]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - mm/memcontrol.c
drm/i915/sdvo: Check error return from intel_sdvo_get_value()
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/sched/mm.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/hugetlb.h>
41 #include <linux/pagemap.h>
42 #include <linux/smp.h>
43 #include <linux/page-flags.h>
44 #include <linux/backing-dev.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/limits.h>
48 #include <linux/export.h>
49 #include <linux/mutex.h>
50 #include <linux/rbtree.h>
51 #include <linux/slab.h>
52 #include <linux/swap.h>
53 #include <linux/swapops.h>
54 #include <linux/spinlock.h>
55 #include <linux/eventfd.h>
56 #include <linux/poll.h>
57 #include <linux/sort.h>
58 #include <linux/fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/vmpressure.h>
61 #include <linux/mm_inline.h>
62 #include <linux/swap_cgroup.h>
63 #include <linux/cpu.h>
64 #include <linux/oom.h>
65 #include <linux/lockdep.h>
66 #include <linux/file.h>
67 #include <linux/tracehook.h>
68 #include "internal.h"
69 #include <net/sock.h>
70 #include <net/ip.h>
71 #include "slab.h"
72
73 #include <linux/uaccess.h>
74
75 #include <trace/events/vmscan.h>
76
77 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78 EXPORT_SYMBOL(memory_cgrp_subsys);
79
80 struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82 #define MEM_CGROUP_RECLAIM_RETRIES 5
83
84 /* Socket memory accounting disabled? */
85 static bool cgroup_memory_nosocket;
86
87 /* Kernel memory accounting disabled? */
88 static bool cgroup_memory_nokmem;
89
90 /* Whether the swap controller is active */
91 #ifdef CONFIG_MEMCG_SWAP
92 int do_swap_account __read_mostly;
93 #else
94 #define do_swap_account 0
95 #endif
96
97 /* Whether legacy memory+swap accounting is active */
98 static bool do_memsw_account(void)
99 {
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101 }
102
103 static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
106 "rss_huge",
107 "mapped_file",
108 "dirty",
109 "writeback",
110 "swap",
111 };
112
113 static const char * const mem_cgroup_events_names[] = {
114 "pgpgin",
115 "pgpgout",
116 "pgfault",
117 "pgmajfault",
118 };
119
120 static const char * const mem_cgroup_lru_names[] = {
121 "inactive_anon",
122 "active_anon",
123 "inactive_file",
124 "active_file",
125 "unevictable",
126 };
127
128 #define THRESHOLDS_EVENTS_TARGET 128
129 #define SOFTLIMIT_EVENTS_TARGET 1024
130 #define NUMAINFO_EVENTS_TARGET 1024
131
132 /*
133 * Cgroups above their limits are maintained in a RB-Tree, independent of
134 * their hierarchy representation
135 */
136
137 struct mem_cgroup_tree_per_node {
138 struct rb_root rb_root;
139 spinlock_t lock;
140 };
141
142 struct mem_cgroup_tree {
143 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
144 };
145
146 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
147
148 /* for OOM */
149 struct mem_cgroup_eventfd_list {
150 struct list_head list;
151 struct eventfd_ctx *eventfd;
152 };
153
154 /*
155 * cgroup_event represents events which userspace want to receive.
156 */
157 struct mem_cgroup_event {
158 /*
159 * memcg which the event belongs to.
160 */
161 struct mem_cgroup *memcg;
162 /*
163 * eventfd to signal userspace about the event.
164 */
165 struct eventfd_ctx *eventfd;
166 /*
167 * Each of these stored in a list by the cgroup.
168 */
169 struct list_head list;
170 /*
171 * register_event() callback will be used to add new userspace
172 * waiter for changes related to this event. Use eventfd_signal()
173 * on eventfd to send notification to userspace.
