memcg = memcg;
1832 owait.wait.flags = 0;
1833 owait.wait.func = memcg_oom_wake_function;
1834 owait.wait.private = current;
1835 INIT_LIST_HEAD(&owait.wait.entry);
1836
1837 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1838 mem_cgroup_mark_under_oom(memcg);
1839
1840 locked = mem_cgroup_oom_trylock(memcg);
1841
1842 if (locked)
1843 mem_cgroup_oom_notify(memcg);
1844
1845 if (locked && !memcg->oom_kill_disable) {
1846 mem_cgroup_unmark_under_oom(memcg);
1847 finish_wait(&memcg_oom_waitq, &owait.wait);
1848 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1849 current->memcg_oom_order);
1850 } else {
1851 schedule();
1852 mem_cgroup_unmark_under_oom(memcg);
1853 finish_wait(&memcg_oom_waitq, &owait.wait);
1854 }
1855
1856 if (locked) {
1857 mem_cgroup_oom_unlock(memcg);
1858 /*
1859 * There is no guarantee that an OOM-lock contender
1860 * sees the wakeups triggered by the OOM kill
1861 * uncharges. Wake any sleepers explicitly.
1862 */
1863 memcg_oom_recover(memcg);
1864 }
1865 cleanup:
1866 current->memcg_in_oom = NULL;
1867 css_put(&memcg->css);
1868 return true;
1869 }
1870
1871 /**
1872 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1873 * @victim: task to be killed by the OOM killer
1874 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1875 *
1876 * Returns a pointer to a memory cgroup, which has to be cleaned up
1877 * by killing all belonging OOM-killable tasks.
1878 *
1879 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1880 */
1881 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1882 struct mem_cgroup *oom_domain)
1883 {
1884 struct mem_cgroup *oom_group = NULL;
1885 struct mem_cgroup *memcg;
1886
1887 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1888 return NULL;
1889
1890 if (!oom_domain)
1891 oom_domain = root_mem_cgroup;
1892
1893 rcu_read_lock();
1894
1895 memcg = mem_cgroup_from_task(victim);
1896 if (memcg == root_mem_cgroup)
1897 goto out;
1898
1899 /*
1900 * If the victim task has been asynchronously moved to a different
1901 * memory cgroup, we might end up killing tasks outside oom_domain.
1902 * In this case it's better to ignore memory.group.oom.
1903 */
1904 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
1905 goto out;
1906
1907 /*
1908 * Traverse the memory cgroup hierarchy from the victim task's
1909 * cgroup up to the OOMing cgroup (or root) to find the
1910 * highest-level memory cgroup with oom.group set.
1911 */
1912 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1913 if (memcg->oom_group)
1914 oom_group = memcg;
1915
1916 if (memcg == oom_domain)
1917 break;
1918 }
1919
1920 if (oom_group)
1921 css_get(&oom_group->css);
1922 out:
1923 rcu_read_unlock();
1924
1925 return oom_group;
1926 }
1927
1928 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1929 {
1930 pr_info("Tasks in ");
1931 pr_cont_cgroup_path(memcg->css.cgroup);
1932 pr_cont(" are going to be killed due to memory.oom.group set\n");
1933 }
1934
1935 /**
1936 * folio_memcg_lock - Bind a folio to its memcg.
1937 * @folio: The folio.
1938 *
1939 * This function prevents unlocked LRU folios from being moved to
1940 * another cgroup.
1941 *
1942 * It ensures lifetime of the bound memcg. The caller is responsible
1943 * for the lifetime of the folio.
1944 */
1945 void folio_memcg_lock(struct folio *folio)
1946 {
1947 struct mem_cgroup *memcg;
1948 unsigned long flags;
1949
1950 /*
1951 * The RCU lock is held throughout the transaction. The fast
1952 * path can get away without acquiring the memcg->move_lock
1953 * because page moving starts with an RCU grace period.
1954 */
1955 rcu_read_lock();
1956
1957 if (mem_cgroup_disabled())
1958 return;
1959 again:
1960 memcg = folio_memcg(folio);
1961 if (unlikely(!memcg))
1962 return;
1963
1964 #ifdef CONFIG_PROVE_LOCKING
1965 local_irq_save(flags);
1966 might_lock(&memcg->move_lock);
1967 local_irq_restore(flags);
1968 #endif
1969
1970 if (atomic_read(&memcg->moving_account) <= 0)
1971 return;
1972
1973 spin_lock_irqsave(&memcg->move_lock, flags);
1974 if (memcg != folio_memcg(folio)) {
1975 spin_unlock_irqrestore(&memcg->move_lock, flags);
1976 goto again;
1977 }
1978
1979 /*
1980 * When charge migration first begins, we can have multiple
1981 * critical sections holding the fast-path RCU lock and one
1982 * holding the slowpath move_lock. Track the task who has the
1983 * move_lock for unlock_page_memcg().
1984 */
1985 memcg->move_lock_task = current;
1986 memcg->move_lock_flags = flags;
1987 }
1988 EXPORT_SYMBOL(folio_memcg_lock);
1989
1990 void lock_page_memcg(struct page *page)
1991 {
1992 folio_memcg_lock(page_folio(page));
1993 }
1994 EXPORT_SYMBOL(lock_page_memcg);
1995
1996 static void __folio_memcg_unlock(struct mem_cgroup *memcg)
1997 {
1998 if (memcg && memcg->move_lock_task == current) {
1999 unsigned long flags = memcg->move_lock_flags;
2000
2001 memcg->move_lock_task = NULL;
2002 memcg->move_lock_flags = 0;
2003
2004 spin_unlock_irqrestore(&memcg->move_lock, flags);
2005 }
2006
2007 rcu_read_unlock();
2008 }
2009
2010 /**
2011 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2012 * @folio: The folio.
2013 *
2014 * This releases the binding created by folio_memcg_lock(). This does
2015 * not change the accounting of this folio to its memcg, but it does
2016 * permit others to change it.
2017 */
2018 void folio_memcg_unlock(struct folio *folio)
2019 {
2020 __folio_memcg_unlock(folio_memcg(folio));
2021 }
2022 EXPORT_SYMBOL(folio_memcg_unlock);
2023
2024 void unlock_page_memcg(struct page *page)
2025 {
2026 folio_memcg_unlock(page_folio(page));
2027 }
2028 EXPORT_SYMBOL(unlock_page_memcg);
2029
2030 struct obj_stock {
2031 #ifdef CONFIG_MEMCG_KMEM
2032 struct obj_cgroup *cached_objcg;
2033 struct pglist_data *cached_pgdat;
2034 unsigned int nr_bytes;
2035 int nr_slab_reclaimable_b;
2036 int nr_slab_unreclaimable_b;
2037 #else
2038 int dummy[0];
2039 #endif
2040 };
2041
2042 struct memcg_stock_pcp {
2043 struct mem_cgroup *cached; /* this never be root cgroup */
2044 unsigned int nr_pages;
2045 struct obj_stock task_obj;
2046 struct obj_stock irq_obj;
2047
2048 struct work_struct work;
2049 unsigned long flags;
2050 #define FLUSHING_CACHED_CHARGE 0
2051 };
2052 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2053 static DEFINE_MUTEX(percpu_charge_mutex);
2054
2055 #ifdef CONFIG_MEMCG_KMEM
2056 static void drain_obj_stock(struct obj_stock *stock);
2057 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2058 struct mem_cgroup *root_memcg);
2059
2060 #else
2061 static inline void drain_obj_stock(struct obj_stock *stock)
2062 {
2063 }
2064 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2065 struct mem_cgroup *root_memcg)
2066 {
2067 return false;
2068 }
2069 #endif
2070
2071 /*
2072 * Most kmem_cache_alloc() calls are from user context. The irq disable/enable
2073 * sequence used in this case to access content from object stock is slow.
2074 * To optimize for user context access, there are now two object stocks for
2075 * task context and interrupt context access respectively.
2076 *
2077 * The task context object stock can be accessed by disabling preemption only
2078 * which is cheap in non-preempt kernel. The interrupt context object stock
2079 * can only be accessed after disabling interrupt. User context code can
2080 * access interrupt object stock, but not vice versa.
2081 */
2082 static inline struct obj_stock *get_obj_stock(unsigned long *pflags)
2083 {
2084 struct memcg_stock_pcp *stock;
2085
2086 if (likely(in_task())) {
2087 *pflags = 0UL;
2088 preempt_disable();
2089 stock = this_cpu_ptr(&memcg_stock);
2090 return &stock->task_obj;
2091 }
2092
2093 local_irq_save(*pflags);
2094 stock = this_cpu_ptr(&memcg_stock);
2095 return &stock->irq_obj;
2096 }
2097
2098 static inline void put_obj_stock(unsigned long flags)
2099 {
2100 if (likely(in_task()))
2101 preempt_enable();
2102 else
2103 local_irq_restore(flags);
2104 }
2105
2106 /**
2107 * consume_stock: Try to consume stocked charge on this cpu.
2108 * @memcg: memcg to consume from.
2109 * @nr_pages: how many pages to charge.
2110 *
2111 * The charges will only happen if @memcg matches the current cpu's memcg
2112 * stock, and at least @nr_pages are available in that stock. Failure to
2113 * service an allocation will refill the stock.
2114 *
2115 * returns true if successful, false otherwise.
2116 */
2117 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2118 {
2119 struct memcg_stock_pcp *stock;
2120 unsigned long flags;
2121 bool ret = false;
2122
2123 if (nr_pages > MEMCG_CHARGE_BATCH)
2124 return ret;
2125
2126 local_irq_save(flags);
2127
2128 stock = this_cpu_ptr(&memcg_stock);
2129 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2130 stock->nr_pages -= nr_pages;
2131 ret = true;
2132 }
2133
2134 local_irq_restore(flags);
2135
2136 return ret;
2137 }
2138
2139 /*
2140 * Returns stocks cached in percpu and reset cached information.
2141 */
2142 static void drain_stock(struct memcg_stock_pcp *stock)
2143 {
2144 struct mem_cgroup *old = stock->cached;
2145
2146 if (!old)
2147 return;
2148
2149 if (stock->nr_pages) {
2150 page_counter_uncharge(&old->memory, stock->nr_pages);
2151 if (do_memsw_account())
2152 page_counter_uncharge(&old->memsw, stock->nr_pages);
2153 stock->nr_pages = 0;
2154 }
2155
2156 css_put(&old->css);
2157 stock->cached = NULL;
2158 }
2159
2160 static void drain_local_stock(struct work_struct *dummy)
2161 {
2162 struct memcg_stock_pcp *stock;
2163 unsigned long flags;
2164
2165 /*
2166 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2167 * drain_stock races is that we always operate on local CPU stock
2168 * here with IRQ disabled
2169 */
2170 local_irq_save(flags);
2171
2172 stock = this_cpu_ptr(&memcg_stock);
2173 drain_obj_stock(&stock->irq_obj);
2174 if (in_task())
2175 drain_obj_stock(&stock->task_obj);
2176 drain_stock(stock);
2177 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2178
2179 local_irq_restore(flags);
2180 }
2181
2182 /*
2183 * Cache charges(val) to local per_cpu area.
2184 * This will be consumed by consume_stock() function, later.
2185 */
2186 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2187 {
2188 struct memcg_stock_pcp *stock;
2189 unsigned long flags;
2190
2191 local_irq_save(flags);
2192
2193 stock = this_cpu_ptr(&memcg_stock);
2194 if (stock->cached != memcg) { /* reset if necessary */
2195 drain_stock(stock);
2196 css_get(&memcg->css);
2197 stock->cached = memcg;
2198 }
2199 stock->nr_pages += nr_pages;
2200
2201 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2202 drain_stock(stock);
2203
2204 local_irq_restore(flags);
2205 }
2206
2207 /*
2208 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2209 * of the hierarchy under it.
2210 */
2211 static void drain_all_stock(struct mem_cgroup *root_memcg)
2212 {
2213 int cpu, curcpu;
2214
2215 /* If someone's already draining, avoid adding running more workers. */
2216 if (!mutex_trylock(&percpu_charge_mutex))
2217 return;
2218 /*
2219 * Notify other cpus that system-wide "drain" is running
2220 * We do not care about races with the cpu hotplug because cpu down
2221 * as well as workers from this path always operate on the local
2222 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2223 */
2224 curcpu = get_cpu();
2225 for_each_online_cpu(cpu) {
2226 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2227 struct mem_cgroup *memcg;
2228 bool flush = false;
2229
2230 rcu_read_lock();
2231 memcg = stock->cached;
2232 if (memcg && stock->nr_pages &&
2233 mem_cgroup_is_descendant(memcg, root_memcg))
2234 flush = true;
2235 else if (obj_stock_flush_required(stock, root_memcg))
2236 flush = true;
2237 rcu_read_unlock();
2238
2239 if (flush &&
2240 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2241 if (cpu == curcpu)
2242 drain_local_stock(&stock->work);
2243 else
2244 schedule_work_on(cpu, &stock->work);
2245 }
2246 }
2247 put_cpu();
2248 mutex_unlock(&percpu_charge_mutex);
2249 }
2250
2251 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2252 {
2253 struct memcg_stock_pcp *stock;
2254
2255 stock = &per_cpu(memcg_stock, cpu);
2256 drain_stock(stock);
2257
2258 return 0;
2259 }
2260
2261 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2262 unsigned int nr_pages,
2263 gfp_t gfp_mask)
2264 {
2265 unsigned long nr_reclaimed = 0;
2266
2267 do {
2268 unsigned long pflags;
2269
2270 if (page_counter_read(&memcg->memory) <=
2271 READ_ONCE(memcg->memory.high))
2272 continue;
2273
2274 memcg_memory_event(memcg, MEMCG_HIGH);
2275
2276 psi_memstall_enter(&pflags);
2277 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2278 gfp_mask, true);
2279 psi_memstall_leave(&pflags);
2280 } while ((memcg = parent_mem_cgroup(memcg)) &&
2281 !mem_cgroup_is_root(memcg));
2282
2283 return nr_reclaimed;
2284 }
2285
2286 static void high_work_func(struct work_struct *work)
2287 {
2288 struct mem_cgroup *memcg;
2289
2290 memcg = container_of(work, struct mem_cgroup, high_work);
2291 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2292 }
2293
2294 /*
2295 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2296 * enough to still cause a significant slowdown in most cases, while still
2297 * allowing diagnostics and tracing to proceed without becoming stuck.
2298 */
2299 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2300
2301 /*
2302 * When calculating the delay, we use these either side of the exponentiation to
2303 * maintain precision and scale to a reasonable number of jiffies (see the table
2304 * below.
2305 *
2306 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2307 * overage ratio to a delay.
2308 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2309 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2310 * to produce a reasonable delay curve.
2311 *
2312 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2313 * reasonable delay curve compared to precision-adjusted overage, not
2314 * penalising heavily at first, but still making sure that growth beyond the
2315 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2316 * example, with a high of 100 megabytes:
2317 *
2318 * +-------+------------------------+
2319 * | usage | time to allocate in ms |
2320 * +-------+------------------------+
2321 * | 100M | 0 |
2322 * | 101M | 6 |
2323 * | 102M | 25 |
2324 * | 103M | 57 |
2325 * | 104M | 102 |
2326 * | 105M | 159 |
2327 * | 106M | 230 |
2328 * | 107M | 313 |
2329 * | 108M | 409 |
2330 * | 109M | 518 |
2331 * | 110M | 639 |
2332 * | 111M | 774 |
2333 * | 112M | 921 |
2334 * | 113M | 1081 |
2335 * | 114M | 1254 |
2336 * | 115M | 1439 |
2337 * | 116M | 1638 |
2338 * | 117M | 1849 |
2339 * | 118M | 2000 |
2340 * | 119M | 2000 |
2341 * | 120M | 2000 |
2342 * +-------+------------------------+
2343 */
2344 #define MEMCG_DELAY_PRECISION_SHIFT 20
2345 #define MEMCG_DELAY_SCALING_SHIFT 14
2346
2347 static u64 calculate_overage(unsigned long usage, unsigned long high)
2348 {
2349 u64 overage;
2350
2351 if (usage <= high)
2352 return 0;
2353
2354 /*
2355 * Prevent division by 0 in overage calculation by acting as if
2356 * it was a threshold of 1 page
2357 */
2358 high = max(high, 1UL);
2359
2360 overage = usage - high;
2361 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2362 return div64_u64(overage, high);
2363 }
2364
2365 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2366 {
2367 u64 overage, max_overage = 0;
2368
2369 do {
2370 overage = calculate_overage(page_counter_read(&memcg->memory),
2371 READ_ONCE(memcg->memory.high));
2372 max_overage = max(overage, max_overage);
2373 } while ((memcg = parent_mem_cgroup(memcg)) &&
2374 !mem_cgroup_is_root(memcg));
2375
2376 return max_overage;
2377 }
2378
2379 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2380 {
2381 u64 overage, max_overage = 0;
2382
2383 do {
2384 overage = calculate_overage(page_counter_read(&memcg->swap),
2385 READ_ONCE(memcg->swap.high));
2386 if (overage)
2387 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2388 max_overage = max(overage, max_overage);
2389 } while ((memcg = parent_mem_cgroup(memcg)) &&
2390 !mem_cgroup_is_root(memcg));
2391
2392 return max_overage;
2393 }
2394
2395 /*
2396 * Get the number of jiffies that we should penalise a mischievous cgroup which
2397 * is exceeding its memory.high by checking both it and its ancestors.
2398 */
2399 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2400 unsigned int nr_pages,
2401 u64 max_overage)
2402 {
2403 unsigned long penalty_jiffies;
2404
2405 if (!max_overage)
2406 return 0;
2407
2408 /*
2409 * We use overage compared to memory.high to calculate the number of
2410 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2411 * fairly lenient on small overages, and increasingly harsh when the
2412 * memcg in question makes it clear that it has no intention of stopping
2413 * its crazy behaviour, so we exponentially increase the delay based on
2414 * overage amount.
2415 */
2416 penalty_jiffies = max_overage * max_overage * HZ;
2417 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2418 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2419
2420 /*
2421 * Factor in the task's own contribution to the overage, such that four
2422 * N-sized allocations are throttled approximately the same as one
2423 * 4N-sized allocation.
2424 *
2425 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2426 * larger the current charge patch is than that.
2427 */
2428 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2429 }
2430
2431 /*
2432 * Scheduled by try_charge() to be executed from the userland return path
2433 * and reclaims memory over the high limit.
2434 */
2435 void mem_cgroup_handle_over_high(void)
2436 {
2437 unsigned long penalty_jiffies;
2438 unsigned long pflags;
2439 unsigned long nr_reclaimed;
2440 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2441 int nr_retries = MAX_RECLAIM_RETRIES;
2442 struct mem_cgroup *memcg;
2443 bool in_retry = false;
2444
2445 if (likely(!nr_pages))
2446 return;
2447
2448 memcg = get_mem_cgroup_from_mm(current->mm);
2449 current->memcg_nr_pages_over_high = 0;
2450
2451 retry_reclaim:
2452 /*
2453 * The allocating task should reclaim at least the batch size, but for
2454 * subsequent retries we only want to do what's necessary to prevent oom
2455 * or breaching resource isolation.
2456 *
2457 * This is distinct from memory.max or page allocator behaviour because
2458 * memory.high is currently batched, whereas memory.max and the page
2459 * allocator run every time an allocation is made.
2460 */
2461 nr_reclaimed = reclaim_high(memcg,
2462 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2463 GFP_KERNEL);
2464
2465 /*
2466 * memory.high is breached and reclaim is unable to keep up. Throttle
2467 * allocators proactively to slow down excessive growth.
2468 */
2469 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2470 mem_find_max_overage(memcg));
2471
2472 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2473 swap_find_max_overage(memcg));
2474
2475 /*
2476 * Clamp the max delay per usermode return so as to still keep the
2477 * application moving forwards and also permit diagnostics, albeit
2478 * extremely slowly.
2479 */
2480 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2481
2482 /*
2483 * Don't sleep if the amount of jiffies this memcg owes us is so low
2484 * that it's not even worth doing, in an attempt to be nice to those who
2485 * go only a small amount over their memory.high value and maybe haven't
2486 * been aggressively reclaimed enough yet.
2487 */
2488 if (penalty_jiffies <= HZ / 100)
2489 goto out;
2490
2491 /*
2492 * If reclaim is making forward progress but we're still over
2493 * memory.high, we want to encourage that rather than doing allocator
2494 * throttling.
2495 */
2496 if (nr_reclaimed || nr_retries--) {
2497 in_retry = true;
2498 goto retry_reclaim;
2499 }
2500
2501 /*
2502 * If we exit early, we're guaranteed to die (since
2503 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2504 * need to account for any ill-begotten jiffies to pay them off later.
