]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
usb: musb: Kconfig: Select the DMA driver if DMA mode of MUSB is enabled
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/res_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/page_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata = 0;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct mem_cgroup_reclaim_iter {
147 /*
148 * last scanned hierarchy member. Valid only if last_dead_count
149 * matches memcg->dead_count of the hierarchy root group.
150 */
151 struct mem_cgroup *last_visited;
152 int last_dead_count;
153
154 /* scan generation, increased every round-trip */
155 unsigned int generation;
156 };
157
158 /*
159 * per-zone information in memory controller.
160 */
161 struct mem_cgroup_per_zone {
162 struct lruvec lruvec;
163 unsigned long lru_size[NR_LRU_LISTS];
164
165 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
166
167 struct rb_node tree_node; /* RB tree node */
168 unsigned long long usage_in_excess;/* Set to the value by which */
169 /* the soft limit is exceeded*/
170 bool on_tree;
171 struct mem_cgroup *memcg; /* Back pointer, we cannot */
172 /* use container_of */
173 };
174
175 struct mem_cgroup_per_node {
176 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
177 };
178
179 /*
180 * Cgroups above their limits are maintained in a RB-Tree, independent of
181 * their hierarchy representation
182 */
183
184 struct mem_cgroup_tree_per_zone {
185 struct rb_root rb_root;
186 spinlock_t lock;
187 };
188
189 struct mem_cgroup_tree_per_node {
190 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
191 };
192
193 struct mem_cgroup_tree {
194 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
195 };
196
197 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
198
199 struct mem_cgroup_threshold {
200 struct eventfd_ctx *eventfd;
201 u64 threshold;
202 };
203
204 /* For threshold */
205 struct mem_cgroup_threshold_ary {
206 /* An array index points to threshold just below or equal to usage. */
207 int current_threshold;
208 /* Size of entries[] */
209 unsigned int size;
210 /* Array of thresholds */
211 struct mem_cgroup_threshold entries[0];
212 };
213
214 struct mem_cgroup_thresholds {
215 /* Primary thresholds array */
216 struct mem_cgroup_threshold_ary *primary;
217 /*
218 * Spare threshold array.
219 * This is needed to make mem_cgroup_unregister_event() "never fail".
220 * It must be able to store at least primary->size - 1 entries.
221 */
222 struct mem_cgroup_threshold_ary *spare;
223 };
224
225 /* for OOM */
226 struct mem_cgroup_eventfd_list {
227 struct list_head list;
228 struct eventfd_ctx *eventfd;
229 };
230
231 /*
232 * cgroup_event represents events which userspace want to receive.
233 */
234 struct mem_cgroup_event {
235 /*
236 * memcg which the event belongs to.
237 */
238 struct mem_cgroup *memcg;
239 /*
240 * eventfd to signal userspace about the event.
241 */
242 struct eventfd_ctx *eventfd;
243 /*
244 * Each of these stored in a list by the cgroup.
245 */
246 struct list_head list;
247 /*
248 * register_event() callback will be used to add new userspace
249 * waiter for changes related to this event. Use eventfd_signal()
250 * on eventfd to send notification to userspace.
251 */
252 int (*register_event)(struct mem_cgroup *memcg,
253 struct eventfd_ctx *eventfd, const char *args);
254 /*
255 * unregister_event() callback will be called when userspace closes
256 * the eventfd or on cgroup removing. This callback must be set,
257 * if you want provide notification functionality.
258 */
259 void (*unregister_event)(struct mem_cgroup *memcg,
260 struct eventfd_ctx *eventfd);
261 /*
262 * All fields below needed to unregister event when
263 * userspace closes eventfd.
264 */
265 poll_table pt;
266 wait_queue_head_t *wqh;
267 wait_queue_t wait;
268 struct work_struct remove;
269 };
270
271 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
272 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
273
274 /*
275 * The memory controller data structure. The memory controller controls both
276 * page cache and RSS per cgroup. We would eventually like to provide
277 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
278 * to help the administrator determine what knobs to tune.
279 *
280 * TODO: Add a water mark for the memory controller. Reclaim will begin when
281 * we hit the water mark. May be even add a low water mark, such that
282 * no reclaim occurs from a cgroup at it's low water mark, this is
283 * a feature that will be implemented much later in the future.
284 */
285 struct mem_cgroup {
286 struct cgroup_subsys_state css;
287 /*
288 * the counter to account for memory usage
289 */
290 struct res_counter res;
291
292 /* vmpressure notifications */
293 struct vmpressure vmpressure;
294
295 /*
296 * the counter to account for mem+swap usage.
297 */
298 struct res_counter memsw;
299
300 /*
301 * the counter to account for kernel memory usage.
302 */
303 struct res_counter kmem;
304 /*
305 * Should the accounting and control be hierarchical, per subtree?
306 */
307 bool use_hierarchy;
308 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
309
310 bool oom_lock;
311 atomic_t under_oom;
312 atomic_t oom_wakeups;
313
314 int swappiness;
315 /* OOM-Killer disable */
316 int oom_kill_disable;
317
318 /* set when res.limit == memsw.limit */
319 bool memsw_is_minimum;
320
321 /* protect arrays of thresholds */
322 struct mutex thresholds_lock;
323
324 /* thresholds for memory usage. RCU-protected */
325 struct mem_cgroup_thresholds thresholds;
326
327 /* thresholds for mem+swap usage. RCU-protected */
328 struct mem_cgroup_thresholds memsw_thresholds;
329
330 /* For oom notifier event fd */
331 struct list_head oom_notify;
332
333 /*
334 * Should we move charges of a task when a task is moved into this
335 * mem_cgroup ? And what type of charges should we move ?
336 */
337 unsigned long move_charge_at_immigrate;
338 /*
339 * set > 0 if pages under this cgroup are moving to other cgroup.
340 */
341 atomic_t moving_account;
342 /* taken only while moving_account > 0 */
343 spinlock_t move_lock;
344 /*
345 * percpu counter.
346 */
347 struct mem_cgroup_stat_cpu __percpu *stat;
348 /*
349 * used when a cpu is offlined or other synchronizations
350 * See mem_cgroup_read_stat().
351 */
352 struct mem_cgroup_stat_cpu nocpu_base;
353 spinlock_t pcp_counter_lock;
354
355 atomic_t dead_count;
356 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
357 struct cg_proto tcp_mem;
358 #endif
359 #if defined(CONFIG_MEMCG_KMEM)
360 /* analogous to slab_common's slab_caches list. per-memcg */
361 struct list_head memcg_slab_caches;
362 /* Not a spinlock, we can take a lot of time walking the list */
363 struct mutex slab_caches_mutex;
364 /* Index in the kmem_cache->memcg_params->memcg_caches array */
365 int kmemcg_id;
366 #endif
367
368 int last_scanned_node;
369 #if MAX_NUMNODES > 1
370 nodemask_t scan_nodes;
371 atomic_t numainfo_events;
372 atomic_t numainfo_updating;
373 #endif
374
375 /* List of events which userspace want to receive */
376 struct list_head event_list;
377 spinlock_t event_list_lock;
378
379 struct mem_cgroup_per_node *nodeinfo[0];
380 /* WARNING: nodeinfo must be the last member here */
381 };
382
383 /* internal only representation about the status of kmem accounting. */
384 enum {
385 KMEM_ACCOUNTED_ACTIVE, /* accounted by this cgroup itself */
386 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
387 };
388
389 #ifdef CONFIG_MEMCG_KMEM
390 static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
391 {
392 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
393 }
394
395 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
396 {
397 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
398 }
399
400 static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
401 {
402 /*
403 * Our caller must use css_get() first, because memcg_uncharge_kmem()
404 * will call css_put() if it sees the memcg is dead.
405 */
406 smp_wmb();
407 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
408 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
409 }
410
411 static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
412 {
413 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
414 &memcg->kmem_account_flags);
415 }
416 #endif
417
418 /* Stuffs for move charges at task migration. */
419 /*
420 * Types of charges to be moved. "move_charge_at_immitgrate" and
421 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
422 */
423 enum move_type {
424 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
425 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
426 NR_MOVE_TYPE,
427 };
428
429 /* "mc" and its members are protected by cgroup_mutex */
430 static struct move_charge_struct {
431 spinlock_t lock; /* for from, to */
432 struct mem_cgroup *from;
433 struct mem_cgroup *to;
434 unsigned long immigrate_flags;
435 unsigned long precharge;
436 unsigned long moved_charge;
437 unsigned long moved_swap;
438 struct task_struct *moving_task; /* a task moving charges */
439 wait_queue_head_t waitq; /* a waitq for other context */
440 } mc = {
441 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
442 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
443 };
444
445 static bool move_anon(void)
446 {
447 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
448 }
449
450 static bool move_file(void)
451 {
452 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
453 }
454
455 /*
456 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
457 * limit reclaim to prevent infinite loops, if they ever occur.
458 */
459 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
460 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
461
462 enum charge_type {
463 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
464 MEM_CGROUP_CHARGE_TYPE_ANON,
465 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
466 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
467 NR_CHARGE_TYPE,
468 };
469
470 /* for encoding cft->private value on file */
471 enum res_type {
472 _MEM,
473 _MEMSWAP,
474 _OOM_TYPE,
475 _KMEM,
476 };
477
478 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
479 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
480 #define MEMFILE_ATTR(val) ((val) & 0xffff)
481 /* Used for OOM nofiier */
482 #define OOM_CONTROL (0)
483
484 /*
485 * Reclaim flags for mem_cgroup_hierarchical_reclaim
486 */
487 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
488 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
489 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
490 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
491
492 /*
493 * The memcg_create_mutex will be held whenever a new cgroup is created.
494 * As a consequence, any change that needs to protect against new child cgroups
495 * appearing has to hold it as well.
496 */
497 static DEFINE_MUTEX(memcg_create_mutex);
498
499 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
500 {
501 return s ? container_of(s, struct mem_cgroup, css) : NULL;
502 }
503
504 /* Some nice accessors for the vmpressure. */
505 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
506 {
507 if (!memcg)
508 memcg = root_mem_cgroup;
509 return &memcg->vmpressure;
510 }
511
512 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
513 {
514 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
515 }
516
517 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
518 {
519 return (memcg == root_mem_cgroup);
520 }
521
522 /*
523 * We restrict the id in the range of [1, 65535], so it can fit into
524 * an unsigned short.
525 */
526 #define MEM_CGROUP_ID_MAX USHRT_MAX
527
528 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
529 {
530 /*
531 * The ID of the root cgroup is 0, but memcg treat 0 as an
532 * invalid ID, so we return (cgroup_id + 1).
533 */
534 return memcg->css.cgroup->id + 1;
535 }
536
537 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
538 {
539 struct cgroup_subsys_state *css;
540
541 css = css_from_id(id - 1, &memory_cgrp_subsys);
542 return mem_cgroup_from_css(css);
543 }
544
545 /* Writing them here to avoid exposing memcg's inner layout */
546 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
547
548 void sock_update_memcg(struct sock *sk)
549 {
550 if (mem_cgroup_sockets_enabled) {
551 struct mem_cgroup *memcg;
552 struct cg_proto *cg_proto;
553
554 BUG_ON(!sk->sk_prot->proto_cgroup);
555
556 /* Socket cloning can throw us here with sk_cgrp already
557 * filled. It won't however, necessarily happen from
558 * process context. So the test for root memcg given
559 * the current task's memcg won't help us in this case.
560 *
561 * Respecting the original socket's memcg is a better
562 * decision in this case.
563 */
564 if (sk->sk_cgrp) {
565 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
566 css_get(&sk->sk_cgrp->memcg->css);
567 return;
568 }
569
570 rcu_read_lock();
571 memcg = mem_cgroup_from_task(current);
572 cg_proto = sk->sk_prot->proto_cgroup(memcg);
573 if (!mem_cgroup_is_root(memcg) &&
574 memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
575 sk->sk_cgrp = cg_proto;
576 }
577 rcu_read_unlock();
578 }
579 }
580 EXPORT_SYMBOL(sock_update_memcg);
581
582 void sock_release_memcg(struct sock *sk)
583 {
584 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
585 struct mem_cgroup *memcg;
586 WARN_ON(!sk->sk_cgrp->memcg);
587 memcg = sk->sk_cgrp->memcg;
588 css_put(&sk->sk_cgrp->memcg->css);
589 }
590 }
591
592 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
593 {
594 if (!memcg || mem_cgroup_is_root(memcg))
595 return NULL;
596
597 return &memcg->tcp_mem;
598 }
599 EXPORT_SYMBOL(tcp_proto_cgroup);
600
601 static void disarm_sock_keys(struct mem_cgroup *memcg)
602 {
603 if (!memcg_proto_activated(&memcg->tcp_mem))
604 return;
605 static_key_slow_dec(&memcg_socket_limit_enabled);
606 }
607 #else
608 static void disarm_sock_keys(struct mem_cgroup *memcg)
609 {
610 }
611 #endif
612
613 #ifdef CONFIG_MEMCG_KMEM
614 /*
615 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
616 * The main reason for not using cgroup id for this:
617 * this works better in sparse environments, where we have a lot of memcgs,
618 * but only a few kmem-limited. Or also, if we have, for instance, 200
619 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
620 * 200 entry array for that.
621 *
622 * The current size of the caches array is stored in
623 * memcg_limited_groups_array_size. It will double each time we have to
624 * increase it.
625 */
626 static DEFINE_IDA(kmem_limited_groups);
627 int memcg_limited_groups_array_size;
628
629 /*
630 * MIN_SIZE is different than 1, because we would like to avoid going through
631 * the alloc/free process all the time. In a small machine, 4 kmem-limited
632 * cgroups is a reasonable guess. In the future, it could be a parameter or
633 * tunable, but that is strictly not necessary.
634 *
635 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
636 * this constant directly from cgroup, but it is understandable that this is
637 * better kept as an internal representation in cgroup.c. In any case, the
638 * cgrp_id space is not getting any smaller, and we don't have to necessarily
639 * increase ours as well if it increases.
640 */
641 #define MEMCG_CACHES_MIN_SIZE 4
642 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
643
644 /*
645 * A lot of the calls to the cache allocation functions are expected to be
646 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
647 * conditional to this static branch, we'll have to allow modules that does
648 * kmem_cache_alloc and the such to see this symbol as well
649 */
650 struct static_key memcg_kmem_enabled_key;
651 EXPORT_SYMBOL(memcg_kmem_enabled_key);
652
653 static void disarm_kmem_keys(struct mem_cgroup *memcg)
654 {
655 if (memcg_kmem_is_active(memcg)) {
656 static_key_slow_dec(&memcg_kmem_enabled_key);
657 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
658 }
659 /*
660 * This check can't live in kmem destruction function,
661 * since the charges will outlive the cgroup
662 */
663 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
664 }
665 #else
666 static void disarm_kmem_keys(struct mem_cgroup *memcg)
667 {
668 }
669 #endif /* CONFIG_MEMCG_KMEM */
670
671 static void disarm_static_keys(struct mem_cgroup *memcg)
672 {
673 disarm_sock_keys(memcg);
674 disarm_kmem_keys(memcg);
675 }
676
677 static void drain_all_stock_async(struct mem_cgroup *memcg);
678
679 static struct mem_cgroup_per_zone *
680 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
681 {
682 VM_BUG_ON((unsigned)nid >= nr_node_ids);
683 return &memcg->nodeinfo[nid]->zoneinfo[zid];
684 }
685
686 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
687 {
688 return &memcg->css;
689 }
690
691 static struct mem_cgroup_per_zone *
692 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
693 {
694 int nid = page_to_nid(page);
695 int zid = page_zonenum(page);
696
697 return mem_cgroup_zoneinfo(memcg, nid, zid);
698 }
699
700 static struct mem_cgroup_tree_per_zone *
701 soft_limit_tree_node_zone(int nid, int zid)
702 {
703 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
704 }
705
706 static struct mem_cgroup_tree_per_zone *
707 soft_limit_tree_from_page(struct page *page)
708 {
709 int nid = page_to_nid(page);
710 int zid = page_zonenum(page);
711
712 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
713 }
714
715 static void
716 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
717 struct mem_cgroup_per_zone *mz,
718 struct mem_cgroup_tree_per_zone *mctz,
719 unsigned long long new_usage_in_excess)
720 {
721 struct rb_node **p = &mctz->rb_root.rb_node;
722 struct rb_node *parent = NULL;
723 struct mem_cgroup_per_zone *mz_node;
724
725 if (mz->on_tree)
726 return;
727
728 mz->usage_in_excess = new_usage_in_excess;
729 if (!mz->usage_in_excess)
730 return;
731 while (*p) {
732 parent = *p;
733 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
734 tree_node);
735 if (mz->usage_in_excess < mz_node->usage_in_excess)
736 p = &(*p)->rb_left;
737 /*
738 * We can't avoid mem cgroups that are over their soft
739 * limit by the same amount
740 */
741 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
742 p = &(*p)->rb_right;
743 }
744 rb_link_node(&mz->tree_node, parent, p);
745 rb_insert_color(&mz->tree_node, &mctz->rb_root);
746 mz->on_tree = true;
747 }
748
749 static void
750 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
751 struct mem_cgroup_per_zone *mz,
752 struct mem_cgroup_tree_per_zone *mctz)
753 {
754 if (!mz->on_tree)
755 return;
756 rb_erase(&mz->tree_node, &mctz->rb_root);
757 mz->on_tree = false;
758 }
759
760 static void
761 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
762 struct mem_cgroup_per_zone *mz,
763 struct mem_cgroup_tree_per_zone *mctz)
764 {
765 spin_lock(&mctz->lock);
766 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
767 spin_unlock(&mctz->lock);
768 }
769
770
771 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
772 {
773 unsigned long long excess;
774 struct mem_cgroup_per_zone *mz;
775 struct mem_cgroup_tree_per_zone *mctz;
776 int nid = page_to_nid(page);
777 int zid = page_zonenum(page);
778 mctz = soft_limit_tree_from_page(page);
779
780 /*
781 * Necessary to update all ancestors when hierarchy is used.
782 * because their event counter is not touched.
783 */
784 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
785 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
786 excess = res_counter_soft_limit_excess(&memcg->res);
787 /*
788 * We have to update the tree if mz is on RB-tree or
789 * mem is over its softlimit.
790 */
791 if (excess || mz->on_tree) {
792 spin_lock(&mctz->lock);
793 /* if on-tree, remove it */
794 if (mz->on_tree)
795 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
796 /*
797 * Insert again. mz->usage_in_excess will be updated.
798 * If excess is 0, no tree ops.
799 */
800 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
801 spin_unlock(&mctz->lock);
802 }
803 }
804 }
805
806 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
807 {
808 int node, zone;
809 struct mem_cgroup_per_zone *mz;
810 struct mem_cgroup_tree_per_zone *mctz;
811
812 for_each_node(node) {
813 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
814 mz = mem_cgroup_zoneinfo(memcg, node, zone);
815 mctz = soft_limit_tree_node_zone(node, zone);
816 mem_cgroup_remove_exceeded(memcg, mz, mctz);
817 }
818 }
819 }
820
821 static struct mem_cgroup_per_zone *
822 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
823 {
824 struct rb_node *rightmost = NULL;
825 struct mem_cgroup_per_zone *mz;
826
827 retry:
828 mz = NULL;
829 rightmost = rb_last(&mctz->rb_root);
830 if (!rightmost)
831 goto done; /* Nothing to reclaim from */
832
833 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
834 /*
835 * Remove the node now but someone else can add it back,
836 * we will to add it back at the end of reclaim to its correct
837 * position in the tree.
838 */
839 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
840 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
841 !css_tryget(&mz->memcg->css))
842 goto retry;
843 done:
844 return mz;
845 }
846
847 static struct mem_cgroup_per_zone *
848 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
849 {
850 struct mem_cgroup_per_zone *mz;
851
852 spin_lock(&mctz->lock);
853 mz = __mem_cgroup_largest_soft_limit_node(mctz);
854 spin_unlock(&mctz->lock);
855 return mz;
856 }
857
858 /*
859 * Implementation Note: reading percpu statistics for memcg.
860 *
861 * Both of vmstat[] and percpu_counter has threshold and do periodic
862 * synchronization to implement "quick" read. There are trade-off between
863 * reading cost and precision of value. Then, we may have a chance to implement
864 * a periodic synchronizion of counter in memcg's counter.
865 *
866 * But this _read() function is used for user interface now. The user accounts
867 * memory usage by memory cgroup and he _always_ requires exact value because
868 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
869 * have to visit all online cpus and make sum. So, for now, unnecessary
870 * synchronization is not implemented. (just implemented for cpu hotplug)
871 *
872 * If there are kernel internal actions which can make use of some not-exact
873 * value, and reading all cpu value can be performance bottleneck in some
874 * common workload, threashold and synchonization as vmstat[] should be
875 * implemented.
876 */
877 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
878 enum mem_cgroup_stat_index idx)
879 {
880 long val = 0;
881 int cpu;
882
883 get_online_cpus();
884 for_each_online_cpu(cpu)
885 val += per_cpu(memcg->stat->count[idx], cpu);
886 #ifdef CONFIG_HOTPLUG_CPU
887 spin_lock(&memcg->pcp_counter_lock);
888 val += memcg->nocpu_base.count[idx];
889 spin_unlock(&memcg->pcp_counter_lock);
890 #endif
891 put_online_cpus();
892 return val;
893 }
894
895 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
896 bool charge)
897 {
898 int val = (charge) ? 1 : -1;
899 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
900 }
901
902 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
903 enum mem_cgroup_events_index idx)
904 {
905 unsigned long val = 0;
906 int cpu;
907
908 get_online_cpus();
909 for_each_online_cpu(cpu)
910 val += per_cpu(memcg->stat->events[idx], cpu);
911 #ifdef CONFIG_HOTPLUG_CPU
912 spin_lock(&memcg->pcp_counter_lock);
913 val += memcg->nocpu_base.events[idx];
914 spin_unlock(&memcg->pcp_counter_lock);
915 #endif
916 put_online_cpus();
917 return val;
918 }
919
920 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
921 struct page *page,
922 bool anon, int nr_pages)
923 {
924 /*
925 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
926 * counted as CACHE even if it's on ANON LRU.
927 */
928 if (anon)
929 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
930 nr_pages);
931 else
932 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
933 nr_pages);
934
935 if (PageTransHuge(page))
936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
937 nr_pages);
938
939 /* pagein of a big page is an event. So, ignore page size */
940 if (nr_pages > 0)
941 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
942 else {
943 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
944 nr_pages = -nr_pages; /* for event */
945 }
946
947 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
948 }
949
950 unsigned long
951 mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
952 {
953 struct mem_cgroup_per_zone *mz;
954
955 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
956 return mz->lru_size[lru];
957 }
958
959 static unsigned long
960 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
961 unsigned int lru_mask)
962 {
963 struct mem_cgroup_per_zone *mz;
964 enum lru_list lru;
965 unsigned long ret = 0;
966
967 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
968
969 for_each_lru(lru) {
970 if (BIT(lru) & lru_mask)
971 ret += mz->lru_size[lru];
972 }
973 return ret;
974 }
975
976 static unsigned long
977 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
978 int nid, unsigned int lru_mask)
979 {
980 u64 total = 0;
981 int zid;
982
983 for (zid = 0; zid < MAX_NR_ZONES; zid++)
984 total += mem_cgroup_zone_nr_lru_pages(memcg,
985 nid, zid, lru_mask);
986
987 return total;
988 }
989
990 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
991 unsigned int lru_mask)
992 {
993 int nid;
994 u64 total = 0;
995
996 for_each_node_state(nid, N_MEMORY)
997 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
998 return total;
999 }
1000
1001 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1002 enum mem_cgroup_events_target target)
1003 {
1004 unsigned long val, next;
1005
1006 val = __this_cpu_read(memcg->stat->nr_page_events);
1007 next = __this_cpu_read(memcg->stat->targets[target]);
1008 /* from time_after() in jiffies.h */
1009 if ((long)next - (long)val < 0) {
1010 switch (target) {
1011 case MEM_CGROUP_TARGET_THRESH:
1012 next = val + THRESHOLDS_EVENTS_TARGET;
1013 break;
1014 case MEM_CGROUP_TARGET_SOFTLIMIT:
1015 next = val + SOFTLIMIT_EVENTS_TARGET;
1016 break;
1017 case MEM_CGROUP_TARGET_NUMAINFO:
1018 next = val + NUMAINFO_EVENTS_TARGET;
1019 break;
1020 default:
1021 break;
1022 }
1023 __this_cpu_write(memcg->stat->targets[target], next);
1024 return true;
1025 }
1026 return false;
1027 }
1028
1029 /*
1030 * Check events in order.
1031 *
1032 */
1033 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1034 {
1035 preempt_disable();
1036 /* threshold event is triggered in finer grain than soft limit */
1037 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1038 MEM_CGROUP_TARGET_THRESH))) {
1039 bool do_softlimit;
1040 bool do_numainfo __maybe_unused;
1041
1042 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1043 MEM_CGROUP_TARGET_SOFTLIMIT);
1044 #if MAX_NUMNODES > 1
1045 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1046 MEM_CGROUP_TARGET_NUMAINFO);
1047 #endif
1048 preempt_enable();
1049
1050 mem_cgroup_threshold(memcg);
1051 if (unlikely(do_softlimit))
1052 mem_cgroup_update_tree(memcg, page);
1053 #if MAX_NUMNODES > 1
1054 if (unlikely(do_numainfo))
1055 atomic_inc(&memcg->numainfo_events);
1056 #endif
1057 } else
1058 preempt_enable();
1059 }
1060
1061 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1062 {
1063 /*
1064 * mm_update_next_owner() may clear mm->owner to NULL
1065 * if it races with swapoff, page migration, etc.
1066 * So this can be called with p == NULL.
1067 */
1068 if (unlikely(!p))
1069 return NULL;
1070
1071 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1072 }
1073
1074 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1075 {
1076 struct mem_cgroup *memcg = NULL;
1077
1078 rcu_read_lock();
1079 do {
1080 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1081 if (unlikely(!memcg))
1082 memcg = root_mem_cgroup;
1083 } while (!css_tryget(&memcg->css));
1084 rcu_read_unlock();
1085 return memcg;
1086 }
1087
1088 /*
1089 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1090 * ref. count) or NULL if the whole root's subtree has been visited.
1091 *
1092 * helper function to be used by mem_cgroup_iter
1093 */
1094 static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1095 struct mem_cgroup *last_visited)
1096 {
1097 struct cgroup_subsys_state *prev_css, *next_css;
1098
1099 prev_css = last_visited ? &last_visited->css : NULL;
1100 skip_node:
1101 next_css = css_next_descendant_pre(prev_css, &root->css);
1102
1103 /*
1104 * Even if we found a group we have to make sure it is
1105 * alive. css && !memcg means that the groups should be
1106 * skipped and we should continue the tree walk.