174 */
175 int (*register_event)(struct mem_cgroup *memcg,
176 struct eventfd_ctx *eventfd, const char *args);
177 /*
178 * unregister_event() callback will be called when userspace closes
179 * the eventfd or on cgroup removing. This callback must be set,
180 * if you want provide notification functionality.
181 */
182 void (*unregister_event)(struct mem_cgroup *memcg,
183 struct eventfd_ctx *eventfd);
184 /*
185 * All fields below needed to unregister event when
186 * userspace closes eventfd.
187 */
188 poll_table pt;
189 wait_queue_head_t *wqh;
190 wait_queue_t wait;
191 struct work_struct remove;
192 };
193
194 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
195 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
196
197 /* Stuffs for move charges at task migration. */
198 /*
199 * Types of charges to be moved.
200 */
201 #define MOVE_ANON 0x1U
202 #define MOVE_FILE 0x2U
203 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
204
205 /* "mc" and its members are protected by cgroup_mutex */
206 static struct move_charge_struct {
207 spinlock_t lock; /* for from, to */
208 struct mm_struct *mm;
209 struct mem_cgroup *from;
210 struct mem_cgroup *to;
211 unsigned long flags;
212 unsigned long precharge;
213 unsigned long moved_charge;
214 unsigned long moved_swap;
215 struct task_struct *moving_task; /* a task moving charges */
216 wait_queue_head_t waitq; /* a waitq for other context */
217 } mc = {
218 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
219 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
220 };
221
222 /*
223 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
224 * limit reclaim to prevent infinite loops, if they ever occur.
225 */
226 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
227 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
228
229 enum charge_type {
230 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
231 MEM_CGROUP_CHARGE_TYPE_ANON,
232 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
233 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
234 NR_CHARGE_TYPE,
235 };
236
237 /* for encoding cft->private value on file */
238 enum res_type {
239 _MEM,
240 _MEMSWAP,
241 _OOM_TYPE,
242 _KMEM,
243 _TCP,
244 };
245
246 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
247 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
248 #define MEMFILE_ATTR(val) ((val) & 0xffff)
249 /* Used for OOM nofiier */
250 #define OOM_CONTROL (0)
251
252 /* Some nice accessors for the vmpressure. */
253 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
254 {
255 if (!memcg)
256 memcg = root_mem_cgroup;
257 return &memcg->vmpressure;
258 }
259
260 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
261 {
262 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
263 }
264
265 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
266 {
267 return (memcg == root_mem_cgroup);
268 }
269
270 #ifndef CONFIG_SLOB
271 /*
272 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
273 * The main reason for not using cgroup id for this:
274 * this works better in sparse environments, where we have a lot of memcgs,
275 * but only a few kmem-limited. Or also, if we have, for instance, 200
276 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
277 * 200 entry array for that.
278 *
279 * The current size of the caches array is stored in memcg_nr_cache_ids. It
280 * will double each time we have to increase it.
281 */
282 static DEFINE_IDA(memcg_cache_ida);
283 int memcg_nr_cache_ids;
284
285 /* Protects memcg_nr_cache_ids */
286 static DECLARE_RWSEM(memcg_cache_ids_sem);
287
288 void memcg_get_cache_ids(void)
289 {
290 down_read(&memcg_cache_ids_sem);
291 }
292
293 void memcg_put_cache_ids(void)
294 {
295 up_read(&memcg_cache_ids_sem);
296 }
297
298 /*
299 * MIN_SIZE is different than 1, because we would like to avoid going through
300 * the alloc/free process all the time. In a small machine, 4 kmem-limited
301 * cgroups is a reasonable guess. In the future, it could be a parameter or
302 * tunable, but that is strictly not necessary.
303 *
304 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
305 * this constant directly from cgroup, but it is understandable that this is
306 * better kept as an internal representation in cgroup.c. In any case, the
307 * cgrp_id space is not getting any smaller, and we don't have to necessarily
308 * increase ours as well if it increases.