2505 */
2506 psi_memstall_enter(&pflags);
2507 schedule_timeout_killable(penalty_jiffies);
2508 psi_memstall_leave(&pflags);
2509
2510 out:
2511 css_put(&memcg->css);
2512 }
2513
2514 static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2515 unsigned int nr_pages)
2516 {
2517 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2518 int nr_retries = MAX_RECLAIM_RETRIES;
2519 struct mem_cgroup *mem_over_limit;
2520 struct page_counter *counter;
2521 enum oom_status oom_status;
2522 unsigned long nr_reclaimed;
2523 bool may_swap = true;
2524 bool drained = false;
2525 unsigned long pflags;
2526
2527 retry:
2528 if (consume_stock(memcg, nr_pages))
2529 return 0;
2530
2531 if (!do_memsw_account() ||
2532 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2533 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2534 goto done_restock;
2535 if (do_memsw_account())
2536 page_counter_uncharge(&memcg->memsw, batch);
2537 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2538 } else {
2539 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2540 may_swap = false;
2541 }
2542
2543 if (batch > nr_pages) {
2544 batch = nr_pages;
2545 goto retry;
2546 }
2547
2548 /*
2549 * Memcg doesn't have a dedicated reserve for atomic
2550 * allocations. But like the global atomic pool, we need to
2551 * put the burden of reclaim on regular allocation requests
2552 * and let these go through as privileged allocations.
2553 */
2554 if (gfp_mask & __GFP_ATOMIC)
2555 goto force;
2556
2557 /*
2558 * Unlike in global OOM situations, memcg is not in a physical
2559 * memory shortage. Allow dying and OOM-killed tasks to
2560 * bypass the last charges so that they can exit quickly and
2561 * free their memory.
2562 */
2563 if (unlikely(should_force_charge()))
2564 goto force;
2565
2566 /*
2567 * Prevent unbounded recursion when reclaim operations need to
2568 * allocate memory. This might exceed the limits temporarily,
2569 * but we prefer facilitating memory reclaim and getting back
2570 * under the limit over triggering OOM kills in these cases.
2571 */
2572 if (unlikely(current->flags & PF_MEMALLOC))
2573 goto force;
2574
2575 if (unlikely(task_in_memcg_oom(current)))
2576 goto nomem;
2577
2578 if (!gfpflags_allow_blocking(gfp_mask))
2579 goto nomem;
2580
2581 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2582
2583 psi_memstall_enter(&pflags);
2584 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2585 gfp_mask, may_swap);
2586 psi_memstall_leave(&pflags);
2587
2588 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2589 goto retry;
2590
2591 if (!drained) {
2592 drain_all_stock(mem_over_limit);
2593 drained = true;
2594 goto retry;
2595 }
2596
2597 if (gfp_mask & __GFP_NORETRY)
2598 goto nomem;
2599 /*
2600 * Even though the limit is exceeded at this point, reclaim
2601 * may have been able to free some pages. Retry the charge
2602 * before killing the task.
2603 *
2604 * Only for regular pages, though: huge pages are rather
2605 * unlikely to succeed so close to the limit, and we fall back
2606 * to regular pages anyway in case of failure.
2607 */
2608 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2609 goto retry;
2610 /*
2611 * At task move, charge accounts can be doubly counted. So, it's
2612 * better to wait until the end of task_move if something is going on.
2613 */
2614 if (mem_cgroup_wait_acct_move(mem_over_limit))
2615 goto retry;
2616
2617 if (nr_retries--)
2618 goto retry;
2619
2620 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2621 goto nomem;
2622
2623 if (fatal_signal_pending(current))
2624 goto force;
2625
2626 /*
2627 * keep retrying as long as the memcg oom killer is able to make
2628 * a forward progress or bypass the charge if the oom killer
2629 * couldn't make any progress.
2630 */
2631 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2632 get_order(nr_pages * PAGE_SIZE));
2633 switch (oom_status) {
2634 case OOM_SUCCESS:
2635 nr_retries = MAX_RECLAIM_RETRIES;
2636 goto retry;
2637 case OOM_FAILED:
2638 goto force;
2639 default:
2640 goto nomem;
2641 }
2642 nomem:
2643 if (!(gfp_mask & __GFP_NOFAIL))
2644 return -ENOMEM;
2645 force:
2646 /*
2647 * The allocation either can't fail or will lead to more memory
2648 * being freed very soon. Allow memory usage go over the limit
2649 * temporarily by force charging it.
2650 */
2651 page_counter_charge(&memcg->memory, nr_pages);
2652 if (do_memsw_account())
2653 page_counter_charge(&memcg->memsw, nr_pages);
2654
2655 return 0;
2656
2657 done_restock:
2658 if (batch > nr_pages)
2659 refill_stock(memcg, batch - nr_pages);
2660
2661 /*
2662 * If the hierarchy is above the normal consumption range, schedule
2663 * reclaim on returning to userland. We can perform reclaim here
2664 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2665 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2666 * not recorded as it most likely matches current's and won't
2667 * change in the meantime. As high limit is checked again before
2668 * reclaim, the cost of mismatch is negligible.
2669 */
2670 do {
2671 bool mem_high, swap_high;
2672
2673 mem_high = page_counter_read(&memcg->memory) >
2674 READ_ONCE(memcg->memory.high);
2675 swap_high = page_counter_read(&memcg->swap) >
2676 READ_ONCE(memcg->swap.high);
2677
2678 /* Don't bother a random interrupted task */
2679 if (in_interrupt()) {
2680 if (mem_high) {
2681 schedule_work(&memcg->high_work);
2682 break;
2683 }
2684 continue;
2685 }
2686
2687 if (mem_high || swap_high) {
2688 /*
2689 * The allocating tasks in this cgroup will need to do
2690 * reclaim or be throttled to prevent further growth
2691 * of the memory or swap footprints.
2692 *
2693 * Target some best-effort fairness between the tasks,
2694 * and distribute reclaim work and delay penalties
2695 * based on how much each task is actually allocating.
2696 */
2697 current->memcg_nr_pages_over_high += batch;
2698 set_notify_resume(current);
2699 break;
2700 }
2701 } while ((memcg = parent_mem_cgroup(memcg)));
2702
2703 return 0;
2704 }
2705
2706 static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2707 unsigned int nr_pages)
2708 {
2709 if (mem_cgroup_is_root(memcg))
2710 return 0;
2711
2712 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2713 }
2714
2715 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2716 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2717 {
2718 if (mem_cgroup_is_root(memcg))
2719 return;
2720
2721 page_counter_uncharge(&memcg->memory, nr_pages);
2722 if (do_memsw_account())
2723 page_counter_uncharge(&memcg->memsw, nr_pages);
2724 }
2725 #endif
2726
2727 static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2728 {
2729 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2730 /*
2731 * Any of the following ensures page's memcg stability:
2732 *
2733 * - the page lock
2734 * - LRU isolation
2735 * - lock_page_memcg()
2736 * - exclusive reference
2737 */
2738 folio->memcg_data = (unsigned long)memcg;
2739 }
2740
2741 static struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
2742 {
2743 struct mem_cgroup *memcg;
2744
2745 rcu_read_lock();
2746 retry:
2747 memcg = obj_cgroup_memcg(objcg);
2748 if (unlikely(!css_tryget(&memcg->css)))
2749 goto retry;
2750 rcu_read_unlock();
2751
2752 return memcg;
2753 }
2754
2755 #ifdef CONFIG_MEMCG_KMEM
2756 /*
2757 * The allocated objcg pointers array is not accounted directly.
2758 * Moreover, it should not come from DMA buffer and is not readily
2759 * reclaimable. So those GFP bits should be masked off.
2760 */
2761 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2762
2763 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2764 gfp_t gfp, bool new_page)
2765 {
2766 unsigned int objects = objs_per_slab_page(s, page);
2767 unsigned long memcg_data;
2768 void *vec;
2769
2770 gfp &= ~OBJCGS_CLEAR_MASK;
2771 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2772 page_to_nid(page));
2773 if (!vec)
2774 return -ENOMEM;
2775
2776 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2777 if (new_page) {
2778 /*
2779 * If the slab page is brand new and nobody can yet access
2780 * it's memcg_data, no synchronization is required and
2781 * memcg_data can be simply assigned.
2782 */
2783 page->memcg_data = memcg_data;
2784 } else if (cmpxchg(&page->memcg_data, 0, memcg_data)) {
2785 /*
2786 * If the slab page is already in use, somebody can allocate
2787 * and assign obj_cgroups in parallel. In this case the existing
2788 * objcg vector should be reused.
2789 */
2790 kfree(vec);
2791 return 0;
2792 }
2793
2794 kmemleak_not_leak(vec);
2795 return 0;
2796 }
2797
2798 /*
2799 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2800 *
2801 * A passed kernel object can be a slab object or a generic kernel page, so
2802 * different mechanisms for getting the memory cgroup pointer should be used.
2803 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2804 * can not know for sure how the kernel object is implemented.
2805 * mem_cgroup_from_obj() can be safely used in such cases.
2806 *
2807 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2808 * cgroup_mutex, etc.
2809 */
2810 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2811 {
2812 struct page *page;
2813
2814 if (mem_cgroup_disabled())
2815 return NULL;
2816
2817 page = virt_to_head_page(p);
2818
2819 /*
2820 * Slab objects are accounted individually, not per-page.
2821 * Memcg membership data for each individual object is saved in
2822 * the page->obj_cgroups.
2823 */
2824 if (page_objcgs_check(page)) {
2825 struct obj_cgroup *objcg;
2826 unsigned int off;
2827
2828 off = obj_to_index(page->slab_cache, page, p);
2829 objcg = page_objcgs(page)[off];
2830 if (objcg)
2831 return obj_cgroup_memcg(objcg);
2832
2833 return NULL;
2834 }
2835
2836 /*
2837 * page_memcg_check() is used here, because page_has_obj_cgroups()
2838 * check above could fail because the object cgroups vector wasn't set
2839 * at that moment, but it can be set concurrently.
2840 * page_memcg_check(page) will guarantee that a proper memory
2841 * cgroup pointer or NULL will be returned.
2842 */
2843 return page_memcg_check(page);
2844 }
2845
2846 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2847 {
2848 struct obj_cgroup *objcg = NULL;
2849 struct mem_cgroup *memcg;
2850
2851 if (memcg_kmem_bypass())
2852 return NULL;
2853
2854 rcu_read_lock();
2855 if (unlikely(active_memcg()))
2856 memcg = active_memcg();
2857 else
2858 memcg = mem_cgroup_from_task(current);
2859
2860 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2861 objcg = rcu_dereference(memcg->objcg);
2862 if (objcg && obj_cgroup_tryget(objcg))
2863 break;
2864 objcg = NULL;
2865 }
2866 rcu_read_unlock();
2867
2868 return objcg;
2869 }
2870
2871 static int memcg_alloc_cache_id(void)
2872 {
2873 int id, size;
2874 int err;
2875
2876 id = ida_simple_get(&memcg_cache_ida,
2877 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2878 if (id < 0)
2879 return id;
2880
2881 if (id < memcg_nr_cache_ids)
2882 return id;
2883
2884 /*
2885 * There's no space for the new id in memcg_caches arrays,
2886 * so we have to grow them.
2887 */
2888 down_write(&memcg_cache_ids_sem);
2889
2890 size = 2 * (id + 1);
2891 if (size < MEMCG_CACHES_MIN_SIZE)
2892 size = MEMCG_CACHES_MIN_SIZE;
2893 else if (size > MEMCG_CACHES_MAX_SIZE)
2894 size = MEMCG_CACHES_MAX_SIZE;
2895
2896 err = memcg_update_all_list_lrus(size);
2897 if (!err)
2898 memcg_nr_cache_ids = size;
2899
2900 up_write(&memcg_cache_ids_sem);
2901
2902 if (err) {
2903 ida_simple_remove(&memcg_cache_ida, id);
2904 return err;
2905 }
2906 return id;
2907 }
2908
2909 static void memcg_free_cache_id(int id)
2910 {
2911 ida_simple_remove(&memcg_cache_ida, id);
2912 }
2913
2914 /*
2915 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
2916 * @objcg: object cgroup to uncharge
2917 * @nr_pages: number of pages to uncharge
2918 */
2919 static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
2920 unsigned int nr_pages)
2921 {
2922 struct mem_cgroup *memcg;
2923
2924 memcg = get_mem_cgroup_from_objcg(objcg);
2925
2926 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2927 page_counter_uncharge(&memcg->kmem, nr_pages);
2928 refill_stock(memcg, nr_pages);
2929
2930 css_put(&memcg->css);
2931 }
2932
2933 /*
2934 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
2935 * @objcg: object cgroup to charge
2936 * @gfp: reclaim mode
2937 * @nr_pages: number of pages to charge
2938 *
2939 * Returns 0 on success, an error code on failure.
2940 */
2941 static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
2942 unsigned int nr_pages)
2943 {
2944 struct page_counter *counter;
2945 struct mem_cgroup *memcg;
2946 int ret;
2947
2948 memcg = get_mem_cgroup_from_objcg(objcg);
2949
2950 ret = try_charge_memcg(memcg, gfp, nr_pages);
2951 if (ret)
2952 goto out;
2953
2954 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2955 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2956
2957 /*
2958 * Enforce __GFP_NOFAIL allocation because callers are not
2959 * prepared to see failures and likely do not have any failure
2960 * handling code.
2961 */
2962 if (gfp & __GFP_NOFAIL) {
2963 page_counter_charge(&memcg->kmem, nr_pages);
2964 goto out;
2965 }
2966 cancel_charge(memcg, nr_pages);
2967 ret = -ENOMEM;
2968 }
2969 out:
2970 css_put(&memcg->css);
2971
2972 return ret;
2973 }
2974
2975 /**
2976 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
2977 * @page: page to charge
2978 * @gfp: reclaim mode
2979 * @order: allocation order
2980 *
2981 * Returns 0 on success, an error code on failure.
2982 */
2983 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
2984 {
2985 struct obj_cgroup *objcg;
2986 int ret = 0;
2987
2988 objcg = get_obj_cgroup_from_current();
2989 if (objcg) {
2990 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
2991 if (!ret) {
2992 page->memcg_data = (unsigned long)objcg |
2993 MEMCG_DATA_KMEM;
2994 return 0;
2995 }
2996 obj_cgroup_put(objcg);
2997 }
2998 return ret;
2999 }
3000
3001 /**
3002 * __memcg_kmem_uncharge_page: uncharge a kmem page
3003 * @page: page to uncharge
3004 * @order: allocation order
3005 */
3006 void __memcg_kmem_uncharge_page(struct page *page, int order)
3007 {
3008 struct folio *folio = page_folio(page);
3009 struct obj_cgroup *objcg;
3010 unsigned int nr_pages = 1 << order;
3011
3012 if (!folio_memcg_kmem(folio))
3013 return;
3014
3015 objcg = __folio_objcg(folio);
3016 obj_cgroup_uncharge_pages(objcg, nr_pages);
3017 folio->memcg_data = 0;
3018 obj_cgroup_put(objcg);
3019 }
3020
3021 void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3022 enum node_stat_item idx, int nr)
3023 {
3024 unsigned long flags;
3025 struct obj_stock *stock = get_obj_stock(&flags);
3026 int *bytes;
3027
3028 /*
3029 * Save vmstat data in stock and skip vmstat array update unless
3030 * accumulating over a page of vmstat data or when pgdat or idx
3031 * changes.
3032 */
3033 if (stock->cached_objcg != objcg) {
3034 drain_obj_stock(stock);
3035 obj_cgroup_get(objcg);
3036 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3037 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3038 stock->cached_objcg = objcg;
3039 stock->cached_pgdat = pgdat;
3040 } else if (stock->cached_pgdat != pgdat) {
3041 /* Flush the existing cached vmstat data */
3042 struct pglist_data *oldpg = stock->cached_pgdat;
3043
3044 if (stock->nr_slab_reclaimable_b) {
3045 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3046 stock->nr_slab_reclaimable_b);
3047 stock->nr_slab_reclaimable_b = 0;
3048 }
3049 if (stock->nr_slab_unreclaimable_b) {
3050 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3051 stock->nr_slab_unreclaimable_b);
3052 stock->nr_slab_unreclaimable_b = 0;
3053 }
3054 stock->cached_pgdat = pgdat;
3055 }
3056
3057 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3058 : &stock->nr_slab_unreclaimable_b;
3059 /*
3060 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3061 * cached locally at least once before pushing it out.
3062 */
3063 if (!*bytes) {
3064 *bytes = nr;
3065 nr = 0;
3066 } else {
3067 *bytes += nr;
3068 if (abs(*bytes) > PAGE_SIZE) {
3069 nr = *bytes;
3070 *bytes = 0;
3071 } else {
3072 nr = 0;
3073 }
3074 }
3075 if (nr)
3076 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3077
3078 put_obj_stock(flags);
3079 }
3080
3081 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3082 {
3083 unsigned long flags;
3084 struct obj_stock *stock = get_obj_stock(&flags);
3085 bool ret = false;
3086
3087 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3088 stock->nr_bytes -= nr_bytes;
3089 ret = true;
3090 }
3091
3092 put_obj_stock(flags);
3093
3094 return ret;
3095 }
3096
3097 static void drain_obj_stock(struct obj_stock *stock)
3098 {
3099 struct obj_cgroup *old = stock->cached_objcg;
3100
3101 if (!old)
3102 return;
3103
3104 if (stock->nr_bytes) {
3105 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3106 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3107
3108 if (nr_pages)
3109 obj_cgroup_uncharge_pages(old, nr_pages);
3110
3111 /*
3112 * The leftover is flushed to the centralized per-memcg value.
3113 * On the next attempt to refill obj stock it will be moved
3114 * to a per-cpu stock (probably, on an other CPU), see
3115 * refill_obj_stock().
3116 *
3117 * How often it's flushed is a trade-off between the memory
3118 * limit enforcement accuracy and potential CPU contention,
3119 * so it might be changed in the future.
3120 */
3121 atomic_add(nr_bytes, &old->nr_charged_bytes);
3122 stock->nr_bytes = 0;
3123 }
3124
3125 /*
3126 * Flush the vmstat data in current stock
3127 */
3128 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3129 if (stock->nr_slab_reclaimable_b) {
3130 mod_objcg_mlstate(old, stock->cached_pgdat,
3131 NR_SLAB_RECLAIMABLE_B,
3132 stock->nr_slab_reclaimable_b);
3133 stock->nr_slab_reclaimable_b = 0;
3134 }
3135 if (stock->nr_slab_unreclaimable_b) {
3136 mod_objcg_mlstate(old, stock->cached_pgdat,
3137 NR_SLAB_UNRECLAIMABLE_B,
3138 stock->nr_slab_unreclaimable_b);
3139 stock->nr_slab_unreclaimable_b = 0;
3140 }
3141 stock->cached_pgdat = NULL;
3142 }
3143
3144 obj_cgroup_put(old);
3145 stock->cached_objcg = NULL;
3146 }
3147
3148 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3149 struct mem_cgroup *root_memcg)
3150 {
3151 struct mem_cgroup *memcg;
3152
3153 if (in_task() && stock->task_obj.cached_objcg) {
3154 memcg = obj_cgroup_memcg(stock->task_obj.cached_objcg);
3155 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3156 return true;
3157 }
3158 if (stock->irq_obj.cached_objcg) {
3159 memcg = obj_cgroup_memcg(stock->irq_obj.cached_objcg);
3160 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3161 return true;
3162 }
3163
3164 return false;
3165 }
3166
3167 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3168 bool allow_uncharge)
3169 {
3170 unsigned long flags;
3171 struct obj_stock *stock = get_obj_stock(&flags);
3172 unsigned int nr_pages = 0;
3173
3174 if (stock->cached_objcg != objcg) { /* reset if necessary */
3175 drain_obj_stock(stock);
3176 obj_cgroup_get(objcg);
3177 stock->cached_objcg = objcg;
3178 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3179 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3180 allow_uncharge = true; /* Allow uncharge when objcg changes */
3181 }
3182 stock->nr_bytes += nr_bytes;
3183
3184 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3185 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3186 stock->nr_bytes &= (PAGE_SIZE - 1);
3187 }
3188
3189 put_obj_stock(flags);
3190
3191 if (nr_pages)
3192 obj_cgroup_uncharge_pages(objcg, nr_pages);
3193 }
3194
3195 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3196 {
3197 unsigned int nr_pages, nr_bytes;
3198 int ret;
3199
3200 if (consume_obj_stock(objcg, size))
3201 return 0;
3202
3203 /*
3204 * In theory, objcg->nr_charged_bytes can have enough
3205 * pre-charged bytes to satisfy the allocation. However,
3206 * flushing objcg->nr_charged_bytes requires two atomic
3207 * operations, and objcg->nr_charged_bytes can't be big.