1107 * last_visited css is safe to use because it is
1108 * protected by css_get and the tree walk is rcu safe.
1109 *
1110 * We do not take a reference on the root of the tree walk
1111 * because we might race with the root removal when it would
1112 * be the only node in the iterated hierarchy and mem_cgroup_iter
1113 * would end up in an endless loop because it expects that at
1114 * least one valid node will be returned. Root cannot disappear
1115 * because caller of the iterator should hold it already so
1116 * skipping css reference should be safe.
1117 */
1118 if (next_css) {
1119 if ((next_css == &root->css) ||
1120 ((next_css->flags & CSS_ONLINE) && css_tryget(next_css)))
1121 return mem_cgroup_from_css(next_css);
1122
1123 prev_css = next_css;
1124 goto skip_node;
1125 }
1126
1127 return NULL;
1128 }
1129
1130 static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
1131 {
1132 /*
1133 * When a group in the hierarchy below root is destroyed, the
1134 * hierarchy iterator can no longer be trusted since it might
1135 * have pointed to the destroyed group. Invalidate it.
1136 */
1137 atomic_inc(&root->dead_count);
1138 }
1139
1140 static struct mem_cgroup *
1141 mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
1142 struct mem_cgroup *root,
1143 int *sequence)
1144 {
1145 struct mem_cgroup *position = NULL;
1146 /*
1147 * A cgroup destruction happens in two stages: offlining and
1148 * release. They are separated by a RCU grace period.
1149 *
1150 * If the iterator is valid, we may still race with an
1151 * offlining. The RCU lock ensures the object won't be
1152 * released, tryget will fail if we lost the race.
1153 */
1154 *sequence = atomic_read(&root->dead_count);
1155 if (iter->last_dead_count == *sequence) {
1156 smp_rmb();
1157 position = iter->last_visited;
1158
1159 /*
1160 * We cannot take a reference to root because we might race
1161 * with root removal and returning NULL would end up in
1162 * an endless loop on the iterator user level when root
1163 * would be returned all the time.
1164 */
1165 if (position && position != root &&
1166 !css_tryget(&position->css))
1167 position = NULL;
1168 }
1169 return position;
1170 }
1171
1172 static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
1173 struct mem_cgroup *last_visited,
1174 struct mem_cgroup *new_position,
1175 struct mem_cgroup *root,
1176 int sequence)
1177 {
1178 /* root reference counting symmetric to mem_cgroup_iter_load */
1179 if (last_visited && last_visited != root)
1180 css_put(&last_visited->css);
1181 /*
1182 * We store the sequence count from the time @last_visited was
1183 * loaded successfully instead of rereading it here so that we
1184 * don't lose destruction events in between. We could have
1185 * raced with the destruction of @new_position after all.
1186 */
1187 iter->last_visited = new_position;
1188 smp_wmb();
1189 iter->last_dead_count = sequence;
1190 }
1191
1192 /**
1193 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1194 * @root: hierarchy root
1195 * @prev: previously returned memcg, NULL on first invocation
1196 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1197 *
1198 * Returns references to children of the hierarchy below @root, or
1199 * @root itself, or %NULL after a full round-trip.
1200 *
1201 * Caller must pass the return value in @prev on subsequent
1202 * invocations for reference counting, or use mem_cgroup_iter_break()
1203 * to cancel a hierarchy walk before the round-trip is complete.
1204 *
1205 * Reclaimers can specify a zone and a priority level in @reclaim to
1206 * divide up the memcgs in the hierarchy among all concurrent
1207 * reclaimers operating on the same zone and priority.
1208 */
1209 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1210 struct mem_cgroup *prev,
1211 struct mem_cgroup_reclaim_cookie *reclaim)
1212 {
1213 struct mem_cgroup *memcg = NULL;
1214 struct mem_cgroup *last_visited = NULL;
1215
1216 if (mem_cgroup_disabled())
1217 return NULL;
1218
1219 if (!root)
1220 root = root_mem_cgroup;
1221
1222 if (prev && !reclaim)
1223 last_visited = prev;
1224
1225 if (!root->use_hierarchy && root != root_mem_cgroup) {
1226 if (prev)
1227 goto out_css_put;
1228 return root;
1229 }
1230
1231 rcu_read_lock();
1232 while (!memcg) {
1233 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1234 int uninitialized_var(seq);
1235
1236 if (reclaim) {
1237 int nid = zone_to_nid(reclaim->zone);
1238 int zid = zone_idx(reclaim->zone);
1239 struct mem_cgroup_per_zone *mz;
1240
1241 mz = mem_cgroup_zoneinfo(root, nid, zid);
1242 iter = &mz->reclaim_iter[reclaim->priority];
1243 if (prev && reclaim->generation != iter->generation) {
1244 iter->last_visited = NULL;
1245 goto out_unlock;
1246 }
1247
1248 last_visited = mem_cgroup_iter_load(iter, root, &seq);
1249 }
1250
1251 memcg = __mem_cgroup_iter_next(root, last_visited);
1252
1253 if (reclaim) {
1254 mem_cgroup_iter_update(iter, last_visited, memcg, root,
1255 seq);
1256
1257 if (!memcg)
1258 iter->generation++;
1259 else if (!prev && memcg)
1260 reclaim->generation = iter->generation;
1261 }
1262
1263 if (prev && !memcg)
1264 goto out_unlock;
1265 }
1266 out_unlock:
1267 rcu_read_unlock();
1268 out_css_put:
1269 if (prev && prev != root)
1270 css_put(&prev->css);
1271
1272 return memcg;
1273 }
1274
1275 /**
1276 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1277 * @root: hierarchy root
1278 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1279 */
1280 void mem_cgroup_iter_break(struct mem_cgroup *root,
1281 struct mem_cgroup *prev)
1282 {
1283 if (!root)
1284 root = root_mem_cgroup;
1285 if (prev && prev != root)
1286 css_put(&prev->css);
1287 }
1288
1289 /*
1290 * Iteration constructs for visiting all cgroups (under a tree). If
1291 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1292 * be used for reference counting.
1293 */
1294 #define for_each_mem_cgroup_tree(iter, root) \
1295 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1296 iter != NULL; \
1297 iter = mem_cgroup_iter(root, iter, NULL))
1298
1299 #define for_each_mem_cgroup(iter) \
1300 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1301 iter != NULL; \
1302 iter = mem_cgroup_iter(NULL, iter, NULL))
1303
1304 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1305 {
1306 struct mem_cgroup *memcg;
1307
1308 rcu_read_lock();
1309 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1310 if (unlikely(!memcg))
1311 goto out;
1312
1313 switch (idx) {
1314 case PGFAULT:
1315 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1316 break;
1317 case PGMAJFAULT:
1318 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1319 break;
1320 default:
1321 BUG();
1322 }
1323 out:
1324 rcu_read_unlock();
1325 }
1326 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1327
1328 /**
1329 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1330 * @zone: zone of the wanted lruvec
1331 * @memcg: memcg of the wanted lruvec
1332 *
1333 * Returns the lru list vector holding pages for the given @zone and
1334 * @mem. This can be the global zone lruvec, if the memory controller
1335 * is disabled.
1336 */
1337 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1338 struct mem_cgroup *memcg)
1339 {
1340 struct mem_cgroup_per_zone *mz;
1341 struct lruvec *lruvec;
1342
1343 if (mem_cgroup_disabled()) {
1344 lruvec = &zone->lruvec;
1345 goto out;
1346 }
1347
1348 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1349 lruvec = &mz->lruvec;
1350 out:
1351 /*
1352 * Since a node can be onlined after the mem_cgroup was created,
1353 * we have to be prepared to initialize lruvec->zone here;
1354 * and if offlined then reonlined, we need to reinitialize it.
1355 */
1356 if (unlikely(lruvec->zone != zone))
1357 lruvec->zone = zone;
1358 return lruvec;
1359 }
1360
1361 /*
1362 * Following LRU functions are allowed to be used without PCG_LOCK.
1363 * Operations are called by routine of global LRU independently from memcg.
1364 * What we have to take care of here is validness of pc->mem_cgroup.
1365 *
1366 * Changes to pc->mem_cgroup happens when
1367 * 1. charge
1368 * 2. moving account
1369 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1370 * It is added to LRU before charge.
1371 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1372 * When moving account, the page is not on LRU. It's isolated.
1373 */
1374
1375 /**
1376 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1377 * @page: the page
1378 * @zone: zone of the page
1379 */
1380 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1381 {
1382 struct mem_cgroup_per_zone *mz;
1383 struct mem_cgroup *memcg;
1384 struct page_cgroup *pc;
1385 struct lruvec *lruvec;
1386
1387 if (mem_cgroup_disabled()) {
1388 lruvec = &zone->lruvec;
1389 goto out;
1390 }
1391
1392 pc = lookup_page_cgroup(page);
1393 memcg = pc->mem_cgroup;
1394
1395 /*
1396 * Surreptitiously switch any uncharged offlist page to root:
1397 * an uncharged page off lru does nothing to secure
1398 * its former mem_cgroup from sudden removal.
1399 *
1400 * Our caller holds lru_lock, and PageCgroupUsed is updated
1401 * under page_cgroup lock: between them, they make all uses
1402 * of pc->mem_cgroup safe.
1403 */
1404 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1405 pc->mem_cgroup = memcg = root_mem_cgroup;
1406
1407 mz = page_cgroup_zoneinfo(memcg, page);
1408 lruvec = &mz->lruvec;
1409 out:
1410 /*
1411 * Since a node can be onlined after the mem_cgroup was created,
1412 * we have to be prepared to initialize lruvec->zone here;
1413 * and if offlined then reonlined, we need to reinitialize it.
1414 */
1415 if (unlikely(lruvec->zone != zone))
1416 lruvec->zone = zone;
1417 return lruvec;
1418 }
1419
1420 /**
1421 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1422 * @lruvec: mem_cgroup per zone lru vector
1423 * @lru: index of lru list the page is sitting on
1424 * @nr_pages: positive when adding or negative when removing
1425 *
1426 * This function must be called when a page is added to or removed from an
1427 * lru list.
1428 */
1429 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1430 int nr_pages)
1431 {
1432 struct mem_cgroup_per_zone *mz;
1433 unsigned long *lru_size;
1434
1435 if (mem_cgroup_disabled())
1436 return;
1437
1438 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1439 lru_size = mz->lru_size + lru;
1440 *lru_size += nr_pages;
1441 VM_BUG_ON((long)(*lru_size) < 0);
1442 }
1443
1444 /*
1445 * Checks whether given mem is same or in the root_mem_cgroup's
1446 * hierarchy subtree
1447 */
1448 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1449 struct mem_cgroup *memcg)
1450 {
1451 if (root_memcg == memcg)
1452 return true;
1453 if (!root_memcg->use_hierarchy || !memcg)
1454 return false;
1455 return cgroup_is_descendant(memcg->css.cgroup, root_memcg->css.cgroup);
1456 }
1457
1458 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1459 struct mem_cgroup *memcg)
1460 {
1461 bool ret;
1462
1463 rcu_read_lock();
1464 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1465 rcu_read_unlock();
1466 return ret;
1467 }
1468
1469 bool task_in_mem_cgroup(struct task_struct *task,
1470 const struct mem_cgroup *memcg)
1471 {
1472 struct mem_cgroup *curr = NULL;
1473 struct task_struct *p;
1474 bool ret;
1475
1476 p = find_lock_task_mm(task);
1477 if (p) {
1478 curr = get_mem_cgroup_from_mm(p->mm);
1479 task_unlock(p);
1480 } else {
1481 /*
1482 * All threads may have already detached their mm's, but the oom
1483 * killer still needs to detect if they have already been oom
1484 * killed to prevent needlessly killing additional tasks.
1485 */
1486 rcu_read_lock();
1487 curr = mem_cgroup_from_task(task);
1488 if (curr)
1489 css_get(&curr->css);
1490 rcu_read_unlock();
1491 }
1492 /*
1493 * We should check use_hierarchy of "memcg" not "curr". Because checking
1494 * use_hierarchy of "curr" here make this function true if hierarchy is
1495 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1496 * hierarchy(even if use_hierarchy is disabled in "memcg").
1497 */
1498 ret = mem_cgroup_same_or_subtree(memcg, curr);
1499 css_put(&curr->css);
1500 return ret;
1501 }
1502
1503 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1504 {
1505 unsigned long inactive_ratio;
1506 unsigned long inactive;
1507 unsigned long active;
1508 unsigned long gb;
1509
1510 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1511 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1512
1513 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1514 if (gb)
1515 inactive_ratio = int_sqrt(10 * gb);
1516 else
1517 inactive_ratio = 1;
1518
1519 return inactive * inactive_ratio < active;
1520 }
1521
1522 #define mem_cgroup_from_res_counter(counter, member) \
1523 container_of(counter, struct mem_cgroup, member)
1524
1525 /**
1526 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1527 * @memcg: the memory cgroup
1528 *
1529 * Returns the maximum amount of memory @mem can be charged with, in
1530 * pages.
1531 */
1532 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1533 {
1534 unsigned long long margin;
1535
1536 margin = res_counter_margin(&memcg->res);
1537 if (do_swap_account)
1538 margin = min(margin, res_counter_margin(&memcg->memsw));
1539 return margin >> PAGE_SHIFT;
1540 }
1541
1542 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1543 {
1544 /* root ? */
1545 if (!css_parent(&memcg->css))
1546 return vm_swappiness;
1547
1548 return memcg->swappiness;
1549 }
1550
1551 /*
1552 * memcg->moving_account is used for checking possibility that some thread is
1553 * calling move_account(). When a thread on CPU-A starts moving pages under
1554 * a memcg, other threads should check memcg->moving_account under
1555 * rcu_read_lock(), like this:
1556 *
1557 * CPU-A CPU-B
1558 * rcu_read_lock()
1559 * memcg->moving_account+1 if (memcg->mocing_account)
1560 * take heavy locks.
1561 * synchronize_rcu() update something.
1562 * rcu_read_unlock()
1563 * start move here.
1564 */
1565
1566 /* for quick checking without looking up memcg */
1567 atomic_t memcg_moving __read_mostly;
1568
1569 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1570 {
1571 atomic_inc(&memcg_moving);
1572 atomic_inc(&memcg->moving_account);
1573 synchronize_rcu();
1574 }
1575
1576 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1577 {
1578 /*
1579 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1580 * We check NULL in callee rather than caller.
1581 */
1582 if (memcg) {
1583 atomic_dec(&memcg_moving);
1584 atomic_dec(&memcg->moving_account);
1585 }
1586 }
1587
1588 /*
1589 * 2 routines for checking "mem" is under move_account() or not.
1590 *
1591 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1592 * is used for avoiding races in accounting. If true,
1593 * pc->mem_cgroup may be overwritten.
1594 *
1595 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1596 * under hierarchy of moving cgroups. This is for
1597 * waiting at hith-memory prressure caused by "move".
1598 */
1599
1600 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1601 {
1602 VM_BUG_ON(!rcu_read_lock_held());
1603 return atomic_read(&memcg->moving_account) > 0;
1604 }
1605
1606 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1607 {
1608 struct mem_cgroup *from;
1609 struct mem_cgroup *to;
1610 bool ret = false;
1611 /*
1612 * Unlike task_move routines, we access mc.to, mc.from not under
1613 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1614 */
1615 spin_lock(&mc.lock);
1616 from = mc.from;
1617 to = mc.to;
1618 if (!from)
1619 goto unlock;
1620
1621 ret = mem_cgroup_same_or_subtree(memcg, from)
1622 || mem_cgroup_same_or_subtree(memcg, to);
1623 unlock:
1624 spin_unlock(&mc.lock);
1625 return ret;
1626 }
1627
1628 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1629 {
1630 if (mc.moving_task && current != mc.moving_task) {
1631 if (mem_cgroup_under_move(memcg)) {
1632 DEFINE_WAIT(wait);
1633 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1634 /* moving charge context might have finished. */
1635 if (mc.moving_task)
1636 schedule();
1637 finish_wait(&mc.waitq, &wait);
1638 return true;
1639 }
1640 }
1641 return false;
1642 }
1643
1644 /*
1645 * Take this lock when
1646 * - a code tries to modify page's memcg while it's USED.
1647 * - a code tries to modify page state accounting in a memcg.
1648 * see mem_cgroup_stolen(), too.
1649 */
1650 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1651 unsigned long *flags)
1652 {
1653 spin_lock_irqsave(&memcg->move_lock, *flags);
1654 }
1655
1656 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1657 unsigned long *flags)
1658 {
1659 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1660 }
1661
1662 #define K(x) ((x) << (PAGE_SHIFT-10))
1663 /**
1664 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1665 * @memcg: The memory cgroup that went over limit
1666 * @p: Task that is going to be killed
1667 *
1668 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1669 * enabled
1670 */
1671 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1672 {
1673 /* oom_info_lock ensures that parallel ooms do not interleave */
1674 static DEFINE_MUTEX(oom_info_lock);
1675 struct mem_cgroup *iter;
1676 unsigned int i;
1677
1678 if (!p)
1679 return;
1680
1681 mutex_lock(&oom_info_lock);
1682 rcu_read_lock();
1683
1684 pr_info("Task in ");
1685 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1686 pr_info(" killed as a result of limit of ");
1687 pr_cont_cgroup_path(memcg->css.cgroup);
1688 pr_info("\n");
1689
1690 rcu_read_unlock();
1691
1692 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1693 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1694 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1695 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1696 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1697 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1698 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1699 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1700 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1701 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1702 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1703 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1704
1705 for_each_mem_cgroup_tree(iter, memcg) {
1706 pr_info("Memory cgroup stats for ");
1707 pr_cont_cgroup_path(iter->css.cgroup);
1708 pr_cont(":");
1709
1710 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1711 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1712 continue;
1713 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1714 K(mem_cgroup_read_stat(iter, i)));
1715 }
1716
1717 for (i = 0; i < NR_LRU_LISTS; i++)
1718 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1719 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1720
1721 pr_cont("\n");
1722 }
1723 mutex_unlock(&oom_info_lock);
1724 }
1725
1726 /*
1727 * This function returns the number of memcg under hierarchy tree. Returns
1728 * 1(self count) if no children.
1729 */
1730 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1731 {
1732 int num = 0;
1733 struct mem_cgroup *iter;
1734
1735 for_each_mem_cgroup_tree(iter, memcg)
1736 num++;
1737 return num;
1738 }
1739
1740 /*
1741 * Return the memory (and swap, if configured) limit for a memcg.
1742 */
1743 static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1744 {
1745 u64 limit;
1746
1747 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1748
1749 /*
1750 * Do not consider swap space if we cannot swap due to swappiness
1751 */
1752 if (mem_cgroup_swappiness(memcg)) {
1753 u64 memsw;
1754
1755 limit += total_swap_pages << PAGE_SHIFT;
1756 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1757
1758 /*
1759 * If memsw is finite and limits the amount of swap space
1760 * available to this memcg, return that limit.
1761 */
1762 limit = min(limit, memsw);
1763 }
1764
1765 return limit;
1766 }
1767
1768 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1769 int order)
1770 {
1771 struct mem_cgroup *iter;
1772 unsigned long chosen_points = 0;
1773 unsigned long totalpages;
1774 unsigned int points = 0;
1775 struct task_struct *chosen = NULL;
1776
1777 /*
1778 * If current has a pending SIGKILL or is exiting, then automatically
1779 * select it. The goal is to allow it to allocate so that it may
1780 * quickly exit and free its memory.
1781 */
1782 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1783 set_thread_flag(TIF_MEMDIE);
1784 return;
1785 }
1786
1787 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1788 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1789 for_each_mem_cgroup_tree(iter, memcg) {
1790 struct css_task_iter it;
1791 struct task_struct *task;
1792
1793 css_task_iter_start(&iter->css, &it);
1794 while ((task = css_task_iter_next(&it))) {
1795 switch (oom_scan_process_thread(task, totalpages, NULL,
1796 false)) {
1797 case OOM_SCAN_SELECT:
1798 if (chosen)
1799 put_task_struct(chosen);
1800 chosen = task;
1801 chosen_points = ULONG_MAX;
1802 get_task_struct(chosen);
1803 /* fall through */
1804 case OOM_SCAN_CONTINUE:
1805 continue;
1806 case OOM_SCAN_ABORT:
1807 css_task_iter_end(&it);
1808 mem_cgroup_iter_break(memcg, iter);
1809 if (chosen)
1810 put_task_struct(chosen);
1811 return;
1812 case OOM_SCAN_OK:
1813 break;
1814 };
1815 points = oom_badness(task, memcg, NULL, totalpages);
1816 if (!points || points < chosen_points)
1817 continue;
1818 /* Prefer thread group leaders for display purposes */
1819 if (points == chosen_points &&
1820 thread_group_leader(chosen))
1821 continue;
1822
1823 if (chosen)
1824 put_task_struct(chosen);
1825 chosen = task;
1826 chosen_points = points;
1827 get_task_struct(chosen);
1828 }
1829 css_task_iter_end(&it);
1830 }
1831
1832 if (!chosen)
1833 return;
1834 points = chosen_points * 1000 / totalpages;
1835 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1836 NULL, "Memory cgroup out of memory");
1837 }
1838
1839 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1840 gfp_t gfp_mask,
1841 unsigned long flags)
1842 {
1843 unsigned long total = 0;
1844 bool noswap = false;
1845 int loop;
1846
1847 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1848 noswap = true;
1849 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1850 noswap = true;
1851
1852 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1853 if (loop)
1854 drain_all_stock_async(memcg);
1855 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1856 /*
1857 * Allow limit shrinkers, which are triggered directly
1858 * by userspace, to catch signals and stop reclaim
1859 * after minimal progress, regardless of the margin.
1860 */
1861 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1862 break;
1863 if (mem_cgroup_margin(memcg))
1864 break;
1865 /*
1866 * If nothing was reclaimed after two attempts, there
1867 * may be no reclaimable pages in this hierarchy.
1868 */
1869 if (loop && !total)
1870 break;
1871 }
1872 return total;
1873 }
1874
1875 /**
1876 * test_mem_cgroup_node_reclaimable
1877 * @memcg: the target memcg
1878 * @nid: the node ID to be checked.
1879 * @noswap : specify true here if the user wants flle only information.
1880 *
1881 * This function returns whether the specified memcg contains any
1882 * reclaimable pages on a node. Returns true if there are any reclaimable
1883 * pages in the node.
1884 */
1885 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1886 int nid, bool noswap)
1887 {
1888 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1889 return true;
1890 if (noswap || !total_swap_pages)
1891 return false;
1892 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1893 return true;
1894 return false;
1895
1896 }
1897 #if MAX_NUMNODES > 1
1898
1899 /*
1900 * Always updating the nodemask is not very good - even if we have an empty
1901 * list or the wrong list here, we can start from some node and traverse all
1902 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1903 *
1904 */
1905 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1906 {
1907 int nid;
1908 /*
1909 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1910 * pagein/pageout changes since the last update.
1911 */
1912 if (!atomic_read(&memcg->numainfo_events))
1913 return;
1914 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1915 return;
1916
1917 /* make a nodemask where this memcg uses memory from */
1918 memcg->scan_nodes = node_states[N_MEMORY];
1919
1920 for_each_node_mask(nid, node_states[N_MEMORY]) {
1921
1922 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1923 node_clear(nid, memcg->scan_nodes);
1924 }
1925
1926 atomic_set(&memcg->numainfo_events, 0);
1927 atomic_set(&memcg->numainfo_updating, 0);
1928 }
1929
1930 /*
1931 * Selecting a node where we start reclaim from. Because what we need is just
1932 * reducing usage counter, start from anywhere is O,K. Considering
1933 * memory reclaim from current node, there are pros. and cons.
1934 *
1935 * Freeing memory from current node means freeing memory from a node which
1936 * we'll use or we've used. So, it may make LRU bad. And if several threads
1937 * hit limits, it will see a contention on a node. But freeing from remote
1938 * node means more costs for memory reclaim because of memory latency.
1939 *
1940 * Now, we use round-robin. Better algorithm is welcomed.
1941 */
1942 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1943 {
1944 int node;
1945
1946 mem_cgroup_may_update_nodemask(memcg);
1947 node = memcg->last_scanned_node;
1948
1949 node = next_node(node, memcg->scan_nodes);
1950 if (node == MAX_NUMNODES)
1951 node = first_node(memcg->scan_nodes);
1952 /*
1953 * We call this when we hit limit, not when pages are added to LRU.
1954 * No LRU may hold pages because all pages are UNEVICTABLE or
1955 * memcg is too small and all pages are not on LRU. In that case,
1956 * we use curret node.
1957 */
1958 if (unlikely(node == MAX_NUMNODES))
1959 node = numa_node_id();
1960
1961 memcg->last_scanned_node = node;
1962 return node;
1963 }
1964
1965 /*
1966 * Check all nodes whether it contains reclaimable pages or not.
1967 * For quick scan, we make use of scan_nodes. This will allow us to skip
1968 * unused nodes. But scan_nodes is lazily updated and may not cotain
1969 * enough new information. We need to do double check.
1970 */
1971 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1972 {
1973 int nid;
1974
1975 /*
1976 * quick check...making use of scan_node.
1977 * We can skip unused nodes.
1978 */
1979 if (!nodes_empty(memcg->scan_nodes)) {
1980 for (nid = first_node(memcg->scan_nodes);
1981 nid < MAX_NUMNODES;
1982 nid = next_node(nid, memcg->scan_nodes)) {
1983
1984 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1985 return true;
1986 }
1987 }
1988 /*
1989 * Check rest of nodes.
1990 */
1991 for_each_node_state(nid, N_MEMORY) {
1992 if (node_isset(nid, memcg->scan_nodes))
1993 continue;
1994 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1995 return true;
1996 }
1997 return false;
1998 }
1999
2000 #else
2001 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
2002 {
2003 return 0;
2004 }
2005
2006 static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
2007 {
2008 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
2009 }
2010 #endif
2011
2012 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2013 struct zone *zone,
2014 gfp_t gfp_mask,
2015 unsigned long *total_scanned)
2016 {
2017 struct mem_cgroup *victim = NULL;
2018 int total = 0;
2019 int loop = 0;
2020 unsigned long excess;
2021 unsigned long nr_scanned;
2022 struct mem_cgroup_reclaim_cookie reclaim = {
2023 .zone = zone,
2024 .priority = 0,
2025 };
2026
2027 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
2028
2029 while (1) {
2030 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
2031 if (!victim) {
2032 loop++;
2033 if (loop >= 2) {
2034 /*
2035 * If we have not been able to reclaim
2036 * anything, it might because there are
2037 * no reclaimable pages under this hierarchy
2038 */
2039 if (!total)
2040 break;
2041 /*
2042 * We want to do more targeted reclaim.
