]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
memcg: free entries in soft_limit_tree if allocation fails
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
93 MEM_CGROUP_STAT_NSTATS,
94 };
95
96 enum mem_cgroup_events_index {
97 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
98 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
99 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
100 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
101 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
102 MEM_CGROUP_EVENTS_NSTATS,
103 };
104 /*
105 * Per memcg event counter is incremented at every pagein/pageout. With THP,
106 * it will be incremated by the number of pages. This counter is used for
107 * for trigger some periodic events. This is straightforward and better
108 * than using jiffies etc. to handle periodic memcg event.
109 */
110 enum mem_cgroup_events_target {
111 MEM_CGROUP_TARGET_THRESH,
112 MEM_CGROUP_TARGET_SOFTLIMIT,
113 MEM_CGROUP_TARGET_NUMAINFO,
114 MEM_CGROUP_NTARGETS,
115 };
116 #define THRESHOLDS_EVENTS_TARGET (128)
117 #define SOFTLIMIT_EVENTS_TARGET (1024)
118 #define NUMAINFO_EVENTS_TARGET (1024)
119
120 struct mem_cgroup_stat_cpu {
121 long count[MEM_CGROUP_STAT_NSTATS];
122 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
123 unsigned long targets[MEM_CGROUP_NTARGETS];
124 };
125
126 struct mem_cgroup_reclaim_iter {
127 /* css_id of the last scanned hierarchy member */
128 int position;
129 /* scan generation, increased every round-trip */
130 unsigned int generation;
131 };
132
133 /*
134 * per-zone information in memory controller.
135 */
136 struct mem_cgroup_per_zone {
137 struct lruvec lruvec;
138 unsigned long count[NR_LRU_LISTS];
139
140 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
141
142 struct zone_reclaim_stat reclaim_stat;
143 struct rb_node tree_node; /* RB tree node */
144 unsigned long long usage_in_excess;/* Set to the value by which */
145 /* the soft limit is exceeded*/
146 bool on_tree;
147 struct mem_cgroup *mem; /* Back pointer, we cannot */
148 /* use container_of */
149 };
150 /* Macro for accessing counter */
151 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
152
153 struct mem_cgroup_per_node {
154 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
155 };
156
157 struct mem_cgroup_lru_info {
158 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
159 };
160
161 /*
162 * Cgroups above their limits are maintained in a RB-Tree, independent of
163 * their hierarchy representation
164 */
165
166 struct mem_cgroup_tree_per_zone {
167 struct rb_root rb_root;
168 spinlock_t lock;
169 };
170
171 struct mem_cgroup_tree_per_node {
172 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
173 };
174
175 struct mem_cgroup_tree {
176 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
177 };
178
179 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
180
181 struct mem_cgroup_threshold {
182 struct eventfd_ctx *eventfd;
183 u64 threshold;
184 };
185
186 /* For threshold */
187 struct mem_cgroup_threshold_ary {
188 /* An array index points to threshold just below usage. */
189 int current_threshold;
190 /* Size of entries[] */
191 unsigned int size;
192 /* Array of thresholds */
193 struct mem_cgroup_threshold entries[0];
194 };
195
196 struct mem_cgroup_thresholds {
197 /* Primary thresholds array */
198 struct mem_cgroup_threshold_ary *primary;
199 /*
200 * Spare threshold array.
201 * This is needed to make mem_cgroup_unregister_event() "never fail".
202 * It must be able to store at least primary->size - 1 entries.
203 */
204 struct mem_cgroup_threshold_ary *spare;
205 };
206
207 /* for OOM */
208 struct mem_cgroup_eventfd_list {
209 struct list_head list;
210 struct eventfd_ctx *eventfd;
211 };
212
213 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
214 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
215
216 /*
217 * The memory controller data structure. The memory controller controls both
218 * page cache and RSS per cgroup. We would eventually like to provide
219 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
220 * to help the administrator determine what knobs to tune.
221 *
222 * TODO: Add a water mark for the memory controller. Reclaim will begin when
223 * we hit the water mark. May be even add a low water mark, such that
224 * no reclaim occurs from a cgroup at it's low water mark, this is
225 * a feature that will be implemented much later in the future.
226 */
227 struct mem_cgroup {
228 struct cgroup_subsys_state css;
229 /*
230 * the counter to account for memory usage
231 */
232 struct res_counter res;
233 /*
234 * the counter to account for mem+swap usage.
235 */
236 struct res_counter memsw;
237 /*
238 * Per cgroup active and inactive list, similar to the
239 * per zone LRU lists.
240 */
241 struct mem_cgroup_lru_info info;
242 int last_scanned_node;
243 #if MAX_NUMNODES > 1
244 nodemask_t scan_nodes;
245 atomic_t numainfo_events;
246 atomic_t numainfo_updating;
247 #endif
248 /*
249 * Should the accounting and control be hierarchical, per subtree?
250 */
251 bool use_hierarchy;
252
253 bool oom_lock;
254 atomic_t under_oom;
255
256 atomic_t refcnt;
257
258 int swappiness;
259 /* OOM-Killer disable */
260 int oom_kill_disable;
261
262 /* set when res.limit == memsw.limit */
263 bool memsw_is_minimum;
264
265 /* protect arrays of thresholds */
266 struct mutex thresholds_lock;
267
268 /* thresholds for memory usage. RCU-protected */
269 struct mem_cgroup_thresholds thresholds;
270
271 /* thresholds for mem+swap usage. RCU-protected */
272 struct mem_cgroup_thresholds memsw_thresholds;
273
274 /* For oom notifier event fd */
275 struct list_head oom_notify;
276
277 /*
278 * Should we move charges of a task when a task is moved into this
279 * mem_cgroup ? And what type of charges should we move ?
280 */
281 unsigned long move_charge_at_immigrate;
282 /*
283 * percpu counter.
284 */
285 struct mem_cgroup_stat_cpu *stat;
286 /*
287 * used when a cpu is offlined or other synchronizations
288 * See mem_cgroup_read_stat().
289 */
290 struct mem_cgroup_stat_cpu nocpu_base;
291 spinlock_t pcp_counter_lock;
292
293 #ifdef CONFIG_INET
294 struct tcp_memcontrol tcp_mem;
295 #endif
296 };
297
298 /* Stuffs for move charges at task migration. */
299 /*
300 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
301 * left-shifted bitmap of these types.
302 */
303 enum move_type {
304 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
305 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
306 NR_MOVE_TYPE,
307 };
308
309 /* "mc" and its members are protected by cgroup_mutex */
310 static struct move_charge_struct {
311 spinlock_t lock; /* for from, to */
312 struct mem_cgroup *from;
313 struct mem_cgroup *to;
314 unsigned long precharge;
315 unsigned long moved_charge;
316 unsigned long moved_swap;
317 struct task_struct *moving_task; /* a task moving charges */
318 wait_queue_head_t waitq; /* a waitq for other context */
319 } mc = {
320 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
321 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
322 };
323
324 static bool move_anon(void)
325 {
326 return test_bit(MOVE_CHARGE_TYPE_ANON,
327 &mc.to->move_charge_at_immigrate);
328 }
329
330 static bool move_file(void)
331 {
332 return test_bit(MOVE_CHARGE_TYPE_FILE,
333 &mc.to->move_charge_at_immigrate);
334 }
335
336 /*
337 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
338 * limit reclaim to prevent infinite loops, if they ever occur.
339 */
340 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
341 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
342
343 enum charge_type {
344 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
345 MEM_CGROUP_CHARGE_TYPE_MAPPED,
346 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
347 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
348 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
349 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
350 NR_CHARGE_TYPE,
351 };
352
353 /* for encoding cft->private value on file */
354 #define _MEM (0)
355 #define _MEMSWAP (1)
356 #define _OOM_TYPE (2)
357 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
358 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
359 #define MEMFILE_ATTR(val) ((val) & 0xffff)
360 /* Used for OOM nofiier */
361 #define OOM_CONTROL (0)
362
363 /*
364 * Reclaim flags for mem_cgroup_hierarchical_reclaim
365 */
366 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
367 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
368 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
369 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
370
371 static void mem_cgroup_get(struct mem_cgroup *memcg);
372 static void mem_cgroup_put(struct mem_cgroup *memcg);
373
374 /* Writing them here to avoid exposing memcg's inner layout */
375 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
376 #ifdef CONFIG_INET
377 #include <net/sock.h>
378 #include <net/ip.h>
379
380 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
381 void sock_update_memcg(struct sock *sk)
382 {
383 if (static_branch(&memcg_socket_limit_enabled)) {
384 struct mem_cgroup *memcg;
385
386 BUG_ON(!sk->sk_prot->proto_cgroup);
387
388 /* Socket cloning can throw us here with sk_cgrp already
389 * filled. It won't however, necessarily happen from
390 * process context. So the test for root memcg given
391 * the current task's memcg won't help us in this case.
392 *
393 * Respecting the original socket's memcg is a better
394 * decision in this case.
395 */
396 if (sk->sk_cgrp) {
397 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
398 mem_cgroup_get(sk->sk_cgrp->memcg);
399 return;
400 }
401
402 rcu_read_lock();
403 memcg = mem_cgroup_from_task(current);
404 if (!mem_cgroup_is_root(memcg)) {
405 mem_cgroup_get(memcg);
406 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
407 }
408 rcu_read_unlock();
409 }
410 }
411 EXPORT_SYMBOL(sock_update_memcg);
412
413 void sock_release_memcg(struct sock *sk)
414 {
415 if (static_branch(&memcg_socket_limit_enabled) && sk->sk_cgrp) {
416 struct mem_cgroup *memcg;
417 WARN_ON(!sk->sk_cgrp->memcg);
418 memcg = sk->sk_cgrp->memcg;
419 mem_cgroup_put(memcg);
420 }
421 }
422
423 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
424 {
425 if (!memcg || mem_cgroup_is_root(memcg))
426 return NULL;
427
428 return &memcg->tcp_mem.cg_proto;
429 }
430 EXPORT_SYMBOL(tcp_proto_cgroup);
431 #endif /* CONFIG_INET */
432 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
433
434 static void drain_all_stock_async(struct mem_cgroup *memcg);
435
436 static struct mem_cgroup_per_zone *
437 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
438 {
439 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
440 }
441
442 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
443 {
444 return &memcg->css;
445 }
446
447 static struct mem_cgroup_per_zone *
448 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
449 {
450 int nid = page_to_nid(page);
451 int zid = page_zonenum(page);
452
453 return mem_cgroup_zoneinfo(memcg, nid, zid);
454 }
455
456 static struct mem_cgroup_tree_per_zone *
457 soft_limit_tree_node_zone(int nid, int zid)
458 {
459 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
460 }
461
462 static struct mem_cgroup_tree_per_zone *
463 soft_limit_tree_from_page(struct page *page)
464 {
465 int nid = page_to_nid(page);
466 int zid = page_zonenum(page);
467
468 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
469 }
470
471 static void
472 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
473 struct mem_cgroup_per_zone *mz,
474 struct mem_cgroup_tree_per_zone *mctz,
475 unsigned long long new_usage_in_excess)
476 {
477 struct rb_node **p = &mctz->rb_root.rb_node;
478 struct rb_node *parent = NULL;
479 struct mem_cgroup_per_zone *mz_node;
480
481 if (mz->on_tree)
482 return;
483
484 mz->usage_in_excess = new_usage_in_excess;
485 if (!mz->usage_in_excess)
486 return;
487 while (*p) {
488 parent = *p;
489 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
490 tree_node);
491 if (mz->usage_in_excess < mz_node->usage_in_excess)
492 p = &(*p)->rb_left;
493 /*
494 * We can't avoid mem cgroups that are over their soft
495 * limit by the same amount
496 */
497 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
498 p = &(*p)->rb_right;
499 }
500 rb_link_node(&mz->tree_node, parent, p);
501 rb_insert_color(&mz->tree_node, &mctz->rb_root);
502 mz->on_tree = true;
503 }
504
505 static void
506 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
507 struct mem_cgroup_per_zone *mz,
508 struct mem_cgroup_tree_per_zone *mctz)
509 {
510 if (!mz->on_tree)
511 return;
512 rb_erase(&mz->tree_node, &mctz->rb_root);
513 mz->on_tree = false;
514 }
515
516 static void
517 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
518 struct mem_cgroup_per_zone *mz,
519 struct mem_cgroup_tree_per_zone *mctz)
520 {
521 spin_lock(&mctz->lock);
522 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
523 spin_unlock(&mctz->lock);
524 }
525
526
527 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
528 {
529 unsigned long long excess;
530 struct mem_cgroup_per_zone *mz;
531 struct mem_cgroup_tree_per_zone *mctz;
532 int nid = page_to_nid(page);
533 int zid = page_zonenum(page);
534 mctz = soft_limit_tree_from_page(page);
535
536 /*
537 * Necessary to update all ancestors when hierarchy is used.
538 * because their event counter is not touched.
539 */
540 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
541 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
542 excess = res_counter_soft_limit_excess(&memcg->res);
543 /*
544 * We have to update the tree if mz is on RB-tree or
545 * mem is over its softlimit.
546 */
547 if (excess || mz->on_tree) {
548 spin_lock(&mctz->lock);
549 /* if on-tree, remove it */
550 if (mz->on_tree)
551 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
552 /*
553 * Insert again. mz->usage_in_excess will be updated.
554 * If excess is 0, no tree ops.
555 */
556 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
557 spin_unlock(&mctz->lock);
558 }
559 }
560 }
561
562 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
563 {
564 int node, zone;
565 struct mem_cgroup_per_zone *mz;
566 struct mem_cgroup_tree_per_zone *mctz;
567
568 for_each_node_state(node, N_POSSIBLE) {
569 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
570 mz = mem_cgroup_zoneinfo(memcg, node, zone);
571 mctz = soft_limit_tree_node_zone(node, zone);
572 mem_cgroup_remove_exceeded(memcg, mz, mctz);
573 }
574 }
575 }
576
577 static struct mem_cgroup_per_zone *
578 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
579 {
580 struct rb_node *rightmost = NULL;
581 struct mem_cgroup_per_zone *mz;
582
583 retry:
584 mz = NULL;
585 rightmost = rb_last(&mctz->rb_root);
586 if (!rightmost)
587 goto done; /* Nothing to reclaim from */
588
589 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
590 /*
591 * Remove the node now but someone else can add it back,
592 * we will to add it back at the end of reclaim to its correct
593 * position in the tree.
594 */
595 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
596 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
597 !css_tryget(&mz->mem->css))
598 goto retry;
599 done:
600 return mz;
601 }
602
603 static struct mem_cgroup_per_zone *
604 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
605 {
606 struct mem_cgroup_per_zone *mz;
607
608 spin_lock(&mctz->lock);
609 mz = __mem_cgroup_largest_soft_limit_node(mctz);
610 spin_unlock(&mctz->lock);
611 return mz;
612 }
613
614 /*
615 * Implementation Note: reading percpu statistics for memcg.
616 *
617 * Both of vmstat[] and percpu_counter has threshold and do periodic
618 * synchronization to implement "quick" read. There are trade-off between
619 * reading cost and precision of value. Then, we may have a chance to implement
620 * a periodic synchronizion of counter in memcg's counter.
621 *
622 * But this _read() function is used for user interface now. The user accounts
623 * memory usage by memory cgroup and he _always_ requires exact value because
624 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
625 * have to visit all online cpus and make sum. So, for now, unnecessary
626 * synchronization is not implemented. (just implemented for cpu hotplug)
627 *
628 * If there are kernel internal actions which can make use of some not-exact
629 * value, and reading all cpu value can be performance bottleneck in some
630 * common workload, threashold and synchonization as vmstat[] should be
631 * implemented.
632 */
633 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
634 enum mem_cgroup_stat_index idx)
635 {
636 long val = 0;
637 int cpu;
638
639 get_online_cpus();
640 for_each_online_cpu(cpu)
641 val += per_cpu(memcg->stat->count[idx], cpu);
642 #ifdef CONFIG_HOTPLUG_CPU
643 spin_lock(&memcg->pcp_counter_lock);
644 val += memcg->nocpu_base.count[idx];
645 spin_unlock(&memcg->pcp_counter_lock);
646 #endif
647 put_online_cpus();
648 return val;
649 }
650
651 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
652 bool charge)
653 {
654 int val = (charge) ? 1 : -1;
655 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
656 }
657
658 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
659 enum mem_cgroup_events_index idx)
660 {
661 unsigned long val = 0;
662 int cpu;
663
664 for_each_online_cpu(cpu)
665 val += per_cpu(memcg->stat->events[idx], cpu);
666 #ifdef CONFIG_HOTPLUG_CPU
667 spin_lock(&memcg->pcp_counter_lock);
668 val += memcg->nocpu_base.events[idx];
669 spin_unlock(&memcg->pcp_counter_lock);
670 #endif
671 return val;
672 }
673
674 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
675 bool file, int nr_pages)
676 {
677 preempt_disable();
678
679 if (file)
680 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
681 nr_pages);
682 else
683 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
684 nr_pages);
685
686 /* pagein of a big page is an event. So, ignore page size */
687 if (nr_pages > 0)
688 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
689 else {
690 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
691 nr_pages = -nr_pages; /* for event */
692 }
693
694 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
695
696 preempt_enable();
697 }
698
699 unsigned long
700 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
701 unsigned int lru_mask)
702 {
703 struct mem_cgroup_per_zone *mz;
704 enum lru_list l;
705 unsigned long ret = 0;
706
707 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
708
709 for_each_lru(l) {
710 if (BIT(l) & lru_mask)
711 ret += MEM_CGROUP_ZSTAT(mz, l);
712 }
713 return ret;
714 }
715
716 static unsigned long
717 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
718 int nid, unsigned int lru_mask)
719 {
720 u64 total = 0;
721 int zid;
722
723 for (zid = 0; zid < MAX_NR_ZONES; zid++)
724 total += mem_cgroup_zone_nr_lru_pages(memcg,
725 nid, zid, lru_mask);
726
727 return total;
728 }
729
730 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
731 unsigned int lru_mask)
732 {
733 int nid;
734 u64 total = 0;
735
736 for_each_node_state(nid, N_HIGH_MEMORY)
737 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
738 return total;
739 }
740
741 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
742 enum mem_cgroup_events_target target)
743 {
744 unsigned long val, next;
745
746 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
747 next = __this_cpu_read(memcg->stat->targets[target]);
748 /* from time_after() in jiffies.h */
749 if ((long)next - (long)val < 0) {
750 switch (target) {
751 case MEM_CGROUP_TARGET_THRESH:
752 next = val + THRESHOLDS_EVENTS_TARGET;
753 break;
754 case MEM_CGROUP_TARGET_SOFTLIMIT:
755 next = val + SOFTLIMIT_EVENTS_TARGET;
756 break;
757 case MEM_CGROUP_TARGET_NUMAINFO:
758 next = val + NUMAINFO_EVENTS_TARGET;
759 break;
760 default:
761 break;
762 }
763 __this_cpu_write(memcg->stat->targets[target], next);
764 return true;
765 }
766 return false;
767 }
768
769 /*
770 * Check events in order.
771 *
772 */
773 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
774 {
775 preempt_disable();
776 /* threshold event is triggered in finer grain than soft limit */
777 if (unlikely(mem_cgroup_event_ratelimit(memcg,
778 MEM_CGROUP_TARGET_THRESH))) {
779 bool do_softlimit, do_numainfo;
780
781 do_softlimit = mem_cgroup_event_ratelimit(memcg,
782 MEM_CGROUP_TARGET_SOFTLIMIT);
783 #if MAX_NUMNODES > 1
784 do_numainfo = mem_cgroup_event_ratelimit(memcg,
785 MEM_CGROUP_TARGET_NUMAINFO);
786 #endif
787 preempt_enable();
788
789 mem_cgroup_threshold(memcg);
790 if (unlikely(do_softlimit))
791 mem_cgroup_update_tree(memcg, page);
792 #if MAX_NUMNODES > 1
793 if (unlikely(do_numainfo))
794 atomic_inc(&memcg->numainfo_events);
795 #endif
796 } else
797 preempt_enable();
798 }
799
800 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
801 {
802 return container_of(cgroup_subsys_state(cont,
803 mem_cgroup_subsys_id), struct mem_cgroup,
804 css);
805 }
806
807 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
808 {
809 /*
810 * mm_update_next_owner() may clear mm->owner to NULL
811 * if it races with swapoff, page migration, etc.
812 * So this can be called with p == NULL.
813 */
814 if (unlikely(!p))
815 return NULL;
816
817 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
818 struct mem_cgroup, css);
819 }
820
821 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
822 {
823 struct mem_cgroup *memcg = NULL;
824
825 if (!mm)
826 return NULL;
827 /*
828 * Because we have no locks, mm->owner's may be being moved to other
829 * cgroup. We use css_tryget() here even if this looks
830 * pessimistic (rather than adding locks here).