3208 * The shared objcg->nr_charged_bytes can also become a
3209 * performance bottleneck if all tasks of the same memcg are
3210 * trying to update it. So it's better to ignore it and try
3211 * grab some new pages. The stock's nr_bytes will be flushed to
3212 * objcg->nr_charged_bytes later on when objcg changes.
3213 *
3214 * The stock's nr_bytes may contain enough pre-charged bytes
3215 * to allow one less page from being charged, but we can't rely
3216 * on the pre-charged bytes not being changed outside of
3217 * consume_obj_stock() or refill_obj_stock(). So ignore those
3218 * pre-charged bytes as well when charging pages. To avoid a
3219 * page uncharge right after a page charge, we set the
3220 * allow_uncharge flag to false when calling refill_obj_stock()
3221 * to temporarily allow the pre-charged bytes to exceed the page
3222 * size limit. The maximum reachable value of the pre-charged
3223 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3224 * race.
3225 */
3226 nr_pages = size >> PAGE_SHIFT;
3227 nr_bytes = size & (PAGE_SIZE - 1);
3228
3229 if (nr_bytes)
3230 nr_pages += 1;
3231
3232 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3233 if (!ret && nr_bytes)
3234 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3235
3236 return ret;
3237 }
3238
3239 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3240 {
3241 refill_obj_stock(objcg, size, true);
3242 }
3243
3244 #endif /* CONFIG_MEMCG_KMEM */
3245
3246 /*
3247 * Because page_memcg(head) is not set on tails, set it now.
3248 */
3249 void split_page_memcg(struct page *head, unsigned int nr)
3250 {
3251 struct folio *folio = page_folio(head);
3252 struct mem_cgroup *memcg = folio_memcg(folio);
3253 int i;
3254
3255 if (mem_cgroup_disabled() || !memcg)
3256 return;
3257
3258 for (i = 1; i < nr; i++)
3259 folio_page(folio, i)->memcg_data = folio->memcg_data;
3260
3261 if (folio_memcg_kmem(folio))
3262 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3263 else
3264 css_get_many(&memcg->css, nr - 1);
3265 }
3266
3267 #ifdef CONFIG_MEMCG_SWAP
3268 /**
3269 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3270 * @entry: swap entry to be moved
3271 * @from: mem_cgroup which the entry is moved from
3272 * @to: mem_cgroup which the entry is moved to
3273 *
3274 * It succeeds only when the swap_cgroup's record for this entry is the same
3275 * as the mem_cgroup's id of @from.
3276 *
3277 * Returns 0 on success, -EINVAL on failure.
3278 *
3279 * The caller must have charged to @to, IOW, called page_counter_charge() about
3280 * both res and memsw, and called css_get().
3281 */
3282 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3283 struct mem_cgroup *from, struct mem_cgroup *to)
3284 {
3285 unsigned short old_id, new_id;
3286
3287 old_id = mem_cgroup_id(from);
3288 new_id = mem_cgroup_id(to);
3289
3290 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3291 mod_memcg_state(from, MEMCG_SWAP, -1);
3292 mod_memcg_state(to, MEMCG_SWAP, 1);
3293 return 0;
3294 }
3295 return -EINVAL;
3296 }
3297 #else
3298 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3299 struct mem_cgroup *from, struct mem_cgroup *to)
3300 {
3301 return -EINVAL;
3302 }
3303 #endif
3304
3305 static DEFINE_MUTEX(memcg_max_mutex);
3306
3307 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3308 unsigned long max, bool memsw)
3309 {
3310 bool enlarge = false;
3311 bool drained = false;
3312 int ret;
3313 bool limits_invariant;
3314 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3315
3316 do {
3317 if (signal_pending(current)) {
3318 ret = -EINTR;
3319 break;
3320 }
3321
3322 mutex_lock(&memcg_max_mutex);
3323 /*
3324 * Make sure that the new limit (memsw or memory limit) doesn't
3325 * break our basic invariant rule memory.max <= memsw.max.
3326 */
3327 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3328 max <= memcg->memsw.max;
3329 if (!limits_invariant) {
3330 mutex_unlock(&memcg_max_mutex);
3331 ret = -EINVAL;
3332 break;
3333 }
3334 if (max > counter->max)
3335 enlarge = true;
3336 ret = page_counter_set_max(counter, max);
3337 mutex_unlock(&memcg_max_mutex);
3338
3339 if (!ret)
3340 break;
3341
3342 if (!drained) {
3343 drain_all_stock(memcg);
3344 drained = true;
3345 continue;
3346 }
3347
3348 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3349 GFP_KERNEL, !memsw)) {
3350 ret = -EBUSY;
3351 break;
3352 }
3353 } while (true);
3354
3355 if (!ret && enlarge)
3356 memcg_oom_recover(memcg);
3357
3358 return ret;
3359 }
3360
3361 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3362 gfp_t gfp_mask,
3363 unsigned long *total_scanned)
3364 {
3365 unsigned long nr_reclaimed = 0;
3366 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3367 unsigned long reclaimed;
3368 int loop = 0;
3369 struct mem_cgroup_tree_per_node *mctz;
3370 unsigned long excess;
3371 unsigned long nr_scanned;
3372
3373 if (order > 0)
3374 return 0;
3375
3376 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3377
3378 /*
3379 * Do not even bother to check the largest node if the root
3380 * is empty. Do it lockless to prevent lock bouncing. Races
3381 * are acceptable as soft limit is best effort anyway.
3382 */
3383 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3384 return 0;
3385
3386 /*
3387 * This loop can run a while, specially if mem_cgroup's continuously
3388 * keep exceeding their soft limit and putting the system under
3389 * pressure
3390 */
3391 do {
3392 if (next_mz)
3393 mz = next_mz;
3394 else
3395 mz = mem_cgroup_largest_soft_limit_node(mctz);
3396 if (!mz)
3397 break;
3398
3399 nr_scanned = 0;
3400 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3401 gfp_mask, &nr_scanned);
3402 nr_reclaimed += reclaimed;
3403 *total_scanned += nr_scanned;
3404 spin_lock_irq(&mctz->lock);
3405 __mem_cgroup_remove_exceeded(mz, mctz);
3406
3407 /*
3408 * If we failed to reclaim anything from this memory cgroup
3409 * it is time to move on to the next cgroup
3410 */
3411 next_mz = NULL;
3412 if (!reclaimed)
3413 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3414
3415 excess = soft_limit_excess(mz->memcg);
3416 /*
3417 * One school of thought says that we should not add
3418 * back the node to the tree if reclaim returns 0.
3419 * But our reclaim could return 0, simply because due
3420 * to priority we are exposing a smaller subset of
3421 * memory to reclaim from. Consider this as a longer
3422 * term TODO.
3423 */
3424 /* If excess == 0, no tree ops */
3425 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3426 spin_unlock_irq(&mctz->lock);
3427 css_put(&mz->memcg->css);
3428 loop++;
3429 /*
3430 * Could not reclaim anything and there are no more
3431 * mem cgroups to try or we seem to be looping without
3432 * reclaiming anything.
3433 */
3434 if (!nr_reclaimed &&
3435 (next_mz == NULL ||
3436 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3437 break;
3438 } while (!nr_reclaimed);
3439 if (next_mz)
3440 css_put(&next_mz->memcg->css);
3441 return nr_reclaimed;
3442 }
3443
3444 /*
3445 * Reclaims as many pages from the given memcg as possible.
3446 *
3447 * Caller is responsible for holding css reference for memcg.
3448 */
3449 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3450 {
3451 int nr_retries = MAX_RECLAIM_RETRIES;
3452
3453 /* we call try-to-free pages for make this cgroup empty */
3454 lru_add_drain_all();
3455
3456 drain_all_stock(memcg);
3457
3458 /* try to free all pages in this cgroup */
3459 while (nr_retries && page_counter_read(&memcg->memory)) {
3460 int progress;
3461
3462 if (signal_pending(current))
3463 return -EINTR;
3464
3465 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3466 GFP_KERNEL, true);
3467 if (!progress) {
3468 nr_retries--;
3469 /* maybe some writeback is necessary */
3470 congestion_wait(BLK_RW_ASYNC, HZ/10);
3471 }
3472
3473 }
3474
3475 return 0;
3476 }
3477
3478 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3479 char *buf, size_t nbytes,
3480 loff_t off)
3481 {
3482 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3483
3484 if (mem_cgroup_is_root(memcg))
3485 return -EINVAL;
3486 return mem_cgroup_force_empty(memcg) ?: nbytes;
3487 }
3488
3489 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3490 struct cftype *cft)
3491 {
3492 return 1;
3493 }
3494
3495 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3496 struct cftype *cft, u64 val)
3497 {
3498 if (val == 1)
3499 return 0;
3500
3501 pr_warn_once("Non-hierarchical mode is deprecated. "
3502 "Please report your usecase to linux-mm@kvack.org if you "
3503 "depend on this functionality.\n");
3504
3505 return -EINVAL;
3506 }
3507
3508 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3509 {
3510 unsigned long val;
3511
3512 if (mem_cgroup_is_root(memcg)) {
3513 /* mem_cgroup_threshold() calls here from irqsafe context */
3514 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
3515 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3516 memcg_page_state(memcg, NR_ANON_MAPPED);
3517 if (swap)
3518 val += memcg_page_state(memcg, MEMCG_SWAP);
3519 } else {
3520 if (!swap)
3521 val = page_counter_read(&memcg->memory);
3522 else
3523 val = page_counter_read(&memcg->memsw);
3524 }
3525 return val;
3526 }
3527
3528 enum {
3529 RES_USAGE,
3530 RES_LIMIT,
3531 RES_MAX_USAGE,
3532 RES_FAILCNT,
3533 RES_SOFT_LIMIT,
3534 };
3535
3536 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3537 struct cftype *cft)
3538 {
3539 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3540 struct page_counter *counter;
3541
3542 switch (MEMFILE_TYPE(cft->private)) {
3543 case _MEM:
3544 counter = &memcg->memory;
3545 break;
3546 case _MEMSWAP:
3547 counter = &memcg->memsw;
3548 break;
3549 case _KMEM:
3550 counter = &memcg->kmem;
3551 break;
3552 case _TCP:
3553 counter = &memcg->tcpmem;
3554 break;
3555 default:
3556 BUG();
3557 }
3558
3559 switch (MEMFILE_ATTR(cft->private)) {
3560 case RES_USAGE:
3561 if (counter == &memcg->memory)
3562 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3563 if (counter == &memcg->memsw)
3564 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3565 return (u64)page_counter_read(counter) * PAGE_SIZE;
3566 case RES_LIMIT:
3567 return (u64)counter->max * PAGE_SIZE;
3568 case RES_MAX_USAGE:
3569 return (u64)counter->watermark * PAGE_SIZE;
3570 case RES_FAILCNT:
3571 return counter->failcnt;
3572 case RES_SOFT_LIMIT:
3573 return (u64)memcg->soft_limit * PAGE_SIZE;
3574 default:
3575 BUG();
3576 }
3577 }
3578
3579 #ifdef CONFIG_MEMCG_KMEM
3580 static int memcg_online_kmem(struct mem_cgroup *memcg)
3581 {
3582 struct obj_cgroup *objcg;
3583 int memcg_id;
3584
3585 if (cgroup_memory_nokmem)
3586 return 0;
3587
3588 BUG_ON(memcg->kmemcg_id >= 0);
3589 BUG_ON(memcg->kmem_state);
3590
3591 memcg_id = memcg_alloc_cache_id();
3592 if (memcg_id < 0)
3593 return memcg_id;
3594
3595 objcg = obj_cgroup_alloc();
3596 if (!objcg) {
3597 memcg_free_cache_id(memcg_id);
3598 return -ENOMEM;
3599 }
3600 objcg->memcg = memcg;
3601 rcu_assign_pointer(memcg->objcg, objcg);
3602
3603 static_branch_enable(&memcg_kmem_enabled_key);
3604
3605 memcg->kmemcg_id = memcg_id;
3606 memcg->kmem_state = KMEM_ONLINE;
3607
3608 return 0;
3609 }
3610
3611 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3612 {
3613 struct cgroup_subsys_state *css;
3614 struct mem_cgroup *parent, *child;
3615 int kmemcg_id;
3616
3617 if (memcg->kmem_state != KMEM_ONLINE)
3618 return;
3619
3620 memcg->kmem_state = KMEM_ALLOCATED;
3621
3622 parent = parent_mem_cgroup(memcg);
3623 if (!parent)
3624 parent = root_mem_cgroup;
3625
3626 memcg_reparent_objcgs(memcg, parent);
3627
3628 kmemcg_id = memcg->kmemcg_id;
3629 BUG_ON(kmemcg_id < 0);
3630
3631 /*
3632 * Change kmemcg_id of this cgroup and all its descendants to the
3633 * parent's id, and then move all entries from this cgroup's list_lrus
3634 * to ones of the parent. After we have finished, all list_lrus
3635 * corresponding to this cgroup are guaranteed to remain empty. The
3636 * ordering is imposed by list_lru_node->lock taken by
3637 * memcg_drain_all_list_lrus().
3638 */
3639 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3640 css_for_each_descendant_pre(css, &memcg->css) {
3641 child = mem_cgroup_from_css(css);
3642 BUG_ON(child->kmemcg_id != kmemcg_id);
3643 child->kmemcg_id = parent->kmemcg_id;
3644 }
3645 rcu_read_unlock();
3646
3647 memcg_drain_all_list_lrus(kmemcg_id, parent);
3648
3649 memcg_free_cache_id(kmemcg_id);
3650 }
3651
3652 static void memcg_free_kmem(struct mem_cgroup *memcg)
3653 {
3654 /* css_alloc() failed, offlining didn't happen */
3655 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3656 memcg_offline_kmem(memcg);
3657 }
3658 #else
3659 static int memcg_online_kmem(struct mem_cgroup *memcg)
3660 {
3661 return 0;
3662 }
3663 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3664 {
3665 }
3666 static void memcg_free_kmem(struct mem_cgroup *memcg)
3667 {
3668 }
3669 #endif /* CONFIG_MEMCG_KMEM */
3670
3671 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3672 unsigned long max)
3673 {
3674 int ret;
3675
3676 mutex_lock(&memcg_max_mutex);
3677 ret = page_counter_set_max(&memcg->kmem, max);
3678 mutex_unlock(&memcg_max_mutex);
3679 return ret;
3680 }
3681
3682 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3683 {
3684 int ret;
3685
3686 mutex_lock(&memcg_max_mutex);
3687
3688 ret = page_counter_set_max(&memcg->tcpmem, max);
3689 if (ret)
3690 goto out;
3691
3692 if (!memcg->tcpmem_active) {
3693 /*
3694 * The active flag needs to be written after the static_key
3695 * update. This is what guarantees that the socket activation
3696 * function is the last one to run. See mem_cgroup_sk_alloc()
3697 * for details, and note that we don't mark any socket as
3698 * belonging to this memcg until that flag is up.
3699 *
3700 * We need to do this, because static_keys will span multiple
3701 * sites, but we can't control their order. If we mark a socket
3702 * as accounted, but the accounting functions are not patched in
3703 * yet, we'll lose accounting.
3704 *
3705 * We never race with the readers in mem_cgroup_sk_alloc(),
3706 * because when this value change, the code to process it is not
3707 * patched in yet.
3708 */
3709 static_branch_inc(&memcg_sockets_enabled_key);
3710 memcg->tcpmem_active = true;
3711 }
3712 out:
3713 mutex_unlock(&memcg_max_mutex);
3714 return ret;
3715 }
3716
3717 /*
3718 * The user of this function is...
3719 * RES_LIMIT.
3720 */
3721 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3722 char *buf, size_t nbytes, loff_t off)
3723 {
3724 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3725 unsigned long nr_pages;
3726 int ret;
3727
3728 buf = strstrip(buf);
3729 ret = page_counter_memparse(buf, "-1", &nr_pages);
3730 if (ret)
3731 return ret;
3732
3733 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3734 case RES_LIMIT:
3735 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3736 ret = -EINVAL;
3737 break;
3738 }
3739 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3740 case _MEM:
3741 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3742 break;
3743 case _MEMSWAP:
3744 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3745 break;
3746 case _KMEM:
3747 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3748 "Please report your usecase to linux-mm@kvack.org if you "
3749 "depend on this functionality.\n");
3750 ret = memcg_update_kmem_max(memcg, nr_pages);
3751 break;
3752 case _TCP:
3753 ret = memcg_update_tcp_max(memcg, nr_pages);
3754 break;
3755 }
3756 break;
3757 case RES_SOFT_LIMIT:
3758 memcg->soft_limit = nr_pages;
3759 ret = 0;
3760 break;
3761 }
3762 return ret ?: nbytes;
3763 }
3764
3765 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3766 size_t nbytes, loff_t off)
3767 {
3768 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3769 struct page_counter *counter;
3770
3771 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3772 case _MEM:
3773 counter = &memcg->memory;
3774 break;
3775 case _MEMSWAP:
3776 counter = &memcg->memsw;
3777 break;
3778 case _KMEM:
3779 counter = &memcg->kmem;
3780 break;
3781 case _TCP:
3782 counter = &memcg->tcpmem;
3783 break;
3784 default:
3785 BUG();
3786 }
3787
3788 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3789 case RES_MAX_USAGE:
3790 page_counter_reset_watermark(counter);
3791 break;
3792 case RES_FAILCNT:
3793 counter->failcnt = 0;
3794 break;
3795 default:
3796 BUG();
3797 }
3798
3799 return nbytes;
3800 }
3801
3802 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3803 struct cftype *cft)
3804 {
3805 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3806 }
3807
3808 #ifdef CONFIG_MMU
3809 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3810 struct cftype *cft, u64 val)
3811 {
3812 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3813
3814 if (val & ~MOVE_MASK)
3815 return -EINVAL;
3816
3817 /*
3818 * No kind of locking is needed in here, because ->can_attach() will
3819 * check this value once in the beginning of the process, and then carry
3820 * on with stale data. This means that changes to this value will only
3821 * affect task migrations starting after the change.