2043 * excess >> 2 is not to excessive so as to
2044 * reclaim too much, nor too less that we keep
2045 * coming back to reclaim from this cgroup
2046 */
2047 if (total >= (excess >> 2) ||
2048 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
2049 break;
2050 }
2051 continue;
2052 }
2053 if (!mem_cgroup_reclaimable(victim, false))
2054 continue;
2055 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2056 zone, &nr_scanned);
2057 *total_scanned += nr_scanned;
2058 if (!res_counter_soft_limit_excess(&root_memcg->res))
2059 break;
2060 }
2061 mem_cgroup_iter_break(root_memcg, victim);
2062 return total;
2063 }
2064
2065 #ifdef CONFIG_LOCKDEP
2066 static struct lockdep_map memcg_oom_lock_dep_map = {
2067 .name = "memcg_oom_lock",
2068 };
2069 #endif
2070
2071 static DEFINE_SPINLOCK(memcg_oom_lock);
2072
2073 /*
2074 * Check OOM-Killer is already running under our hierarchy.
2075 * If someone is running, return false.
2076 */
2077 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
2078 {
2079 struct mem_cgroup *iter, *failed = NULL;
2080
2081 spin_lock(&memcg_oom_lock);
2082
2083 for_each_mem_cgroup_tree(iter, memcg) {
2084 if (iter->oom_lock) {
2085 /*
2086 * this subtree of our hierarchy is already locked
2087 * so we cannot give a lock.
2088 */
2089 failed = iter;
2090 mem_cgroup_iter_break(memcg, iter);
2091 break;
2092 } else
2093 iter->oom_lock = true;
2094 }
2095
2096 if (failed) {
2097 /*
2098 * OK, we failed to lock the whole subtree so we have
2099 * to clean up what we set up to the failing subtree
2100 */
2101 for_each_mem_cgroup_tree(iter, memcg) {
2102 if (iter == failed) {
2103 mem_cgroup_iter_break(memcg, iter);
2104 break;
2105 }
2106 iter->oom_lock = false;
2107 }
2108 } else
2109 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2110
2111 spin_unlock(&memcg_oom_lock);
2112
2113 return !failed;
2114 }
2115
2116 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2117 {
2118 struct mem_cgroup *iter;
2119
2120 spin_lock(&memcg_oom_lock);
2121 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2122 for_each_mem_cgroup_tree(iter, memcg)
2123 iter->oom_lock = false;
2124 spin_unlock(&memcg_oom_lock);
2125 }
2126
2127 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2128 {
2129 struct mem_cgroup *iter;
2130
2131 for_each_mem_cgroup_tree(iter, memcg)
2132 atomic_inc(&iter->under_oom);
2133 }
2134
2135 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2136 {
2137 struct mem_cgroup *iter;
2138
2139 /*
2140 * When a new child is created while the hierarchy is under oom,
2141 * mem_cgroup_oom_lock() may not be called. We have to use
2142 * atomic_add_unless() here.
2143 */
2144 for_each_mem_cgroup_tree(iter, memcg)
2145 atomic_add_unless(&iter->under_oom, -1, 0);
2146 }
2147
2148 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2149
2150 struct oom_wait_info {
2151 struct mem_cgroup *memcg;
2152 wait_queue_t wait;
2153 };
2154
2155 static int memcg_oom_wake_function(wait_queue_t *wait,
2156 unsigned mode, int sync, void *arg)
2157 {
2158 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2159 struct mem_cgroup *oom_wait_memcg;
2160 struct oom_wait_info *oom_wait_info;
2161
2162 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2163 oom_wait_memcg = oom_wait_info->memcg;
2164
2165 /*
2166 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
2167 * Then we can use css_is_ancestor without taking care of RCU.
2168 */
2169 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2170 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
2171 return 0;
2172 return autoremove_wake_function(wait, mode, sync, arg);
2173 }
2174
2175 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
2176 {
2177 atomic_inc(&memcg->oom_wakeups);
2178 /* for filtering, pass "memcg" as argument. */
2179 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
2180 }
2181
2182 static void memcg_oom_recover(struct mem_cgroup *memcg)
2183 {
2184 if (memcg && atomic_read(&memcg->under_oom))
2185 memcg_wakeup_oom(memcg);
2186 }
2187
2188 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2189 {
2190 if (!current->memcg_oom.may_oom)
2191 return;
2192 /*
2193 * We are in the middle of the charge context here, so we
2194 * don't want to block when potentially sitting on a callstack
2195 * that holds all kinds of filesystem and mm locks.
2196 *
2197 * Also, the caller may handle a failed allocation gracefully
2198 * (like optional page cache readahead) and so an OOM killer
2199 * invocation might not even be necessary.
2200 *
2201 * That's why we don't do anything here except remember the
2202 * OOM context and then deal with it at the end of the page
2203 * fault when the stack is unwound, the locks are released,
2204 * and when we know whether the fault was overall successful.
2205 */
2206 css_get(&memcg->css);
2207 current->memcg_oom.memcg = memcg;
2208 current->memcg_oom.gfp_mask = mask;
2209 current->memcg_oom.order = order;
2210 }
2211
2212 /**
2213 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2214 * @handle: actually kill/wait or just clean up the OOM state
2215 *
2216 * This has to be called at the end of a page fault if the memcg OOM
2217 * handler was enabled.
2218 *
2219 * Memcg supports userspace OOM handling where failed allocations must
2220 * sleep on a waitqueue until the userspace task resolves the
2221 * situation. Sleeping directly in the charge context with all kinds
2222 * of locks held is not a good idea, instead we remember an OOM state
2223 * in the task and mem_cgroup_oom_synchronize() has to be called at
2224 * the end of the page fault to complete the OOM handling.
2225 *
2226 * Returns %true if an ongoing memcg OOM situation was detected and
2227 * completed, %false otherwise.
2228 */
2229 bool mem_cgroup_oom_synchronize(bool handle)
2230 {
2231 struct mem_cgroup *memcg = current->memcg_oom.memcg;
2232 struct oom_wait_info owait;
2233 bool locked;
2234
2235 /* OOM is global, do not handle */
2236 if (!memcg)
2237 return false;
2238
2239 if (!handle)
2240 goto cleanup;
2241
2242 owait.memcg = memcg;
2243 owait.wait.flags = 0;
2244 owait.wait.func = memcg_oom_wake_function;
2245 owait.wait.private = current;
2246 INIT_LIST_HEAD(&owait.wait.task_list);
2247
2248 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2249 mem_cgroup_mark_under_oom(memcg);
2250
2251 locked = mem_cgroup_oom_trylock(memcg);
2252
2253 if (locked)
2254 mem_cgroup_oom_notify(memcg);
2255
2256 if (locked && !memcg->oom_kill_disable) {
2257 mem_cgroup_unmark_under_oom(memcg);
2258 finish_wait(&memcg_oom_waitq, &owait.wait);
2259 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2260 current->memcg_oom.order);
2261 } else {
2262 schedule();
2263 mem_cgroup_unmark_under_oom(memcg);
2264 finish_wait(&memcg_oom_waitq, &owait.wait);
2265 }
2266
2267 if (locked) {
2268 mem_cgroup_oom_unlock(memcg);
2269 /*
2270 * There is no guarantee that an OOM-lock contender
2271 * sees the wakeups triggered by the OOM kill
2272 * uncharges. Wake any sleepers explicitely.
2273 */
2274 memcg_oom_recover(memcg);
2275 }
2276 cleanup:
2277 current->memcg_oom.memcg = NULL;
2278 css_put(&memcg->css);
2279 return true;
2280 }
2281
2282 /*
2283 * Currently used to update mapped file statistics, but the routine can be
2284 * generalized to update other statistics as well.
2285 *
2286 * Notes: Race condition
2287 *
2288 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2289 * it tends to be costly. But considering some conditions, we doesn't need
2290 * to do so _always_.
2291 *
2292 * Considering "charge", lock_page_cgroup() is not required because all
2293 * file-stat operations happen after a page is attached to radix-tree. There
2294 * are no race with "charge".
2295 *
2296 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2297 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2298 * if there are race with "uncharge". Statistics itself is properly handled
2299 * by flags.
2300 *
2301 * Considering "move", this is an only case we see a race. To make the race
2302 * small, we check mm->moving_account and detect there are possibility of race
2303 * If there is, we take a lock.
2304 */
2305
2306 void __mem_cgroup_begin_update_page_stat(struct page *page,
2307 bool *locked, unsigned long *flags)
2308 {
2309 struct mem_cgroup *memcg;
2310 struct page_cgroup *pc;
2311
2312 pc = lookup_page_cgroup(page);
2313 again:
2314 memcg = pc->mem_cgroup;
2315 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2316 return;
2317 /*
2318 * If this memory cgroup is not under account moving, we don't
2319 * need to take move_lock_mem_cgroup(). Because we already hold
2320 * rcu_read_lock(), any calls to move_account will be delayed until
2321 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2322 */
2323 if (!mem_cgroup_stolen(memcg))
2324 return;
2325
2326 move_lock_mem_cgroup(memcg, flags);
2327 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2328 move_unlock_mem_cgroup(memcg, flags);
2329 goto again;
2330 }
2331 *locked = true;
2332 }
2333
2334 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2335 {
2336 struct page_cgroup *pc = lookup_page_cgroup(page);
2337
2338 /*
2339 * It's guaranteed that pc->mem_cgroup never changes while
2340 * lock is held because a routine modifies pc->mem_cgroup
2341 * should take move_lock_mem_cgroup().
2342 */
2343 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2344 }
2345
2346 void mem_cgroup_update_page_stat(struct page *page,
2347 enum mem_cgroup_stat_index idx, int val)
2348 {
2349 struct mem_cgroup *memcg;
2350 struct page_cgroup *pc = lookup_page_cgroup(page);
2351 unsigned long uninitialized_var(flags);
2352
2353 if (mem_cgroup_disabled())
2354 return;
2355
2356 VM_BUG_ON(!rcu_read_lock_held());
2357 memcg = pc->mem_cgroup;
2358 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2359 return;
2360
2361 this_cpu_add(memcg->stat->count[idx], val);
2362 }
2363
2364 /*
2365 * size of first charge trial. "32" comes from vmscan.c's magic value.
2366 * TODO: maybe necessary to use big numbers in big irons.
2367 */
2368 #define CHARGE_BATCH 32U
2369 struct memcg_stock_pcp {
2370 struct mem_cgroup *cached; /* this never be root cgroup */
2371 unsigned int nr_pages;
2372 struct work_struct work;
2373 unsigned long flags;
2374 #define FLUSHING_CACHED_CHARGE 0
2375 };
2376 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2377 static DEFINE_MUTEX(percpu_charge_mutex);
2378
2379 /**
2380 * consume_stock: Try to consume stocked charge on this cpu.
2381 * @memcg: memcg to consume from.
2382 * @nr_pages: how many pages to charge.
2383 *
2384 * The charges will only happen if @memcg matches the current cpu's memcg
2385 * stock, and at least @nr_pages are available in that stock. Failure to
2386 * service an allocation will refill the stock.
2387 *
2388 * returns true if successful, false otherwise.
2389 */
2390 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2391 {
2392 struct memcg_stock_pcp *stock;
2393 bool ret = true;
2394
2395 if (nr_pages > CHARGE_BATCH)
2396 return false;
2397
2398 stock = &get_cpu_var(memcg_stock);
2399 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2400 stock->nr_pages -= nr_pages;
2401 else /* need to call res_counter_charge */
2402 ret = false;
2403 put_cpu_var(memcg_stock);
2404 return ret;
2405 }
2406
2407 /*
2408 * Returns stocks cached in percpu to res_counter and reset cached information.
2409 */
2410 static void drain_stock(struct memcg_stock_pcp *stock)
2411 {
2412 struct mem_cgroup *old = stock->cached;
2413
2414 if (stock->nr_pages) {
2415 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2416
2417 res_counter_uncharge(&old->res, bytes);
2418 if (do_swap_account)
2419 res_counter_uncharge(&old->memsw, bytes);
2420 stock->nr_pages = 0;
2421 }
2422 stock->cached = NULL;
2423 }
2424
2425 /*
2426 * This must be called under preempt disabled or must be called by
2427 * a thread which is pinned to local cpu.
2428 */
2429 static void drain_local_stock(struct work_struct *dummy)
2430 {
2431 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2432 drain_stock(stock);
2433 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2434 }
2435
2436 static void __init memcg_stock_init(void)
2437 {
2438 int cpu;
2439
2440 for_each_possible_cpu(cpu) {
2441 struct memcg_stock_pcp *stock =
2442 &per_cpu(memcg_stock, cpu);
2443 INIT_WORK(&stock->work, drain_local_stock);
2444 }
2445 }
2446
2447 /*
2448 * Cache charges(val) which is from res_counter, to local per_cpu area.
2449 * This will be consumed by consume_stock() function, later.
2450 */
2451 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2452 {
2453 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2454
2455 if (stock->cached != memcg) { /* reset if necessary */
2456 drain_stock(stock);
2457 stock->cached = memcg;
2458 }
2459 stock->nr_pages += nr_pages;
2460 put_cpu_var(memcg_stock);
2461 }
2462
2463 /*
2464 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2465 * of the hierarchy under it. sync flag says whether we should block
2466 * until the work is done.
2467 */
2468 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2469 {
2470 int cpu, curcpu;
2471
2472 /* Notify other cpus that system-wide "drain" is running */
2473 get_online_cpus();
2474 curcpu = get_cpu();
2475 for_each_online_cpu(cpu) {
2476 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2477 struct mem_cgroup *memcg;
2478
2479 memcg = stock->cached;
2480 if (!memcg || !stock->nr_pages)
2481 continue;
2482 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2483 continue;
2484 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2485 if (cpu == curcpu)
2486 drain_local_stock(&stock->work);
2487 else
2488 schedule_work_on(cpu, &stock->work);
2489 }
2490 }
2491 put_cpu();
2492
2493 if (!sync)
2494 goto out;
2495
2496 for_each_online_cpu(cpu) {
2497 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2498 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2499 flush_work(&stock->work);
2500 }
2501 out:
2502 put_online_cpus();
2503 }
2504
2505 /*
2506 * Tries to drain stocked charges in other cpus. This function is asynchronous
2507 * and just put a work per cpu for draining localy on each cpu. Caller can
2508 * expects some charges will be back to res_counter later but cannot wait for
2509 * it.
2510 */
2511 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2512 {
2513 /*
2514 * If someone calls draining, avoid adding more kworker runs.
2515 */
2516 if (!mutex_trylock(&percpu_charge_mutex))
2517 return;
2518 drain_all_stock(root_memcg, false);
2519 mutex_unlock(&percpu_charge_mutex);
2520 }
2521
2522 /* This is a synchronous drain interface. */
2523 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2524 {
2525 /* called when force_empty is called */
2526 mutex_lock(&percpu_charge_mutex);
2527 drain_all_stock(root_memcg, true);
2528 mutex_unlock(&percpu_charge_mutex);
2529 }
2530
2531 /*
2532 * This function drains percpu counter value from DEAD cpu and
2533 * move it to local cpu. Note that this function can be preempted.
2534 */
2535 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2536 {
2537 int i;
2538
2539 spin_lock(&memcg->pcp_counter_lock);
2540 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2541 long x = per_cpu(memcg->stat->count[i], cpu);
2542
2543 per_cpu(memcg->stat->count[i], cpu) = 0;
2544 memcg->nocpu_base.count[i] += x;
2545 }
2546 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2547 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2548
2549 per_cpu(memcg->stat->events[i], cpu) = 0;
2550 memcg->nocpu_base.events[i] += x;
2551 }
2552 spin_unlock(&memcg->pcp_counter_lock);
2553 }
2554
2555 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2556 unsigned long action,
2557 void *hcpu)
2558 {
2559 int cpu = (unsigned long)hcpu;
2560 struct memcg_stock_pcp *stock;
2561 struct mem_cgroup *iter;
2562
2563 if (action == CPU_ONLINE)
2564 return NOTIFY_OK;
2565
2566 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2567 return NOTIFY_OK;
2568
2569 for_each_mem_cgroup(iter)
2570 mem_cgroup_drain_pcp_counter(iter, cpu);
2571
2572 stock = &per_cpu(memcg_stock, cpu);
2573 drain_stock(stock);
2574 return NOTIFY_OK;
2575 }
2576
2577
2578 /* See mem_cgroup_try_charge() for details */
2579 enum {
2580 CHARGE_OK, /* success */
2581 CHARGE_RETRY, /* need to retry but retry is not bad */
2582 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2583 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2584 };
2585
2586 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2587 unsigned int nr_pages, unsigned int min_pages,
2588 bool invoke_oom)
2589 {
2590 unsigned long csize = nr_pages * PAGE_SIZE;
2591 struct mem_cgroup *mem_over_limit;
2592 struct res_counter *fail_res;
2593 unsigned long flags = 0;
2594 int ret;
2595
2596 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2597
2598 if (likely(!ret)) {
2599 if (!do_swap_account)
2600 return CHARGE_OK;
2601 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2602 if (likely(!ret))
2603 return CHARGE_OK;
2604
2605 res_counter_uncharge(&memcg->res, csize);
2606 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2607 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2608 } else
2609 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2610 /*
2611 * Never reclaim on behalf of optional batching, retry with a
2612 * single page instead.
2613 */
2614 if (nr_pages > min_pages)
2615 return CHARGE_RETRY;
2616
2617 if (!(gfp_mask & __GFP_WAIT))
2618 return CHARGE_WOULDBLOCK;
2619
2620 if (gfp_mask & __GFP_NORETRY)
2621 return CHARGE_NOMEM;
2622
2623 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2624 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2625 return CHARGE_RETRY;
2626 /*
2627 * Even though the limit is exceeded at this point, reclaim
2628 * may have been able to free some pages. Retry the charge
2629 * before killing the task.
2630 *
2631 * Only for regular pages, though: huge pages are rather
2632 * unlikely to succeed so close to the limit, and we fall back
2633 * to regular pages anyway in case of failure.
2634 */
2635 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2636 return CHARGE_RETRY;
2637
2638 /*
2639 * At task move, charge accounts can be doubly counted. So, it's
2640 * better to wait until the end of task_move if something is going on.
2641 */
2642 if (mem_cgroup_wait_acct_move(mem_over_limit))
2643 return CHARGE_RETRY;
2644
2645 if (invoke_oom)
2646 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2647
2648 return CHARGE_NOMEM;
2649 }
2650
2651 /**
2652 * mem_cgroup_try_charge - try charging a memcg
2653 * @memcg: memcg to charge
2654 * @nr_pages: number of pages to charge
2655 * @oom: trigger OOM if reclaim fails
2656 *
2657 * Returns 0 if @memcg was charged successfully, -EINTR if the charge
2658 * was bypassed to root_mem_cgroup, and -ENOMEM if the charge failed.
2659 */
2660 static int mem_cgroup_try_charge(struct mem_cgroup *memcg,
2661 gfp_t gfp_mask,
2662 unsigned int nr_pages,
2663 bool oom)
2664 {
2665 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2666 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2667 int ret;
2668
2669 if (mem_cgroup_is_root(memcg))
2670 goto done;
2671 /*
2672 * Unlike in global OOM situations, memcg is not in a physical
2673 * memory shortage. Allow dying and OOM-killed tasks to
2674 * bypass the last charges so that they can exit quickly and
2675 * free their memory.
2676 */
2677 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2678 fatal_signal_pending(current)))
2679 goto bypass;
2680
2681 if (unlikely(task_in_memcg_oom(current)))
2682 goto nomem;
2683
2684 if (gfp_mask & __GFP_NOFAIL)
2685 oom = false;
2686 again:
2687 if (consume_stock(memcg, nr_pages))
2688 goto done;
2689
2690 do {
2691 bool invoke_oom = oom && !nr_oom_retries;
2692
2693 /* If killed, bypass charge */
2694 if (fatal_signal_pending(current))
2695 goto bypass;
2696
2697 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2698 nr_pages, invoke_oom);
2699 switch (ret) {
2700 case CHARGE_OK:
2701 break;
2702 case CHARGE_RETRY: /* not in OOM situation but retry */
2703 batch = nr_pages;
2704 goto again;
2705 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2706 goto nomem;
2707 case CHARGE_NOMEM: /* OOM routine works */
2708 if (!oom || invoke_oom)
2709 goto nomem;
2710 nr_oom_retries--;
2711 break;
2712 }
2713 } while (ret != CHARGE_OK);
2714
2715 if (batch > nr_pages)
2716 refill_stock(memcg, batch - nr_pages);
2717 done:
2718 return 0;
2719 nomem:
2720 if (!(gfp_mask & __GFP_NOFAIL))
2721 return -ENOMEM;
2722 bypass:
2723 return -EINTR;
2724 }
2725
2726 /**
2727 * mem_cgroup_try_charge_mm - try charging a mm
2728 * @mm: mm_struct to charge
2729 * @nr_pages: number of pages to charge
2730 * @oom: trigger OOM if reclaim fails
2731 *
2732 * Returns the charged mem_cgroup associated with the given mm_struct or
2733 * NULL the charge failed.
2734 */
2735 static struct mem_cgroup *mem_cgroup_try_charge_mm(struct mm_struct *mm,
2736 gfp_t gfp_mask,
2737 unsigned int nr_pages,
2738 bool oom)
2739
2740 {
2741 struct mem_cgroup *memcg;
2742 int ret;
2743
2744 memcg = get_mem_cgroup_from_mm(mm);
2745 ret = mem_cgroup_try_charge(memcg, gfp_mask, nr_pages, oom);
2746 css_put(&memcg->css);
2747 if (ret == -EINTR)
2748 memcg = root_mem_cgroup;
2749 else if (ret)
2750 memcg = NULL;
2751
2752 return memcg;
2753 }
2754
2755 /*
2756 * Somemtimes we have to undo a charge we got by try_charge().
2757 * This function is for that and do uncharge, put css's refcnt.
2758 * gotten by try_charge().
2759 */
2760 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2761 unsigned int nr_pages)
2762 {
2763 if (!mem_cgroup_is_root(memcg)) {
2764 unsigned long bytes = nr_pages * PAGE_SIZE;
2765
2766 res_counter_uncharge(&memcg->res, bytes);
2767 if (do_swap_account)
2768 res_counter_uncharge(&memcg->memsw, bytes);
2769 }
2770 }
2771
2772 /*
2773 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2774 * This is useful when moving usage to parent cgroup.
2775 */
2776 static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2777 unsigned int nr_pages)
2778 {
2779 unsigned long bytes = nr_pages * PAGE_SIZE;
2780
2781 if (mem_cgroup_is_root(memcg))
2782 return;
2783
2784 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2785 if (do_swap_account)
2786 res_counter_uncharge_until(&memcg->memsw,
2787 memcg->memsw.parent, bytes);
2788 }
2789
2790 /*
2791 * A helper function to get mem_cgroup from ID. must be called under
2792 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2793 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2794 * called against removed memcg.)
2795 */
2796 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2797 {
2798 /* ID 0 is unused ID */
2799 if (!id)
2800 return NULL;
2801 return mem_cgroup_from_id(id);
2802 }
2803
2804 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2805 {
2806 struct mem_cgroup *memcg = NULL;
2807 struct page_cgroup *pc;
2808 unsigned short id;
2809 swp_entry_t ent;
2810
2811 VM_BUG_ON_PAGE(!PageLocked(page), page);
2812
2813 pc = lookup_page_cgroup(page);
2814 lock_page_cgroup(pc);
2815 if (PageCgroupUsed(pc)) {
2816 memcg = pc->mem_cgroup;
2817 if (memcg && !css_tryget(&memcg->css))
2818 memcg = NULL;
2819 } else if (PageSwapCache(page)) {
2820 ent.val = page_private(page);
2821 id = lookup_swap_cgroup_id(ent);
2822 rcu_read_lock();
2823 memcg = mem_cgroup_lookup(id);
2824 if (memcg && !css_tryget(&memcg->css))
2825 memcg = NULL;
2826 rcu_read_unlock();
2827 }
2828 unlock_page_cgroup(pc);
2829 return memcg;
2830 }
2831
2832 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2833 struct page *page,
2834 unsigned int nr_pages,
2835 enum charge_type ctype,
2836 bool lrucare)
2837 {
2838 struct page_cgroup *pc = lookup_page_cgroup(page);
2839 struct zone *uninitialized_var(zone);
2840 struct lruvec *lruvec;
2841 bool was_on_lru = false;
2842 bool anon;
2843
2844 lock_page_cgroup(pc);
2845 VM_BUG_ON_PAGE(PageCgroupUsed(pc), page);
2846 /*
2847 * we don't need page_cgroup_lock about tail pages, becase they are not
2848 * accessed by any other context at this point.
2849 */
2850
2851 /*
2852 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2853 * may already be on some other mem_cgroup's LRU. Take care of it.
2854 */
2855 if (lrucare) {
2856 zone = page_zone(page);
2857 spin_lock_irq(&zone->lru_lock);
2858 if (PageLRU(page)) {
2859 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2860 ClearPageLRU(page);
2861 del_page_from_lru_list(page, lruvec, page_lru(page));
2862 was_on_lru = true;
2863 }
2864 }
2865
2866 pc->mem_cgroup = memcg;
2867 /*
2868 * We access a page_cgroup asynchronously without lock_page_cgroup().
2869 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2870 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2871 * before USED bit, we need memory barrier here.
2872 * See mem_cgroup_add_lru_list(), etc.
2873 */
2874 smp_wmb();
2875 SetPageCgroupUsed(pc);
2876
2877 if (lrucare) {
2878 if (was_on_lru) {
2879 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2880 VM_BUG_ON_PAGE(PageLRU(page), page);
2881 SetPageLRU(page);
2882 add_page_to_lru_list(page, lruvec, page_lru(page));
2883 }
2884 spin_unlock_irq(&zone->lru_lock);
2885 }
2886
2887 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2888 anon = true;
2889 else
2890 anon = false;
2891
2892 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2893 unlock_page_cgroup(pc);
2894
2895 /*
2896 * "charge_statistics" updated event counter. Then, check it.
2897 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2898 * if they exceeds softlimit.