309 */
310 #define MEMCG_CACHES_MIN_SIZE 4
311 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
312
313 /*
314 * A lot of the calls to the cache allocation functions are expected to be
315 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
316 * conditional to this static branch, we'll have to allow modules that does
317 * kmem_cache_alloc and the such to see this symbol as well
318 */
319 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
320 EXPORT_SYMBOL(memcg_kmem_enabled_key);
321
322 struct workqueue_struct *memcg_kmem_cache_wq;
323
324 #endif /* !CONFIG_SLOB */
325
326 /**
327 * mem_cgroup_css_from_page - css of the memcg associated with a page
328 * @page: page of interest
329 *
330 * If memcg is bound to the default hierarchy, css of the memcg associated
331 * with @page is returned. The returned css remains associated with @page
332 * until it is released.
333 *
334 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
335 * is returned.
336 */
337 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338 {
339 struct mem_cgroup *memcg;
340
341 memcg = page->mem_cgroup;
342
343 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 memcg = root_mem_cgroup;
345
346 return &memcg->css;
347 }
348
349 /**
350 * page_cgroup_ino - return inode number of the memcg a page is charged to
351 * @page: the page
352 *
353 * Look up the closest online ancestor of the memory cgroup @page is charged to
354 * and return its inode number or 0 if @page is not charged to any cgroup. It
355 * is safe to call this function without holding a reference to @page.
356 *
357 * Note, this function is inherently racy, because there is nothing to prevent
358 * the cgroup inode from getting torn down and potentially reallocated a moment
359 * after page_cgroup_ino() returns, so it only should be used by callers that
360 * do not care (such as procfs interfaces).
361 */
362 ino_t page_cgroup_ino(struct page *page)
363 {
364 struct mem_cgroup *memcg;
365 unsigned long ino = 0;
366
367 rcu_read_lock();
368 memcg = READ_ONCE(page->mem_cgroup);
369 while (memcg && !(memcg->css.flags & CSS_ONLINE))
370 memcg = parent_mem_cgroup(memcg);
371 if (memcg)
372 ino = cgroup_ino(memcg->css.cgroup);
373 rcu_read_unlock();
374 return ino;
375 }
376
377 static struct mem_cgroup_per_node *
378 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
379 {
380 int nid = page_to_nid(page);
381
382 return memcg->nodeinfo[nid];
383 }
384
385 static struct mem_cgroup_tree_per_node *
386 soft_limit_tree_node(int nid)
387 {
388 return soft_limit_tree.rb_tree_per_node[nid];
389 }
390
391 static struct mem_cgroup_tree_per_node *
392 soft_limit_tree_from_page(struct page *page)
393 {
394 int nid = page_to_nid(page);
395
396 return soft_limit_tree.rb_tree_per_node[nid];
397 }
398
399 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
400 struct mem_cgroup_tree_per_node *mctz,
401 unsigned long new_usage_in_excess)
402 {
403 struct rb_node **p = &mctz->rb_root.rb_node;
404 struct rb_node *parent = NULL;
405 struct mem_cgroup_per_node *mz_node;
406
407 if (mz->on_tree)
408 return;
409
410 mz->usage_in_excess = new_usage_in_excess;
411 if (!mz->usage_in_excess)
412 return;
413 while (*p) {
414 parent = *p;
415 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
416 tree_node);
417 if (mz->usage_in_excess < mz_node->usage_in_excess)
418 p = &(*p)->rb_left;
419 /*
420 * We can't avoid mem cgroups that are over their soft
421 * limit by the same amount
422 */
423 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
424 p = &(*p)->rb_right;
425 }
426 rb_link_node(&mz->tree_node, parent, p);
427 rb_insert_color(&mz->tree_node, &mctz->rb_root);
428 mz->on_tree = true;
429 }
430
431 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
432 struct mem_cgroup_tree_per_node *mctz)
433 {
434 if (!mz->on_tree)
435 return;
436 rb_erase(&mz->tree_node, &mctz->rb_root);
437 mz->on_tree = false;
438 }
439
440 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
441 struct mem_cgroup_tree_per_node *mctz)
442 {
443 unsigned long flags;
444
445 spin_lock_irqsave(&mctz->lock, flags);
446 __mem_cgroup_remove_exceeded(mz, mctz);
447 spin_unlock_irqrestore(&mctz->lock, flags);
448 }
449
450 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
451 {
452 unsigned long nr_pages = page_counter_read(&memcg->memory);
453 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
454 unsigned long excess = 0;
455
456 if (nr_pages > soft_limit)
457 excess = nr_pages - soft_limit;
458
459 return excess;
460 }
461
462 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
463 {
464 unsigned long excess;
465 struct mem_cgroup_per_node *mz;
466 struct mem_cgroup_tree_per_node *mctz;
467
468 mctz = soft_limit_tree_from_page(page);
469 if (!mctz)
470 return;
471 /*
472 * Necessary to update all ancestors when hierarchy is used.