831 */
832 rcu_read_lock();
833 do {
834 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
835 if (unlikely(!memcg))
836 break;
837 } while (!css_tryget(&memcg->css));
838 rcu_read_unlock();
839 return memcg;
840 }
841
842 /**
843 * mem_cgroup_iter - iterate over memory cgroup hierarchy
844 * @root: hierarchy root
845 * @prev: previously returned memcg, NULL on first invocation
846 * @reclaim: cookie for shared reclaim walks, NULL for full walks
847 *
848 * Returns references to children of the hierarchy below @root, or
849 * @root itself, or %NULL after a full round-trip.
850 *
851 * Caller must pass the return value in @prev on subsequent
852 * invocations for reference counting, or use mem_cgroup_iter_break()
853 * to cancel a hierarchy walk before the round-trip is complete.
854 *
855 * Reclaimers can specify a zone and a priority level in @reclaim to
856 * divide up the memcgs in the hierarchy among all concurrent
857 * reclaimers operating on the same zone and priority.
858 */
859 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
860 struct mem_cgroup *prev,
861 struct mem_cgroup_reclaim_cookie *reclaim)
862 {
863 struct mem_cgroup *memcg = NULL;
864 int id = 0;
865
866 if (mem_cgroup_disabled())
867 return NULL;
868
869 if (!root)
870 root = root_mem_cgroup;
871
872 if (prev && !reclaim)
873 id = css_id(&prev->css);
874
875 if (prev && prev != root)
876 css_put(&prev->css);
877
878 if (!root->use_hierarchy && root != root_mem_cgroup) {
879 if (prev)
880 return NULL;
881 return root;
882 }
883
884 while (!memcg) {
885 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
886 struct cgroup_subsys_state *css;
887
888 if (reclaim) {
889 int nid = zone_to_nid(reclaim->zone);
890 int zid = zone_idx(reclaim->zone);
891 struct mem_cgroup_per_zone *mz;
892
893 mz = mem_cgroup_zoneinfo(root, nid, zid);
894 iter = &mz->reclaim_iter[reclaim->priority];
895 if (prev && reclaim->generation != iter->generation)
896 return NULL;
897 id = iter->position;
898 }
899
900 rcu_read_lock();
901 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
902 if (css) {
903 if (css == &root->css || css_tryget(css))
904 memcg = container_of(css,
905 struct mem_cgroup, css);
906 } else
907 id = 0;
908 rcu_read_unlock();
909
910 if (reclaim) {
911 iter->position = id;
912 if (!css)
913 iter->generation++;
914 else if (!prev && memcg)
915 reclaim->generation = iter->generation;
916 }
917
918 if (prev && !css)
919 return NULL;
920 }
921 return memcg;
922 }
923
924 /**
925 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
926 * @root: hierarchy root
927 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
928 */
929 void mem_cgroup_iter_break(struct mem_cgroup *root,
930 struct mem_cgroup *prev)
931 {
932 if (!root)
933 root = root_mem_cgroup;
934 if (prev && prev != root)
935 css_put(&prev->css);
936 }
937
938 /*
939 * Iteration constructs for visiting all cgroups (under a tree). If
940 * loops are exited prematurely (break), mem_cgroup_iter_break() must
941 * be used for reference counting.
942 */
943 #define for_each_mem_cgroup_tree(iter, root) \
944 for (iter = mem_cgroup_iter(root, NULL, NULL); \
945 iter != NULL; \
946 iter = mem_cgroup_iter(root, iter, NULL))
947
948 #define for_each_mem_cgroup(iter) \
949 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
950 iter != NULL; \
951 iter = mem_cgroup_iter(NULL, iter, NULL))
952
953 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
954 {
955 return (memcg == root_mem_cgroup);
956 }
957
958 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
959 {
960 struct mem_cgroup *memcg;
961
962 if (!mm)
963 return;
964
965 rcu_read_lock();
966 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
967 if (unlikely(!memcg))
968 goto out;
969
970 switch (idx) {
971 case PGFAULT:
972 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
973 break;
974 case PGMAJFAULT:
975 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
976 break;
977 default:
978 BUG();
979 }
980 out:
981 rcu_read_unlock();
982 }
983 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
984
985 /**
986 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
987 * @zone: zone of the wanted lruvec
988 * @mem: memcg of the wanted lruvec
989 *
990 * Returns the lru list vector holding pages for the given @zone and
991 * @mem. This can be the global zone lruvec, if the memory controller
992 * is disabled.
993 */
994 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
995 struct mem_cgroup *memcg)
996 {
997 struct mem_cgroup_per_zone *mz;
998
999 if (mem_cgroup_disabled())
1000 return &zone->lruvec;
1001
1002 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1003 return &mz->lruvec;
1004 }
1005
1006 /*
1007 * Following LRU functions are allowed to be used without PCG_LOCK.
1008 * Operations are called by routine of global LRU independently from memcg.
1009 * What we have to take care of here is validness of pc->mem_cgroup.
1010 *
1011 * Changes to pc->mem_cgroup happens when
1012 * 1. charge
1013 * 2. moving account
1014 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1015 * It is added to LRU before charge.
1016 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1017 * When moving account, the page is not on LRU. It's isolated.
1018 */
1019
1020 /**
1021 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1022 * @zone: zone of the page
1023 * @page: the page
1024 * @lru: current lru
1025 *
1026 * This function accounts for @page being added to @lru, and returns
1027 * the lruvec for the given @zone and the memcg @page is charged to.
1028 *
1029 * The callsite is then responsible for physically linking the page to
1030 * the returned lruvec->lists[@lru].
1031 */
1032 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1033 enum lru_list lru)
1034 {
1035 struct mem_cgroup_per_zone *mz;
1036 struct mem_cgroup *memcg;
1037 struct page_cgroup *pc;
1038
1039 if (mem_cgroup_disabled())
1040 return &zone->lruvec;
1041
1042 pc = lookup_page_cgroup(page);
1043 VM_BUG_ON(PageCgroupAcctLRU(pc));
1044 /*
1045 * putback: charge:
1046 * SetPageLRU SetPageCgroupUsed
1047 * smp_mb smp_mb
1048 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1049 *
1050 * Ensure that one of the two sides adds the page to the memcg
1051 * LRU during a race.
1052 */
1053 smp_mb();
1054 /*
1055 * If the page is uncharged, it may be freed soon, but it
1056 * could also be swap cache (readahead, swapoff) that needs to
1057 * be reclaimable in the future. root_mem_cgroup will babysit
1058 * it for the time being.
1059 */
1060 if (PageCgroupUsed(pc)) {
1061 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1062 smp_rmb();
1063 memcg = pc->mem_cgroup;
1064 SetPageCgroupAcctLRU(pc);
1065 } else
1066 memcg = root_mem_cgroup;
1067 mz = page_cgroup_zoneinfo(memcg, page);
1068 /* compound_order() is stabilized through lru_lock */
1069 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
1070 return &mz->lruvec;
1071 }
1072
1073 /**
1074 * mem_cgroup_lru_del_list - account for removing an lru page
1075 * @page: the page
1076 * @lru: target lru
1077 *
1078 * This function accounts for @page being removed from @lru.
1079 *
1080 * The callsite is then responsible for physically unlinking
1081 * @page->lru.
1082 */
1083 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1084 {
1085 struct mem_cgroup_per_zone *mz;
1086 struct mem_cgroup *memcg;
1087 struct page_cgroup *pc;
1088
1089 if (mem_cgroup_disabled())
1090 return;
1091
1092 pc = lookup_page_cgroup(page);
1093 /*
1094 * root_mem_cgroup babysits uncharged LRU pages, but
1095 * PageCgroupUsed is cleared when the page is about to get
1096 * freed. PageCgroupAcctLRU remembers whether the
1097 * LRU-accounting happened against pc->mem_cgroup or
1098 * root_mem_cgroup.
1099 */
1100 if (TestClearPageCgroupAcctLRU(pc)) {
1101 VM_BUG_ON(!pc->mem_cgroup);
1102 memcg = pc->mem_cgroup;
1103 } else
1104 memcg = root_mem_cgroup;
1105 mz = page_cgroup_zoneinfo(memcg, page);
1106 /* huge page split is done under lru_lock. so, we have no races. */
1107 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
1108 }
1109
1110 void mem_cgroup_lru_del(struct page *page)
1111 {
1112 mem_cgroup_lru_del_list(page, page_lru(page));
1113 }
1114
1115 /**
1116 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1117 * @zone: zone of the page
1118 * @page: the page
1119 * @from: current lru
1120 * @to: target lru
1121 *
1122 * This function accounts for @page being moved between the lrus @from
1123 * and @to, and returns the lruvec for the given @zone and the memcg
1124 * @page is charged to.
1125 *
1126 * The callsite is then responsible for physically relinking
1127 * @page->lru to the returned lruvec->lists[@to].
1128 */
1129 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1130 struct page *page,
1131 enum lru_list from,
1132 enum lru_list to)
1133 {
1134 /* XXX: Optimize this, especially for @from == @to */
1135 mem_cgroup_lru_del_list(page, from);
1136 return mem_cgroup_lru_add_list(zone, page, to);
1137 }
1138
1139 /*
1140 * At handling SwapCache and other FUSE stuff, pc->mem_cgroup may be changed
1141 * while it's linked to lru because the page may be reused after it's fully
1142 * uncharged. To handle that, unlink page_cgroup from LRU when charge it again.
1143 * It's done under lock_page and expected that zone->lru_lock isnever held.
1144 */
1145 static void mem_cgroup_lru_del_before_commit(struct page *page)
1146 {
1147 enum lru_list lru;
1148 unsigned long flags;
1149 struct zone *zone = page_zone(page);
1150 struct page_cgroup *pc = lookup_page_cgroup(page);
1151
1152 /*
1153 * Doing this check without taking ->lru_lock seems wrong but this
1154 * is safe. Because if page_cgroup's USED bit is unset, the page
1155 * will not be added to any memcg's LRU. If page_cgroup's USED bit is
1156 * set, the commit after this will fail, anyway.
1157 * This all charge/uncharge is done under some mutual execustion.
1158 * So, we don't need to taking care of changes in USED bit.
1159 */
1160 if (likely(!PageLRU(page)))
1161 return;
1162
1163 spin_lock_irqsave(&zone->lru_lock, flags);
1164 lru = page_lru(page);
1165 /*
1166 * The uncharged page could still be registered to the LRU of
1167 * the stale pc->mem_cgroup.
1168 *
1169 * As pc->mem_cgroup is about to get overwritten, the old LRU
1170 * accounting needs to be taken care of. Let root_mem_cgroup
1171 * babysit the page until the new memcg is responsible for it.
1172 *
1173 * The PCG_USED bit is guarded by lock_page() as the page is
1174 * swapcache/pagecache.
1175 */
1176 if (PageLRU(page) && PageCgroupAcctLRU(pc) && !PageCgroupUsed(pc)) {
1177 del_page_from_lru_list(zone, page, lru);
1178 add_page_to_lru_list(zone, page, lru);
1179 }
1180 spin_unlock_irqrestore(&zone->lru_lock, flags);
1181 }
1182
1183 static void mem_cgroup_lru_add_after_commit(struct page *page)
1184 {
1185 enum lru_list lru;
1186 unsigned long flags;
1187 struct zone *zone = page_zone(page);
1188 struct page_cgroup *pc = lookup_page_cgroup(page);
1189 /*
1190 * putback: charge:
1191 * SetPageLRU SetPageCgroupUsed
1192 * smp_mb smp_mb
1193 * PageCgroupUsed && add to memcg LRU PageLRU && add to memcg LRU
1194 *
1195 * Ensure that one of the two sides adds the page to the memcg
1196 * LRU during a race.
1197 */
1198 smp_mb();
1199 /* taking care of that the page is added to LRU while we commit it */
1200 if (likely(!PageLRU(page)))
1201 return;
1202 spin_lock_irqsave(&zone->lru_lock, flags);
1203 lru = page_lru(page);
1204 /*
1205 * If the page is not on the LRU, someone will soon put it
1206 * there. If it is, and also already accounted for on the
1207 * memcg-side, it must be on the right lruvec as setting
1208 * pc->mem_cgroup and PageCgroupUsed is properly ordered.
1209 * Otherwise, root_mem_cgroup has been babysitting the page
1210 * during the charge. Move it to the new memcg now.
1211 */
1212 if (PageLRU(page) && !PageCgroupAcctLRU(pc)) {
1213 del_page_from_lru_list(zone, page, lru);
1214 add_page_to_lru_list(zone, page, lru);
1215 }
1216 spin_unlock_irqrestore(&zone->lru_lock, flags);
1217 }
1218
1219 /*
1220 * Checks whether given mem is same or in the root_mem_cgroup's
1221 * hierarchy subtree
1222 */
1223 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1224 struct mem_cgroup *memcg)
1225 {
1226 if (root_memcg != memcg) {
1227 return (root_memcg->use_hierarchy &&
1228 css_is_ancestor(&memcg->css, &root_memcg->css));
1229 }
1230
1231 return true;
1232 }
1233
1234 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1235 {
1236 int ret;
1237 struct mem_cgroup *curr = NULL;
1238 struct task_struct *p;
1239
1240 p = find_lock_task_mm(task);
1241 if (!p)
1242 return 0;
1243 curr = try_get_mem_cgroup_from_mm(p->mm);
1244 task_unlock(p);
1245 if (!curr)
1246 return 0;
1247 /*
1248 * We should check use_hierarchy of "memcg" not "curr". Because checking
1249 * use_hierarchy of "curr" here make this function true if hierarchy is
1250 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1251 * hierarchy(even if use_hierarchy is disabled in "memcg").
1252 */
1253 ret = mem_cgroup_same_or_subtree(memcg, curr);
1254 css_put(&curr->css);
1255 return ret;
1256 }
1257
1258 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1259 {
1260 unsigned long inactive_ratio;
1261 int nid = zone_to_nid(zone);
1262 int zid = zone_idx(zone);
1263 unsigned long inactive;
1264 unsigned long active;
1265 unsigned long gb;
1266
1267 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1268 BIT(LRU_INACTIVE_ANON));
1269 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1270 BIT(LRU_ACTIVE_ANON));
1271
1272 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1273 if (gb)
1274 inactive_ratio = int_sqrt(10 * gb);
1275 else
1276 inactive_ratio = 1;
1277
1278 return inactive * inactive_ratio < active;
1279 }
1280
1281 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1282 {
1283 unsigned long active;
1284 unsigned long inactive;
1285 int zid = zone_idx(zone);
1286 int nid = zone_to_nid(zone);
1287
1288 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1289 BIT(LRU_INACTIVE_FILE));
1290 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1291 BIT(LRU_ACTIVE_FILE));
1292
1293 return (active > inactive);
1294 }
1295
1296 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1297 struct zone *zone)
1298 {
1299 int nid = zone_to_nid(zone);
1300 int zid = zone_idx(zone);
1301 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1302
1303 return &mz->reclaim_stat;
1304 }
1305
1306 struct zone_reclaim_stat *
1307 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1308 {
1309 struct page_cgroup *pc;
1310 struct mem_cgroup_per_zone *mz;
1311
1312 if (mem_cgroup_disabled())
1313 return NULL;
1314
1315 pc = lookup_page_cgroup(page);
1316 if (!PageCgroupUsed(pc))
1317 return NULL;
1318 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1319 smp_rmb();
1320 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1321 return &mz->reclaim_stat;
1322 }
1323
1324 #define mem_cgroup_from_res_counter(counter, member) \
1325 container_of(counter, struct mem_cgroup, member)
1326
1327 /**
1328 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1329 * @mem: the memory cgroup
1330 *
1331 * Returns the maximum amount of memory @mem can be charged with, in
1332 * pages.
1333 */
1334 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1335 {
1336 unsigned long long margin;
1337
1338 margin = res_counter_margin(&memcg->res);
1339 if (do_swap_account)
1340 margin = min(margin, res_counter_margin(&memcg->memsw));
1341 return margin >> PAGE_SHIFT;
1342 }
1343
1344 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1345 {
1346 struct cgroup *cgrp = memcg->css.cgroup;
1347
1348 /* root ? */
1349 if (cgrp->parent == NULL)
1350 return vm_swappiness;
1351
1352 return memcg->swappiness;
1353 }
1354
1355 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1356 {
1357 int cpu;
1358
1359 get_online_cpus();
1360 spin_lock(&memcg->pcp_counter_lock);
1361 for_each_online_cpu(cpu)
1362 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1363 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1364 spin_unlock(&memcg->pcp_counter_lock);
1365 put_online_cpus();
1366
1367 synchronize_rcu();
1368 }
1369
1370 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1371 {
1372 int cpu;
1373
1374 if (!memcg)
1375 return;
1376 get_online_cpus();
1377 spin_lock(&memcg->pcp_counter_lock);
1378 for_each_online_cpu(cpu)
1379 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1380 memcg->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1381 spin_unlock(&memcg->pcp_counter_lock);
1382 put_online_cpus();
1383 }
1384 /*
1385 * 2 routines for checking "mem" is under move_account() or not.
1386 *
1387 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1388 * for avoiding race in accounting. If true,
1389 * pc->mem_cgroup may be overwritten.
1390 *
1391 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1392 * under hierarchy of moving cgroups. This is for
1393 * waiting at hith-memory prressure caused by "move".
1394 */
1395
1396 static bool mem_cgroup_stealed(struct mem_cgroup *memcg)
1397 {
1398 VM_BUG_ON(!rcu_read_lock_held());
1399 return this_cpu_read(memcg->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1400 }
1401
1402 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1403 {
1404 struct mem_cgroup *from;
1405 struct mem_cgroup *to;
1406 bool ret = false;
1407 /*
1408 * Unlike task_move routines, we access mc.to, mc.from not under
1409 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1410 */
1411 spin_lock(&mc.lock);
1412 from = mc.from;
1413 to = mc.to;
1414 if (!from)
1415 goto unlock;
1416
1417 ret = mem_cgroup_same_or_subtree(memcg, from)
1418 || mem_cgroup_same_or_subtree(memcg, to);
1419 unlock:
1420 spin_unlock(&mc.lock);
1421 return ret;
1422 }
1423
1424 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1425 {
1426 if (mc.moving_task && current != mc.moving_task) {
1427 if (mem_cgroup_under_move(memcg)) {
1428 DEFINE_WAIT(wait);
1429 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1430 /* moving charge context might have finished. */
1431 if (mc.moving_task)
1432 schedule();
1433 finish_wait(&mc.waitq, &wait);
1434 return true;
1435 }
1436 }
1437 return false;
1438 }
1439
1440 /**
1441 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1442 * @memcg: The memory cgroup that went over limit
1443 * @p: Task that is going to be killed
1444 *
1445 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1446 * enabled
1447 */
1448 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1449 {
1450 struct cgroup *task_cgrp;
1451 struct cgroup *mem_cgrp;
1452 /*
1453 * Need a buffer in BSS, can't rely on allocations. The code relies
1454 * on the assumption that OOM is serialized for memory controller.
1455 * If this assumption is broken, revisit this code.
1456 */
1457 static char memcg_name[PATH_MAX];
1458 int ret;
1459
1460 if (!memcg || !p)
1461 return;
1462
1463
1464 rcu_read_lock();
1465
1466 mem_cgrp = memcg->css.cgroup;
1467 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1468
1469 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1470 if (ret < 0) {
1471 /*
1472 * Unfortunately, we are unable to convert to a useful name
1473 * But we'll still print out the usage information
1474 */
1475 rcu_read_unlock();
1476 goto done;
1477 }
1478 rcu_read_unlock();
1479
1480 printk(KERN_INFO "Task in %s killed", memcg_name);
1481
1482 rcu_read_lock();
1483 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1484 if (ret < 0) {
1485 rcu_read_unlock();
1486 goto done;
1487 }
1488 rcu_read_unlock();
1489
1490 /*
1491 * Continues from above, so we don't need an KERN_ level
1492 */
1493 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1494 done:
1495
1496 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1497 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1498 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1499 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1500 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1501 "failcnt %llu\n",
1502 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1503 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1504 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1505 }
1506
1507 /*
1508 * This function returns the number of memcg under hierarchy tree. Returns
1509 * 1(self count) if no children.
1510 */
1511 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1512 {
1513 int num = 0;
1514 struct mem_cgroup *iter;
1515
1516 for_each_mem_cgroup_tree(iter, memcg)
1517 num++;
1518 return num;
1519 }
1520
1521 /*
1522 * Return the memory (and swap, if configured) limit for a memcg.
