]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
memcg: writeback: use memcg->cgwb_list directly
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char *const mem_cgroup_lru_names[] = {
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109 };
110
111 #define THRESHOLDS_EVENTS_TARGET 128
112 #define SOFTLIMIT_EVENTS_TARGET 1024
113 #define NUMAINFO_EVENTS_TARGET 1024
114
115 /*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
120 struct mem_cgroup_tree_per_node {
121 struct rb_root rb_root;
122 struct rb_node *rb_rightmost;
123 spinlock_t lock;
124 };
125
126 struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128 };
129
130 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
132 /* for OOM */
133 struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136 };
137
138 /*
139 * cgroup_event represents events which userspace want to receive.
140 */
141 struct mem_cgroup_event {
142 /*
143 * memcg which the event belongs to.
144 */
145 struct mem_cgroup *memcg;
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
159 int (*register_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd, const char *args);
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
166 void (*unregister_event)(struct mem_cgroup *memcg,
167 struct eventfd_ctx *eventfd);
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
174 wait_queue_entry_t wait;
175 struct work_struct remove;
176 };
177
178 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
180
181 /* Stuffs for move charges at task migration. */
182 /*
183 * Types of charges to be moved.
184 */
185 #define MOVE_ANON 0x1U
186 #define MOVE_FILE 0x2U
187 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
188
189 /* "mc" and its members are protected by cgroup_mutex */
190 static struct move_charge_struct {
191 spinlock_t lock; /* for from, to */
192 struct mm_struct *mm;
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
195 unsigned long flags;
196 unsigned long precharge;
197 unsigned long moved_charge;
198 unsigned long moved_swap;
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201 } mc = {
202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204 };
205
206 /*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
210 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
211 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
212
213 enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
215 MEM_CGROUP_CHARGE_TYPE_ANON,
216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
218 NR_CHARGE_TYPE,
219 };
220
221 /* for encoding cft->private value on file */
222 enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
226 _KMEM,
227 _TCP,
228 };
229
230 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
232 #define MEMFILE_ATTR(val) ((val) & 0xffff)
233 /* Used for OOM nofiier */
234 #define OOM_CONTROL (0)
235
236 /* Some nice accessors for the vmpressure. */
237 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238 {
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242 }
243
244 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245 {
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247 }
248
249 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250 {
251 return (memcg == root_mem_cgroup);
252 }
253
254 #ifndef CONFIG_SLOB
255 /*
256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
262 *
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
265 */
266 static DEFINE_IDA(memcg_cache_ida);
267 int memcg_nr_cache_ids;
268
269 /* Protects memcg_nr_cache_ids */
270 static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272 void memcg_get_cache_ids(void)
273 {
274 down_read(&memcg_cache_ids_sem);
275 }
276
277 void memcg_put_cache_ids(void)
278 {
279 up_read(&memcg_cache_ids_sem);
280 }
281
282 /*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
292 * increase ours as well if it increases.
293 */
294 #define MEMCG_CACHES_MIN_SIZE 4
295 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
296
297 /*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
303 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
304 EXPORT_SYMBOL(memcg_kmem_enabled_key);
305
306 struct workqueue_struct *memcg_kmem_cache_wq;
307
308 #endif /* !CONFIG_SLOB */
309
310 /**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
320 */
321 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322 {
323 struct mem_cgroup *memcg;
324
325 memcg = page->mem_cgroup;
326
327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
328 memcg = root_mem_cgroup;
329
330 return &memcg->css;
331 }
332
333 /**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346 ino_t page_cgroup_ino(struct page *page)
347 {
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359 }
360
361 static struct mem_cgroup_per_node *
362 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
363 {
364 int nid = page_to_nid(page);
365
366 return memcg->nodeinfo[nid];
367 }
368
369 static struct mem_cgroup_tree_per_node *
370 soft_limit_tree_node(int nid)
371 {
372 return soft_limit_tree.rb_tree_per_node[nid];
373 }
374
375 static struct mem_cgroup_tree_per_node *
376 soft_limit_tree_from_page(struct page *page)
377 {
378 int nid = page_to_nid(page);
379
380 return soft_limit_tree.rb_tree_per_node[nid];
381 }
382
383 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
385 unsigned long new_usage_in_excess)
386 {
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
389 struct mem_cgroup_per_node *mz_node;
390 bool rightmost = true;
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
401 tree_node);
402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
403 p = &(*p)->rb_left;
404 rightmost = false;
405 }
406
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421 }
422
423 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
425 {
426 if (!mz->on_tree)
427 return;
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434 }
435
436 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
438 {
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
442 __mem_cgroup_remove_exceeded(mz, mctz);
443 spin_unlock_irqrestore(&mctz->lock, flags);
444 }
445
446 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447 {
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456 }
457
458 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459 {
460 unsigned long excess;
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
463
464 mctz = soft_limit_tree_from_page(page);
465 if (!mctz)
466 return;
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
472 mz = mem_cgroup_page_nodeinfo(memcg, page);
473 excess = soft_limit_excess(memcg);
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
482 /* if on-tree, remove it */
483 if (mz->on_tree)
484 __mem_cgroup_remove_exceeded(mz, mctz);
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
490 spin_unlock_irqrestore(&mctz->lock, flags);
491 }
492 }
493 }
494
495 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496 {
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
500
501 for_each_node(nid) {
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
506 }
507 }
508
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511 {
512 struct mem_cgroup_per_node *mz;
513
514 retry:
515 mz = NULL;
516 if (!mctz->rb_rightmost)
517 goto done; /* Nothing to reclaim from */
518
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
526 __mem_cgroup_remove_exceeded(mz, mctz);
527 if (!soft_limit_excess(mz->memcg) ||
528 !css_tryget_online(&mz->memcg->css))
529 goto retry;
530 done:
531 return mz;
532 }
533
534 static struct mem_cgroup_per_node *
535 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
536 {
537 struct mem_cgroup_per_node *mz;
538
539 spin_lock_irq(&mctz->lock);
540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
541 spin_unlock_irq(&mctz->lock);
542 return mz;
543 }
544
545 static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
546 int event)
547 {
548 return atomic_long_read(&memcg->events[event]);
549 }
550
551 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
552 struct page *page,
553 bool compound, int nr_pages)
554 {
555 /*
556 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
557 * counted as CACHE even if it's on ANON LRU.
558 */
559 if (PageAnon(page))
560 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
561 else {
562 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
563 if (PageSwapBacked(page))
564 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
565 }
566
567 if (compound) {
568 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
569 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
570 }
571
572 /* pagein of a big page is an event. So, ignore page size */
573 if (nr_pages > 0)
574 __count_memcg_events(memcg, PGPGIN, 1);
575 else {
576 __count_memcg_events(memcg, PGPGOUT, 1);
577 nr_pages = -nr_pages; /* for event */
578 }
579
580 __this_cpu_add(memcg->stat_cpu->nr_page_events, nr_pages);
581 }
582
583 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
584 int nid, unsigned int lru_mask)
585 {
586 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
587 unsigned long nr = 0;
588 enum lru_list lru;
589
590 VM_BUG_ON((unsigned)nid >= nr_node_ids);
591
592 for_each_lru(lru) {
593 if (!(BIT(lru) & lru_mask))
594 continue;
595 nr += mem_cgroup_get_lru_size(lruvec, lru);
596 }
597 return nr;
598 }
599
600 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
601 unsigned int lru_mask)
602 {
603 unsigned long nr = 0;
604 int nid;
605
606 for_each_node_state(nid, N_MEMORY)
607 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
608 return nr;
609 }
610
611 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
612 enum mem_cgroup_events_target target)
613 {
614 unsigned long val, next;
615
616 val = __this_cpu_read(memcg->stat_cpu->nr_page_events);
617 next = __this_cpu_read(memcg->stat_cpu->targets[target]);
618 /* from time_after() in jiffies.h */
619 if ((long)(next - val) < 0) {
620 switch (target) {
621 case MEM_CGROUP_TARGET_THRESH:
622 next = val + THRESHOLDS_EVENTS_TARGET;
623 break;
624 case MEM_CGROUP_TARGET_SOFTLIMIT:
625 next = val + SOFTLIMIT_EVENTS_TARGET;
626 break;
627 case MEM_CGROUP_TARGET_NUMAINFO:
628 next = val + NUMAINFO_EVENTS_TARGET;
629 break;
630 default:
631 break;
632 }
633 __this_cpu_write(memcg->stat_cpu->targets[target], next);
634 return true;
635 }
636 return false;
637 }
638
639 /*
640 * Check events in order.
641 *
642 */
643 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
644 {
645 /* threshold event is triggered in finer grain than soft limit */
646 if (unlikely(mem_cgroup_event_ratelimit(memcg,
647 MEM_CGROUP_TARGET_THRESH))) {
648 bool do_softlimit;
649 bool do_numainfo __maybe_unused;
650
651 do_softlimit = mem_cgroup_event_ratelimit(memcg,
652 MEM_CGROUP_TARGET_SOFTLIMIT);
653 #if MAX_NUMNODES > 1
654 do_numainfo = mem_cgroup_event_ratelimit(memcg,
655 MEM_CGROUP_TARGET_NUMAINFO);
656 #endif
657 mem_cgroup_threshold(memcg);
658 if (unlikely(do_softlimit))
659 mem_cgroup_update_tree(memcg, page);
660 #if MAX_NUMNODES > 1
661 if (unlikely(do_numainfo))
662 atomic_inc(&memcg->numainfo_events);
663 #endif
664 }
665 }
666
667 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
668 {
669 /*
670 * mm_update_next_owner() may clear mm->owner to NULL
671 * if it races with swapoff, page migration, etc.
672 * So this can be called with p == NULL.
673 */
674 if (unlikely(!p))
675 return NULL;
676
677 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
678 }
679 EXPORT_SYMBOL(mem_cgroup_from_task);
680
681 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
682 {
683 struct mem_cgroup *memcg = NULL;
684
685 rcu_read_lock();
686 do {
687 /*
688 * Page cache insertions can happen withou an
689 * actual mm context, e.g. during disk probing
690 * on boot, loopback IO, acct() writes etc.
691 */
692 if (unlikely(!mm))
693 memcg = root_mem_cgroup;
694 else {
695 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!memcg))
697 memcg = root_mem_cgroup;
698 }
699 } while (!css_tryget_online(&memcg->css));
700 rcu_read_unlock();
701 return memcg;
702 }
703
704 /**
705 * mem_cgroup_iter - iterate over memory cgroup hierarchy
706 * @root: hierarchy root
707 * @prev: previously returned memcg, NULL on first invocation
708 * @reclaim: cookie for shared reclaim walks, NULL for full walks
709 *
710 * Returns references to children of the hierarchy below @root, or
711 * @root itself, or %NULL after a full round-trip.
712 *
713 * Caller must pass the return value in @prev on subsequent
714 * invocations for reference counting, or use mem_cgroup_iter_break()
715 * to cancel a hierarchy walk before the round-trip is complete.
716 *
717 * Reclaimers can specify a node and a priority level in @reclaim to
718 * divide up the memcgs in the hierarchy among all concurrent
719 * reclaimers operating on the same node and priority.
720 */
721 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
722 struct mem_cgroup *prev,
723 struct mem_cgroup_reclaim_cookie *reclaim)
724 {
725 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
726 struct cgroup_subsys_state *css = NULL;
727 struct mem_cgroup *memcg = NULL;
728 struct mem_cgroup *pos = NULL;
729
730 if (mem_cgroup_disabled())
731 return NULL;
732
733 if (!root)
734 root = root_mem_cgroup;
735
736 if (prev && !reclaim)
737 pos = prev;
738
739 if (!root->use_hierarchy && root != root_mem_cgroup) {
740 if (prev)
741 goto out;
742 return root;
743 }
744
745 rcu_read_lock();
746
747 if (reclaim) {
748 struct mem_cgroup_per_node *mz;
749
750 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
751 iter = &mz->iter[reclaim->priority];
752
753 if (prev && reclaim->generation != iter->generation)
754 goto out_unlock;
755
756 while (1) {
757 pos = READ_ONCE(iter->position);
758 if (!pos || css_tryget(&pos->css))
759 break;
760 /*
761 * css reference reached zero, so iter->position will
762 * be cleared by ->css_released. However, we should not
763 * rely on this happening soon, because ->css_released
764 * is called from a work queue, and by busy-waiting we
765 * might block it. So we clear iter->position right
766 * away.
767 */
768 (void)cmpxchg(&iter->position, pos, NULL);
769 }
770 }
771
772 if (pos)
773 css = &pos->css;
774
775 for (;;) {
776 css = css_next_descendant_pre(css, &root->css);
777 if (!css) {
778 /*
779 * Reclaimers share the hierarchy walk, and a
780 * new one might jump in right at the end of
781 * the hierarchy - make sure they see at least
782 * one group and restart from the beginning.
783 */
784 if (!prev)
785 continue;
786 break;
787 }
788
789 /*
790 * Verify the css and acquire a reference. The root
791 * is provided by the caller, so we know it's alive
792 * and kicking, and don't take an extra reference.
793 */
794 memcg = mem_cgroup_from_css(css);
795
796 if (css == &root->css)
797 break;
798
799 if (css_tryget(css))
800 break;
801
802 memcg = NULL;
803 }
804
805 if (reclaim) {
806 /*
807 * The position could have already been updated by a competing
808 * thread, so check that the value hasn't changed since we read
809 * it to avoid reclaiming from the same cgroup twice.
810 */
811 (void)cmpxchg(&iter->position, pos, memcg);
812
813 if (pos)
814 css_put(&pos->css);
815
816 if (!memcg)
817 iter->generation++;
818 else if (!prev)
819 reclaim->generation = iter->generation;
820 }
821
822 out_unlock:
823 rcu_read_unlock();
824 out:
825 if (prev && prev != root)
826 css_put(&prev->css);
827
828 return memcg;
829 }
830
831 /**
832 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
833 * @root: hierarchy root
834 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
835 */
836 void mem_cgroup_iter_break(struct mem_cgroup *root,
837 struct mem_cgroup *prev)
838 {
839 if (!root)
840 root = root_mem_cgroup;
841 if (prev && prev != root)
842 css_put(&prev->css);
843 }
844
845 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
846 {
847 struct mem_cgroup *memcg = dead_memcg;
848 struct mem_cgroup_reclaim_iter *iter;
849 struct mem_cgroup_per_node *mz;
850 int nid;
851 int i;
852
853 while ((memcg = parent_mem_cgroup(memcg))) {
854 for_each_node(nid) {
855 mz = mem_cgroup_nodeinfo(memcg, nid);
856 for (i = 0; i <= DEF_PRIORITY; i++) {
857 iter = &mz->iter[i];
858 cmpxchg(&iter->position,
859 dead_memcg, NULL);
860 }
861 }
862 }
863 }
864
865 /*
866 * Iteration constructs for visiting all cgroups (under a tree). If
867 * loops are exited prematurely (break), mem_cgroup_iter_break() must
868 * be used for reference counting.
869 */
870 #define for_each_mem_cgroup_tree(iter, root) \
871 for (iter = mem_cgroup_iter(root, NULL, NULL); \
872 iter != NULL; \
873 iter = mem_cgroup_iter(root, iter, NULL))
874
875 #define for_each_mem_cgroup(iter) \
876 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
877 iter != NULL; \
878 iter = mem_cgroup_iter(NULL, iter, NULL))
879
880 /**
881 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
882 * @memcg: hierarchy root
883 * @fn: function to call for each task
884 * @arg: argument passed to @fn
885 *
886 * This function iterates over tasks attached to @memcg or to any of its
887 * descendants and calls @fn for each task. If @fn returns a non-zero
888 * value, the function breaks the iteration loop and returns the value.
889 * Otherwise, it will iterate over all tasks and return 0.
890 *
891 * This function must not be called for the root memory cgroup.
892 */
893 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
894 int (*fn)(struct task_struct *, void *), void *arg)
895 {
896 struct mem_cgroup *iter;
897 int ret = 0;
898
899 BUG_ON(memcg == root_mem_cgroup);
900
901 for_each_mem_cgroup_tree(iter, memcg) {
902 struct css_task_iter it;
903 struct task_struct *task;
904
905 css_task_iter_start(&iter->css, 0, &it);
906 while (!ret && (task = css_task_iter_next(&it)))
907 ret = fn(task, arg);
908 css_task_iter_end(&it);
909 if (ret) {
910 mem_cgroup_iter_break(memcg, iter);
911 break;
912 }
913 }
914 return ret;
915 }
916
917 /**
918 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
919 * @page: the page
920 * @pgdat: pgdat of the page
921 *
922 * This function is only safe when following the LRU page isolation
923 * and putback protocol: the LRU lock must be held, and the page must
924 * either be PageLRU() or the caller must have isolated/allocated it.
925 */
926 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
927 {
928 struct mem_cgroup_per_node *mz;
929 struct mem_cgroup *memcg;
930 struct lruvec *lruvec;
931
932 if (mem_cgroup_disabled()) {
933 lruvec = &pgdat->lruvec;
934 goto out;
935 }
936
937 memcg = page->mem_cgroup;
938 /*
939 * Swapcache readahead pages are added to the LRU - and
940 * possibly migrated - before they are charged.
941 */
942 if (!memcg)
943 memcg = root_mem_cgroup;
944
945 mz = mem_cgroup_page_nodeinfo(memcg, page);
946 lruvec = &mz->lruvec;
947 out:
948 /*
949 * Since a node can be onlined after the mem_cgroup was created,
950 * we have to be prepared to initialize lruvec->zone here;
951 * and if offlined then reonlined, we need to reinitialize it.
952 */
953 if (unlikely(lruvec->pgdat != pgdat))
954 lruvec->pgdat = pgdat;
955 return lruvec;
956 }
957
958 /**
959 * mem_cgroup_update_lru_size - account for adding or removing an lru page
960 * @lruvec: mem_cgroup per zone lru vector
961 * @lru: index of lru list the page is sitting on
962 * @zid: zone id of the accounted pages
963 * @nr_pages: positive when adding or negative when removing
964 *
965 * This function must be called under lru_lock, just before a page is added
966 * to or just after a page is removed from an lru list (that ordering being
967 * so as to allow it to check that lru_size 0 is consistent with list_empty).
968 */
969 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
970 int zid, int nr_pages)
971 {
972 struct mem_cgroup_per_node *mz;
973 unsigned long *lru_size;
974 long size;
975
976 if (mem_cgroup_disabled())
977 return;
978
979 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
980 lru_size = &mz->lru_zone_size[zid][lru];
981
982 if (nr_pages < 0)
983 *lru_size += nr_pages;
984
985 size = *lru_size;
986 if (WARN_ONCE(size < 0,
987 "%s(%p, %d, %d): lru_size %ld\n",
988 __func__, lruvec, lru, nr_pages, size)) {
989 VM_BUG_ON(1);
990 *lru_size = 0;
991 }
992
993 if (nr_pages > 0)
994 *lru_size += nr_pages;
995 }
996
997 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
998 {
999 struct mem_cgroup *task_memcg;
1000 struct task_struct *p;
1001 bool ret;
1002
1003 p = find_lock_task_mm(task);
1004 if (p) {
1005 task_memcg = get_mem_cgroup_from_mm(p->mm);
1006 task_unlock(p);
1007 } else {
1008 /*
1009 * All threads may have already detached their mm's, but the oom
1010 * killer still needs to detect if they have already been oom
1011 * killed to prevent needlessly killing additional tasks.
1012 */
1013 rcu_read_lock();
1014 task_memcg = mem_cgroup_from_task(task);
1015 css_get(&task_memcg->css);
1016 rcu_read_unlock();
1017 }
1018 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1019 css_put(&task_memcg->css);
1020 return ret;
1021 }
1022
1023 /**
1024 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1025 * @memcg: the memory cgroup
1026 *
1027 * Returns the maximum amount of memory @mem can be charged with, in
1028 * pages.
1029 */
1030 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1031 {
1032 unsigned long margin = 0;
1033 unsigned long count;
1034 unsigned long limit;
1035
1036 count = page_counter_read(&memcg->memory);
1037 limit = READ_ONCE(memcg->memory.max);
1038 if (count < limit)
1039 margin = limit - count;
1040
1041 if (do_memsw_account()) {
1042 count = page_counter_read(&memcg->memsw);
1043 limit = READ_ONCE(memcg->memsw.max);
1044 if (count <= limit)
1045 margin = min(margin, limit - count);
1046 else
1047 margin = 0;
1048 }
1049
1050 return margin;
1051 }
1052
1053 /*
1054 * A routine for checking "mem" is under move_account() or not.
1055 *
1056 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1057 * moving cgroups. This is for waiting at high-memory pressure
1058 * caused by "move".