3822 */
3823 memcg->move_charge_at_immigrate = val;
3824 return 0;
3825 }
3826 #else
3827 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3828 struct cftype *cft, u64 val)
3829 {
3830 return -ENOSYS;
3831 }
3832 #endif
3833
3834 #ifdef CONFIG_NUMA
3835
3836 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3837 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3838 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3839
3840 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3841 int nid, unsigned int lru_mask, bool tree)
3842 {
3843 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3844 unsigned long nr = 0;
3845 enum lru_list lru;
3846
3847 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3848
3849 for_each_lru(lru) {
3850 if (!(BIT(lru) & lru_mask))
3851 continue;
3852 if (tree)
3853 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3854 else
3855 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3856 }
3857 return nr;
3858 }
3859
3860 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3861 unsigned int lru_mask,
3862 bool tree)
3863 {
3864 unsigned long nr = 0;
3865 enum lru_list lru;
3866
3867 for_each_lru(lru) {
3868 if (!(BIT(lru) & lru_mask))
3869 continue;
3870 if (tree)
3871 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3872 else
3873 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3874 }
3875 return nr;
3876 }
3877
3878 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3879 {
3880 struct numa_stat {
3881 const char *name;
3882 unsigned int lru_mask;
3883 };
3884
3885 static const struct numa_stat stats[] = {
3886 { "total", LRU_ALL },
3887 { "file", LRU_ALL_FILE },
3888 { "anon", LRU_ALL_ANON },
3889 { "unevictable", BIT(LRU_UNEVICTABLE) },
3890 };
3891 const struct numa_stat *stat;
3892 int nid;
3893 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3894
3895 cgroup_rstat_flush(memcg->css.cgroup);
3896
3897 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3898 seq_printf(m, "%s=%lu", stat->name,
3899 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3900 false));
3901 for_each_node_state(nid, N_MEMORY)
3902 seq_printf(m, " N%d=%lu", nid,
3903 mem_cgroup_node_nr_lru_pages(memcg, nid,
3904 stat->lru_mask, false));
3905 seq_putc(m, '\n');
3906 }
3907
3908 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3909
3910 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3911 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3912 true));
3913 for_each_node_state(nid, N_MEMORY)
3914 seq_printf(m, " N%d=%lu", nid,
3915 mem_cgroup_node_nr_lru_pages(memcg, nid,
3916 stat->lru_mask, true));
3917 seq_putc(m, '\n');
3918 }
3919
3920 return 0;
3921 }
3922 #endif /* CONFIG_NUMA */
3923
3924 static const unsigned int memcg1_stats[] = {
3925 NR_FILE_PAGES,
3926 NR_ANON_MAPPED,
3927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3928 NR_ANON_THPS,
3929 #endif
3930 NR_SHMEM,
3931 NR_FILE_MAPPED,
3932 NR_FILE_DIRTY,
3933 NR_WRITEBACK,
3934 MEMCG_SWAP,
3935 };
3936
3937 static const char *const memcg1_stat_names[] = {
3938 "cache",
3939 "rss",
3940 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3941 "rss_huge",
3942 #endif
3943 "shmem",
3944 "mapped_file",
3945 "dirty",
3946 "writeback",
3947 "swap",
3948 };
3949
3950 /* Universal VM events cgroup1 shows, original sort order */
3951 static const unsigned int memcg1_events[] = {
3952 PGPGIN,
3953 PGPGOUT,
3954 PGFAULT,
3955 PGMAJFAULT,
3956 };
3957
3958 static int memcg_stat_show(struct seq_file *m, void *v)
3959 {
3960 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3961 unsigned long memory, memsw;
3962 struct mem_cgroup *mi;
3963 unsigned int i;
3964
3965 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3966
3967 cgroup_rstat_flush(memcg->css.cgroup);
3968
3969 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3970 unsigned long nr;
3971
3972 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3973 continue;
3974 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
3975 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
3976 }
3977
3978 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3979 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3980 memcg_events_local(memcg, memcg1_events[i]));
3981
3982 for (i = 0; i < NR_LRU_LISTS; i++)
3983 seq_printf(m, "%s %lu\n", lru_list_name(i),
3984 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3985 PAGE_SIZE);
3986
3987 /* Hierarchical information */
3988 memory = memsw = PAGE_COUNTER_MAX;
3989 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3990 memory = min(memory, READ_ONCE(mi->memory.max));
3991 memsw = min(memsw, READ_ONCE(mi->memsw.max));
3992 }
3993 seq_printf(m, "hierarchical_memory_limit %llu\n",
3994 (u64)memory * PAGE_SIZE);
3995 if (do_memsw_account())
3996 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3997 (u64)memsw * PAGE_SIZE);
3998
3999 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4000 unsigned long nr;
4001
4002 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4003 continue;
4004 nr = memcg_page_state(memcg, memcg1_stats[i]);
4005 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4006 (u64)nr * PAGE_SIZE);
4007 }
4008
4009 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4010 seq_printf(m, "total_%s %llu\n",
4011 vm_event_name(memcg1_events[i]),
4012 (u64)memcg_events(memcg, memcg1_events[i]));
4013
4014 for (i = 0; i < NR_LRU_LISTS; i++)
4015 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4016 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4017 PAGE_SIZE);
4018
4019 #ifdef CONFIG_DEBUG_VM
4020 {
4021 pg_data_t *pgdat;
4022 struct mem_cgroup_per_node *mz;
4023 unsigned long anon_cost = 0;
4024 unsigned long file_cost = 0;
4025
4026 for_each_online_pgdat(pgdat) {
4027 mz = memcg->nodeinfo[pgdat->node_id];
4028
4029 anon_cost += mz->lruvec.anon_cost;
4030 file_cost += mz->lruvec.file_cost;
4031 }
4032 seq_printf(m, "anon_cost %lu\n", anon_cost);
4033 seq_printf(m, "file_cost %lu\n", file_cost);
4034 }
4035 #endif
4036
4037 return 0;
4038 }
4039
4040 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4041 struct cftype *cft)
4042 {
4043 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4044
4045 return mem_cgroup_swappiness(memcg);
4046 }
4047
4048 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4049 struct cftype *cft, u64 val)
4050 {
4051 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4052
4053 if (val > 200)
4054 return -EINVAL;
4055
4056 if (!mem_cgroup_is_root(memcg))
4057 memcg->swappiness = val;
4058 else
4059 vm_swappiness = val;
4060
4061 return 0;
4062 }
4063
4064 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4065 {
4066 struct mem_cgroup_threshold_ary *t;
4067 unsigned long usage;
4068 int i;
4069
4070 rcu_read_lock();
4071 if (!swap)
4072 t = rcu_dereference(memcg->thresholds.primary);
4073 else
4074 t = rcu_dereference(memcg->memsw_thresholds.primary);
4075
4076 if (!t)
4077 goto unlock;
4078
4079 usage = mem_cgroup_usage(memcg, swap);
4080
4081 /*
4082 * current_threshold points to threshold just below or equal to usage.
4083 * If it's not true, a threshold was crossed after last
4084 * call of __mem_cgroup_threshold().
4085 */
4086 i = t->current_threshold;
4087
4088 /*
4089 * Iterate backward over array of thresholds starting from
4090 * current_threshold and check if a threshold is crossed.
4091 * If none of thresholds below usage is crossed, we read
4092 * only one element of the array here.
4093 */
4094 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4095 eventfd_signal(t->entries[i].eventfd, 1);
4096
4097 /* i = current_threshold + 1 */
4098 i++;
4099
4100 /*
4101 * Iterate forward over array of thresholds starting from
4102 * current_threshold+1 and check if a threshold is crossed.
4103 * If none of thresholds above usage is crossed, we read
4104 * only one element of the array here.
4105 */
4106 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4107 eventfd_signal(t->entries[i].eventfd, 1);
4108
4109 /* Update current_threshold */
4110 t->current_threshold = i - 1;
4111 unlock:
4112 rcu_read_unlock();
4113 }
4114
4115 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4116 {
4117 while (memcg) {
4118 __mem_cgroup_threshold(memcg, false);
4119 if (do_memsw_account())
4120 __mem_cgroup_threshold(memcg, true);
4121
4122 memcg = parent_mem_cgroup(memcg);
4123 }
4124 }
4125
4126 static int compare_thresholds(const void *a, const void *b)
4127 {
4128 const struct mem_cgroup_threshold *_a = a;
4129 const struct mem_cgroup_threshold *_b = b;
4130
4131 if (_a->threshold > _b->threshold)
4132 return 1;
4133
4134 if (_a->threshold < _b->threshold)
4135 return -1;
4136
4137 return 0;
4138 }
4139
4140 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4141 {
4142 struct mem_cgroup_eventfd_list *ev;
4143
4144 spin_lock(&memcg_oom_lock);
4145
4146 list_for_each_entry(ev, &memcg->oom_notify, list)
4147 eventfd_signal(ev->eventfd, 1);
4148
4149 spin_unlock(&memcg_oom_lock);
4150 return 0;
4151 }
4152
4153 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4154 {
4155 struct mem_cgroup *iter;
4156
4157 for_each_mem_cgroup_tree(iter, memcg)
4158 mem_cgroup_oom_notify_cb(iter);
4159 }
4160
4161 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4162 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4163 {
4164 struct mem_cgroup_thresholds *thresholds;
4165 struct mem_cgroup_threshold_ary *new;
4166 unsigned long threshold;
4167 unsigned long usage;
4168 int i, size, ret;
4169
4170 ret = page_counter_memparse(args, "-1", &threshold);
4171 if (ret)
4172 return ret;
4173
4174 mutex_lock(&memcg->thresholds_lock);
4175
4176 if (type == _MEM) {
4177 thresholds = &memcg->thresholds;
4178 usage = mem_cgroup_usage(memcg, false);
4179 } else if (type == _MEMSWAP) {
4180 thresholds = &memcg->memsw_thresholds;
4181 usage = mem_cgroup_usage(memcg, true);
4182 } else
4183 BUG();
4184
4185 /* Check if a threshold crossed before adding a new one */
4186 if (thresholds->primary)
4187 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4188
4189 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4190
4191 /* Allocate memory for new array of thresholds */
4192 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4193 if (!new) {
4194 ret = -ENOMEM;
4195 goto unlock;
4196 }
4197 new->size = size;
4198
4199 /* Copy thresholds (if any) to new array */
4200 if (thresholds->primary)
4201 memcpy(new->entries, thresholds->primary->entries,
4202 flex_array_size(new, entries, size - 1));
4203
4204 /* Add new threshold */
4205 new->entries[size - 1].eventfd = eventfd;
4206 new->entries[size - 1].threshold = threshold;
4207
4208 /* Sort thresholds. Registering of new threshold isn't time-critical */
4209 sort(new->entries, size, sizeof(*new->entries),
4210 compare_thresholds, NULL);
4211
4212 /* Find current threshold */
4213 new->current_threshold = -1;
4214 for (i = 0; i < size; i++) {
4215 if (new->entries[i].threshold <= usage) {
4216 /*
4217 * new->current_threshold will not be used until
4218 * rcu_assign_pointer(), so it's safe to increment
4219 * it here.
4220 */
4221 ++new->current_threshold;
4222 } else
4223 break;
4224 }
4225
4226 /* Free old spare buffer and save old primary buffer as spare */
4227 kfree(thresholds->spare);
4228 thresholds->spare = thresholds->primary;
4229
4230 rcu_assign_pointer(thresholds->primary, new);
4231
4232 /* To be sure that nobody uses thresholds */
4233 synchronize_rcu();
4234
4235 unlock:
4236 mutex_unlock(&memcg->thresholds_lock);
4237
4238 return ret;
4239 }
4240
4241 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4242 struct eventfd_ctx *eventfd, const char *args)
4243 {
4244 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4245 }
4246
4247 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4248 struct eventfd_ctx *eventfd, const char *args)
4249 {
4250 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4251 }
4252
4253 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4254 struct eventfd_ctx *eventfd, enum res_type type)
4255 {
4256 struct mem_cgroup_thresholds *thresholds;
4257 struct mem_cgroup_threshold_ary *new;
4258 unsigned long usage;
4259 int i, j, size, entries;
4260
4261 mutex_lock(&memcg->thresholds_lock);
4262
4263 if (type == _MEM) {
4264 thresholds = &memcg->thresholds;
4265 usage = mem_cgroup_usage(memcg, false);
4266 } else if (type == _MEMSWAP) {
4267 thresholds = &memcg->memsw_thresholds;
4268 usage = mem_cgroup_usage(memcg, true);
4269 } else
4270 BUG();
4271
4272 if (!thresholds->primary)
4273 goto unlock;
4274
4275 /* Check if a threshold crossed before removing */
4276 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4277
4278 /* Calculate new number of threshold */
4279 size = entries = 0;
4280 for (i = 0; i < thresholds->primary->size; i++) {
4281 if (thresholds->primary->entries[i].eventfd != eventfd)
4282 size++;
4283 else
4284 entries++;
4285 }
4286
4287 new = thresholds->spare;
4288
4289 /* If no items related to eventfd have been cleared, nothing to do */
4290 if (!entries)
4291 goto unlock;
4292
4293 /* Set thresholds array to NULL if we don't have thresholds */
4294 if (!size) {
4295 kfree(new);
4296 new = NULL;
4297 goto swap_buffers;
4298 }
4299
4300 new->size = size;
4301
4302 /* Copy thresholds and find current threshold */
4303 new->current_threshold = -1;
4304 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4305 if (thresholds->primary->entries[i].eventfd == eventfd)
4306 continue;
4307
4308 new->entries[j] = thresholds->primary->entries[i];
4309 if (new->entries[j].threshold <= usage) {
4310 /*
4311 * new->current_threshold will not be used
4312 * until rcu_assign_pointer(), so it's safe to increment
4313 * it here.
4314 */
4315 ++new->current_threshold;
4316 }
4317 j++;
4318 }
4319
4320 swap_buffers:
4321 /* Swap primary and spare array */
4322 thresholds->spare = thresholds->primary;
4323
4324 rcu_assign_pointer(thresholds->primary, new);
4325
4326 /* To be sure that nobody uses thresholds */
4327 synchronize_rcu();
4328
4329 /* If all events are unregistered, free the spare array */
4330 if (!new) {
4331 kfree(thresholds->spare);
4332 thresholds->spare = NULL;
4333 }
4334 unlock:
4335 mutex_unlock(&memcg->thresholds_lock);
4336 }
4337
4338 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4339 struct eventfd_ctx *eventfd)
4340 {
4341 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4342 }
4343
4344 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4345 struct eventfd_ctx *eventfd)
4346 {
4347 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4348 }
4349
4350 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4351 struct eventfd_ctx *eventfd, const char *args)
4352 {
4353 struct mem_cgroup_eventfd_list *event;
4354
4355 event = kmalloc(sizeof(*event), GFP_KERNEL);
4356 if (!event)
4357 return -ENOMEM;
4358
4359 spin_lock(&memcg_oom_lock);
4360
4361 event->eventfd = eventfd;
4362 list_add(&event->list, &memcg->oom_notify);
4363
4364 /* already in OOM ? */
4365 if (memcg->under_oom)
4366 eventfd_signal(eventfd, 1);
4367 spin_unlock(&memcg_oom_lock);
4368
4369 return 0;
4370 }
4371
4372 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4373 struct eventfd_ctx *eventfd)
4374 {
4375 struct mem_cgroup_eventfd_list *ev, *tmp;
4376
4377 spin_lock(&memcg_oom_lock);
4378
4379 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4380 if (ev->eventfd == eventfd) {
4381 list_del(&ev->list);
4382 kfree(ev);
4383 }
4384 }
4385
4386 spin_unlock(&memcg_oom_lock);
4387 }
4388
4389 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4390 {
4391 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4392
4393 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4394 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4395 seq_printf(sf, "oom_kill %lu\n",
4396 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4397 return 0;
4398 }
4399
4400 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4401 struct cftype *cft, u64 val)
4402 {
4403 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4404
4405 /* cannot set to root cgroup and only 0 and 1 are allowed */
4406 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4407 return -EINVAL;
4408
4409 memcg->oom_kill_disable = val;
4410 if (!val)
4411 memcg_oom_recover(memcg);
4412
4413 return 0;
4414 }
4415
4416 #ifdef CONFIG_CGROUP_WRITEBACK
4417
4418 #include <trace/events/writeback.h>
4419
4420 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4421 {
4422 return wb_domain_init(&memcg->cgwb_domain, gfp);
4423 }
4424
4425 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4426 {
4427 wb_domain_exit(&memcg->cgwb_domain);
4428 }
4429
4430 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4431 {
4432 wb_domain_size_changed(&memcg->cgwb_domain);
4433 }
4434
4435 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4436 {
4437 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4438
4439 if (!memcg->css.parent)
4440 return NULL;
4441
4442 return &memcg->cgwb_domain;
4443 }
4444
4445 /**
4446 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4447 * @wb: bdi_writeback in question
4448 * @pfilepages: out parameter for number of file pages
4449 * @pheadroom: out parameter for number of allocatable pages according to memcg
4450 * @pdirty: out parameter for number of dirty pages
4451 * @pwriteback: out parameter for number of pages under writeback
4452 *
4453 * Determine the numbers of file, headroom, dirty, and writeback pages in
4454 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4455 * is a bit more involved.
4456 *
4457 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4458 * headroom is calculated as the lowest headroom of itself and the
4459 * ancestors. Note that this doesn't consider the actual amount of
4460 * available memory in the system. The caller should further cap
4461 * *@pheadroom accordingly.
4462 */
4463 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4464 unsigned long *pheadroom, unsigned long *pdirty,
4465 unsigned long *pwriteback)
4466 {
4467 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4468 struct mem_cgroup *parent;
4469
4470 cgroup_rstat_flush_irqsafe(memcg->css.cgroup);
4471
4472 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4473 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4474 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4475 memcg_page_state(memcg, NR_ACTIVE_FILE);
4476
4477 *pheadroom = PAGE_COUNTER_MAX;
4478 while ((parent = parent_mem_cgroup(memcg))) {
4479 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4480 READ_ONCE(memcg->memory.high));
4481 unsigned long used = page_counter_read(&memcg->memory);
4482
4483 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4484 memcg = parent;
4485 }
4486 }
4487
4488 /*
4489 * Foreign dirty flushing
4490 *
4491 * There's an inherent mismatch between memcg and writeback. The former
4492 * tracks ownership per-page while the latter per-inode. This was a
4493 * deliberate design decision because honoring per-page ownership in the
4494 * writeback path is complicated, may lead to higher CPU and IO overheads
4495 * and deemed unnecessary given that write-sharing an inode across
4496 * different cgroups isn't a common use-case.
4497 *
4498 * Combined with inode majority-writer ownership switching, this works well
4499 * enough in most cases but there are some pathological cases. For
4500 * example, let's say there are two cgroups A and B which keep writing to
4501 * different but confined parts of the same inode. B owns the inode and
4502 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4503 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4504 * triggering background writeback. A will be slowed down without a way to
4505 * make writeback of the dirty pages happen.
4506 *
4507 * Conditions like the above can lead to a cgroup getting repeatedly and
4508 * severely throttled after making some progress after each
4509 * dirty_expire_interval while the underlying IO device is almost
4510 * completely idle.
4511 *
4512 * Solving this problem completely requires matching the ownership tracking
4513 * granularities between memcg and writeback in either direction. However,
4514 * the more egregious behaviors can be avoided by simply remembering the
4515 * most recent foreign dirtying events and initiating remote flushes on
4516 * them when local writeback isn't enough to keep the memory clean enough.
4517 *
4518 * The following two functions implement such mechanism. When a foreign
4519 * page - a page whose memcg and writeback ownerships don't match - is
4520 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4521 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4522 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4523 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4524 * foreign bdi_writebacks which haven't expired. Both the numbers of
4525 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4526 * limited to MEMCG_CGWB_FRN_CNT.
4527 *
4528 * The mechanism only remembers IDs and doesn't hold any object references.
4529 * As being wrong occasionally doesn't matter, updates and accesses to the
4530 * records are lockless and racy.
4531 */
4532 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4533 struct bdi_writeback *wb)
4534 {
4535 struct mem_cgroup *memcg = folio_memcg(folio);
4536 struct memcg_cgwb_frn *frn;
4537 u64 now = get_jiffies_64();
4538 u64 oldest_at = now;
4539 int oldest = -1;
4540 int i;
4541
4542 trace_track_foreign_dirty(folio, wb);
4543
4544 /*
4545 * Pick the slot to use. If there is already a slot for @wb, keep
4546 * using it. If not replace the oldest one which isn't being
4547 * written out.
4548 */
4549 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4550 frn = &memcg->cgwb_frn[i];
4551 if (frn->bdi_id == wb->bdi->id &&
4552 frn->memcg_id == wb->memcg_css->id)
4553 break;
4554 if (time_before64(frn->at, oldest_at) &&
4555 atomic_read(&frn->done.cnt) == 1) {
4556 oldest = i;
4557 oldest_at = frn->at;
4558 }
4559 }
4560
4561 if (i < MEMCG_CGWB_FRN_CNT) {
4562 /*
4563 * Re-using an existing one. Update timestamp lazily to
4564 * avoid making the cacheline hot. We want them to be
4565 * reasonably up-to-date and significantly shorter than
4566 * dirty_expire_interval as that's what expires the record.
4567 * Use the shorter of 1s and dirty_expire_interval / 8.
4568 */
4569 unsigned long update_intv =
4570 min_t(unsigned long, HZ,
4571 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4572
4573 if (time_before64(frn->at, now - update_intv))
4574 frn->at = now;
4575 } else if (oldest >= 0) {
4576 /* replace the oldest free one */
4577 frn = &memcg->cgwb_frn[oldest];
4578 frn->bdi_id = wb->bdi->id;
4579 frn->memcg_id = wb->memcg_css->id;
4580 frn->at = now;
4581 }
4582 }
4583
4584 /* issue foreign writeback flushes for recorded foreign dirtying events */
4585 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4586 {
4587 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4588 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4589 u64 now = jiffies_64;
4590 int i;
4591
4592 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4593 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4594
4595 /*
4596 * If the record is older than dirty_expire_interval,
4597 * writeback on it has already started. No need to kick it
4598 * off again. Also, don't start a new one if there's
4599 * already one in flight.
4600 */
4601 if (time_after64(frn->at, now - intv) &&
4602 atomic_read(&frn->done.cnt) == 1) {
4603 frn->at = 0;
4604 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4605 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4606 WB_REASON_FOREIGN_FLUSH,
4607 &frn->done);
4608 }
4609 }
4610 }
4611
4612 #else /* CONFIG_CGROUP_WRITEBACK */
4613
4614 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4615 {
4616 return 0;
4617 }
4618
4619 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4620 {
4621 }
4622
4623 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4624 {
4625 }
4626
4627 #endif /* CONFIG_CGROUP_WRITEBACK */
4628
4629 /*
4630 * DO NOT USE IN NEW FILES.
4631 *
4632 * "cgroup.event_control" implementation.
4633 *
4634 * This is way over-engineered. It tries to support fully configurable
4635 * events for each user. Such level of flexibility is completely
4636 * unnecessary especially in the light of the planned unified hierarchy.
4637 *
4638 * Please deprecate this and replace with something simpler if at all
4639 * possible.
4640 */
4641
4642 /*
4643 * Unregister event and free resources.
4644 *
4645 * Gets called from workqueue.