1523 */
1524 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1525 {
1526 u64 limit;
1527 u64 memsw;
1528
1529 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1530 limit += total_swap_pages << PAGE_SHIFT;
1531
1532 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1533 /*
1534 * If memsw is finite and limits the amount of swap space available
1535 * to this memcg, return that limit.
1536 */
1537 return min(limit, memsw);
1538 }
1539
1540 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1541 gfp_t gfp_mask,
1542 unsigned long flags)
1543 {
1544 unsigned long total = 0;
1545 bool noswap = false;
1546 int loop;
1547
1548 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1549 noswap = true;
1550 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1551 noswap = true;
1552
1553 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1554 if (loop)
1555 drain_all_stock_async(memcg);
1556 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1557 /*
1558 * Allow limit shrinkers, which are triggered directly
1559 * by userspace, to catch signals and stop reclaim
1560 * after minimal progress, regardless of the margin.
1561 */
1562 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1563 break;
1564 if (mem_cgroup_margin(memcg))
1565 break;
1566 /*
1567 * If nothing was reclaimed after two attempts, there
1568 * may be no reclaimable pages in this hierarchy.
1569 */
1570 if (loop && !total)
1571 break;
1572 }
1573 return total;
1574 }
1575
1576 /**
1577 * test_mem_cgroup_node_reclaimable
1578 * @mem: the target memcg
1579 * @nid: the node ID to be checked.
1580 * @noswap : specify true here if the user wants flle only information.
1581 *
1582 * This function returns whether the specified memcg contains any
1583 * reclaimable pages on a node. Returns true if there are any reclaimable
1584 * pages in the node.
1585 */
1586 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1587 int nid, bool noswap)
1588 {
1589 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1590 return true;
1591 if (noswap || !total_swap_pages)
1592 return false;
1593 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1594 return true;
1595 return false;
1596
1597 }
1598 #if MAX_NUMNODES > 1
1599
1600 /*
1601 * Always updating the nodemask is not very good - even if we have an empty
1602 * list or the wrong list here, we can start from some node and traverse all
1603 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1604 *
1605 */
1606 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1607 {
1608 int nid;
1609 /*
1610 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1611 * pagein/pageout changes since the last update.
1612 */
1613 if (!atomic_read(&memcg->numainfo_events))
1614 return;
1615 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1616 return;
1617
1618 /* make a nodemask where this memcg uses memory from */
1619 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1620
1621 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1622
1623 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1624 node_clear(nid, memcg->scan_nodes);
1625 }
1626
1627 atomic_set(&memcg->numainfo_events, 0);
1628 atomic_set(&memcg->numainfo_updating, 0);
1629 }
1630
1631 /*
1632 * Selecting a node where we start reclaim from. Because what we need is just
1633 * reducing usage counter, start from anywhere is O,K. Considering
1634 * memory reclaim from current node, there are pros. and cons.
1635 *
1636 * Freeing memory from current node means freeing memory from a node which
1637 * we'll use or we've used. So, it may make LRU bad. And if several threads
1638 * hit limits, it will see a contention on a node. But freeing from remote
1639 * node means more costs for memory reclaim because of memory latency.
1640 *
1641 * Now, we use round-robin. Better algorithm is welcomed.
1642 */
1643 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1644 {
1645 int node;
1646
1647 mem_cgroup_may_update_nodemask(memcg);
1648 node = memcg->last_scanned_node;
1649
1650 node = next_node(node, memcg->scan_nodes);
1651 if (node == MAX_NUMNODES)
1652 node = first_node(memcg->scan_nodes);
1653 /*
1654 * We call this when we hit limit, not when pages are added to LRU.
1655 * No LRU may hold pages because all pages are UNEVICTABLE or
1656 * memcg is too small and all pages are not on LRU. In that case,
1657 * we use curret node.
1658 */
1659 if (unlikely(node == MAX_NUMNODES))
1660 node = numa_node_id();
1661
1662 memcg->last_scanned_node = node;
1663 return node;
1664 }
1665
1666 /*
1667 * Check all nodes whether it contains reclaimable pages or not.
1668 * For quick scan, we make use of scan_nodes. This will allow us to skip
1669 * unused nodes. But scan_nodes is lazily updated and may not cotain
1670 * enough new information. We need to do double check.
1671 */
1672 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1673 {
1674 int nid;
1675
1676 /*
1677 * quick check...making use of scan_node.
1678 * We can skip unused nodes.
1679 */
1680 if (!nodes_empty(memcg->scan_nodes)) {
1681 for (nid = first_node(memcg->scan_nodes);
1682 nid < MAX_NUMNODES;
1683 nid = next_node(nid, memcg->scan_nodes)) {
1684
1685 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1686 return true;
1687 }
1688 }
1689 /*
1690 * Check rest of nodes.
1691 */
1692 for_each_node_state(nid, N_HIGH_MEMORY) {
1693 if (node_isset(nid, memcg->scan_nodes))
1694 continue;
1695 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1696 return true;
1697 }
1698 return false;
1699 }
1700
1701 #else
1702 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1703 {
1704 return 0;
1705 }
1706
1707 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1708 {
1709 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1710 }
1711 #endif
1712
1713 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1714 struct zone *zone,
1715 gfp_t gfp_mask,
1716 unsigned long *total_scanned)
1717 {
1718 struct mem_cgroup *victim = NULL;
1719 int total = 0;
1720 int loop = 0;
1721 unsigned long excess;
1722 unsigned long nr_scanned;
1723 struct mem_cgroup_reclaim_cookie reclaim = {
1724 .zone = zone,
1725 .priority = 0,
1726 };
1727
1728 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1729
1730 while (1) {
1731 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1732 if (!victim) {
1733 loop++;
1734 if (loop >= 2) {
1735 /*
1736 * If we have not been able to reclaim
1737 * anything, it might because there are
1738 * no reclaimable pages under this hierarchy
1739 */
1740 if (!total)
1741 break;
1742 /*
1743 * We want to do more targeted reclaim.
1744 * excess >> 2 is not to excessive so as to
1745 * reclaim too much, nor too less that we keep
1746 * coming back to reclaim from this cgroup
1747 */
1748 if (total >= (excess >> 2) ||
1749 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1750 break;
1751 }
1752 continue;
1753 }
1754 if (!mem_cgroup_reclaimable(victim, false))
1755 continue;
1756 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1757 zone, &nr_scanned);
1758 *total_scanned += nr_scanned;
1759 if (!res_counter_soft_limit_excess(&root_memcg->res))
1760 break;
1761 }
1762 mem_cgroup_iter_break(root_memcg, victim);
1763 return total;
1764 }
1765
1766 /*
1767 * Check OOM-Killer is already running under our hierarchy.
1768 * If someone is running, return false.
1769 * Has to be called with memcg_oom_lock
1770 */
1771 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1772 {
1773 struct mem_cgroup *iter, *failed = NULL;
1774
1775 for_each_mem_cgroup_tree(iter, memcg) {
1776 if (iter->oom_lock) {
1777 /*
1778 * this subtree of our hierarchy is already locked
1779 * so we cannot give a lock.
1780 */
1781 failed = iter;
1782 mem_cgroup_iter_break(memcg, iter);
1783 break;
1784 } else
1785 iter->oom_lock = true;
1786 }
1787
1788 if (!failed)
1789 return true;
1790
1791 /*
1792 * OK, we failed to lock the whole subtree so we have to clean up
1793 * what we set up to the failing subtree
1794 */
1795 for_each_mem_cgroup_tree(iter, memcg) {
1796 if (iter == failed) {
1797 mem_cgroup_iter_break(memcg, iter);
1798 break;
1799 }
1800 iter->oom_lock = false;
1801 }
1802 return false;
1803 }
1804
1805 /*
1806 * Has to be called with memcg_oom_lock
1807 */
1808 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1809 {
1810 struct mem_cgroup *iter;
1811
1812 for_each_mem_cgroup_tree(iter, memcg)
1813 iter->oom_lock = false;
1814 return 0;
1815 }
1816
1817 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1818 {
1819 struct mem_cgroup *iter;
1820
1821 for_each_mem_cgroup_tree(iter, memcg)
1822 atomic_inc(&iter->under_oom);
1823 }
1824
1825 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1826 {
1827 struct mem_cgroup *iter;
1828
1829 /*
1830 * When a new child is created while the hierarchy is under oom,
1831 * mem_cgroup_oom_lock() may not be called. We have to use
1832 * atomic_add_unless() here.
1833 */
1834 for_each_mem_cgroup_tree(iter, memcg)
1835 atomic_add_unless(&iter->under_oom, -1, 0);
1836 }
1837
1838 static DEFINE_SPINLOCK(memcg_oom_lock);
1839 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1840
1841 struct oom_wait_info {
1842 struct mem_cgroup *mem;
1843 wait_queue_t wait;
1844 };
1845
1846 static int memcg_oom_wake_function(wait_queue_t *wait,
1847 unsigned mode, int sync, void *arg)
1848 {
1849 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg,
1850 *oom_wait_memcg;
1851 struct oom_wait_info *oom_wait_info;
1852
1853 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1854 oom_wait_memcg = oom_wait_info->mem;
1855
1856 /*
1857 * Both of oom_wait_info->mem and wake_mem are stable under us.
1858 * Then we can use css_is_ancestor without taking care of RCU.
1859 */
1860 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1861 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1862 return 0;
1863 return autoremove_wake_function(wait, mode, sync, arg);
1864 }
1865
1866 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1867 {
1868 /* for filtering, pass "memcg" as argument. */
1869 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1870 }
1871
1872 static void memcg_oom_recover(struct mem_cgroup *memcg)
1873 {
1874 if (memcg && atomic_read(&memcg->under_oom))
1875 memcg_wakeup_oom(memcg);
1876 }
1877
1878 /*
1879 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1880 */
1881 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask)
1882 {
1883 struct oom_wait_info owait;
1884 bool locked, need_to_kill;
1885
1886 owait.mem = memcg;
1887 owait.wait.flags = 0;
1888 owait.wait.func = memcg_oom_wake_function;
1889 owait.wait.private = current;
1890 INIT_LIST_HEAD(&owait.wait.task_list);
1891 need_to_kill = true;
1892 mem_cgroup_mark_under_oom(memcg);
1893
1894 /* At first, try to OOM lock hierarchy under memcg.*/
1895 spin_lock(&memcg_oom_lock);
1896 locked = mem_cgroup_oom_lock(memcg);
1897 /*
1898 * Even if signal_pending(), we can't quit charge() loop without
1899 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1900 * under OOM is always welcomed, use TASK_KILLABLE here.
1901 */
1902 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1903 if (!locked || memcg->oom_kill_disable)
1904 need_to_kill = false;
1905 if (locked)
1906 mem_cgroup_oom_notify(memcg);
1907 spin_unlock(&memcg_oom_lock);
1908
1909 if (need_to_kill) {
1910 finish_wait(&memcg_oom_waitq, &owait.wait);
1911 mem_cgroup_out_of_memory(memcg, mask);
1912 } else {
1913 schedule();
1914 finish_wait(&memcg_oom_waitq, &owait.wait);
1915 }
1916 spin_lock(&memcg_oom_lock);
1917 if (locked)
1918 mem_cgroup_oom_unlock(memcg);
1919 memcg_wakeup_oom(memcg);
1920 spin_unlock(&memcg_oom_lock);
1921
1922 mem_cgroup_unmark_under_oom(memcg);
1923
1924 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1925 return false;
1926 /* Give chance to dying process */
1927 schedule_timeout_uninterruptible(1);
1928 return true;
1929 }
1930
1931 /*
1932 * Currently used to update mapped file statistics, but the routine can be
1933 * generalized to update other statistics as well.
1934 *
1935 * Notes: Race condition
1936 *
1937 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1938 * it tends to be costly. But considering some conditions, we doesn't need
1939 * to do so _always_.
1940 *
1941 * Considering "charge", lock_page_cgroup() is not required because all
1942 * file-stat operations happen after a page is attached to radix-tree. There
1943 * are no race with "charge".
1944 *
1945 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1946 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1947 * if there are race with "uncharge". Statistics itself is properly handled
1948 * by flags.
1949 *
1950 * Considering "move", this is an only case we see a race. To make the race
1951 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1952 * possibility of race condition. If there is, we take a lock.
1953 */
1954
1955 void mem_cgroup_update_page_stat(struct page *page,
1956 enum mem_cgroup_page_stat_item idx, int val)
1957 {
1958 struct mem_cgroup *memcg;
1959 struct page_cgroup *pc = lookup_page_cgroup(page);
1960 bool need_unlock = false;
1961 unsigned long uninitialized_var(flags);
1962
1963 if (mem_cgroup_disabled())
1964 return;
1965
1966 rcu_read_lock();
1967 memcg = pc->mem_cgroup;
1968 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1969 goto out;
1970 /* pc->mem_cgroup is unstable ? */
1971 if (unlikely(mem_cgroup_stealed(memcg)) || PageTransHuge(page)) {
1972 /* take a lock against to access pc->mem_cgroup */
1973 move_lock_page_cgroup(pc, &flags);
1974 need_unlock = true;
1975 memcg = pc->mem_cgroup;
1976 if (!memcg || !PageCgroupUsed(pc))
1977 goto out;
1978 }
1979
1980 switch (idx) {
1981 case MEMCG_NR_FILE_MAPPED:
1982 if (val > 0)
1983 SetPageCgroupFileMapped(pc);
1984 else if (!page_mapped(page))
1985 ClearPageCgroupFileMapped(pc);
1986 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1987 break;
1988 default:
1989 BUG();
1990 }
1991
1992 this_cpu_add(memcg->stat->count[idx], val);
1993
1994 out:
1995 if (unlikely(need_unlock))
1996 move_unlock_page_cgroup(pc, &flags);
1997 rcu_read_unlock();
1998 return;
1999 }
2000 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
2001
2002 /*
2003 * size of first charge trial. "32" comes from vmscan.c's magic value.
2004 * TODO: maybe necessary to use big numbers in big irons.
2005 */
2006 #define CHARGE_BATCH 32U
2007 struct memcg_stock_pcp {
2008 struct mem_cgroup *cached; /* this never be root cgroup */
2009 unsigned int nr_pages;
2010 struct work_struct work;
2011 unsigned long flags;
2012 #define FLUSHING_CACHED_CHARGE (0)
2013 };
2014 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2015 static DEFINE_MUTEX(percpu_charge_mutex);
2016
2017 /*
2018 * Try to consume stocked charge on this cpu. If success, one page is consumed
2019 * from local stock and true is returned. If the stock is 0 or charges from a
2020 * cgroup which is not current target, returns false. This stock will be
2021 * refilled.
2022 */
2023 static bool consume_stock(struct mem_cgroup *memcg)
2024 {
2025 struct memcg_stock_pcp *stock;
2026 bool ret = true;
2027
2028 stock = &get_cpu_var(memcg_stock);
2029 if (memcg == stock->cached && stock->nr_pages)
2030 stock->nr_pages--;
2031 else /* need to call res_counter_charge */
2032 ret = false;
2033 put_cpu_var(memcg_stock);
2034 return ret;
2035 }
2036
2037 /*
2038 * Returns stocks cached in percpu to res_counter and reset cached information.
2039 */
2040 static void drain_stock(struct memcg_stock_pcp *stock)
2041 {
2042 struct mem_cgroup *old = stock->cached;
2043
2044 if (stock->nr_pages) {
2045 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2046
2047 res_counter_uncharge(&old->res, bytes);
2048 if (do_swap_account)
2049 res_counter_uncharge(&old->memsw, bytes);
2050 stock->nr_pages = 0;
2051 }
2052 stock->cached = NULL;
2053 }
2054
2055 /*
2056 * This must be called under preempt disabled or must be called by
2057 * a thread which is pinned to local cpu.
2058 */
2059 static void drain_local_stock(struct work_struct *dummy)
2060 {
2061 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2062 drain_stock(stock);
2063 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2064 }
2065
2066 /*
2067 * Cache charges(val) which is from res_counter, to local per_cpu area.
2068 * This will be consumed by consume_stock() function, later.
2069 */
2070 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2071 {
2072 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2073
2074 if (stock->cached != memcg) { /* reset if necessary */
2075 drain_stock(stock);
2076 stock->cached = memcg;
2077 }
2078 stock->nr_pages += nr_pages;
2079 put_cpu_var(memcg_stock);
2080 }
2081
2082 /*
2083 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2084 * of the hierarchy under it. sync flag says whether we should block
2085 * until the work is done.
2086 */
2087 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2088 {
2089 int cpu, curcpu;
2090
2091 /* Notify other cpus that system-wide "drain" is running */
2092 get_online_cpus();
2093 curcpu = get_cpu();
2094 for_each_online_cpu(cpu) {
2095 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2096 struct mem_cgroup *memcg;
2097
2098 memcg = stock->cached;
2099 if (!memcg || !stock->nr_pages)
2100 continue;
2101 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2102 continue;
2103 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2104 if (cpu == curcpu)
2105 drain_local_stock(&stock->work);
2106 else
2107 schedule_work_on(cpu, &stock->work);
2108 }
2109 }
2110 put_cpu();
2111
2112 if (!sync)
2113 goto out;
2114
2115 for_each_online_cpu(cpu) {
2116 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2117 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2118 flush_work(&stock->work);
2119 }
2120 out:
2121 put_online_cpus();
2122 }
2123
2124 /*
2125 * Tries to drain stocked charges in other cpus. This function is asynchronous
2126 * and just put a work per cpu for draining localy on each cpu. Caller can
2127 * expects some charges will be back to res_counter later but cannot wait for
2128 * it.
2129 */
2130 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2131 {
2132 /*
2133 * If someone calls draining, avoid adding more kworker runs.
2134 */
2135 if (!mutex_trylock(&percpu_charge_mutex))
2136 return;
2137 drain_all_stock(root_memcg, false);
2138 mutex_unlock(&percpu_charge_mutex);
2139 }
2140
2141 /* This is a synchronous drain interface. */
2142 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2143 {
2144 /* called when force_empty is called */
2145 mutex_lock(&percpu_charge_mutex);
2146 drain_all_stock(root_memcg, true);
2147 mutex_unlock(&percpu_charge_mutex);
2148 }
2149
2150 /*
2151 * This function drains percpu counter value from DEAD cpu and
2152 * move it to local cpu. Note that this function can be preempted.
2153 */
2154 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2155 {
2156 int i;
2157
2158 spin_lock(&memcg->pcp_counter_lock);
2159 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2160 long x = per_cpu(memcg->stat->count[i], cpu);
2161
2162 per_cpu(memcg->stat->count[i], cpu) = 0;
2163 memcg->nocpu_base.count[i] += x;
2164 }
2165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2166 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2167
2168 per_cpu(memcg->stat->events[i], cpu) = 0;
2169 memcg->nocpu_base.events[i] += x;
2170 }
2171 /* need to clear ON_MOVE value, works as a kind of lock. */
2172 per_cpu(memcg->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
2173 spin_unlock(&memcg->pcp_counter_lock);
2174 }
2175
2176 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *memcg, int cpu)
2177 {
2178 int idx = MEM_CGROUP_ON_MOVE;
2179
2180 spin_lock(&memcg->pcp_counter_lock);
2181 per_cpu(memcg->stat->count[idx], cpu) = memcg->nocpu_base.count[idx];
2182 spin_unlock(&memcg->pcp_counter_lock);
2183 }
2184
2185 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2186 unsigned long action,
2187 void *hcpu)
2188 {
2189 int cpu = (unsigned long)hcpu;
2190 struct memcg_stock_pcp *stock;
2191 struct mem_cgroup *iter;
2192
2193 if ((action == CPU_ONLINE)) {
2194 for_each_mem_cgroup(iter)
2195 synchronize_mem_cgroup_on_move(iter, cpu);
2196 return NOTIFY_OK;
2197 }
2198
2199 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
2200 return NOTIFY_OK;
2201
2202 for_each_mem_cgroup(iter)
2203 mem_cgroup_drain_pcp_counter(iter, cpu);
2204
2205 stock = &per_cpu(memcg_stock, cpu);
2206 drain_stock(stock);
2207 return NOTIFY_OK;
2208 }
2209
2210
2211 /* See __mem_cgroup_try_charge() for details */
2212 enum {
2213 CHARGE_OK, /* success */
2214 CHARGE_RETRY, /* need to retry but retry is not bad */
2215 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2216 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2217 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2218 };
2219
2220 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2221 unsigned int nr_pages, bool oom_check)
2222 {
2223 unsigned long csize = nr_pages * PAGE_SIZE;
2224 struct mem_cgroup *mem_over_limit;
2225 struct res_counter *fail_res;
2226 unsigned long flags = 0;
2227 int ret;
2228
2229 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2230
2231 if (likely(!ret)) {
2232 if (!do_swap_account)
2233 return CHARGE_OK;
2234 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2235 if (likely(!ret))
2236 return CHARGE_OK;
2237
2238 res_counter_uncharge(&memcg->res, csize);
2239 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2240 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2241 } else
2242 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2243 /*
2244 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2245 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2246 *
2247 * Never reclaim on behalf of optional batching, retry with a
2248 * single page instead.