1059 */
1060 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1061 {
1062 struct mem_cgroup *from;
1063 struct mem_cgroup *to;
1064 bool ret = false;
1065 /*
1066 * Unlike task_move routines, we access mc.to, mc.from not under
1067 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1068 */
1069 spin_lock(&mc.lock);
1070 from = mc.from;
1071 to = mc.to;
1072 if (!from)
1073 goto unlock;
1074
1075 ret = mem_cgroup_is_descendant(from, memcg) ||
1076 mem_cgroup_is_descendant(to, memcg);
1077 unlock:
1078 spin_unlock(&mc.lock);
1079 return ret;
1080 }
1081
1082 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1083 {
1084 if (mc.moving_task && current != mc.moving_task) {
1085 if (mem_cgroup_under_move(memcg)) {
1086 DEFINE_WAIT(wait);
1087 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1088 /* moving charge context might have finished. */
1089 if (mc.moving_task)
1090 schedule();
1091 finish_wait(&mc.waitq, &wait);
1092 return true;
1093 }
1094 }
1095 return false;
1096 }
1097
1098 static const unsigned int memcg1_stats[] = {
1099 MEMCG_CACHE,
1100 MEMCG_RSS,
1101 MEMCG_RSS_HUGE,
1102 NR_SHMEM,
1103 NR_FILE_MAPPED,
1104 NR_FILE_DIRTY,
1105 NR_WRITEBACK,
1106 MEMCG_SWAP,
1107 };
1108
1109 static const char *const memcg1_stat_names[] = {
1110 "cache",
1111 "rss",
1112 "rss_huge",
1113 "shmem",
1114 "mapped_file",
1115 "dirty",
1116 "writeback",
1117 "swap",
1118 };
1119
1120 #define K(x) ((x) << (PAGE_SHIFT-10))
1121 /**
1122 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1123 * @memcg: The memory cgroup that went over limit
1124 * @p: Task that is going to be killed
1125 *
1126 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1127 * enabled
1128 */
1129 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1130 {
1131 struct mem_cgroup *iter;
1132 unsigned int i;
1133
1134 rcu_read_lock();
1135
1136 if (p) {
1137 pr_info("Task in ");
1138 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1139 pr_cont(" killed as a result of limit of ");
1140 } else {
1141 pr_info("Memory limit reached of cgroup ");
1142 }
1143
1144 pr_cont_cgroup_path(memcg->css.cgroup);
1145 pr_cont("\n");
1146
1147 rcu_read_unlock();
1148
1149 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1150 K((u64)page_counter_read(&memcg->memory)),
1151 K((u64)memcg->memory.max), memcg->memory.failcnt);
1152 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1153 K((u64)page_counter_read(&memcg->memsw)),
1154 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1155 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1156 K((u64)page_counter_read(&memcg->kmem)),
1157 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1158
1159 for_each_mem_cgroup_tree(iter, memcg) {
1160 pr_info("Memory cgroup stats for ");
1161 pr_cont_cgroup_path(iter->css.cgroup);
1162 pr_cont(":");
1163
1164 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1165 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
1166 continue;
1167 pr_cont(" %s:%luKB", memcg1_stat_names[i],
1168 K(memcg_page_state(iter, memcg1_stats[i])));
1169 }
1170
1171 for (i = 0; i < NR_LRU_LISTS; i++)
1172 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1173 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1174
1175 pr_cont("\n");
1176 }
1177 }
1178
1179 /*
1180 * Return the memory (and swap, if configured) limit for a memcg.
1181 */
1182 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1183 {
1184 unsigned long max;
1185
1186 max = memcg->memory.max;
1187 if (mem_cgroup_swappiness(memcg)) {
1188 unsigned long memsw_max;
1189 unsigned long swap_max;
1190
1191 memsw_max = memcg->memsw.max;
1192 swap_max = memcg->swap.max;
1193 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1194 max = min(max + swap_max, memsw_max);
1195 }
1196 return max;
1197 }
1198
1199 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1200 int order)
1201 {
1202 struct oom_control oc = {
1203 .zonelist = NULL,
1204 .nodemask = NULL,
1205 .memcg = memcg,
1206 .gfp_mask = gfp_mask,
1207 .order = order,
1208 };
1209 bool ret;
1210
1211 mutex_lock(&oom_lock);
1212 ret = out_of_memory(&oc);
1213 mutex_unlock(&oom_lock);
1214 return ret;
1215 }
1216
1217 #if MAX_NUMNODES > 1
1218
1219 /**
1220 * test_mem_cgroup_node_reclaimable
1221 * @memcg: the target memcg
1222 * @nid: the node ID to be checked.
1223 * @noswap : specify true here if the user wants flle only information.
1224 *
1225 * This function returns whether the specified memcg contains any
1226 * reclaimable pages on a node. Returns true if there are any reclaimable
1227 * pages in the node.
1228 */
1229 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1230 int nid, bool noswap)
1231 {
1232 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1233 return true;
1234 if (noswap || !total_swap_pages)
1235 return false;
1236 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1237 return true;
1238 return false;
1239
1240 }
1241
1242 /*
1243 * Always updating the nodemask is not very good - even if we have an empty
1244 * list or the wrong list here, we can start from some node and traverse all
1245 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1246 *
1247 */
1248 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1249 {
1250 int nid;
1251 /*
1252 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1253 * pagein/pageout changes since the last update.
1254 */
1255 if (!atomic_read(&memcg->numainfo_events))
1256 return;
1257 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1258 return;
1259
1260 /* make a nodemask where this memcg uses memory from */
1261 memcg->scan_nodes = node_states[N_MEMORY];
1262
1263 for_each_node_mask(nid, node_states[N_MEMORY]) {
1264
1265 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1266 node_clear(nid, memcg->scan_nodes);
1267 }
1268
1269 atomic_set(&memcg->numainfo_events, 0);
1270 atomic_set(&memcg->numainfo_updating, 0);
1271 }
1272
1273 /*
1274 * Selecting a node where we start reclaim from. Because what we need is just
1275 * reducing usage counter, start from anywhere is O,K. Considering
1276 * memory reclaim from current node, there are pros. and cons.
1277 *
1278 * Freeing memory from current node means freeing memory from a node which
1279 * we'll use or we've used. So, it may make LRU bad. And if several threads
1280 * hit limits, it will see a contention on a node. But freeing from remote
1281 * node means more costs for memory reclaim because of memory latency.
1282 *
1283 * Now, we use round-robin. Better algorithm is welcomed.
1284 */
1285 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1286 {
1287 int node;
1288
1289 mem_cgroup_may_update_nodemask(memcg);
1290 node = memcg->last_scanned_node;
1291
1292 node = next_node_in(node, memcg->scan_nodes);
1293 /*
1294 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1295 * last time it really checked all the LRUs due to rate limiting.
1296 * Fallback to the current node in that case for simplicity.
1297 */
1298 if (unlikely(node == MAX_NUMNODES))
1299 node = numa_node_id();
1300
1301 memcg->last_scanned_node = node;
1302 return node;
1303 }
1304 #else
1305 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1306 {
1307 return 0;
1308 }
1309 #endif
1310
1311 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1312 pg_data_t *pgdat,
1313 gfp_t gfp_mask,
1314 unsigned long *total_scanned)
1315 {
1316 struct mem_cgroup *victim = NULL;
1317 int total = 0;
1318 int loop = 0;
1319 unsigned long excess;
1320 unsigned long nr_scanned;
1321 struct mem_cgroup_reclaim_cookie reclaim = {
1322 .pgdat = pgdat,
1323 .priority = 0,
1324 };
1325
1326 excess = soft_limit_excess(root_memcg);
1327
1328 while (1) {
1329 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1330 if (!victim) {
1331 loop++;
1332 if (loop >= 2) {
1333 /*
1334 * If we have not been able to reclaim
1335 * anything, it might because there are
1336 * no reclaimable pages under this hierarchy
1337 */
1338 if (!total)
1339 break;
1340 /*
1341 * We want to do more targeted reclaim.
1342 * excess >> 2 is not to excessive so as to
1343 * reclaim too much, nor too less that we keep
1344 * coming back to reclaim from this cgroup
1345 */
1346 if (total >= (excess >> 2) ||
1347 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1348 break;
1349 }
1350 continue;
1351 }
1352 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1353 pgdat, &nr_scanned);
1354 *total_scanned += nr_scanned;
1355 if (!soft_limit_excess(root_memcg))
1356 break;
1357 }
1358 mem_cgroup_iter_break(root_memcg, victim);
1359 return total;
1360 }
1361
1362 #ifdef CONFIG_LOCKDEP
1363 static struct lockdep_map memcg_oom_lock_dep_map = {
1364 .name = "memcg_oom_lock",
1365 };
1366 #endif
1367
1368 static DEFINE_SPINLOCK(memcg_oom_lock);
1369
1370 /*
1371 * Check OOM-Killer is already running under our hierarchy.
1372 * If someone is running, return false.
1373 */
1374 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1375 {
1376 struct mem_cgroup *iter, *failed = NULL;
1377
1378 spin_lock(&memcg_oom_lock);
1379
1380 for_each_mem_cgroup_tree(iter, memcg) {
1381 if (iter->oom_lock) {
1382 /*
1383 * this subtree of our hierarchy is already locked
1384 * so we cannot give a lock.
1385 */
1386 failed = iter;
1387 mem_cgroup_iter_break(memcg, iter);
1388 break;
1389 } else
1390 iter->oom_lock = true;
1391 }
1392
1393 if (failed) {
1394 /*
1395 * OK, we failed to lock the whole subtree so we have
1396 * to clean up what we set up to the failing subtree
1397 */
1398 for_each_mem_cgroup_tree(iter, memcg) {
1399 if (iter == failed) {
1400 mem_cgroup_iter_break(memcg, iter);
1401 break;
1402 }
1403 iter->oom_lock = false;
1404 }
1405 } else
1406 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1407
1408 spin_unlock(&memcg_oom_lock);
1409
1410 return !failed;
1411 }
1412
1413 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1414 {
1415 struct mem_cgroup *iter;
1416
1417 spin_lock(&memcg_oom_lock);
1418 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1419 for_each_mem_cgroup_tree(iter, memcg)
1420 iter->oom_lock = false;
1421 spin_unlock(&memcg_oom_lock);
1422 }
1423
1424 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1425 {
1426 struct mem_cgroup *iter;
1427
1428 spin_lock(&memcg_oom_lock);
1429 for_each_mem_cgroup_tree(iter, memcg)
1430 iter->under_oom++;
1431 spin_unlock(&memcg_oom_lock);
1432 }
1433
1434 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1435 {
1436 struct mem_cgroup *iter;
1437
1438 /*
1439 * When a new child is created while the hierarchy is under oom,
1440 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1441 */
1442 spin_lock(&memcg_oom_lock);
1443 for_each_mem_cgroup_tree(iter, memcg)
1444 if (iter->under_oom > 0)
1445 iter->under_oom--;
1446 spin_unlock(&memcg_oom_lock);
1447 }
1448
1449 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1450
1451 struct oom_wait_info {
1452 struct mem_cgroup *memcg;
1453 wait_queue_entry_t wait;
1454 };
1455
1456 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1457 unsigned mode, int sync, void *arg)
1458 {
1459 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1460 struct mem_cgroup *oom_wait_memcg;
1461 struct oom_wait_info *oom_wait_info;
1462
1463 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1464 oom_wait_memcg = oom_wait_info->memcg;
1465
1466 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1467 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1468 return 0;
1469 return autoremove_wake_function(wait, mode, sync, arg);
1470 }
1471
1472 static void memcg_oom_recover(struct mem_cgroup *memcg)
1473 {
1474 /*
1475 * For the following lockless ->under_oom test, the only required
1476 * guarantee is that it must see the state asserted by an OOM when
1477 * this function is called as a result of userland actions
1478 * triggered by the notification of the OOM. This is trivially
1479 * achieved by invoking mem_cgroup_mark_under_oom() before
1480 * triggering notification.
1481 */
1482 if (memcg && memcg->under_oom)
1483 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1484 }
1485
1486 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1487 {
1488 if (!current->memcg_may_oom || order > PAGE_ALLOC_COSTLY_ORDER)
1489 return;
1490 /*
1491 * We are in the middle of the charge context here, so we
1492 * don't want to block when potentially sitting on a callstack
1493 * that holds all kinds of filesystem and mm locks.
1494 *
1495 * Also, the caller may handle a failed allocation gracefully
1496 * (like optional page cache readahead) and so an OOM killer
1497 * invocation might not even be necessary.
1498 *
1499 * That's why we don't do anything here except remember the
1500 * OOM context and then deal with it at the end of the page
1501 * fault when the stack is unwound, the locks are released,
1502 * and when we know whether the fault was overall successful.
1503 */
1504 css_get(&memcg->css);
1505 current->memcg_in_oom = memcg;
1506 current->memcg_oom_gfp_mask = mask;
1507 current->memcg_oom_order = order;
1508 }
1509
1510 /**
1511 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1512 * @handle: actually kill/wait or just clean up the OOM state
1513 *
1514 * This has to be called at the end of a page fault if the memcg OOM
1515 * handler was enabled.
1516 *
1517 * Memcg supports userspace OOM handling where failed allocations must
1518 * sleep on a waitqueue until the userspace task resolves the
1519 * situation. Sleeping directly in the charge context with all kinds
1520 * of locks held is not a good idea, instead we remember an OOM state
1521 * in the task and mem_cgroup_oom_synchronize() has to be called at
1522 * the end of the page fault to complete the OOM handling.
1523 *
1524 * Returns %true if an ongoing memcg OOM situation was detected and
1525 * completed, %false otherwise.
1526 */
1527 bool mem_cgroup_oom_synchronize(bool handle)
1528 {
1529 struct mem_cgroup *memcg = current->memcg_in_oom;
1530 struct oom_wait_info owait;
1531 bool locked;
1532
1533 /* OOM is global, do not handle */
1534 if (!memcg)
1535 return false;
1536
1537 if (!handle)
1538 goto cleanup;
1539
1540 owait.memcg = memcg;
1541 owait.wait.flags = 0;
1542 owait.wait.func = memcg_oom_wake_function;
1543 owait.wait.private = current;
1544 INIT_LIST_HEAD(&owait.wait.entry);
1545
1546 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1547 mem_cgroup_mark_under_oom(memcg);
1548
1549 locked = mem_cgroup_oom_trylock(memcg);
1550
1551 if (locked)
1552 mem_cgroup_oom_notify(memcg);
1553
1554 if (locked && !memcg->oom_kill_disable) {
1555 mem_cgroup_unmark_under_oom(memcg);
1556 finish_wait(&memcg_oom_waitq, &owait.wait);
1557 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1558 current->memcg_oom_order);
1559 } else {
1560 schedule();
1561 mem_cgroup_unmark_under_oom(memcg);
1562 finish_wait(&memcg_oom_waitq, &owait.wait);
1563 }
1564
1565 if (locked) {
1566 mem_cgroup_oom_unlock(memcg);
1567 /*
1568 * There is no guarantee that an OOM-lock contender
1569 * sees the wakeups triggered by the OOM kill
1570 * uncharges. Wake any sleepers explicitely.
1571 */
1572 memcg_oom_recover(memcg);
1573 }
1574 cleanup:
1575 current->memcg_in_oom = NULL;
1576 css_put(&memcg->css);
1577 return true;
1578 }
1579
1580 /**
1581 * lock_page_memcg - lock a page->mem_cgroup binding
1582 * @page: the page
1583 *
1584 * This function protects unlocked LRU pages from being moved to
1585 * another cgroup.
1586 *
1587 * It ensures lifetime of the returned memcg. Caller is responsible
1588 * for the lifetime of the page; __unlock_page_memcg() is available
1589 * when @page might get freed inside the locked section.
1590 */
1591 struct mem_cgroup *lock_page_memcg(struct page *page)
1592 {
1593 struct mem_cgroup *memcg;
1594 unsigned long flags;
1595
1596 /*
1597 * The RCU lock is held throughout the transaction. The fast
1598 * path can get away without acquiring the memcg->move_lock
1599 * because page moving starts with an RCU grace period.
1600 *
1601 * The RCU lock also protects the memcg from being freed when
1602 * the page state that is going to change is the only thing
1603 * preventing the page itself from being freed. E.g. writeback
1604 * doesn't hold a page reference and relies on PG_writeback to
1605 * keep off truncation, migration and so forth.
1606 */
1607 rcu_read_lock();
1608
1609 if (mem_cgroup_disabled())
1610 return NULL;
1611 again:
1612 memcg = page->mem_cgroup;
1613 if (unlikely(!memcg))
1614 return NULL;
1615
1616 if (atomic_read(&memcg->moving_account) <= 0)
1617 return memcg;
1618
1619 spin_lock_irqsave(&memcg->move_lock, flags);
1620 if (memcg != page->mem_cgroup) {
1621 spin_unlock_irqrestore(&memcg->move_lock, flags);
1622 goto again;
1623 }
1624
1625 /*
1626 * When charge migration first begins, we can have locked and
1627 * unlocked page stat updates happening concurrently. Track
1628 * the task who has the lock for unlock_page_memcg().
1629 */
1630 memcg->move_lock_task = current;
1631 memcg->move_lock_flags = flags;
1632
1633 return memcg;
1634 }
1635 EXPORT_SYMBOL(lock_page_memcg);
1636
1637 /**
1638 * __unlock_page_memcg - unlock and unpin a memcg
1639 * @memcg: the memcg
1640 *
1641 * Unlock and unpin a memcg returned by lock_page_memcg().
1642 */
1643 void __unlock_page_memcg(struct mem_cgroup *memcg)
1644 {
1645 if (memcg && memcg->move_lock_task == current) {
1646 unsigned long flags = memcg->move_lock_flags;
1647
1648 memcg->move_lock_task = NULL;
1649 memcg->move_lock_flags = 0;
1650
1651 spin_unlock_irqrestore(&memcg->move_lock, flags);
1652 }
1653
1654 rcu_read_unlock();
1655 }
1656
1657 /**
1658 * unlock_page_memcg - unlock a page->mem_cgroup binding
1659 * @page: the page
1660 */
1661 void unlock_page_memcg(struct page *page)
1662 {
1663 __unlock_page_memcg(page->mem_cgroup);
1664 }
1665 EXPORT_SYMBOL(unlock_page_memcg);
1666
1667 struct memcg_stock_pcp {
1668 struct mem_cgroup *cached; /* this never be root cgroup */
1669 unsigned int nr_pages;
1670 struct work_struct work;
1671 unsigned long flags;
1672 #define FLUSHING_CACHED_CHARGE 0
1673 };
1674 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1675 static DEFINE_MUTEX(percpu_charge_mutex);
1676
1677 /**
1678 * consume_stock: Try to consume stocked charge on this cpu.
1679 * @memcg: memcg to consume from.
1680 * @nr_pages: how many pages to charge.
1681 *
1682 * The charges will only happen if @memcg matches the current cpu's memcg
1683 * stock, and at least @nr_pages are available in that stock. Failure to
1684 * service an allocation will refill the stock.
1685 *
1686 * returns true if successful, false otherwise.
1687 */
1688 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1689 {
1690 struct memcg_stock_pcp *stock;
1691 unsigned long flags;
1692 bool ret = false;
1693
1694 if (nr_pages > MEMCG_CHARGE_BATCH)
1695 return ret;
1696
1697 local_irq_save(flags);
1698
1699 stock = this_cpu_ptr(&memcg_stock);
1700 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1701 stock->nr_pages -= nr_pages;
1702 ret = true;
1703 }
1704
1705 local_irq_restore(flags);
1706
1707 return ret;
1708 }
1709
1710 /*
1711 * Returns stocks cached in percpu and reset cached information.
1712 */
1713 static void drain_stock(struct memcg_stock_pcp *stock)
1714 {
1715 struct mem_cgroup *old = stock->cached;
1716
1717 if (stock->nr_pages) {
1718 page_counter_uncharge(&old->memory, stock->nr_pages);
1719 if (do_memsw_account())
1720 page_counter_uncharge(&old->memsw, stock->nr_pages);
1721 css_put_many(&old->css, stock->nr_pages);
1722 stock->nr_pages = 0;
1723 }
1724 stock->cached = NULL;
1725 }
1726
1727 static void drain_local_stock(struct work_struct *dummy)
1728 {
1729 struct memcg_stock_pcp *stock;
1730 unsigned long flags;
1731
1732 /*
1733 * The only protection from memory hotplug vs. drain_stock races is
1734 * that we always operate on local CPU stock here with IRQ disabled
1735 */
1736 local_irq_save(flags);
1737
1738 stock = this_cpu_ptr(&memcg_stock);
1739 drain_stock(stock);
1740 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1741
1742 local_irq_restore(flags);
1743 }
1744
1745 /*
1746 * Cache charges(val) to local per_cpu area.
1747 * This will be consumed by consume_stock() function, later.
1748 */
1749 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1750 {
1751 struct memcg_stock_pcp *stock;
1752 unsigned long flags;
1753
1754 local_irq_save(flags);
1755
1756 stock = this_cpu_ptr(&memcg_stock);
1757 if (stock->cached != memcg) { /* reset if necessary */
1758 drain_stock(stock);
1759 stock->cached = memcg;
1760 }
1761 stock->nr_pages += nr_pages;
1762
1763 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
1764 drain_stock(stock);
1765
1766 local_irq_restore(flags);
1767 }
1768
1769 /*
1770 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1771 * of the hierarchy under it.
1772 */
1773 static void drain_all_stock(struct mem_cgroup *root_memcg)
1774 {
1775 int cpu, curcpu;
1776
1777 /* If someone's already draining, avoid adding running more workers. */
1778 if (!mutex_trylock(&percpu_charge_mutex))
1779 return;
1780 /*
1781 * Notify other cpus that system-wide "drain" is running
1782 * We do not care about races with the cpu hotplug because cpu down
1783 * as well as workers from this path always operate on the local
1784 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1785 */
1786 curcpu = get_cpu();
1787 for_each_online_cpu(cpu) {
1788 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1789 struct mem_cgroup *memcg;
1790
1791 memcg = stock->cached;
1792 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
1793 continue;
1794 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1795 css_put(&memcg->css);
1796 continue;
1797 }
1798 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1799 if (cpu == curcpu)
1800 drain_local_stock(&stock->work);
1801 else
1802 schedule_work_on(cpu, &stock->work);
1803 }
1804 css_put(&memcg->css);
1805 }
1806 put_cpu();
1807 mutex_unlock(&percpu_charge_mutex);
1808 }
1809
1810 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1811 {
1812 struct memcg_stock_pcp *stock;
1813 struct mem_cgroup *memcg;
1814
1815 stock = &per_cpu(memcg_stock, cpu);
1816 drain_stock(stock);
1817
1818 for_each_mem_cgroup(memcg) {
1819 int i;
1820
1821 for (i = 0; i < MEMCG_NR_STAT; i++) {
1822 int nid;
1823 long x;
1824
1825 x = this_cpu_xchg(memcg->stat_cpu->count[i], 0);
1826 if (x)
1827 atomic_long_add(x, &memcg->stat[i]);
1828
1829 if (i >= NR_VM_NODE_STAT_ITEMS)
1830 continue;
1831
1832 for_each_node(nid) {
1833 struct mem_cgroup_per_node *pn;
1834
1835 pn = mem_cgroup_nodeinfo(memcg, nid);
1836 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
1837 if (x)
1838 atomic_long_add(x, &pn->lruvec_stat[i]);
1839 }
1840 }
1841
1842 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
1843 long x;
1844
1845 x = this_cpu_xchg(memcg->stat_cpu->events[i], 0);
1846 if (x)
1847 atomic_long_add(x, &memcg->events[i]);
1848 }
1849 }
1850
1851 return 0;
1852 }
1853
1854 static void reclaim_high(struct mem_cgroup *memcg,
1855 unsigned int nr_pages,
1856 gfp_t gfp_mask)
1857 {
1858 do {
1859 if (page_counter_read(&memcg->memory) <= memcg->high)
1860 continue;
1861 memcg_memory_event(memcg, MEMCG_HIGH);
1862 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1863 } while ((memcg = parent_mem_cgroup(memcg)));
1864 }
1865
1866 static void high_work_func(struct work_struct *work)
1867 {
1868 struct mem_cgroup *memcg;
1869
1870 memcg = container_of(work, struct mem_cgroup, high_work);
1871 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
1872 }
1873
1874 /*
1875 * Scheduled by try_charge() to be executed from the userland return path
1876 * and reclaims memory over the high limit.