4646 */
4647 static void memcg_event_remove(struct work_struct *work)
4648 {
4649 struct mem_cgroup_event *event =
4650 container_of(work, struct mem_cgroup_event, remove);
4651 struct mem_cgroup *memcg = event->memcg;
4652
4653 remove_wait_queue(event->wqh, &event->wait);
4654
4655 event->unregister_event(memcg, event->eventfd);
4656
4657 /* Notify userspace the event is going away. */
4658 eventfd_signal(event->eventfd, 1);
4659
4660 eventfd_ctx_put(event->eventfd);
4661 kfree(event);
4662 css_put(&memcg->css);
4663 }
4664
4665 /*
4666 * Gets called on EPOLLHUP on eventfd when user closes it.
4667 *
4668 * Called with wqh->lock held and interrupts disabled.
4669 */
4670 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4671 int sync, void *key)
4672 {
4673 struct mem_cgroup_event *event =
4674 container_of(wait, struct mem_cgroup_event, wait);
4675 struct mem_cgroup *memcg = event->memcg;
4676 __poll_t flags = key_to_poll(key);
4677
4678 if (flags & EPOLLHUP) {
4679 /*
4680 * If the event has been detached at cgroup removal, we
4681 * can simply return knowing the other side will cleanup
4682 * for us.
4683 *
4684 * We can't race against event freeing since the other
4685 * side will require wqh->lock via remove_wait_queue(),
4686 * which we hold.
4687 */
4688 spin_lock(&memcg->event_list_lock);
4689 if (!list_empty(&event->list)) {
4690 list_del_init(&event->list);
4691 /*
4692 * We are in atomic context, but cgroup_event_remove()
4693 * may sleep, so we have to call it in workqueue.
4694 */
4695 schedule_work(&event->remove);
4696 }
4697 spin_unlock(&memcg->event_list_lock);
4698 }
4699
4700 return 0;
4701 }
4702
4703 static void memcg_event_ptable_queue_proc(struct file *file,
4704 wait_queue_head_t *wqh, poll_table *pt)
4705 {
4706 struct mem_cgroup_event *event =
4707 container_of(pt, struct mem_cgroup_event, pt);
4708
4709 event->wqh = wqh;
4710 add_wait_queue(wqh, &event->wait);
4711 }
4712
4713 /*
4714 * DO NOT USE IN NEW FILES.
4715 *
4716 * Parse input and register new cgroup event handler.
4717 *
4718 * Input must be in format '<event_fd> <control_fd> <args>'.
4719 * Interpretation of args is defined by control file implementation.
4720 */
4721 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4722 char *buf, size_t nbytes, loff_t off)
4723 {
4724 struct cgroup_subsys_state *css = of_css(of);
4725 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4726 struct mem_cgroup_event *event;
4727 struct cgroup_subsys_state *cfile_css;
4728 unsigned int efd, cfd;
4729 struct fd efile;
4730 struct fd cfile;
4731 const char *name;
4732 char *endp;
4733 int ret;
4734
4735 buf = strstrip(buf);
4736
4737 efd = simple_strtoul(buf, &endp, 10);
4738 if (*endp != ' ')
4739 return -EINVAL;
4740 buf = endp + 1;
4741
4742 cfd = simple_strtoul(buf, &endp, 10);
4743 if ((*endp != ' ') && (*endp != '\0'))
4744 return -EINVAL;
4745 buf = endp + 1;
4746
4747 event = kzalloc(sizeof(*event), GFP_KERNEL);
4748 if (!event)
4749 return -ENOMEM;
4750
4751 event->memcg = memcg;
4752 INIT_LIST_HEAD(&event->list);
4753 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4754 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4755 INIT_WORK(&event->remove, memcg_event_remove);
4756
4757 efile = fdget(efd);
4758 if (!efile.file) {
4759 ret = -EBADF;
4760 goto out_kfree;
4761 }
4762
4763 event->eventfd = eventfd_ctx_fileget(efile.file);
4764 if (IS_ERR(event->eventfd)) {
4765 ret = PTR_ERR(event->eventfd);
4766 goto out_put_efile;
4767 }
4768
4769 cfile = fdget(cfd);
4770 if (!cfile.file) {
4771 ret = -EBADF;
4772 goto out_put_eventfd;
4773 }
4774
4775 /* the process need read permission on control file */
4776 /* AV: shouldn't we check that it's been opened for read instead? */
4777 ret = file_permission(cfile.file, MAY_READ);
4778 if (ret < 0)
4779 goto out_put_cfile;
4780
4781 /*
4782 * Determine the event callbacks and set them in @event. This used
4783 * to be done via struct cftype but cgroup core no longer knows
4784 * about these events. The following is crude but the whole thing
4785 * is for compatibility anyway.
4786 *
4787 * DO NOT ADD NEW FILES.
4788 */
4789 name = cfile.file->f_path.dentry->d_name.name;
4790
4791 if (!strcmp(name, "memory.usage_in_bytes")) {
4792 event->register_event = mem_cgroup_usage_register_event;
4793 event->unregister_event = mem_cgroup_usage_unregister_event;
4794 } else if (!strcmp(name, "memory.oom_control")) {
4795 event->register_event = mem_cgroup_oom_register_event;
4796 event->unregister_event = mem_cgroup_oom_unregister_event;
4797 } else if (!strcmp(name, "memory.pressure_level")) {
4798 event->register_event = vmpressure_register_event;
4799 event->unregister_event = vmpressure_unregister_event;
4800 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4801 event->register_event = memsw_cgroup_usage_register_event;
4802 event->unregister_event = memsw_cgroup_usage_unregister_event;
4803 } else {
4804 ret = -EINVAL;
4805 goto out_put_cfile;
4806 }
4807
4808 /*
4809 * Verify @cfile should belong to @css. Also, remaining events are
4810 * automatically removed on cgroup destruction but the removal is
4811 * asynchronous, so take an extra ref on @css.
4812 */
4813 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4814 &memory_cgrp_subsys);
4815 ret = -EINVAL;
4816 if (IS_ERR(cfile_css))
4817 goto out_put_cfile;
4818 if (cfile_css != css) {
4819 css_put(cfile_css);
4820 goto out_put_cfile;
4821 }
4822
4823 ret = event->register_event(memcg, event->eventfd, buf);
4824 if (ret)
4825 goto out_put_css;
4826
4827 vfs_poll(efile.file, &event->pt);
4828
4829 spin_lock_irq(&memcg->event_list_lock);
4830 list_add(&event->list, &memcg->event_list);
4831 spin_unlock_irq(&memcg->event_list_lock);
4832
4833 fdput(cfile);
4834 fdput(efile);
4835
4836 return nbytes;
4837
4838 out_put_css:
4839 css_put(css);
4840 out_put_cfile:
4841 fdput(cfile);
4842 out_put_eventfd:
4843 eventfd_ctx_put(event->eventfd);
4844 out_put_efile:
4845 fdput(efile);
4846 out_kfree:
4847 kfree(event);
4848
4849 return ret;
4850 }
4851
4852 static struct cftype mem_cgroup_legacy_files[] = {
4853 {
4854 .name = "usage_in_bytes",
4855 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4856 .read_u64 = mem_cgroup_read_u64,
4857 },
4858 {
4859 .name = "max_usage_in_bytes",
4860 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4861 .write = mem_cgroup_reset,
4862 .read_u64 = mem_cgroup_read_u64,
4863 },
4864 {
4865 .name = "limit_in_bytes",
4866 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4867 .write = mem_cgroup_write,
4868 .read_u64 = mem_cgroup_read_u64,
4869 },
4870 {
4871 .name = "soft_limit_in_bytes",
4872 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4873 .write = mem_cgroup_write,
4874 .read_u64 = mem_cgroup_read_u64,
4875 },
4876 {
4877 .name = "failcnt",
4878 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4879 .write = mem_cgroup_reset,
4880 .read_u64 = mem_cgroup_read_u64,
4881 },
4882 {
4883 .name = "stat",
4884 .seq_show = memcg_stat_show,
4885 },
4886 {
4887 .name = "force_empty",
4888 .write = mem_cgroup_force_empty_write,
4889 },
4890 {
4891 .name = "use_hierarchy",
4892 .write_u64 = mem_cgroup_hierarchy_write,
4893 .read_u64 = mem_cgroup_hierarchy_read,
4894 },
4895 {
4896 .name = "cgroup.event_control", /* XXX: for compat */
4897 .write = memcg_write_event_control,
4898 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4899 },
4900 {
4901 .name = "swappiness",
4902 .read_u64 = mem_cgroup_swappiness_read,
4903 .write_u64 = mem_cgroup_swappiness_write,
4904 },
4905 {
4906 .name = "move_charge_at_immigrate",
4907 .read_u64 = mem_cgroup_move_charge_read,
4908 .write_u64 = mem_cgroup_move_charge_write,
4909 },
4910 {
4911 .name = "oom_control",
4912 .seq_show = mem_cgroup_oom_control_read,
4913 .write_u64 = mem_cgroup_oom_control_write,
4914 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4915 },
4916 {
4917 .name = "pressure_level",
4918 },
4919 #ifdef CONFIG_NUMA
4920 {
4921 .name = "numa_stat",
4922 .seq_show = memcg_numa_stat_show,
4923 },
4924 #endif
4925 {
4926 .name = "kmem.limit_in_bytes",
4927 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4928 .write = mem_cgroup_write,
4929 .read_u64 = mem_cgroup_read_u64,
4930 },
4931 {
4932 .name = "kmem.usage_in_bytes",
4933 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4934 .read_u64 = mem_cgroup_read_u64,
4935 },
4936 {
4937 .name = "kmem.failcnt",
4938 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4939 .write = mem_cgroup_reset,
4940 .read_u64 = mem_cgroup_read_u64,
4941 },
4942 {
4943 .name = "kmem.max_usage_in_bytes",
4944 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4945 .write = mem_cgroup_reset,
4946 .read_u64 = mem_cgroup_read_u64,
4947 },
4948 #if defined(CONFIG_MEMCG_KMEM) && \
4949 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
4950 {
4951 .name = "kmem.slabinfo",
4952 .seq_show = memcg_slab_show,
4953 },
4954 #endif
4955 {
4956 .name = "kmem.tcp.limit_in_bytes",
4957 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4958 .write = mem_cgroup_write,
4959 .read_u64 = mem_cgroup_read_u64,
4960 },
4961 {
4962 .name = "kmem.tcp.usage_in_bytes",
4963 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4964 .read_u64 = mem_cgroup_read_u64,
4965 },
4966 {
4967 .name = "kmem.tcp.failcnt",
4968 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4969 .write = mem_cgroup_reset,
4970 .read_u64 = mem_cgroup_read_u64,
4971 },
4972 {
4973 .name = "kmem.tcp.max_usage_in_bytes",
4974 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4975 .write = mem_cgroup_reset,
4976 .read_u64 = mem_cgroup_read_u64,
4977 },
4978 { }, /* terminate */
4979 };
4980
4981 /*
4982 * Private memory cgroup IDR
4983 *
4984 * Swap-out records and page cache shadow entries need to store memcg
4985 * references in constrained space, so we maintain an ID space that is
4986 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4987 * memory-controlled cgroups to 64k.
4988 *
4989 * However, there usually are many references to the offline CSS after
4990 * the cgroup has been destroyed, such as page cache or reclaimable
4991 * slab objects, that don't need to hang on to the ID. We want to keep
4992 * those dead CSS from occupying IDs, or we might quickly exhaust the
4993 * relatively small ID space and prevent the creation of new cgroups
4994 * even when there are much fewer than 64k cgroups - possibly none.
4995 *
4996 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4997 * be freed and recycled when it's no longer needed, which is usually
4998 * when the CSS is offlined.
4999 *
5000 * The only exception to that are records of swapped out tmpfs/shmem
5001 * pages that need to be attributed to live ancestors on swapin. But
5002 * those references are manageable from userspace.
5003 */
5004
5005 static DEFINE_IDR(mem_cgroup_idr);
5006
5007 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5008 {
5009 if (memcg->id.id > 0) {
5010 idr_remove(&mem_cgroup_idr, memcg->id.id);
5011 memcg->id.id = 0;
5012 }
5013 }
5014
5015 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5016 unsigned int n)
5017 {
5018 refcount_add(n, &memcg->id.ref);
5019 }
5020
5021 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5022 {
5023 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5024 mem_cgroup_id_remove(memcg);
5025
5026 /* Memcg ID pins CSS */
5027 css_put(&memcg->css);
5028 }
5029 }
5030
5031 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5032 {
5033 mem_cgroup_id_put_many(memcg, 1);
5034 }
5035
5036 /**
5037 * mem_cgroup_from_id - look up a memcg from a memcg id
5038 * @id: the memcg id to look up
5039 *
5040 * Caller must hold rcu_read_lock().
5041 */
5042 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5043 {
5044 WARN_ON_ONCE(!rcu_read_lock_held());
5045 return idr_find(&mem_cgroup_idr, id);
5046 }
5047
5048 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5049 {
5050 struct mem_cgroup_per_node *pn;
5051 int tmp = node;
5052 /*
5053 * This routine is called against possible nodes.
5054 * But it's BUG to call kmalloc() against offline node.
5055 *
5056 * TODO: this routine can waste much memory for nodes which will
5057 * never be onlined. It's better to use memory hotplug callback
5058 * function.
5059 */
5060 if (!node_state(node, N_NORMAL_MEMORY))
5061 tmp = -1;
5062 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5063 if (!pn)
5064 return 1;
5065
5066 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5067 GFP_KERNEL_ACCOUNT);
5068 if (!pn->lruvec_stats_percpu) {
5069 kfree(pn);
5070 return 1;
5071 }
5072
5073 lruvec_init(&pn->lruvec);
5074 pn->usage_in_excess = 0;
5075 pn->on_tree = false;
5076 pn->memcg = memcg;
5077
5078 memcg->nodeinfo[node] = pn;
5079 return 0;
5080 }
5081
5082 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5083 {
5084 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5085
5086 if (!pn)
5087 return;
5088
5089 free_percpu(pn->lruvec_stats_percpu);
5090 kfree(pn);
5091 }
5092
5093 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5094 {
5095 int node;
5096
5097 for_each_node(node)
5098 free_mem_cgroup_per_node_info(memcg, node);
5099 free_percpu(memcg->vmstats_percpu);
5100 kfree(memcg);
5101 }
5102
5103 static void mem_cgroup_free(struct mem_cgroup *memcg)
5104 {
5105 memcg_wb_domain_exit(memcg);
5106 __mem_cgroup_free(memcg);
5107 }
5108
5109 static struct mem_cgroup *mem_cgroup_alloc(void)
5110 {
5111 struct mem_cgroup *memcg;
5112 unsigned int size;
5113 int node;
5114 int __maybe_unused i;
5115 long error = -ENOMEM;
5116
5117 size = sizeof(struct mem_cgroup);
5118 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5119
5120 memcg = kzalloc(size, GFP_KERNEL);
5121 if (!memcg)
5122 return ERR_PTR(error);
5123
5124 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5125 1, MEM_CGROUP_ID_MAX,
5126 GFP_KERNEL);
5127 if (memcg->id.id < 0) {
5128 error = memcg->id.id;
5129 goto fail;
5130 }
5131
5132 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5133 GFP_KERNEL_ACCOUNT);
5134 if (!memcg->vmstats_percpu)
5135 goto fail;
5136
5137 for_each_node(node)
5138 if (alloc_mem_cgroup_per_node_info(memcg, node))
5139 goto fail;
5140
5141 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5142 goto fail;
5143
5144 INIT_WORK(&memcg->high_work, high_work_func);
5145 INIT_LIST_HEAD(&memcg->oom_notify);
5146 mutex_init(&memcg->thresholds_lock);
5147 spin_lock_init(&memcg->move_lock);
5148 vmpressure_init(&memcg->vmpressure);
5149 INIT_LIST_HEAD(&memcg->event_list);
5150 spin_lock_init(&memcg->event_list_lock);
5151 memcg->socket_pressure = jiffies;
5152 #ifdef CONFIG_MEMCG_KMEM
5153 memcg->kmemcg_id = -1;
5154 INIT_LIST_HEAD(&memcg->objcg_list);
5155 #endif
5156 #ifdef CONFIG_CGROUP_WRITEBACK
5157 INIT_LIST_HEAD(&memcg->cgwb_list);
5158 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5159 memcg->cgwb_frn[i].done =
5160 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5161 #endif
5162 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5163 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5164 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5165 memcg->deferred_split_queue.split_queue_len = 0;
5166 #endif
5167 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5168 return memcg;
5169 fail:
5170 mem_cgroup_id_remove(memcg);
5171 __mem_cgroup_free(memcg);
5172 return ERR_PTR(error);
5173 }
5174
5175 static struct cgroup_subsys_state * __ref
5176 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5177 {
5178 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5179 struct mem_cgroup *memcg, *old_memcg;
5180 long error = -ENOMEM;
5181
5182 old_memcg = set_active_memcg(parent);
5183 memcg = mem_cgroup_alloc();
5184 set_active_memcg(old_memcg);
5185 if (IS_ERR(memcg))
5186 return ERR_CAST(memcg);
5187
5188 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5189 memcg->soft_limit = PAGE_COUNTER_MAX;
5190 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5191 if (parent) {
5192 memcg->swappiness = mem_cgroup_swappiness(parent);
5193 memcg->oom_kill_disable = parent->oom_kill_disable;
5194
5195 page_counter_init(&memcg->memory, &parent->memory);
5196 page_counter_init(&memcg->swap, &parent->swap);
5197 page_counter_init(&memcg->kmem, &parent->kmem);
5198 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5199 } else {
5200 page_counter_init(&memcg->memory, NULL);
5201 page_counter_init(&memcg->swap, NULL);
5202 page_counter_init(&memcg->kmem, NULL);
5203 page_counter_init(&memcg->tcpmem, NULL);
5204
5205 root_mem_cgroup = memcg;
5206 return &memcg->css;
5207 }
5208
5209 /* The following stuff does not apply to the root */
5210 error = memcg_online_kmem(memcg);
5211 if (error)
5212 goto fail;
5213
5214 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5215 static_branch_inc(&memcg_sockets_enabled_key);
5216
5217 return &memcg->css;
5218 fail:
5219 mem_cgroup_id_remove(memcg);
5220 mem_cgroup_free(memcg);
5221 return ERR_PTR(error);
5222 }
5223
5224 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5225 {
5226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5227
5228 /*
5229 * A memcg must be visible for expand_shrinker_info()
5230 * by the time the maps are allocated. So, we allocate maps
5231 * here, when for_each_mem_cgroup() can't skip it.
5232 */
5233 if (alloc_shrinker_info(memcg)) {
5234 mem_cgroup_id_remove(memcg);
5235 return -ENOMEM;
5236 }
5237
5238 /* Online state pins memcg ID, memcg ID pins CSS */
5239 refcount_set(&memcg->id.ref, 1);
5240 css_get(css);
5241
5242 if (unlikely(mem_cgroup_is_root(memcg)))
5243 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5244 2UL*HZ);
5245 return 0;
5246 }
5247
5248 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5249 {
5250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5251 struct mem_cgroup_event *event, *tmp;
5252
5253 /*
5254 * Unregister events and notify userspace.
5255 * Notify userspace about cgroup removing only after rmdir of cgroup
5256 * directory to avoid race between userspace and kernelspace.
5257 */
5258 spin_lock_irq(&memcg->event_list_lock);
5259 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5260 list_del_init(&event->list);
5261 schedule_work(&event->remove);
5262 }
5263 spin_unlock_irq(&memcg->event_list_lock);
5264
5265 page_counter_set_min(&memcg->memory, 0);
5266 page_counter_set_low(&memcg->memory, 0);
5267
5268 memcg_offline_kmem(memcg);
5269 reparent_shrinker_deferred(memcg);
5270 wb_memcg_offline(memcg);
5271
5272 drain_all_stock(memcg);
5273
5274 mem_cgroup_id_put(memcg);
5275 }
5276
5277 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5278 {
5279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5280
5281 invalidate_reclaim_iterators(memcg);
5282 }
5283
5284 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5285 {
5286 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5287 int __maybe_unused i;
5288
5289 #ifdef CONFIG_CGROUP_WRITEBACK
5290 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5291 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5292 #endif
5293 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5294 static_branch_dec(&memcg_sockets_enabled_key);
5295
5296 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5297 static_branch_dec(&memcg_sockets_enabled_key);
5298
5299 vmpressure_cleanup(&memcg->vmpressure);
5300 cancel_work_sync(&memcg->high_work);
5301 mem_cgroup_remove_from_trees(memcg);
5302 free_shrinker_info(memcg);
5303 memcg_free_kmem(memcg);
5304 mem_cgroup_free(memcg);
5305 }
5306
5307 /**
5308 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5309 * @css: the target css
5310 *
5311 * Reset the states of the mem_cgroup associated with @css. This is
5312 * invoked when the userland requests disabling on the default hierarchy
5313 * but the memcg is pinned through dependency. The memcg should stop
5314 * applying policies and should revert to the vanilla state as it may be
5315 * made visible again.