2899 */
2900 memcg_check_events(memcg, page);
2901 }
2902
2903 static DEFINE_MUTEX(set_limit_mutex);
2904
2905 #ifdef CONFIG_MEMCG_KMEM
2906 static DEFINE_MUTEX(activate_kmem_mutex);
2907
2908 static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2909 {
2910 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2911 memcg_kmem_is_active(memcg);
2912 }
2913
2914 /*
2915 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2916 * in the memcg_cache_params struct.
2917 */
2918 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2919 {
2920 struct kmem_cache *cachep;
2921
2922 VM_BUG_ON(p->is_root_cache);
2923 cachep = p->root_cache;
2924 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2925 }
2926
2927 #ifdef CONFIG_SLABINFO
2928 static int mem_cgroup_slabinfo_read(struct seq_file *m, void *v)
2929 {
2930 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
2931 struct memcg_cache_params *params;
2932
2933 if (!memcg_can_account_kmem(memcg))
2934 return -EIO;
2935
2936 print_slabinfo_header(m);
2937
2938 mutex_lock(&memcg->slab_caches_mutex);
2939 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
2940 cache_show(memcg_params_to_cache(params), m);
2941 mutex_unlock(&memcg->slab_caches_mutex);
2942
2943 return 0;
2944 }
2945 #endif
2946
2947 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
2948 {
2949 struct res_counter *fail_res;
2950 int ret = 0;
2951
2952 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
2953 if (ret)
2954 return ret;
2955
2956 ret = mem_cgroup_try_charge(memcg, gfp, size >> PAGE_SHIFT,
2957 oom_gfp_allowed(gfp));
2958 if (ret == -EINTR) {
2959 /*
2960 * mem_cgroup_try_charge() chosed to bypass to root due to
2961 * OOM kill or fatal signal. Since our only options are to
2962 * either fail the allocation or charge it to this cgroup, do
2963 * it as a temporary condition. But we can't fail. From a
2964 * kmem/slab perspective, the cache has already been selected,
2965 * by mem_cgroup_kmem_get_cache(), so it is too late to change
2966 * our minds.
2967 *
2968 * This condition will only trigger if the task entered
2969 * memcg_charge_kmem in a sane state, but was OOM-killed during
2970 * mem_cgroup_try_charge() above. Tasks that were already
2971 * dying when the allocation triggers should have been already
2972 * directed to the root cgroup in memcontrol.h
2973 */
2974 res_counter_charge_nofail(&memcg->res, size, &fail_res);
2975 if (do_swap_account)
2976 res_counter_charge_nofail(&memcg->memsw, size,
2977 &fail_res);
2978 ret = 0;
2979 } else if (ret)
2980 res_counter_uncharge(&memcg->kmem, size);
2981
2982 return ret;
2983 }
2984
2985 static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
2986 {
2987 res_counter_uncharge(&memcg->res, size);
2988 if (do_swap_account)
2989 res_counter_uncharge(&memcg->memsw, size);
2990
2991 /* Not down to 0 */
2992 if (res_counter_uncharge(&memcg->kmem, size))
2993 return;
2994
2995 /*
2996 * Releases a reference taken in kmem_cgroup_css_offline in case
2997 * this last uncharge is racing with the offlining code or it is
2998 * outliving the memcg existence.
2999 *
3000 * The memory barrier imposed by test&clear is paired with the
3001 * explicit one in memcg_kmem_mark_dead().
3002 */
3003 if (memcg_kmem_test_and_clear_dead(memcg))
3004 css_put(&memcg->css);
3005 }
3006
3007 /*
3008 * helper for acessing a memcg's index. It will be used as an index in the
3009 * child cache array in kmem_cache, and also to derive its name. This function
3010 * will return -1 when this is not a kmem-limited memcg.
3011 */
3012 int memcg_cache_id(struct mem_cgroup *memcg)
3013 {
3014 return memcg ? memcg->kmemcg_id : -1;
3015 }
3016
3017 static size_t memcg_caches_array_size(int num_groups)
3018 {
3019 ssize_t size;
3020 if (num_groups <= 0)
3021 return 0;
3022
3023 size = 2 * num_groups;
3024 if (size < MEMCG_CACHES_MIN_SIZE)
3025 size = MEMCG_CACHES_MIN_SIZE;
3026 else if (size > MEMCG_CACHES_MAX_SIZE)
3027 size = MEMCG_CACHES_MAX_SIZE;
3028
3029 return size;
3030 }
3031
3032 /*
3033 * We should update the current array size iff all caches updates succeed. This
3034 * can only be done from the slab side. The slab mutex needs to be held when
3035 * calling this.
3036 */
3037 void memcg_update_array_size(int num)
3038 {
3039 if (num > memcg_limited_groups_array_size)
3040 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3041 }
3042
3043 static void kmem_cache_destroy_work_func(struct work_struct *w);
3044
3045 int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3046 {
3047 struct memcg_cache_params *cur_params = s->memcg_params;
3048
3049 VM_BUG_ON(!is_root_cache(s));
3050
3051 if (num_groups > memcg_limited_groups_array_size) {
3052 int i;
3053 struct memcg_cache_params *new_params;
3054 ssize_t size = memcg_caches_array_size(num_groups);
3055
3056 size *= sizeof(void *);
3057 size += offsetof(struct memcg_cache_params, memcg_caches);
3058
3059 new_params = kzalloc(size, GFP_KERNEL);
3060 if (!new_params)
3061 return -ENOMEM;
3062
3063 new_params->is_root_cache = true;
3064
3065 /*
3066 * There is the chance it will be bigger than
3067 * memcg_limited_groups_array_size, if we failed an allocation
3068 * in a cache, in which case all caches updated before it, will
3069 * have a bigger array.
3070 *
3071 * But if that is the case, the data after
3072 * memcg_limited_groups_array_size is certainly unused
3073 */
3074 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3075 if (!cur_params->memcg_caches[i])
3076 continue;
3077 new_params->memcg_caches[i] =
3078 cur_params->memcg_caches[i];
3079 }
3080
3081 /*
3082 * Ideally, we would wait until all caches succeed, and only
3083 * then free the old one. But this is not worth the extra
3084 * pointer per-cache we'd have to have for this.
3085 *
3086 * It is not a big deal if some caches are left with a size
3087 * bigger than the others. And all updates will reset this
3088 * anyway.
3089 */
3090 rcu_assign_pointer(s->memcg_params, new_params);
3091 if (cur_params)
3092 kfree_rcu(cur_params, rcu_head);
3093 }
3094 return 0;
3095 }
3096
3097 char *memcg_create_cache_name(struct mem_cgroup *memcg,
3098 struct kmem_cache *root_cache)
3099 {
3100 static char *buf = NULL;
3101
3102 /*
3103 * We need a mutex here to protect the shared buffer. Since this is
3104 * expected to be called only on cache creation, we can employ the
3105 * slab_mutex for that purpose.
3106 */
3107 lockdep_assert_held(&slab_mutex);
3108
3109 if (!buf) {
3110 buf = kmalloc(NAME_MAX + 1, GFP_KERNEL);
3111 if (!buf)
3112 return NULL;
3113 }
3114
3115 cgroup_name(memcg->css.cgroup, buf, NAME_MAX + 1);
3116 return kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
3117 memcg_cache_id(memcg), buf);
3118 }
3119
3120 int memcg_alloc_cache_params(struct mem_cgroup *memcg, struct kmem_cache *s,
3121 struct kmem_cache *root_cache)
3122 {
3123 size_t size;
3124
3125 if (!memcg_kmem_enabled())
3126 return 0;
3127
3128 if (!memcg) {
3129 size = offsetof(struct memcg_cache_params, memcg_caches);
3130 size += memcg_limited_groups_array_size * sizeof(void *);
3131 } else
3132 size = sizeof(struct memcg_cache_params);
3133
3134 s->memcg_params = kzalloc(size, GFP_KERNEL);
3135 if (!s->memcg_params)
3136 return -ENOMEM;
3137
3138 if (memcg) {
3139 s->memcg_params->memcg = memcg;
3140 s->memcg_params->root_cache = root_cache;
3141 INIT_WORK(&s->memcg_params->destroy,
3142 kmem_cache_destroy_work_func);
3143 css_get(&memcg->css);
3144 } else
3145 s->memcg_params->is_root_cache = true;
3146
3147 return 0;
3148 }
3149
3150 void memcg_free_cache_params(struct kmem_cache *s)
3151 {
3152 if (!s->memcg_params)
3153 return;
3154 if (!s->memcg_params->is_root_cache)
3155 css_put(&s->memcg_params->memcg->css);
3156 kfree(s->memcg_params);
3157 }
3158
3159 void memcg_register_cache(struct kmem_cache *s)
3160 {
3161 struct kmem_cache *root;
3162 struct mem_cgroup *memcg;
3163 int id;
3164
3165 if (is_root_cache(s))
3166 return;
3167
3168 /*
3169 * Holding the slab_mutex assures nobody will touch the memcg_caches
3170 * array while we are modifying it.
3171 */
3172 lockdep_assert_held(&slab_mutex);
3173
3174 root = s->memcg_params->root_cache;
3175 memcg = s->memcg_params->memcg;
3176 id = memcg_cache_id(memcg);
3177
3178 /*
3179 * Since readers won't lock (see cache_from_memcg_idx()), we need a
3180 * barrier here to ensure nobody will see the kmem_cache partially
3181 * initialized.
3182 */
3183 smp_wmb();
3184
3185 /*
3186 * Initialize the pointer to this cache in its parent's memcg_params
3187 * before adding it to the memcg_slab_caches list, otherwise we can
3188 * fail to convert memcg_params_to_cache() while traversing the list.
3189 */
3190 VM_BUG_ON(root->memcg_params->memcg_caches[id]);
3191 root->memcg_params->memcg_caches[id] = s;
3192
3193 mutex_lock(&memcg->slab_caches_mutex);
3194 list_add(&s->memcg_params->list, &memcg->memcg_slab_caches);
3195 mutex_unlock(&memcg->slab_caches_mutex);
3196 }
3197
3198 void memcg_unregister_cache(struct kmem_cache *s)
3199 {
3200 struct kmem_cache *root;
3201 struct mem_cgroup *memcg;
3202 int id;
3203
3204 if (is_root_cache(s))
3205 return;
3206
3207 /*
3208 * Holding the slab_mutex assures nobody will touch the memcg_caches
3209 * array while we are modifying it.
3210 */
3211 lockdep_assert_held(&slab_mutex);
3212
3213 root = s->memcg_params->root_cache;
3214 memcg = s->memcg_params->memcg;
3215 id = memcg_cache_id(memcg);
3216
3217 mutex_lock(&memcg->slab_caches_mutex);
3218 list_del(&s->memcg_params->list);
3219 mutex_unlock(&memcg->slab_caches_mutex);
3220
3221 /*
3222 * Clear the pointer to this cache in its parent's memcg_params only
3223 * after removing it from the memcg_slab_caches list, otherwise we can
3224 * fail to convert memcg_params_to_cache() while traversing the list.
3225 */
3226 VM_BUG_ON(root->memcg_params->memcg_caches[id] != s);
3227 root->memcg_params->memcg_caches[id] = NULL;
3228 }
3229
3230 /*
3231 * During the creation a new cache, we need to disable our accounting mechanism
3232 * altogether. This is true even if we are not creating, but rather just
3233 * enqueing new caches to be created.
3234 *
3235 * This is because that process will trigger allocations; some visible, like
3236 * explicit kmallocs to auxiliary data structures, name strings and internal
3237 * cache structures; some well concealed, like INIT_WORK() that can allocate
3238 * objects during debug.
3239 *
3240 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3241 * to it. This may not be a bounded recursion: since the first cache creation
3242 * failed to complete (waiting on the allocation), we'll just try to create the
3243 * cache again, failing at the same point.
3244 *
3245 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3246 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3247 * inside the following two functions.
3248 */
3249 static inline void memcg_stop_kmem_account(void)
3250 {
3251 VM_BUG_ON(!current->mm);
3252 current->memcg_kmem_skip_account++;
3253 }
3254
3255 static inline void memcg_resume_kmem_account(void)
3256 {
3257 VM_BUG_ON(!current->mm);
3258 current->memcg_kmem_skip_account--;
3259 }
3260
3261 static void kmem_cache_destroy_work_func(struct work_struct *w)
3262 {
3263 struct kmem_cache *cachep;
3264 struct memcg_cache_params *p;
3265
3266 p = container_of(w, struct memcg_cache_params, destroy);
3267
3268 cachep = memcg_params_to_cache(p);
3269
3270 /*
3271 * If we get down to 0 after shrink, we could delete right away.
3272 * However, memcg_release_pages() already puts us back in the workqueue
3273 * in that case. If we proceed deleting, we'll get a dangling
3274 * reference, and removing the object from the workqueue in that case
3275 * is unnecessary complication. We are not a fast path.
3276 *
3277 * Note that this case is fundamentally different from racing with
3278 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3279 * kmem_cache_shrink, not only we would be reinserting a dead cache
3280 * into the queue, but doing so from inside the worker racing to
3281 * destroy it.
3282 *
3283 * So if we aren't down to zero, we'll just schedule a worker and try
3284 * again
3285 */
3286 if (atomic_read(&cachep->memcg_params->nr_pages) != 0)
3287 kmem_cache_shrink(cachep);
3288 else
3289 kmem_cache_destroy(cachep);
3290 }
3291
3292 void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3293 {
3294 if (!cachep->memcg_params->dead)
3295 return;
3296
3297 /*
3298 * There are many ways in which we can get here.
3299 *
3300 * We can get to a memory-pressure situation while the delayed work is
3301 * still pending to run. The vmscan shrinkers can then release all
3302 * cache memory and get us to destruction. If this is the case, we'll
3303 * be executed twice, which is a bug (the second time will execute over
3304 * bogus data). In this case, cancelling the work should be fine.
3305 *
3306 * But we can also get here from the worker itself, if
3307 * kmem_cache_shrink is enough to shake all the remaining objects and
3308 * get the page count to 0. In this case, we'll deadlock if we try to
3309 * cancel the work (the worker runs with an internal lock held, which
3310 * is the same lock we would hold for cancel_work_sync().)
3311 *
3312 * Since we can't possibly know who got us here, just refrain from
3313 * running if there is already work pending
3314 */
3315 if (work_pending(&cachep->memcg_params->destroy))
3316 return;
3317 /*
3318 * We have to defer the actual destroying to a workqueue, because
3319 * we might currently be in a context that cannot sleep.
3320 */
3321 schedule_work(&cachep->memcg_params->destroy);
3322 }
3323
3324 int __kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3325 {
3326 struct kmem_cache *c;
3327 int i, failed = 0;
3328
3329 /*
3330 * If the cache is being destroyed, we trust that there is no one else
3331 * requesting objects from it. Even if there are, the sanity checks in
3332 * kmem_cache_destroy should caught this ill-case.
3333 *
3334 * Still, we don't want anyone else freeing memcg_caches under our
3335 * noses, which can happen if a new memcg comes to life. As usual,
3336 * we'll take the activate_kmem_mutex to protect ourselves against
3337 * this.
3338 */
3339 mutex_lock(&activate_kmem_mutex);
3340 for_each_memcg_cache_index(i) {
3341 c = cache_from_memcg_idx(s, i);
3342 if (!c)
3343 continue;
3344
3345 /*
3346 * We will now manually delete the caches, so to avoid races
3347 * we need to cancel all pending destruction workers and
3348 * proceed with destruction ourselves.
3349 *
3350 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3351 * and that could spawn the workers again: it is likely that
3352 * the cache still have active pages until this very moment.
3353 * This would lead us back to mem_cgroup_destroy_cache.
3354 *
3355 * But that will not execute at all if the "dead" flag is not
3356 * set, so flip it down to guarantee we are in control.
3357 */
3358 c->memcg_params->dead = false;
3359 cancel_work_sync(&c->memcg_params->destroy);
3360 kmem_cache_destroy(c);
3361
3362 if (cache_from_memcg_idx(s, i))
3363 failed++;
3364 }
3365 mutex_unlock(&activate_kmem_mutex);
3366 return failed;
3367 }
3368
3369 static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3370 {
3371 struct kmem_cache *cachep;
3372 struct memcg_cache_params *params;
3373
3374 if (!memcg_kmem_is_active(memcg))
3375 return;
3376
3377 mutex_lock(&memcg->slab_caches_mutex);
3378 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3379 cachep = memcg_params_to_cache(params);
3380 cachep->memcg_params->dead = true;
3381 schedule_work(&cachep->memcg_params->destroy);
3382 }
3383 mutex_unlock(&memcg->slab_caches_mutex);
3384 }
3385
3386 struct create_work {
3387 struct mem_cgroup *memcg;
3388 struct kmem_cache *cachep;
3389 struct work_struct work;
3390 };
3391
3392 static void memcg_create_cache_work_func(struct work_struct *w)
3393 {
3394 struct create_work *cw = container_of(w, struct create_work, work);
3395 struct mem_cgroup *memcg = cw->memcg;
3396 struct kmem_cache *cachep = cw->cachep;
3397
3398 kmem_cache_create_memcg(memcg, cachep);
3399 css_put(&memcg->css);
3400 kfree(cw);
3401 }
3402
3403 /*
3404 * Enqueue the creation of a per-memcg kmem_cache.
3405 */
3406 static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3407 struct kmem_cache *cachep)
3408 {
3409 struct create_work *cw;
3410
3411 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3412 if (cw == NULL) {
3413 css_put(&memcg->css);
3414 return;
3415 }
3416
3417 cw->memcg = memcg;
3418 cw->cachep = cachep;
3419
3420 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3421 schedule_work(&cw->work);
3422 }
3423
3424 static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3425 struct kmem_cache *cachep)
3426 {
3427 /*
3428 * We need to stop accounting when we kmalloc, because if the
3429 * corresponding kmalloc cache is not yet created, the first allocation
3430 * in __memcg_create_cache_enqueue will recurse.
3431 *
3432 * However, it is better to enclose the whole function. Depending on
3433 * the debugging options enabled, INIT_WORK(), for instance, can
3434 * trigger an allocation. This too, will make us recurse. Because at
3435 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3436 * the safest choice is to do it like this, wrapping the whole function.
3437 */
3438 memcg_stop_kmem_account();
3439 __memcg_create_cache_enqueue(memcg, cachep);
3440 memcg_resume_kmem_account();
3441 }
3442 /*
3443 * Return the kmem_cache we're supposed to use for a slab allocation.
3444 * We try to use the current memcg's version of the cache.
3445 *
3446 * If the cache does not exist yet, if we are the first user of it,
3447 * we either create it immediately, if possible, or create it asynchronously
3448 * in a workqueue.
3449 * In the latter case, we will let the current allocation go through with
3450 * the original cache.
3451 *
3452 * Can't be called in interrupt context or from kernel threads.
3453 * This function needs to be called with rcu_read_lock() held.
3454 */
3455 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3456 gfp_t gfp)
3457 {
3458 struct mem_cgroup *memcg;
3459 struct kmem_cache *memcg_cachep;
3460
3461 VM_BUG_ON(!cachep->memcg_params);
3462 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3463
3464 if (!current->mm || current->memcg_kmem_skip_account)
3465 return cachep;
3466
3467 rcu_read_lock();
3468 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
3469
3470 if (!memcg_can_account_kmem(memcg))
3471 goto out;
3472
3473 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
3474 if (likely(memcg_cachep)) {
3475 cachep = memcg_cachep;
3476 goto out;
3477 }
3478
3479 /* The corresponding put will be done in the workqueue. */
3480 if (!css_tryget(&memcg->css))
3481 goto out;
3482 rcu_read_unlock();
3483
3484 /*
3485 * If we are in a safe context (can wait, and not in interrupt
3486 * context), we could be be predictable and return right away.
3487 * This would guarantee that the allocation being performed
3488 * already belongs in the new cache.
3489 *
3490 * However, there are some clashes that can arrive from locking.
3491 * For instance, because we acquire the slab_mutex while doing
3492 * kmem_cache_dup, this means no further allocation could happen
3493 * with the slab_mutex held.
3494 *
3495 * Also, because cache creation issue get_online_cpus(), this
3496 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3497 * that ends up reversed during cpu hotplug. (cpuset allocates
3498 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3499 * better to defer everything.
3500 */
3501 memcg_create_cache_enqueue(memcg, cachep);
3502 return cachep;
3503 out:
3504 rcu_read_unlock();
3505 return cachep;
3506 }
3507 EXPORT_SYMBOL(__memcg_kmem_get_cache);
3508
3509 /*
3510 * We need to verify if the allocation against current->mm->owner's memcg is
3511 * possible for the given order. But the page is not allocated yet, so we'll
3512 * need a further commit step to do the final arrangements.
3513 *
3514 * It is possible for the task to switch cgroups in this mean time, so at
3515 * commit time, we can't rely on task conversion any longer. We'll then use
3516 * the handle argument to return to the caller which cgroup we should commit
3517 * against. We could also return the memcg directly and avoid the pointer
3518 * passing, but a boolean return value gives better semantics considering
3519 * the compiled-out case as well.
3520 *
3521 * Returning true means the allocation is possible.
3522 */
3523 bool
3524 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3525 {
3526 struct mem_cgroup *memcg;
3527 int ret;
3528
3529 *_memcg = NULL;
3530
3531 /*
3532 * Disabling accounting is only relevant for some specific memcg
3533 * internal allocations. Therefore we would initially not have such
3534 * check here, since direct calls to the page allocator that are marked
3535 * with GFP_KMEMCG only happen outside memcg core. We are mostly
3536 * concerned with cache allocations, and by having this test at
3537 * memcg_kmem_get_cache, we are already able to relay the allocation to
3538 * the root cache and bypass the memcg cache altogether.
3539 *
3540 * There is one exception, though: the SLUB allocator does not create
3541 * large order caches, but rather service large kmallocs directly from
3542 * the page allocator. Therefore, the following sequence when backed by
3543 * the SLUB allocator:
3544 *
3545 * memcg_stop_kmem_account();
3546 * kmalloc(<large_number>)
3547 * memcg_resume_kmem_account();
3548 *
3549 * would effectively ignore the fact that we should skip accounting,
3550 * since it will drive us directly to this function without passing
3551 * through the cache selector memcg_kmem_get_cache. Such large
3552 * allocations are extremely rare but can happen, for instance, for the
3553 * cache arrays. We bring this test here.
3554 */
3555 if (!current->mm || current->memcg_kmem_skip_account)
3556 return true;
3557
3558 memcg = get_mem_cgroup_from_mm(current->mm);
3559
3560 if (!memcg_can_account_kmem(memcg)) {
3561 css_put(&memcg->css);
3562 return true;
3563 }
3564
3565 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3566 if (!ret)
3567 *_memcg = memcg;
3568
3569 css_put(&memcg->css);
3570 return (ret == 0);
3571 }
3572
3573 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3574 int order)
3575 {
3576 struct page_cgroup *pc;
3577
3578 VM_BUG_ON(mem_cgroup_is_root(memcg));
3579
3580 /* The page allocation failed. Revert */
3581 if (!page) {
3582 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3583 return;
3584 }
3585
3586 pc = lookup_page_cgroup(page);
3587 lock_page_cgroup(pc);
3588 pc->mem_cgroup = memcg;
3589 SetPageCgroupUsed(pc);
3590 unlock_page_cgroup(pc);
3591 }
3592
3593 void __memcg_kmem_uncharge_pages(struct page *page, int order)
3594 {
3595 struct mem_cgroup *memcg = NULL;
3596 struct page_cgroup *pc;
3597
3598
3599 pc = lookup_page_cgroup(page);
3600 /*
3601 * Fast unlocked return. Theoretically might have changed, have to
3602 * check again after locking.
3603 */
3604 if (!PageCgroupUsed(pc))
3605 return;
3606
3607 lock_page_cgroup(pc);
3608 if (PageCgroupUsed(pc)) {
3609 memcg = pc->mem_cgroup;
3610 ClearPageCgroupUsed(pc);
3611 }
3612 unlock_page_cgroup(pc);
3613
3614 /*
3615 * We trust that only if there is a memcg associated with the page, it
3616 * is a valid allocation
3617 */
3618 if (!memcg)
3619 return;
3620
3621 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3622 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
3623 }
3624 #else
3625 static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3626 {
3627 }
3628 #endif /* CONFIG_MEMCG_KMEM */
3629
3630 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3631
3632 #define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3633 /*
3634 * Because tail pages are not marked as "used", set it. We're under
3635 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3636 * charge/uncharge will be never happen and move_account() is done under
3637 * compound_lock(), so we don't have to take care of races.
3638 */
3639 void mem_cgroup_split_huge_fixup(struct page *head)
3640 {
3641 struct page_cgroup *head_pc = lookup_page_cgroup(head);
3642 struct page_cgroup *pc;
3643 struct mem_cgroup *memcg;
3644 int i;
3645
3646 if (mem_cgroup_disabled())
3647 return;
3648
3649 memcg = head_pc->mem_cgroup;
3650 for (i = 1; i < HPAGE_PMD_NR; i++) {
3651 pc = head_pc + i;
3652 pc->mem_cgroup = memcg;
3653 smp_wmb();/* see __commit_charge() */
3654 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3655 }
3656 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3657 HPAGE_PMD_NR);
3658 }
3659 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3660
3661 /**
3662 * mem_cgroup_move_account - move account of the page
3663 * @page: the page
3664 * @nr_pages: number of regular pages (>1 for huge pages)
3665 * @pc: page_cgroup of the page.
3666 * @from: mem_cgroup which the page is moved from.
3667 * @to: mem_cgroup which the page is moved to. @from != @to.
3668 *
3669 * The caller must confirm following.
3670 * - page is not on LRU (isolate_page() is useful.)
3671 * - compound_lock is held when nr_pages > 1
3672 *
3673 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3674 * from old cgroup.
3675 */
3676 static int mem_cgroup_move_account(struct page *page,
3677 unsigned int nr_pages,
3678 struct page_cgroup *pc,
3679 struct mem_cgroup *from,
3680 struct mem_cgroup *to)
3681 {
3682 unsigned long flags;
3683 int ret;
3684 bool anon = PageAnon(page);
3685
3686 VM_BUG_ON(from == to);
3687 VM_BUG_ON_PAGE(PageLRU(page), page);
3688 /*
3689 * The page is isolated from LRU. So, collapse function
3690 * will not handle this page. But page splitting can happen.
3691 * Do this check under compound_page_lock(). The caller should
3692 * hold it.