2249 */
2250 if (nr_pages == CHARGE_BATCH)
2251 return CHARGE_RETRY;
2252
2253 if (!(gfp_mask & __GFP_WAIT))
2254 return CHARGE_WOULDBLOCK;
2255
2256 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2257 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2258 return CHARGE_RETRY;
2259 /*
2260 * Even though the limit is exceeded at this point, reclaim
2261 * may have been able to free some pages. Retry the charge
2262 * before killing the task.
2263 *
2264 * Only for regular pages, though: huge pages are rather
2265 * unlikely to succeed so close to the limit, and we fall back
2266 * to regular pages anyway in case of failure.
2267 */
2268 if (nr_pages == 1 && ret)
2269 return CHARGE_RETRY;
2270
2271 /*
2272 * At task move, charge accounts can be doubly counted. So, it's
2273 * better to wait until the end of task_move if something is going on.
2274 */
2275 if (mem_cgroup_wait_acct_move(mem_over_limit))
2276 return CHARGE_RETRY;
2277
2278 /* If we don't need to call oom-killer at el, return immediately */
2279 if (!oom_check)
2280 return CHARGE_NOMEM;
2281 /* check OOM */
2282 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
2283 return CHARGE_OOM_DIE;
2284
2285 return CHARGE_RETRY;
2286 }
2287
2288 /*
2289 * Unlike exported interface, "oom" parameter is added. if oom==true,
2290 * oom-killer can be invoked.
2291 */
2292 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2293 gfp_t gfp_mask,
2294 unsigned int nr_pages,
2295 struct mem_cgroup **ptr,
2296 bool oom)
2297 {
2298 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2299 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2300 struct mem_cgroup *memcg = NULL;
2301 int ret;
2302
2303 /*
2304 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2305 * in system level. So, allow to go ahead dying process in addition to
2306 * MEMDIE process.
2307 */
2308 if (unlikely(test_thread_flag(TIF_MEMDIE)
2309 || fatal_signal_pending(current)))
2310 goto bypass;
2311
2312 /*
2313 * We always charge the cgroup the mm_struct belongs to.
2314 * The mm_struct's mem_cgroup changes on task migration if the
2315 * thread group leader migrates. It's possible that mm is not
2316 * set, if so charge the init_mm (happens for pagecache usage).
2317 */
2318 if (!*ptr && !mm)
2319 goto bypass;
2320 again:
2321 if (*ptr) { /* css should be a valid one */
2322 memcg = *ptr;
2323 VM_BUG_ON(css_is_removed(&memcg->css));
2324 if (mem_cgroup_is_root(memcg))
2325 goto done;
2326 if (nr_pages == 1 && consume_stock(memcg))
2327 goto done;
2328 css_get(&memcg->css);
2329 } else {
2330 struct task_struct *p;
2331
2332 rcu_read_lock();
2333 p = rcu_dereference(mm->owner);
2334 /*
2335 * Because we don't have task_lock(), "p" can exit.
2336 * In that case, "memcg" can point to root or p can be NULL with
2337 * race with swapoff. Then, we have small risk of mis-accouning.
2338 * But such kind of mis-account by race always happens because
2339 * we don't have cgroup_mutex(). It's overkill and we allo that
2340 * small race, here.
2341 * (*) swapoff at el will charge against mm-struct not against
2342 * task-struct. So, mm->owner can be NULL.
2343 */
2344 memcg = mem_cgroup_from_task(p);
2345 if (!memcg || mem_cgroup_is_root(memcg)) {
2346 rcu_read_unlock();
2347 goto done;
2348 }
2349 if (nr_pages == 1 && consume_stock(memcg)) {
2350 /*
2351 * It seems dagerous to access memcg without css_get().
2352 * But considering how consume_stok works, it's not
2353 * necessary. If consume_stock success, some charges
2354 * from this memcg are cached on this cpu. So, we
2355 * don't need to call css_get()/css_tryget() before
2356 * calling consume_stock().
2357 */
2358 rcu_read_unlock();
2359 goto done;
2360 }
2361 /* after here, we may be blocked. we need to get refcnt */
2362 if (!css_tryget(&memcg->css)) {
2363 rcu_read_unlock();
2364 goto again;
2365 }
2366 rcu_read_unlock();
2367 }
2368
2369 do {
2370 bool oom_check;
2371
2372 /* If killed, bypass charge */
2373 if (fatal_signal_pending(current)) {
2374 css_put(&memcg->css);
2375 goto bypass;
2376 }
2377
2378 oom_check = false;
2379 if (oom && !nr_oom_retries) {
2380 oom_check = true;
2381 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2382 }
2383
2384 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2385 switch (ret) {
2386 case CHARGE_OK:
2387 break;
2388 case CHARGE_RETRY: /* not in OOM situation but retry */
2389 batch = nr_pages;
2390 css_put(&memcg->css);
2391 memcg = NULL;
2392 goto again;
2393 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2394 css_put(&memcg->css);
2395 goto nomem;
2396 case CHARGE_NOMEM: /* OOM routine works */
2397 if (!oom) {
2398 css_put(&memcg->css);
2399 goto nomem;
2400 }
2401 /* If oom, we never return -ENOMEM */
2402 nr_oom_retries--;
2403 break;
2404 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2405 css_put(&memcg->css);
2406 goto bypass;
2407 }
2408 } while (ret != CHARGE_OK);
2409
2410 if (batch > nr_pages)
2411 refill_stock(memcg, batch - nr_pages);
2412 css_put(&memcg->css);
2413 done:
2414 *ptr = memcg;
2415 return 0;
2416 nomem:
2417 *ptr = NULL;
2418 return -ENOMEM;
2419 bypass:
2420 *ptr = NULL;
2421 return 0;
2422 }
2423
2424 /*
2425 * Somemtimes we have to undo a charge we got by try_charge().
2426 * This function is for that and do uncharge, put css's refcnt.
2427 * gotten by try_charge().
2428 */
2429 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2430 unsigned int nr_pages)
2431 {
2432 if (!mem_cgroup_is_root(memcg)) {
2433 unsigned long bytes = nr_pages * PAGE_SIZE;
2434
2435 res_counter_uncharge(&memcg->res, bytes);
2436 if (do_swap_account)
2437 res_counter_uncharge(&memcg->memsw, bytes);
2438 }
2439 }
2440
2441 /*
2442 * A helper function to get mem_cgroup from ID. must be called under
2443 * rcu_read_lock(). The caller must check css_is_removed() or some if
2444 * it's concern. (dropping refcnt from swap can be called against removed
2445 * memcg.)
2446 */
2447 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2448 {
2449 struct cgroup_subsys_state *css;
2450
2451 /* ID 0 is unused ID */
2452 if (!id)
2453 return NULL;
2454 css = css_lookup(&mem_cgroup_subsys, id);
2455 if (!css)
2456 return NULL;
2457 return container_of(css, struct mem_cgroup, css);
2458 }
2459
2460 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2461 {
2462 struct mem_cgroup *memcg = NULL;
2463 struct page_cgroup *pc;
2464 unsigned short id;
2465 swp_entry_t ent;
2466
2467 VM_BUG_ON(!PageLocked(page));
2468
2469 pc = lookup_page_cgroup(page);
2470 lock_page_cgroup(pc);
2471 if (PageCgroupUsed(pc)) {
2472 memcg = pc->mem_cgroup;
2473 if (memcg && !css_tryget(&memcg->css))
2474 memcg = NULL;
2475 } else if (PageSwapCache(page)) {
2476 ent.val = page_private(page);
2477 id = lookup_swap_cgroup_id(ent);
2478 rcu_read_lock();
2479 memcg = mem_cgroup_lookup(id);
2480 if (memcg && !css_tryget(&memcg->css))
2481 memcg = NULL;
2482 rcu_read_unlock();
2483 }
2484 unlock_page_cgroup(pc);
2485 return memcg;
2486 }
2487
2488 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2489 struct page *page,
2490 unsigned int nr_pages,
2491 struct page_cgroup *pc,
2492 enum charge_type ctype)
2493 {
2494 lock_page_cgroup(pc);
2495 if (unlikely(PageCgroupUsed(pc))) {
2496 unlock_page_cgroup(pc);
2497 __mem_cgroup_cancel_charge(memcg, nr_pages);
2498 return;
2499 }
2500 /*
2501 * we don't need page_cgroup_lock about tail pages, becase they are not
2502 * accessed by any other context at this point.
2503 */
2504 pc->mem_cgroup = memcg;
2505 /*
2506 * We access a page_cgroup asynchronously without lock_page_cgroup().
2507 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2508 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2509 * before USED bit, we need memory barrier here.
2510 * See mem_cgroup_add_lru_list(), etc.
2511 */
2512 smp_wmb();
2513 switch (ctype) {
2514 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2515 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2516 SetPageCgroupCache(pc);
2517 SetPageCgroupUsed(pc);
2518 break;
2519 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2520 ClearPageCgroupCache(pc);
2521 SetPageCgroupUsed(pc);
2522 break;
2523 default:
2524 break;
2525 }
2526
2527 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), nr_pages);
2528 unlock_page_cgroup(pc);
2529 /*
2530 * "charge_statistics" updated event counter. Then, check it.
2531 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2532 * if they exceeds softlimit.
2533 */
2534 memcg_check_events(memcg, page);
2535 }
2536
2537 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2538
2539 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2540 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2541 /*
2542 * Because tail pages are not marked as "used", set it. We're under
2543 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2544 * charge/uncharge will be never happen and move_account() is done under
2545 * compound_lock(), so we don't have to take care of races.
2546 */
2547 void mem_cgroup_split_huge_fixup(struct page *head)
2548 {
2549 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2550 struct page_cgroup *pc;
2551 int i;
2552
2553 if (mem_cgroup_disabled())
2554 return;
2555 for (i = 1; i < HPAGE_PMD_NR; i++) {
2556 pc = head_pc + i;
2557 pc->mem_cgroup = head_pc->mem_cgroup;
2558 smp_wmb();/* see __commit_charge() */
2559 /*
2560 * LRU flags cannot be copied because we need to add tail
2561 * page to LRU by generic call and our hooks will be called.
2562 */
2563 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2564 }
2565
2566 if (PageCgroupAcctLRU(head_pc)) {
2567 enum lru_list lru;
2568 struct mem_cgroup_per_zone *mz;
2569 /*
2570 * We hold lru_lock, then, reduce counter directly.
2571 */
2572 lru = page_lru(head);
2573 mz = page_cgroup_zoneinfo(head_pc->mem_cgroup, head);
2574 MEM_CGROUP_ZSTAT(mz, lru) -= HPAGE_PMD_NR - 1;
2575 }
2576 }
2577 #endif
2578
2579 /**
2580 * mem_cgroup_move_account - move account of the page
2581 * @page: the page
2582 * @nr_pages: number of regular pages (>1 for huge pages)
2583 * @pc: page_cgroup of the page.
2584 * @from: mem_cgroup which the page is moved from.
2585 * @to: mem_cgroup which the page is moved to. @from != @to.
2586 * @uncharge: whether we should call uncharge and css_put against @from.
2587 *
2588 * The caller must confirm following.
2589 * - page is not on LRU (isolate_page() is useful.)
2590 * - compound_lock is held when nr_pages > 1
2591 *
2592 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2593 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2594 * true, this function does "uncharge" from old cgroup, but it doesn't if
2595 * @uncharge is false, so a caller should do "uncharge".
2596 */
2597 static int mem_cgroup_move_account(struct page *page,
2598 unsigned int nr_pages,
2599 struct page_cgroup *pc,
2600 struct mem_cgroup *from,
2601 struct mem_cgroup *to,
2602 bool uncharge)
2603 {
2604 unsigned long flags;
2605 int ret;
2606
2607 VM_BUG_ON(from == to);
2608 VM_BUG_ON(PageLRU(page));
2609 /*
2610 * The page is isolated from LRU. So, collapse function
2611 * will not handle this page. But page splitting can happen.
2612 * Do this check under compound_page_lock(). The caller should
2613 * hold it.
2614 */
2615 ret = -EBUSY;
2616 if (nr_pages > 1 && !PageTransHuge(page))
2617 goto out;
2618
2619 lock_page_cgroup(pc);
2620
2621 ret = -EINVAL;
2622 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2623 goto unlock;
2624
2625 move_lock_page_cgroup(pc, &flags);
2626
2627 if (PageCgroupFileMapped(pc)) {
2628 /* Update mapped_file data for mem_cgroup */
2629 preempt_disable();
2630 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2631 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2632 preempt_enable();
2633 }
2634 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2635 if (uncharge)
2636 /* This is not "cancel", but cancel_charge does all we need. */
2637 __mem_cgroup_cancel_charge(from, nr_pages);
2638
2639 /* caller should have done css_get */
2640 pc->mem_cgroup = to;
2641 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2642 /*
2643 * We charges against "to" which may not have any tasks. Then, "to"
2644 * can be under rmdir(). But in current implementation, caller of
2645 * this function is just force_empty() and move charge, so it's
2646 * guaranteed that "to" is never removed. So, we don't check rmdir
2647 * status here.
2648 */
2649 move_unlock_page_cgroup(pc, &flags);
2650 ret = 0;
2651 unlock:
2652 unlock_page_cgroup(pc);
2653 /*
2654 * check events
2655 */
2656 memcg_check_events(to, page);
2657 memcg_check_events(from, page);
2658 out:
2659 return ret;
2660 }
2661
2662 /*
2663 * move charges to its parent.
2664 */
2665
2666 static int mem_cgroup_move_parent(struct page *page,
2667 struct page_cgroup *pc,
2668 struct mem_cgroup *child,
2669 gfp_t gfp_mask)
2670 {
2671 struct cgroup *cg = child->css.cgroup;
2672 struct cgroup *pcg = cg->parent;
2673 struct mem_cgroup *parent;
2674 unsigned int nr_pages;
2675 unsigned long uninitialized_var(flags);
2676 int ret;
2677
2678 /* Is ROOT ? */
2679 if (!pcg)
2680 return -EINVAL;
2681
2682 ret = -EBUSY;
2683 if (!get_page_unless_zero(page))
2684 goto out;
2685 if (isolate_lru_page(page))
2686 goto put;
2687
2688 nr_pages = hpage_nr_pages(page);
2689
2690 parent = mem_cgroup_from_cont(pcg);
2691 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2692 if (ret || !parent)
2693 goto put_back;
2694
2695 if (nr_pages > 1)
2696 flags = compound_lock_irqsave(page);
2697
2698 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2699 if (ret)
2700 __mem_cgroup_cancel_charge(parent, nr_pages);
2701
2702 if (nr_pages > 1)
2703 compound_unlock_irqrestore(page, flags);
2704 put_back:
2705 putback_lru_page(page);
2706 put:
2707 put_page(page);
2708 out:
2709 return ret;
2710 }
2711
2712 /*
2713 * Charge the memory controller for page usage.
2714 * Return
2715 * 0 if the charge was successful
2716 * < 0 if the cgroup is over its limit
2717 */
2718 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2719 gfp_t gfp_mask, enum charge_type ctype)
2720 {
2721 struct mem_cgroup *memcg = NULL;
2722 unsigned int nr_pages = 1;
2723 struct page_cgroup *pc;
2724 bool oom = true;
2725 int ret;
2726
2727 if (PageTransHuge(page)) {
2728 nr_pages <<= compound_order(page);
2729 VM_BUG_ON(!PageTransHuge(page));
2730 /*
2731 * Never OOM-kill a process for a huge page. The
2732 * fault handler will fall back to regular pages.
2733 */
2734 oom = false;
2735 }
2736
2737 pc = lookup_page_cgroup(page);
2738 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2739 if (ret || !memcg)
2740 return ret;
2741
2742 __mem_cgroup_commit_charge(memcg, page, nr_pages, pc, ctype);
2743 return 0;
2744 }
2745
2746 int mem_cgroup_newpage_charge(struct page *page,
2747 struct mm_struct *mm, gfp_t gfp_mask)
2748 {
2749 if (mem_cgroup_disabled())
2750 return 0;
2751 VM_BUG_ON(page_mapped(page));
2752 VM_BUG_ON(page->mapping && !PageAnon(page));
2753 VM_BUG_ON(!mm);
2754 return mem_cgroup_charge_common(page, mm, gfp_mask,
2755 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2756 }
2757
2758 static void
2759 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2760 enum charge_type ctype);
2761
2762 static void
2763 __mem_cgroup_commit_charge_lrucare(struct page *page, struct mem_cgroup *memcg,
2764 enum charge_type ctype)
2765 {
2766 struct page_cgroup *pc = lookup_page_cgroup(page);
2767 /*
2768 * In some case, SwapCache, FUSE(splice_buf->radixtree), the page
2769 * is already on LRU. It means the page may on some other page_cgroup's
2770 * LRU. Take care of it.
2771 */
2772 mem_cgroup_lru_del_before_commit(page);
2773 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
2774 mem_cgroup_lru_add_after_commit(page);
2775 return;
2776 }
2777
2778 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2779 gfp_t gfp_mask)
2780 {
2781 struct mem_cgroup *memcg = NULL;
2782 int ret;
2783
2784 if (mem_cgroup_disabled())
2785 return 0;
2786 if (PageCompound(page))
2787 return 0;
2788
2789 if (unlikely(!mm))
2790 mm = &init_mm;
2791
2792 if (page_is_file_cache(page)) {
2793 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, &memcg, true);
2794 if (ret || !memcg)
2795 return ret;
2796
2797 /*
2798 * FUSE reuses pages without going through the final
2799 * put that would remove them from the LRU list, make
2800 * sure that they get relinked properly.
2801 */
2802 __mem_cgroup_commit_charge_lrucare(page, memcg,
2803 MEM_CGROUP_CHARGE_TYPE_CACHE);
2804 return ret;
2805 }
2806 /* shmem */
2807 if (PageSwapCache(page)) {
2808 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2809 if (!ret)
2810 __mem_cgroup_commit_charge_swapin(page, memcg,
2811 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2812 } else
2813 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2814 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2815
2816 return ret;
2817 }
2818
2819 /*
2820 * While swap-in, try_charge -> commit or cancel, the page is locked.
2821 * And when try_charge() successfully returns, one refcnt to memcg without
2822 * struct page_cgroup is acquired. This refcnt will be consumed by
2823 * "commit()" or removed by "cancel()"
2824 */
2825 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2826 struct page *page,
2827 gfp_t mask, struct mem_cgroup **memcgp)
2828 {
2829 struct mem_cgroup *memcg;
2830 int ret;
2831
2832 *memcgp = NULL;
2833
2834 if (mem_cgroup_disabled())
2835 return 0;
2836
2837 if (!do_swap_account)
2838 goto charge_cur_mm;
2839 /*
2840 * A racing thread's fault, or swapoff, may have already updated
2841 * the pte, and even removed page from swap cache: in those cases
2842 * do_swap_page()'s pte_same() test will fail; but there's also a
2843 * KSM case which does need to charge the page.
2844 */
2845 if (!PageSwapCache(page))
2846 goto charge_cur_mm;
2847 memcg = try_get_mem_cgroup_from_page(page);
2848 if (!memcg)
2849 goto charge_cur_mm;
2850 *memcgp = memcg;
2851 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2852 css_put(&memcg->css);
2853 return ret;
2854 charge_cur_mm:
2855 if (unlikely(!mm))
2856 mm = &init_mm;
2857 return __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2858 }
2859
2860 static void
2861 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2862 enum charge_type ctype)
2863 {
2864 if (mem_cgroup_disabled())
2865 return;
2866 if (!memcg)
2867 return;
2868 cgroup_exclude_rmdir(&memcg->css);
2869
2870 __mem_cgroup_commit_charge_lrucare(page, memcg, ctype);
2871 /*
2872 * Now swap is on-memory. This means this page may be
2873 * counted both as mem and swap....double count.
2874 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2875 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2876 * may call delete_from_swap_cache() before reach here.