5316 *
5317 * The current implementation only resets the essential configurations.
5318 * This needs to be expanded to cover all the visible parts.
5319 */
5320 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5321 {
5322 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5323
5324 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5325 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5326 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5327 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5328 page_counter_set_min(&memcg->memory, 0);
5329 page_counter_set_low(&memcg->memory, 0);
5330 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5331 memcg->soft_limit = PAGE_COUNTER_MAX;
5332 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5333 memcg_wb_domain_size_changed(memcg);
5334 }
5335
5336 void mem_cgroup_flush_stats(void)
5337 {
5338 if (!spin_trylock(&stats_flush_lock))
5339 return;
5340
5341 cgroup_rstat_flush_irqsafe(root_mem_cgroup->css.cgroup);
5342 spin_unlock(&stats_flush_lock);
5343 }
5344
5345 static void flush_memcg_stats_dwork(struct work_struct *w)
5346 {
5347 mem_cgroup_flush_stats();
5348 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, 2UL*HZ);
5349 }
5350
5351 static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5352 {
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5354 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5355 struct memcg_vmstats_percpu *statc;
5356 long delta, v;
5357 int i, nid;
5358
5359 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5360
5361 for (i = 0; i < MEMCG_NR_STAT; i++) {
5362 /*
5363 * Collect the aggregated propagation counts of groups
5364 * below us. We're in a per-cpu loop here and this is
5365 * a global counter, so the first cycle will get them.
5366 */
5367 delta = memcg->vmstats.state_pending[i];
5368 if (delta)
5369 memcg->vmstats.state_pending[i] = 0;
5370
5371 /* Add CPU changes on this level since the last flush */
5372 v = READ_ONCE(statc->state[i]);
5373 if (v != statc->state_prev[i]) {
5374 delta += v - statc->state_prev[i];
5375 statc->state_prev[i] = v;
5376 }
5377
5378 if (!delta)
5379 continue;
5380
5381 /* Aggregate counts on this level and propagate upwards */
5382 memcg->vmstats.state[i] += delta;
5383 if (parent)
5384 parent->vmstats.state_pending[i] += delta;
5385 }
5386
5387 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
5388 delta = memcg->vmstats.events_pending[i];
5389 if (delta)
5390 memcg->vmstats.events_pending[i] = 0;
5391
5392 v = READ_ONCE(statc->events[i]);
5393 if (v != statc->events_prev[i]) {
5394 delta += v - statc->events_prev[i];
5395 statc->events_prev[i] = v;
5396 }
5397
5398 if (!delta)
5399 continue;
5400
5401 memcg->vmstats.events[i] += delta;
5402 if (parent)
5403 parent->vmstats.events_pending[i] += delta;
5404 }
5405
5406 for_each_node_state(nid, N_MEMORY) {
5407 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5408 struct mem_cgroup_per_node *ppn = NULL;
5409 struct lruvec_stats_percpu *lstatc;
5410
5411 if (parent)
5412 ppn = parent->nodeinfo[nid];
5413
5414 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5415
5416 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5417 delta = pn->lruvec_stats.state_pending[i];
5418 if (delta)
5419 pn->lruvec_stats.state_pending[i] = 0;
5420
5421 v = READ_ONCE(lstatc->state[i]);
5422 if (v != lstatc->state_prev[i]) {
5423 delta += v - lstatc->state_prev[i];
5424 lstatc->state_prev[i] = v;
5425 }
5426
5427 if (!delta)
5428 continue;
5429
5430 pn->lruvec_stats.state[i] += delta;
5431 if (ppn)
5432 ppn->lruvec_stats.state_pending[i] += delta;
5433 }
5434 }
5435 }
5436
5437 #ifdef CONFIG_MMU
5438 /* Handlers for move charge at task migration. */
5439 static int mem_cgroup_do_precharge(unsigned long count)
5440 {
5441 int ret;
5442
5443 /* Try a single bulk charge without reclaim first, kswapd may wake */
5444 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5445 if (!ret) {
5446 mc.precharge += count;
5447 return ret;
5448 }
5449
5450 /* Try charges one by one with reclaim, but do not retry */
5451 while (count--) {
5452 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5453 if (ret)
5454 return ret;
5455 mc.precharge++;
5456 cond_resched();
5457 }
5458 return 0;
5459 }
5460
5461 union mc_target {
5462 struct page *page;
5463 swp_entry_t ent;
5464 };
5465
5466 enum mc_target_type {
5467 MC_TARGET_NONE = 0,
5468 MC_TARGET_PAGE,
5469 MC_TARGET_SWAP,
5470 MC_TARGET_DEVICE,
5471 };
5472
5473 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5474 unsigned long addr, pte_t ptent)
5475 {
5476 struct page *page = vm_normal_page(vma, addr, ptent);
5477
5478 if (!page || !page_mapped(page))
5479 return NULL;
5480 if (PageAnon(page)) {
5481 if (!(mc.flags & MOVE_ANON))
5482 return NULL;
5483 } else {
5484 if (!(mc.flags & MOVE_FILE))
5485 return NULL;
5486 }
5487 if (!get_page_unless_zero(page))
5488 return NULL;
5489
5490 return page;
5491 }
5492
5493 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5494 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5495 pte_t ptent, swp_entry_t *entry)
5496 {
5497 struct page *page = NULL;
5498 swp_entry_t ent = pte_to_swp_entry(ptent);
5499
5500 if (!(mc.flags & MOVE_ANON))
5501 return NULL;
5502
5503 /*
5504 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5505 * a device and because they are not accessible by CPU they are store
5506 * as special swap entry in the CPU page table.
5507 */
5508 if (is_device_private_entry(ent)) {
5509 page = pfn_swap_entry_to_page(ent);
5510 /*
5511 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5512 * a refcount of 1 when free (unlike normal page)
5513 */
5514 if (!page_ref_add_unless(page, 1, 1))
5515 return NULL;
5516 return page;
5517 }
5518
5519 if (non_swap_entry(ent))
5520 return NULL;
5521
5522 /*
5523 * Because lookup_swap_cache() updates some statistics counter,
5524 * we call find_get_page() with swapper_space directly.
5525 */
5526 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5527 entry->val = ent.val;
5528
5529 return page;
5530 }
5531 #else
5532 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5533 pte_t ptent, swp_entry_t *entry)
5534 {
5535 return NULL;
5536 }
5537 #endif
5538
5539 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5540 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5541 {
5542 if (!vma->vm_file) /* anonymous vma */
5543 return NULL;
5544 if (!(mc.flags & MOVE_FILE))
5545 return NULL;
5546
5547 /* page is moved even if it's not RSS of this task(page-faulted). */
5548 /* shmem/tmpfs may report page out on swap: account for that too. */
5549 return find_get_incore_page(vma->vm_file->f_mapping,
5550 linear_page_index(vma, addr));
5551 }
5552
5553 /**
5554 * mem_cgroup_move_account - move account of the page
5555 * @page: the page
5556 * @compound: charge the page as compound or small page
5557 * @from: mem_cgroup which the page is moved from.
5558 * @to: mem_cgroup which the page is moved to. @from != @to.
5559 *
5560 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5561 *
5562 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5563 * from old cgroup.
5564 */
5565 static int mem_cgroup_move_account(struct page *page,
5566 bool compound,
5567 struct mem_cgroup *from,
5568 struct mem_cgroup *to)
5569 {
5570 struct lruvec *from_vec, *to_vec;
5571 struct pglist_data *pgdat;
5572 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5573 int nid, ret;
5574
5575 VM_BUG_ON(from == to);
5576 VM_BUG_ON_PAGE(PageLRU(page), page);
5577 VM_BUG_ON(compound && !PageTransHuge(page));
5578
5579 /*
5580 * Prevent mem_cgroup_migrate() from looking at
5581 * page's memory cgroup of its source page while we change it.
5582 */
5583 ret = -EBUSY;
5584 if (!trylock_page(page))
5585 goto out;
5586
5587 ret = -EINVAL;
5588 if (page_memcg(page) != from)
5589 goto out_unlock;
5590
5591 pgdat = page_pgdat(page);
5592 from_vec = mem_cgroup_lruvec(from, pgdat);
5593 to_vec = mem_cgroup_lruvec(to, pgdat);
5594
5595 lock_page_memcg(page);
5596
5597 if (PageAnon(page)) {
5598 if (page_mapped(page)) {
5599 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5600 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5601 if (PageTransHuge(page)) {
5602 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5603 -nr_pages);
5604 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5605 nr_pages);
5606 }
5607 }
5608 } else {
5609 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5610 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5611
5612 if (PageSwapBacked(page)) {
5613 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5614 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5615 }
5616
5617 if (page_mapped(page)) {
5618 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5619 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5620 }
5621
5622 if (PageDirty(page)) {
5623 struct address_space *mapping = page_mapping(page);
5624
5625 if (mapping_can_writeback(mapping)) {
5626 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5627 -nr_pages);
5628 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5629 nr_pages);
5630 }
5631 }
5632 }
5633
5634 if (PageWriteback(page)) {
5635 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5636 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5637 }
5638
5639 /*
5640 * All state has been migrated, let's switch to the new memcg.
5641 *
5642 * It is safe to change page's memcg here because the page
5643 * is referenced, charged, isolated, and locked: we can't race
5644 * with (un)charging, migration, LRU putback, or anything else
5645 * that would rely on a stable page's memory cgroup.
5646 *
5647 * Note that lock_page_memcg is a memcg lock, not a page lock,
5648 * to save space. As soon as we switch page's memory cgroup to a
5649 * new memcg that isn't locked, the above state can change
5650 * concurrently again. Make sure we're truly done with it.
5651 */
5652 smp_mb();
5653
5654 css_get(&to->css);
5655 css_put(&from->css);
5656
5657 page->memcg_data = (unsigned long)to;
5658
5659 __folio_memcg_unlock(from);
5660
5661 ret = 0;
5662 nid = page_to_nid(page);
5663
5664 local_irq_disable();
5665 mem_cgroup_charge_statistics(to, nr_pages);
5666 memcg_check_events(to, nid);
5667 mem_cgroup_charge_statistics(from, -nr_pages);
5668 memcg_check_events(from, nid);
5669 local_irq_enable();
5670 out_unlock:
5671 unlock_page(page);
5672 out:
5673 return ret;
5674 }
5675
5676 /**
5677 * get_mctgt_type - get target type of moving charge
5678 * @vma: the vma the pte to be checked belongs
5679 * @addr: the address corresponding to the pte to be checked
5680 * @ptent: the pte to be checked
5681 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5682 *
5683 * Returns
5684 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5685 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5686 * move charge. if @target is not NULL, the page is stored in target->page
5687 * with extra refcnt got(Callers should handle it).
5688 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5689 * target for charge migration. if @target is not NULL, the entry is stored
5690 * in target->ent.
5691 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5692 * (so ZONE_DEVICE page and thus not on the lru).
5693 * For now we such page is charge like a regular page would be as for all
5694 * intent and purposes it is just special memory taking the place of a
5695 * regular page.
5696 *
5697 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5698 *
5699 * Called with pte lock held.
5700 */
5701
5702 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5703 unsigned long addr, pte_t ptent, union mc_target *target)
5704 {
5705 struct page *page = NULL;
5706 enum mc_target_type ret = MC_TARGET_NONE;
5707 swp_entry_t ent = { .val = 0 };
5708
5709 if (pte_present(ptent))
5710 page = mc_handle_present_pte(vma, addr, ptent);
5711 else if (is_swap_pte(ptent))
5712 page = mc_handle_swap_pte(vma, ptent, &ent);
5713 else if (pte_none(ptent))
5714 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5715
5716 if (!page && !ent.val)
5717 return ret;
5718 if (page) {
5719 /*
5720 * Do only loose check w/o serialization.
5721 * mem_cgroup_move_account() checks the page is valid or
5722 * not under LRU exclusion.
5723 */
5724 if (page_memcg(page) == mc.from) {
5725 ret = MC_TARGET_PAGE;
5726 if (is_device_private_page(page))
5727 ret = MC_TARGET_DEVICE;
5728 if (target)
5729 target->page = page;
5730 }
5731 if (!ret || !target)
5732 put_page(page);
5733 }
5734 /*
5735 * There is a swap entry and a page doesn't exist or isn't charged.
5736 * But we cannot move a tail-page in a THP.
5737 */
5738 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5739 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5740 ret = MC_TARGET_SWAP;
5741 if (target)
5742 target->ent = ent;
5743 }
5744 return ret;
5745 }
5746
5747 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5748 /*
5749 * We don't consider PMD mapped swapping or file mapped pages because THP does
5750 * not support them for now.
5751 * Caller should make sure that pmd_trans_huge(pmd) is true.
5752 */
5753 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5754 unsigned long addr, pmd_t pmd, union mc_target *target)
5755 {
5756 struct page *page = NULL;
5757 enum mc_target_type ret = MC_TARGET_NONE;
5758
5759 if (unlikely(is_swap_pmd(pmd))) {
5760 VM_BUG_ON(thp_migration_supported() &&
5761 !is_pmd_migration_entry(pmd));
5762 return ret;
5763 }
5764 page = pmd_page(pmd);
5765 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5766 if (!(mc.flags & MOVE_ANON))
5767 return ret;
5768 if (page_memcg(page) == mc.from) {
5769 ret = MC_TARGET_PAGE;
5770 if (target) {
5771 get_page(page);
5772 target->page = page;
5773 }
5774 }
5775 return ret;
5776 }
5777 #else
5778 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5779 unsigned long addr, pmd_t pmd, union mc_target *target)
5780 {
5781 return MC_TARGET_NONE;
5782 }
5783 #endif
5784
5785 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5786 unsigned long addr, unsigned long end,
5787 struct mm_walk *walk)
5788 {
5789 struct vm_area_struct *vma = walk->vma;
5790 pte_t *pte;
5791 spinlock_t *ptl;
5792
5793 ptl = pmd_trans_huge_lock(pmd, vma);
5794 if (ptl) {
5795 /*
5796 * Note their can not be MC_TARGET_DEVICE for now as we do not
5797 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5798 * this might change.
5799 */
5800 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5801 mc.precharge += HPAGE_PMD_NR;
5802 spin_unlock(ptl);
5803 return 0;
5804 }
5805
5806 if (pmd_trans_unstable(pmd))
5807 return 0;
5808 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5809 for (; addr != end; pte++, addr += PAGE_SIZE)
5810 if (get_mctgt_type(vma, addr, *pte, NULL))
5811 mc.precharge++; /* increment precharge temporarily */
5812 pte_unmap_unlock(pte - 1, ptl);
5813 cond_resched();
5814
5815 return 0;
5816 }
5817
5818 static const struct mm_walk_ops precharge_walk_ops = {
5819 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5820 };
5821
5822 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5823 {
5824 unsigned long precharge;
5825
5826 mmap_read_lock(mm);
5827 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5828 mmap_read_unlock(mm);
5829
5830 precharge = mc.precharge;
5831 mc.precharge = 0;
5832
5833 return precharge;
5834 }
5835
5836 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5837 {
5838 unsigned long precharge = mem_cgroup_count_precharge(mm);
5839
5840 VM_BUG_ON(mc.moving_task);
5841 mc.moving_task = current;
5842 return mem_cgroup_do_precharge(precharge);
5843 }
5844
5845 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5846 static void __mem_cgroup_clear_mc(void)
5847 {
5848 struct mem_cgroup *from = mc.from;
5849 struct mem_cgroup *to = mc.to;
5850
5851 /* we must uncharge all the leftover precharges from mc.to */
5852 if (mc.precharge) {
5853 cancel_charge(mc.to, mc.precharge);
5854 mc.precharge = 0;
5855 }
5856 /*
5857 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5858 * we must uncharge here.
5859 */
5860 if (mc.moved_charge) {
5861 cancel_charge(mc.from, mc.moved_charge);
5862 mc.moved_charge = 0;
5863 }
5864 /* we must fixup refcnts and charges */
5865 if (mc.moved_swap) {
5866 /* uncharge swap account from the old cgroup */
5867 if (!mem_cgroup_is_root(mc.from))
5868 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5869
5870 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5871
5872 /*
5873 * we charged both to->memory and to->memsw, so we
5874 * should uncharge to->memory.
5875 */
5876 if (!mem_cgroup_is_root(mc.to))
5877 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5878
5879 mc.moved_swap = 0;
5880 }
5881 memcg_oom_recover(from);
5882 memcg_oom_recover(to);
5883 wake_up_all(&mc.waitq);
5884 }
5885
5886 static void mem_cgroup_clear_mc(void)
5887 {
5888 struct mm_struct *mm = mc.mm;
5889
5890 /*
5891 * we must clear moving_task before waking up waiters at the end of
5892 * task migration.
5893 */
5894 mc.moving_task = NULL;
5895 __mem_cgroup_clear_mc();
5896 spin_lock(&mc.lock);
5897 mc.from = NULL;
5898 mc.to = NULL;
5899 mc.mm = NULL;
5900 spin_unlock(&mc.lock);
5901
5902 mmput(mm);
5903 }
5904
5905 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5906 {
5907 struct cgroup_subsys_state *css;
5908 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5909 struct mem_cgroup *from;
5910 struct task_struct *leader, *p;
5911 struct mm_struct *mm;
5912 unsigned long move_flags;
5913 int ret = 0;
5914
5915 /* charge immigration isn't supported on the default hierarchy */
5916 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5917 return 0;
5918
5919 /*
5920 * Multi-process migrations only happen on the default hierarchy
5921 * where charge immigration is not used. Perform charge
5922 * immigration if @tset contains a leader and whine if there are
5923 * multiple.
5924 */
5925 p = NULL;
5926 cgroup_taskset_for_each_leader(leader, css, tset) {
5927 WARN_ON_ONCE(p);
5928 p = leader;
5929 memcg = mem_cgroup_from_css(css);
5930 }
5931 if (!p)
5932 return 0;
5933
5934 /*
5935 * We are now committed to this value whatever it is. Changes in this
5936 * tunable will only affect upcoming migrations, not the current one.
5937 * So we need to save it, and keep it going.
5938 */
5939 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5940 if (!move_flags)
5941 return 0;
5942
5943 from = mem_cgroup_from_task(p);
5944
5945 VM_BUG_ON(from == memcg);
5946
5947 mm = get_task_mm(p);
5948 if (!mm)
5949 return 0;
5950 /* We move charges only when we move a owner of the mm */
5951 if (mm->owner == p) {
5952 VM_BUG_ON(mc.from);
5953 VM_BUG_ON(mc.to);
5954 VM_BUG_ON(mc.precharge);
5955 VM_BUG_ON(mc.moved_charge);
5956 VM_BUG_ON(mc.moved_swap);
5957
5958 spin_lock(&mc.lock);
5959 mc.mm = mm;
5960 mc.from = from;
5961 mc.to = memcg;
5962 mc.flags = move_flags;
5963 spin_unlock(&mc.lock);
5964 /* We set mc.moving_task later */
5965
5966 ret = mem_cgroup_precharge_mc(mm);
5967 if (ret)
5968 mem_cgroup_clear_mc();
5969 } else {
5970 mmput(mm);
5971 }
5972 return ret;
5973 }
5974
5975 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5976 {
5977 if (mc.to)
5978 mem_cgroup_clear_mc();
5979 }
5980
5981 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5982 unsigned long addr, unsigned long end,
5983 struct mm_walk *walk)
5984 {
5985 int ret = 0;
5986 struct vm_area_struct *vma = walk->vma;
5987 pte_t *pte;
5988 spinlock_t *ptl;
5989 enum mc_target_type target_type;
5990 union mc_target target;
5991 struct page *page;
5992
5993 ptl = pmd_trans_huge_lock(pmd, vma);
5994 if (ptl) {
5995 if (mc.precharge < HPAGE_PMD_NR) {
5996 spin_unlock(ptl);
5997 return 0;
5998 }
5999 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6000 if (target_type == MC_TARGET_PAGE) {
6001 page = target.page;
6002 if (!isolate_lru_page(page)) {
6003 if (!mem_cgroup_move_account(page, true,
6004 mc.from, mc.to)) {
6005 mc.precharge -= HPAGE_PMD_NR;
6006 mc.moved_charge += HPAGE_PMD_NR;
6007 }
6008 putback_lru_page(page);
6009 }
6010 put_page(page);
6011 } else if (target_type == MC_TARGET_DEVICE) {
6012 page = target.page;
6013 if (!mem_cgroup_move_account(page, true,
6014 mc.from, mc.to)) {
6015 mc.precharge -= HPAGE_PMD_NR;
6016 mc.moved_charge += HPAGE_PMD_NR;
6017 }
6018 put_page(page);
6019 }
6020 spin_unlock(ptl);
6021 return 0;
6022 }
6023
6024 if (pmd_trans_unstable(pmd))
6025 return 0;
6026 retry:
6027 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6028 for (; addr != end; addr += PAGE_SIZE) {
6029 pte_t ptent = *(pte++);
6030 bool device = false;
6031 swp_entry_t ent;
6032
6033 if (!mc.precharge)
6034 break;
6035
6036 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6037 case MC_TARGET_DEVICE:
6038 device = true;
6039 fallthrough;
6040 case MC_TARGET_PAGE:
6041 page = target.page;
6042 /*
6043 * We can have a part of the split pmd here. Moving it
6044 * can be done but it would be too convoluted so simply
6045 * ignore such a partial THP and keep it in original
6046 * memcg. There should be somebody mapping the head.