3693 */
3694 ret = -EBUSY;
3695 if (nr_pages > 1 && !PageTransHuge(page))
3696 goto out;
3697
3698 lock_page_cgroup(pc);
3699
3700 ret = -EINVAL;
3701 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3702 goto unlock;
3703
3704 move_lock_mem_cgroup(from, &flags);
3705
3706 if (!anon && page_mapped(page)) {
3707 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3708 nr_pages);
3709 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
3710 nr_pages);
3711 }
3712
3713 if (PageWriteback(page)) {
3714 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3715 nr_pages);
3716 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
3717 nr_pages);
3718 }
3719
3720 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3721
3722 /* caller should have done css_get */
3723 pc->mem_cgroup = to;
3724 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3725 move_unlock_mem_cgroup(from, &flags);
3726 ret = 0;
3727 unlock:
3728 unlock_page_cgroup(pc);
3729 /*
3730 * check events
3731 */
3732 memcg_check_events(to, page);
3733 memcg_check_events(from, page);
3734 out:
3735 return ret;
3736 }
3737
3738 /**
3739 * mem_cgroup_move_parent - moves page to the parent group
3740 * @page: the page to move
3741 * @pc: page_cgroup of the page
3742 * @child: page's cgroup
3743 *
3744 * move charges to its parent or the root cgroup if the group has no
3745 * parent (aka use_hierarchy==0).
3746 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3747 * mem_cgroup_move_account fails) the failure is always temporary and
3748 * it signals a race with a page removal/uncharge or migration. In the
3749 * first case the page is on the way out and it will vanish from the LRU
3750 * on the next attempt and the call should be retried later.
3751 * Isolation from the LRU fails only if page has been isolated from
3752 * the LRU since we looked at it and that usually means either global
3753 * reclaim or migration going on. The page will either get back to the
3754 * LRU or vanish.
3755 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3756 * (!PageCgroupUsed) or moved to a different group. The page will
3757 * disappear in the next attempt.
3758 */
3759 static int mem_cgroup_move_parent(struct page *page,
3760 struct page_cgroup *pc,
3761 struct mem_cgroup *child)
3762 {
3763 struct mem_cgroup *parent;
3764 unsigned int nr_pages;
3765 unsigned long uninitialized_var(flags);
3766 int ret;
3767
3768 VM_BUG_ON(mem_cgroup_is_root(child));
3769
3770 ret = -EBUSY;
3771 if (!get_page_unless_zero(page))
3772 goto out;
3773 if (isolate_lru_page(page))
3774 goto put;
3775
3776 nr_pages = hpage_nr_pages(page);
3777
3778 parent = parent_mem_cgroup(child);
3779 /*
3780 * If no parent, move charges to root cgroup.
3781 */
3782 if (!parent)
3783 parent = root_mem_cgroup;
3784
3785 if (nr_pages > 1) {
3786 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3787 flags = compound_lock_irqsave(page);
3788 }
3789
3790 ret = mem_cgroup_move_account(page, nr_pages,
3791 pc, child, parent);
3792 if (!ret)
3793 __mem_cgroup_cancel_local_charge(child, nr_pages);
3794
3795 if (nr_pages > 1)
3796 compound_unlock_irqrestore(page, flags);
3797 putback_lru_page(page);
3798 put:
3799 put_page(page);
3800 out:
3801 return ret;
3802 }
3803
3804 int mem_cgroup_charge_anon(struct page *page,
3805 struct mm_struct *mm, gfp_t gfp_mask)
3806 {
3807 unsigned int nr_pages = 1;
3808 struct mem_cgroup *memcg;
3809 bool oom = true;
3810
3811 if (mem_cgroup_disabled())
3812 return 0;
3813
3814 VM_BUG_ON_PAGE(page_mapped(page), page);
3815 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
3816 VM_BUG_ON(!mm);
3817
3818 if (PageTransHuge(page)) {
3819 nr_pages <<= compound_order(page);
3820 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3821 /*
3822 * Never OOM-kill a process for a huge page. The
3823 * fault handler will fall back to regular pages.
3824 */
3825 oom = false;
3826 }
3827
3828 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, nr_pages, oom);
3829 if (!memcg)
3830 return -ENOMEM;
3831 __mem_cgroup_commit_charge(memcg, page, nr_pages,
3832 MEM_CGROUP_CHARGE_TYPE_ANON, false);
3833 return 0;
3834 }
3835
3836 /*
3837 * While swap-in, try_charge -> commit or cancel, the page is locked.
3838 * And when try_charge() successfully returns, one refcnt to memcg without
3839 * struct page_cgroup is acquired. This refcnt will be consumed by
3840 * "commit()" or removed by "cancel()"
3841 */
3842 static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3843 struct page *page,
3844 gfp_t mask,
3845 struct mem_cgroup **memcgp)
3846 {
3847 struct mem_cgroup *memcg = NULL;
3848 struct page_cgroup *pc;
3849 int ret;
3850
3851 pc = lookup_page_cgroup(page);
3852 /*
3853 * Every swap fault against a single page tries to charge the
3854 * page, bail as early as possible. shmem_unuse() encounters
3855 * already charged pages, too. The USED bit is protected by
3856 * the page lock, which serializes swap cache removal, which
3857 * in turn serializes uncharging.
3858 */
3859 if (PageCgroupUsed(pc))
3860 goto out;
3861 if (do_swap_account)
3862 memcg = try_get_mem_cgroup_from_page(page);
3863 if (!memcg)
3864 memcg = get_mem_cgroup_from_mm(mm);
3865 ret = mem_cgroup_try_charge(memcg, mask, 1, true);
3866 css_put(&memcg->css);
3867 if (ret == -EINTR)
3868 memcg = root_mem_cgroup;
3869 else if (ret)
3870 return ret;
3871 out:
3872 *memcgp = memcg;
3873 return 0;
3874 }
3875
3876 int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3877 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3878 {
3879 if (mem_cgroup_disabled()) {
3880 *memcgp = NULL;
3881 return 0;
3882 }
3883 /*
3884 * A racing thread's fault, or swapoff, may have already
3885 * updated the pte, and even removed page from swap cache: in
3886 * those cases unuse_pte()'s pte_same() test will fail; but
3887 * there's also a KSM case which does need to charge the page.
3888 */
3889 if (!PageSwapCache(page)) {
3890 struct mem_cgroup *memcg;
3891
3892 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3893 if (!memcg)
3894 return -ENOMEM;
3895 *memcgp = memcg;
3896 return 0;
3897 }
3898 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
3899 }
3900
3901 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
3902 {
3903 if (mem_cgroup_disabled())
3904 return;
3905 if (!memcg)
3906 return;
3907 __mem_cgroup_cancel_charge(memcg, 1);
3908 }
3909
3910 static void
3911 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
3912 enum charge_type ctype)
3913 {
3914 if (mem_cgroup_disabled())
3915 return;
3916 if (!memcg)
3917 return;
3918
3919 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
3920 /*
3921 * Now swap is on-memory. This means this page may be
3922 * counted both as mem and swap....double count.
3923 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
3924 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
3925 * may call delete_from_swap_cache() before reach here.
3926 */
3927 if (do_swap_account && PageSwapCache(page)) {
3928 swp_entry_t ent = {.val = page_private(page)};
3929 mem_cgroup_uncharge_swap(ent);
3930 }
3931 }
3932
3933 void mem_cgroup_commit_charge_swapin(struct page *page,
3934 struct mem_cgroup *memcg)
3935 {
3936 __mem_cgroup_commit_charge_swapin(page, memcg,
3937 MEM_CGROUP_CHARGE_TYPE_ANON);
3938 }
3939
3940 int mem_cgroup_charge_file(struct page *page, struct mm_struct *mm,
3941 gfp_t gfp_mask)
3942 {
3943 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3944 struct mem_cgroup *memcg;
3945 int ret;
3946
3947 if (mem_cgroup_disabled())
3948 return 0;
3949 if (PageCompound(page))
3950 return 0;
3951
3952 if (PageSwapCache(page)) { /* shmem */
3953 ret = __mem_cgroup_try_charge_swapin(mm, page,
3954 gfp_mask, &memcg);
3955 if (ret)
3956 return ret;
3957 __mem_cgroup_commit_charge_swapin(page, memcg, type);
3958 return 0;
3959 }
3960
3961 /*
3962 * Page cache insertions can happen without an actual mm
3963 * context, e.g. during disk probing on boot.
3964 */
3965 if (unlikely(!mm))
3966 memcg = root_mem_cgroup;
3967 else {
3968 memcg = mem_cgroup_try_charge_mm(mm, gfp_mask, 1, true);
3969 if (!memcg)
3970 return -ENOMEM;
3971 }
3972 __mem_cgroup_commit_charge(memcg, page, 1, type, false);
3973 return 0;
3974 }
3975
3976 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
3977 unsigned int nr_pages,
3978 const enum charge_type ctype)
3979 {
3980 struct memcg_batch_info *batch = NULL;
3981 bool uncharge_memsw = true;
3982
3983 /* If swapout, usage of swap doesn't decrease */
3984 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
3985 uncharge_memsw = false;
3986
3987 batch = &current->memcg_batch;
3988 /*
3989 * In usual, we do css_get() when we remember memcg pointer.
3990 * But in this case, we keep res->usage until end of a series of
3991 * uncharges. Then, it's ok to ignore memcg's refcnt.
3992 */
3993 if (!batch->memcg)
3994 batch->memcg = memcg;
3995 /*
3996 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
3997 * In those cases, all pages freed continuously can be expected to be in
3998 * the same cgroup and we have chance to coalesce uncharges.
3999 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4000 * because we want to do uncharge as soon as possible.
4001 */
4002
4003 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4004 goto direct_uncharge;
4005
4006 if (nr_pages > 1)
4007 goto direct_uncharge;
4008
4009 /*
4010 * In typical case, batch->memcg == mem. This means we can
4011 * merge a series of uncharges to an uncharge of res_counter.
4012 * If not, we uncharge res_counter ony by one.
4013 */
4014 if (batch->memcg != memcg)
4015 goto direct_uncharge;
4016 /* remember freed charge and uncharge it later */
4017 batch->nr_pages++;
4018 if (uncharge_memsw)
4019 batch->memsw_nr_pages++;
4020 return;
4021 direct_uncharge:
4022 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4023 if (uncharge_memsw)
4024 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4025 if (unlikely(batch->memcg != memcg))
4026 memcg_oom_recover(memcg);
4027 }
4028
4029 /*
4030 * uncharge if !page_mapped(page)
4031 */
4032 static struct mem_cgroup *
4033 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4034 bool end_migration)
4035 {
4036 struct mem_cgroup *memcg = NULL;
4037 unsigned int nr_pages = 1;
4038 struct page_cgroup *pc;
4039 bool anon;
4040
4041 if (mem_cgroup_disabled())
4042 return NULL;
4043
4044 if (PageTransHuge(page)) {
4045 nr_pages <<= compound_order(page);
4046 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
4047 }
4048 /*
4049 * Check if our page_cgroup is valid
4050 */
4051 pc = lookup_page_cgroup(page);
4052 if (unlikely(!PageCgroupUsed(pc)))
4053 return NULL;
4054
4055 lock_page_cgroup(pc);
4056
4057 memcg = pc->mem_cgroup;
4058
4059 if (!PageCgroupUsed(pc))
4060 goto unlock_out;
4061
4062 anon = PageAnon(page);
4063
4064 switch (ctype) {
4065 case MEM_CGROUP_CHARGE_TYPE_ANON:
4066 /*
4067 * Generally PageAnon tells if it's the anon statistics to be
4068 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4069 * used before page reached the stage of being marked PageAnon.
4070 */
4071 anon = true;
4072 /* fallthrough */
4073 case MEM_CGROUP_CHARGE_TYPE_DROP:
4074 /* See mem_cgroup_prepare_migration() */
4075 if (page_mapped(page))
4076 goto unlock_out;
4077 /*
4078 * Pages under migration may not be uncharged. But
4079 * end_migration() /must/ be the one uncharging the
4080 * unused post-migration page and so it has to call
4081 * here with the migration bit still set. See the
4082 * res_counter handling below.
4083 */
4084 if (!end_migration && PageCgroupMigration(pc))
4085 goto unlock_out;
4086 break;
4087 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4088 if (!PageAnon(page)) { /* Shared memory */
4089 if (page->mapping && !page_is_file_cache(page))
4090 goto unlock_out;
4091 } else if (page_mapped(page)) /* Anon */
4092 goto unlock_out;
4093 break;
4094 default:
4095 break;
4096 }
4097
4098 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
4099
4100 ClearPageCgroupUsed(pc);
4101 /*
4102 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4103 * freed from LRU. This is safe because uncharged page is expected not
4104 * to be reused (freed soon). Exception is SwapCache, it's handled by
4105 * special functions.
4106 */
4107
4108 unlock_page_cgroup(pc);
4109 /*
4110 * even after unlock, we have memcg->res.usage here and this memcg
4111 * will never be freed, so it's safe to call css_get().
4112 */
4113 memcg_check_events(memcg, page);
4114 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4115 mem_cgroup_swap_statistics(memcg, true);
4116 css_get(&memcg->css);
4117 }
4118 /*
4119 * Migration does not charge the res_counter for the
4120 * replacement page, so leave it alone when phasing out the
4121 * page that is unused after the migration.
4122 */
4123 if (!end_migration && !mem_cgroup_is_root(memcg))
4124 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4125
4126 return memcg;
4127
4128 unlock_out:
4129 unlock_page_cgroup(pc);
4130 return NULL;
4131 }
4132
4133 void mem_cgroup_uncharge_page(struct page *page)
4134 {
4135 /* early check. */
4136 if (page_mapped(page))
4137 return;
4138 VM_BUG_ON_PAGE(page->mapping && !PageAnon(page), page);
4139 /*
4140 * If the page is in swap cache, uncharge should be deferred
4141 * to the swap path, which also properly accounts swap usage
4142 * and handles memcg lifetime.
4143 *
4144 * Note that this check is not stable and reclaim may add the
4145 * page to swap cache at any time after this. However, if the
4146 * page is not in swap cache by the time page->mapcount hits
4147 * 0, there won't be any page table references to the swap
4148 * slot, and reclaim will free it and not actually write the
4149 * page to disk.
4150 */
4151 if (PageSwapCache(page))
4152 return;
4153 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4154 }
4155
4156 void mem_cgroup_uncharge_cache_page(struct page *page)
4157 {
4158 VM_BUG_ON_PAGE(page_mapped(page), page);
4159 VM_BUG_ON_PAGE(page->mapping, page);
4160 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4161 }
4162
4163 /*
4164 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4165 * In that cases, pages are freed continuously and we can expect pages
4166 * are in the same memcg. All these calls itself limits the number of
4167 * pages freed at once, then uncharge_start/end() is called properly.
4168 * This may be called prural(2) times in a context,
4169 */
4170
4171 void mem_cgroup_uncharge_start(void)
4172 {
4173 current->memcg_batch.do_batch++;
4174 /* We can do nest. */
4175 if (current->memcg_batch.do_batch == 1) {
4176 current->memcg_batch.memcg = NULL;
4177 current->memcg_batch.nr_pages = 0;
4178 current->memcg_batch.memsw_nr_pages = 0;
4179 }
4180 }
4181
4182 void mem_cgroup_uncharge_end(void)
4183 {
4184 struct memcg_batch_info *batch = &current->memcg_batch;
4185
4186 if (!batch->do_batch)
4187 return;
4188
4189 batch->do_batch--;
4190 if (batch->do_batch) /* If stacked, do nothing. */
4191 return;
4192
4193 if (!batch->memcg)
4194 return;
4195 /*
4196 * This "batch->memcg" is valid without any css_get/put etc...
4197 * bacause we hide charges behind us.
4198 */
4199 if (batch->nr_pages)
4200 res_counter_uncharge(&batch->memcg->res,
4201 batch->nr_pages * PAGE_SIZE);
4202 if (batch->memsw_nr_pages)
4203 res_counter_uncharge(&batch->memcg->memsw,
4204 batch->memsw_nr_pages * PAGE_SIZE);
4205 memcg_oom_recover(batch->memcg);
4206 /* forget this pointer (for sanity check) */
4207 batch->memcg = NULL;
4208 }
4209
4210 #ifdef CONFIG_SWAP
4211 /*
4212 * called after __delete_from_swap_cache() and drop "page" account.
4213 * memcg information is recorded to swap_cgroup of "ent"
4214 */
4215 void
4216 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4217 {
4218 struct mem_cgroup *memcg;
4219 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4220
4221 if (!swapout) /* this was a swap cache but the swap is unused ! */
4222 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4223
4224 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4225
4226 /*
4227 * record memcg information, if swapout && memcg != NULL,
4228 * css_get() was called in uncharge().
4229 */
4230 if (do_swap_account && swapout && memcg)
4231 swap_cgroup_record(ent, mem_cgroup_id(memcg));
4232 }
4233 #endif
4234
4235 #ifdef CONFIG_MEMCG_SWAP
4236 /*
4237 * called from swap_entry_free(). remove record in swap_cgroup and
4238 * uncharge "memsw" account.
4239 */
4240 void mem_cgroup_uncharge_swap(swp_entry_t ent)
4241 {
4242 struct mem_cgroup *memcg;
4243 unsigned short id;
4244
4245 if (!do_swap_account)
4246 return;
4247
4248 id = swap_cgroup_record(ent, 0);
4249 rcu_read_lock();
4250 memcg = mem_cgroup_lookup(id);
4251 if (memcg) {
4252 /*
4253 * We uncharge this because swap is freed.
4254 * This memcg can be obsolete one. We avoid calling css_tryget
4255 */
4256 if (!mem_cgroup_is_root(memcg))
4257 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4258 mem_cgroup_swap_statistics(memcg, false);
4259 css_put(&memcg->css);
4260 }
4261 rcu_read_unlock();
4262 }
4263
4264 /**
4265 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4266 * @entry: swap entry to be moved
4267 * @from: mem_cgroup which the entry is moved from
4268 * @to: mem_cgroup which the entry is moved to
4269 *
4270 * It succeeds only when the swap_cgroup's record for this entry is the same
4271 * as the mem_cgroup's id of @from.
4272 *
4273 * Returns 0 on success, -EINVAL on failure.
4274 *
4275 * The caller must have charged to @to, IOW, called res_counter_charge() about
4276 * both res and memsw, and called css_get().
4277 */
4278 static int mem_cgroup_move_swap_account(swp_entry_t entry,
4279 struct mem_cgroup *from, struct mem_cgroup *to)
4280 {
4281 unsigned short old_id, new_id;
4282
4283 old_id = mem_cgroup_id(from);
4284 new_id = mem_cgroup_id(to);
4285
4286 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
4287 mem_cgroup_swap_statistics(from, false);
4288 mem_cgroup_swap_statistics(to, true);
4289 /*
4290 * This function is only called from task migration context now.
4291 * It postpones res_counter and refcount handling till the end
4292 * of task migration(mem_cgroup_clear_mc()) for performance
4293 * improvement. But we cannot postpone css_get(to) because if
4294 * the process that has been moved to @to does swap-in, the
4295 * refcount of @to might be decreased to 0.
4296 *
4297 * We are in attach() phase, so the cgroup is guaranteed to be
4298 * alive, so we can just call css_get().
4299 */
4300 css_get(&to->css);
4301 return 0;
4302 }
4303 return -EINVAL;
4304 }
4305 #else
4306 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4307 struct mem_cgroup *from, struct mem_cgroup *to)
4308 {
4309 return -EINVAL;
4310 }
4311 #endif
4312
4313 /*
4314 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4315 * page belongs to.
4316 */
4317 void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4318 struct mem_cgroup **memcgp)
4319 {
4320 struct mem_cgroup *memcg = NULL;
4321 unsigned int nr_pages = 1;
4322 struct page_cgroup *pc;
4323 enum charge_type ctype;
4324
4325 *memcgp = NULL;
4326
4327 if (mem_cgroup_disabled())
4328 return;
4329
4330 if (PageTransHuge(page))
4331 nr_pages <<= compound_order(page);
4332
4333 pc = lookup_page_cgroup(page);
4334 lock_page_cgroup(pc);
4335 if (PageCgroupUsed(pc)) {
4336 memcg = pc->mem_cgroup;
4337 css_get(&memcg->css);
4338 /*
4339 * At migrating an anonymous page, its mapcount goes down
4340 * to 0 and uncharge() will be called. But, even if it's fully
4341 * unmapped, migration may fail and this page has to be
4342 * charged again. We set MIGRATION flag here and delay uncharge
4343 * until end_migration() is called
4344 *
4345 * Corner Case Thinking
4346 * A)
4347 * When the old page was mapped as Anon and it's unmap-and-freed
4348 * while migration was ongoing.
4349 * If unmap finds the old page, uncharge() of it will be delayed
4350 * until end_migration(). If unmap finds a new page, it's
4351 * uncharged when it make mapcount to be 1->0. If unmap code
4352 * finds swap_migration_entry, the new page will not be mapped
4353 * and end_migration() will find it(mapcount==0).
4354 *
4355 * B)
4356 * When the old page was mapped but migraion fails, the kernel
4357 * remaps it. A charge for it is kept by MIGRATION flag even
4358 * if mapcount goes down to 0. We can do remap successfully
4359 * without charging it again.
4360 *
4361 * C)
4362 * The "old" page is under lock_page() until the end of
4363 * migration, so, the old page itself will not be swapped-out.
4364 * If the new page is swapped out before end_migraton, our
4365 * hook to usual swap-out path will catch the event.
4366 */
4367 if (PageAnon(page))
4368 SetPageCgroupMigration(pc);
4369 }
4370 unlock_page_cgroup(pc);
4371 /*
4372 * If the page is not charged at this point,
4373 * we return here.
4374 */
4375 if (!memcg)
4376 return;
4377
4378 *memcgp = memcg;
4379 /*
4380 * We charge new page before it's used/mapped. So, even if unlock_page()
4381 * is called before end_migration, we can catch all events on this new
4382 * page. In the case new page is migrated but not remapped, new page's
4383 * mapcount will be finally 0 and we call uncharge in end_migration().
4384 */
4385 if (PageAnon(page))
4386 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4387 else
4388 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4389 /*
4390 * The page is committed to the memcg, but it's not actually
4391 * charged to the res_counter since we plan on replacing the
4392 * old one and only one page is going to be left afterwards.
4393 */
4394 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4395 }
4396
4397 /* remove redundant charge if migration failed*/
4398 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4399 struct page *oldpage, struct page *newpage, bool migration_ok)
4400 {
4401 struct page *used, *unused;
4402 struct page_cgroup *pc;
4403 bool anon;
4404
4405 if (!memcg)
4406 return;
4407
4408 if (!migration_ok) {
4409 used = oldpage;
4410 unused = newpage;
4411 } else {
4412 used = newpage;
4413 unused = oldpage;
4414 }
4415 anon = PageAnon(used);
4416 __mem_cgroup_uncharge_common(unused,
4417 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4418 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4419 true);
4420 css_put(&memcg->css);
4421 /*
4422 * We disallowed uncharge of pages under migration because mapcount
4423 * of the page goes down to zero, temporarly.
4424 * Clear the flag and check the page should be charged.
4425 */
4426 pc = lookup_page_cgroup(oldpage);
4427 lock_page_cgroup(pc);
4428 ClearPageCgroupMigration(pc);
4429 unlock_page_cgroup(pc);
4430
4431 /*
4432 * If a page is a file cache, radix-tree replacement is very atomic
4433 * and we can skip this check. When it was an Anon page, its mapcount
4434 * goes down to 0. But because we added MIGRATION flage, it's not
4435 * uncharged yet. There are several case but page->mapcount check
4436 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4437 * check. (see prepare_charge() also)
4438 */
4439 if (anon)
4440 mem_cgroup_uncharge_page(used);
4441 }
4442
4443 /*
4444 * At replace page cache, newpage is not under any memcg but it's on
4445 * LRU. So, this function doesn't touch res_counter but handles LRU
4446 * in correct way. Both pages are locked so we cannot race with uncharge.
4447 */
4448 void mem_cgroup_replace_page_cache(struct page *oldpage,
4449 struct page *newpage)
4450 {
4451 struct mem_cgroup *memcg = NULL;
4452 struct page_cgroup *pc;
4453 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4454
4455 if (mem_cgroup_disabled())
4456 return;
4457
4458 pc = lookup_page_cgroup(oldpage);
4459 /* fix accounting on old pages */
4460 lock_page_cgroup(pc);
4461 if (PageCgroupUsed(pc)) {
4462 memcg = pc->mem_cgroup;
4463 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4464 ClearPageCgroupUsed(pc);
4465 }
4466 unlock_page_cgroup(pc);
4467
4468 /*
4469 * When called from shmem_replace_page(), in some cases the
4470 * oldpage has already been charged, and in some cases not.
4471 */
4472 if (!memcg)
4473 return;
4474 /*
4475 * Even if newpage->mapping was NULL before starting replacement,
4476 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4477 * LRU while we overwrite pc->mem_cgroup.
4478 */
4479 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4480 }
4481
4482 #ifdef CONFIG_DEBUG_VM
4483 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4484 {
4485 struct page_cgroup *pc;
4486
4487 pc = lookup_page_cgroup(page);
4488 /*
4489 * Can be NULL while feeding pages into the page allocator for
4490 * the first time, i.e. during boot or memory hotplug;
4491 * or when mem_cgroup_disabled().
4492 */
4493 if (likely(pc) && PageCgroupUsed(pc))
4494 return pc;
4495 return NULL;
4496 }
4497
4498 bool mem_cgroup_bad_page_check(struct page *page)
4499 {
4500 if (mem_cgroup_disabled())
4501 return false;
4502
4503 return lookup_page_cgroup_used(page) != NULL;
4504 }
4505
4506 void mem_cgroup_print_bad_page(struct page *page)
4507 {
4508 struct page_cgroup *pc;
4509
4510 pc = lookup_page_cgroup_used(page);
4511 if (pc) {
4512 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4513 pc, pc->flags, pc->mem_cgroup);
4514 }
4515 }
4516 #endif
4517
4518 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4519 unsigned long long val)
4520 {
4521 int retry_count;
4522 u64 memswlimit, memlimit;
4523 int ret = 0;
4524 int children = mem_cgroup_count_children(memcg);
4525 u64 curusage, oldusage;
4526 int enlarge;
4527
4528 /*
4529 * For keeping hierarchical_reclaim simple, how long we should retry
4530 * is depends on callers. We set our retry-count to be function
4531 * of # of children which we should visit in this loop.
4532 */
4533 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4534
4535 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4536
4537 enlarge = 0;
4538 while (retry_count) {
4539 if (signal_pending(current)) {
4540 ret = -EINTR;
4541 break;
4542 }
4543 /*
4544 * Rather than hide all in some function, I do this in
4545 * open coded manner. You see what this really does.