2877 */
2878 if (do_swap_account && PageSwapCache(page)) {
2879 swp_entry_t ent = {.val = page_private(page)};
2880 struct mem_cgroup *swap_memcg;
2881 unsigned short id;
2882
2883 id = swap_cgroup_record(ent, 0);
2884 rcu_read_lock();
2885 swap_memcg = mem_cgroup_lookup(id);
2886 if (swap_memcg) {
2887 /*
2888 * This recorded memcg can be obsolete one. So, avoid
2889 * calling css_tryget
2890 */
2891 if (!mem_cgroup_is_root(swap_memcg))
2892 res_counter_uncharge(&swap_memcg->memsw,
2893 PAGE_SIZE);
2894 mem_cgroup_swap_statistics(swap_memcg, false);
2895 mem_cgroup_put(swap_memcg);
2896 }
2897 rcu_read_unlock();
2898 }
2899 /*
2900 * At swapin, we may charge account against cgroup which has no tasks.
2901 * So, rmdir()->pre_destroy() can be called while we do this charge.
2902 * In that case, we need to call pre_destroy() again. check it here.
2903 */
2904 cgroup_release_and_wakeup_rmdir(&memcg->css);
2905 }
2906
2907 void mem_cgroup_commit_charge_swapin(struct page *page,
2908 struct mem_cgroup *memcg)
2909 {
2910 __mem_cgroup_commit_charge_swapin(page, memcg,
2911 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2912 }
2913
2914 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2915 {
2916 if (mem_cgroup_disabled())
2917 return;
2918 if (!memcg)
2919 return;
2920 __mem_cgroup_cancel_charge(memcg, 1);
2921 }
2922
2923 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2924 unsigned int nr_pages,
2925 const enum charge_type ctype)
2926 {
2927 struct memcg_batch_info *batch = NULL;
2928 bool uncharge_memsw = true;
2929
2930 /* If swapout, usage of swap doesn't decrease */
2931 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2932 uncharge_memsw = false;
2933
2934 batch = &current->memcg_batch;
2935 /*
2936 * In usual, we do css_get() when we remember memcg pointer.
2937 * But in this case, we keep res->usage until end of a series of
2938 * uncharges. Then, it's ok to ignore memcg's refcnt.
2939 */
2940 if (!batch->memcg)
2941 batch->memcg = memcg;
2942 /*
2943 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2944 * In those cases, all pages freed continuously can be expected to be in
2945 * the same cgroup and we have chance to coalesce uncharges.
2946 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2947 * because we want to do uncharge as soon as possible.
2948 */
2949
2950 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2951 goto direct_uncharge;
2952
2953 if (nr_pages > 1)
2954 goto direct_uncharge;
2955
2956 /*
2957 * In typical case, batch->memcg == mem. This means we can
2958 * merge a series of uncharges to an uncharge of res_counter.
2959 * If not, we uncharge res_counter ony by one.
2960 */
2961 if (batch->memcg != memcg)
2962 goto direct_uncharge;
2963 /* remember freed charge and uncharge it later */
2964 batch->nr_pages++;
2965 if (uncharge_memsw)
2966 batch->memsw_nr_pages++;
2967 return;
2968 direct_uncharge:
2969 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2970 if (uncharge_memsw)
2971 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2972 if (unlikely(batch->memcg != memcg))
2973 memcg_oom_recover(memcg);
2974 return;
2975 }
2976
2977 /*
2978 * uncharge if !page_mapped(page)
2979 */
2980 static struct mem_cgroup *
2981 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2982 {
2983 struct mem_cgroup *memcg = NULL;
2984 unsigned int nr_pages = 1;
2985 struct page_cgroup *pc;
2986
2987 if (mem_cgroup_disabled())
2988 return NULL;
2989
2990 if (PageSwapCache(page))
2991 return NULL;
2992
2993 if (PageTransHuge(page)) {
2994 nr_pages <<= compound_order(page);
2995 VM_BUG_ON(!PageTransHuge(page));
2996 }
2997 /*
2998 * Check if our page_cgroup is valid
2999 */
3000 pc = lookup_page_cgroup(page);
3001 if (unlikely(!PageCgroupUsed(pc)))
3002 return NULL;
3003
3004 lock_page_cgroup(pc);
3005
3006 memcg = pc->mem_cgroup;
3007
3008 if (!PageCgroupUsed(pc))
3009 goto unlock_out;
3010
3011 switch (ctype) {
3012 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
3013 case MEM_CGROUP_CHARGE_TYPE_DROP:
3014 /* See mem_cgroup_prepare_migration() */
3015 if (page_mapped(page) || PageCgroupMigration(pc))
3016 goto unlock_out;
3017 break;
3018 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
3019 if (!PageAnon(page)) { /* Shared memory */
3020 if (page->mapping && !page_is_file_cache(page))
3021 goto unlock_out;
3022 } else if (page_mapped(page)) /* Anon */
3023 goto unlock_out;
3024 break;
3025 default:
3026 break;
3027 }
3028
3029 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -nr_pages);
3030
3031 ClearPageCgroupUsed(pc);
3032 /*
3033 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3034 * freed from LRU. This is safe because uncharged page is expected not
3035 * to be reused (freed soon). Exception is SwapCache, it's handled by
3036 * special functions.
3037 */
3038
3039 unlock_page_cgroup(pc);
3040 /*
3041 * even after unlock, we have memcg->res.usage here and this memcg
3042 * will never be freed.
3043 */
3044 memcg_check_events(memcg, page);
3045 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3046 mem_cgroup_swap_statistics(memcg, true);
3047 mem_cgroup_get(memcg);
3048 }
3049 if (!mem_cgroup_is_root(memcg))
3050 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3051
3052 return memcg;
3053
3054 unlock_out:
3055 unlock_page_cgroup(pc);
3056 return NULL;
3057 }
3058
3059 void mem_cgroup_uncharge_page(struct page *page)
3060 {
3061 /* early check. */
3062 if (page_mapped(page))
3063 return;
3064 VM_BUG_ON(page->mapping && !PageAnon(page));
3065 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3066 }
3067
3068 void mem_cgroup_uncharge_cache_page(struct page *page)
3069 {
3070 VM_BUG_ON(page_mapped(page));
3071 VM_BUG_ON(page->mapping);
3072 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3073 }
3074
3075 /*
3076 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3077 * In that cases, pages are freed continuously and we can expect pages
3078 * are in the same memcg. All these calls itself limits the number of
3079 * pages freed at once, then uncharge_start/end() is called properly.
3080 * This may be called prural(2) times in a context,
3081 */
3082
3083 void mem_cgroup_uncharge_start(void)
3084 {
3085 current->memcg_batch.do_batch++;
3086 /* We can do nest. */
3087 if (current->memcg_batch.do_batch == 1) {
3088 current->memcg_batch.memcg = NULL;
3089 current->memcg_batch.nr_pages = 0;
3090 current->memcg_batch.memsw_nr_pages = 0;
3091 }
3092 }
3093
3094 void mem_cgroup_uncharge_end(void)
3095 {
3096 struct memcg_batch_info *batch = &current->memcg_batch;
3097
3098 if (!batch->do_batch)
3099 return;
3100
3101 batch->do_batch--;
3102 if (batch->do_batch) /* If stacked, do nothing. */
3103 return;
3104
3105 if (!batch->memcg)
3106 return;
3107 /*
3108 * This "batch->memcg" is valid without any css_get/put etc...
3109 * bacause we hide charges behind us.
3110 */
3111 if (batch->nr_pages)
3112 res_counter_uncharge(&batch->memcg->res,
3113 batch->nr_pages * PAGE_SIZE);
3114 if (batch->memsw_nr_pages)
3115 res_counter_uncharge(&batch->memcg->memsw,
3116 batch->memsw_nr_pages * PAGE_SIZE);
3117 memcg_oom_recover(batch->memcg);
3118 /* forget this pointer (for sanity check) */
3119 batch->memcg = NULL;
3120 }
3121
3122 #ifdef CONFIG_SWAP
3123 /*
3124 * called after __delete_from_swap_cache() and drop "page" account.
3125 * memcg information is recorded to swap_cgroup of "ent"
3126 */
3127 void
3128 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3129 {
3130 struct mem_cgroup *memcg;
3131 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3132
3133 if (!swapout) /* this was a swap cache but the swap is unused ! */
3134 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3135
3136 memcg = __mem_cgroup_uncharge_common(page, ctype);
3137
3138 /*
3139 * record memcg information, if swapout && memcg != NULL,
3140 * mem_cgroup_get() was called in uncharge().
3141 */
3142 if (do_swap_account && swapout && memcg)
3143 swap_cgroup_record(ent, css_id(&memcg->css));
3144 }
3145 #endif
3146
3147 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3148 /*
3149 * called from swap_entry_free(). remove record in swap_cgroup and
3150 * uncharge "memsw" account.
3151 */
3152 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3153 {
3154 struct mem_cgroup *memcg;
3155 unsigned short id;
3156
3157 if (!do_swap_account)
3158 return;
3159
3160 id = swap_cgroup_record(ent, 0);
3161 rcu_read_lock();
3162 memcg = mem_cgroup_lookup(id);
3163 if (memcg) {
3164 /*
3165 * We uncharge this because swap is freed.
3166 * This memcg can be obsolete one. We avoid calling css_tryget
3167 */
3168 if (!mem_cgroup_is_root(memcg))
3169 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3170 mem_cgroup_swap_statistics(memcg, false);
3171 mem_cgroup_put(memcg);
3172 }
3173 rcu_read_unlock();
3174 }
3175
3176 /**
3177 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3178 * @entry: swap entry to be moved
3179 * @from: mem_cgroup which the entry is moved from
3180 * @to: mem_cgroup which the entry is moved to
3181 * @need_fixup: whether we should fixup res_counters and refcounts.
3182 *
3183 * It succeeds only when the swap_cgroup's record for this entry is the same
3184 * as the mem_cgroup's id of @from.
3185 *
3186 * Returns 0 on success, -EINVAL on failure.
3187 *
3188 * The caller must have charged to @to, IOW, called res_counter_charge() about
3189 * both res and memsw, and called css_get().
3190 */
3191 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3192 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3193 {
3194 unsigned short old_id, new_id;
3195
3196 old_id = css_id(&from->css);
3197 new_id = css_id(&to->css);
3198
3199 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3200 mem_cgroup_swap_statistics(from, false);
3201 mem_cgroup_swap_statistics(to, true);
3202 /*
3203 * This function is only called from task migration context now.
3204 * It postpones res_counter and refcount handling till the end
3205 * of task migration(mem_cgroup_clear_mc()) for performance
3206 * improvement. But we cannot postpone mem_cgroup_get(to)
3207 * because if the process that has been moved to @to does
3208 * swap-in, the refcount of @to might be decreased to 0.
3209 */
3210 mem_cgroup_get(to);
3211 if (need_fixup) {
3212 if (!mem_cgroup_is_root(from))
3213 res_counter_uncharge(&from->memsw, PAGE_SIZE);
3214 mem_cgroup_put(from);
3215 /*
3216 * we charged both to->res and to->memsw, so we should
3217 * uncharge to->res.
3218 */
3219 if (!mem_cgroup_is_root(to))
3220 res_counter_uncharge(&to->res, PAGE_SIZE);
3221 }
3222 return 0;
3223 }
3224 return -EINVAL;
3225 }
3226 #else
3227 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3228 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
3229 {
3230 return -EINVAL;
3231 }
3232 #endif
3233
3234 /*
3235 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3236 * page belongs to.
3237 */
3238 int mem_cgroup_prepare_migration(struct page *page,
3239 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3240 {
3241 struct mem_cgroup *memcg = NULL;
3242 struct page_cgroup *pc;
3243 enum charge_type ctype;
3244 int ret = 0;
3245
3246 *memcgp = NULL;
3247
3248 VM_BUG_ON(PageTransHuge(page));
3249 if (mem_cgroup_disabled())
3250 return 0;
3251
3252 pc = lookup_page_cgroup(page);
3253 lock_page_cgroup(pc);
3254 if (PageCgroupUsed(pc)) {
3255 memcg = pc->mem_cgroup;
3256 css_get(&memcg->css);
3257 /*
3258 * At migrating an anonymous page, its mapcount goes down
3259 * to 0 and uncharge() will be called. But, even if it's fully
3260 * unmapped, migration may fail and this page has to be
3261 * charged again. We set MIGRATION flag here and delay uncharge
3262 * until end_migration() is called
3263 *
3264 * Corner Case Thinking
3265 * A)
3266 * When the old page was mapped as Anon and it's unmap-and-freed
3267 * while migration was ongoing.
3268 * If unmap finds the old page, uncharge() of it will be delayed
3269 * until end_migration(). If unmap finds a new page, it's
3270 * uncharged when it make mapcount to be 1->0. If unmap code
3271 * finds swap_migration_entry, the new page will not be mapped
3272 * and end_migration() will find it(mapcount==0).
3273 *
3274 * B)
3275 * When the old page was mapped but migraion fails, the kernel
3276 * remaps it. A charge for it is kept by MIGRATION flag even
3277 * if mapcount goes down to 0. We can do remap successfully
3278 * without charging it again.
3279 *
3280 * C)
3281 * The "old" page is under lock_page() until the end of
3282 * migration, so, the old page itself will not be swapped-out.
3283 * If the new page is swapped out before end_migraton, our
3284 * hook to usual swap-out path will catch the event.
3285 */
3286 if (PageAnon(page))
3287 SetPageCgroupMigration(pc);
3288 }
3289 unlock_page_cgroup(pc);
3290 /*
3291 * If the page is not charged at this point,
3292 * we return here.
3293 */
3294 if (!memcg)
3295 return 0;
3296
3297 *memcgp = memcg;
3298 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3299 css_put(&memcg->css);/* drop extra refcnt */
3300 if (ret || *memcgp == NULL) {
3301 if (PageAnon(page)) {
3302 lock_page_cgroup(pc);
3303 ClearPageCgroupMigration(pc);
3304 unlock_page_cgroup(pc);
3305 /*
3306 * The old page may be fully unmapped while we kept it.
3307 */
3308 mem_cgroup_uncharge_page(page);
3309 }
3310 return -ENOMEM;
3311 }
3312 /*
3313 * We charge new page before it's used/mapped. So, even if unlock_page()
3314 * is called before end_migration, we can catch all events on this new
3315 * page. In the case new page is migrated but not remapped, new page's
3316 * mapcount will be finally 0 and we call uncharge in end_migration().
3317 */
3318 pc = lookup_page_cgroup(newpage);
3319 if (PageAnon(page))
3320 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3321 else if (page_is_file_cache(page))
3322 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3323 else
3324 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3325 __mem_cgroup_commit_charge(memcg, page, 1, pc, ctype);
3326 return ret;
3327 }
3328
3329 /* remove redundant charge if migration failed*/
3330 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3331 struct page *oldpage, struct page *newpage, bool migration_ok)
3332 {
3333 struct page *used, *unused;
3334 struct page_cgroup *pc;
3335
3336 if (!memcg)
3337 return;
3338 /* blocks rmdir() */
3339 cgroup_exclude_rmdir(&memcg->css);
3340 if (!migration_ok) {
3341 used = oldpage;
3342 unused = newpage;
3343 } else {
3344 used = newpage;
3345 unused = oldpage;
3346 }
3347 /*
3348 * We disallowed uncharge of pages under migration because mapcount
3349 * of the page goes down to zero, temporarly.
3350 * Clear the flag and check the page should be charged.
3351 */
3352 pc = lookup_page_cgroup(oldpage);
3353 lock_page_cgroup(pc);
3354 ClearPageCgroupMigration(pc);
3355 unlock_page_cgroup(pc);
3356
3357 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
3358
3359 /*
3360 * If a page is a file cache, radix-tree replacement is very atomic
3361 * and we can skip this check. When it was an Anon page, its mapcount
3362 * goes down to 0. But because we added MIGRATION flage, it's not
3363 * uncharged yet. There are several case but page->mapcount check
3364 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3365 * check. (see prepare_charge() also)
3366 */
3367 if (PageAnon(used))
3368 mem_cgroup_uncharge_page(used);
3369 /*
3370 * At migration, we may charge account against cgroup which has no
3371 * tasks.
3372 * So, rmdir()->pre_destroy() can be called while we do this charge.
3373 * In that case, we need to call pre_destroy() again. check it here.
3374 */
3375 cgroup_release_and_wakeup_rmdir(&memcg->css);
3376 }
3377
3378 /*
3379 * At replace page cache, newpage is not under any memcg but it's on
3380 * LRU. So, this function doesn't touch res_counter but handles LRU
3381 * in correct way. Both pages are locked so we cannot race with uncharge.
3382 */
3383 void mem_cgroup_replace_page_cache(struct page *oldpage,
3384 struct page *newpage)
3385 {
3386 struct mem_cgroup *memcg;
3387 struct page_cgroup *pc;
3388 struct zone *zone;
3389 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3390 unsigned long flags;
3391
3392 if (mem_cgroup_disabled())
3393 return;
3394
3395 pc = lookup_page_cgroup(oldpage);
3396 /* fix accounting on old pages */
3397 lock_page_cgroup(pc);
3398 memcg = pc->mem_cgroup;
3399 mem_cgroup_charge_statistics(memcg, PageCgroupCache(pc), -1);
3400 ClearPageCgroupUsed(pc);
3401 unlock_page_cgroup(pc);
3402
3403 if (PageSwapBacked(oldpage))
3404 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3405
3406 zone = page_zone(newpage);
3407 pc = lookup_page_cgroup(newpage);
3408 /*
3409 * Even if newpage->mapping was NULL before starting replacement,
3410 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3411 * LRU while we overwrite pc->mem_cgroup.
3412 */
3413 spin_lock_irqsave(&zone->lru_lock, flags);
3414 if (PageLRU(newpage))
3415 del_page_from_lru_list(zone, newpage, page_lru(newpage));
3416 __mem_cgroup_commit_charge(memcg, newpage, 1, pc, type);
3417 if (PageLRU(newpage))
3418 add_page_to_lru_list(zone, newpage, page_lru(newpage));
3419 spin_unlock_irqrestore(&zone->lru_lock, flags);
3420 }
3421
3422 #ifdef CONFIG_DEBUG_VM
3423 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3424 {
3425 struct page_cgroup *pc;
3426
3427 pc = lookup_page_cgroup(page);
3428 /*
3429 * Can be NULL while feeding pages into the page allocator for
3430 * the first time, i.e. during boot or memory hotplug;
3431 * or when mem_cgroup_disabled().
3432 */
3433 if (likely(pc) && PageCgroupUsed(pc))
3434 return pc;
3435 return NULL;
3436 }
3437
3438 bool mem_cgroup_bad_page_check(struct page *page)
3439 {
3440 if (mem_cgroup_disabled())
3441 return false;
3442
3443 return lookup_page_cgroup_used(page) != NULL;
3444 }
3445
3446 void mem_cgroup_print_bad_page(struct page *page)
3447 {
3448 struct page_cgroup *pc;
3449
3450 pc = lookup_page_cgroup_used(page);
3451 if (pc) {
3452 int ret = -1;
3453 char *path;
3454
3455 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p",
3456 pc, pc->flags, pc->mem_cgroup);
3457
3458 path = kmalloc(PATH_MAX, GFP_KERNEL);
3459 if (path) {
3460 rcu_read_lock();
3461 ret = cgroup_path(pc->mem_cgroup->css.cgroup,
3462 path, PATH_MAX);
3463 rcu_read_unlock();
3464 }
3465
3466 printk(KERN_CONT "(%s)\n",
3467 (ret < 0) ? "cannot get the path" : path);
3468 kfree(path);
3469 }
3470 }
3471 #endif
3472
3473 static DEFINE_MUTEX(set_limit_mutex);
3474
3475 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3476 unsigned long long val)
3477 {
3478 int retry_count;
3479 u64 memswlimit, memlimit;
3480 int ret = 0;
3481 int children = mem_cgroup_count_children(memcg);
3482 u64 curusage, oldusage;
3483 int enlarge;
3484
3485 /*
3486 * For keeping hierarchical_reclaim simple, how long we should retry
3487 * is depends on callers. We set our retry-count to be function
3488 * of # of children which we should visit in this loop.
3489 */
3490 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3491
3492 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3493
3494 enlarge = 0;
3495 while (retry_count) {
3496 if (signal_pending(current)) {
3497 ret = -EINTR;
3498 break;
3499 }
3500 /*
3501 * Rather than hide all in some function, I do this in
3502 * open coded manner. You see what this really does.