1877 */
1878 void mem_cgroup_handle_over_high(void)
1879 {
1880 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1881 struct mem_cgroup *memcg;
1882
1883 if (likely(!nr_pages))
1884 return;
1885
1886 memcg = get_mem_cgroup_from_mm(current->mm);
1887 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1888 css_put(&memcg->css);
1889 current->memcg_nr_pages_over_high = 0;
1890 }
1891
1892 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1893 unsigned int nr_pages)
1894 {
1895 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
1896 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1897 struct mem_cgroup *mem_over_limit;
1898 struct page_counter *counter;
1899 unsigned long nr_reclaimed;
1900 bool may_swap = true;
1901 bool drained = false;
1902
1903 if (mem_cgroup_is_root(memcg))
1904 return 0;
1905 retry:
1906 if (consume_stock(memcg, nr_pages))
1907 return 0;
1908
1909 if (!do_memsw_account() ||
1910 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1911 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1912 goto done_restock;
1913 if (do_memsw_account())
1914 page_counter_uncharge(&memcg->memsw, batch);
1915 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1916 } else {
1917 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1918 may_swap = false;
1919 }
1920
1921 if (batch > nr_pages) {
1922 batch = nr_pages;
1923 goto retry;
1924 }
1925
1926 /*
1927 * Unlike in global OOM situations, memcg is not in a physical
1928 * memory shortage. Allow dying and OOM-killed tasks to
1929 * bypass the last charges so that they can exit quickly and
1930 * free their memory.
1931 */
1932 if (unlikely(tsk_is_oom_victim(current) ||
1933 fatal_signal_pending(current) ||
1934 current->flags & PF_EXITING))
1935 goto force;
1936
1937 /*
1938 * Prevent unbounded recursion when reclaim operations need to
1939 * allocate memory. This might exceed the limits temporarily,
1940 * but we prefer facilitating memory reclaim and getting back
1941 * under the limit over triggering OOM kills in these cases.
1942 */
1943 if (unlikely(current->flags & PF_MEMALLOC))
1944 goto force;
1945
1946 if (unlikely(task_in_memcg_oom(current)))
1947 goto nomem;
1948
1949 if (!gfpflags_allow_blocking(gfp_mask))
1950 goto nomem;
1951
1952 memcg_memory_event(mem_over_limit, MEMCG_MAX);
1953
1954 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1955 gfp_mask, may_swap);
1956
1957 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1958 goto retry;
1959
1960 if (!drained) {
1961 drain_all_stock(mem_over_limit);
1962 drained = true;
1963 goto retry;
1964 }
1965
1966 if (gfp_mask & __GFP_NORETRY)
1967 goto nomem;
1968 /*
1969 * Even though the limit is exceeded at this point, reclaim
1970 * may have been able to free some pages. Retry the charge
1971 * before killing the task.
1972 *
1973 * Only for regular pages, though: huge pages are rather
1974 * unlikely to succeed so close to the limit, and we fall back
1975 * to regular pages anyway in case of failure.
1976 */
1977 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1978 goto retry;
1979 /*
1980 * At task move, charge accounts can be doubly counted. So, it's
1981 * better to wait until the end of task_move if something is going on.
1982 */
1983 if (mem_cgroup_wait_acct_move(mem_over_limit))
1984 goto retry;
1985
1986 if (nr_retries--)
1987 goto retry;
1988
1989 if (gfp_mask & __GFP_NOFAIL)
1990 goto force;
1991
1992 if (fatal_signal_pending(current))
1993 goto force;
1994
1995 memcg_memory_event(mem_over_limit, MEMCG_OOM);
1996
1997 mem_cgroup_oom(mem_over_limit, gfp_mask,
1998 get_order(nr_pages * PAGE_SIZE));
1999 nomem:
2000 if (!(gfp_mask & __GFP_NOFAIL))
2001 return -ENOMEM;
2002 force:
2003 /*
2004 * The allocation either can't fail or will lead to more memory
2005 * being freed very soon. Allow memory usage go over the limit
2006 * temporarily by force charging it.
2007 */
2008 page_counter_charge(&memcg->memory, nr_pages);
2009 if (do_memsw_account())
2010 page_counter_charge(&memcg->memsw, nr_pages);
2011 css_get_many(&memcg->css, nr_pages);
2012
2013 return 0;
2014
2015 done_restock:
2016 css_get_many(&memcg->css, batch);
2017 if (batch > nr_pages)
2018 refill_stock(memcg, batch - nr_pages);
2019
2020 /*
2021 * If the hierarchy is above the normal consumption range, schedule
2022 * reclaim on returning to userland. We can perform reclaim here
2023 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2024 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2025 * not recorded as it most likely matches current's and won't
2026 * change in the meantime. As high limit is checked again before
2027 * reclaim, the cost of mismatch is negligible.
2028 */
2029 do {
2030 if (page_counter_read(&memcg->memory) > memcg->high) {
2031 /* Don't bother a random interrupted task */
2032 if (in_interrupt()) {
2033 schedule_work(&memcg->high_work);
2034 break;
2035 }
2036 current->memcg_nr_pages_over_high += batch;
2037 set_notify_resume(current);
2038 break;
2039 }
2040 } while ((memcg = parent_mem_cgroup(memcg)));
2041
2042 return 0;
2043 }
2044
2045 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2046 {
2047 if (mem_cgroup_is_root(memcg))
2048 return;
2049
2050 page_counter_uncharge(&memcg->memory, nr_pages);
2051 if (do_memsw_account())
2052 page_counter_uncharge(&memcg->memsw, nr_pages);
2053
2054 css_put_many(&memcg->css, nr_pages);
2055 }
2056
2057 static void lock_page_lru(struct page *page, int *isolated)
2058 {
2059 struct zone *zone = page_zone(page);
2060
2061 spin_lock_irq(zone_lru_lock(zone));
2062 if (PageLRU(page)) {
2063 struct lruvec *lruvec;
2064
2065 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2066 ClearPageLRU(page);
2067 del_page_from_lru_list(page, lruvec, page_lru(page));
2068 *isolated = 1;
2069 } else
2070 *isolated = 0;
2071 }
2072
2073 static void unlock_page_lru(struct page *page, int isolated)
2074 {
2075 struct zone *zone = page_zone(page);
2076
2077 if (isolated) {
2078 struct lruvec *lruvec;
2079
2080 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2081 VM_BUG_ON_PAGE(PageLRU(page), page);
2082 SetPageLRU(page);
2083 add_page_to_lru_list(page, lruvec, page_lru(page));
2084 }
2085 spin_unlock_irq(zone_lru_lock(zone));
2086 }
2087
2088 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2089 bool lrucare)
2090 {
2091 int isolated;
2092
2093 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2094
2095 /*
2096 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2097 * may already be on some other mem_cgroup's LRU. Take care of it.
2098 */
2099 if (lrucare)
2100 lock_page_lru(page, &isolated);
2101
2102 /*
2103 * Nobody should be changing or seriously looking at
2104 * page->mem_cgroup at this point:
2105 *
2106 * - the page is uncharged
2107 *
2108 * - the page is off-LRU
2109 *
2110 * - an anonymous fault has exclusive page access, except for
2111 * a locked page table
2112 *
2113 * - a page cache insertion, a swapin fault, or a migration
2114 * have the page locked
2115 */
2116 page->mem_cgroup = memcg;
2117
2118 if (lrucare)
2119 unlock_page_lru(page, isolated);
2120 }
2121
2122 #ifndef CONFIG_SLOB
2123 static int memcg_alloc_cache_id(void)
2124 {
2125 int id, size;
2126 int err;
2127
2128 id = ida_simple_get(&memcg_cache_ida,
2129 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2130 if (id < 0)
2131 return id;
2132
2133 if (id < memcg_nr_cache_ids)
2134 return id;
2135
2136 /*
2137 * There's no space for the new id in memcg_caches arrays,
2138 * so we have to grow them.
2139 */
2140 down_write(&memcg_cache_ids_sem);
2141
2142 size = 2 * (id + 1);
2143 if (size < MEMCG_CACHES_MIN_SIZE)
2144 size = MEMCG_CACHES_MIN_SIZE;
2145 else if (size > MEMCG_CACHES_MAX_SIZE)
2146 size = MEMCG_CACHES_MAX_SIZE;
2147
2148 err = memcg_update_all_caches(size);
2149 if (!err)
2150 err = memcg_update_all_list_lrus(size);
2151 if (!err)
2152 memcg_nr_cache_ids = size;
2153
2154 up_write(&memcg_cache_ids_sem);
2155
2156 if (err) {
2157 ida_simple_remove(&memcg_cache_ida, id);
2158 return err;
2159 }
2160 return id;
2161 }
2162
2163 static void memcg_free_cache_id(int id)
2164 {
2165 ida_simple_remove(&memcg_cache_ida, id);
2166 }
2167
2168 struct memcg_kmem_cache_create_work {
2169 struct mem_cgroup *memcg;
2170 struct kmem_cache *cachep;
2171 struct work_struct work;
2172 };
2173
2174 static void memcg_kmem_cache_create_func(struct work_struct *w)
2175 {
2176 struct memcg_kmem_cache_create_work *cw =
2177 container_of(w, struct memcg_kmem_cache_create_work, work);
2178 struct mem_cgroup *memcg = cw->memcg;
2179 struct kmem_cache *cachep = cw->cachep;
2180
2181 memcg_create_kmem_cache(memcg, cachep);
2182
2183 css_put(&memcg->css);
2184 kfree(cw);
2185 }
2186
2187 /*
2188 * Enqueue the creation of a per-memcg kmem_cache.
2189 */
2190 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2191 struct kmem_cache *cachep)
2192 {
2193 struct memcg_kmem_cache_create_work *cw;
2194
2195 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2196 if (!cw)
2197 return;
2198
2199 css_get(&memcg->css);
2200
2201 cw->memcg = memcg;
2202 cw->cachep = cachep;
2203 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2204
2205 queue_work(memcg_kmem_cache_wq, &cw->work);
2206 }
2207
2208 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2209 struct kmem_cache *cachep)
2210 {
2211 /*
2212 * We need to stop accounting when we kmalloc, because if the
2213 * corresponding kmalloc cache is not yet created, the first allocation
2214 * in __memcg_schedule_kmem_cache_create will recurse.
2215 *
2216 * However, it is better to enclose the whole function. Depending on
2217 * the debugging options enabled, INIT_WORK(), for instance, can
2218 * trigger an allocation. This too, will make us recurse. Because at
2219 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2220 * the safest choice is to do it like this, wrapping the whole function.
2221 */
2222 current->memcg_kmem_skip_account = 1;
2223 __memcg_schedule_kmem_cache_create(memcg, cachep);
2224 current->memcg_kmem_skip_account = 0;
2225 }
2226
2227 static inline bool memcg_kmem_bypass(void)
2228 {
2229 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2230 return true;
2231 return false;
2232 }
2233
2234 /**
2235 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2236 * @cachep: the original global kmem cache
2237 *
2238 * Return the kmem_cache we're supposed to use for a slab allocation.
2239 * We try to use the current memcg's version of the cache.
2240 *
2241 * If the cache does not exist yet, if we are the first user of it, we
2242 * create it asynchronously in a workqueue and let the current allocation
2243 * go through with the original cache.
2244 *
2245 * This function takes a reference to the cache it returns to assure it
2246 * won't get destroyed while we are working with it. Once the caller is
2247 * done with it, memcg_kmem_put_cache() must be called to release the
2248 * reference.
2249 */
2250 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2251 {
2252 struct mem_cgroup *memcg;
2253 struct kmem_cache *memcg_cachep;
2254 int kmemcg_id;
2255
2256 VM_BUG_ON(!is_root_cache(cachep));
2257
2258 if (memcg_kmem_bypass())
2259 return cachep;
2260
2261 if (current->memcg_kmem_skip_account)
2262 return cachep;
2263
2264 memcg = get_mem_cgroup_from_mm(current->mm);
2265 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2266 if (kmemcg_id < 0)
2267 goto out;
2268
2269 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2270 if (likely(memcg_cachep))
2271 return memcg_cachep;
2272
2273 /*
2274 * If we are in a safe context (can wait, and not in interrupt
2275 * context), we could be be predictable and return right away.
2276 * This would guarantee that the allocation being performed
2277 * already belongs in the new cache.
2278 *
2279 * However, there are some clashes that can arrive from locking.
2280 * For instance, because we acquire the slab_mutex while doing
2281 * memcg_create_kmem_cache, this means no further allocation
2282 * could happen with the slab_mutex held. So it's better to
2283 * defer everything.
2284 */
2285 memcg_schedule_kmem_cache_create(memcg, cachep);
2286 out:
2287 css_put(&memcg->css);
2288 return cachep;
2289 }
2290
2291 /**
2292 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2293 * @cachep: the cache returned by memcg_kmem_get_cache
2294 */
2295 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2296 {
2297 if (!is_root_cache(cachep))
2298 css_put(&cachep->memcg_params.memcg->css);
2299 }
2300
2301 /**
2302 * memcg_kmem_charge_memcg: charge a kmem page
2303 * @page: page to charge
2304 * @gfp: reclaim mode
2305 * @order: allocation order
2306 * @memcg: memory cgroup to charge
2307 *
2308 * Returns 0 on success, an error code on failure.
2309 */
2310 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2311 struct mem_cgroup *memcg)
2312 {
2313 unsigned int nr_pages = 1 << order;
2314 struct page_counter *counter;
2315 int ret;
2316
2317 ret = try_charge(memcg, gfp, nr_pages);
2318 if (ret)
2319 return ret;
2320
2321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2322 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2323 cancel_charge(memcg, nr_pages);
2324 return -ENOMEM;
2325 }
2326
2327 page->mem_cgroup = memcg;
2328
2329 return 0;
2330 }
2331
2332 /**
2333 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2334 * @page: page to charge
2335 * @gfp: reclaim mode
2336 * @order: allocation order
2337 *
2338 * Returns 0 on success, an error code on failure.
2339 */
2340 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2341 {
2342 struct mem_cgroup *memcg;
2343 int ret = 0;
2344
2345 if (memcg_kmem_bypass())
2346 return 0;
2347
2348 memcg = get_mem_cgroup_from_mm(current->mm);
2349 if (!mem_cgroup_is_root(memcg)) {
2350 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2351 if (!ret)
2352 __SetPageKmemcg(page);
2353 }
2354 css_put(&memcg->css);
2355 return ret;
2356 }
2357 /**
2358 * memcg_kmem_uncharge: uncharge a kmem page
2359 * @page: page to uncharge
2360 * @order: allocation order
2361 */
2362 void memcg_kmem_uncharge(struct page *page, int order)
2363 {
2364 struct mem_cgroup *memcg = page->mem_cgroup;
2365 unsigned int nr_pages = 1 << order;
2366
2367 if (!memcg)
2368 return;
2369
2370 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2371
2372 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2373 page_counter_uncharge(&memcg->kmem, nr_pages);
2374
2375 page_counter_uncharge(&memcg->memory, nr_pages);
2376 if (do_memsw_account())
2377 page_counter_uncharge(&memcg->memsw, nr_pages);
2378
2379 page->mem_cgroup = NULL;
2380
2381 /* slab pages do not have PageKmemcg flag set */
2382 if (PageKmemcg(page))
2383 __ClearPageKmemcg(page);
2384
2385 css_put_many(&memcg->css, nr_pages);
2386 }
2387 #endif /* !CONFIG_SLOB */
2388
2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
2391 /*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395 void mem_cgroup_split_huge_fixup(struct page *head)
2396 {
2397 int i;
2398
2399 if (mem_cgroup_disabled())
2400 return;
2401
2402 for (i = 1; i < HPAGE_PMD_NR; i++)
2403 head[i].mem_cgroup = head->mem_cgroup;
2404
2405 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2406 }
2407 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2408
2409 #ifdef CONFIG_MEMCG_SWAP
2410 /**
2411 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2412 * @entry: swap entry to be moved
2413 * @from: mem_cgroup which the entry is moved from
2414 * @to: mem_cgroup which the entry is moved to
2415 *
2416 * It succeeds only when the swap_cgroup's record for this entry is the same
2417 * as the mem_cgroup's id of @from.
2418 *
2419 * Returns 0 on success, -EINVAL on failure.
2420 *
2421 * The caller must have charged to @to, IOW, called page_counter_charge() about
2422 * both res and memsw, and called css_get().
2423 */
2424 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2425 struct mem_cgroup *from, struct mem_cgroup *to)
2426 {
2427 unsigned short old_id, new_id;
2428
2429 old_id = mem_cgroup_id(from);
2430 new_id = mem_cgroup_id(to);
2431
2432 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2433 mod_memcg_state(from, MEMCG_SWAP, -1);
2434 mod_memcg_state(to, MEMCG_SWAP, 1);
2435 return 0;
2436 }
2437 return -EINVAL;
2438 }
2439 #else
2440 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2441 struct mem_cgroup *from, struct mem_cgroup *to)
2442 {
2443 return -EINVAL;
2444 }
2445 #endif
2446
2447 static DEFINE_MUTEX(memcg_max_mutex);
2448
2449 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2450 unsigned long max, bool memsw)
2451 {
2452 bool enlarge = false;
2453 int ret;
2454 bool limits_invariant;
2455 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2456
2457 do {
2458 if (signal_pending(current)) {
2459 ret = -EINTR;
2460 break;
2461 }
2462
2463 mutex_lock(&memcg_max_mutex);
2464 /*
2465 * Make sure that the new limit (memsw or memory limit) doesn't
2466 * break our basic invariant rule memory.max <= memsw.max.
2467 */
2468 limits_invariant = memsw ? max >= memcg->memory.max :
2469 max <= memcg->memsw.max;
2470 if (!limits_invariant) {
2471 mutex_unlock(&memcg_max_mutex);
2472 ret = -EINVAL;
2473 break;
2474 }
2475 if (max > counter->max)
2476 enlarge = true;
2477 ret = page_counter_set_max(counter, max);
2478 mutex_unlock(&memcg_max_mutex);
2479
2480 if (!ret)
2481 break;
2482
2483 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2484 GFP_KERNEL, !memsw)) {
2485 ret = -EBUSY;
2486 break;
2487 }
2488 } while (true);
2489
2490 if (!ret && enlarge)
2491 memcg_oom_recover(memcg);
2492
2493 return ret;
2494 }
2495
2496 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2497 gfp_t gfp_mask,
2498 unsigned long *total_scanned)
2499 {
2500 unsigned long nr_reclaimed = 0;
2501 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2502 unsigned long reclaimed;
2503 int loop = 0;
2504 struct mem_cgroup_tree_per_node *mctz;
2505 unsigned long excess;
2506 unsigned long nr_scanned;
2507
2508 if (order > 0)
2509 return 0;
2510
2511 mctz = soft_limit_tree_node(pgdat->node_id);
2512
2513 /*
2514 * Do not even bother to check the largest node if the root
2515 * is empty. Do it lockless to prevent lock bouncing. Races
2516 * are acceptable as soft limit is best effort anyway.
2517 */
2518 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2519 return 0;
2520
2521 /*
2522 * This loop can run a while, specially if mem_cgroup's continuously
2523 * keep exceeding their soft limit and putting the system under
2524 * pressure
2525 */
2526 do {
2527 if (next_mz)
2528 mz = next_mz;
2529 else
2530 mz = mem_cgroup_largest_soft_limit_node(mctz);
2531 if (!mz)
2532 break;
2533
2534 nr_scanned = 0;
2535 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2536 gfp_mask, &nr_scanned);
2537 nr_reclaimed += reclaimed;
2538 *total_scanned += nr_scanned;
2539 spin_lock_irq(&mctz->lock);
2540 __mem_cgroup_remove_exceeded(mz, mctz);
2541
2542 /*
2543 * If we failed to reclaim anything from this memory cgroup
2544 * it is time to move on to the next cgroup
2545 */
2546 next_mz = NULL;
2547 if (!reclaimed)
2548 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2549
2550 excess = soft_limit_excess(mz->memcg);
2551 /*
2552 * One school of thought says that we should not add
2553 * back the node to the tree if reclaim returns 0.
2554 * But our reclaim could return 0, simply because due
2555 * to priority we are exposing a smaller subset of
2556 * memory to reclaim from. Consider this as a longer
2557 * term TODO.
2558 */
2559 /* If excess == 0, no tree ops */
2560 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2561 spin_unlock_irq(&mctz->lock);
2562 css_put(&mz->memcg->css);
2563 loop++;
2564 /*
2565 * Could not reclaim anything and there are no more
2566 * mem cgroups to try or we seem to be looping without
2567 * reclaiming anything.