6047 */
6048 if (PageTransCompound(page))
6049 goto put;
6050 if (!device && isolate_lru_page(page))
6051 goto put;
6052 if (!mem_cgroup_move_account(page, false,
6053 mc.from, mc.to)) {
6054 mc.precharge--;
6055 /* we uncharge from mc.from later. */
6056 mc.moved_charge++;
6057 }
6058 if (!device)
6059 putback_lru_page(page);
6060 put: /* get_mctgt_type() gets the page */
6061 put_page(page);
6062 break;
6063 case MC_TARGET_SWAP:
6064 ent = target.ent;
6065 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6066 mc.precharge--;
6067 mem_cgroup_id_get_many(mc.to, 1);
6068 /* we fixup other refcnts and charges later. */
6069 mc.moved_swap++;
6070 }
6071 break;
6072 default:
6073 break;
6074 }
6075 }
6076 pte_unmap_unlock(pte - 1, ptl);
6077 cond_resched();
6078
6079 if (addr != end) {
6080 /*
6081 * We have consumed all precharges we got in can_attach().
6082 * We try charge one by one, but don't do any additional
6083 * charges to mc.to if we have failed in charge once in attach()
6084 * phase.
6085 */
6086 ret = mem_cgroup_do_precharge(1);
6087 if (!ret)
6088 goto retry;
6089 }
6090
6091 return ret;
6092 }
6093
6094 static const struct mm_walk_ops charge_walk_ops = {
6095 .pmd_entry = mem_cgroup_move_charge_pte_range,
6096 };
6097
6098 static void mem_cgroup_move_charge(void)
6099 {
6100 lru_add_drain_all();
6101 /*
6102 * Signal lock_page_memcg() to take the memcg's move_lock
6103 * while we're moving its pages to another memcg. Then wait
6104 * for already started RCU-only updates to finish.
6105 */
6106 atomic_inc(&mc.from->moving_account);
6107 synchronize_rcu();
6108 retry:
6109 if (unlikely(!mmap_read_trylock(mc.mm))) {
6110 /*
6111 * Someone who are holding the mmap_lock might be waiting in
6112 * waitq. So we cancel all extra charges, wake up all waiters,
6113 * and retry. Because we cancel precharges, we might not be able
6114 * to move enough charges, but moving charge is a best-effort
6115 * feature anyway, so it wouldn't be a big problem.
6116 */
6117 __mem_cgroup_clear_mc();
6118 cond_resched();
6119 goto retry;
6120 }
6121 /*
6122 * When we have consumed all precharges and failed in doing
6123 * additional charge, the page walk just aborts.
6124 */
6125 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6126 NULL);
6127
6128 mmap_read_unlock(mc.mm);
6129 atomic_dec(&mc.from->moving_account);
6130 }
6131
6132 static void mem_cgroup_move_task(void)
6133 {
6134 if (mc.to) {
6135 mem_cgroup_move_charge();
6136 mem_cgroup_clear_mc();
6137 }
6138 }
6139 #else /* !CONFIG_MMU */
6140 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6141 {
6142 return 0;
6143 }
6144 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6145 {
6146 }
6147 static void mem_cgroup_move_task(void)
6148 {
6149 }
6150 #endif
6151
6152 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6153 {
6154 if (value == PAGE_COUNTER_MAX)
6155 seq_puts(m, "max\n");
6156 else
6157 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6158
6159 return 0;
6160 }
6161
6162 static u64 memory_current_read(struct cgroup_subsys_state *css,
6163 struct cftype *cft)
6164 {
6165 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6166
6167 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6168 }
6169
6170 static int memory_min_show(struct seq_file *m, void *v)
6171 {
6172 return seq_puts_memcg_tunable(m,
6173 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6174 }
6175
6176 static ssize_t memory_min_write(struct kernfs_open_file *of,
6177 char *buf, size_t nbytes, loff_t off)
6178 {
6179 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6180 unsigned long min;
6181 int err;
6182
6183 buf = strstrip(buf);
6184 err = page_counter_memparse(buf, "max", &min);
6185 if (err)
6186 return err;
6187
6188 page_counter_set_min(&memcg->memory, min);
6189
6190 return nbytes;
6191 }
6192
6193 static int memory_low_show(struct seq_file *m, void *v)
6194 {
6195 return seq_puts_memcg_tunable(m,
6196 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6197 }
6198
6199 static ssize_t memory_low_write(struct kernfs_open_file *of,
6200 char *buf, size_t nbytes, loff_t off)
6201 {
6202 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6203 unsigned long low;
6204 int err;
6205
6206 buf = strstrip(buf);
6207 err = page_counter_memparse(buf, "max", &low);
6208 if (err)
6209 return err;
6210
6211 page_counter_set_low(&memcg->memory, low);
6212
6213 return nbytes;
6214 }
6215
6216 static int memory_high_show(struct seq_file *m, void *v)
6217 {
6218 return seq_puts_memcg_tunable(m,
6219 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6220 }
6221
6222 static ssize_t memory_high_write(struct kernfs_open_file *of,
6223 char *buf, size_t nbytes, loff_t off)
6224 {
6225 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6226 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6227 bool drained = false;
6228 unsigned long high;
6229 int err;
6230
6231 buf = strstrip(buf);
6232 err = page_counter_memparse(buf, "max", &high);
6233 if (err)
6234 return err;
6235
6236 page_counter_set_high(&memcg->memory, high);
6237
6238 for (;;) {
6239 unsigned long nr_pages = page_counter_read(&memcg->memory);
6240 unsigned long reclaimed;
6241
6242 if (nr_pages <= high)
6243 break;
6244
6245 if (signal_pending(current))
6246 break;
6247
6248 if (!drained) {
6249 drain_all_stock(memcg);
6250 drained = true;
6251 continue;
6252 }
6253
6254 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6255 GFP_KERNEL, true);
6256
6257 if (!reclaimed && !nr_retries--)
6258 break;
6259 }
6260
6261 memcg_wb_domain_size_changed(memcg);
6262 return nbytes;
6263 }
6264
6265 static int memory_max_show(struct seq_file *m, void *v)
6266 {
6267 return seq_puts_memcg_tunable(m,
6268 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6269 }
6270
6271 static ssize_t memory_max_write(struct kernfs_open_file *of,
6272 char *buf, size_t nbytes, loff_t off)
6273 {
6274 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6275 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6276 bool drained = false;
6277 unsigned long max;
6278 int err;
6279
6280 buf = strstrip(buf);
6281 err = page_counter_memparse(buf, "max", &max);
6282 if (err)
6283 return err;
6284
6285 xchg(&memcg->memory.max, max);
6286
6287 for (;;) {
6288 unsigned long nr_pages = page_counter_read(&memcg->memory);
6289
6290 if (nr_pages <= max)
6291 break;
6292
6293 if (signal_pending(current))
6294 break;
6295
6296 if (!drained) {
6297 drain_all_stock(memcg);
6298 drained = true;
6299 continue;
6300 }
6301
6302 if (nr_reclaims) {
6303 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6304 GFP_KERNEL, true))
6305 nr_reclaims--;
6306 continue;
6307 }
6308
6309 memcg_memory_event(memcg, MEMCG_OOM);
6310 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6311 break;
6312 }
6313
6314 memcg_wb_domain_size_changed(memcg);
6315 return nbytes;
6316 }
6317
6318 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6319 {
6320 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6321 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6322 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6323 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6324 seq_printf(m, "oom_kill %lu\n",
6325 atomic_long_read(&events[MEMCG_OOM_KILL]));
6326 }
6327
6328 static int memory_events_show(struct seq_file *m, void *v)
6329 {
6330 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6331
6332 __memory_events_show(m, memcg->memory_events);
6333 return 0;
6334 }
6335
6336 static int memory_events_local_show(struct seq_file *m, void *v)
6337 {
6338 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6339
6340 __memory_events_show(m, memcg->memory_events_local);
6341 return 0;
6342 }
6343
6344 static int memory_stat_show(struct seq_file *m, void *v)
6345 {
6346 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6347 char *buf;
6348
6349 buf = memory_stat_format(memcg);
6350 if (!buf)
6351 return -ENOMEM;
6352 seq_puts(m, buf);
6353 kfree(buf);
6354 return 0;
6355 }
6356
6357 #ifdef CONFIG_NUMA
6358 static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6359 int item)
6360 {
6361 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6362 }
6363
6364 static int memory_numa_stat_show(struct seq_file *m, void *v)
6365 {
6366 int i;
6367 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6368
6369 cgroup_rstat_flush(memcg->css.cgroup);
6370
6371 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6372 int nid;
6373
6374 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6375 continue;
6376
6377 seq_printf(m, "%s", memory_stats[i].name);
6378 for_each_node_state(nid, N_MEMORY) {
6379 u64 size;
6380 struct lruvec *lruvec;
6381
6382 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6383 size = lruvec_page_state_output(lruvec,
6384 memory_stats[i].idx);
6385 seq_printf(m, " N%d=%llu", nid, size);
6386 }
6387 seq_putc(m, '\n');
6388 }
6389
6390 return 0;
6391 }
6392 #endif
6393
6394 static int memory_oom_group_show(struct seq_file *m, void *v)
6395 {
6396 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6397
6398 seq_printf(m, "%d\n", memcg->oom_group);
6399
6400 return 0;
6401 }
6402
6403 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6404 char *buf, size_t nbytes, loff_t off)
6405 {
6406 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6407 int ret, oom_group;
6408
6409 buf = strstrip(buf);
6410 if (!buf)
6411 return -EINVAL;
6412
6413 ret = kstrtoint(buf, 0, &oom_group);
6414 if (ret)
6415 return ret;
6416
6417 if (oom_group != 0 && oom_group != 1)
6418 return -EINVAL;
6419
6420 memcg->oom_group = oom_group;
6421
6422 return nbytes;
6423 }
6424
6425 static struct cftype memory_files[] = {
6426 {
6427 .name = "current",
6428 .flags = CFTYPE_NOT_ON_ROOT,
6429 .read_u64 = memory_current_read,
6430 },
6431 {
6432 .name = "min",
6433 .flags = CFTYPE_NOT_ON_ROOT,
6434 .seq_show = memory_min_show,
6435 .write = memory_min_write,
6436 },
6437 {
6438 .name = "low",
6439 .flags = CFTYPE_NOT_ON_ROOT,
6440 .seq_show = memory_low_show,
6441 .write = memory_low_write,
6442 },
6443 {
6444 .name = "high",
6445 .flags = CFTYPE_NOT_ON_ROOT,
6446 .seq_show = memory_high_show,
6447 .write = memory_high_write,
6448 },
6449 {
6450 .name = "max",
6451 .flags = CFTYPE_NOT_ON_ROOT,
6452 .seq_show = memory_max_show,
6453 .write = memory_max_write,
6454 },
6455 {
6456 .name = "events",
6457 .flags = CFTYPE_NOT_ON_ROOT,
6458 .file_offset = offsetof(struct mem_cgroup, events_file),
6459 .seq_show = memory_events_show,
6460 },
6461 {
6462 .name = "events.local",
6463 .flags = CFTYPE_NOT_ON_ROOT,
6464 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6465 .seq_show = memory_events_local_show,
6466 },
6467 {
6468 .name = "stat",
6469 .seq_show = memory_stat_show,
6470 },
6471 #ifdef CONFIG_NUMA
6472 {
6473 .name = "numa_stat",
6474 .seq_show = memory_numa_stat_show,
6475 },
6476 #endif
6477 {
6478 .name = "oom.group",
6479 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6480 .seq_show = memory_oom_group_show,
6481 .write = memory_oom_group_write,
6482 },
6483 { } /* terminate */
6484 };
6485
6486 struct cgroup_subsys memory_cgrp_subsys = {
6487 .css_alloc = mem_cgroup_css_alloc,
6488 .css_online = mem_cgroup_css_online,
6489 .css_offline = mem_cgroup_css_offline,
6490 .css_released = mem_cgroup_css_released,
6491 .css_free = mem_cgroup_css_free,
6492 .css_reset = mem_cgroup_css_reset,
6493 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6494 .can_attach = mem_cgroup_can_attach,
6495 .cancel_attach = mem_cgroup_cancel_attach,
6496 .post_attach = mem_cgroup_move_task,
6497 .dfl_cftypes = memory_files,
6498 .legacy_cftypes = mem_cgroup_legacy_files,
6499 .early_init = 0,
6500 };
6501
6502 /*
6503 * This function calculates an individual cgroup's effective
6504 * protection which is derived from its own memory.min/low, its
6505 * parent's and siblings' settings, as well as the actual memory
6506 * distribution in the tree.
6507 *
6508 * The following rules apply to the effective protection values:
6509 *
6510 * 1. At the first level of reclaim, effective protection is equal to
6511 * the declared protection in memory.min and memory.low.
6512 *
6513 * 2. To enable safe delegation of the protection configuration, at
6514 * subsequent levels the effective protection is capped to the
6515 * parent's effective protection.
6516 *
6517 * 3. To make complex and dynamic subtrees easier to configure, the
6518 * user is allowed to overcommit the declared protection at a given
6519 * level. If that is the case, the parent's effective protection is
6520 * distributed to the children in proportion to how much protection
6521 * they have declared and how much of it they are utilizing.
6522 *
6523 * This makes distribution proportional, but also work-conserving:
6524 * if one cgroup claims much more protection than it uses memory,
6525 * the unused remainder is available to its siblings.
6526 *
6527 * 4. Conversely, when the declared protection is undercommitted at a
6528 * given level, the distribution of the larger parental protection
6529 * budget is NOT proportional. A cgroup's protection from a sibling
6530 * is capped to its own memory.min/low setting.
6531 *
6532 * 5. However, to allow protecting recursive subtrees from each other
6533 * without having to declare each individual cgroup's fixed share
6534 * of the ancestor's claim to protection, any unutilized -
6535 * "floating" - protection from up the tree is distributed in
6536 * proportion to each cgroup's *usage*. This makes the protection
6537 * neutral wrt sibling cgroups and lets them compete freely over
6538 * the shared parental protection budget, but it protects the
6539 * subtree as a whole from neighboring subtrees.
6540 *
6541 * Note that 4. and 5. are not in conflict: 4. is about protecting
6542 * against immediate siblings whereas 5. is about protecting against
6543 * neighboring subtrees.
6544 */
6545 static unsigned long effective_protection(unsigned long usage,
6546 unsigned long parent_usage,
6547 unsigned long setting,
6548 unsigned long parent_effective,
6549 unsigned long siblings_protected)
6550 {
6551 unsigned long protected;
6552 unsigned long ep;
6553
6554 protected = min(usage, setting);
6555 /*
6556 * If all cgroups at this level combined claim and use more
6557 * protection then what the parent affords them, distribute
6558 * shares in proportion to utilization.
6559 *
6560 * We are using actual utilization rather than the statically
6561 * claimed protection in order to be work-conserving: claimed
6562 * but unused protection is available to siblings that would
6563 * otherwise get a smaller chunk than what they claimed.
6564 */
6565 if (siblings_protected > parent_effective)
6566 return protected * parent_effective / siblings_protected;
6567
6568 /*
6569 * Ok, utilized protection of all children is within what the
6570 * parent affords them, so we know whatever this child claims
6571 * and utilizes is effectively protected.
6572 *
6573 * If there is unprotected usage beyond this value, reclaim
6574 * will apply pressure in proportion to that amount.
6575 *
6576 * If there is unutilized protection, the cgroup will be fully
6577 * shielded from reclaim, but we do return a smaller value for
6578 * protection than what the group could enjoy in theory. This
6579 * is okay. With the overcommit distribution above, effective
6580 * protection is always dependent on how memory is actually
6581 * consumed among the siblings anyway.
6582 */
6583 ep = protected;
6584
6585 /*
6586 * If the children aren't claiming (all of) the protection
6587 * afforded to them by the parent, distribute the remainder in
6588 * proportion to the (unprotected) memory of each cgroup. That
6589 * way, cgroups that aren't explicitly prioritized wrt each
6590 * other compete freely over the allowance, but they are
6591 * collectively protected from neighboring trees.
6592 *
6593 * We're using unprotected memory for the weight so that if
6594 * some cgroups DO claim explicit protection, we don't protect
6595 * the same bytes twice.
6596 *
6597 * Check both usage and parent_usage against the respective
6598 * protected values. One should imply the other, but they
6599 * aren't read atomically - make sure the division is sane.
6600 */
6601 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6602 return ep;
6603 if (parent_effective > siblings_protected &&
6604 parent_usage > siblings_protected &&
6605 usage > protected) {
6606 unsigned long unclaimed;
6607
6608 unclaimed = parent_effective - siblings_protected;
6609 unclaimed *= usage - protected;
6610 unclaimed /= parent_usage - siblings_protected;
6611
6612 ep += unclaimed;
6613 }
6614
6615 return ep;
6616 }
6617
6618 /**
6619 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6620 * @root: the top ancestor of the sub-tree being checked
6621 * @memcg: the memory cgroup to check
6622 *
6623 * WARNING: This function is not stateless! It can only be used as part
6624 * of a top-down tree iteration, not for isolated queries.
6625 */
6626 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6627 struct mem_cgroup *memcg)
6628 {
6629 unsigned long usage, parent_usage;
6630 struct mem_cgroup *parent;
6631
6632 if (mem_cgroup_disabled())
6633 return;
6634
6635 if (!root)
6636 root = root_mem_cgroup;
6637
6638 /*
6639 * Effective values of the reclaim targets are ignored so they
6640 * can be stale. Have a look at mem_cgroup_protection for more
6641 * details.
6642 * TODO: calculation should be more robust so that we do not need
6643 * that special casing.
6644 */
6645 if (memcg == root)
6646 return;
6647
6648 usage = page_counter_read(&memcg->memory);
6649 if (!usage)
6650 return;
6651
6652 parent = parent_mem_cgroup(memcg);
6653 /* No parent means a non-hierarchical mode on v1 memcg */
6654 if (!parent)
6655 return;
6656
6657 if (parent == root) {
6658 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6659 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6660 return;
6661 }
6662
6663 parent_usage = page_counter_read(&parent->memory);
6664
6665 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6666 READ_ONCE(memcg->memory.min),
6667 READ_ONCE(parent->memory.emin),
6668 atomic_long_read(&parent->memory.children_min_usage)));
6669
6670 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6671 READ_ONCE(memcg->memory.low),
6672 READ_ONCE(parent->memory.elow),
6673 atomic_long_read(&parent->memory.children_low_usage)));
6674 }
6675
6676 static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6677 gfp_t gfp)
6678 {
6679 long nr_pages = folio_nr_pages(folio);
6680 int ret;
6681
6682 ret = try_charge(memcg, gfp, nr_pages);
6683 if (ret)
6684 goto out;
6685
6686 css_get(&memcg->css);
6687 commit_charge(folio, memcg);
6688
6689 local_irq_disable();
6690 mem_cgroup_charge_statistics(memcg, nr_pages);
6691 memcg_check_events(memcg, folio_nid(folio));
6692 local_irq_enable();
6693 out:
6694 return ret;
6695 }
6696
6697 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6698 {
6699 struct mem_cgroup *memcg;
6700 int ret;
6701
6702 memcg = get_mem_cgroup_from_mm(mm);
6703 ret = charge_memcg(folio, memcg, gfp);
6704 css_put(&memcg->css);
6705
6706 return ret;
6707 }
6708
6709 /**
6710 * mem_cgroup_swapin_charge_page - charge a newly allocated page for swapin
6711 * @page: page to charge
6712 * @mm: mm context of the victim
6713 * @gfp: reclaim mode
6714 * @entry: swap entry for which the page is allocated
6715 *
6716 * This function charges a page allocated for swapin. Please call this before
6717 * adding the page to the swapcache.
6718 *
6719 * Returns 0 on success. Otherwise, an error code is returned.