3503 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3504 */
3505 mutex_lock(&set_limit_mutex);
3506 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3507 if (memswlimit < val) {
3508 ret = -EINVAL;
3509 mutex_unlock(&set_limit_mutex);
3510 break;
3511 }
3512
3513 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3514 if (memlimit < val)
3515 enlarge = 1;
3516
3517 ret = res_counter_set_limit(&memcg->res, val);
3518 if (!ret) {
3519 if (memswlimit == val)
3520 memcg->memsw_is_minimum = true;
3521 else
3522 memcg->memsw_is_minimum = false;
3523 }
3524 mutex_unlock(&set_limit_mutex);
3525
3526 if (!ret)
3527 break;
3528
3529 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3530 MEM_CGROUP_RECLAIM_SHRINK);
3531 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3532 /* Usage is reduced ? */
3533 if (curusage >= oldusage)
3534 retry_count--;
3535 else
3536 oldusage = curusage;
3537 }
3538 if (!ret && enlarge)
3539 memcg_oom_recover(memcg);
3540
3541 return ret;
3542 }
3543
3544 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3545 unsigned long long val)
3546 {
3547 int retry_count;
3548 u64 memlimit, memswlimit, oldusage, curusage;
3549 int children = mem_cgroup_count_children(memcg);
3550 int ret = -EBUSY;
3551 int enlarge = 0;
3552
3553 /* see mem_cgroup_resize_res_limit */
3554 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3555 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3556 while (retry_count) {
3557 if (signal_pending(current)) {
3558 ret = -EINTR;
3559 break;
3560 }
3561 /*
3562 * Rather than hide all in some function, I do this in
3563 * open coded manner. You see what this really does.
3564 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3565 */
3566 mutex_lock(&set_limit_mutex);
3567 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3568 if (memlimit > val) {
3569 ret = -EINVAL;
3570 mutex_unlock(&set_limit_mutex);
3571 break;
3572 }
3573 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3574 if (memswlimit < val)
3575 enlarge = 1;
3576 ret = res_counter_set_limit(&memcg->memsw, val);
3577 if (!ret) {
3578 if (memlimit == val)
3579 memcg->memsw_is_minimum = true;
3580 else
3581 memcg->memsw_is_minimum = false;
3582 }
3583 mutex_unlock(&set_limit_mutex);
3584
3585 if (!ret)
3586 break;
3587
3588 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3589 MEM_CGROUP_RECLAIM_NOSWAP |
3590 MEM_CGROUP_RECLAIM_SHRINK);
3591 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3592 /* Usage is reduced ? */
3593 if (curusage >= oldusage)
3594 retry_count--;
3595 else
3596 oldusage = curusage;
3597 }
3598 if (!ret && enlarge)
3599 memcg_oom_recover(memcg);
3600 return ret;
3601 }
3602
3603 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3604 gfp_t gfp_mask,
3605 unsigned long *total_scanned)
3606 {
3607 unsigned long nr_reclaimed = 0;
3608 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3609 unsigned long reclaimed;
3610 int loop = 0;
3611 struct mem_cgroup_tree_per_zone *mctz;
3612 unsigned long long excess;
3613 unsigned long nr_scanned;
3614
3615 if (order > 0)
3616 return 0;
3617
3618 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3619 /*
3620 * This loop can run a while, specially if mem_cgroup's continuously
3621 * keep exceeding their soft limit and putting the system under
3622 * pressure
3623 */
3624 do {
3625 if (next_mz)
3626 mz = next_mz;
3627 else
3628 mz = mem_cgroup_largest_soft_limit_node(mctz);
3629 if (!mz)
3630 break;
3631
3632 nr_scanned = 0;
3633 reclaimed = mem_cgroup_soft_reclaim(mz->mem, zone,
3634 gfp_mask, &nr_scanned);
3635 nr_reclaimed += reclaimed;
3636 *total_scanned += nr_scanned;
3637 spin_lock(&mctz->lock);
3638
3639 /*
3640 * If we failed to reclaim anything from this memory cgroup
3641 * it is time to move on to the next cgroup
3642 */
3643 next_mz = NULL;
3644 if (!reclaimed) {
3645 do {
3646 /*
3647 * Loop until we find yet another one.
3648 *
3649 * By the time we get the soft_limit lock
3650 * again, someone might have aded the
3651 * group back on the RB tree. Iterate to
3652 * make sure we get a different mem.
3653 * mem_cgroup_largest_soft_limit_node returns
3654 * NULL if no other cgroup is present on
3655 * the tree
3656 */
3657 next_mz =
3658 __mem_cgroup_largest_soft_limit_node(mctz);
3659 if (next_mz == mz)
3660 css_put(&next_mz->mem->css);
3661 else /* next_mz == NULL or other memcg */
3662 break;
3663 } while (1);
3664 }
3665 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3666 excess = res_counter_soft_limit_excess(&mz->mem->res);
3667 /*
3668 * One school of thought says that we should not add
3669 * back the node to the tree if reclaim returns 0.
3670 * But our reclaim could return 0, simply because due
3671 * to priority we are exposing a smaller subset of
3672 * memory to reclaim from. Consider this as a longer
3673 * term TODO.
3674 */
3675 /* If excess == 0, no tree ops */
3676 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3677 spin_unlock(&mctz->lock);
3678 css_put(&mz->mem->css);
3679 loop++;
3680 /*
3681 * Could not reclaim anything and there are no more
3682 * mem cgroups to try or we seem to be looping without
3683 * reclaiming anything.
3684 */
3685 if (!nr_reclaimed &&
3686 (next_mz == NULL ||
3687 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3688 break;
3689 } while (!nr_reclaimed);
3690 if (next_mz)
3691 css_put(&next_mz->mem->css);
3692 return nr_reclaimed;
3693 }
3694
3695 /*
3696 * This routine traverse page_cgroup in given list and drop them all.
3697 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3698 */
3699 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3700 int node, int zid, enum lru_list lru)
3701 {
3702 struct mem_cgroup_per_zone *mz;
3703 unsigned long flags, loop;
3704 struct list_head *list;
3705 struct page *busy;
3706 struct zone *zone;
3707 int ret = 0;
3708
3709 zone = &NODE_DATA(node)->node_zones[zid];
3710 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3711 list = &mz->lruvec.lists[lru];
3712
3713 loop = MEM_CGROUP_ZSTAT(mz, lru);
3714 /* give some margin against EBUSY etc...*/
3715 loop += 256;
3716 busy = NULL;
3717 while (loop--) {
3718 struct page_cgroup *pc;
3719 struct page *page;
3720
3721 ret = 0;
3722 spin_lock_irqsave(&zone->lru_lock, flags);
3723 if (list_empty(list)) {
3724 spin_unlock_irqrestore(&zone->lru_lock, flags);
3725 break;
3726 }
3727 page = list_entry(list->prev, struct page, lru);
3728 if (busy == page) {
3729 list_move(&page->lru, list);
3730 busy = NULL;
3731 spin_unlock_irqrestore(&zone->lru_lock, flags);
3732 continue;
3733 }
3734 spin_unlock_irqrestore(&zone->lru_lock, flags);
3735
3736 pc = lookup_page_cgroup(page);
3737
3738 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3739 if (ret == -ENOMEM)
3740 break;
3741
3742 if (ret == -EBUSY || ret == -EINVAL) {
3743 /* found lock contention or "pc" is obsolete. */
3744 busy = page;
3745 cond_resched();
3746 } else
3747 busy = NULL;
3748 }
3749
3750 if (!ret && !list_empty(list))
3751 return -EBUSY;
3752 return ret;
3753 }
3754
3755 /*
3756 * make mem_cgroup's charge to be 0 if there is no task.
3757 * This enables deleting this mem_cgroup.
3758 */
3759 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3760 {
3761 int ret;
3762 int node, zid, shrink;
3763 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3764 struct cgroup *cgrp = memcg->css.cgroup;
3765
3766 css_get(&memcg->css);
3767
3768 shrink = 0;
3769 /* should free all ? */
3770 if (free_all)
3771 goto try_to_free;
3772 move_account:
3773 do {
3774 ret = -EBUSY;
3775 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3776 goto out;
3777 ret = -EINTR;
3778 if (signal_pending(current))
3779 goto out;
3780 /* This is for making all *used* pages to be on LRU. */
3781 lru_add_drain_all();
3782 drain_all_stock_sync(memcg);
3783 ret = 0;
3784 mem_cgroup_start_move(memcg);
3785 for_each_node_state(node, N_HIGH_MEMORY) {
3786 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3787 enum lru_list l;
3788 for_each_lru(l) {
3789 ret = mem_cgroup_force_empty_list(memcg,
3790 node, zid, l);
3791 if (ret)
3792 break;
3793 }
3794 }
3795 if (ret)
3796 break;
3797 }
3798 mem_cgroup_end_move(memcg);
3799 memcg_oom_recover(memcg);
3800 /* it seems parent cgroup doesn't have enough mem */
3801 if (ret == -ENOMEM)
3802 goto try_to_free;
3803 cond_resched();
3804 /* "ret" should also be checked to ensure all lists are empty. */
3805 } while (memcg->res.usage > 0 || ret);
3806 out:
3807 css_put(&memcg->css);
3808 return ret;
3809
3810 try_to_free:
3811 /* returns EBUSY if there is a task or if we come here twice. */
3812 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3813 ret = -EBUSY;
3814 goto out;
3815 }
3816 /* we call try-to-free pages for make this cgroup empty */
3817 lru_add_drain_all();
3818 /* try to free all pages in this cgroup */
3819 shrink = 1;
3820 while (nr_retries && memcg->res.usage > 0) {
3821 int progress;
3822
3823 if (signal_pending(current)) {
3824 ret = -EINTR;
3825 goto out;
3826 }
3827 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3828 false);
3829 if (!progress) {
3830 nr_retries--;
3831 /* maybe some writeback is necessary */
3832 congestion_wait(BLK_RW_ASYNC, HZ/10);
3833 }
3834
3835 }
3836 lru_add_drain();
3837 /* try move_account...there may be some *locked* pages. */
3838 goto move_account;
3839 }
3840
3841 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3842 {
3843 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3844 }
3845
3846
3847 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3848 {
3849 return mem_cgroup_from_cont(cont)->use_hierarchy;
3850 }
3851
3852 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3853 u64 val)
3854 {
3855 int retval = 0;
3856 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3857 struct cgroup *parent = cont->parent;
3858 struct mem_cgroup *parent_memcg = NULL;
3859
3860 if (parent)
3861 parent_memcg = mem_cgroup_from_cont(parent);
3862
3863 cgroup_lock();
3864 /*
3865 * If parent's use_hierarchy is set, we can't make any modifications
3866 * in the child subtrees. If it is unset, then the change can
3867 * occur, provided the current cgroup has no children.
3868 *
3869 * For the root cgroup, parent_mem is NULL, we allow value to be
3870 * set if there are no children.
3871 */
3872 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3873 (val == 1 || val == 0)) {
3874 if (list_empty(&cont->children))
3875 memcg->use_hierarchy = val;
3876 else
3877 retval = -EBUSY;
3878 } else
3879 retval = -EINVAL;
3880 cgroup_unlock();
3881
3882 return retval;
3883 }
3884
3885
3886 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3887 enum mem_cgroup_stat_index idx)
3888 {
3889 struct mem_cgroup *iter;
3890 long val = 0;
3891
3892 /* Per-cpu values can be negative, use a signed accumulator */
3893 for_each_mem_cgroup_tree(iter, memcg)
3894 val += mem_cgroup_read_stat(iter, idx);
3895
3896 if (val < 0) /* race ? */
3897 val = 0;
3898 return val;
3899 }
3900
3901 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3902 {
3903 u64 val;
3904
3905 if (!mem_cgroup_is_root(memcg)) {
3906 if (!swap)
3907 return res_counter_read_u64(&memcg->res, RES_USAGE);
3908 else
3909 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3910 }
3911
3912 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3913 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3914
3915 if (swap)
3916 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3917
3918 return val << PAGE_SHIFT;
3919 }
3920
3921 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3922 {
3923 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3924 u64 val;
3925 int type, name;
3926
3927 type = MEMFILE_TYPE(cft->private);
3928 name = MEMFILE_ATTR(cft->private);
3929 switch (type) {
3930 case _MEM:
3931 if (name == RES_USAGE)
3932 val = mem_cgroup_usage(memcg, false);
3933 else
3934 val = res_counter_read_u64(&memcg->res, name);
3935 break;
3936 case _MEMSWAP:
3937 if (name == RES_USAGE)
3938 val = mem_cgroup_usage(memcg, true);
3939 else
3940 val = res_counter_read_u64(&memcg->memsw, name);
3941 break;
3942 default:
3943 BUG();
3944 break;
3945 }
3946 return val;
3947 }
3948 /*
3949 * The user of this function is...
3950 * RES_LIMIT.
3951 */
3952 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3953 const char *buffer)
3954 {
3955 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3956 int type, name;
3957 unsigned long long val;
3958 int ret;
3959
3960 type = MEMFILE_TYPE(cft->private);
3961 name = MEMFILE_ATTR(cft->private);
3962 switch (name) {
3963 case RES_LIMIT:
3964 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3965 ret = -EINVAL;
3966 break;
3967 }
3968 /* This function does all necessary parse...reuse it */
3969 ret = res_counter_memparse_write_strategy(buffer, &val);
3970 if (ret)
3971 break;
3972 if (type == _MEM)
3973 ret = mem_cgroup_resize_limit(memcg, val);
3974 else
3975 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3976 break;
3977 case RES_SOFT_LIMIT:
3978 ret = res_counter_memparse_write_strategy(buffer, &val);
3979 if (ret)
3980 break;
3981 /*
3982 * For memsw, soft limits are hard to implement in terms
3983 * of semantics, for now, we support soft limits for
3984 * control without swap
3985 */
3986 if (type == _MEM)
3987 ret = res_counter_set_soft_limit(&memcg->res, val);
3988 else
3989 ret = -EINVAL;
3990 break;
3991 default:
3992 ret = -EINVAL; /* should be BUG() ? */
3993 break;
3994 }
3995 return ret;
3996 }
3997
3998 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3999 unsigned long long *mem_limit, unsigned long long *memsw_limit)
4000 {
4001 struct cgroup *cgroup;
4002 unsigned long long min_limit, min_memsw_limit, tmp;
4003
4004 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4005 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4006 cgroup = memcg->css.cgroup;
4007 if (!memcg->use_hierarchy)
4008 goto out;
4009
4010 while (cgroup->parent) {
4011 cgroup = cgroup->parent;
4012 memcg = mem_cgroup_from_cont(cgroup);
4013 if (!memcg->use_hierarchy)
4014 break;
4015 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
4016 min_limit = min(min_limit, tmp);
4017 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4018 min_memsw_limit = min(min_memsw_limit, tmp);
4019 }
4020 out:
4021 *mem_limit = min_limit;
4022 *memsw_limit = min_memsw_limit;
4023 return;
4024 }
4025
4026 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
4027 {
4028 struct mem_cgroup *memcg;
4029 int type, name;
4030
4031 memcg = mem_cgroup_from_cont(cont);
4032 type = MEMFILE_TYPE(event);
4033 name = MEMFILE_ATTR(event);
4034 switch (name) {
4035 case RES_MAX_USAGE:
4036 if (type == _MEM)
4037 res_counter_reset_max(&memcg->res);
4038 else
4039 res_counter_reset_max(&memcg->memsw);
4040 break;
4041 case RES_FAILCNT:
4042 if (type == _MEM)
4043 res_counter_reset_failcnt(&memcg->res);
4044 else
4045 res_counter_reset_failcnt(&memcg->memsw);
4046 break;
4047 }
4048
4049 return 0;
4050 }
4051
4052 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4053 struct cftype *cft)
4054 {
4055 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4056 }
4057
4058 #ifdef CONFIG_MMU
4059 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4060 struct cftype *cft, u64 val)
4061 {
4062 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4063
4064 if (val >= (1 << NR_MOVE_TYPE))
4065 return -EINVAL;
4066 /*
4067 * We check this value several times in both in can_attach() and
4068 * attach(), so we need cgroup lock to prevent this value from being
4069 * inconsistent.
4070 */
4071 cgroup_lock();
4072 memcg->move_charge_at_immigrate = val;
4073 cgroup_unlock();
4074
4075 return 0;
4076 }
4077 #else
4078 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4079 struct cftype *cft, u64 val)
4080 {
4081 return -ENOSYS;
4082 }
4083 #endif
4084
4085
4086 /* For read statistics */
4087 enum {
4088 MCS_CACHE,
4089 MCS_RSS,
4090 MCS_FILE_MAPPED,
4091 MCS_PGPGIN,
4092 MCS_PGPGOUT,
4093 MCS_SWAP,
4094 MCS_PGFAULT,
4095 MCS_PGMAJFAULT,
4096 MCS_INACTIVE_ANON,
4097 MCS_ACTIVE_ANON,
4098 MCS_INACTIVE_FILE,
4099 MCS_ACTIVE_FILE,
4100 MCS_UNEVICTABLE,
4101 NR_MCS_STAT,
4102 };
4103
4104 struct mcs_total_stat {
4105 s64 stat[NR_MCS_STAT];
4106 };
4107
4108 struct {
4109 char *local_name;
4110 char *total_name;
4111 } memcg_stat_strings[NR_MCS_STAT] = {
4112 {"cache", "total_cache"},
4113 {"rss", "total_rss"},
4114 {"mapped_file", "total_mapped_file"},
4115 {"pgpgin", "total_pgpgin"},
4116 {"pgpgout", "total_pgpgout"},
4117 {"swap", "total_swap"},
4118 {"pgfault", "total_pgfault"},
4119 {"pgmajfault", "total_pgmajfault"},
4120 {"inactive_anon", "total_inactive_anon"},
4121 {"active_anon", "total_active_anon"},
4122 {"inactive_file", "total_inactive_file"},
4123 {"active_file", "total_active_file"},
4124 {"unevictable", "total_unevictable"}
4125 };
4126
4127
4128 static void
4129 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4130 {
4131 s64 val;
4132
4133 /* per cpu stat */
4134 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4135 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4136 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4137 s->stat[MCS_RSS] += val * PAGE_SIZE;
4138 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4139 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4140 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4141 s->stat[MCS_PGPGIN] += val;
4142 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4143 s->stat[MCS_PGPGOUT] += val;
4144 if (do_swap_account) {
4145 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4146 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4147 }
4148 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4149 s->stat[MCS_PGFAULT] += val;
4150 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4151 s->stat[MCS_PGMAJFAULT] += val;
4152
4153 /* per zone stat */
4154 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4155 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4156 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4157 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4158 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4159 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4160 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4161 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4162 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4163 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4164 }
4165
4166 static void
4167 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4168 {
4169 struct mem_cgroup *iter;
4170
4171 for_each_mem_cgroup_tree(iter, memcg)
4172 mem_cgroup_get_local_stat(iter, s);
4173 }
4174
4175 #ifdef CONFIG_NUMA
4176 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4177 {
4178 int nid;
4179 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4180 unsigned long node_nr;
4181 struct cgroup *cont = m->private;
4182 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4183
4184 total_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL);
4185 seq_printf(m, "total=%lu", total_nr);
4186 for_each_node_state(nid, N_HIGH_MEMORY) {
4187 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid, LRU_ALL);
4188 seq_printf(m, " N%d=%lu", nid, node_nr);
4189 }
4190 seq_putc(m, '\n');
4191
4192 file_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_FILE);
4193 seq_printf(m, "file=%lu", file_nr);
4194 for_each_node_state(nid, N_HIGH_MEMORY) {
4195 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4196 LRU_ALL_FILE);
4197 seq_printf(m, " N%d=%lu", nid, node_nr);
4198 }
4199 seq_putc(m, '\n');
4200
4201 anon_nr = mem_cgroup_nr_lru_pages(mem_cont, LRU_ALL_ANON);
4202 seq_printf(m, "anon=%lu", anon_nr);
4203 for_each_node_state(nid, N_HIGH_MEMORY) {
4204 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4205 LRU_ALL_ANON);
4206 seq_printf(m, " N%d=%lu", nid, node_nr);
4207 }
4208 seq_putc(m, '\n');
4209
4210 unevictable_nr = mem_cgroup_nr_lru_pages(mem_cont, BIT(LRU_UNEVICTABLE));
4211 seq_printf(m, "unevictable=%lu", unevictable_nr);
4212 for_each_node_state(nid, N_HIGH_MEMORY) {
4213 node_nr = mem_cgroup_node_nr_lru_pages(mem_cont, nid,
4214 BIT(LRU_UNEVICTABLE));
4215 seq_printf(m, " N%d=%lu", nid, node_nr);
4216 }
4217 seq_putc(m, '\n');
4218 return 0;
4219 }
4220 #endif /* CONFIG_NUMA */
4221
4222 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4223 struct cgroup_map_cb *cb)
4224 {
4225 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
4226 struct mcs_total_stat mystat;
4227 int i;
4228
4229 memset(&mystat, 0, sizeof(mystat));
4230 mem_cgroup_get_local_stat(mem_cont, &mystat);
4231
4232
4233 for (i = 0; i < NR_MCS_STAT; i++) {
4234 if (i == MCS_SWAP && !do_swap_account)
4235 continue;
4236 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4237 }
4238
4239 /* Hierarchical information */
4240 {
4241 unsigned long long limit, memsw_limit;
4242 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
4243 cb->fill(cb, "hierarchical_memory_limit", limit);
4244 if (do_swap_account)
4245 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4246 }
4247
4248 memset(&mystat, 0, sizeof(mystat));
4249 mem_cgroup_get_total_stat(mem_cont, &mystat);
4250 for (i = 0; i < NR_MCS_STAT; i++) {
4251 if (i == MCS_SWAP && !do_swap_account)
4252 continue;
4253 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4254 }
4255
4256 #ifdef CONFIG_DEBUG_VM
4257 {
4258 int nid, zid;
4259 struct mem_cgroup_per_zone *mz;
4260 unsigned long recent_rotated[2] = {0, 0};
4261 unsigned long recent_scanned[2] = {0, 0};
4262
4263 for_each_online_node(nid)
4264 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4265 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
4266
4267 recent_rotated[0] +=
4268 mz->reclaim_stat.recent_rotated[0];
4269 recent_rotated[1] +=
4270 mz->reclaim_stat.recent_rotated[1];
4271 recent_scanned[0] +=
4272 mz->reclaim_stat.recent_scanned[0];
4273 recent_scanned[1] +=
4274 mz->reclaim_stat.recent_scanned[1];
4275 }
4276 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4277 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4278 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4279 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4280 }
4281 #endif
4282
4283 return 0;
4284 }
4285
4286 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4287 {
4288 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4289
4290 return mem_cgroup_swappiness(memcg);
4291 }
4292
4293 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4294 u64 val)
4295 {
4296 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4297 struct mem_cgroup *parent;
4298
4299 if (val > 100)
4300 return -EINVAL;
4301
4302 if (cgrp->parent == NULL)
4303 return -EINVAL;
4304
4305 parent = mem_cgroup_from_cont(cgrp->parent);
4306
4307 cgroup_lock();
4308
4309 /* If under hierarchy, only empty-root can set this value */
4310 if ((parent->use_hierarchy) ||
4311 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4312 cgroup_unlock();
4313 return -EINVAL;
4314 }
4315
4316 memcg->swappiness = val;
4317
4318 cgroup_unlock();
4319
4320 return 0;
4321 }
4322
4323 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4324 {
4325 struct mem_cgroup_threshold_ary *t;
4326 u64 usage;
4327 int i;
4328
4329 rcu_read_lock();
4330 if (!swap)
4331 t = rcu_dereference(memcg->thresholds.primary);
4332 else
4333 t = rcu_dereference(memcg->memsw_thresholds.primary);
4334
4335 if (!t)
4336 goto unlock;
4337
4338 usage = mem_cgroup_usage(memcg, swap);
4339
4340 /*
4341 * current_threshold points to threshold just below usage.