2568 */
2569 if (!nr_reclaimed &&
2570 (next_mz == NULL ||
2571 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2572 break;
2573 } while (!nr_reclaimed);
2574 if (next_mz)
2575 css_put(&next_mz->memcg->css);
2576 return nr_reclaimed;
2577 }
2578
2579 /*
2580 * Test whether @memcg has children, dead or alive. Note that this
2581 * function doesn't care whether @memcg has use_hierarchy enabled and
2582 * returns %true if there are child csses according to the cgroup
2583 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2584 */
2585 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2586 {
2587 bool ret;
2588
2589 rcu_read_lock();
2590 ret = css_next_child(NULL, &memcg->css);
2591 rcu_read_unlock();
2592 return ret;
2593 }
2594
2595 /*
2596 * Reclaims as many pages from the given memcg as possible.
2597 *
2598 * Caller is responsible for holding css reference for memcg.
2599 */
2600 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2601 {
2602 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2603
2604 /* we call try-to-free pages for make this cgroup empty */
2605 lru_add_drain_all();
2606 /* try to free all pages in this cgroup */
2607 while (nr_retries && page_counter_read(&memcg->memory)) {
2608 int progress;
2609
2610 if (signal_pending(current))
2611 return -EINTR;
2612
2613 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2614 GFP_KERNEL, true);
2615 if (!progress) {
2616 nr_retries--;
2617 /* maybe some writeback is necessary */
2618 congestion_wait(BLK_RW_ASYNC, HZ/10);
2619 }
2620
2621 }
2622
2623 return 0;
2624 }
2625
2626 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2627 char *buf, size_t nbytes,
2628 loff_t off)
2629 {
2630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2631
2632 if (mem_cgroup_is_root(memcg))
2633 return -EINVAL;
2634 return mem_cgroup_force_empty(memcg) ?: nbytes;
2635 }
2636
2637 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2638 struct cftype *cft)
2639 {
2640 return mem_cgroup_from_css(css)->use_hierarchy;
2641 }
2642
2643 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2644 struct cftype *cft, u64 val)
2645 {
2646 int retval = 0;
2647 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2648 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2649
2650 if (memcg->use_hierarchy == val)
2651 return 0;
2652
2653 /*
2654 * If parent's use_hierarchy is set, we can't make any modifications
2655 * in the child subtrees. If it is unset, then the change can
2656 * occur, provided the current cgroup has no children.
2657 *
2658 * For the root cgroup, parent_mem is NULL, we allow value to be
2659 * set if there are no children.
2660 */
2661 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2662 (val == 1 || val == 0)) {
2663 if (!memcg_has_children(memcg))
2664 memcg->use_hierarchy = val;
2665 else
2666 retval = -EBUSY;
2667 } else
2668 retval = -EINVAL;
2669
2670 return retval;
2671 }
2672
2673 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2674 {
2675 struct mem_cgroup *iter;
2676 int i;
2677
2678 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2679
2680 for_each_mem_cgroup_tree(iter, memcg) {
2681 for (i = 0; i < MEMCG_NR_STAT; i++)
2682 stat[i] += memcg_page_state(iter, i);
2683 }
2684 }
2685
2686 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2687 {
2688 struct mem_cgroup *iter;
2689 int i;
2690
2691 memset(events, 0, sizeof(*events) * NR_VM_EVENT_ITEMS);
2692
2693 for_each_mem_cgroup_tree(iter, memcg) {
2694 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
2695 events[i] += memcg_sum_events(iter, i);
2696 }
2697 }
2698
2699 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2700 {
2701 unsigned long val = 0;
2702
2703 if (mem_cgroup_is_root(memcg)) {
2704 struct mem_cgroup *iter;
2705
2706 for_each_mem_cgroup_tree(iter, memcg) {
2707 val += memcg_page_state(iter, MEMCG_CACHE);
2708 val += memcg_page_state(iter, MEMCG_RSS);
2709 if (swap)
2710 val += memcg_page_state(iter, MEMCG_SWAP);
2711 }
2712 } else {
2713 if (!swap)
2714 val = page_counter_read(&memcg->memory);
2715 else
2716 val = page_counter_read(&memcg->memsw);
2717 }
2718 return val;
2719 }
2720
2721 enum {
2722 RES_USAGE,
2723 RES_LIMIT,
2724 RES_MAX_USAGE,
2725 RES_FAILCNT,
2726 RES_SOFT_LIMIT,
2727 };
2728
2729 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2730 struct cftype *cft)
2731 {
2732 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2733 struct page_counter *counter;
2734
2735 switch (MEMFILE_TYPE(cft->private)) {
2736 case _MEM:
2737 counter = &memcg->memory;
2738 break;
2739 case _MEMSWAP:
2740 counter = &memcg->memsw;
2741 break;
2742 case _KMEM:
2743 counter = &memcg->kmem;
2744 break;
2745 case _TCP:
2746 counter = &memcg->tcpmem;
2747 break;
2748 default:
2749 BUG();
2750 }
2751
2752 switch (MEMFILE_ATTR(cft->private)) {
2753 case RES_USAGE:
2754 if (counter == &memcg->memory)
2755 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2756 if (counter == &memcg->memsw)
2757 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2758 return (u64)page_counter_read(counter) * PAGE_SIZE;
2759 case RES_LIMIT:
2760 return (u64)counter->max * PAGE_SIZE;
2761 case RES_MAX_USAGE:
2762 return (u64)counter->watermark * PAGE_SIZE;
2763 case RES_FAILCNT:
2764 return counter->failcnt;
2765 case RES_SOFT_LIMIT:
2766 return (u64)memcg->soft_limit * PAGE_SIZE;
2767 default:
2768 BUG();
2769 }
2770 }
2771
2772 #ifndef CONFIG_SLOB
2773 static int memcg_online_kmem(struct mem_cgroup *memcg)
2774 {
2775 int memcg_id;
2776
2777 if (cgroup_memory_nokmem)
2778 return 0;
2779
2780 BUG_ON(memcg->kmemcg_id >= 0);
2781 BUG_ON(memcg->kmem_state);
2782
2783 memcg_id = memcg_alloc_cache_id();
2784 if (memcg_id < 0)
2785 return memcg_id;
2786
2787 static_branch_inc(&memcg_kmem_enabled_key);
2788 /*
2789 * A memory cgroup is considered kmem-online as soon as it gets
2790 * kmemcg_id. Setting the id after enabling static branching will
2791 * guarantee no one starts accounting before all call sites are
2792 * patched.
2793 */
2794 memcg->kmemcg_id = memcg_id;
2795 memcg->kmem_state = KMEM_ONLINE;
2796 INIT_LIST_HEAD(&memcg->kmem_caches);
2797
2798 return 0;
2799 }
2800
2801 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2802 {
2803 struct cgroup_subsys_state *css;
2804 struct mem_cgroup *parent, *child;
2805 int kmemcg_id;
2806
2807 if (memcg->kmem_state != KMEM_ONLINE)
2808 return;
2809 /*
2810 * Clear the online state before clearing memcg_caches array
2811 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2812 * guarantees that no cache will be created for this cgroup
2813 * after we are done (see memcg_create_kmem_cache()).
2814 */
2815 memcg->kmem_state = KMEM_ALLOCATED;
2816
2817 memcg_deactivate_kmem_caches(memcg);
2818
2819 kmemcg_id = memcg->kmemcg_id;
2820 BUG_ON(kmemcg_id < 0);
2821
2822 parent = parent_mem_cgroup(memcg);
2823 if (!parent)
2824 parent = root_mem_cgroup;
2825
2826 /*
2827 * Change kmemcg_id of this cgroup and all its descendants to the
2828 * parent's id, and then move all entries from this cgroup's list_lrus
2829 * to ones of the parent. After we have finished, all list_lrus
2830 * corresponding to this cgroup are guaranteed to remain empty. The
2831 * ordering is imposed by list_lru_node->lock taken by
2832 * memcg_drain_all_list_lrus().
2833 */
2834 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2835 css_for_each_descendant_pre(css, &memcg->css) {
2836 child = mem_cgroup_from_css(css);
2837 BUG_ON(child->kmemcg_id != kmemcg_id);
2838 child->kmemcg_id = parent->kmemcg_id;
2839 if (!memcg->use_hierarchy)
2840 break;
2841 }
2842 rcu_read_unlock();
2843
2844 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2845
2846 memcg_free_cache_id(kmemcg_id);
2847 }
2848
2849 static void memcg_free_kmem(struct mem_cgroup *memcg)
2850 {
2851 /* css_alloc() failed, offlining didn't happen */
2852 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2853 memcg_offline_kmem(memcg);
2854
2855 if (memcg->kmem_state == KMEM_ALLOCATED) {
2856 memcg_destroy_kmem_caches(memcg);
2857 static_branch_dec(&memcg_kmem_enabled_key);
2858 WARN_ON(page_counter_read(&memcg->kmem));
2859 }
2860 }
2861 #else
2862 static int memcg_online_kmem(struct mem_cgroup *memcg)
2863 {
2864 return 0;
2865 }
2866 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2867 {
2868 }
2869 static void memcg_free_kmem(struct mem_cgroup *memcg)
2870 {
2871 }
2872 #endif /* !CONFIG_SLOB */
2873
2874 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
2875 unsigned long max)
2876 {
2877 int ret;
2878
2879 mutex_lock(&memcg_max_mutex);
2880 ret = page_counter_set_max(&memcg->kmem, max);
2881 mutex_unlock(&memcg_max_mutex);
2882 return ret;
2883 }
2884
2885 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
2886 {
2887 int ret;
2888
2889 mutex_lock(&memcg_max_mutex);
2890
2891 ret = page_counter_set_max(&memcg->tcpmem, max);
2892 if (ret)
2893 goto out;
2894
2895 if (!memcg->tcpmem_active) {
2896 /*
2897 * The active flag needs to be written after the static_key
2898 * update. This is what guarantees that the socket activation
2899 * function is the last one to run. See mem_cgroup_sk_alloc()
2900 * for details, and note that we don't mark any socket as
2901 * belonging to this memcg until that flag is up.
2902 *
2903 * We need to do this, because static_keys will span multiple
2904 * sites, but we can't control their order. If we mark a socket
2905 * as accounted, but the accounting functions are not patched in
2906 * yet, we'll lose accounting.
2907 *
2908 * We never race with the readers in mem_cgroup_sk_alloc(),
2909 * because when this value change, the code to process it is not
2910 * patched in yet.
2911 */
2912 static_branch_inc(&memcg_sockets_enabled_key);
2913 memcg->tcpmem_active = true;
2914 }
2915 out:
2916 mutex_unlock(&memcg_max_mutex);
2917 return ret;
2918 }
2919
2920 /*
2921 * The user of this function is...
2922 * RES_LIMIT.
2923 */
2924 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2925 char *buf, size_t nbytes, loff_t off)
2926 {
2927 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2928 unsigned long nr_pages;
2929 int ret;
2930
2931 buf = strstrip(buf);
2932 ret = page_counter_memparse(buf, "-1", &nr_pages);
2933 if (ret)
2934 return ret;
2935
2936 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2937 case RES_LIMIT:
2938 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2939 ret = -EINVAL;
2940 break;
2941 }
2942 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2943 case _MEM:
2944 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
2945 break;
2946 case _MEMSWAP:
2947 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
2948 break;
2949 case _KMEM:
2950 ret = memcg_update_kmem_max(memcg, nr_pages);
2951 break;
2952 case _TCP:
2953 ret = memcg_update_tcp_max(memcg, nr_pages);
2954 break;
2955 }
2956 break;
2957 case RES_SOFT_LIMIT:
2958 memcg->soft_limit = nr_pages;
2959 ret = 0;
2960 break;
2961 }
2962 return ret ?: nbytes;
2963 }
2964
2965 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
2966 size_t nbytes, loff_t off)
2967 {
2968 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2969 struct page_counter *counter;
2970
2971 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2972 case _MEM:
2973 counter = &memcg->memory;
2974 break;
2975 case _MEMSWAP:
2976 counter = &memcg->memsw;
2977 break;
2978 case _KMEM:
2979 counter = &memcg->kmem;
2980 break;
2981 case _TCP:
2982 counter = &memcg->tcpmem;
2983 break;
2984 default:
2985 BUG();
2986 }
2987
2988 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2989 case RES_MAX_USAGE:
2990 page_counter_reset_watermark(counter);
2991 break;
2992 case RES_FAILCNT:
2993 counter->failcnt = 0;
2994 break;
2995 default:
2996 BUG();
2997 }
2998
2999 return nbytes;
3000 }
3001
3002 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3003 struct cftype *cft)
3004 {
3005 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3006 }
3007
3008 #ifdef CONFIG_MMU
3009 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3010 struct cftype *cft, u64 val)
3011 {
3012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3013
3014 if (val & ~MOVE_MASK)
3015 return -EINVAL;
3016
3017 /*
3018 * No kind of locking is needed in here, because ->can_attach() will
3019 * check this value once in the beginning of the process, and then carry
3020 * on with stale data. This means that changes to this value will only
3021 * affect task migrations starting after the change.
3022 */
3023 memcg->move_charge_at_immigrate = val;
3024 return 0;
3025 }
3026 #else
3027 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3028 struct cftype *cft, u64 val)
3029 {
3030 return -ENOSYS;
3031 }
3032 #endif
3033
3034 #ifdef CONFIG_NUMA
3035 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3036 {
3037 struct numa_stat {
3038 const char *name;
3039 unsigned int lru_mask;
3040 };
3041
3042 static const struct numa_stat stats[] = {
3043 { "total", LRU_ALL },
3044 { "file", LRU_ALL_FILE },
3045 { "anon", LRU_ALL_ANON },
3046 { "unevictable", BIT(LRU_UNEVICTABLE) },
3047 };
3048 const struct numa_stat *stat;
3049 int nid;
3050 unsigned long nr;
3051 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3052
3053 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3054 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3055 seq_printf(m, "%s=%lu", stat->name, nr);
3056 for_each_node_state(nid, N_MEMORY) {
3057 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3058 stat->lru_mask);
3059 seq_printf(m, " N%d=%lu", nid, nr);
3060 }
3061 seq_putc(m, '\n');
3062 }
3063
3064 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3065 struct mem_cgroup *iter;
3066
3067 nr = 0;
3068 for_each_mem_cgroup_tree(iter, memcg)
3069 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3070 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3071 for_each_node_state(nid, N_MEMORY) {
3072 nr = 0;
3073 for_each_mem_cgroup_tree(iter, memcg)
3074 nr += mem_cgroup_node_nr_lru_pages(
3075 iter, nid, stat->lru_mask);
3076 seq_printf(m, " N%d=%lu", nid, nr);
3077 }
3078 seq_putc(m, '\n');
3079 }
3080
3081 return 0;
3082 }
3083 #endif /* CONFIG_NUMA */
3084
3085 /* Universal VM events cgroup1 shows, original sort order */
3086 unsigned int memcg1_events[] = {
3087 PGPGIN,
3088 PGPGOUT,
3089 PGFAULT,
3090 PGMAJFAULT,
3091 };
3092
3093 static const char *const memcg1_event_names[] = {
3094 "pgpgin",
3095 "pgpgout",
3096 "pgfault",
3097 "pgmajfault",
3098 };
3099
3100 static int memcg_stat_show(struct seq_file *m, void *v)
3101 {
3102 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3103 unsigned long memory, memsw;
3104 struct mem_cgroup *mi;
3105 unsigned int i;
3106
3107 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3108 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3109
3110 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3111 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3112 continue;
3113 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3114 memcg_page_state(memcg, memcg1_stats[i]) *
3115 PAGE_SIZE);
3116 }
3117
3118 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3119 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3120 memcg_sum_events(memcg, memcg1_events[i]));
3121
3122 for (i = 0; i < NR_LRU_LISTS; i++)
3123 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3124 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3125
3126 /* Hierarchical information */
3127 memory = memsw = PAGE_COUNTER_MAX;
3128 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3129 memory = min(memory, mi->memory.max);
3130 memsw = min(memsw, mi->memsw.max);
3131 }
3132 seq_printf(m, "hierarchical_memory_limit %llu\n",
3133 (u64)memory * PAGE_SIZE);
3134 if (do_memsw_account())
3135 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3136 (u64)memsw * PAGE_SIZE);
3137
3138 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3139 unsigned long long val = 0;
3140
3141 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3142 continue;
3143 for_each_mem_cgroup_tree(mi, memcg)
3144 val += memcg_page_state(mi, memcg1_stats[i]) *
3145 PAGE_SIZE;
3146 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
3147 }
3148
3149 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
3150 unsigned long long val = 0;
3151
3152 for_each_mem_cgroup_tree(mi, memcg)
3153 val += memcg_sum_events(mi, memcg1_events[i]);
3154 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
3155 }
3156
3157 for (i = 0; i < NR_LRU_LISTS; i++) {
3158 unsigned long long val = 0;
3159
3160 for_each_mem_cgroup_tree(mi, memcg)
3161 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3162 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3163 }
3164
3165 #ifdef CONFIG_DEBUG_VM
3166 {
3167 pg_data_t *pgdat;
3168 struct mem_cgroup_per_node *mz;
3169 struct zone_reclaim_stat *rstat;
3170 unsigned long recent_rotated[2] = {0, 0};
3171 unsigned long recent_scanned[2] = {0, 0};
3172
3173 for_each_online_pgdat(pgdat) {
3174 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3175 rstat = &mz->lruvec.reclaim_stat;
3176
3177 recent_rotated[0] += rstat->recent_rotated[0];
3178 recent_rotated[1] += rstat->recent_rotated[1];
3179 recent_scanned[0] += rstat->recent_scanned[0];
3180 recent_scanned[1] += rstat->recent_scanned[1];
3181 }
3182 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3183 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3184 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3185 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3186 }
3187 #endif
3188
3189 return 0;
3190 }
3191
3192 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3193 struct cftype *cft)
3194 {
3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196
3197 return mem_cgroup_swappiness(memcg);
3198 }
3199
3200 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3201 struct cftype *cft, u64 val)
3202 {
3203 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3204
3205 if (val > 100)
3206 return -EINVAL;
3207
3208 if (css->parent)
3209 memcg->swappiness = val;
3210 else
3211 vm_swappiness = val;
3212
3213 return 0;
3214 }
3215
3216 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3217 {
3218 struct mem_cgroup_threshold_ary *t;
3219 unsigned long usage;
3220 int i;
3221
3222 rcu_read_lock();
3223 if (!swap)
3224 t = rcu_dereference(memcg->thresholds.primary);
3225 else
3226 t = rcu_dereference(memcg->memsw_thresholds.primary);
3227
3228 if (!t)
3229 goto unlock;
3230
3231 usage = mem_cgroup_usage(memcg, swap);
3232
3233 /*
3234 * current_threshold points to threshold just below or equal to usage.
3235 * If it's not true, a threshold was crossed after last
3236 * call of __mem_cgroup_threshold().
3237 */
3238 i = t->current_threshold;
3239
3240 /*
3241 * Iterate backward over array of thresholds starting from
3242 * current_threshold and check if a threshold is crossed.
3243 * If none of thresholds below usage is crossed, we read
3244 * only one element of the array here.
3245 */
3246 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3247 eventfd_signal(t->entries[i].eventfd, 1);
3248
3249 /* i = current_threshold + 1 */
3250 i++;
3251
3252 /*
3253 * Iterate forward over array of thresholds starting from
3254 * current_threshold+1 and check if a threshold is crossed.
3255 * If none of thresholds above usage is crossed, we read
3256 * only one element of the array here.
3257 */
3258 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3259 eventfd_signal(t->entries[i].eventfd, 1);
3260
3261 /* Update current_threshold */
3262 t->current_threshold = i - 1;
3263 unlock:
3264 rcu_read_unlock();
3265 }
3266
3267 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3268 {
3269 while (memcg) {
3270 __mem_cgroup_threshold(memcg, false);
3271 if (do_memsw_account())
3272 __mem_cgroup_threshold(memcg, true);
3273
3274 memcg = parent_mem_cgroup(memcg);
3275 }
3276 }
3277
3278 static int compare_thresholds(const void *a, const void *b)
3279 {
3280 const struct mem_cgroup_threshold *_a = a;
3281 const struct mem_cgroup_threshold *_b = b;
3282
3283 if (_a->threshold > _b->threshold)
3284 return 1;
3285
3286 if (_a->threshold < _b->threshold)
3287 return -1;
3288
3289 return 0;
3290 }
3291
3292 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3293 {
3294 struct mem_cgroup_eventfd_list *ev;
3295
3296 spin_lock(&memcg_oom_lock);
3297
3298 list_for_each_entry(ev, &memcg->oom_notify, list)
3299 eventfd_signal(ev->eventfd, 1);
3300
3301 spin_unlock(&memcg_oom_lock);
3302 return 0;
3303 }
3304
3305 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3306 {
3307 struct mem_cgroup *iter;
3308
3309 for_each_mem_cgroup_tree(iter, memcg)
3310 mem_cgroup_oom_notify_cb(iter);
3311 }
3312
3313 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3314 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3315 {
3316 struct mem_cgroup_thresholds *thresholds;
3317 struct mem_cgroup_threshold_ary *new;
3318 unsigned long threshold;
3319 unsigned long usage;
3320 int i, size, ret;
3321
3322 ret = page_counter_memparse(args, "-1", &threshold);
3323 if (ret)
3324 return ret;
3325
3326 mutex_lock(&memcg->thresholds_lock);
3327
3328 if (type == _MEM) {
3329 thresholds = &memcg->thresholds;
3330 usage = mem_cgroup_usage(memcg, false);
3331 } else if (type == _MEMSWAP) {
3332 thresholds = &memcg->memsw_thresholds;
3333 usage = mem_cgroup_usage(memcg, true);
3334 } else
3335 BUG();
3336
3337 /* Check if a threshold crossed before adding a new one */
3338 if (thresholds->primary)
3339 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3340
3341 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3342
3343 /* Allocate memory for new array of thresholds */
3344 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3345 GFP_KERNEL);
3346 if (!new) {
3347 ret = -ENOMEM;
3348 goto unlock;
3349 }
3350 new->size = size;
3351
3352 /* Copy thresholds (if any) to new array */
3353 if (thresholds->primary) {
3354 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3355 sizeof(struct mem_cgroup_threshold));
3356 }
3357
3358 /* Add new threshold */
3359 new->entries[size - 1].eventfd = eventfd;
3360 new->entries[size - 1].threshold = threshold;
3361
3362 /* Sort thresholds. Registering of new threshold isn't time-critical */
3363 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3364 compare_thresholds, NULL);
3365
3366 /* Find current threshold */
3367 new->current_threshold = -1;
3368 for (i = 0; i < size; i++) {
3369 if (new->entries[i].threshold <= usage) {
3370 /*
3371 * new->current_threshold will not be used until
3372 * rcu_assign_pointer(), so it's safe to increment
3373 * it here.