6720 */
6721 int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
6722 gfp_t gfp, swp_entry_t entry)
6723 {
6724 struct folio *folio = page_folio(page);
6725 struct mem_cgroup *memcg;
6726 unsigned short id;
6727 int ret;
6728
6729 if (mem_cgroup_disabled())
6730 return 0;
6731
6732 id = lookup_swap_cgroup_id(entry);
6733 rcu_read_lock();
6734 memcg = mem_cgroup_from_id(id);
6735 if (!memcg || !css_tryget_online(&memcg->css))
6736 memcg = get_mem_cgroup_from_mm(mm);
6737 rcu_read_unlock();
6738
6739 ret = charge_memcg(folio, memcg, gfp);
6740
6741 css_put(&memcg->css);
6742 return ret;
6743 }
6744
6745 /*
6746 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
6747 * @entry: swap entry for which the page is charged
6748 *
6749 * Call this function after successfully adding the charged page to swapcache.
6750 *
6751 * Note: This function assumes the page for which swap slot is being uncharged
6752 * is order 0 page.
6753 */
6754 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
6755 {
6756 /*
6757 * Cgroup1's unified memory+swap counter has been charged with the
6758 * new swapcache page, finish the transfer by uncharging the swap
6759 * slot. The swap slot would also get uncharged when it dies, but
6760 * it can stick around indefinitely and we'd count the page twice
6761 * the entire time.
6762 *
6763 * Cgroup2 has separate resource counters for memory and swap,
6764 * so this is a non-issue here. Memory and swap charge lifetimes
6765 * correspond 1:1 to page and swap slot lifetimes: we charge the
6766 * page to memory here, and uncharge swap when the slot is freed.
6767 */
6768 if (!mem_cgroup_disabled() && do_memsw_account()) {
6769 /*
6770 * The swap entry might not get freed for a long time,
6771 * let's not wait for it. The page already received a
6772 * memory+swap charge, drop the swap entry duplicate.
6773 */
6774 mem_cgroup_uncharge_swap(entry, 1);
6775 }
6776 }
6777
6778 struct uncharge_gather {
6779 struct mem_cgroup *memcg;
6780 unsigned long nr_memory;
6781 unsigned long pgpgout;
6782 unsigned long nr_kmem;
6783 int nid;
6784 };
6785
6786 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6787 {
6788 memset(ug, 0, sizeof(*ug));
6789 }
6790
6791 static void uncharge_batch(const struct uncharge_gather *ug)
6792 {
6793 unsigned long flags;
6794
6795 if (ug->nr_memory) {
6796 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
6797 if (do_memsw_account())
6798 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
6799 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6800 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6801 memcg_oom_recover(ug->memcg);
6802 }
6803
6804 local_irq_save(flags);
6805 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6806 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
6807 memcg_check_events(ug->memcg, ug->nid);
6808 local_irq_restore(flags);
6809
6810 /* drop reference from uncharge_folio */
6811 css_put(&ug->memcg->css);
6812 }
6813
6814 static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
6815 {
6816 long nr_pages;
6817 struct mem_cgroup *memcg;
6818 struct obj_cgroup *objcg;
6819 bool use_objcg = folio_memcg_kmem(folio);
6820
6821 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
6822
6823 /*
6824 * Nobody should be changing or seriously looking at
6825 * folio memcg or objcg at this point, we have fully
6826 * exclusive access to the folio.
6827 */
6828 if (use_objcg) {
6829 objcg = __folio_objcg(folio);
6830 /*
6831 * This get matches the put at the end of the function and
6832 * kmem pages do not hold memcg references anymore.
6833 */
6834 memcg = get_mem_cgroup_from_objcg(objcg);
6835 } else {
6836 memcg = __folio_memcg(folio);
6837 }
6838
6839 if (!memcg)
6840 return;
6841
6842 if (ug->memcg != memcg) {
6843 if (ug->memcg) {
6844 uncharge_batch(ug);
6845 uncharge_gather_clear(ug);
6846 }
6847 ug->memcg = memcg;
6848 ug->nid = folio_nid(folio);
6849
6850 /* pairs with css_put in uncharge_batch */
6851 css_get(&memcg->css);
6852 }
6853
6854 nr_pages = folio_nr_pages(folio);
6855
6856 if (use_objcg) {
6857 ug->nr_memory += nr_pages;
6858 ug->nr_kmem += nr_pages;
6859
6860 folio->memcg_data = 0;
6861 obj_cgroup_put(objcg);
6862 } else {
6863 /* LRU pages aren't accounted at the root level */
6864 if (!mem_cgroup_is_root(memcg))
6865 ug->nr_memory += nr_pages;
6866 ug->pgpgout++;
6867
6868 folio->memcg_data = 0;
6869 }
6870
6871 css_put(&memcg->css);
6872 }
6873
6874 void __mem_cgroup_uncharge(struct folio *folio)
6875 {
6876 struct uncharge_gather ug;
6877
6878 /* Don't touch folio->lru of any random page, pre-check: */
6879 if (!folio_memcg(folio))
6880 return;
6881
6882 uncharge_gather_clear(&ug);
6883 uncharge_folio(folio, &ug);
6884 uncharge_batch(&ug);
6885 }
6886
6887 /**
6888 * __mem_cgroup_uncharge_list - uncharge a list of page
6889 * @page_list: list of pages to uncharge
6890 *
6891 * Uncharge a list of pages previously charged with
6892 * __mem_cgroup_charge().
6893 */
6894 void __mem_cgroup_uncharge_list(struct list_head *page_list)
6895 {
6896 struct uncharge_gather ug;
6897 struct folio *folio;
6898
6899 uncharge_gather_clear(&ug);
6900 list_for_each_entry(folio, page_list, lru)
6901 uncharge_folio(folio, &ug);
6902 if (ug.memcg)
6903 uncharge_batch(&ug);
6904 }
6905
6906 /**
6907 * mem_cgroup_migrate - Charge a folio's replacement.
6908 * @old: Currently circulating folio.
6909 * @new: Replacement folio.
6910 *
6911 * Charge @new as a replacement folio for @old. @old will
6912 * be uncharged upon free.
6913 *
6914 * Both folios must be locked, @new->mapping must be set up.
6915 */
6916 void mem_cgroup_migrate(struct folio *old, struct folio *new)
6917 {
6918 struct mem_cgroup *memcg;
6919 long nr_pages = folio_nr_pages(new);
6920 unsigned long flags;
6921
6922 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
6923 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
6924 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
6925 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
6926
6927 if (mem_cgroup_disabled())
6928 return;
6929
6930 /* Page cache replacement: new folio already charged? */
6931 if (folio_memcg(new))
6932 return;
6933
6934 memcg = folio_memcg(old);
6935 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
6936 if (!memcg)
6937 return;
6938
6939 /* Force-charge the new page. The old one will be freed soon */
6940 if (!mem_cgroup_is_root(memcg)) {
6941 page_counter_charge(&memcg->memory, nr_pages);
6942 if (do_memsw_account())
6943 page_counter_charge(&memcg->memsw, nr_pages);
6944 }
6945
6946 css_get(&memcg->css);
6947 commit_charge(new, memcg);
6948
6949 local_irq_save(flags);
6950 mem_cgroup_charge_statistics(memcg, nr_pages);
6951 memcg_check_events(memcg, folio_nid(new));
6952 local_irq_restore(flags);
6953 }
6954
6955 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6956 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6957
6958 void mem_cgroup_sk_alloc(struct sock *sk)
6959 {
6960 struct mem_cgroup *memcg;
6961
6962 if (!mem_cgroup_sockets_enabled)
6963 return;
6964
6965 /* Do not associate the sock with unrelated interrupted task's memcg. */
6966 if (in_interrupt())
6967 return;
6968
6969 rcu_read_lock();
6970 memcg = mem_cgroup_from_task(current);
6971 if (memcg == root_mem_cgroup)
6972 goto out;
6973 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6974 goto out;
6975 if (css_tryget(&memcg->css))
6976 sk->sk_memcg = memcg;
6977 out:
6978 rcu_read_unlock();
6979 }
6980
6981 void mem_cgroup_sk_free(struct sock *sk)
6982 {
6983 if (sk->sk_memcg)
6984 css_put(&sk->sk_memcg->css);
6985 }
6986
6987 /**
6988 * mem_cgroup_charge_skmem - charge socket memory
6989 * @memcg: memcg to charge
6990 * @nr_pages: number of pages to charge
6991 * @gfp_mask: reclaim mode
6992 *
6993 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6994 * @memcg's configured limit, %false if it doesn't.
6995 */
6996 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
6997 gfp_t gfp_mask)
6998 {
6999 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7000 struct page_counter *fail;
7001
7002 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7003 memcg->tcpmem_pressure = 0;
7004 return true;
7005 }
7006 memcg->tcpmem_pressure = 1;
7007 if (gfp_mask & __GFP_NOFAIL) {
7008 page_counter_charge(&memcg->tcpmem, nr_pages);
7009 return true;
7010 }
7011 return false;
7012 }
7013
7014 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7015 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7016 return true;
7017 }
7018
7019 return false;
7020 }
7021
7022 /**
7023 * mem_cgroup_uncharge_skmem - uncharge socket memory
7024 * @memcg: memcg to uncharge
7025 * @nr_pages: number of pages to uncharge
7026 */
7027 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7028 {
7029 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7030 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7031 return;
7032 }
7033
7034 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7035
7036 refill_stock(memcg, nr_pages);
7037 }
7038
7039 static int __init cgroup_memory(char *s)
7040 {
7041 char *token;
7042
7043 while ((token = strsep(&s, ",")) != NULL) {
7044 if (!*token)
7045 continue;
7046 if (!strcmp(token, "nosocket"))
7047 cgroup_memory_nosocket = true;
7048 if (!strcmp(token, "nokmem"))
7049 cgroup_memory_nokmem = true;
7050 }
7051 return 0;
7052 }
7053 __setup("cgroup.memory=", cgroup_memory);
7054
7055 /*
7056 * subsys_initcall() for memory controller.
7057 *
7058 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7059 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7060 * basically everything that doesn't depend on a specific mem_cgroup structure
7061 * should be initialized from here.
7062 */
7063 static int __init mem_cgroup_init(void)
7064 {
7065 int cpu, node;
7066
7067 /*
7068 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7069 * used for per-memcg-per-cpu caching of per-node statistics. In order
7070 * to work fine, we should make sure that the overfill threshold can't
7071 * exceed S32_MAX / PAGE_SIZE.
7072 */
7073 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7074
7075 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7076 memcg_hotplug_cpu_dead);
7077
7078 for_each_possible_cpu(cpu)
7079 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7080 drain_local_stock);
7081
7082 for_each_node(node) {
7083 struct mem_cgroup_tree_per_node *rtpn;
7084
7085 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7086 node_online(node) ? node : NUMA_NO_NODE);
7087
7088 rtpn->rb_root = RB_ROOT;
7089 rtpn->rb_rightmost = NULL;
7090 spin_lock_init(&rtpn->lock);
7091 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7092 }
7093
7094 return 0;
7095 }
7096 subsys_initcall(mem_cgroup_init);
7097
7098 #ifdef CONFIG_MEMCG_SWAP
7099 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7100 {
7101 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7102 /*
7103 * The root cgroup cannot be destroyed, so it's refcount must
7104 * always be >= 1.
7105 */
7106 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7107 VM_BUG_ON(1);
7108 break;
7109 }
7110 memcg = parent_mem_cgroup(memcg);
7111 if (!memcg)
7112 memcg = root_mem_cgroup;
7113 }
7114 return memcg;
7115 }
7116
7117 /**
7118 * mem_cgroup_swapout - transfer a memsw charge to swap
7119 * @page: page whose memsw charge to transfer
7120 * @entry: swap entry to move the charge to
7121 *
7122 * Transfer the memsw charge of @page to @entry.
7123 */
7124 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7125 {
7126 struct mem_cgroup *memcg, *swap_memcg;
7127 unsigned int nr_entries;
7128 unsigned short oldid;
7129
7130 VM_BUG_ON_PAGE(PageLRU(page), page);
7131 VM_BUG_ON_PAGE(page_count(page), page);
7132
7133 if (mem_cgroup_disabled())
7134 return;
7135
7136 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7137 return;
7138
7139 memcg = page_memcg(page);
7140
7141 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7142 if (!memcg)
7143 return;
7144
7145 /*
7146 * In case the memcg owning these pages has been offlined and doesn't
7147 * have an ID allocated to it anymore, charge the closest online
7148 * ancestor for the swap instead and transfer the memory+swap charge.
7149 */
7150 swap_memcg = mem_cgroup_id_get_online(memcg);
7151 nr_entries = thp_nr_pages(page);
7152 /* Get references for the tail pages, too */
7153 if (nr_entries > 1)
7154 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7155 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7156 nr_entries);
7157 VM_BUG_ON_PAGE(oldid, page);
7158 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7159
7160 page->memcg_data = 0;
7161
7162 if (!mem_cgroup_is_root(memcg))
7163 page_counter_uncharge(&memcg->memory, nr_entries);
7164
7165 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7166 if (!mem_cgroup_is_root(swap_memcg))
7167 page_counter_charge(&swap_memcg->memsw, nr_entries);
7168 page_counter_uncharge(&memcg->memsw, nr_entries);
7169 }
7170
7171 /*
7172 * Interrupts should be disabled here because the caller holds the
7173 * i_pages lock which is taken with interrupts-off. It is
7174 * important here to have the interrupts disabled because it is the
7175 * only synchronisation we have for updating the per-CPU variables.
7176 */
7177 VM_BUG_ON(!irqs_disabled());
7178 mem_cgroup_charge_statistics(memcg, -nr_entries);
7179 memcg_check_events(memcg, page_to_nid(page));
7180
7181 css_put(&memcg->css);
7182 }
7183
7184 /**
7185 * __mem_cgroup_try_charge_swap - try charging swap space for a page
7186 * @page: page being added to swap
7187 * @entry: swap entry to charge
7188 *
7189 * Try to charge @page's memcg for the swap space at @entry.
7190 *
7191 * Returns 0 on success, -ENOMEM on failure.
7192 */
7193 int __mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7194 {
7195 unsigned int nr_pages = thp_nr_pages(page);
7196 struct page_counter *counter;
7197 struct mem_cgroup *memcg;
7198 unsigned short oldid;
7199
7200 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7201 return 0;
7202
7203 memcg = page_memcg(page);
7204
7205 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7206 if (!memcg)
7207 return 0;
7208
7209 if (!entry.val) {
7210 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7211 return 0;
7212 }
7213
7214 memcg = mem_cgroup_id_get_online(memcg);
7215
7216 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7217 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7218 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7219 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7220 mem_cgroup_id_put(memcg);
7221 return -ENOMEM;
7222 }
7223
7224 /* Get references for the tail pages, too */
7225 if (nr_pages > 1)
7226 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7227 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7228 VM_BUG_ON_PAGE(oldid, page);
7229 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7230
7231 return 0;
7232 }
7233
7234 /**
7235 * __mem_cgroup_uncharge_swap - uncharge swap space
7236 * @entry: swap entry to uncharge
7237 * @nr_pages: the amount of swap space to uncharge
7238 */
7239 void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7240 {
7241 struct mem_cgroup *memcg;
7242 unsigned short id;
7243
7244 id = swap_cgroup_record(entry, 0, nr_pages);
7245 rcu_read_lock();
7246 memcg = mem_cgroup_from_id(id);
7247 if (memcg) {
7248 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7249 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7250 page_counter_uncharge(&memcg->swap, nr_pages);
7251 else
7252 page_counter_uncharge(&memcg->memsw, nr_pages);
7253 }
7254 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7255 mem_cgroup_id_put_many(memcg, nr_pages);
7256 }
7257 rcu_read_unlock();
7258 }
7259
7260 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7261 {
7262 long nr_swap_pages = get_nr_swap_pages();
7263
7264 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7265 return nr_swap_pages;
7266 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7267 nr_swap_pages = min_t(long, nr_swap_pages,
7268 READ_ONCE(memcg->swap.max) -
7269 page_counter_read(&memcg->swap));
7270 return nr_swap_pages;
7271 }
7272
7273 bool mem_cgroup_swap_full(struct page *page)
7274 {
7275 struct mem_cgroup *memcg;
7276
7277 VM_BUG_ON_PAGE(!PageLocked(page), page);
7278
7279 if (vm_swap_full())
7280 return true;
7281 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7282 return false;
7283
7284 memcg = page_memcg(page);
7285 if (!memcg)
7286 return false;
7287
7288 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7289 unsigned long usage = page_counter_read(&memcg->swap);
7290
7291 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7292 usage * 2 >= READ_ONCE(memcg->swap.max))
7293 return true;
7294 }
7295
7296 return false;
7297 }
7298
7299 static int __init setup_swap_account(char *s)
7300 {
7301 if (!strcmp(s, "1"))
7302 cgroup_memory_noswap = false;
7303 else if (!strcmp(s, "0"))
7304 cgroup_memory_noswap = true;
7305 return 1;
7306 }
7307 __setup("swapaccount=", setup_swap_account);
7308
7309 static u64 swap_current_read(struct cgroup_subsys_state *css,
7310 struct cftype *cft)
7311 {
7312 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7313
7314 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7315 }
7316
7317 static int swap_high_show(struct seq_file *m, void *v)
7318 {
7319 return seq_puts_memcg_tunable(m,
7320 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7321 }
7322
7323 static ssize_t swap_high_write(struct kernfs_open_file *of,
7324 char *buf, size_t nbytes, loff_t off)
7325 {
7326 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7327 unsigned long high;
7328 int err;
7329
7330 buf = strstrip(buf);
7331 err = page_counter_memparse(buf, "max", &high);
7332 if (err)
7333 return err;
7334
7335 page_counter_set_high(&memcg->swap, high);
7336
7337 return nbytes;
7338 }
7339
7340 static int swap_max_show(struct seq_file *m, void *v)
7341 {
7342 return seq_puts_memcg_tunable(m,
7343 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7344 }
7345
7346 static ssize_t swap_max_write(struct kernfs_open_file *of,
7347 char *buf, size_t nbytes, loff_t off)
7348 {
7349 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7350 unsigned long max;
7351 int err;
7352
7353 buf = strstrip(buf);
7354 err = page_counter_memparse(buf, "max", &max);
7355 if (err)
7356 return err;
7357
7358 xchg(&memcg->swap.max, max);
7359
7360 return nbytes;
7361 }
7362
7363 static int swap_events_show(struct seq_file *m, void *v)
7364 {
7365 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7366
7367 seq_printf(m, "high %lu\n",
7368 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7369 seq_printf(m, "max %lu\n",
7370 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7371 seq_printf(m, "fail %lu\n",
7372 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7373
7374 return 0;
7375 }
7376
7377 static struct cftype swap_files[] = {
7378 {
7379 .name = "swap.current",
7380 .flags = CFTYPE_NOT_ON_ROOT,
7381 .read_u64 = swap_current_read,
7382 },
7383 {
7384 .name = "swap.high",
7385 .flags = CFTYPE_NOT_ON_ROOT,
7386 .seq_show = swap_high_show,
7387 .write = swap_high_write,
7388 },
7389 {
7390 .name = "swap.max",
7391 .flags = CFTYPE_NOT_ON_ROOT,
7392 .seq_show = swap_max_show,
7393 .write = swap_max_write,
7394 },
7395 {
7396 .name = "swap.events",
7397 .flags = CFTYPE_NOT_ON_ROOT,
7398 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7399 .seq_show = swap_events_show,
7400 },
7401 { } /* terminate */
7402 };
7403
7404 static struct cftype memsw_files[] = {
7405 {
7406 .name = "memsw.usage_in_bytes",
7407 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7408 .read_u64 = mem_cgroup_read_u64,
7409 },
7410 {
7411 .name = "memsw.max_usage_in_bytes",
7412 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7413 .write = mem_cgroup_reset,
7414 .read_u64 = mem_cgroup_read_u64,
7415 },
7416 {
7417 .name = "memsw.limit_in_bytes",
7418 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7419 .write = mem_cgroup_write,
7420 .read_u64 = mem_cgroup_read_u64,
7421 },
7422 {
7423 .name = "memsw.failcnt",
7424 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7425 .write = mem_cgroup_reset,
7426 .read_u64 = mem_cgroup_read_u64,
7427 },
7428 { }, /* terminate */
7429 };
7430
7431 /*
7432 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7433 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7434 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7435 * boot parameter. This may result in premature OOPS inside
7436 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7437 */
7438 static int __init mem_cgroup_swap_init(void)
7439 {
7440 /* No memory control -> no swap control */
7441 if (mem_cgroup_disabled())
7442 cgroup_memory_noswap = true;
7443
7444 if (cgroup_memory_noswap)
7445 return 0;
7446
7447 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7448 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7449
7450 return 0;
7451 }
7452 core_initcall(mem_cgroup_swap_init);
7453
7454 #endif /* CONFIG_MEMCG_SWAP */