4342 * If it's not true, a threshold was crossed after last
4343 * call of __mem_cgroup_threshold().
4344 */
4345 i = t->current_threshold;
4346
4347 /*
4348 * Iterate backward over array of thresholds starting from
4349 * current_threshold and check if a threshold is crossed.
4350 * If none of thresholds below usage is crossed, we read
4351 * only one element of the array here.
4352 */
4353 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4354 eventfd_signal(t->entries[i].eventfd, 1);
4355
4356 /* i = current_threshold + 1 */
4357 i++;
4358
4359 /*
4360 * Iterate forward over array of thresholds starting from
4361 * current_threshold+1 and check if a threshold is crossed.
4362 * If none of thresholds above usage is crossed, we read
4363 * only one element of the array here.
4364 */
4365 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4366 eventfd_signal(t->entries[i].eventfd, 1);
4367
4368 /* Update current_threshold */
4369 t->current_threshold = i - 1;
4370 unlock:
4371 rcu_read_unlock();
4372 }
4373
4374 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4375 {
4376 while (memcg) {
4377 __mem_cgroup_threshold(memcg, false);
4378 if (do_swap_account)
4379 __mem_cgroup_threshold(memcg, true);
4380
4381 memcg = parent_mem_cgroup(memcg);
4382 }
4383 }
4384
4385 static int compare_thresholds(const void *a, const void *b)
4386 {
4387 const struct mem_cgroup_threshold *_a = a;
4388 const struct mem_cgroup_threshold *_b = b;
4389
4390 return _a->threshold - _b->threshold;
4391 }
4392
4393 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4394 {
4395 struct mem_cgroup_eventfd_list *ev;
4396
4397 list_for_each_entry(ev, &memcg->oom_notify, list)
4398 eventfd_signal(ev->eventfd, 1);
4399 return 0;
4400 }
4401
4402 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4403 {
4404 struct mem_cgroup *iter;
4405
4406 for_each_mem_cgroup_tree(iter, memcg)
4407 mem_cgroup_oom_notify_cb(iter);
4408 }
4409
4410 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4411 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4412 {
4413 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4414 struct mem_cgroup_thresholds *thresholds;
4415 struct mem_cgroup_threshold_ary *new;
4416 int type = MEMFILE_TYPE(cft->private);
4417 u64 threshold, usage;
4418 int i, size, ret;
4419
4420 ret = res_counter_memparse_write_strategy(args, &threshold);
4421 if (ret)
4422 return ret;
4423
4424 mutex_lock(&memcg->thresholds_lock);
4425
4426 if (type == _MEM)
4427 thresholds = &memcg->thresholds;
4428 else if (type == _MEMSWAP)
4429 thresholds = &memcg->memsw_thresholds;
4430 else
4431 BUG();
4432
4433 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4434
4435 /* Check if a threshold crossed before adding a new one */
4436 if (thresholds->primary)
4437 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4438
4439 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4440
4441 /* Allocate memory for new array of thresholds */
4442 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4443 GFP_KERNEL);
4444 if (!new) {
4445 ret = -ENOMEM;
4446 goto unlock;
4447 }
4448 new->size = size;
4449
4450 /* Copy thresholds (if any) to new array */
4451 if (thresholds->primary) {
4452 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4453 sizeof(struct mem_cgroup_threshold));
4454 }
4455
4456 /* Add new threshold */
4457 new->entries[size - 1].eventfd = eventfd;
4458 new->entries[size - 1].threshold = threshold;
4459
4460 /* Sort thresholds. Registering of new threshold isn't time-critical */
4461 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4462 compare_thresholds, NULL);
4463
4464 /* Find current threshold */
4465 new->current_threshold = -1;
4466 for (i = 0; i < size; i++) {
4467 if (new->entries[i].threshold < usage) {
4468 /*
4469 * new->current_threshold will not be used until
4470 * rcu_assign_pointer(), so it's safe to increment
4471 * it here.
4472 */
4473 ++new->current_threshold;
4474 }
4475 }
4476
4477 /* Free old spare buffer and save old primary buffer as spare */
4478 kfree(thresholds->spare);
4479 thresholds->spare = thresholds->primary;
4480
4481 rcu_assign_pointer(thresholds->primary, new);
4482
4483 /* To be sure that nobody uses thresholds */
4484 synchronize_rcu();
4485
4486 unlock:
4487 mutex_unlock(&memcg->thresholds_lock);
4488
4489 return ret;
4490 }
4491
4492 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4493 struct cftype *cft, struct eventfd_ctx *eventfd)
4494 {
4495 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4496 struct mem_cgroup_thresholds *thresholds;
4497 struct mem_cgroup_threshold_ary *new;
4498 int type = MEMFILE_TYPE(cft->private);
4499 u64 usage;
4500 int i, j, size;
4501
4502 mutex_lock(&memcg->thresholds_lock);
4503 if (type == _MEM)
4504 thresholds = &memcg->thresholds;
4505 else if (type == _MEMSWAP)
4506 thresholds = &memcg->memsw_thresholds;
4507 else
4508 BUG();
4509
4510 /*
4511 * Something went wrong if we trying to unregister a threshold
4512 * if we don't have thresholds
4513 */
4514 BUG_ON(!thresholds);
4515
4516 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4517
4518 /* Check if a threshold crossed before removing */
4519 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4520
4521 /* Calculate new number of threshold */
4522 size = 0;
4523 for (i = 0; i < thresholds->primary->size; i++) {
4524 if (thresholds->primary->entries[i].eventfd != eventfd)
4525 size++;
4526 }
4527
4528 new = thresholds->spare;
4529
4530 /* Set thresholds array to NULL if we don't have thresholds */
4531 if (!size) {
4532 kfree(new);
4533 new = NULL;
4534 goto swap_buffers;
4535 }
4536
4537 new->size = size;
4538
4539 /* Copy thresholds and find current threshold */
4540 new->current_threshold = -1;
4541 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4542 if (thresholds->primary->entries[i].eventfd == eventfd)
4543 continue;
4544
4545 new->entries[j] = thresholds->primary->entries[i];
4546 if (new->entries[j].threshold < usage) {
4547 /*
4548 * new->current_threshold will not be used
4549 * until rcu_assign_pointer(), so it's safe to increment
4550 * it here.
4551 */
4552 ++new->current_threshold;
4553 }
4554 j++;
4555 }
4556
4557 swap_buffers:
4558 /* Swap primary and spare array */
4559 thresholds->spare = thresholds->primary;
4560 rcu_assign_pointer(thresholds->primary, new);
4561
4562 /* To be sure that nobody uses thresholds */
4563 synchronize_rcu();
4564
4565 mutex_unlock(&memcg->thresholds_lock);
4566 }
4567
4568 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4569 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4570 {
4571 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4572 struct mem_cgroup_eventfd_list *event;
4573 int type = MEMFILE_TYPE(cft->private);
4574
4575 BUG_ON(type != _OOM_TYPE);
4576 event = kmalloc(sizeof(*event), GFP_KERNEL);
4577 if (!event)
4578 return -ENOMEM;
4579
4580 spin_lock(&memcg_oom_lock);
4581
4582 event->eventfd = eventfd;
4583 list_add(&event->list, &memcg->oom_notify);
4584
4585 /* already in OOM ? */
4586 if (atomic_read(&memcg->under_oom))
4587 eventfd_signal(eventfd, 1);
4588 spin_unlock(&memcg_oom_lock);
4589
4590 return 0;
4591 }
4592
4593 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4594 struct cftype *cft, struct eventfd_ctx *eventfd)
4595 {
4596 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4597 struct mem_cgroup_eventfd_list *ev, *tmp;
4598 int type = MEMFILE_TYPE(cft->private);
4599
4600 BUG_ON(type != _OOM_TYPE);
4601
4602 spin_lock(&memcg_oom_lock);
4603
4604 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4605 if (ev->eventfd == eventfd) {
4606 list_del(&ev->list);
4607 kfree(ev);
4608 }
4609 }
4610
4611 spin_unlock(&memcg_oom_lock);
4612 }
4613
4614 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4615 struct cftype *cft, struct cgroup_map_cb *cb)
4616 {
4617 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4618
4619 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4620
4621 if (atomic_read(&memcg->under_oom))
4622 cb->fill(cb, "under_oom", 1);
4623 else
4624 cb->fill(cb, "under_oom", 0);
4625 return 0;
4626 }
4627
4628 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4629 struct cftype *cft, u64 val)
4630 {
4631 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4632 struct mem_cgroup *parent;
4633
4634 /* cannot set to root cgroup and only 0 and 1 are allowed */
4635 if (!cgrp->parent || !((val == 0) || (val == 1)))
4636 return -EINVAL;
4637
4638 parent = mem_cgroup_from_cont(cgrp->parent);
4639
4640 cgroup_lock();
4641 /* oom-kill-disable is a flag for subhierarchy. */
4642 if ((parent->use_hierarchy) ||
4643 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4644 cgroup_unlock();
4645 return -EINVAL;
4646 }
4647 memcg->oom_kill_disable = val;
4648 if (!val)
4649 memcg_oom_recover(memcg);
4650 cgroup_unlock();
4651 return 0;
4652 }
4653
4654 #ifdef CONFIG_NUMA
4655 static const struct file_operations mem_control_numa_stat_file_operations = {
4656 .read = seq_read,
4657 .llseek = seq_lseek,
4658 .release = single_release,
4659 };
4660
4661 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4662 {
4663 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4664
4665 file->f_op = &mem_control_numa_stat_file_operations;
4666 return single_open(file, mem_control_numa_stat_show, cont);
4667 }
4668 #endif /* CONFIG_NUMA */
4669
4670 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4671 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4672 {
4673 /*
4674 * Part of this would be better living in a separate allocation
4675 * function, leaving us with just the cgroup tree population work.
4676 * We, however, depend on state such as network's proto_list that
4677 * is only initialized after cgroup creation. I found the less
4678 * cumbersome way to deal with it to defer it all to populate time
4679 */
4680 return mem_cgroup_sockets_init(cont, ss);
4681 };
4682
4683 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4684 struct cgroup *cont)
4685 {
4686 mem_cgroup_sockets_destroy(cont, ss);
4687 }
4688 #else
4689 static int register_kmem_files(struct cgroup *cont, struct cgroup_subsys *ss)
4690 {
4691 return 0;
4692 }
4693
4694 static void kmem_cgroup_destroy(struct cgroup_subsys *ss,
4695 struct cgroup *cont)
4696 {
4697 }
4698 #endif
4699
4700 static struct cftype mem_cgroup_files[] = {
4701 {
4702 .name = "usage_in_bytes",
4703 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4704 .read_u64 = mem_cgroup_read,
4705 .register_event = mem_cgroup_usage_register_event,
4706 .unregister_event = mem_cgroup_usage_unregister_event,
4707 },
4708 {
4709 .name = "max_usage_in_bytes",
4710 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4711 .trigger = mem_cgroup_reset,
4712 .read_u64 = mem_cgroup_read,
4713 },
4714 {
4715 .name = "limit_in_bytes",
4716 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4717 .write_string = mem_cgroup_write,
4718 .read_u64 = mem_cgroup_read,
4719 },
4720 {
4721 .name = "soft_limit_in_bytes",
4722 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4723 .write_string = mem_cgroup_write,
4724 .read_u64 = mem_cgroup_read,
4725 },
4726 {
4727 .name = "failcnt",
4728 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4729 .trigger = mem_cgroup_reset,
4730 .read_u64 = mem_cgroup_read,
4731 },
4732 {
4733 .name = "stat",
4734 .read_map = mem_control_stat_show,
4735 },
4736 {
4737 .name = "force_empty",
4738 .trigger = mem_cgroup_force_empty_write,
4739 },
4740 {
4741 .name = "use_hierarchy",
4742 .write_u64 = mem_cgroup_hierarchy_write,
4743 .read_u64 = mem_cgroup_hierarchy_read,
4744 },
4745 {
4746 .name = "swappiness",
4747 .read_u64 = mem_cgroup_swappiness_read,
4748 .write_u64 = mem_cgroup_swappiness_write,
4749 },
4750 {
4751 .name = "move_charge_at_immigrate",
4752 .read_u64 = mem_cgroup_move_charge_read,
4753 .write_u64 = mem_cgroup_move_charge_write,
4754 },
4755 {
4756 .name = "oom_control",
4757 .read_map = mem_cgroup_oom_control_read,
4758 .write_u64 = mem_cgroup_oom_control_write,
4759 .register_event = mem_cgroup_oom_register_event,
4760 .unregister_event = mem_cgroup_oom_unregister_event,
4761 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4762 },
4763 #ifdef CONFIG_NUMA
4764 {
4765 .name = "numa_stat",
4766 .open = mem_control_numa_stat_open,
4767 .mode = S_IRUGO,
4768 },
4769 #endif
4770 };
4771
4772 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4773 static struct cftype memsw_cgroup_files[] = {
4774 {
4775 .name = "memsw.usage_in_bytes",
4776 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4777 .read_u64 = mem_cgroup_read,
4778 .register_event = mem_cgroup_usage_register_event,
4779 .unregister_event = mem_cgroup_usage_unregister_event,
4780 },
4781 {
4782 .name = "memsw.max_usage_in_bytes",
4783 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4784 .trigger = mem_cgroup_reset,
4785 .read_u64 = mem_cgroup_read,
4786 },
4787 {
4788 .name = "memsw.limit_in_bytes",
4789 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4790 .write_string = mem_cgroup_write,
4791 .read_u64 = mem_cgroup_read,
4792 },
4793 {
4794 .name = "memsw.failcnt",
4795 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4796 .trigger = mem_cgroup_reset,
4797 .read_u64 = mem_cgroup_read,
4798 },
4799 };
4800
4801 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4802 {
4803 if (!do_swap_account)
4804 return 0;
4805 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4806 ARRAY_SIZE(memsw_cgroup_files));
4807 };
4808 #else
4809 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4810 {
4811 return 0;
4812 }
4813 #endif
4814
4815 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4816 {
4817 struct mem_cgroup_per_node *pn;
4818 struct mem_cgroup_per_zone *mz;
4819 enum lru_list l;
4820 int zone, tmp = node;
4821 /*
4822 * This routine is called against possible nodes.
4823 * But it's BUG to call kmalloc() against offline node.
4824 *
4825 * TODO: this routine can waste much memory for nodes which will
4826 * never be onlined. It's better to use memory hotplug callback
4827 * function.
4828 */
4829 if (!node_state(node, N_NORMAL_MEMORY))
4830 tmp = -1;
4831 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4832 if (!pn)
4833 return 1;
4834
4835 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4836 mz = &pn->zoneinfo[zone];
4837 for_each_lru(l)
4838 INIT_LIST_HEAD(&mz->lruvec.lists[l]);
4839 mz->usage_in_excess = 0;
4840 mz->on_tree = false;
4841 mz->mem = memcg;
4842 }
4843 memcg->info.nodeinfo[node] = pn;
4844 return 0;
4845 }
4846
4847 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4848 {
4849 kfree(memcg->info.nodeinfo[node]);
4850 }
4851
4852 static struct mem_cgroup *mem_cgroup_alloc(void)
4853 {
4854 struct mem_cgroup *mem;
4855 int size = sizeof(struct mem_cgroup);
4856
4857 /* Can be very big if MAX_NUMNODES is very big */
4858 if (size < PAGE_SIZE)
4859 mem = kzalloc(size, GFP_KERNEL);
4860 else
4861 mem = vzalloc(size);
4862
4863 if (!mem)
4864 return NULL;
4865
4866 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4867 if (!mem->stat)
4868 goto out_free;
4869 spin_lock_init(&mem->pcp_counter_lock);
4870 return mem;
4871
4872 out_free:
4873 if (size < PAGE_SIZE)
4874 kfree(mem);
4875 else
4876 vfree(mem);
4877 return NULL;
4878 }
4879
4880 /*
4881 * At destroying mem_cgroup, references from swap_cgroup can remain.
4882 * (scanning all at force_empty is too costly...)
4883 *
4884 * Instead of clearing all references at force_empty, we remember
4885 * the number of reference from swap_cgroup and free mem_cgroup when
4886 * it goes down to 0.
4887 *
4888 * Removal of cgroup itself succeeds regardless of refs from swap.