3374 */
3375 ++new->current_threshold;
3376 } else
3377 break;
3378 }
3379
3380 /* Free old spare buffer and save old primary buffer as spare */
3381 kfree(thresholds->spare);
3382 thresholds->spare = thresholds->primary;
3383
3384 rcu_assign_pointer(thresholds->primary, new);
3385
3386 /* To be sure that nobody uses thresholds */
3387 synchronize_rcu();
3388
3389 unlock:
3390 mutex_unlock(&memcg->thresholds_lock);
3391
3392 return ret;
3393 }
3394
3395 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3396 struct eventfd_ctx *eventfd, const char *args)
3397 {
3398 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3399 }
3400
3401 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3402 struct eventfd_ctx *eventfd, const char *args)
3403 {
3404 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3405 }
3406
3407 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3408 struct eventfd_ctx *eventfd, enum res_type type)
3409 {
3410 struct mem_cgroup_thresholds *thresholds;
3411 struct mem_cgroup_threshold_ary *new;
3412 unsigned long usage;
3413 int i, j, size;
3414
3415 mutex_lock(&memcg->thresholds_lock);
3416
3417 if (type == _MEM) {
3418 thresholds = &memcg->thresholds;
3419 usage = mem_cgroup_usage(memcg, false);
3420 } else if (type == _MEMSWAP) {
3421 thresholds = &memcg->memsw_thresholds;
3422 usage = mem_cgroup_usage(memcg, true);
3423 } else
3424 BUG();
3425
3426 if (!thresholds->primary)
3427 goto unlock;
3428
3429 /* Check if a threshold crossed before removing */
3430 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3431
3432 /* Calculate new number of threshold */
3433 size = 0;
3434 for (i = 0; i < thresholds->primary->size; i++) {
3435 if (thresholds->primary->entries[i].eventfd != eventfd)
3436 size++;
3437 }
3438
3439 new = thresholds->spare;
3440
3441 /* Set thresholds array to NULL if we don't have thresholds */
3442 if (!size) {
3443 kfree(new);
3444 new = NULL;
3445 goto swap_buffers;
3446 }
3447
3448 new->size = size;
3449
3450 /* Copy thresholds and find current threshold */
3451 new->current_threshold = -1;
3452 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3453 if (thresholds->primary->entries[i].eventfd == eventfd)
3454 continue;
3455
3456 new->entries[j] = thresholds->primary->entries[i];
3457 if (new->entries[j].threshold <= usage) {
3458 /*
3459 * new->current_threshold will not be used
3460 * until rcu_assign_pointer(), so it's safe to increment
3461 * it here.
3462 */
3463 ++new->current_threshold;
3464 }
3465 j++;
3466 }
3467
3468 swap_buffers:
3469 /* Swap primary and spare array */
3470 thresholds->spare = thresholds->primary;
3471
3472 rcu_assign_pointer(thresholds->primary, new);
3473
3474 /* To be sure that nobody uses thresholds */
3475 synchronize_rcu();
3476
3477 /* If all events are unregistered, free the spare array */
3478 if (!new) {
3479 kfree(thresholds->spare);
3480 thresholds->spare = NULL;
3481 }
3482 unlock:
3483 mutex_unlock(&memcg->thresholds_lock);
3484 }
3485
3486 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3487 struct eventfd_ctx *eventfd)
3488 {
3489 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3490 }
3491
3492 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3493 struct eventfd_ctx *eventfd)
3494 {
3495 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3496 }
3497
3498 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3499 struct eventfd_ctx *eventfd, const char *args)
3500 {
3501 struct mem_cgroup_eventfd_list *event;
3502
3503 event = kmalloc(sizeof(*event), GFP_KERNEL);
3504 if (!event)
3505 return -ENOMEM;
3506
3507 spin_lock(&memcg_oom_lock);
3508
3509 event->eventfd = eventfd;
3510 list_add(&event->list, &memcg->oom_notify);
3511
3512 /* already in OOM ? */
3513 if (memcg->under_oom)
3514 eventfd_signal(eventfd, 1);
3515 spin_unlock(&memcg_oom_lock);
3516
3517 return 0;
3518 }
3519
3520 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3521 struct eventfd_ctx *eventfd)
3522 {
3523 struct mem_cgroup_eventfd_list *ev, *tmp;
3524
3525 spin_lock(&memcg_oom_lock);
3526
3527 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3528 if (ev->eventfd == eventfd) {
3529 list_del(&ev->list);
3530 kfree(ev);
3531 }
3532 }
3533
3534 spin_unlock(&memcg_oom_lock);
3535 }
3536
3537 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3538 {
3539 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3540
3541 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3542 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3543 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3544 return 0;
3545 }
3546
3547 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3548 struct cftype *cft, u64 val)
3549 {
3550 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3551
3552 /* cannot set to root cgroup and only 0 and 1 are allowed */
3553 if (!css->parent || !((val == 0) || (val == 1)))
3554 return -EINVAL;
3555
3556 memcg->oom_kill_disable = val;
3557 if (!val)
3558 memcg_oom_recover(memcg);
3559
3560 return 0;
3561 }
3562
3563 #ifdef CONFIG_CGROUP_WRITEBACK
3564
3565 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3566 {
3567 return wb_domain_init(&memcg->cgwb_domain, gfp);
3568 }
3569
3570 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3571 {
3572 wb_domain_exit(&memcg->cgwb_domain);
3573 }
3574
3575 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3576 {
3577 wb_domain_size_changed(&memcg->cgwb_domain);
3578 }
3579
3580 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3581 {
3582 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3583
3584 if (!memcg->css.parent)
3585 return NULL;
3586
3587 return &memcg->cgwb_domain;
3588 }
3589
3590 /**
3591 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3592 * @wb: bdi_writeback in question
3593 * @pfilepages: out parameter for number of file pages
3594 * @pheadroom: out parameter for number of allocatable pages according to memcg
3595 * @pdirty: out parameter for number of dirty pages
3596 * @pwriteback: out parameter for number of pages under writeback
3597 *
3598 * Determine the numbers of file, headroom, dirty, and writeback pages in
3599 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3600 * is a bit more involved.
3601 *
3602 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3603 * headroom is calculated as the lowest headroom of itself and the
3604 * ancestors. Note that this doesn't consider the actual amount of
3605 * available memory in the system. The caller should further cap
3606 * *@pheadroom accordingly.
3607 */
3608 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3609 unsigned long *pheadroom, unsigned long *pdirty,
3610 unsigned long *pwriteback)
3611 {
3612 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3613 struct mem_cgroup *parent;
3614
3615 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
3616
3617 /* this should eventually include NR_UNSTABLE_NFS */
3618 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
3619 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3620 (1 << LRU_ACTIVE_FILE));
3621 *pheadroom = PAGE_COUNTER_MAX;
3622
3623 while ((parent = parent_mem_cgroup(memcg))) {
3624 unsigned long ceiling = min(memcg->memory.max, memcg->high);
3625 unsigned long used = page_counter_read(&memcg->memory);
3626
3627 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3628 memcg = parent;
3629 }
3630 }
3631
3632 #else /* CONFIG_CGROUP_WRITEBACK */
3633
3634 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3635 {
3636 return 0;
3637 }
3638
3639 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3640 {
3641 }
3642
3643 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3644 {
3645 }
3646
3647 #endif /* CONFIG_CGROUP_WRITEBACK */
3648
3649 /*
3650 * DO NOT USE IN NEW FILES.
3651 *
3652 * "cgroup.event_control" implementation.
3653 *
3654 * This is way over-engineered. It tries to support fully configurable
3655 * events for each user. Such level of flexibility is completely
3656 * unnecessary especially in the light of the planned unified hierarchy.
3657 *
3658 * Please deprecate this and replace with something simpler if at all
3659 * possible.
3660 */
3661
3662 /*
3663 * Unregister event and free resources.
3664 *
3665 * Gets called from workqueue.
3666 */
3667 static void memcg_event_remove(struct work_struct *work)
3668 {
3669 struct mem_cgroup_event *event =
3670 container_of(work, struct mem_cgroup_event, remove);
3671 struct mem_cgroup *memcg = event->memcg;
3672
3673 remove_wait_queue(event->wqh, &event->wait);
3674
3675 event->unregister_event(memcg, event->eventfd);
3676
3677 /* Notify userspace the event is going away. */
3678 eventfd_signal(event->eventfd, 1);
3679
3680 eventfd_ctx_put(event->eventfd);
3681 kfree(event);
3682 css_put(&memcg->css);
3683 }
3684
3685 /*
3686 * Gets called on EPOLLHUP on eventfd when user closes it.
3687 *
3688 * Called with wqh->lock held and interrupts disabled.
3689 */
3690 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3691 int sync, void *key)
3692 {
3693 struct mem_cgroup_event *event =
3694 container_of(wait, struct mem_cgroup_event, wait);
3695 struct mem_cgroup *memcg = event->memcg;
3696 __poll_t flags = key_to_poll(key);
3697
3698 if (flags & EPOLLHUP) {
3699 /*
3700 * If the event has been detached at cgroup removal, we
3701 * can simply return knowing the other side will cleanup
3702 * for us.
3703 *
3704 * We can't race against event freeing since the other
3705 * side will require wqh->lock via remove_wait_queue(),
3706 * which we hold.
3707 */
3708 spin_lock(&memcg->event_list_lock);
3709 if (!list_empty(&event->list)) {
3710 list_del_init(&event->list);
3711 /*
3712 * We are in atomic context, but cgroup_event_remove()
3713 * may sleep, so we have to call it in workqueue.
3714 */
3715 schedule_work(&event->remove);
3716 }
3717 spin_unlock(&memcg->event_list_lock);
3718 }
3719
3720 return 0;
3721 }
3722
3723 static void memcg_event_ptable_queue_proc(struct file *file,
3724 wait_queue_head_t *wqh, poll_table *pt)
3725 {
3726 struct mem_cgroup_event *event =
3727 container_of(pt, struct mem_cgroup_event, pt);
3728
3729 event->wqh = wqh;
3730 add_wait_queue(wqh, &event->wait);
3731 }
3732
3733 /*
3734 * DO NOT USE IN NEW FILES.
3735 *
3736 * Parse input and register new cgroup event handler.
3737 *
3738 * Input must be in format '<event_fd> <control_fd> <args>'.
3739 * Interpretation of args is defined by control file implementation.
3740 */
3741 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3742 char *buf, size_t nbytes, loff_t off)
3743 {
3744 struct cgroup_subsys_state *css = of_css(of);
3745 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3746 struct mem_cgroup_event *event;
3747 struct cgroup_subsys_state *cfile_css;
3748 unsigned int efd, cfd;
3749 struct fd efile;
3750 struct fd cfile;
3751 const char *name;
3752 char *endp;
3753 int ret;
3754
3755 buf = strstrip(buf);
3756
3757 efd = simple_strtoul(buf, &endp, 10);
3758 if (*endp != ' ')
3759 return -EINVAL;
3760 buf = endp + 1;
3761
3762 cfd = simple_strtoul(buf, &endp, 10);
3763 if ((*endp != ' ') && (*endp != '\0'))
3764 return -EINVAL;
3765 buf = endp + 1;
3766
3767 event = kzalloc(sizeof(*event), GFP_KERNEL);
3768 if (!event)
3769 return -ENOMEM;
3770
3771 event->memcg = memcg;
3772 INIT_LIST_HEAD(&event->list);
3773 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3774 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3775 INIT_WORK(&event->remove, memcg_event_remove);
3776
3777 efile = fdget(efd);
3778 if (!efile.file) {
3779 ret = -EBADF;
3780 goto out_kfree;
3781 }
3782
3783 event->eventfd = eventfd_ctx_fileget(efile.file);
3784 if (IS_ERR(event->eventfd)) {
3785 ret = PTR_ERR(event->eventfd);
3786 goto out_put_efile;
3787 }
3788
3789 cfile = fdget(cfd);
3790 if (!cfile.file) {
3791 ret = -EBADF;
3792 goto out_put_eventfd;
3793 }
3794
3795 /* the process need read permission on control file */
3796 /* AV: shouldn't we check that it's been opened for read instead? */
3797 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3798 if (ret < 0)
3799 goto out_put_cfile;
3800
3801 /*
3802 * Determine the event callbacks and set them in @event. This used
3803 * to be done via struct cftype but cgroup core no longer knows
3804 * about these events. The following is crude but the whole thing
3805 * is for compatibility anyway.
3806 *
3807 * DO NOT ADD NEW FILES.
3808 */
3809 name = cfile.file->f_path.dentry->d_name.name;
3810
3811 if (!strcmp(name, "memory.usage_in_bytes")) {
3812 event->register_event = mem_cgroup_usage_register_event;
3813 event->unregister_event = mem_cgroup_usage_unregister_event;
3814 } else if (!strcmp(name, "memory.oom_control")) {
3815 event->register_event = mem_cgroup_oom_register_event;
3816 event->unregister_event = mem_cgroup_oom_unregister_event;
3817 } else if (!strcmp(name, "memory.pressure_level")) {
3818 event->register_event = vmpressure_register_event;
3819 event->unregister_event = vmpressure_unregister_event;
3820 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3821 event->register_event = memsw_cgroup_usage_register_event;
3822 event->unregister_event = memsw_cgroup_usage_unregister_event;
3823 } else {
3824 ret = -EINVAL;
3825 goto out_put_cfile;
3826 }
3827
3828 /*
3829 * Verify @cfile should belong to @css. Also, remaining events are
3830 * automatically removed on cgroup destruction but the removal is
3831 * asynchronous, so take an extra ref on @css.
3832 */
3833 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3834 &memory_cgrp_subsys);
3835 ret = -EINVAL;
3836 if (IS_ERR(cfile_css))
3837 goto out_put_cfile;
3838 if (cfile_css != css) {
3839 css_put(cfile_css);
3840 goto out_put_cfile;
3841 }
3842
3843 ret = event->register_event(memcg, event->eventfd, buf);
3844 if (ret)
3845 goto out_put_css;
3846
3847 vfs_poll(efile.file, &event->pt);
3848
3849 spin_lock(&memcg->event_list_lock);
3850 list_add(&event->list, &memcg->event_list);
3851 spin_unlock(&memcg->event_list_lock);
3852
3853 fdput(cfile);
3854 fdput(efile);
3855
3856 return nbytes;
3857
3858 out_put_css:
3859 css_put(css);
3860 out_put_cfile:
3861 fdput(cfile);
3862 out_put_eventfd:
3863 eventfd_ctx_put(event->eventfd);
3864 out_put_efile:
3865 fdput(efile);
3866 out_kfree:
3867 kfree(event);
3868
3869 return ret;
3870 }
3871
3872 static struct cftype mem_cgroup_legacy_files[] = {
3873 {
3874 .name = "usage_in_bytes",
3875 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3876 .read_u64 = mem_cgroup_read_u64,
3877 },
3878 {
3879 .name = "max_usage_in_bytes",
3880 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3881 .write = mem_cgroup_reset,
3882 .read_u64 = mem_cgroup_read_u64,
3883 },
3884 {
3885 .name = "limit_in_bytes",
3886 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3887 .write = mem_cgroup_write,
3888 .read_u64 = mem_cgroup_read_u64,
3889 },
3890 {
3891 .name = "soft_limit_in_bytes",
3892 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3893 .write = mem_cgroup_write,
3894 .read_u64 = mem_cgroup_read_u64,
3895 },
3896 {
3897 .name = "failcnt",
3898 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3899 .write = mem_cgroup_reset,
3900 .read_u64 = mem_cgroup_read_u64,
3901 },
3902 {
3903 .name = "stat",
3904 .seq_show = memcg_stat_show,
3905 },
3906 {
3907 .name = "force_empty",
3908 .write = mem_cgroup_force_empty_write,
3909 },
3910 {
3911 .name = "use_hierarchy",
3912 .write_u64 = mem_cgroup_hierarchy_write,
3913 .read_u64 = mem_cgroup_hierarchy_read,
3914 },
3915 {
3916 .name = "cgroup.event_control", /* XXX: for compat */
3917 .write = memcg_write_event_control,
3918 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3919 },
3920 {
3921 .name = "swappiness",
3922 .read_u64 = mem_cgroup_swappiness_read,
3923 .write_u64 = mem_cgroup_swappiness_write,
3924 },
3925 {
3926 .name = "move_charge_at_immigrate",
3927 .read_u64 = mem_cgroup_move_charge_read,
3928 .write_u64 = mem_cgroup_move_charge_write,
3929 },
3930 {
3931 .name = "oom_control",
3932 .seq_show = mem_cgroup_oom_control_read,
3933 .write_u64 = mem_cgroup_oom_control_write,
3934 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3935 },
3936 {
3937 .name = "pressure_level",
3938 },
3939 #ifdef CONFIG_NUMA
3940 {
3941 .name = "numa_stat",
3942 .seq_show = memcg_numa_stat_show,
3943 },
3944 #endif
3945 {
3946 .name = "kmem.limit_in_bytes",
3947 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3948 .write = mem_cgroup_write,
3949 .read_u64 = mem_cgroup_read_u64,
3950 },
3951 {
3952 .name = "kmem.usage_in_bytes",
3953 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3954 .read_u64 = mem_cgroup_read_u64,
3955 },
3956 {
3957 .name = "kmem.failcnt",
3958 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3959 .write = mem_cgroup_reset,
3960 .read_u64 = mem_cgroup_read_u64,
3961 },
3962 {
3963 .name = "kmem.max_usage_in_bytes",
3964 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
3965 .write = mem_cgroup_reset,
3966 .read_u64 = mem_cgroup_read_u64,
3967 },
3968 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
3969 {
3970 .name = "kmem.slabinfo",
3971 .seq_start = memcg_slab_start,
3972 .seq_next = memcg_slab_next,
3973 .seq_stop = memcg_slab_stop,
3974 .seq_show = memcg_slab_show,
3975 },
3976 #endif
3977 {
3978 .name = "kmem.tcp.limit_in_bytes",
3979 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
3980 .write = mem_cgroup_write,
3981 .read_u64 = mem_cgroup_read_u64,
3982 },
3983 {
3984 .name = "kmem.tcp.usage_in_bytes",
3985 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
3986 .read_u64 = mem_cgroup_read_u64,
3987 },
3988 {
3989 .name = "kmem.tcp.failcnt",
3990 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
3991 .write = mem_cgroup_reset,
3992 .read_u64 = mem_cgroup_read_u64,
3993 },
3994 {
3995 .name = "kmem.tcp.max_usage_in_bytes",
3996 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
3997 .write = mem_cgroup_reset,
3998 .read_u64 = mem_cgroup_read_u64,
3999 },
4000 { }, /* terminate */
4001 };
4002
4003 /*
4004 * Private memory cgroup IDR
4005 *
4006 * Swap-out records and page cache shadow entries need to store memcg
4007 * references in constrained space, so we maintain an ID space that is
4008 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4009 * memory-controlled cgroups to 64k.
4010 *
4011 * However, there usually are many references to the oflline CSS after
4012 * the cgroup has been destroyed, such as page cache or reclaimable
4013 * slab objects, that don't need to hang on to the ID. We want to keep
4014 * those dead CSS from occupying IDs, or we might quickly exhaust the
4015 * relatively small ID space and prevent the creation of new cgroups
4016 * even when there are much fewer than 64k cgroups - possibly none.
4017 *
4018 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4019 * be freed and recycled when it's no longer needed, which is usually
4020 * when the CSS is offlined.
4021 *
4022 * The only exception to that are records of swapped out tmpfs/shmem
4023 * pages that need to be attributed to live ancestors on swapin. But
4024 * those references are manageable from userspace.
4025 */
4026
4027 static DEFINE_IDR(mem_cgroup_idr);
4028
4029 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4030 {
4031 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4032 atomic_add(n, &memcg->id.ref);
4033 }
4034
4035 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4036 {
4037 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4038 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4039 idr_remove(&mem_cgroup_idr, memcg->id.id);
4040 memcg->id.id = 0;
4041
4042 /* Memcg ID pins CSS */
4043 css_put(&memcg->css);
4044 }
4045 }
4046
4047 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4048 {
4049 mem_cgroup_id_get_many(memcg, 1);
4050 }
4051
4052 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4053 {
4054 mem_cgroup_id_put_many(memcg, 1);
4055 }
4056
4057 /**
4058 * mem_cgroup_from_id - look up a memcg from a memcg id
4059 * @id: the memcg id to look up
4060 *
4061 * Caller must hold rcu_read_lock().
4062 */
4063 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4064 {
4065 WARN_ON_ONCE(!rcu_read_lock_held());
4066 return idr_find(&mem_cgroup_idr, id);
4067 }
4068
4069 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4070 {
4071 struct mem_cgroup_per_node *pn;
4072 int tmp = node;
4073 /*
4074 * This routine is called against possible nodes.