4546 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4547 */
4548 mutex_lock(&set_limit_mutex);
4549 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4550 if (memswlimit < val) {
4551 ret = -EINVAL;
4552 mutex_unlock(&set_limit_mutex);
4553 break;
4554 }
4555
4556 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4557 if (memlimit < val)
4558 enlarge = 1;
4559
4560 ret = res_counter_set_limit(&memcg->res, val);
4561 if (!ret) {
4562 if (memswlimit == val)
4563 memcg->memsw_is_minimum = true;
4564 else
4565 memcg->memsw_is_minimum = false;
4566 }
4567 mutex_unlock(&set_limit_mutex);
4568
4569 if (!ret)
4570 break;
4571
4572 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4573 MEM_CGROUP_RECLAIM_SHRINK);
4574 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4575 /* Usage is reduced ? */
4576 if (curusage >= oldusage)
4577 retry_count--;
4578 else
4579 oldusage = curusage;
4580 }
4581 if (!ret && enlarge)
4582 memcg_oom_recover(memcg);
4583
4584 return ret;
4585 }
4586
4587 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4588 unsigned long long val)
4589 {
4590 int retry_count;
4591 u64 memlimit, memswlimit, oldusage, curusage;
4592 int children = mem_cgroup_count_children(memcg);
4593 int ret = -EBUSY;
4594 int enlarge = 0;
4595
4596 /* see mem_cgroup_resize_res_limit */
4597 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4598 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4599 while (retry_count) {
4600 if (signal_pending(current)) {
4601 ret = -EINTR;
4602 break;
4603 }
4604 /*
4605 * Rather than hide all in some function, I do this in
4606 * open coded manner. You see what this really does.
4607 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4608 */
4609 mutex_lock(&set_limit_mutex);
4610 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4611 if (memlimit > val) {
4612 ret = -EINVAL;
4613 mutex_unlock(&set_limit_mutex);
4614 break;
4615 }
4616 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4617 if (memswlimit < val)
4618 enlarge = 1;
4619 ret = res_counter_set_limit(&memcg->memsw, val);
4620 if (!ret) {
4621 if (memlimit == val)
4622 memcg->memsw_is_minimum = true;
4623 else
4624 memcg->memsw_is_minimum = false;
4625 }
4626 mutex_unlock(&set_limit_mutex);
4627
4628 if (!ret)
4629 break;
4630
4631 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4632 MEM_CGROUP_RECLAIM_NOSWAP |
4633 MEM_CGROUP_RECLAIM_SHRINK);
4634 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4635 /* Usage is reduced ? */
4636 if (curusage >= oldusage)
4637 retry_count--;
4638 else
4639 oldusage = curusage;
4640 }
4641 if (!ret && enlarge)
4642 memcg_oom_recover(memcg);
4643 return ret;
4644 }
4645
4646 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
4647 gfp_t gfp_mask,
4648 unsigned long *total_scanned)
4649 {
4650 unsigned long nr_reclaimed = 0;
4651 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4652 unsigned long reclaimed;
4653 int loop = 0;
4654 struct mem_cgroup_tree_per_zone *mctz;
4655 unsigned long long excess;
4656 unsigned long nr_scanned;
4657
4658 if (order > 0)
4659 return 0;
4660
4661 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4662 /*
4663 * This loop can run a while, specially if mem_cgroup's continuously
4664 * keep exceeding their soft limit and putting the system under
4665 * pressure
4666 */
4667 do {
4668 if (next_mz)
4669 mz = next_mz;
4670 else
4671 mz = mem_cgroup_largest_soft_limit_node(mctz);
4672 if (!mz)
4673 break;
4674
4675 nr_scanned = 0;
4676 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
4677 gfp_mask, &nr_scanned);
4678 nr_reclaimed += reclaimed;
4679 *total_scanned += nr_scanned;
4680 spin_lock(&mctz->lock);
4681
4682 /*
4683 * If we failed to reclaim anything from this memory cgroup
4684 * it is time to move on to the next cgroup
4685 */
4686 next_mz = NULL;
4687 if (!reclaimed) {
4688 do {
4689 /*
4690 * Loop until we find yet another one.
4691 *
4692 * By the time we get the soft_limit lock
4693 * again, someone might have aded the
4694 * group back on the RB tree. Iterate to
4695 * make sure we get a different mem.
4696 * mem_cgroup_largest_soft_limit_node returns
4697 * NULL if no other cgroup is present on
4698 * the tree
4699 */
4700 next_mz =
4701 __mem_cgroup_largest_soft_limit_node(mctz);
4702 if (next_mz == mz)
4703 css_put(&next_mz->memcg->css);
4704 else /* next_mz == NULL or other memcg */
4705 break;
4706 } while (1);
4707 }
4708 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4709 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4710 /*
4711 * One school of thought says that we should not add
4712 * back the node to the tree if reclaim returns 0.
4713 * But our reclaim could return 0, simply because due
4714 * to priority we are exposing a smaller subset of
4715 * memory to reclaim from. Consider this as a longer
4716 * term TODO.
4717 */
4718 /* If excess == 0, no tree ops */
4719 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4720 spin_unlock(&mctz->lock);
4721 css_put(&mz->memcg->css);
4722 loop++;
4723 /*
4724 * Could not reclaim anything and there are no more
4725 * mem cgroups to try or we seem to be looping without
4726 * reclaiming anything.
4727 */
4728 if (!nr_reclaimed &&
4729 (next_mz == NULL ||
4730 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4731 break;
4732 } while (!nr_reclaimed);
4733 if (next_mz)
4734 css_put(&next_mz->memcg->css);
4735 return nr_reclaimed;
4736 }
4737
4738 /**
4739 * mem_cgroup_force_empty_list - clears LRU of a group
4740 * @memcg: group to clear
4741 * @node: NUMA node
4742 * @zid: zone id
4743 * @lru: lru to to clear
4744 *
4745 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
4746 * reclaim the pages page themselves - pages are moved to the parent (or root)
4747 * group.
4748 */
4749 static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
4750 int node, int zid, enum lru_list lru)
4751 {
4752 struct lruvec *lruvec;
4753 unsigned long flags;
4754 struct list_head *list;
4755 struct page *busy;
4756 struct zone *zone;
4757
4758 zone = &NODE_DATA(node)->node_zones[zid];
4759 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4760 list = &lruvec->lists[lru];
4761
4762 busy = NULL;
4763 do {
4764 struct page_cgroup *pc;
4765 struct page *page;
4766
4767 spin_lock_irqsave(&zone->lru_lock, flags);
4768 if (list_empty(list)) {
4769 spin_unlock_irqrestore(&zone->lru_lock, flags);
4770 break;
4771 }
4772 page = list_entry(list->prev, struct page, lru);
4773 if (busy == page) {
4774 list_move(&page->lru, list);
4775 busy = NULL;
4776 spin_unlock_irqrestore(&zone->lru_lock, flags);
4777 continue;
4778 }
4779 spin_unlock_irqrestore(&zone->lru_lock, flags);
4780
4781 pc = lookup_page_cgroup(page);
4782
4783 if (mem_cgroup_move_parent(page, pc, memcg)) {
4784 /* found lock contention or "pc" is obsolete. */
4785 busy = page;
4786 cond_resched();
4787 } else
4788 busy = NULL;
4789 } while (!list_empty(list));
4790 }
4791
4792 /*
4793 * make mem_cgroup's charge to be 0 if there is no task by moving
4794 * all the charges and pages to the parent.
4795 * This enables deleting this mem_cgroup.
4796 *
4797 * Caller is responsible for holding css reference on the memcg.
4798 */
4799 static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4800 {
4801 int node, zid;
4802 u64 usage;
4803
4804 do {
4805 /* This is for making all *used* pages to be on LRU. */
4806 lru_add_drain_all();
4807 drain_all_stock_sync(memcg);
4808 mem_cgroup_start_move(memcg);
4809 for_each_node_state(node, N_MEMORY) {
4810 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4811 enum lru_list lru;
4812 for_each_lru(lru) {
4813 mem_cgroup_force_empty_list(memcg,
4814 node, zid, lru);
4815 }
4816 }
4817 }
4818 mem_cgroup_end_move(memcg);
4819 memcg_oom_recover(memcg);
4820 cond_resched();
4821
4822 /*
4823 * Kernel memory may not necessarily be trackable to a specific
4824 * process. So they are not migrated, and therefore we can't
4825 * expect their value to drop to 0 here.
4826 * Having res filled up with kmem only is enough.
4827 *
4828 * This is a safety check because mem_cgroup_force_empty_list
4829 * could have raced with mem_cgroup_replace_page_cache callers
4830 * so the lru seemed empty but the page could have been added
4831 * right after the check. RES_USAGE should be safe as we always
4832 * charge before adding to the LRU.
4833 */
4834 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4835 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4836 } while (usage > 0);
4837 }
4838
4839 static inline bool memcg_has_children(struct mem_cgroup *memcg)
4840 {
4841 lockdep_assert_held(&memcg_create_mutex);
4842 /*
4843 * The lock does not prevent addition or deletion to the list
4844 * of children, but it prevents a new child from being
4845 * initialized based on this parent in css_online(), so it's
4846 * enough to decide whether hierarchically inherited
4847 * attributes can still be changed or not.
4848 */
4849 return memcg->use_hierarchy &&
4850 !list_empty(&memcg->css.cgroup->children);
4851 }
4852
4853 /*
4854 * Reclaims as many pages from the given memcg as possible and moves
4855 * the rest to the parent.
4856 *
4857 * Caller is responsible for holding css reference for memcg.
4858 */
4859 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4860 {
4861 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4862 struct cgroup *cgrp = memcg->css.cgroup;
4863
4864 /* returns EBUSY if there is a task or if we come here twice. */
4865 if (cgroup_has_tasks(cgrp) || !list_empty(&cgrp->children))
4866 return -EBUSY;
4867
4868 /* we call try-to-free pages for make this cgroup empty */
4869 lru_add_drain_all();
4870 /* try to free all pages in this cgroup */
4871 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4872 int progress;
4873
4874 if (signal_pending(current))
4875 return -EINTR;
4876
4877 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4878 false);
4879 if (!progress) {
4880 nr_retries--;
4881 /* maybe some writeback is necessary */
4882 congestion_wait(BLK_RW_ASYNC, HZ/10);
4883 }
4884
4885 }
4886 lru_add_drain();
4887 mem_cgroup_reparent_charges(memcg);
4888
4889 return 0;
4890 }
4891
4892 static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
4893 unsigned int event)
4894 {
4895 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4896
4897 if (mem_cgroup_is_root(memcg))
4898 return -EINVAL;
4899 return mem_cgroup_force_empty(memcg);
4900 }
4901
4902 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
4903 struct cftype *cft)
4904 {
4905 return mem_cgroup_from_css(css)->use_hierarchy;
4906 }
4907
4908 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
4909 struct cftype *cft, u64 val)
4910 {
4911 int retval = 0;
4912 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4913 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
4914
4915 mutex_lock(&memcg_create_mutex);
4916
4917 if (memcg->use_hierarchy == val)
4918 goto out;
4919
4920 /*
4921 * If parent's use_hierarchy is set, we can't make any modifications
4922 * in the child subtrees. If it is unset, then the change can
4923 * occur, provided the current cgroup has no children.
4924 *
4925 * For the root cgroup, parent_mem is NULL, we allow value to be
4926 * set if there are no children.
4927 */
4928 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
4929 (val == 1 || val == 0)) {
4930 if (list_empty(&memcg->css.cgroup->children))
4931 memcg->use_hierarchy = val;
4932 else
4933 retval = -EBUSY;
4934 } else
4935 retval = -EINVAL;
4936
4937 out:
4938 mutex_unlock(&memcg_create_mutex);
4939
4940 return retval;
4941 }
4942
4943
4944 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
4945 enum mem_cgroup_stat_index idx)
4946 {
4947 struct mem_cgroup *iter;
4948 long val = 0;
4949
4950 /* Per-cpu values can be negative, use a signed accumulator */
4951 for_each_mem_cgroup_tree(iter, memcg)
4952 val += mem_cgroup_read_stat(iter, idx);
4953
4954 if (val < 0) /* race ? */
4955 val = 0;
4956 return val;
4957 }
4958
4959 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
4960 {
4961 u64 val;
4962
4963 if (!mem_cgroup_is_root(memcg)) {
4964 if (!swap)
4965 return res_counter_read_u64(&memcg->res, RES_USAGE);
4966 else
4967 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
4968 }
4969
4970 /*
4971 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
4972 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
4973 */
4974 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
4975 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
4976
4977 if (swap)
4978 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
4979
4980 return val << PAGE_SHIFT;
4981 }
4982
4983 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
4984 struct cftype *cft)
4985 {
4986 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4987 u64 val;
4988 int name;
4989 enum res_type type;
4990
4991 type = MEMFILE_TYPE(cft->private);
4992 name = MEMFILE_ATTR(cft->private);
4993
4994 switch (type) {
4995 case _MEM:
4996 if (name == RES_USAGE)
4997 val = mem_cgroup_usage(memcg, false);
4998 else
4999 val = res_counter_read_u64(&memcg->res, name);
5000 break;
5001 case _MEMSWAP:
5002 if (name == RES_USAGE)
5003 val = mem_cgroup_usage(memcg, true);
5004 else
5005 val = res_counter_read_u64(&memcg->memsw, name);
5006 break;
5007 case _KMEM:
5008 val = res_counter_read_u64(&memcg->kmem, name);
5009 break;
5010 default:
5011 BUG();
5012 }
5013
5014 return val;
5015 }
5016
5017 #ifdef CONFIG_MEMCG_KMEM
5018 /* should be called with activate_kmem_mutex held */
5019 static int __memcg_activate_kmem(struct mem_cgroup *memcg,
5020 unsigned long long limit)
5021 {
5022 int err = 0;
5023 int memcg_id;
5024
5025 if (memcg_kmem_is_active(memcg))
5026 return 0;
5027
5028 /*
5029 * We are going to allocate memory for data shared by all memory
5030 * cgroups so let's stop accounting here.
5031 */
5032 memcg_stop_kmem_account();
5033
5034 /*
5035 * For simplicity, we won't allow this to be disabled. It also can't
5036 * be changed if the cgroup has children already, or if tasks had
5037 * already joined.
5038 *
5039 * If tasks join before we set the limit, a person looking at
5040 * kmem.usage_in_bytes will have no way to determine when it took
5041 * place, which makes the value quite meaningless.
5042 *
5043 * After it first became limited, changes in the value of the limit are
5044 * of course permitted.
5045 */
5046 mutex_lock(&memcg_create_mutex);
5047 if (cgroup_has_tasks(memcg->css.cgroup) || memcg_has_children(memcg))
5048 err = -EBUSY;
5049 mutex_unlock(&memcg_create_mutex);
5050 if (err)
5051 goto out;
5052
5053 memcg_id = ida_simple_get(&kmem_limited_groups,
5054 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
5055 if (memcg_id < 0) {
5056 err = memcg_id;
5057 goto out;
5058 }
5059
5060 /*
5061 * Make sure we have enough space for this cgroup in each root cache's
5062 * memcg_params.
5063 */
5064 err = memcg_update_all_caches(memcg_id + 1);
5065 if (err)
5066 goto out_rmid;
5067
5068 memcg->kmemcg_id = memcg_id;
5069 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
5070 mutex_init(&memcg->slab_caches_mutex);
5071
5072 /*
5073 * We couldn't have accounted to this cgroup, because it hasn't got the
5074 * active bit set yet, so this should succeed.
5075 */
5076 err = res_counter_set_limit(&memcg->kmem, limit);
5077 VM_BUG_ON(err);
5078
5079 static_key_slow_inc(&memcg_kmem_enabled_key);
5080 /*
5081 * Setting the active bit after enabling static branching will
5082 * guarantee no one starts accounting before all call sites are
5083 * patched.
5084 */
5085 memcg_kmem_set_active(memcg);
5086 out:
5087 memcg_resume_kmem_account();
5088 return err;
5089
5090 out_rmid:
5091 ida_simple_remove(&kmem_limited_groups, memcg_id);
5092 goto out;
5093 }
5094
5095 static int memcg_activate_kmem(struct mem_cgroup *memcg,
5096 unsigned long long limit)
5097 {
5098 int ret;
5099
5100 mutex_lock(&activate_kmem_mutex);
5101 ret = __memcg_activate_kmem(memcg, limit);
5102 mutex_unlock(&activate_kmem_mutex);
5103 return ret;
5104 }
5105
5106 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5107 unsigned long long val)
5108 {
5109 int ret;
5110
5111 if (!memcg_kmem_is_active(memcg))
5112 ret = memcg_activate_kmem(memcg, val);
5113 else
5114 ret = res_counter_set_limit(&memcg->kmem, val);
5115 return ret;
5116 }
5117
5118 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5119 {
5120 int ret = 0;
5121 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5122
5123 if (!parent)
5124 return 0;
5125
5126 mutex_lock(&activate_kmem_mutex);
5127 /*
5128 * If the parent cgroup is not kmem-active now, it cannot be activated
5129 * after this point, because it has at least one child already.
5130 */
5131 if (memcg_kmem_is_active(parent))
5132 ret = __memcg_activate_kmem(memcg, RES_COUNTER_MAX);
5133 mutex_unlock(&activate_kmem_mutex);
5134 return ret;
5135 }
5136 #else
5137 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
5138 unsigned long long val)
5139 {
5140 return -EINVAL;
5141 }
5142 #endif /* CONFIG_MEMCG_KMEM */
5143
5144 /*
5145 * The user of this function is...
5146 * RES_LIMIT.
5147 */
5148 static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5149 char *buffer)
5150 {
5151 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5152 enum res_type type;
5153 int name;
5154 unsigned long long val;
5155 int ret;
5156
5157 type = MEMFILE_TYPE(cft->private);
5158 name = MEMFILE_ATTR(cft->private);
5159
5160 switch (name) {
5161 case RES_LIMIT:
5162 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5163 ret = -EINVAL;
5164 break;
5165 }
5166 /* This function does all necessary parse...reuse it */
5167 ret = res_counter_memparse_write_strategy(buffer, &val);
5168 if (ret)
5169 break;
5170 if (type == _MEM)
5171 ret = mem_cgroup_resize_limit(memcg, val);
5172 else if (type == _MEMSWAP)
5173 ret = mem_cgroup_resize_memsw_limit(memcg, val);
5174 else if (type == _KMEM)
5175 ret = memcg_update_kmem_limit(memcg, val);
5176 else
5177 return -EINVAL;
5178 break;
5179 case RES_SOFT_LIMIT:
5180 ret = res_counter_memparse_write_strategy(buffer, &val);
5181 if (ret)
5182 break;
5183 /*
5184 * For memsw, soft limits are hard to implement in terms
5185 * of semantics, for now, we support soft limits for
5186 * control without swap
5187 */
5188 if (type == _MEM)
5189 ret = res_counter_set_soft_limit(&memcg->res, val);
5190 else
5191 ret = -EINVAL;
5192 break;
5193 default:
5194 ret = -EINVAL; /* should be BUG() ? */
5195 break;
5196 }
5197 return ret;
5198 }
5199
5200 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5201 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5202 {
5203 unsigned long long min_limit, min_memsw_limit, tmp;
5204
5205 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5206 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5207 if (!memcg->use_hierarchy)
5208 goto out;
5209
5210 while (css_parent(&memcg->css)) {
5211 memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5212 if (!memcg->use_hierarchy)
5213 break;
5214 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5215 min_limit = min(min_limit, tmp);
5216 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5217 min_memsw_limit = min(min_memsw_limit, tmp);
5218 }
5219 out:
5220 *mem_limit = min_limit;
5221 *memsw_limit = min_memsw_limit;
5222 }
5223
5224 static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5225 {
5226 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5227 int name;
5228 enum res_type type;
5229
5230 type = MEMFILE_TYPE(event);
5231 name = MEMFILE_ATTR(event);
5232
5233 switch (name) {
5234 case RES_MAX_USAGE:
5235 if (type == _MEM)
5236 res_counter_reset_max(&memcg->res);
5237 else if (type == _MEMSWAP)
5238 res_counter_reset_max(&memcg->memsw);
5239 else if (type == _KMEM)
5240 res_counter_reset_max(&memcg->kmem);
5241 else
5242 return -EINVAL;
5243 break;
5244 case RES_FAILCNT:
5245 if (type == _MEM)
5246 res_counter_reset_failcnt(&memcg->res);
5247 else if (type == _MEMSWAP)
5248 res_counter_reset_failcnt(&memcg->memsw);
5249 else if (type == _KMEM)
5250 res_counter_reset_failcnt(&memcg->kmem);
5251 else
5252 return -EINVAL;
5253 break;
5254 }
5255
5256 return 0;
5257 }
5258
5259 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5260 struct cftype *cft)
5261 {
5262 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5263 }
5264
5265 #ifdef CONFIG_MMU
5266 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5267 struct cftype *cft, u64 val)
5268 {
5269 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5270
5271 if (val >= (1 << NR_MOVE_TYPE))
5272 return -EINVAL;
5273
5274 /*
5275 * No kind of locking is needed in here, because ->can_attach() will
5276 * check this value once in the beginning of the process, and then carry
5277 * on with stale data. This means that changes to this value will only
5278 * affect task migrations starting after the change.
5279 */
5280 memcg->move_charge_at_immigrate = val;
5281 return 0;
5282 }
5283 #else
5284 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5285 struct cftype *cft, u64 val)
5286 {
5287 return -ENOSYS;
5288 }
5289 #endif
5290
5291 #ifdef CONFIG_NUMA
5292 static int memcg_numa_stat_show(struct seq_file *m, void *v)
5293 {
5294 struct numa_stat {
5295 const char *name;
5296 unsigned int lru_mask;
5297 };
5298
5299 static const struct numa_stat stats[] = {
5300 { "total", LRU_ALL },
5301 { "file", LRU_ALL_FILE },
5302 { "anon", LRU_ALL_ANON },
5303 { "unevictable", BIT(LRU_UNEVICTABLE) },
5304 };
5305 const struct numa_stat *stat;
5306 int nid;
5307 unsigned long nr;
5308 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5309
5310 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5311 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
5312 seq_printf(m, "%s=%lu", stat->name, nr);
5313 for_each_node_state(nid, N_MEMORY) {
5314 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
5315 stat->lru_mask);
5316 seq_printf(m, " N%d=%lu", nid, nr);
5317 }
5318 seq_putc(m, '\n');
5319 }
5320
5321 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
5322 struct mem_cgroup *iter;
5323
5324 nr = 0;
5325 for_each_mem_cgroup_tree(iter, memcg)
5326 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
5327 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
5328 for_each_node_state(nid, N_MEMORY) {
5329 nr = 0;
5330 for_each_mem_cgroup_tree(iter, memcg)
5331 nr += mem_cgroup_node_nr_lru_pages(
5332 iter, nid, stat->lru_mask);
5333 seq_printf(m, " N%d=%lu", nid, nr);
5334 }
5335 seq_putc(m, '\n');
5336 }
5337
5338 return 0;
5339 }
5340 #endif /* CONFIG_NUMA */
5341
5342 static inline void mem_cgroup_lru_names_not_uptodate(void)
5343 {
5344 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5345 }
5346
5347 static int memcg_stat_show(struct seq_file *m, void *v)
5348 {
5349 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5350 struct mem_cgroup *mi;
5351 unsigned int i;
5352
5353 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5354 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5355 continue;
5356 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5357 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5358 }
5359
5360 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5361 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5362 mem_cgroup_read_events(memcg, i));
5363
5364 for (i = 0; i < NR_LRU_LISTS; i++)
5365 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5366 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5367
5368 /* Hierarchical information */
5369 {
5370 unsigned long long limit, memsw_limit;
5371 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5372 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5373 if (do_swap_account)
5374 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5375 memsw_limit);
5376 }
5377
5378 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5379 long long val = 0;
5380
5381 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5382 continue;
5383 for_each_mem_cgroup_tree(mi, memcg)
5384 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5385 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5386 }
5387
5388 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5389 unsigned long long val = 0;
5390
5391 for_each_mem_cgroup_tree(mi, memcg)
5392 val += mem_cgroup_read_events(mi, i);
5393 seq_printf(m, "total_%s %llu\n",
5394 mem_cgroup_events_names[i], val);
5395 }
5396
5397 for (i = 0; i < NR_LRU_LISTS; i++) {
5398 unsigned long long val = 0;
5399
5400 for_each_mem_cgroup_tree(mi, memcg)
5401 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5402 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5403 }
5404
5405 #ifdef CONFIG_DEBUG_VM
5406 {
5407 int nid, zid;
5408 struct mem_cgroup_per_zone *mz;
5409 struct zone_reclaim_stat *rstat;
5410 unsigned long recent_rotated[2] = {0, 0};
5411 unsigned long recent_scanned[2] = {0, 0};
5412
5413 for_each_online_node(nid)
5414 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5415 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5416 rstat = &mz->lruvec.reclaim_stat;
5417
5418 recent_rotated[0] += rstat->recent_rotated[0];
5419 recent_rotated[1] += rstat->recent_rotated[1];
5420 recent_scanned[0] += rstat->recent_scanned[0];
5421 recent_scanned[1] += rstat->recent_scanned[1];
5422 }
5423 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5424 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5425 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5426 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
5427 }
5428 #endif
5429
5430 return 0;
5431 }
5432
5433 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
5434 struct cftype *cft)
5435 {
5436 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5437
5438 return mem_cgroup_swappiness(memcg);
5439 }
5440
5441 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
5442 struct cftype *cft, u64 val)
5443 {
5444 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5445 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5446
5447 if (val > 100 || !parent)
5448 return -EINVAL;
5449
5450 mutex_lock(&memcg_create_mutex);
5451
5452 /* If under hierarchy, only empty-root can set this value */
5453 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5454 mutex_unlock(&memcg_create_mutex);
5455 return -EINVAL;
5456 }
5457
5458 memcg->swappiness = val;
5459
5460 mutex_unlock(&memcg_create_mutex);
5461
5462 return 0;
5463 }
5464
5465 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5466 {
5467 struct mem_cgroup_threshold_ary *t;
5468 u64 usage;
5469 int i;
5470
5471 rcu_read_lock();
5472 if (!swap)
5473 t = rcu_dereference(memcg->thresholds.primary);
5474 else
5475 t = rcu_dereference(memcg->memsw_thresholds.primary);
5476
5477 if (!t)
5478 goto unlock;
5479
5480 usage = mem_cgroup_usage(memcg, swap);
5481
5482 /*
5483 * current_threshold points to threshold just below or equal to usage.