4889 */
4890
4891 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4892 {
4893 int node;
4894
4895 mem_cgroup_remove_from_trees(memcg);
4896 free_css_id(&mem_cgroup_subsys, &memcg->css);
4897
4898 for_each_node_state(node, N_POSSIBLE)
4899 free_mem_cgroup_per_zone_info(memcg, node);
4900
4901 free_percpu(memcg->stat);
4902 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4903 kfree(memcg);
4904 else
4905 vfree(memcg);
4906 }
4907
4908 static void mem_cgroup_get(struct mem_cgroup *memcg)
4909 {
4910 atomic_inc(&memcg->refcnt);
4911 }
4912
4913 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4914 {
4915 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4916 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4917 __mem_cgroup_free(memcg);
4918 if (parent)
4919 mem_cgroup_put(parent);
4920 }
4921 }
4922
4923 static void mem_cgroup_put(struct mem_cgroup *memcg)
4924 {
4925 __mem_cgroup_put(memcg, 1);
4926 }
4927
4928 /*
4929 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4930 */
4931 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4932 {
4933 if (!memcg->res.parent)
4934 return NULL;
4935 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4936 }
4937 EXPORT_SYMBOL(parent_mem_cgroup);
4938
4939 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4940 static void __init enable_swap_cgroup(void)
4941 {
4942 if (!mem_cgroup_disabled() && really_do_swap_account)
4943 do_swap_account = 1;
4944 }
4945 #else
4946 static void __init enable_swap_cgroup(void)
4947 {
4948 }
4949 #endif
4950
4951 static int mem_cgroup_soft_limit_tree_init(void)
4952 {
4953 struct mem_cgroup_tree_per_node *rtpn;
4954 struct mem_cgroup_tree_per_zone *rtpz;
4955 int tmp, node, zone;
4956
4957 for_each_node_state(node, N_POSSIBLE) {
4958 tmp = node;
4959 if (!node_state(node, N_NORMAL_MEMORY))
4960 tmp = -1;
4961 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4962 if (!rtpn)
4963 goto err_cleanup;
4964
4965 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4966
4967 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4968 rtpz = &rtpn->rb_tree_per_zone[zone];
4969 rtpz->rb_root = RB_ROOT;
4970 spin_lock_init(&rtpz->lock);
4971 }
4972 }
4973 return 0;
4974
4975 err_cleanup:
4976 for_each_node_state(node, N_POSSIBLE) {
4977 if (!soft_limit_tree.rb_tree_per_node[node])
4978 break;
4979 kfree(soft_limit_tree.rb_tree_per_node[node]);
4980 soft_limit_tree.rb_tree_per_node[node] = NULL;
4981 }
4982 return 1;
4983
4984 }
4985
4986 static struct cgroup_subsys_state * __ref
4987 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4988 {
4989 struct mem_cgroup *memcg, *parent;
4990 long error = -ENOMEM;
4991 int node;
4992
4993 memcg = mem_cgroup_alloc();
4994 if (!memcg)
4995 return ERR_PTR(error);
4996
4997 for_each_node_state(node, N_POSSIBLE)
4998 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4999 goto free_out;
5000
5001 /* root ? */
5002 if (cont->parent == NULL) {
5003 int cpu;
5004 enable_swap_cgroup();
5005 parent = NULL;
5006 if (mem_cgroup_soft_limit_tree_init())
5007 goto free_out;
5008 root_mem_cgroup = memcg;
5009 for_each_possible_cpu(cpu) {
5010 struct memcg_stock_pcp *stock =
5011 &per_cpu(memcg_stock, cpu);
5012 INIT_WORK(&stock->work, drain_local_stock);
5013 }
5014 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5015 } else {
5016 parent = mem_cgroup_from_cont(cont->parent);
5017 memcg->use_hierarchy = parent->use_hierarchy;
5018 memcg->oom_kill_disable = parent->oom_kill_disable;
5019 }
5020
5021 if (parent && parent->use_hierarchy) {
5022 res_counter_init(&memcg->res, &parent->res);
5023 res_counter_init(&memcg->memsw, &parent->memsw);
5024 /*
5025 * We increment refcnt of the parent to ensure that we can
5026 * safely access it on res_counter_charge/uncharge.
5027 * This refcnt will be decremented when freeing this
5028 * mem_cgroup(see mem_cgroup_put).
5029 */
5030 mem_cgroup_get(parent);
5031 } else {
5032 res_counter_init(&memcg->res, NULL);
5033 res_counter_init(&memcg->memsw, NULL);
5034 }
5035 memcg->last_scanned_node = MAX_NUMNODES;
5036 INIT_LIST_HEAD(&memcg->oom_notify);
5037
5038 if (parent)
5039 memcg->swappiness = mem_cgroup_swappiness(parent);
5040 atomic_set(&memcg->refcnt, 1);
5041 memcg->move_charge_at_immigrate = 0;
5042 mutex_init(&memcg->thresholds_lock);
5043 return &memcg->css;
5044 free_out:
5045 __mem_cgroup_free(memcg);
5046 return ERR_PTR(error);
5047 }
5048
5049 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
5050 struct cgroup *cont)
5051 {
5052 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5053
5054 return mem_cgroup_force_empty(memcg, false);
5055 }
5056
5057 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
5058 struct cgroup *cont)
5059 {
5060 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5061
5062 kmem_cgroup_destroy(ss, cont);
5063
5064 mem_cgroup_put(memcg);
5065 }
5066
5067 static int mem_cgroup_populate(struct cgroup_subsys *ss,
5068 struct cgroup *cont)
5069 {
5070 int ret;
5071
5072 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
5073 ARRAY_SIZE(mem_cgroup_files));
5074
5075 if (!ret)
5076 ret = register_memsw_files(cont, ss);
5077
5078 if (!ret)
5079 ret = register_kmem_files(cont, ss);
5080
5081 return ret;
5082 }
5083
5084 #ifdef CONFIG_MMU
5085 /* Handlers for move charge at task migration. */
5086 #define PRECHARGE_COUNT_AT_ONCE 256
5087 static int mem_cgroup_do_precharge(unsigned long count)
5088 {
5089 int ret = 0;
5090 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5091 struct mem_cgroup *memcg = mc.to;
5092
5093 if (mem_cgroup_is_root(memcg)) {
5094 mc.precharge += count;
5095 /* we don't need css_get for root */
5096 return ret;
5097 }
5098 /* try to charge at once */
5099 if (count > 1) {
5100 struct res_counter *dummy;
5101 /*
5102 * "memcg" cannot be under rmdir() because we've already checked
5103 * by cgroup_lock_live_cgroup() that it is not removed and we
5104 * are still under the same cgroup_mutex. So we can postpone
5105 * css_get().
5106 */
5107 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5108 goto one_by_one;
5109 if (do_swap_account && res_counter_charge(&memcg->memsw,
5110 PAGE_SIZE * count, &dummy)) {
5111 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5112 goto one_by_one;
5113 }
5114 mc.precharge += count;
5115 return ret;
5116 }
5117 one_by_one:
5118 /* fall back to one by one charge */
5119 while (count--) {
5120 if (signal_pending(current)) {
5121 ret = -EINTR;
5122 break;
5123 }
5124 if (!batch_count--) {
5125 batch_count = PRECHARGE_COUNT_AT_ONCE;
5126 cond_resched();
5127 }
5128 ret = __mem_cgroup_try_charge(NULL,
5129 GFP_KERNEL, 1, &memcg, false);
5130 if (ret || !memcg)
5131 /* mem_cgroup_clear_mc() will do uncharge later */
5132 return -ENOMEM;
5133 mc.precharge++;
5134 }
5135 return ret;
5136 }
5137
5138 /**
5139 * is_target_pte_for_mc - check a pte whether it is valid for move charge
5140 * @vma: the vma the pte to be checked belongs
5141 * @addr: the address corresponding to the pte to be checked
5142 * @ptent: the pte to be checked
5143 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5144 *
5145 * Returns
5146 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5147 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5148 * move charge. if @target is not NULL, the page is stored in target->page
5149 * with extra refcnt got(Callers should handle it).
5150 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5151 * target for charge migration. if @target is not NULL, the entry is stored
5152 * in target->ent.
5153 *
5154 * Called with pte lock held.
5155 */
5156 union mc_target {
5157 struct page *page;
5158 swp_entry_t ent;
5159 };
5160
5161 enum mc_target_type {
5162 MC_TARGET_NONE, /* not used */
5163 MC_TARGET_PAGE,
5164 MC_TARGET_SWAP,
5165 };
5166
5167 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5168 unsigned long addr, pte_t ptent)
5169 {
5170 struct page *page = vm_normal_page(vma, addr, ptent);
5171
5172 if (!page || !page_mapped(page))
5173 return NULL;
5174 if (PageAnon(page)) {
5175 /* we don't move shared anon */
5176 if (!move_anon() || page_mapcount(page) > 2)
5177 return NULL;
5178 } else if (!move_file())
5179 /* we ignore mapcount for file pages */
5180 return NULL;
5181 if (!get_page_unless_zero(page))
5182 return NULL;
5183
5184 return page;
5185 }
5186
5187 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5188 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5189 {
5190 int usage_count;
5191 struct page *page = NULL;
5192 swp_entry_t ent = pte_to_swp_entry(ptent);
5193
5194 if (!move_anon() || non_swap_entry(ent))
5195 return NULL;
5196 usage_count = mem_cgroup_count_swap_user(ent, &page);
5197 if (usage_count > 1) { /* we don't move shared anon */
5198 if (page)
5199 put_page(page);
5200 return NULL;
5201 }
5202 if (do_swap_account)
5203 entry->val = ent.val;
5204
5205 return page;
5206 }
5207
5208 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5209 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5210 {
5211 struct page *page = NULL;
5212 struct inode *inode;
5213 struct address_space *mapping;
5214 pgoff_t pgoff;
5215
5216 if (!vma->vm_file) /* anonymous vma */
5217 return NULL;
5218 if (!move_file())
5219 return NULL;
5220
5221 inode = vma->vm_file->f_path.dentry->d_inode;
5222 mapping = vma->vm_file->f_mapping;
5223 if (pte_none(ptent))
5224 pgoff = linear_page_index(vma, addr);
5225 else /* pte_file(ptent) is true */
5226 pgoff = pte_to_pgoff(ptent);
5227
5228 /* page is moved even if it's not RSS of this task(page-faulted). */
5229 page = find_get_page(mapping, pgoff);
5230
5231 #ifdef CONFIG_SWAP
5232 /* shmem/tmpfs may report page out on swap: account for that too. */
5233 if (radix_tree_exceptional_entry(page)) {
5234 swp_entry_t swap = radix_to_swp_entry(page);
5235 if (do_swap_account)
5236 *entry = swap;
5237 page = find_get_page(&swapper_space, swap.val);
5238 }
5239 #endif
5240 return page;
5241 }
5242
5243 static int is_target_pte_for_mc(struct vm_area_struct *vma,
5244 unsigned long addr, pte_t ptent, union mc_target *target)
5245 {
5246 struct page *page = NULL;
5247 struct page_cgroup *pc;
5248 int ret = 0;
5249 swp_entry_t ent = { .val = 0 };
5250
5251 if (pte_present(ptent))
5252 page = mc_handle_present_pte(vma, addr, ptent);
5253 else if (is_swap_pte(ptent))
5254 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5255 else if (pte_none(ptent) || pte_file(ptent))
5256 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5257
5258 if (!page && !ent.val)
5259 return 0;
5260 if (page) {
5261 pc = lookup_page_cgroup(page);
5262 /*
5263 * Do only loose check w/o page_cgroup lock.
5264 * mem_cgroup_move_account() checks the pc is valid or not under
5265 * the lock.
5266 */
5267 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5268 ret = MC_TARGET_PAGE;
5269 if (target)
5270 target->page = page;
5271 }
5272 if (!ret || !target)
5273 put_page(page);
5274 }
5275 /* There is a swap entry and a page doesn't exist or isn't charged */
5276 if (ent.val && !ret &&
5277 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5278 ret = MC_TARGET_SWAP;
5279 if (target)
5280 target->ent = ent;
5281 }
5282 return ret;
5283 }
5284
5285 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5286 unsigned long addr, unsigned long end,
5287 struct mm_walk *walk)
5288 {
5289 struct vm_area_struct *vma = walk->private;
5290 pte_t *pte;
5291 spinlock_t *ptl;
5292
5293 split_huge_page_pmd(walk->mm, pmd);
5294
5295 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5296 for (; addr != end; pte++, addr += PAGE_SIZE)
5297 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
5298 mc.precharge++; /* increment precharge temporarily */
5299 pte_unmap_unlock(pte - 1, ptl);
5300 cond_resched();
5301
5302 return 0;
5303 }
5304
5305 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5306 {
5307 unsigned long precharge;
5308 struct vm_area_struct *vma;
5309
5310 down_read(&mm->mmap_sem);
5311 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5312 struct mm_walk mem_cgroup_count_precharge_walk = {
5313 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5314 .mm = mm,
5315 .private = vma,
5316 };
5317 if (is_vm_hugetlb_page(vma))
5318 continue;
5319 walk_page_range(vma->vm_start, vma->vm_end,
5320 &mem_cgroup_count_precharge_walk);
5321 }
5322 up_read(&mm->mmap_sem);
5323
5324 precharge = mc.precharge;
5325 mc.precharge = 0;
5326
5327 return precharge;
5328 }
5329
5330 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5331 {
5332 unsigned long precharge = mem_cgroup_count_precharge(mm);
5333
5334 VM_BUG_ON(mc.moving_task);
5335 mc.moving_task = current;
5336 return mem_cgroup_do_precharge(precharge);
5337 }
5338
5339 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5340 static void __mem_cgroup_clear_mc(void)
5341 {
5342 struct mem_cgroup *from = mc.from;
5343 struct mem_cgroup *to = mc.to;
5344
5345 /* we must uncharge all the leftover precharges from mc.to */
5346 if (mc.precharge) {
5347 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5348 mc.precharge = 0;
5349 }
5350 /*
5351 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5352 * we must uncharge here.
5353 */
5354 if (mc.moved_charge) {
5355 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5356 mc.moved_charge = 0;
5357 }
5358 /* we must fixup refcnts and charges */
5359 if (mc.moved_swap) {
5360 /* uncharge swap account from the old cgroup */
5361 if (!mem_cgroup_is_root(mc.from))
5362 res_counter_uncharge(&mc.from->memsw,
5363 PAGE_SIZE * mc.moved_swap);
5364 __mem_cgroup_put(mc.from, mc.moved_swap);
5365
5366 if (!mem_cgroup_is_root(mc.to)) {
5367 /*
5368 * we charged both to->res and to->memsw, so we should
5369 * uncharge to->res.
5370 */
5371 res_counter_uncharge(&mc.to->res,
5372 PAGE_SIZE * mc.moved_swap);
5373 }
5374 /* we've already done mem_cgroup_get(mc.to) */
5375 mc.moved_swap = 0;
5376 }
5377 memcg_oom_recover(from);
5378 memcg_oom_recover(to);
5379 wake_up_all(&mc.waitq);
5380 }
5381
5382 static void mem_cgroup_clear_mc(void)
5383 {
5384 struct mem_cgroup *from = mc.from;
5385
5386 /*
5387 * we must clear moving_task before waking up waiters at the end of
5388 * task migration.
5389 */
5390 mc.moving_task = NULL;
5391 __mem_cgroup_clear_mc();
5392 spin_lock(&mc.lock);
5393 mc.from = NULL;
5394 mc.to = NULL;
5395 spin_unlock(&mc.lock);
5396 mem_cgroup_end_move(from);
5397 }
5398
5399 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5400 struct cgroup *cgroup,
5401 struct cgroup_taskset *tset)
5402 {
5403 struct task_struct *p = cgroup_taskset_first(tset);
5404 int ret = 0;
5405 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5406
5407 if (memcg->move_charge_at_immigrate) {
5408 struct mm_struct *mm;
5409 struct mem_cgroup *from = mem_cgroup_from_task(p);
5410
5411 VM_BUG_ON(from == memcg);
5412
5413 mm = get_task_mm(p);
5414 if (!mm)
5415 return 0;
5416 /* We move charges only when we move a owner of the mm */
5417 if (mm->owner == p) {
5418 VM_BUG_ON(mc.from);
5419 VM_BUG_ON(mc.to);
5420 VM_BUG_ON(mc.precharge);
5421 VM_BUG_ON(mc.moved_charge);
5422 VM_BUG_ON(mc.moved_swap);
5423 mem_cgroup_start_move(from);
5424 spin_lock(&mc.lock);
5425 mc.from = from;
5426 mc.to = memcg;
5427 spin_unlock(&mc.lock);
5428 /* We set mc.moving_task later */
5429
5430 ret = mem_cgroup_precharge_mc(mm);
5431 if (ret)
5432 mem_cgroup_clear_mc();
5433 }
5434 mmput(mm);
5435 }
5436 return ret;
5437 }
5438
5439 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5440 struct cgroup *cgroup,
5441 struct cgroup_taskset *tset)
5442 {
5443 mem_cgroup_clear_mc();
5444 }
5445
5446 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5447 unsigned long addr, unsigned long end,
5448 struct mm_walk *walk)
5449 {
5450 int ret = 0;
5451 struct vm_area_struct *vma = walk->private;
5452 pte_t *pte;
5453 spinlock_t *ptl;
5454
5455 split_huge_page_pmd(walk->mm, pmd);
5456 retry:
5457 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5458 for (; addr != end; addr += PAGE_SIZE) {
5459 pte_t ptent = *(pte++);
5460 union mc_target target;
5461 int type;
5462 struct page *page;
5463 struct page_cgroup *pc;
5464 swp_entry_t ent;
5465
5466 if (!mc.precharge)
5467 break;
5468
5469 type = is_target_pte_for_mc(vma, addr, ptent, &target);
5470 switch (type) {
5471 case MC_TARGET_PAGE:
5472 page = target.page;
5473 if (isolate_lru_page(page))
5474 goto put;
5475 pc = lookup_page_cgroup(page);
5476 if (!mem_cgroup_move_account(page, 1, pc,
5477 mc.from, mc.to, false)) {
5478 mc.precharge--;
5479 /* we uncharge from mc.from later. */
5480 mc.moved_charge++;
5481 }
5482 putback_lru_page(page);
5483 put: /* is_target_pte_for_mc() gets the page */
5484 put_page(page);
5485 break;
5486 case MC_TARGET_SWAP:
5487 ent = target.ent;
5488 if (!mem_cgroup_move_swap_account(ent,
5489 mc.from, mc.to, false)) {
5490 mc.precharge--;
5491 /* we fixup refcnts and charges later. */
5492 mc.moved_swap++;
5493 }
5494 break;
5495 default:
5496 break;
5497 }
5498 }
5499 pte_unmap_unlock(pte - 1, ptl);
5500 cond_resched();
5501
5502 if (addr != end) {
5503 /*
5504 * We have consumed all precharges we got in can_attach().
5505 * We try charge one by one, but don't do any additional
5506 * charges to mc.to if we have failed in charge once in attach()
5507 * phase.
5508 */
5509 ret = mem_cgroup_do_precharge(1);
5510 if (!ret)
5511 goto retry;
5512 }
5513
5514 return ret;
5515 }
5516
5517 static void mem_cgroup_move_charge(struct mm_struct *mm)
5518 {
5519 struct vm_area_struct *vma;
5520
5521 lru_add_drain_all();
5522 retry:
5523 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5524 /*
5525 * Someone who are holding the mmap_sem might be waiting in
5526 * waitq. So we cancel all extra charges, wake up all waiters,
5527 * and retry. Because we cancel precharges, we might not be able
5528 * to move enough charges, but moving charge is a best-effort
5529 * feature anyway, so it wouldn't be a big problem.
5530 */
5531 __mem_cgroup_clear_mc();
5532 cond_resched();
5533 goto retry;
5534 }
5535 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5536 int ret;
5537 struct mm_walk mem_cgroup_move_charge_walk = {
5538 .pmd_entry = mem_cgroup_move_charge_pte_range,
5539 .mm = mm,
5540 .private = vma,
5541 };
5542 if (is_vm_hugetlb_page(vma))
5543 continue;
5544 ret = walk_page_range(vma->vm_start, vma->vm_end,
5545 &mem_cgroup_move_charge_walk);
5546 if (ret)
5547 /*
5548 * means we have consumed all precharges and failed in
5549 * doing additional charge. Just abandon here.
5550 */
5551 break;
5552 }
5553 up_read(&mm->mmap_sem);
5554 }
5555
5556 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5557 struct cgroup *cont,
5558 struct cgroup_taskset *tset)
5559 {
5560 struct task_struct *p = cgroup_taskset_first(tset);
5561 struct mm_struct *mm = get_task_mm(p);
5562
5563 if (mm) {
5564 if (mc.to)
5565 mem_cgroup_move_charge(mm);
5566 put_swap_token(mm);
5567 mmput(mm);
5568 }
5569 if (mc.to)
5570 mem_cgroup_clear_mc();
5571 }
5572 #else /* !CONFIG_MMU */
5573 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
5574 struct cgroup *cgroup,
5575 struct cgroup_taskset *tset)
5576 {
5577 return 0;
5578 }
5579 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5580 struct cgroup *cgroup,
5581 struct cgroup_taskset *tset)
5582 {
5583 }
5584 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5585 struct cgroup *cont,
5586 struct cgroup_taskset *tset)
5587 {
5588 }
5589 #endif
5590
5591 struct cgroup_subsys mem_cgroup_subsys = {
5592 .name = "memory",
5593 .subsys_id = mem_cgroup_subsys_id,
5594 .create = mem_cgroup_create,
5595 .pre_destroy = mem_cgroup_pre_destroy,
5596 .destroy = mem_cgroup_destroy,
5597 .populate = mem_cgroup_populate,
5598 .can_attach = mem_cgroup_can_attach,
5599 .cancel_attach = mem_cgroup_cancel_attach,
5600 .attach = mem_cgroup_move_task,
5601 .early_init = 0,
5602 .use_id = 1,
5603 };
5604
5605 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5606 static int __init enable_swap_account(char *s)
5607 {
5608 /* consider enabled if no parameter or 1 is given */
5609 if (!strcmp(s, "1"))
5610 really_do_swap_account = 1;
5611 else if (!strcmp(s, "0"))
5612 really_do_swap_account = 0;
5613 return 1;
5614 }
5615 __setup("swapaccount=", enable_swap_account);
5616
5617 #endif