4075 * But it's BUG to call kmalloc() against offline node.
4076 *
4077 * TODO: this routine can waste much memory for nodes which will
4078 * never be onlined. It's better to use memory hotplug callback
4079 * function.
4080 */
4081 if (!node_state(node, N_NORMAL_MEMORY))
4082 tmp = -1;
4083 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4084 if (!pn)
4085 return 1;
4086
4087 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4088 if (!pn->lruvec_stat_cpu) {
4089 kfree(pn);
4090 return 1;
4091 }
4092
4093 lruvec_init(&pn->lruvec);
4094 pn->usage_in_excess = 0;
4095 pn->on_tree = false;
4096 pn->memcg = memcg;
4097
4098 memcg->nodeinfo[node] = pn;
4099 return 0;
4100 }
4101
4102 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4103 {
4104 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4105
4106 if (!pn)
4107 return;
4108
4109 free_percpu(pn->lruvec_stat_cpu);
4110 kfree(pn);
4111 }
4112
4113 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4114 {
4115 int node;
4116
4117 for_each_node(node)
4118 free_mem_cgroup_per_node_info(memcg, node);
4119 free_percpu(memcg->stat_cpu);
4120 kfree(memcg);
4121 }
4122
4123 static void mem_cgroup_free(struct mem_cgroup *memcg)
4124 {
4125 memcg_wb_domain_exit(memcg);
4126 __mem_cgroup_free(memcg);
4127 }
4128
4129 static struct mem_cgroup *mem_cgroup_alloc(void)
4130 {
4131 struct mem_cgroup *memcg;
4132 size_t size;
4133 int node;
4134
4135 size = sizeof(struct mem_cgroup);
4136 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4137
4138 memcg = kzalloc(size, GFP_KERNEL);
4139 if (!memcg)
4140 return NULL;
4141
4142 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4143 1, MEM_CGROUP_ID_MAX,
4144 GFP_KERNEL);
4145 if (memcg->id.id < 0)
4146 goto fail;
4147
4148 memcg->stat_cpu = alloc_percpu(struct mem_cgroup_stat_cpu);
4149 if (!memcg->stat_cpu)
4150 goto fail;
4151
4152 for_each_node(node)
4153 if (alloc_mem_cgroup_per_node_info(memcg, node))
4154 goto fail;
4155
4156 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4157 goto fail;
4158
4159 INIT_WORK(&memcg->high_work, high_work_func);
4160 memcg->last_scanned_node = MAX_NUMNODES;
4161 INIT_LIST_HEAD(&memcg->oom_notify);
4162 mutex_init(&memcg->thresholds_lock);
4163 spin_lock_init(&memcg->move_lock);
4164 vmpressure_init(&memcg->vmpressure);
4165 INIT_LIST_HEAD(&memcg->event_list);
4166 spin_lock_init(&memcg->event_list_lock);
4167 memcg->socket_pressure = jiffies;
4168 #ifndef CONFIG_SLOB
4169 memcg->kmemcg_id = -1;
4170 #endif
4171 #ifdef CONFIG_CGROUP_WRITEBACK
4172 INIT_LIST_HEAD(&memcg->cgwb_list);
4173 #endif
4174 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4175 return memcg;
4176 fail:
4177 if (memcg->id.id > 0)
4178 idr_remove(&mem_cgroup_idr, memcg->id.id);
4179 __mem_cgroup_free(memcg);
4180 return NULL;
4181 }
4182
4183 static struct cgroup_subsys_state * __ref
4184 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4185 {
4186 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4187 struct mem_cgroup *memcg;
4188 long error = -ENOMEM;
4189
4190 memcg = mem_cgroup_alloc();
4191 if (!memcg)
4192 return ERR_PTR(error);
4193
4194 memcg->high = PAGE_COUNTER_MAX;
4195 memcg->soft_limit = PAGE_COUNTER_MAX;
4196 if (parent) {
4197 memcg->swappiness = mem_cgroup_swappiness(parent);
4198 memcg->oom_kill_disable = parent->oom_kill_disable;
4199 }
4200 if (parent && parent->use_hierarchy) {
4201 memcg->use_hierarchy = true;
4202 page_counter_init(&memcg->memory, &parent->memory);
4203 page_counter_init(&memcg->swap, &parent->swap);
4204 page_counter_init(&memcg->memsw, &parent->memsw);
4205 page_counter_init(&memcg->kmem, &parent->kmem);
4206 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4207 } else {
4208 page_counter_init(&memcg->memory, NULL);
4209 page_counter_init(&memcg->swap, NULL);
4210 page_counter_init(&memcg->memsw, NULL);
4211 page_counter_init(&memcg->kmem, NULL);
4212 page_counter_init(&memcg->tcpmem, NULL);
4213 /*
4214 * Deeper hierachy with use_hierarchy == false doesn't make
4215 * much sense so let cgroup subsystem know about this
4216 * unfortunate state in our controller.
4217 */
4218 if (parent != root_mem_cgroup)
4219 memory_cgrp_subsys.broken_hierarchy = true;
4220 }
4221
4222 /* The following stuff does not apply to the root */
4223 if (!parent) {
4224 root_mem_cgroup = memcg;
4225 return &memcg->css;
4226 }
4227
4228 error = memcg_online_kmem(memcg);
4229 if (error)
4230 goto fail;
4231
4232 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4233 static_branch_inc(&memcg_sockets_enabled_key);
4234
4235 return &memcg->css;
4236 fail:
4237 mem_cgroup_free(memcg);
4238 return ERR_PTR(-ENOMEM);
4239 }
4240
4241 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4242 {
4243 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4244
4245 /* Online state pins memcg ID, memcg ID pins CSS */
4246 atomic_set(&memcg->id.ref, 1);
4247 css_get(css);
4248 return 0;
4249 }
4250
4251 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4252 {
4253 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4254 struct mem_cgroup_event *event, *tmp;
4255
4256 /*
4257 * Unregister events and notify userspace.
4258 * Notify userspace about cgroup removing only after rmdir of cgroup
4259 * directory to avoid race between userspace and kernelspace.
4260 */
4261 spin_lock(&memcg->event_list_lock);
4262 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4263 list_del_init(&event->list);
4264 schedule_work(&event->remove);
4265 }
4266 spin_unlock(&memcg->event_list_lock);
4267
4268 page_counter_set_low(&memcg->memory, 0);
4269
4270 memcg_offline_kmem(memcg);
4271 wb_memcg_offline(memcg);
4272
4273 mem_cgroup_id_put(memcg);
4274 }
4275
4276 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4277 {
4278 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4279
4280 invalidate_reclaim_iterators(memcg);
4281 }
4282
4283 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4284 {
4285 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4286
4287 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4288 static_branch_dec(&memcg_sockets_enabled_key);
4289
4290 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4291 static_branch_dec(&memcg_sockets_enabled_key);
4292
4293 vmpressure_cleanup(&memcg->vmpressure);
4294 cancel_work_sync(&memcg->high_work);
4295 mem_cgroup_remove_from_trees(memcg);
4296 memcg_free_kmem(memcg);
4297 mem_cgroup_free(memcg);
4298 }
4299
4300 /**
4301 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4302 * @css: the target css
4303 *
4304 * Reset the states of the mem_cgroup associated with @css. This is
4305 * invoked when the userland requests disabling on the default hierarchy
4306 * but the memcg is pinned through dependency. The memcg should stop
4307 * applying policies and should revert to the vanilla state as it may be
4308 * made visible again.
4309 *
4310 * The current implementation only resets the essential configurations.
4311 * This needs to be expanded to cover all the visible parts.
4312 */
4313 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4314 {
4315 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4316
4317 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4318 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4319 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4320 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4321 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4322 page_counter_set_low(&memcg->memory, 0);
4323 memcg->high = PAGE_COUNTER_MAX;
4324 memcg->soft_limit = PAGE_COUNTER_MAX;
4325 memcg_wb_domain_size_changed(memcg);
4326 }
4327
4328 #ifdef CONFIG_MMU
4329 /* Handlers for move charge at task migration. */
4330 static int mem_cgroup_do_precharge(unsigned long count)
4331 {
4332 int ret;
4333
4334 /* Try a single bulk charge without reclaim first, kswapd may wake */
4335 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4336 if (!ret) {
4337 mc.precharge += count;
4338 return ret;
4339 }
4340
4341 /* Try charges one by one with reclaim, but do not retry */
4342 while (count--) {
4343 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4344 if (ret)
4345 return ret;
4346 mc.precharge++;
4347 cond_resched();
4348 }
4349 return 0;
4350 }
4351
4352 union mc_target {
4353 struct page *page;
4354 swp_entry_t ent;
4355 };
4356
4357 enum mc_target_type {
4358 MC_TARGET_NONE = 0,
4359 MC_TARGET_PAGE,
4360 MC_TARGET_SWAP,
4361 MC_TARGET_DEVICE,
4362 };
4363
4364 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4365 unsigned long addr, pte_t ptent)
4366 {
4367 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4368
4369 if (!page || !page_mapped(page))
4370 return NULL;
4371 if (PageAnon(page)) {
4372 if (!(mc.flags & MOVE_ANON))
4373 return NULL;
4374 } else {
4375 if (!(mc.flags & MOVE_FILE))
4376 return NULL;
4377 }
4378 if (!get_page_unless_zero(page))
4379 return NULL;
4380
4381 return page;
4382 }
4383
4384 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4385 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4386 pte_t ptent, swp_entry_t *entry)
4387 {
4388 struct page *page = NULL;
4389 swp_entry_t ent = pte_to_swp_entry(ptent);
4390
4391 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4392 return NULL;
4393
4394 /*
4395 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4396 * a device and because they are not accessible by CPU they are store
4397 * as special swap entry in the CPU page table.
4398 */
4399 if (is_device_private_entry(ent)) {
4400 page = device_private_entry_to_page(ent);
4401 /*
4402 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4403 * a refcount of 1 when free (unlike normal page)
4404 */
4405 if (!page_ref_add_unless(page, 1, 1))
4406 return NULL;
4407 return page;
4408 }
4409
4410 /*
4411 * Because lookup_swap_cache() updates some statistics counter,
4412 * we call find_get_page() with swapper_space directly.
4413 */
4414 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4415 if (do_memsw_account())
4416 entry->val = ent.val;
4417
4418 return page;
4419 }
4420 #else
4421 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4422 pte_t ptent, swp_entry_t *entry)
4423 {
4424 return NULL;
4425 }
4426 #endif
4427
4428 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4429 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4430 {
4431 struct page *page = NULL;
4432 struct address_space *mapping;
4433 pgoff_t pgoff;
4434
4435 if (!vma->vm_file) /* anonymous vma */
4436 return NULL;
4437 if (!(mc.flags & MOVE_FILE))
4438 return NULL;
4439
4440 mapping = vma->vm_file->f_mapping;
4441 pgoff = linear_page_index(vma, addr);
4442
4443 /* page is moved even if it's not RSS of this task(page-faulted). */
4444 #ifdef CONFIG_SWAP
4445 /* shmem/tmpfs may report page out on swap: account for that too. */
4446 if (shmem_mapping(mapping)) {
4447 page = find_get_entry(mapping, pgoff);
4448 if (radix_tree_exceptional_entry(page)) {
4449 swp_entry_t swp = radix_to_swp_entry(page);
4450 if (do_memsw_account())
4451 *entry = swp;
4452 page = find_get_page(swap_address_space(swp),
4453 swp_offset(swp));
4454 }
4455 } else
4456 page = find_get_page(mapping, pgoff);
4457 #else
4458 page = find_get_page(mapping, pgoff);
4459 #endif
4460 return page;
4461 }
4462
4463 /**
4464 * mem_cgroup_move_account - move account of the page
4465 * @page: the page
4466 * @compound: charge the page as compound or small page
4467 * @from: mem_cgroup which the page is moved from.
4468 * @to: mem_cgroup which the page is moved to. @from != @to.
4469 *
4470 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4471 *
4472 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4473 * from old cgroup.
4474 */
4475 static int mem_cgroup_move_account(struct page *page,
4476 bool compound,
4477 struct mem_cgroup *from,
4478 struct mem_cgroup *to)
4479 {
4480 unsigned long flags;
4481 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4482 int ret;
4483 bool anon;
4484
4485 VM_BUG_ON(from == to);
4486 VM_BUG_ON_PAGE(PageLRU(page), page);
4487 VM_BUG_ON(compound && !PageTransHuge(page));
4488
4489 /*
4490 * Prevent mem_cgroup_migrate() from looking at
4491 * page->mem_cgroup of its source page while we change it.
4492 */
4493 ret = -EBUSY;
4494 if (!trylock_page(page))
4495 goto out;
4496
4497 ret = -EINVAL;
4498 if (page->mem_cgroup != from)
4499 goto out_unlock;
4500
4501 anon = PageAnon(page);
4502
4503 spin_lock_irqsave(&from->move_lock, flags);
4504
4505 if (!anon && page_mapped(page)) {
4506 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
4507 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
4508 }
4509
4510 /*
4511 * move_lock grabbed above and caller set from->moving_account, so
4512 * mod_memcg_page_state will serialize updates to PageDirty.
4513 * So mapping should be stable for dirty pages.
4514 */
4515 if (!anon && PageDirty(page)) {
4516 struct address_space *mapping = page_mapping(page);
4517
4518 if (mapping_cap_account_dirty(mapping)) {
4519 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
4520 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
4521 }
4522 }
4523
4524 if (PageWriteback(page)) {
4525 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
4526 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
4527 }
4528
4529 /*
4530 * It is safe to change page->mem_cgroup here because the page
4531 * is referenced, charged, and isolated - we can't race with
4532 * uncharging, charging, migration, or LRU putback.
4533 */
4534
4535 /* caller should have done css_get */
4536 page->mem_cgroup = to;
4537 spin_unlock_irqrestore(&from->move_lock, flags);
4538
4539 ret = 0;
4540
4541 local_irq_disable();
4542 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4543 memcg_check_events(to, page);
4544 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4545 memcg_check_events(from, page);
4546 local_irq_enable();
4547 out_unlock:
4548 unlock_page(page);
4549 out:
4550 return ret;
4551 }
4552
4553 /**
4554 * get_mctgt_type - get target type of moving charge
4555 * @vma: the vma the pte to be checked belongs
4556 * @addr: the address corresponding to the pte to be checked
4557 * @ptent: the pte to be checked
4558 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4559 *
4560 * Returns
4561 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4562 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4563 * move charge. if @target is not NULL, the page is stored in target->page
4564 * with extra refcnt got(Callers should handle it).
4565 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4566 * target for charge migration. if @target is not NULL, the entry is stored
4567 * in target->ent.
4568 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4569 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4570 * For now we such page is charge like a regular page would be as for all
4571 * intent and purposes it is just special memory taking the place of a
4572 * regular page.
4573 *
4574 * See Documentations/vm/hmm.txt and include/linux/hmm.h
4575 *
4576 * Called with pte lock held.
4577 */
4578
4579 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4580 unsigned long addr, pte_t ptent, union mc_target *target)
4581 {
4582 struct page *page = NULL;
4583 enum mc_target_type ret = MC_TARGET_NONE;
4584 swp_entry_t ent = { .val = 0 };
4585
4586 if (pte_present(ptent))
4587 page = mc_handle_present_pte(vma, addr, ptent);
4588 else if (is_swap_pte(ptent))
4589 page = mc_handle_swap_pte(vma, ptent, &ent);
4590 else if (pte_none(ptent))
4591 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4592
4593 if (!page && !ent.val)
4594 return ret;
4595 if (page) {
4596 /*
4597 * Do only loose check w/o serialization.
4598 * mem_cgroup_move_account() checks the page is valid or
4599 * not under LRU exclusion.
4600 */
4601 if (page->mem_cgroup == mc.from) {
4602 ret = MC_TARGET_PAGE;
4603 if (is_device_private_page(page) ||
4604 is_device_public_page(page))
4605 ret = MC_TARGET_DEVICE;
4606 if (target)
4607 target->page = page;
4608 }
4609 if (!ret || !target)
4610 put_page(page);
4611 }
4612 /*
4613 * There is a swap entry and a page doesn't exist or isn't charged.
4614 * But we cannot move a tail-page in a THP.
4615 */
4616 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
4617 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4618 ret = MC_TARGET_SWAP;
4619 if (target)
4620 target->ent = ent;
4621 }
4622 return ret;
4623 }
4624
4625 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4626 /*
4627 * We don't consider PMD mapped swapping or file mapped pages because THP does
4628 * not support them for now.
4629 * Caller should make sure that pmd_trans_huge(pmd) is true.
4630 */
4631 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4632 unsigned long addr, pmd_t pmd, union mc_target *target)
4633 {
4634 struct page *page = NULL;
4635 enum mc_target_type ret = MC_TARGET_NONE;
4636
4637 if (unlikely(is_swap_pmd(pmd))) {
4638 VM_BUG_ON(thp_migration_supported() &&
4639 !is_pmd_migration_entry(pmd));
4640 return ret;
4641 }
4642 page = pmd_page(pmd);
4643 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4644 if (!(mc.flags & MOVE_ANON))
4645 return ret;
4646 if (page->mem_cgroup == mc.from) {
4647 ret = MC_TARGET_PAGE;
4648 if (target) {
4649 get_page(page);
4650 target->page = page;
4651 }
4652 }
4653 return ret;
4654 }
4655 #else
4656 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4657 unsigned long addr, pmd_t pmd, union mc_target *target)
4658 {
4659 return MC_TARGET_NONE;
4660 }
4661 #endif
4662
4663 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4664 unsigned long addr, unsigned long end,
4665 struct mm_walk *walk)
4666 {
4667 struct vm_area_struct *vma = walk->vma;
4668 pte_t *pte;
4669 spinlock_t *ptl;
4670
4671 ptl = pmd_trans_huge_lock(pmd, vma);
4672 if (ptl) {
4673 /*
4674 * Note their can not be MC_TARGET_DEVICE for now as we do not
4675 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4676 * MEMORY_DEVICE_PRIVATE but this might change.
4677 */
4678 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4679 mc.precharge += HPAGE_PMD_NR;
4680 spin_unlock(ptl);
4681 return 0;
4682 }
4683
4684 if (pmd_trans_unstable(pmd))
4685 return 0;
4686 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4687 for (; addr != end; pte++, addr += PAGE_SIZE)
4688 if (get_mctgt_type(vma, addr, *pte, NULL))
4689 mc.precharge++; /* increment precharge temporarily */
4690 pte_unmap_unlock(pte - 1, ptl);
4691 cond_resched();
4692
4693 return 0;
4694 }
4695
4696 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4697 {
4698 unsigned long precharge;
4699
4700 struct mm_walk mem_cgroup_count_precharge_walk = {
4701 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4702 .mm = mm,
4703 };
4704 down_read(&mm->mmap_sem);
4705 walk_page_range(0, mm->highest_vm_end,
4706 &mem_cgroup_count_precharge_walk);
4707 up_read(&mm->mmap_sem);
4708
4709 precharge = mc.precharge;
4710 mc.precharge = 0;
4711
4712 return precharge;
4713 }
4714
4715 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4716 {
4717 unsigned long precharge = mem_cgroup_count_precharge(mm);
4718
4719 VM_BUG_ON(mc.moving_task);
4720 mc.moving_task = current;
4721 return mem_cgroup_do_precharge(precharge);
4722 }
4723
4724 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4725 static void __mem_cgroup_clear_mc(void)
4726 {
4727 struct mem_cgroup *from = mc.from;
4728 struct mem_cgroup *to = mc.to;
4729
4730 /* we must uncharge all the leftover precharges from mc.to */
4731 if (mc.precharge) {
4732 cancel_charge(mc.to, mc.precharge);
4733 mc.precharge = 0;
4734 }
4735 /*
4736 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4737 * we must uncharge here.
4738 */
4739 if (mc.moved_charge) {
4740 cancel_charge(mc.from, mc.moved_charge);
4741 mc.moved_charge = 0;
4742 }
4743 /* we must fixup refcnts and charges */
4744 if (mc.moved_swap) {
4745 /* uncharge swap account from the old cgroup */
4746 if (!mem_cgroup_is_root(mc.from))
4747 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4748
4749 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4750
4751 /*
4752 * we charged both to->memory and to->memsw, so we
4753 * should uncharge to->memory.
4754 */
4755 if (!mem_cgroup_is_root(mc.to))
4756 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4757
4758 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4759 css_put_many(&mc.to->css, mc.moved_swap);
4760
4761 mc.moved_swap = 0;
4762 }
4763 memcg_oom_recover(from);
4764 memcg_oom_recover(to);
4765 wake_up_all(&mc.waitq);
4766 }
4767
4768 static void mem_cgroup_clear_mc(void)
4769 {
4770 struct mm_struct *mm = mc.mm;
4771
4772 /*
4773 * we must clear moving_task before waking up waiters at the end of
4774 * task migration.
4775 */
4776 mc.moving_task = NULL;
4777 __mem_cgroup_clear_mc();
4778 spin_lock(&mc.lock);
4779 mc.from = NULL;
4780 mc.to = NULL;
4781 mc.mm = NULL;
4782 spin_unlock(&mc.lock);
4783
4784 mmput(mm);
4785 }
4786
4787 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4788 {
4789 struct cgroup_subsys_state *css;
4790 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4791 struct mem_cgroup *from;
4792 struct task_struct *leader, *p;
4793 struct mm_struct *mm;
4794 unsigned long move_flags;
4795 int ret = 0;
4796
4797 /* charge immigration isn't supported on the default hierarchy */
4798 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4799 return 0;
4800
4801 /*
4802 * Multi-process migrations only happen on the default hierarchy
4803 * where charge immigration is not used. Perform charge
4804 * immigration if @tset contains a leader and whine if there are
4805 * multiple.