5484 * If it's not true, a threshold was crossed after last
5485 * call of __mem_cgroup_threshold().
5486 */
5487 i = t->current_threshold;
5488
5489 /*
5490 * Iterate backward over array of thresholds starting from
5491 * current_threshold and check if a threshold is crossed.
5492 * If none of thresholds below usage is crossed, we read
5493 * only one element of the array here.
5494 */
5495 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5496 eventfd_signal(t->entries[i].eventfd, 1);
5497
5498 /* i = current_threshold + 1 */
5499 i++;
5500
5501 /*
5502 * Iterate forward over array of thresholds starting from
5503 * current_threshold+1 and check if a threshold is crossed.
5504 * If none of thresholds above usage is crossed, we read
5505 * only one element of the array here.
5506 */
5507 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5508 eventfd_signal(t->entries[i].eventfd, 1);
5509
5510 /* Update current_threshold */
5511 t->current_threshold = i - 1;
5512 unlock:
5513 rcu_read_unlock();
5514 }
5515
5516 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5517 {
5518 while (memcg) {
5519 __mem_cgroup_threshold(memcg, false);
5520 if (do_swap_account)
5521 __mem_cgroup_threshold(memcg, true);
5522
5523 memcg = parent_mem_cgroup(memcg);
5524 }
5525 }
5526
5527 static int compare_thresholds(const void *a, const void *b)
5528 {
5529 const struct mem_cgroup_threshold *_a = a;
5530 const struct mem_cgroup_threshold *_b = b;
5531
5532 if (_a->threshold > _b->threshold)
5533 return 1;
5534
5535 if (_a->threshold < _b->threshold)
5536 return -1;
5537
5538 return 0;
5539 }
5540
5541 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
5542 {
5543 struct mem_cgroup_eventfd_list *ev;
5544
5545 list_for_each_entry(ev, &memcg->oom_notify, list)
5546 eventfd_signal(ev->eventfd, 1);
5547 return 0;
5548 }
5549
5550 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
5551 {
5552 struct mem_cgroup *iter;
5553
5554 for_each_mem_cgroup_tree(iter, memcg)
5555 mem_cgroup_oom_notify_cb(iter);
5556 }
5557
5558 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5559 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
5560 {
5561 struct mem_cgroup_thresholds *thresholds;
5562 struct mem_cgroup_threshold_ary *new;
5563 u64 threshold, usage;
5564 int i, size, ret;
5565
5566 ret = res_counter_memparse_write_strategy(args, &threshold);
5567 if (ret)
5568 return ret;
5569
5570 mutex_lock(&memcg->thresholds_lock);
5571
5572 if (type == _MEM)
5573 thresholds = &memcg->thresholds;
5574 else if (type == _MEMSWAP)
5575 thresholds = &memcg->memsw_thresholds;
5576 else
5577 BUG();
5578
5579 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5580
5581 /* Check if a threshold crossed before adding a new one */
5582 if (thresholds->primary)
5583 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5584
5585 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5586
5587 /* Allocate memory for new array of thresholds */
5588 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5589 GFP_KERNEL);
5590 if (!new) {
5591 ret = -ENOMEM;
5592 goto unlock;
5593 }
5594 new->size = size;
5595
5596 /* Copy thresholds (if any) to new array */
5597 if (thresholds->primary) {
5598 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5599 sizeof(struct mem_cgroup_threshold));
5600 }
5601
5602 /* Add new threshold */
5603 new->entries[size - 1].eventfd = eventfd;
5604 new->entries[size - 1].threshold = threshold;
5605
5606 /* Sort thresholds. Registering of new threshold isn't time-critical */
5607 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5608 compare_thresholds, NULL);
5609
5610 /* Find current threshold */
5611 new->current_threshold = -1;
5612 for (i = 0; i < size; i++) {
5613 if (new->entries[i].threshold <= usage) {
5614 /*
5615 * new->current_threshold will not be used until
5616 * rcu_assign_pointer(), so it's safe to increment
5617 * it here.
5618 */
5619 ++new->current_threshold;
5620 } else
5621 break;
5622 }
5623
5624 /* Free old spare buffer and save old primary buffer as spare */
5625 kfree(thresholds->spare);
5626 thresholds->spare = thresholds->primary;
5627
5628 rcu_assign_pointer(thresholds->primary, new);
5629
5630 /* To be sure that nobody uses thresholds */
5631 synchronize_rcu();
5632
5633 unlock:
5634 mutex_unlock(&memcg->thresholds_lock);
5635
5636 return ret;
5637 }
5638
5639 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
5640 struct eventfd_ctx *eventfd, const char *args)
5641 {
5642 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
5643 }
5644
5645 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
5646 struct eventfd_ctx *eventfd, const char *args)
5647 {
5648 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
5649 }
5650
5651 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5652 struct eventfd_ctx *eventfd, enum res_type type)
5653 {
5654 struct mem_cgroup_thresholds *thresholds;
5655 struct mem_cgroup_threshold_ary *new;
5656 u64 usage;
5657 int i, j, size;
5658
5659 mutex_lock(&memcg->thresholds_lock);
5660 if (type == _MEM)
5661 thresholds = &memcg->thresholds;
5662 else if (type == _MEMSWAP)
5663 thresholds = &memcg->memsw_thresholds;
5664 else
5665 BUG();
5666
5667 if (!thresholds->primary)
5668 goto unlock;
5669
5670 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5671
5672 /* Check if a threshold crossed before removing */
5673 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5674
5675 /* Calculate new number of threshold */
5676 size = 0;
5677 for (i = 0; i < thresholds->primary->size; i++) {
5678 if (thresholds->primary->entries[i].eventfd != eventfd)
5679 size++;
5680 }
5681
5682 new = thresholds->spare;
5683
5684 /* Set thresholds array to NULL if we don't have thresholds */
5685 if (!size) {
5686 kfree(new);
5687 new = NULL;
5688 goto swap_buffers;
5689 }
5690
5691 new->size = size;
5692
5693 /* Copy thresholds and find current threshold */
5694 new->current_threshold = -1;
5695 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5696 if (thresholds->primary->entries[i].eventfd == eventfd)
5697 continue;
5698
5699 new->entries[j] = thresholds->primary->entries[i];
5700 if (new->entries[j].threshold <= usage) {
5701 /*
5702 * new->current_threshold will not be used
5703 * until rcu_assign_pointer(), so it's safe to increment
5704 * it here.
5705 */
5706 ++new->current_threshold;
5707 }
5708 j++;
5709 }
5710
5711 swap_buffers:
5712 /* Swap primary and spare array */
5713 thresholds->spare = thresholds->primary;
5714 /* If all events are unregistered, free the spare array */
5715 if (!new) {
5716 kfree(thresholds->spare);
5717 thresholds->spare = NULL;
5718 }
5719
5720 rcu_assign_pointer(thresholds->primary, new);
5721
5722 /* To be sure that nobody uses thresholds */
5723 synchronize_rcu();
5724 unlock:
5725 mutex_unlock(&memcg->thresholds_lock);
5726 }
5727
5728 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5729 struct eventfd_ctx *eventfd)
5730 {
5731 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
5732 }
5733
5734 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
5735 struct eventfd_ctx *eventfd)
5736 {
5737 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
5738 }
5739
5740 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
5741 struct eventfd_ctx *eventfd, const char *args)
5742 {
5743 struct mem_cgroup_eventfd_list *event;
5744
5745 event = kmalloc(sizeof(*event), GFP_KERNEL);
5746 if (!event)
5747 return -ENOMEM;
5748
5749 spin_lock(&memcg_oom_lock);
5750
5751 event->eventfd = eventfd;
5752 list_add(&event->list, &memcg->oom_notify);
5753
5754 /* already in OOM ? */
5755 if (atomic_read(&memcg->under_oom))
5756 eventfd_signal(eventfd, 1);
5757 spin_unlock(&memcg_oom_lock);
5758
5759 return 0;
5760 }
5761
5762 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
5763 struct eventfd_ctx *eventfd)
5764 {
5765 struct mem_cgroup_eventfd_list *ev, *tmp;
5766
5767 spin_lock(&memcg_oom_lock);
5768
5769 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
5770 if (ev->eventfd == eventfd) {
5771 list_del(&ev->list);
5772 kfree(ev);
5773 }
5774 }
5775
5776 spin_unlock(&memcg_oom_lock);
5777 }
5778
5779 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
5780 {
5781 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
5782
5783 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
5784 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
5785 return 0;
5786 }
5787
5788 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5789 struct cftype *cft, u64 val)
5790 {
5791 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5792 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5793
5794 /* cannot set to root cgroup and only 0 and 1 are allowed */
5795 if (!parent || !((val == 0) || (val == 1)))
5796 return -EINVAL;
5797
5798 mutex_lock(&memcg_create_mutex);
5799 /* oom-kill-disable is a flag for subhierarchy. */
5800 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5801 mutex_unlock(&memcg_create_mutex);
5802 return -EINVAL;
5803 }
5804 memcg->oom_kill_disable = val;
5805 if (!val)
5806 memcg_oom_recover(memcg);
5807 mutex_unlock(&memcg_create_mutex);
5808 return 0;
5809 }
5810
5811 #ifdef CONFIG_MEMCG_KMEM
5812 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5813 {
5814 int ret;
5815
5816 memcg->kmemcg_id = -1;
5817 ret = memcg_propagate_kmem(memcg);
5818 if (ret)
5819 return ret;
5820
5821 return mem_cgroup_sockets_init(memcg, ss);
5822 }
5823
5824 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5825 {
5826 mem_cgroup_sockets_destroy(memcg);
5827 }
5828
5829 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5830 {
5831 if (!memcg_kmem_is_active(memcg))
5832 return;
5833
5834 /*
5835 * kmem charges can outlive the cgroup. In the case of slab
5836 * pages, for instance, a page contain objects from various
5837 * processes. As we prevent from taking a reference for every
5838 * such allocation we have to be careful when doing uncharge
5839 * (see memcg_uncharge_kmem) and here during offlining.
5840 *
5841 * The idea is that that only the _last_ uncharge which sees
5842 * the dead memcg will drop the last reference. An additional
5843 * reference is taken here before the group is marked dead
5844 * which is then paired with css_put during uncharge resp. here.
5845 *
5846 * Although this might sound strange as this path is called from
5847 * css_offline() when the referencemight have dropped down to 0
5848 * and shouldn't be incremented anymore (css_tryget would fail)
5849 * we do not have other options because of the kmem allocations
5850 * lifetime.
5851 */
5852 css_get(&memcg->css);
5853
5854 memcg_kmem_mark_dead(memcg);
5855
5856 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5857 return;
5858
5859 if (memcg_kmem_test_and_clear_dead(memcg))
5860 css_put(&memcg->css);
5861 }
5862 #else
5863 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5864 {
5865 return 0;
5866 }
5867
5868 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
5869 {
5870 }
5871
5872 static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
5873 {
5874 }
5875 #endif
5876
5877 /*
5878 * DO NOT USE IN NEW FILES.
5879 *
5880 * "cgroup.event_control" implementation.
5881 *
5882 * This is way over-engineered. It tries to support fully configurable
5883 * events for each user. Such level of flexibility is completely
5884 * unnecessary especially in the light of the planned unified hierarchy.
5885 *
5886 * Please deprecate this and replace with something simpler if at all
5887 * possible.
5888 */
5889
5890 /*
5891 * Unregister event and free resources.
5892 *
5893 * Gets called from workqueue.
5894 */
5895 static void memcg_event_remove(struct work_struct *work)
5896 {
5897 struct mem_cgroup_event *event =
5898 container_of(work, struct mem_cgroup_event, remove);
5899 struct mem_cgroup *memcg = event->memcg;
5900
5901 remove_wait_queue(event->wqh, &event->wait);
5902
5903 event->unregister_event(memcg, event->eventfd);
5904
5905 /* Notify userspace the event is going away. */
5906 eventfd_signal(event->eventfd, 1);
5907
5908 eventfd_ctx_put(event->eventfd);
5909 kfree(event);
5910 css_put(&memcg->css);
5911 }
5912
5913 /*
5914 * Gets called on POLLHUP on eventfd when user closes it.
5915 *
5916 * Called with wqh->lock held and interrupts disabled.
5917 */
5918 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
5919 int sync, void *key)
5920 {
5921 struct mem_cgroup_event *event =
5922 container_of(wait, struct mem_cgroup_event, wait);
5923 struct mem_cgroup *memcg = event->memcg;
5924 unsigned long flags = (unsigned long)key;
5925
5926 if (flags & POLLHUP) {
5927 /*
5928 * If the event has been detached at cgroup removal, we
5929 * can simply return knowing the other side will cleanup
5930 * for us.
5931 *
5932 * We can't race against event freeing since the other
5933 * side will require wqh->lock via remove_wait_queue(),
5934 * which we hold.
5935 */
5936 spin_lock(&memcg->event_list_lock);
5937 if (!list_empty(&event->list)) {
5938 list_del_init(&event->list);
5939 /*
5940 * We are in atomic context, but cgroup_event_remove()
5941 * may sleep, so we have to call it in workqueue.
5942 */
5943 schedule_work(&event->remove);
5944 }
5945 spin_unlock(&memcg->event_list_lock);
5946 }
5947
5948 return 0;
5949 }
5950
5951 static void memcg_event_ptable_queue_proc(struct file *file,
5952 wait_queue_head_t *wqh, poll_table *pt)
5953 {
5954 struct mem_cgroup_event *event =
5955 container_of(pt, struct mem_cgroup_event, pt);
5956
5957 event->wqh = wqh;
5958 add_wait_queue(wqh, &event->wait);
5959 }
5960
5961 /*
5962 * DO NOT USE IN NEW FILES.
5963 *
5964 * Parse input and register new cgroup event handler.
5965 *
5966 * Input must be in format '<event_fd> <control_fd> <args>'.
5967 * Interpretation of args is defined by control file implementation.
5968 */
5969 static int memcg_write_event_control(struct cgroup_subsys_state *css,
5970 struct cftype *cft, char *buffer)
5971 {
5972 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5973 struct mem_cgroup_event *event;
5974 struct cgroup_subsys_state *cfile_css;
5975 unsigned int efd, cfd;
5976 struct fd efile;
5977 struct fd cfile;
5978 const char *name;
5979 char *endp;
5980 int ret;
5981
5982 efd = simple_strtoul(buffer, &endp, 10);
5983 if (*endp != ' ')
5984 return -EINVAL;
5985 buffer = endp + 1;
5986
5987 cfd = simple_strtoul(buffer, &endp, 10);
5988 if ((*endp != ' ') && (*endp != '\0'))
5989 return -EINVAL;
5990 buffer = endp + 1;
5991
5992 event = kzalloc(sizeof(*event), GFP_KERNEL);
5993 if (!event)
5994 return -ENOMEM;
5995
5996 event->memcg = memcg;
5997 INIT_LIST_HEAD(&event->list);
5998 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
5999 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
6000 INIT_WORK(&event->remove, memcg_event_remove);
6001
6002 efile = fdget(efd);
6003 if (!efile.file) {
6004 ret = -EBADF;
6005 goto out_kfree;
6006 }
6007
6008 event->eventfd = eventfd_ctx_fileget(efile.file);
6009 if (IS_ERR(event->eventfd)) {
6010 ret = PTR_ERR(event->eventfd);
6011 goto out_put_efile;
6012 }
6013
6014 cfile = fdget(cfd);
6015 if (!cfile.file) {
6016 ret = -EBADF;
6017 goto out_put_eventfd;
6018 }
6019
6020 /* the process need read permission on control file */
6021 /* AV: shouldn't we check that it's been opened for read instead? */
6022 ret = inode_permission(file_inode(cfile.file), MAY_READ);
6023 if (ret < 0)
6024 goto out_put_cfile;
6025
6026 /*
6027 * Determine the event callbacks and set them in @event. This used
6028 * to be done via struct cftype but cgroup core no longer knows
6029 * about these events. The following is crude but the whole thing
6030 * is for compatibility anyway.
6031 *
6032 * DO NOT ADD NEW FILES.
6033 */
6034 name = cfile.file->f_dentry->d_name.name;
6035
6036 if (!strcmp(name, "memory.usage_in_bytes")) {
6037 event->register_event = mem_cgroup_usage_register_event;
6038 event->unregister_event = mem_cgroup_usage_unregister_event;
6039 } else if (!strcmp(name, "memory.oom_control")) {
6040 event->register_event = mem_cgroup_oom_register_event;
6041 event->unregister_event = mem_cgroup_oom_unregister_event;
6042 } else if (!strcmp(name, "memory.pressure_level")) {
6043 event->register_event = vmpressure_register_event;
6044 event->unregister_event = vmpressure_unregister_event;
6045 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
6046 event->register_event = memsw_cgroup_usage_register_event;
6047 event->unregister_event = memsw_cgroup_usage_unregister_event;
6048 } else {
6049 ret = -EINVAL;
6050 goto out_put_cfile;
6051 }
6052
6053 /*
6054 * Verify @cfile should belong to @css. Also, remaining events are
6055 * automatically removed on cgroup destruction but the removal is
6056 * asynchronous, so take an extra ref on @css.
6057 */
6058 cfile_css = css_tryget_from_dir(cfile.file->f_dentry->d_parent,
6059 &memory_cgrp_subsys);
6060 ret = -EINVAL;
6061 if (IS_ERR(cfile_css))
6062 goto out_put_cfile;
6063 if (cfile_css != css) {
6064 css_put(cfile_css);
6065 goto out_put_cfile;
6066 }
6067
6068 ret = event->register_event(memcg, event->eventfd, buffer);
6069 if (ret)
6070 goto out_put_css;
6071
6072 efile.file->f_op->poll(efile.file, &event->pt);
6073
6074 spin_lock(&memcg->event_list_lock);
6075 list_add(&event->list, &memcg->event_list);
6076 spin_unlock(&memcg->event_list_lock);
6077
6078 fdput(cfile);
6079 fdput(efile);
6080
6081 return 0;
6082
6083 out_put_css:
6084 css_put(css);
6085 out_put_cfile:
6086 fdput(cfile);
6087 out_put_eventfd:
6088 eventfd_ctx_put(event->eventfd);
6089 out_put_efile:
6090 fdput(efile);
6091 out_kfree:
6092 kfree(event);
6093
6094 return ret;
6095 }
6096
6097 static struct cftype mem_cgroup_files[] = {
6098 {
6099 .name = "usage_in_bytes",
6100 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
6101 .read_u64 = mem_cgroup_read_u64,
6102 },
6103 {
6104 .name = "max_usage_in_bytes",
6105 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6106 .trigger = mem_cgroup_reset,
6107 .read_u64 = mem_cgroup_read_u64,
6108 },
6109 {
6110 .name = "limit_in_bytes",
6111 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
6112 .write_string = mem_cgroup_write,
6113 .read_u64 = mem_cgroup_read_u64,
6114 },
6115 {
6116 .name = "soft_limit_in_bytes",
6117 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
6118 .write_string = mem_cgroup_write,
6119 .read_u64 = mem_cgroup_read_u64,
6120 },
6121 {
6122 .name = "failcnt",
6123 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6124 .trigger = mem_cgroup_reset,
6125 .read_u64 = mem_cgroup_read_u64,
6126 },
6127 {
6128 .name = "stat",
6129 .seq_show = memcg_stat_show,
6130 },
6131 {
6132 .name = "force_empty",
6133 .trigger = mem_cgroup_force_empty_write,
6134 },
6135 {
6136 .name = "use_hierarchy",
6137 .flags = CFTYPE_INSANE,
6138 .write_u64 = mem_cgroup_hierarchy_write,
6139 .read_u64 = mem_cgroup_hierarchy_read,
6140 },
6141 {
6142 .name = "cgroup.event_control", /* XXX: for compat */
6143 .write_string = memcg_write_event_control,
6144 .flags = CFTYPE_NO_PREFIX,
6145 .mode = S_IWUGO,
6146 },
6147 {
6148 .name = "swappiness",
6149 .read_u64 = mem_cgroup_swappiness_read,
6150 .write_u64 = mem_cgroup_swappiness_write,
6151 },
6152 {
6153 .name = "move_charge_at_immigrate",
6154 .read_u64 = mem_cgroup_move_charge_read,
6155 .write_u64 = mem_cgroup_move_charge_write,
6156 },
6157 {
6158 .name = "oom_control",
6159 .seq_show = mem_cgroup_oom_control_read,
6160 .write_u64 = mem_cgroup_oom_control_write,
6161 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
6162 },
6163 {
6164 .name = "pressure_level",
6165 },
6166 #ifdef CONFIG_NUMA
6167 {
6168 .name = "numa_stat",
6169 .seq_show = memcg_numa_stat_show,
6170 },
6171 #endif
6172 #ifdef CONFIG_MEMCG_KMEM
6173 {
6174 .name = "kmem.limit_in_bytes",
6175 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6176 .write_string = mem_cgroup_write,
6177 .read_u64 = mem_cgroup_read_u64,
6178 },
6179 {
6180 .name = "kmem.usage_in_bytes",
6181 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6182 .read_u64 = mem_cgroup_read_u64,
6183 },
6184 {
6185 .name = "kmem.failcnt",
6186 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6187 .trigger = mem_cgroup_reset,
6188 .read_u64 = mem_cgroup_read_u64,
6189 },
6190 {
6191 .name = "kmem.max_usage_in_bytes",
6192 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6193 .trigger = mem_cgroup_reset,
6194 .read_u64 = mem_cgroup_read_u64,
6195 },
6196 #ifdef CONFIG_SLABINFO
6197 {
6198 .name = "kmem.slabinfo",
6199 .seq_show = mem_cgroup_slabinfo_read,
6200 },
6201 #endif
6202 #endif
6203 { }, /* terminate */
6204 };
6205
6206 #ifdef CONFIG_MEMCG_SWAP
6207 static struct cftype memsw_cgroup_files[] = {
6208 {
6209 .name = "memsw.usage_in_bytes",
6210 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6211 .read_u64 = mem_cgroup_read_u64,
6212 },
6213 {
6214 .name = "memsw.max_usage_in_bytes",
6215 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6216 .trigger = mem_cgroup_reset,
6217 .read_u64 = mem_cgroup_read_u64,
6218 },
6219 {
6220 .name = "memsw.limit_in_bytes",
6221 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6222 .write_string = mem_cgroup_write,
6223 .read_u64 = mem_cgroup_read_u64,
6224 },
6225 {
6226 .name = "memsw.failcnt",
6227 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6228 .trigger = mem_cgroup_reset,
6229 .read_u64 = mem_cgroup_read_u64,
6230 },
6231 { }, /* terminate */
6232 };
6233 #endif
6234 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6235 {
6236 struct mem_cgroup_per_node *pn;
6237 struct mem_cgroup_per_zone *mz;
6238 int zone, tmp = node;
6239 /*
6240 * This routine is called against possible nodes.
6241 * But it's BUG to call kmalloc() against offline node.
6242 *
6243 * TODO: this routine can waste much memory for nodes which will
6244 * never be onlined. It's better to use memory hotplug callback
6245 * function.
6246 */
6247 if (!node_state(node, N_NORMAL_MEMORY))
6248 tmp = -1;
6249 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6250 if (!pn)
6251 return 1;
6252
6253 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6254 mz = &pn->zoneinfo[zone];
6255 lruvec_init(&mz->lruvec);
6256 mz->usage_in_excess = 0;
6257 mz->on_tree = false;
6258 mz->memcg = memcg;
6259 }
6260 memcg->nodeinfo[node] = pn;
6261 return 0;
6262 }
6263
6264 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6265 {
6266 kfree(memcg->nodeinfo[node]);
6267 }
6268
6269 static struct mem_cgroup *mem_cgroup_alloc(void)
6270 {
6271 struct mem_cgroup *memcg;
6272 size_t size;
6273
6274 size = sizeof(struct mem_cgroup);
6275 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
6276
6277 memcg = kzalloc(size, GFP_KERNEL);
6278 if (!memcg)
6279 return NULL;
6280
6281 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6282 if (!memcg->stat)
6283 goto out_free;
6284 spin_lock_init(&memcg->pcp_counter_lock);
6285 return memcg;
6286
6287 out_free:
6288 kfree(memcg);
6289 return NULL;
6290 }
6291
6292 /*
6293 * At destroying mem_cgroup, references from swap_cgroup can remain.
6294 * (scanning all at force_empty is too costly...)
6295 *
6296 * Instead of clearing all references at force_empty, we remember
6297 * the number of reference from swap_cgroup and free mem_cgroup when
6298 * it goes down to 0.
6299 *
6300 * Removal of cgroup itself succeeds regardless of refs from swap.
6301 */
6302
6303 static void __mem_cgroup_free(struct mem_cgroup *memcg)
6304 {
6305 int node;
6306
6307 mem_cgroup_remove_from_trees(memcg);
6308
6309 for_each_node(node)
6310 free_mem_cgroup_per_zone_info(memcg, node);
6311
6312 free_percpu(memcg->stat);
6313
6314 /*
6315 * We need to make sure that (at least for now), the jump label
6316 * destruction code runs outside of the cgroup lock. This is because
6317 * get_online_cpus(), which is called from the static_branch update,
6318 * can't be called inside the cgroup_lock. cpusets are the ones
6319 * enforcing this dependency, so if they ever change, we might as well.
6320 *
6321 * schedule_work() will guarantee this happens. Be careful if you need
6322 * to move this code around, and make sure it is outside
6323 * the cgroup_lock.