4806 */
4807 p = NULL;
4808 cgroup_taskset_for_each_leader(leader, css, tset) {
4809 WARN_ON_ONCE(p);
4810 p = leader;
4811 memcg = mem_cgroup_from_css(css);
4812 }
4813 if (!p)
4814 return 0;
4815
4816 /*
4817 * We are now commited to this value whatever it is. Changes in this
4818 * tunable will only affect upcoming migrations, not the current one.
4819 * So we need to save it, and keep it going.
4820 */
4821 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4822 if (!move_flags)
4823 return 0;
4824
4825 from = mem_cgroup_from_task(p);
4826
4827 VM_BUG_ON(from == memcg);
4828
4829 mm = get_task_mm(p);
4830 if (!mm)
4831 return 0;
4832 /* We move charges only when we move a owner of the mm */
4833 if (mm->owner == p) {
4834 VM_BUG_ON(mc.from);
4835 VM_BUG_ON(mc.to);
4836 VM_BUG_ON(mc.precharge);
4837 VM_BUG_ON(mc.moved_charge);
4838 VM_BUG_ON(mc.moved_swap);
4839
4840 spin_lock(&mc.lock);
4841 mc.mm = mm;
4842 mc.from = from;
4843 mc.to = memcg;
4844 mc.flags = move_flags;
4845 spin_unlock(&mc.lock);
4846 /* We set mc.moving_task later */
4847
4848 ret = mem_cgroup_precharge_mc(mm);
4849 if (ret)
4850 mem_cgroup_clear_mc();
4851 } else {
4852 mmput(mm);
4853 }
4854 return ret;
4855 }
4856
4857 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4858 {
4859 if (mc.to)
4860 mem_cgroup_clear_mc();
4861 }
4862
4863 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4864 unsigned long addr, unsigned long end,
4865 struct mm_walk *walk)
4866 {
4867 int ret = 0;
4868 struct vm_area_struct *vma = walk->vma;
4869 pte_t *pte;
4870 spinlock_t *ptl;
4871 enum mc_target_type target_type;
4872 union mc_target target;
4873 struct page *page;
4874
4875 ptl = pmd_trans_huge_lock(pmd, vma);
4876 if (ptl) {
4877 if (mc.precharge < HPAGE_PMD_NR) {
4878 spin_unlock(ptl);
4879 return 0;
4880 }
4881 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4882 if (target_type == MC_TARGET_PAGE) {
4883 page = target.page;
4884 if (!isolate_lru_page(page)) {
4885 if (!mem_cgroup_move_account(page, true,
4886 mc.from, mc.to)) {
4887 mc.precharge -= HPAGE_PMD_NR;
4888 mc.moved_charge += HPAGE_PMD_NR;
4889 }
4890 putback_lru_page(page);
4891 }
4892 put_page(page);
4893 } else if (target_type == MC_TARGET_DEVICE) {
4894 page = target.page;
4895 if (!mem_cgroup_move_account(page, true,
4896 mc.from, mc.to)) {
4897 mc.precharge -= HPAGE_PMD_NR;
4898 mc.moved_charge += HPAGE_PMD_NR;
4899 }
4900 put_page(page);
4901 }
4902 spin_unlock(ptl);
4903 return 0;
4904 }
4905
4906 if (pmd_trans_unstable(pmd))
4907 return 0;
4908 retry:
4909 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4910 for (; addr != end; addr += PAGE_SIZE) {
4911 pte_t ptent = *(pte++);
4912 bool device = false;
4913 swp_entry_t ent;
4914
4915 if (!mc.precharge)
4916 break;
4917
4918 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4919 case MC_TARGET_DEVICE:
4920 device = true;
4921 /* fall through */
4922 case MC_TARGET_PAGE:
4923 page = target.page;
4924 /*
4925 * We can have a part of the split pmd here. Moving it
4926 * can be done but it would be too convoluted so simply
4927 * ignore such a partial THP and keep it in original
4928 * memcg. There should be somebody mapping the head.
4929 */
4930 if (PageTransCompound(page))
4931 goto put;
4932 if (!device && isolate_lru_page(page))
4933 goto put;
4934 if (!mem_cgroup_move_account(page, false,
4935 mc.from, mc.to)) {
4936 mc.precharge--;
4937 /* we uncharge from mc.from later. */
4938 mc.moved_charge++;
4939 }
4940 if (!device)
4941 putback_lru_page(page);
4942 put: /* get_mctgt_type() gets the page */
4943 put_page(page);
4944 break;
4945 case MC_TARGET_SWAP:
4946 ent = target.ent;
4947 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4948 mc.precharge--;
4949 /* we fixup refcnts and charges later. */
4950 mc.moved_swap++;
4951 }
4952 break;
4953 default:
4954 break;
4955 }
4956 }
4957 pte_unmap_unlock(pte - 1, ptl);
4958 cond_resched();
4959
4960 if (addr != end) {
4961 /*
4962 * We have consumed all precharges we got in can_attach().
4963 * We try charge one by one, but don't do any additional
4964 * charges to mc.to if we have failed in charge once in attach()
4965 * phase.
4966 */
4967 ret = mem_cgroup_do_precharge(1);
4968 if (!ret)
4969 goto retry;
4970 }
4971
4972 return ret;
4973 }
4974
4975 static void mem_cgroup_move_charge(void)
4976 {
4977 struct mm_walk mem_cgroup_move_charge_walk = {
4978 .pmd_entry = mem_cgroup_move_charge_pte_range,
4979 .mm = mc.mm,
4980 };
4981
4982 lru_add_drain_all();
4983 /*
4984 * Signal lock_page_memcg() to take the memcg's move_lock
4985 * while we're moving its pages to another memcg. Then wait
4986 * for already started RCU-only updates to finish.
4987 */
4988 atomic_inc(&mc.from->moving_account);
4989 synchronize_rcu();
4990 retry:
4991 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4992 /*
4993 * Someone who are holding the mmap_sem might be waiting in
4994 * waitq. So we cancel all extra charges, wake up all waiters,
4995 * and retry. Because we cancel precharges, we might not be able
4996 * to move enough charges, but moving charge is a best-effort
4997 * feature anyway, so it wouldn't be a big problem.
4998 */
4999 __mem_cgroup_clear_mc();
5000 cond_resched();
5001 goto retry;
5002 }
5003 /*
5004 * When we have consumed all precharges and failed in doing
5005 * additional charge, the page walk just aborts.
5006 */
5007 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5008
5009 up_read(&mc.mm->mmap_sem);
5010 atomic_dec(&mc.from->moving_account);
5011 }
5012
5013 static void mem_cgroup_move_task(void)
5014 {
5015 if (mc.to) {
5016 mem_cgroup_move_charge();
5017 mem_cgroup_clear_mc();
5018 }
5019 }
5020 #else /* !CONFIG_MMU */
5021 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5022 {
5023 return 0;
5024 }
5025 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5026 {
5027 }
5028 static void mem_cgroup_move_task(void)
5029 {
5030 }
5031 #endif
5032
5033 /*
5034 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5035 * to verify whether we're attached to the default hierarchy on each mount
5036 * attempt.
5037 */
5038 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5039 {
5040 /*
5041 * use_hierarchy is forced on the default hierarchy. cgroup core
5042 * guarantees that @root doesn't have any children, so turning it
5043 * on for the root memcg is enough.
5044 */
5045 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5046 root_mem_cgroup->use_hierarchy = true;
5047 else
5048 root_mem_cgroup->use_hierarchy = false;
5049 }
5050
5051 static u64 memory_current_read(struct cgroup_subsys_state *css,
5052 struct cftype *cft)
5053 {
5054 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5055
5056 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5057 }
5058
5059 static int memory_low_show(struct seq_file *m, void *v)
5060 {
5061 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5062 unsigned long low = READ_ONCE(memcg->memory.low);
5063
5064 if (low == PAGE_COUNTER_MAX)
5065 seq_puts(m, "max\n");
5066 else
5067 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5068
5069 return 0;
5070 }
5071
5072 static ssize_t memory_low_write(struct kernfs_open_file *of,
5073 char *buf, size_t nbytes, loff_t off)
5074 {
5075 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5076 unsigned long low;
5077 int err;
5078
5079 buf = strstrip(buf);
5080 err = page_counter_memparse(buf, "max", &low);
5081 if (err)
5082 return err;
5083
5084 page_counter_set_low(&memcg->memory, low);
5085
5086 return nbytes;
5087 }
5088
5089 static int memory_high_show(struct seq_file *m, void *v)
5090 {
5091 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5092 unsigned long high = READ_ONCE(memcg->high);
5093
5094 if (high == PAGE_COUNTER_MAX)
5095 seq_puts(m, "max\n");
5096 else
5097 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5098
5099 return 0;
5100 }
5101
5102 static ssize_t memory_high_write(struct kernfs_open_file *of,
5103 char *buf, size_t nbytes, loff_t off)
5104 {
5105 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5106 unsigned long nr_pages;
5107 unsigned long high;
5108 int err;
5109
5110 buf = strstrip(buf);
5111 err = page_counter_memparse(buf, "max", &high);
5112 if (err)
5113 return err;
5114
5115 memcg->high = high;
5116
5117 nr_pages = page_counter_read(&memcg->memory);
5118 if (nr_pages > high)
5119 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5120 GFP_KERNEL, true);
5121
5122 memcg_wb_domain_size_changed(memcg);
5123 return nbytes;
5124 }
5125
5126 static int memory_max_show(struct seq_file *m, void *v)
5127 {
5128 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5129 unsigned long max = READ_ONCE(memcg->memory.max);
5130
5131 if (max == PAGE_COUNTER_MAX)
5132 seq_puts(m, "max\n");
5133 else
5134 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5135
5136 return 0;
5137 }
5138
5139 static ssize_t memory_max_write(struct kernfs_open_file *of,
5140 char *buf, size_t nbytes, loff_t off)
5141 {
5142 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5143 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5144 bool drained = false;
5145 unsigned long max;
5146 int err;
5147
5148 buf = strstrip(buf);
5149 err = page_counter_memparse(buf, "max", &max);
5150 if (err)
5151 return err;
5152
5153 xchg(&memcg->memory.max, max);
5154
5155 for (;;) {
5156 unsigned long nr_pages = page_counter_read(&memcg->memory);
5157
5158 if (nr_pages <= max)
5159 break;
5160
5161 if (signal_pending(current)) {
5162 err = -EINTR;
5163 break;
5164 }
5165
5166 if (!drained) {
5167 drain_all_stock(memcg);
5168 drained = true;
5169 continue;
5170 }
5171
5172 if (nr_reclaims) {
5173 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5174 GFP_KERNEL, true))
5175 nr_reclaims--;
5176 continue;
5177 }
5178
5179 memcg_memory_event(memcg, MEMCG_OOM);
5180 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5181 break;
5182 }
5183
5184 memcg_wb_domain_size_changed(memcg);
5185 return nbytes;
5186 }
5187
5188 static int memory_events_show(struct seq_file *m, void *v)
5189 {
5190 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5191
5192 seq_printf(m, "low %lu\n",
5193 atomic_long_read(&memcg->memory_events[MEMCG_LOW]));
5194 seq_printf(m, "high %lu\n",
5195 atomic_long_read(&memcg->memory_events[MEMCG_HIGH]));
5196 seq_printf(m, "max %lu\n",
5197 atomic_long_read(&memcg->memory_events[MEMCG_MAX]));
5198 seq_printf(m, "oom %lu\n",
5199 atomic_long_read(&memcg->memory_events[MEMCG_OOM]));
5200 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
5201
5202 return 0;
5203 }
5204
5205 static int memory_stat_show(struct seq_file *m, void *v)
5206 {
5207 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5208 unsigned long stat[MEMCG_NR_STAT];
5209 unsigned long events[NR_VM_EVENT_ITEMS];
5210 int i;
5211
5212 /*
5213 * Provide statistics on the state of the memory subsystem as
5214 * well as cumulative event counters that show past behavior.
5215 *
5216 * This list is ordered following a combination of these gradients:
5217 * 1) generic big picture -> specifics and details
5218 * 2) reflecting userspace activity -> reflecting kernel heuristics
5219 *
5220 * Current memory state:
5221 */
5222
5223 tree_stat(memcg, stat);
5224 tree_events(memcg, events);
5225
5226 seq_printf(m, "anon %llu\n",
5227 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
5228 seq_printf(m, "file %llu\n",
5229 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
5230 seq_printf(m, "kernel_stack %llu\n",
5231 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5232 seq_printf(m, "slab %llu\n",
5233 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5234 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5235 seq_printf(m, "sock %llu\n",
5236 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5237
5238 seq_printf(m, "shmem %llu\n",
5239 (u64)stat[NR_SHMEM] * PAGE_SIZE);
5240 seq_printf(m, "file_mapped %llu\n",
5241 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
5242 seq_printf(m, "file_dirty %llu\n",
5243 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
5244 seq_printf(m, "file_writeback %llu\n",
5245 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
5246
5247 for (i = 0; i < NR_LRU_LISTS; i++) {
5248 struct mem_cgroup *mi;
5249 unsigned long val = 0;
5250
5251 for_each_mem_cgroup_tree(mi, memcg)
5252 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5253 seq_printf(m, "%s %llu\n",
5254 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5255 }
5256
5257 seq_printf(m, "slab_reclaimable %llu\n",
5258 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
5259 seq_printf(m, "slab_unreclaimable %llu\n",
5260 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5261
5262 /* Accumulated memory events */
5263
5264 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5265 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
5266
5267 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5268 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5269 events[PGSCAN_DIRECT]);
5270 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5271 events[PGSTEAL_DIRECT]);
5272 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5273 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5274 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5275 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5276
5277 seq_printf(m, "workingset_refault %lu\n",
5278 stat[WORKINGSET_REFAULT]);
5279 seq_printf(m, "workingset_activate %lu\n",
5280 stat[WORKINGSET_ACTIVATE]);
5281 seq_printf(m, "workingset_nodereclaim %lu\n",
5282 stat[WORKINGSET_NODERECLAIM]);
5283
5284 return 0;
5285 }
5286
5287 static struct cftype memory_files[] = {
5288 {
5289 .name = "current",
5290 .flags = CFTYPE_NOT_ON_ROOT,
5291 .read_u64 = memory_current_read,
5292 },
5293 {
5294 .name = "low",
5295 .flags = CFTYPE_NOT_ON_ROOT,
5296 .seq_show = memory_low_show,
5297 .write = memory_low_write,
5298 },
5299 {
5300 .name = "high",
5301 .flags = CFTYPE_NOT_ON_ROOT,
5302 .seq_show = memory_high_show,
5303 .write = memory_high_write,
5304 },
5305 {
5306 .name = "max",
5307 .flags = CFTYPE_NOT_ON_ROOT,
5308 .seq_show = memory_max_show,
5309 .write = memory_max_write,
5310 },
5311 {
5312 .name = "events",
5313 .flags = CFTYPE_NOT_ON_ROOT,
5314 .file_offset = offsetof(struct mem_cgroup, events_file),
5315 .seq_show = memory_events_show,
5316 },
5317 {
5318 .name = "stat",
5319 .flags = CFTYPE_NOT_ON_ROOT,
5320 .seq_show = memory_stat_show,
5321 },
5322 { } /* terminate */
5323 };
5324
5325 struct cgroup_subsys memory_cgrp_subsys = {
5326 .css_alloc = mem_cgroup_css_alloc,
5327 .css_online = mem_cgroup_css_online,
5328 .css_offline = mem_cgroup_css_offline,
5329 .css_released = mem_cgroup_css_released,
5330 .css_free = mem_cgroup_css_free,
5331 .css_reset = mem_cgroup_css_reset,
5332 .can_attach = mem_cgroup_can_attach,
5333 .cancel_attach = mem_cgroup_cancel_attach,
5334 .post_attach = mem_cgroup_move_task,
5335 .bind = mem_cgroup_bind,
5336 .dfl_cftypes = memory_files,
5337 .legacy_cftypes = mem_cgroup_legacy_files,
5338 .early_init = 0,
5339 };
5340
5341 /**
5342 * mem_cgroup_low - check if memory consumption is in the normal range
5343 * @root: the top ancestor of the sub-tree being checked
5344 * @memcg: the memory cgroup to check
5345 *
5346 * WARNING: This function is not stateless! It can only be used as part
5347 * of a top-down tree iteration, not for isolated queries.
5348 *
5349 * Returns %true if memory consumption of @memcg is in the normal range.
5350 *
5351 * @root is exclusive; it is never low when looked at directly
5352 *
5353 * To provide a proper hierarchical behavior, effective memory.low value
5354 * is used.
5355 *
5356 * Effective memory.low is always equal or less than the original memory.low.
5357 * If there is no memory.low overcommittment (which is always true for
5358 * top-level memory cgroups), these two values are equal.
5359 * Otherwise, it's a part of parent's effective memory.low,
5360 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5361 * memory.low usages, where memory.low usage is the size of actually
5362 * protected memory.
5363 *
5364 * low_usage
5365 * elow = min( memory.low, parent->elow * ------------------ ),
5366 * siblings_low_usage
5367 *
5368 * | memory.current, if memory.current < memory.low
5369 * low_usage = |
5370 | 0, otherwise.
5371 *
5372 *
5373 * Such definition of the effective memory.low provides the expected
5374 * hierarchical behavior: parent's memory.low value is limiting
5375 * children, unprotected memory is reclaimed first and cgroups,
5376 * which are not using their guarantee do not affect actual memory
5377 * distribution.
5378 *
5379 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5380 *
5381 * A A/memory.low = 2G, A/memory.current = 6G
5382 * //\\
5383 * BC DE B/memory.low = 3G B/memory.current = 2G
5384 * C/memory.low = 1G C/memory.current = 2G
5385 * D/memory.low = 0 D/memory.current = 2G
5386 * E/memory.low = 10G E/memory.current = 0
5387 *
5388 * and the memory pressure is applied, the following memory distribution
5389 * is expected (approximately):
5390 *
5391 * A/memory.current = 2G
5392 *
5393 * B/memory.current = 1.3G
5394 * C/memory.current = 0.6G
5395 * D/memory.current = 0
5396 * E/memory.current = 0
5397 *
5398 * These calculations require constant tracking of the actual low usages
5399 * (see propagate_low_usage()), as well as recursive calculation of
5400 * effective memory.low values. But as we do call mem_cgroup_low()
5401 * path for each memory cgroup top-down from the reclaim,
5402 * it's possible to optimize this part, and save calculated elow
5403 * for next usage. This part is intentionally racy, but it's ok,
5404 * as memory.low is a best-effort mechanism.
5405 */
5406 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5407 {
5408 unsigned long usage, low_usage, siblings_low_usage;
5409 unsigned long elow, parent_elow;
5410 struct mem_cgroup *parent;
5411
5412 if (mem_cgroup_disabled())
5413 return false;
5414
5415 if (!root)
5416 root = root_mem_cgroup;
5417 if (memcg == root)
5418 return false;
5419
5420 elow = memcg->memory.low;
5421 usage = page_counter_read(&memcg->memory);
5422 parent = parent_mem_cgroup(memcg);
5423
5424 if (parent == root)
5425 goto exit;
5426
5427 parent_elow = READ_ONCE(parent->memory.elow);
5428 elow = min(elow, parent_elow);
5429
5430 if (!elow || !parent_elow)
5431 goto exit;
5432
5433 low_usage = min(usage, memcg->memory.low);
5434 siblings_low_usage = atomic_long_read(
5435 &parent->memory.children_low_usage);
5436
5437 if (!low_usage || !siblings_low_usage)
5438 goto exit;
5439
5440 elow = min(elow, parent_elow * low_usage / siblings_low_usage);
5441 exit:
5442 memcg->memory.elow = elow;
5443 return usage && usage <= elow;
5444 }
5445
5446 /**
5447 * mem_cgroup_try_charge - try charging a page
5448 * @page: page to charge
5449 * @mm: mm context of the victim
5450 * @gfp_mask: reclaim mode
5451 * @memcgp: charged memcg return
5452 * @compound: charge the page as compound or small page
5453 *
5454 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5455 * pages according to @gfp_mask if necessary.
5456 *
5457 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5458 * Otherwise, an error code is returned.
5459 *
5460 * After page->mapping has been set up, the caller must finalize the
5461 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5462 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5463 */
5464 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5465 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5466 bool compound)
5467 {
5468 struct mem_cgroup *memcg = NULL;
5469 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5470 int ret = 0;
5471
5472 if (mem_cgroup_disabled())
5473 goto out;
5474
5475 if (PageSwapCache(page)) {
5476 /*
5477 * Every swap fault against a single page tries to charge the
5478 * page, bail as early as possible. shmem_unuse() encounters
5479 * already charged pages, too. The USED bit is protected by
5480 * the page lock, which serializes swap cache removal, which
5481 * in turn serializes uncharging.
5482 */
5483 VM_BUG_ON_PAGE(!PageLocked(page), page);
5484 if (compound_head(page)->mem_cgroup)
5485 goto out;
5486
5487 if (do_swap_account) {
5488 swp_entry_t ent = { .val = page_private(page), };
5489 unsigned short id = lookup_swap_cgroup_id(ent);
5490
5491 rcu_read_lock();
5492 memcg = mem_cgroup_from_id(id);
5493 if (memcg && !css_tryget_online(&memcg->css))
5494 memcg = NULL;
5495 rcu_read_unlock();
5496 }
5497 }
5498
5499 if (!memcg)
5500 memcg = get_mem_cgroup_from_mm(mm);
5501
5502 ret = try_charge(memcg, gfp_mask, nr_pages);
5503
5504 css_put(&memcg->css);
5505 out:
5506 *memcgp = memcg;
5507 return ret;
5508 }
5509
5510 /**
5511 * mem_cgroup_commit_charge - commit a page charge
5512 * @page: page to charge
5513 * @memcg: memcg to charge the page to
5514 * @lrucare: page might be on LRU already
5515 * @compound: charge the page as compound or small page
5516 *
5517 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5518 * after page->mapping has been set up. This must happen atomically
5519 * as part of the page instantiation, i.e. under the page table lock
5520 * for anonymous pages, under the page lock for page and swap cache.