6324 */
6325 disarm_static_keys(memcg);
6326 kfree(memcg);
6327 }
6328
6329 /*
6330 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6331 */
6332 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6333 {
6334 if (!memcg->res.parent)
6335 return NULL;
6336 return mem_cgroup_from_res_counter(memcg->res.parent, res);
6337 }
6338 EXPORT_SYMBOL(parent_mem_cgroup);
6339
6340 static void __init mem_cgroup_soft_limit_tree_init(void)
6341 {
6342 struct mem_cgroup_tree_per_node *rtpn;
6343 struct mem_cgroup_tree_per_zone *rtpz;
6344 int tmp, node, zone;
6345
6346 for_each_node(node) {
6347 tmp = node;
6348 if (!node_state(node, N_NORMAL_MEMORY))
6349 tmp = -1;
6350 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
6351 BUG_ON(!rtpn);
6352
6353 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6354
6355 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6356 rtpz = &rtpn->rb_tree_per_zone[zone];
6357 rtpz->rb_root = RB_ROOT;
6358 spin_lock_init(&rtpz->lock);
6359 }
6360 }
6361 }
6362
6363 static struct cgroup_subsys_state * __ref
6364 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
6365 {
6366 struct mem_cgroup *memcg;
6367 long error = -ENOMEM;
6368 int node;
6369
6370 memcg = mem_cgroup_alloc();
6371 if (!memcg)
6372 return ERR_PTR(error);
6373
6374 for_each_node(node)
6375 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6376 goto free_out;
6377
6378 /* root ? */
6379 if (parent_css == NULL) {
6380 root_mem_cgroup = memcg;
6381 res_counter_init(&memcg->res, NULL);
6382 res_counter_init(&memcg->memsw, NULL);
6383 res_counter_init(&memcg->kmem, NULL);
6384 }
6385
6386 memcg->last_scanned_node = MAX_NUMNODES;
6387 INIT_LIST_HEAD(&memcg->oom_notify);
6388 memcg->move_charge_at_immigrate = 0;
6389 mutex_init(&memcg->thresholds_lock);
6390 spin_lock_init(&memcg->move_lock);
6391 vmpressure_init(&memcg->vmpressure);
6392 INIT_LIST_HEAD(&memcg->event_list);
6393 spin_lock_init(&memcg->event_list_lock);
6394
6395 return &memcg->css;
6396
6397 free_out:
6398 __mem_cgroup_free(memcg);
6399 return ERR_PTR(error);
6400 }
6401
6402 static int
6403 mem_cgroup_css_online(struct cgroup_subsys_state *css)
6404 {
6405 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6406 struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6407
6408 if (css->cgroup->id > MEM_CGROUP_ID_MAX)
6409 return -ENOSPC;
6410
6411 if (!parent)
6412 return 0;
6413
6414 mutex_lock(&memcg_create_mutex);
6415
6416 memcg->use_hierarchy = parent->use_hierarchy;
6417 memcg->oom_kill_disable = parent->oom_kill_disable;
6418 memcg->swappiness = mem_cgroup_swappiness(parent);
6419
6420 if (parent->use_hierarchy) {
6421 res_counter_init(&memcg->res, &parent->res);
6422 res_counter_init(&memcg->memsw, &parent->memsw);
6423 res_counter_init(&memcg->kmem, &parent->kmem);
6424
6425 /*
6426 * No need to take a reference to the parent because cgroup
6427 * core guarantees its existence.
6428 */
6429 } else {
6430 res_counter_init(&memcg->res, NULL);
6431 res_counter_init(&memcg->memsw, NULL);
6432 res_counter_init(&memcg->kmem, NULL);
6433 /*
6434 * Deeper hierachy with use_hierarchy == false doesn't make
6435 * much sense so let cgroup subsystem know about this
6436 * unfortunate state in our controller.
6437 */
6438 if (parent != root_mem_cgroup)
6439 memory_cgrp_subsys.broken_hierarchy = true;
6440 }
6441 mutex_unlock(&memcg_create_mutex);
6442
6443 return memcg_init_kmem(memcg, &memory_cgrp_subsys);
6444 }
6445
6446 /*
6447 * Announce all parents that a group from their hierarchy is gone.
6448 */
6449 static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6450 {
6451 struct mem_cgroup *parent = memcg;
6452
6453 while ((parent = parent_mem_cgroup(parent)))
6454 mem_cgroup_iter_invalidate(parent);
6455
6456 /*
6457 * if the root memcg is not hierarchical we have to check it
6458 * explicitely.
6459 */
6460 if (!root_mem_cgroup->use_hierarchy)
6461 mem_cgroup_iter_invalidate(root_mem_cgroup);
6462 }
6463
6464 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6465 {
6466 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6467 struct mem_cgroup_event *event, *tmp;
6468 struct cgroup_subsys_state *iter;
6469
6470 /*
6471 * Unregister events and notify userspace.
6472 * Notify userspace about cgroup removing only after rmdir of cgroup
6473 * directory to avoid race between userspace and kernelspace.
6474 */
6475 spin_lock(&memcg->event_list_lock);
6476 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
6477 list_del_init(&event->list);
6478 schedule_work(&event->remove);
6479 }
6480 spin_unlock(&memcg->event_list_lock);
6481
6482 kmem_cgroup_css_offline(memcg);
6483
6484 mem_cgroup_invalidate_reclaim_iterators(memcg);
6485
6486 /*
6487 * This requires that offlining is serialized. Right now that is
6488 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6489 */
6490 css_for_each_descendant_post(iter, css)
6491 mem_cgroup_reparent_charges(mem_cgroup_from_css(iter));
6492
6493 mem_cgroup_destroy_all_caches(memcg);
6494 vmpressure_cleanup(&memcg->vmpressure);
6495 }
6496
6497 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
6498 {
6499 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6500 /*
6501 * XXX: css_offline() would be where we should reparent all
6502 * memory to prepare the cgroup for destruction. However,
6503 * memcg does not do css_tryget() and res_counter charging
6504 * under the same RCU lock region, which means that charging
6505 * could race with offlining. Offlining only happens to
6506 * cgroups with no tasks in them but charges can show up
6507 * without any tasks from the swapin path when the target
6508 * memcg is looked up from the swapout record and not from the
6509 * current task as it usually is. A race like this can leak
6510 * charges and put pages with stale cgroup pointers into
6511 * circulation:
6512 *
6513 * #0 #1
6514 * lookup_swap_cgroup_id()
6515 * rcu_read_lock()
6516 * mem_cgroup_lookup()
6517 * css_tryget()
6518 * rcu_read_unlock()
6519 * disable css_tryget()
6520 * call_rcu()
6521 * offline_css()
6522 * reparent_charges()
6523 * res_counter_charge()
6524 * css_put()
6525 * css_free()
6526 * pc->mem_cgroup = dead memcg
6527 * add page to lru
6528 *
6529 * The bulk of the charges are still moved in offline_css() to
6530 * avoid pinning a lot of pages in case a long-term reference
6531 * like a swapout record is deferring the css_free() to long
6532 * after offlining. But this makes sure we catch any charges
6533 * made after offlining:
6534 */
6535 mem_cgroup_reparent_charges(memcg);
6536
6537 memcg_destroy_kmem(memcg);
6538 __mem_cgroup_free(memcg);
6539 }
6540
6541 #ifdef CONFIG_MMU
6542 /* Handlers for move charge at task migration. */
6543 #define PRECHARGE_COUNT_AT_ONCE 256
6544 static int mem_cgroup_do_precharge(unsigned long count)
6545 {
6546 int ret = 0;
6547 int batch_count = PRECHARGE_COUNT_AT_ONCE;
6548 struct mem_cgroup *memcg = mc.to;
6549
6550 if (mem_cgroup_is_root(memcg)) {
6551 mc.precharge += count;
6552 /* we don't need css_get for root */
6553 return ret;
6554 }
6555 /* try to charge at once */
6556 if (count > 1) {
6557 struct res_counter *dummy;
6558 /*
6559 * "memcg" cannot be under rmdir() because we've already checked
6560 * by cgroup_lock_live_cgroup() that it is not removed and we
6561 * are still under the same cgroup_mutex. So we can postpone
6562 * css_get().
6563 */
6564 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6565 goto one_by_one;
6566 if (do_swap_account && res_counter_charge(&memcg->memsw,
6567 PAGE_SIZE * count, &dummy)) {
6568 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6569 goto one_by_one;
6570 }
6571 mc.precharge += count;
6572 return ret;
6573 }
6574 one_by_one:
6575 /* fall back to one by one charge */
6576 while (count--) {
6577 if (signal_pending(current)) {
6578 ret = -EINTR;
6579 break;
6580 }
6581 if (!batch_count--) {
6582 batch_count = PRECHARGE_COUNT_AT_ONCE;
6583 cond_resched();
6584 }
6585 ret = mem_cgroup_try_charge(memcg, GFP_KERNEL, 1, false);
6586 if (ret)
6587 /* mem_cgroup_clear_mc() will do uncharge later */
6588 return ret;
6589 mc.precharge++;
6590 }
6591 return ret;
6592 }
6593
6594 /**
6595 * get_mctgt_type - get target type of moving charge
6596 * @vma: the vma the pte to be checked belongs
6597 * @addr: the address corresponding to the pte to be checked
6598 * @ptent: the pte to be checked
6599 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6600 *
6601 * Returns
6602 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6603 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6604 * move charge. if @target is not NULL, the page is stored in target->page
6605 * with extra refcnt got(Callers should handle it).
6606 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6607 * target for charge migration. if @target is not NULL, the entry is stored
6608 * in target->ent.
6609 *
6610 * Called with pte lock held.
6611 */
6612 union mc_target {
6613 struct page *page;
6614 swp_entry_t ent;
6615 };
6616
6617 enum mc_target_type {
6618 MC_TARGET_NONE = 0,
6619 MC_TARGET_PAGE,
6620 MC_TARGET_SWAP,
6621 };
6622
6623 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6624 unsigned long addr, pte_t ptent)
6625 {
6626 struct page *page = vm_normal_page(vma, addr, ptent);
6627
6628 if (!page || !page_mapped(page))
6629 return NULL;
6630 if (PageAnon(page)) {
6631 /* we don't move shared anon */
6632 if (!move_anon())
6633 return NULL;
6634 } else if (!move_file())
6635 /* we ignore mapcount for file pages */
6636 return NULL;
6637 if (!get_page_unless_zero(page))
6638 return NULL;
6639
6640 return page;
6641 }
6642
6643 #ifdef CONFIG_SWAP
6644 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6645 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6646 {
6647 struct page *page = NULL;
6648 swp_entry_t ent = pte_to_swp_entry(ptent);
6649
6650 if (!move_anon() || non_swap_entry(ent))
6651 return NULL;
6652 /*
6653 * Because lookup_swap_cache() updates some statistics counter,
6654 * we call find_get_page() with swapper_space directly.
6655 */
6656 page = find_get_page(swap_address_space(ent), ent.val);
6657 if (do_swap_account)
6658 entry->val = ent.val;
6659
6660 return page;
6661 }
6662 #else
6663 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6664 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6665 {
6666 return NULL;
6667 }
6668 #endif
6669
6670 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6671 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6672 {
6673 struct page *page = NULL;
6674 struct address_space *mapping;
6675 pgoff_t pgoff;
6676
6677 if (!vma->vm_file) /* anonymous vma */
6678 return NULL;
6679 if (!move_file())
6680 return NULL;
6681
6682 mapping = vma->vm_file->f_mapping;
6683 if (pte_none(ptent))
6684 pgoff = linear_page_index(vma, addr);
6685 else /* pte_file(ptent) is true */
6686 pgoff = pte_to_pgoff(ptent);
6687
6688 /* page is moved even if it's not RSS of this task(page-faulted). */
6689 page = find_get_page(mapping, pgoff);
6690
6691 #ifdef CONFIG_SWAP
6692 /* shmem/tmpfs may report page out on swap: account for that too. */
6693 if (radix_tree_exceptional_entry(page)) {
6694 swp_entry_t swap = radix_to_swp_entry(page);
6695 if (do_swap_account)
6696 *entry = swap;
6697 page = find_get_page(swap_address_space(swap), swap.val);
6698 }
6699 #endif
6700 return page;
6701 }
6702
6703 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
6704 unsigned long addr, pte_t ptent, union mc_target *target)
6705 {
6706 struct page *page = NULL;
6707 struct page_cgroup *pc;
6708 enum mc_target_type ret = MC_TARGET_NONE;
6709 swp_entry_t ent = { .val = 0 };
6710
6711 if (pte_present(ptent))
6712 page = mc_handle_present_pte(vma, addr, ptent);
6713 else if (is_swap_pte(ptent))
6714 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6715 else if (pte_none(ptent) || pte_file(ptent))
6716 page = mc_handle_file_pte(vma, addr, ptent, &ent);
6717
6718 if (!page && !ent.val)
6719 return ret;
6720 if (page) {
6721 pc = lookup_page_cgroup(page);
6722 /*
6723 * Do only loose check w/o page_cgroup lock.
6724 * mem_cgroup_move_account() checks the pc is valid or not under
6725 * the lock.
6726 */
6727 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6728 ret = MC_TARGET_PAGE;
6729 if (target)
6730 target->page = page;
6731 }
6732 if (!ret || !target)
6733 put_page(page);
6734 }
6735 /* There is a swap entry and a page doesn't exist or isn't charged */
6736 if (ent.val && !ret &&
6737 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
6738 ret = MC_TARGET_SWAP;
6739 if (target)
6740 target->ent = ent;
6741 }
6742 return ret;
6743 }
6744
6745 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6746 /*
6747 * We don't consider swapping or file mapped pages because THP does not
6748 * support them for now.
6749 * Caller should make sure that pmd_trans_huge(pmd) is true.
6750 */
6751 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6752 unsigned long addr, pmd_t pmd, union mc_target *target)
6753 {
6754 struct page *page = NULL;
6755 struct page_cgroup *pc;
6756 enum mc_target_type ret = MC_TARGET_NONE;
6757
6758 page = pmd_page(pmd);
6759 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6760 if (!move_anon())
6761 return ret;
6762 pc = lookup_page_cgroup(page);
6763 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6764 ret = MC_TARGET_PAGE;
6765 if (target) {
6766 get_page(page);
6767 target->page = page;
6768 }
6769 }
6770 return ret;
6771 }
6772 #else
6773 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6774 unsigned long addr, pmd_t pmd, union mc_target *target)
6775 {
6776 return MC_TARGET_NONE;
6777 }
6778 #endif
6779
6780 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6781 unsigned long addr, unsigned long end,
6782 struct mm_walk *walk)
6783 {
6784 struct vm_area_struct *vma = walk->private;
6785 pte_t *pte;
6786 spinlock_t *ptl;
6787
6788 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6789 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6790 mc.precharge += HPAGE_PMD_NR;
6791 spin_unlock(ptl);
6792 return 0;
6793 }
6794
6795 if (pmd_trans_unstable(pmd))
6796 return 0;
6797 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6798 for (; addr != end; pte++, addr += PAGE_SIZE)
6799 if (get_mctgt_type(vma, addr, *pte, NULL))
6800 mc.precharge++; /* increment precharge temporarily */
6801 pte_unmap_unlock(pte - 1, ptl);
6802 cond_resched();
6803
6804 return 0;
6805 }
6806
6807 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6808 {
6809 unsigned long precharge;
6810 struct vm_area_struct *vma;
6811
6812 down_read(&mm->mmap_sem);
6813 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6814 struct mm_walk mem_cgroup_count_precharge_walk = {
6815 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6816 .mm = mm,
6817 .private = vma,
6818 };
6819 if (is_vm_hugetlb_page(vma))
6820 continue;
6821 walk_page_range(vma->vm_start, vma->vm_end,
6822 &mem_cgroup_count_precharge_walk);
6823 }
6824 up_read(&mm->mmap_sem);
6825
6826 precharge = mc.precharge;
6827 mc.precharge = 0;
6828
6829 return precharge;
6830 }
6831
6832 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6833 {
6834 unsigned long precharge = mem_cgroup_count_precharge(mm);
6835
6836 VM_BUG_ON(mc.moving_task);
6837 mc.moving_task = current;
6838 return mem_cgroup_do_precharge(precharge);
6839 }
6840
6841 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6842 static void __mem_cgroup_clear_mc(void)
6843 {
6844 struct mem_cgroup *from = mc.from;
6845 struct mem_cgroup *to = mc.to;
6846 int i;
6847
6848 /* we must uncharge all the leftover precharges from mc.to */
6849 if (mc.precharge) {
6850 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6851 mc.precharge = 0;
6852 }
6853 /*
6854 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6855 * we must uncharge here.
6856 */
6857 if (mc.moved_charge) {
6858 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6859 mc.moved_charge = 0;
6860 }
6861 /* we must fixup refcnts and charges */
6862 if (mc.moved_swap) {
6863 /* uncharge swap account from the old cgroup */
6864 if (!mem_cgroup_is_root(mc.from))
6865 res_counter_uncharge(&mc.from->memsw,
6866 PAGE_SIZE * mc.moved_swap);
6867
6868 for (i = 0; i < mc.moved_swap; i++)
6869 css_put(&mc.from->css);
6870
6871 if (!mem_cgroup_is_root(mc.to)) {
6872 /*
6873 * we charged both to->res and to->memsw, so we should
6874 * uncharge to->res.
6875 */
6876 res_counter_uncharge(&mc.to->res,
6877 PAGE_SIZE * mc.moved_swap);
6878 }
6879 /* we've already done css_get(mc.to) */
6880 mc.moved_swap = 0;
6881 }
6882 memcg_oom_recover(from);
6883 memcg_oom_recover(to);
6884 wake_up_all(&mc.waitq);
6885 }
6886
6887 static void mem_cgroup_clear_mc(void)
6888 {
6889 struct mem_cgroup *from = mc.from;
6890
6891 /*
6892 * we must clear moving_task before waking up waiters at the end of
6893 * task migration.
6894 */
6895 mc.moving_task = NULL;
6896 __mem_cgroup_clear_mc();
6897 spin_lock(&mc.lock);
6898 mc.from = NULL;
6899 mc.to = NULL;
6900 spin_unlock(&mc.lock);
6901 mem_cgroup_end_move(from);
6902 }
6903
6904 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6905 struct cgroup_taskset *tset)
6906 {
6907 struct task_struct *p = cgroup_taskset_first(tset);
6908 int ret = 0;
6909 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6910 unsigned long move_charge_at_immigrate;
6911
6912 /*
6913 * We are now commited to this value whatever it is. Changes in this
6914 * tunable will only affect upcoming migrations, not the current one.
6915 * So we need to save it, and keep it going.
6916 */
6917 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6918 if (move_charge_at_immigrate) {
6919 struct mm_struct *mm;
6920 struct mem_cgroup *from = mem_cgroup_from_task(p);
6921
6922 VM_BUG_ON(from == memcg);
6923
6924 mm = get_task_mm(p);
6925 if (!mm)
6926 return 0;
6927 /* We move charges only when we move a owner of the mm */
6928 if (mm->owner == p) {
6929 VM_BUG_ON(mc.from);
6930 VM_BUG_ON(mc.to);
6931 VM_BUG_ON(mc.precharge);
6932 VM_BUG_ON(mc.moved_charge);
6933 VM_BUG_ON(mc.moved_swap);
6934 mem_cgroup_start_move(from);
6935 spin_lock(&mc.lock);
6936 mc.from = from;
6937 mc.to = memcg;
6938 mc.immigrate_flags = move_charge_at_immigrate;
6939 spin_unlock(&mc.lock);
6940 /* We set mc.moving_task later */
6941
6942 ret = mem_cgroup_precharge_mc(mm);
6943 if (ret)
6944 mem_cgroup_clear_mc();
6945 }
6946 mmput(mm);
6947 }
6948 return ret;
6949 }
6950
6951 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6952 struct cgroup_taskset *tset)
6953 {
6954 mem_cgroup_clear_mc();
6955 }
6956
6957 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6958 unsigned long addr, unsigned long end,
6959 struct mm_walk *walk)
6960 {
6961 int ret = 0;
6962 struct vm_area_struct *vma = walk->private;
6963 pte_t *pte;
6964 spinlock_t *ptl;
6965 enum mc_target_type target_type;
6966 union mc_target target;
6967 struct page *page;
6968 struct page_cgroup *pc;
6969
6970 /*
6971 * We don't take compound_lock() here but no race with splitting thp
6972 * happens because:
6973 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6974 * under splitting, which means there's no concurrent thp split,
6975 * - if another thread runs into split_huge_page() just after we
6976 * entered this if-block, the thread must wait for page table lock
6977 * to be unlocked in __split_huge_page_splitting(), where the main
6978 * part of thp split is not executed yet.
6979 */
6980 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
6981 if (mc.precharge < HPAGE_PMD_NR) {
6982 spin_unlock(ptl);
6983 return 0;
6984 }
6985 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6986 if (target_type == MC_TARGET_PAGE) {
6987 page = target.page;
6988 if (!isolate_lru_page(page)) {
6989 pc = lookup_page_cgroup(page);
6990 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6991 pc, mc.from, mc.to)) {
6992 mc.precharge -= HPAGE_PMD_NR;
6993 mc.moved_charge += HPAGE_PMD_NR;
6994 }
6995 putback_lru_page(page);
6996 }
6997 put_page(page);
6998 }
6999 spin_unlock(ptl);
7000 return 0;
7001 }
7002
7003 if (pmd_trans_unstable(pmd))
7004 return 0;
7005 retry:
7006 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
7007 for (; addr != end; addr += PAGE_SIZE) {
7008 pte_t ptent = *(pte++);
7009 swp_entry_t ent;
7010
7011 if (!mc.precharge)
7012 break;
7013
7014 switch (get_mctgt_type(vma, addr, ptent, &target)) {
7015 case MC_TARGET_PAGE:
7016 page = target.page;
7017 if (isolate_lru_page(page))
7018 goto put;
7019 pc = lookup_page_cgroup(page);
7020 if (!mem_cgroup_move_account(page, 1, pc,
7021 mc.from, mc.to)) {
7022 mc.precharge--;
7023 /* we uncharge from mc.from later. */
7024 mc.moved_charge++;
7025 }
7026 putback_lru_page(page);
7027 put: /* get_mctgt_type() gets the page */
7028 put_page(page);
7029 break;
7030 case MC_TARGET_SWAP:
7031 ent = target.ent;
7032 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
7033 mc.precharge--;
7034 /* we fixup refcnts and charges later. */
7035 mc.moved_swap++;
7036 }
7037 break;
7038 default:
7039 break;
7040 }
7041 }
7042 pte_unmap_unlock(pte - 1, ptl);
7043 cond_resched();
7044
7045 if (addr != end) {
7046 /*
7047 * We have consumed all precharges we got in can_attach().
7048 * We try charge one by one, but don't do any additional
7049 * charges to mc.to if we have failed in charge once in attach()
7050 * phase.
7051 */
7052 ret = mem_cgroup_do_precharge(1);
7053 if (!ret)
7054 goto retry;
7055 }
7056
7057 return ret;
7058 }
7059
7060 static void mem_cgroup_move_charge(struct mm_struct *mm)
7061 {
7062 struct vm_area_struct *vma;
7063
7064 lru_add_drain_all();
7065 retry:
7066 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
7067 /*
7068 * Someone who are holding the mmap_sem might be waiting in
7069 * waitq. So we cancel all extra charges, wake up all waiters,
7070 * and retry. Because we cancel precharges, we might not be able
7071 * to move enough charges, but moving charge is a best-effort
7072 * feature anyway, so it wouldn't be a big problem.
7073 */
7074 __mem_cgroup_clear_mc();
7075 cond_resched();
7076 goto retry;
7077 }
7078 for (vma = mm->mmap; vma; vma = vma->vm_next) {
7079 int ret;
7080 struct mm_walk mem_cgroup_move_charge_walk = {
7081 .pmd_entry = mem_cgroup_move_charge_pte_range,
7082 .mm = mm,
7083 .private = vma,
7084 };
7085 if (is_vm_hugetlb_page(vma))
7086 continue;
7087 ret = walk_page_range(vma->vm_start, vma->vm_end,
7088 &mem_cgroup_move_charge_walk);
7089 if (ret)
7090 /*
7091 * means we have consumed all precharges and failed in
7092 * doing additional charge. Just abandon here.
7093 */
7094 break;
7095 }
7096 up_read(&mm->mmap_sem);
7097 }
7098
7099 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7100 struct cgroup_taskset *tset)
7101 {
7102 struct task_struct *p = cgroup_taskset_first(tset);
7103 struct mm_struct *mm = get_task_mm(p);
7104
7105 if (mm) {
7106 if (mc.to)
7107 mem_cgroup_move_charge(mm);
7108 mmput(mm);
7109 }
7110 if (mc.to)
7111 mem_cgroup_clear_mc();
7112 }
7113 #else /* !CONFIG_MMU */
7114 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
7115 struct cgroup_taskset *tset)
7116 {
7117 return 0;
7118 }
7119 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
7120 struct cgroup_taskset *tset)
7121 {
7122 }
7123 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
7124 struct cgroup_taskset *tset)
7125 {
7126 }
7127 #endif
7128
7129 /*
7130 * Cgroup retains root cgroups across [un]mount cycles making it necessary
7131 * to verify sane_behavior flag on each mount attempt.
7132 */
7133 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
7134 {
7135 /*
7136 * use_hierarchy is forced with sane_behavior. cgroup core
7137 * guarantees that @root doesn't have any children, so turning it
7138 * on for the root memcg is enough.
7139 */
7140 if (cgroup_sane_behavior(root_css->cgroup))
7141 mem_cgroup_from_css(root_css)->use_hierarchy = true;
7142 }
7143
7144 struct cgroup_subsys memory_cgrp_subsys = {
7145 .css_alloc = mem_cgroup_css_alloc,
7146 .css_online = mem_cgroup_css_online,
7147 .css_offline = mem_cgroup_css_offline,
7148 .css_free = mem_cgroup_css_free,
7149 .can_attach = mem_cgroup_can_attach,
7150 .cancel_attach = mem_cgroup_cancel_attach,
7151 .attach = mem_cgroup_move_task,
7152 .bind = mem_cgroup_bind,
7153 .base_cftypes = mem_cgroup_files,
7154 .early_init = 0,
7155 };
7156
7157 #ifdef CONFIG_MEMCG_SWAP
7158 static int __init enable_swap_account(char *s)
7159 {
7160 if (!strcmp(s, "1"))
7161 really_do_swap_account = 1;
7162 else if (!strcmp(s, "0"))
7163 really_do_swap_account = 0;
7164 return 1;
7165 }
7166 __setup("swapaccount=", enable_swap_account);
7167
7168 static void __init memsw_file_init(void)
7169 {
7170 WARN_ON(cgroup_add_cftypes(&memory_cgrp_subsys, memsw_cgroup_files));
7171 }
7172
7173 static void __init enable_swap_cgroup(void)
7174 {
7175 if (!mem_cgroup_disabled() && really_do_swap_account) {
7176 do_swap_account = 1;
7177 memsw_file_init();
7178 }
7179 }
7180
7181 #else
7182 static void __init enable_swap_cgroup(void)
7183 {
7184 }
7185 #endif
7186
7187 /*
7188 * subsys_initcall() for memory controller.
7189 *
7190 * Some parts like hotcpu_notifier() have to be initialized from this context
7191 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7192 * everything that doesn't depend on a specific mem_cgroup structure should
7193 * be initialized from here.
7194 */
7195 static int __init mem_cgroup_init(void)
7196 {
7197 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7198 enable_swap_cgroup();
7199 mem_cgroup_soft_limit_tree_init();
7200 memcg_stock_init();
7201 return 0;
7202 }
7203 subsys_initcall(mem_cgroup_init);