5521 *
5522 * In addition, the page must not be on the LRU during the commit, to
5523 * prevent racing with task migration. If it might be, use @lrucare.
5524 *
5525 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5526 */
5527 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5528 bool lrucare, bool compound)
5529 {
5530 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5531
5532 VM_BUG_ON_PAGE(!page->mapping, page);
5533 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5534
5535 if (mem_cgroup_disabled())
5536 return;
5537 /*
5538 * Swap faults will attempt to charge the same page multiple
5539 * times. But reuse_swap_page() might have removed the page
5540 * from swapcache already, so we can't check PageSwapCache().
5541 */
5542 if (!memcg)
5543 return;
5544
5545 commit_charge(page, memcg, lrucare);
5546
5547 local_irq_disable();
5548 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5549 memcg_check_events(memcg, page);
5550 local_irq_enable();
5551
5552 if (do_memsw_account() && PageSwapCache(page)) {
5553 swp_entry_t entry = { .val = page_private(page) };
5554 /*
5555 * The swap entry might not get freed for a long time,
5556 * let's not wait for it. The page already received a
5557 * memory+swap charge, drop the swap entry duplicate.
5558 */
5559 mem_cgroup_uncharge_swap(entry, nr_pages);
5560 }
5561 }
5562
5563 /**
5564 * mem_cgroup_cancel_charge - cancel a page charge
5565 * @page: page to charge
5566 * @memcg: memcg to charge the page to
5567 * @compound: charge the page as compound or small page
5568 *
5569 * Cancel a charge transaction started by mem_cgroup_try_charge().
5570 */
5571 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5572 bool compound)
5573 {
5574 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5575
5576 if (mem_cgroup_disabled())
5577 return;
5578 /*
5579 * Swap faults will attempt to charge the same page multiple
5580 * times. But reuse_swap_page() might have removed the page
5581 * from swapcache already, so we can't check PageSwapCache().
5582 */
5583 if (!memcg)
5584 return;
5585
5586 cancel_charge(memcg, nr_pages);
5587 }
5588
5589 struct uncharge_gather {
5590 struct mem_cgroup *memcg;
5591 unsigned long pgpgout;
5592 unsigned long nr_anon;
5593 unsigned long nr_file;
5594 unsigned long nr_kmem;
5595 unsigned long nr_huge;
5596 unsigned long nr_shmem;
5597 struct page *dummy_page;
5598 };
5599
5600 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
5601 {
5602 memset(ug, 0, sizeof(*ug));
5603 }
5604
5605 static void uncharge_batch(const struct uncharge_gather *ug)
5606 {
5607 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
5608 unsigned long flags;
5609
5610 if (!mem_cgroup_is_root(ug->memcg)) {
5611 page_counter_uncharge(&ug->memcg->memory, nr_pages);
5612 if (do_memsw_account())
5613 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5614 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5615 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5616 memcg_oom_recover(ug->memcg);
5617 }
5618
5619 local_irq_save(flags);
5620 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
5621 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
5622 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
5623 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
5624 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
5625 __this_cpu_add(ug->memcg->stat_cpu->nr_page_events, nr_pages);
5626 memcg_check_events(ug->memcg, ug->dummy_page);
5627 local_irq_restore(flags);
5628
5629 if (!mem_cgroup_is_root(ug->memcg))
5630 css_put_many(&ug->memcg->css, nr_pages);
5631 }
5632
5633 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5634 {
5635 VM_BUG_ON_PAGE(PageLRU(page), page);
5636 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5637 !PageHWPoison(page) , page);
5638
5639 if (!page->mem_cgroup)
5640 return;
5641
5642 /*
5643 * Nobody should be changing or seriously looking at
5644 * page->mem_cgroup at this point, we have fully
5645 * exclusive access to the page.
5646 */
5647
5648 if (ug->memcg != page->mem_cgroup) {
5649 if (ug->memcg) {
5650 uncharge_batch(ug);
5651 uncharge_gather_clear(ug);
5652 }
5653 ug->memcg = page->mem_cgroup;
5654 }
5655
5656 if (!PageKmemcg(page)) {
5657 unsigned int nr_pages = 1;
5658
5659 if (PageTransHuge(page)) {
5660 nr_pages <<= compound_order(page);
5661 ug->nr_huge += nr_pages;
5662 }
5663 if (PageAnon(page))
5664 ug->nr_anon += nr_pages;
5665 else {
5666 ug->nr_file += nr_pages;
5667 if (PageSwapBacked(page))
5668 ug->nr_shmem += nr_pages;
5669 }
5670 ug->pgpgout++;
5671 } else {
5672 ug->nr_kmem += 1 << compound_order(page);
5673 __ClearPageKmemcg(page);
5674 }
5675
5676 ug->dummy_page = page;
5677 page->mem_cgroup = NULL;
5678 }
5679
5680 static void uncharge_list(struct list_head *page_list)
5681 {
5682 struct uncharge_gather ug;
5683 struct list_head *next;
5684
5685 uncharge_gather_clear(&ug);
5686
5687 /*
5688 * Note that the list can be a single page->lru; hence the
5689 * do-while loop instead of a simple list_for_each_entry().
5690 */
5691 next = page_list->next;
5692 do {
5693 struct page *page;
5694
5695 page = list_entry(next, struct page, lru);
5696 next = page->lru.next;
5697
5698 uncharge_page(page, &ug);
5699 } while (next != page_list);
5700
5701 if (ug.memcg)
5702 uncharge_batch(&ug);
5703 }
5704
5705 /**
5706 * mem_cgroup_uncharge - uncharge a page
5707 * @page: page to uncharge
5708 *
5709 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5710 * mem_cgroup_commit_charge().
5711 */
5712 void mem_cgroup_uncharge(struct page *page)
5713 {
5714 struct uncharge_gather ug;
5715
5716 if (mem_cgroup_disabled())
5717 return;
5718
5719 /* Don't touch page->lru of any random page, pre-check: */
5720 if (!page->mem_cgroup)
5721 return;
5722
5723 uncharge_gather_clear(&ug);
5724 uncharge_page(page, &ug);
5725 uncharge_batch(&ug);
5726 }
5727
5728 /**
5729 * mem_cgroup_uncharge_list - uncharge a list of page
5730 * @page_list: list of pages to uncharge
5731 *
5732 * Uncharge a list of pages previously charged with
5733 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5734 */
5735 void mem_cgroup_uncharge_list(struct list_head *page_list)
5736 {
5737 if (mem_cgroup_disabled())
5738 return;
5739
5740 if (!list_empty(page_list))
5741 uncharge_list(page_list);
5742 }
5743
5744 /**
5745 * mem_cgroup_migrate - charge a page's replacement
5746 * @oldpage: currently circulating page
5747 * @newpage: replacement page
5748 *
5749 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5750 * be uncharged upon free.
5751 *
5752 * Both pages must be locked, @newpage->mapping must be set up.
5753 */
5754 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5755 {
5756 struct mem_cgroup *memcg;
5757 unsigned int nr_pages;
5758 bool compound;
5759 unsigned long flags;
5760
5761 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5762 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5763 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5764 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5765 newpage);
5766
5767 if (mem_cgroup_disabled())
5768 return;
5769
5770 /* Page cache replacement: new page already charged? */
5771 if (newpage->mem_cgroup)
5772 return;
5773
5774 /* Swapcache readahead pages can get replaced before being charged */
5775 memcg = oldpage->mem_cgroup;
5776 if (!memcg)
5777 return;
5778
5779 /* Force-charge the new page. The old one will be freed soon */
5780 compound = PageTransHuge(newpage);
5781 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5782
5783 page_counter_charge(&memcg->memory, nr_pages);
5784 if (do_memsw_account())
5785 page_counter_charge(&memcg->memsw, nr_pages);
5786 css_get_many(&memcg->css, nr_pages);
5787
5788 commit_charge(newpage, memcg, false);
5789
5790 local_irq_save(flags);
5791 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5792 memcg_check_events(memcg, newpage);
5793 local_irq_restore(flags);
5794 }
5795
5796 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5797 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5798
5799 void mem_cgroup_sk_alloc(struct sock *sk)
5800 {
5801 struct mem_cgroup *memcg;
5802
5803 if (!mem_cgroup_sockets_enabled)
5804 return;
5805
5806 /*
5807 * Socket cloning can throw us here with sk_memcg already
5808 * filled. It won't however, necessarily happen from
5809 * process context. So the test for root memcg given
5810 * the current task's memcg won't help us in this case.
5811 *
5812 * Respecting the original socket's memcg is a better
5813 * decision in this case.
5814 */
5815 if (sk->sk_memcg) {
5816 css_get(&sk->sk_memcg->css);
5817 return;
5818 }
5819
5820 rcu_read_lock();
5821 memcg = mem_cgroup_from_task(current);
5822 if (memcg == root_mem_cgroup)
5823 goto out;
5824 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5825 goto out;
5826 if (css_tryget_online(&memcg->css))
5827 sk->sk_memcg = memcg;
5828 out:
5829 rcu_read_unlock();
5830 }
5831
5832 void mem_cgroup_sk_free(struct sock *sk)
5833 {
5834 if (sk->sk_memcg)
5835 css_put(&sk->sk_memcg->css);
5836 }
5837
5838 /**
5839 * mem_cgroup_charge_skmem - charge socket memory
5840 * @memcg: memcg to charge
5841 * @nr_pages: number of pages to charge
5842 *
5843 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5844 * @memcg's configured limit, %false if the charge had to be forced.
5845 */
5846 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5847 {
5848 gfp_t gfp_mask = GFP_KERNEL;
5849
5850 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5851 struct page_counter *fail;
5852
5853 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5854 memcg->tcpmem_pressure = 0;
5855 return true;
5856 }
5857 page_counter_charge(&memcg->tcpmem, nr_pages);
5858 memcg->tcpmem_pressure = 1;
5859 return false;
5860 }
5861
5862 /* Don't block in the packet receive path */
5863 if (in_softirq())
5864 gfp_mask = GFP_NOWAIT;
5865
5866 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
5867
5868 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5869 return true;
5870
5871 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5872 return false;
5873 }
5874
5875 /**
5876 * mem_cgroup_uncharge_skmem - uncharge socket memory
5877 * @memcg: memcg to uncharge
5878 * @nr_pages: number of pages to uncharge
5879 */
5880 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5881 {
5882 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5883 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5884 return;
5885 }
5886
5887 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
5888
5889 refill_stock(memcg, nr_pages);
5890 }
5891
5892 static int __init cgroup_memory(char *s)
5893 {
5894 char *token;
5895
5896 while ((token = strsep(&s, ",")) != NULL) {
5897 if (!*token)
5898 continue;
5899 if (!strcmp(token, "nosocket"))
5900 cgroup_memory_nosocket = true;
5901 if (!strcmp(token, "nokmem"))
5902 cgroup_memory_nokmem = true;
5903 }
5904 return 0;
5905 }
5906 __setup("cgroup.memory=", cgroup_memory);
5907
5908 /*
5909 * subsys_initcall() for memory controller.
5910 *
5911 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5912 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5913 * basically everything that doesn't depend on a specific mem_cgroup structure
5914 * should be initialized from here.
5915 */
5916 static int __init mem_cgroup_init(void)
5917 {
5918 int cpu, node;
5919
5920 #ifndef CONFIG_SLOB
5921 /*
5922 * Kmem cache creation is mostly done with the slab_mutex held,
5923 * so use a workqueue with limited concurrency to avoid stalling
5924 * all worker threads in case lots of cgroups are created and
5925 * destroyed simultaneously.
5926 */
5927 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5928 BUG_ON(!memcg_kmem_cache_wq);
5929 #endif
5930
5931 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5932 memcg_hotplug_cpu_dead);
5933
5934 for_each_possible_cpu(cpu)
5935 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5936 drain_local_stock);
5937
5938 for_each_node(node) {
5939 struct mem_cgroup_tree_per_node *rtpn;
5940
5941 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5942 node_online(node) ? node : NUMA_NO_NODE);
5943
5944 rtpn->rb_root = RB_ROOT;
5945 rtpn->rb_rightmost = NULL;
5946 spin_lock_init(&rtpn->lock);
5947 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5948 }
5949
5950 return 0;
5951 }
5952 subsys_initcall(mem_cgroup_init);
5953
5954 #ifdef CONFIG_MEMCG_SWAP
5955 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5956 {
5957 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5958 /*
5959 * The root cgroup cannot be destroyed, so it's refcount must
5960 * always be >= 1.
5961 */
5962 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5963 VM_BUG_ON(1);
5964 break;
5965 }
5966 memcg = parent_mem_cgroup(memcg);
5967 if (!memcg)
5968 memcg = root_mem_cgroup;
5969 }
5970 return memcg;
5971 }
5972
5973 /**
5974 * mem_cgroup_swapout - transfer a memsw charge to swap
5975 * @page: page whose memsw charge to transfer
5976 * @entry: swap entry to move the charge to
5977 *
5978 * Transfer the memsw charge of @page to @entry.
5979 */
5980 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5981 {
5982 struct mem_cgroup *memcg, *swap_memcg;
5983 unsigned int nr_entries;
5984 unsigned short oldid;
5985
5986 VM_BUG_ON_PAGE(PageLRU(page), page);
5987 VM_BUG_ON_PAGE(page_count(page), page);
5988
5989 if (!do_memsw_account())
5990 return;
5991
5992 memcg = page->mem_cgroup;
5993
5994 /* Readahead page, never charged */
5995 if (!memcg)
5996 return;
5997
5998 /*
5999 * In case the memcg owning these pages has been offlined and doesn't
6000 * have an ID allocated to it anymore, charge the closest online
6001 * ancestor for the swap instead and transfer the memory+swap charge.
6002 */
6003 swap_memcg = mem_cgroup_id_get_online(memcg);
6004 nr_entries = hpage_nr_pages(page);
6005 /* Get references for the tail pages, too */
6006 if (nr_entries > 1)
6007 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6008 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6009 nr_entries);
6010 VM_BUG_ON_PAGE(oldid, page);
6011 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6012
6013 page->mem_cgroup = NULL;
6014
6015 if (!mem_cgroup_is_root(memcg))
6016 page_counter_uncharge(&memcg->memory, nr_entries);
6017
6018 if (memcg != swap_memcg) {
6019 if (!mem_cgroup_is_root(swap_memcg))
6020 page_counter_charge(&swap_memcg->memsw, nr_entries);
6021 page_counter_uncharge(&memcg->memsw, nr_entries);
6022 }
6023
6024 /*
6025 * Interrupts should be disabled here because the caller holds the
6026 * i_pages lock which is taken with interrupts-off. It is
6027 * important here to have the interrupts disabled because it is the
6028 * only synchronisation we have for updating the per-CPU variables.
6029 */
6030 VM_BUG_ON(!irqs_disabled());
6031 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6032 -nr_entries);
6033 memcg_check_events(memcg, page);
6034
6035 if (!mem_cgroup_is_root(memcg))
6036 css_put_many(&memcg->css, nr_entries);
6037 }
6038
6039 /**
6040 * mem_cgroup_try_charge_swap - try charging swap space for a page
6041 * @page: page being added to swap
6042 * @entry: swap entry to charge
6043 *
6044 * Try to charge @page's memcg for the swap space at @entry.
6045 *
6046 * Returns 0 on success, -ENOMEM on failure.
6047 */
6048 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6049 {
6050 unsigned int nr_pages = hpage_nr_pages(page);
6051 struct page_counter *counter;
6052 struct mem_cgroup *memcg;
6053 unsigned short oldid;
6054
6055 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6056 return 0;
6057
6058 memcg = page->mem_cgroup;
6059
6060 /* Readahead page, never charged */
6061 if (!memcg)
6062 return 0;
6063
6064 if (!entry.val) {
6065 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6066 return 0;
6067 }
6068
6069 memcg = mem_cgroup_id_get_online(memcg);
6070
6071 if (!mem_cgroup_is_root(memcg) &&
6072 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6073 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6074 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6075 mem_cgroup_id_put(memcg);
6076 return -ENOMEM;
6077 }
6078
6079 /* Get references for the tail pages, too */
6080 if (nr_pages > 1)
6081 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6082 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6083 VM_BUG_ON_PAGE(oldid, page);
6084 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6085
6086 return 0;
6087 }
6088
6089 /**
6090 * mem_cgroup_uncharge_swap - uncharge swap space
6091 * @entry: swap entry to uncharge
6092 * @nr_pages: the amount of swap space to uncharge
6093 */
6094 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6095 {
6096 struct mem_cgroup *memcg;
6097 unsigned short id;
6098
6099 if (!do_swap_account)
6100 return;
6101
6102 id = swap_cgroup_record(entry, 0, nr_pages);
6103 rcu_read_lock();
6104 memcg = mem_cgroup_from_id(id);
6105 if (memcg) {
6106 if (!mem_cgroup_is_root(memcg)) {
6107 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6108 page_counter_uncharge(&memcg->swap, nr_pages);
6109 else
6110 page_counter_uncharge(&memcg->memsw, nr_pages);
6111 }
6112 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6113 mem_cgroup_id_put_many(memcg, nr_pages);
6114 }
6115 rcu_read_unlock();
6116 }
6117
6118 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6119 {
6120 long nr_swap_pages = get_nr_swap_pages();
6121
6122 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6123 return nr_swap_pages;
6124 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6125 nr_swap_pages = min_t(long, nr_swap_pages,
6126 READ_ONCE(memcg->swap.max) -
6127 page_counter_read(&memcg->swap));
6128 return nr_swap_pages;
6129 }
6130
6131 bool mem_cgroup_swap_full(struct page *page)
6132 {
6133 struct mem_cgroup *memcg;
6134
6135 VM_BUG_ON_PAGE(!PageLocked(page), page);
6136
6137 if (vm_swap_full())
6138 return true;
6139 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6140 return false;
6141
6142 memcg = page->mem_cgroup;
6143 if (!memcg)
6144 return false;
6145
6146 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6147 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6148 return true;
6149
6150 return false;
6151 }
6152
6153 /* for remember boot option*/
6154 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6155 static int really_do_swap_account __initdata = 1;
6156 #else
6157 static int really_do_swap_account __initdata;
6158 #endif
6159
6160 static int __init enable_swap_account(char *s)
6161 {
6162 if (!strcmp(s, "1"))
6163 really_do_swap_account = 1;
6164 else if (!strcmp(s, "0"))
6165 really_do_swap_account = 0;
6166 return 1;
6167 }
6168 __setup("swapaccount=", enable_swap_account);
6169
6170 static u64 swap_current_read(struct cgroup_subsys_state *css,
6171 struct cftype *cft)
6172 {
6173 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6174
6175 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6176 }
6177
6178 static int swap_max_show(struct seq_file *m, void *v)
6179 {
6180 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6181 unsigned long max = READ_ONCE(memcg->swap.max);
6182
6183 if (max == PAGE_COUNTER_MAX)
6184 seq_puts(m, "max\n");
6185 else
6186 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6187
6188 return 0;
6189 }
6190
6191 static ssize_t swap_max_write(struct kernfs_open_file *of,
6192 char *buf, size_t nbytes, loff_t off)
6193 {
6194 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6195 unsigned long max;
6196 int err;
6197
6198 buf = strstrip(buf);
6199 err = page_counter_memparse(buf, "max", &max);
6200 if (err)
6201 return err;
6202
6203 mutex_lock(&memcg_max_mutex);
6204 err = page_counter_set_max(&memcg->swap, max);
6205 mutex_unlock(&memcg_max_mutex);
6206 if (err)
6207 return err;
6208
6209 return nbytes;
6210 }
6211
6212 static int swap_events_show(struct seq_file *m, void *v)
6213 {
6214 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6215
6216 seq_printf(m, "max %lu\n",
6217 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6218 seq_printf(m, "fail %lu\n",
6219 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6220
6221 return 0;
6222 }
6223
6224 static struct cftype swap_files[] = {
6225 {
6226 .name = "swap.current",
6227 .flags = CFTYPE_NOT_ON_ROOT,
6228 .read_u64 = swap_current_read,
6229 },
6230 {
6231 .name = "swap.max",
6232 .flags = CFTYPE_NOT_ON_ROOT,
6233 .seq_show = swap_max_show,
6234 .write = swap_max_write,
6235 },
6236 {
6237 .name = "swap.events",
6238 .flags = CFTYPE_NOT_ON_ROOT,
6239 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6240 .seq_show = swap_events_show,
6241 },
6242 { } /* terminate */
6243 };
6244
6245 static struct cftype memsw_cgroup_files[] = {
6246 {
6247 .name = "memsw.usage_in_bytes",
6248 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6249 .read_u64 = mem_cgroup_read_u64,
6250 },
6251 {
6252 .name = "memsw.max_usage_in_bytes",
6253 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6254 .write = mem_cgroup_reset,
6255 .read_u64 = mem_cgroup_read_u64,
6256 },
6257 {
6258 .name = "memsw.limit_in_bytes",
6259 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6260 .write = mem_cgroup_write,
6261 .read_u64 = mem_cgroup_read_u64,
6262 },
6263 {
6264 .name = "memsw.failcnt",
6265 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6266 .write = mem_cgroup_reset,
6267 .read_u64 = mem_cgroup_read_u64,
6268 },
6269 { }, /* terminate */
6270 };
6271
6272 static int __init mem_cgroup_swap_init(void)
6273 {
6274 if (!mem_cgroup_disabled() && really_do_swap_account) {
6275 do_swap_account = 1;
6276 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6277 swap_files));
6278 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6279 memsw_cgroup_files));
6280 }
6281 return 0;
6282 }
6283 subsys_initcall(mem_cgroup_swap_init);
6284
6285 #endif /* CONFIG_MEMCG_SWAP */