473 * because their event counter is not touched.
474 */
475 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
476 mz = mem_cgroup_page_nodeinfo(memcg, page);
477 excess = soft_limit_excess(memcg);
478 /*
479 * We have to update the tree if mz is on RB-tree or
480 * mem is over its softlimit.
481 */
482 if (excess || mz->on_tree) {
483 unsigned long flags;
484
485 spin_lock_irqsave(&mctz->lock, flags);
486 /* if on-tree, remove it */
487 if (mz->on_tree)
488 __mem_cgroup_remove_exceeded(mz, mctz);
489 /*
490 * Insert again. mz->usage_in_excess will be updated.
491 * If excess is 0, no tree ops.
492 */
493 __mem_cgroup_insert_exceeded(mz, mctz, excess);
494 spin_unlock_irqrestore(&mctz->lock, flags);
495 }
496 }
497 }
498
499 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
500 {
501 struct mem_cgroup_tree_per_node *mctz;
502 struct mem_cgroup_per_node *mz;
503 int nid;
504
505 for_each_node(nid) {
506 mz = mem_cgroup_nodeinfo(memcg, nid);
507 mctz = soft_limit_tree_node(nid);
508 if (mctz)
509 mem_cgroup_remove_exceeded(mz, mctz);
510 }
511 }
512
513 static struct mem_cgroup_per_node *
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
515 {
516 struct rb_node *rightmost = NULL;
517 struct mem_cgroup_per_node *mz;
518
519 retry:
520 mz = NULL;
521 rightmost = rb_last(&mctz->rb_root);
522 if (!rightmost)
523 goto done; /* Nothing to reclaim from */
524
525 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
526 /*
527 * Remove the node now but someone else can add it back,
528 * we will to add it back at the end of reclaim to its correct
529 * position in the tree.
530 */
531 __mem_cgroup_remove_exceeded(mz, mctz);
532 if (!soft_limit_excess(mz->memcg) ||
533 !css_tryget_online(&mz->memcg->css))
534 goto retry;
535 done:
536 return mz;
537 }
538
539 static struct mem_cgroup_per_node *
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
541 {
542 struct mem_cgroup_per_node *mz;
543
544 spin_lock_irq(&mctz->lock);
545 mz = __mem_cgroup_largest_soft_limit_node(mctz);
546 spin_unlock_irq(&mctz->lock);
547 return mz;
548 }
549
550 /*
551 * Return page count for single (non recursive) @memcg.
552 *
553 * Implementation Note: reading percpu statistics for memcg.
554 *
555 * Both of vmstat[] and percpu_counter has threshold and do periodic
556 * synchronization to implement "quick" read. There are trade-off between
557 * reading cost and precision of value. Then, we may have a chance to implement
558 * a periodic synchronization of counter in memcg's counter.
559 *
560 * But this _read() function is used for user interface now. The user accounts
561 * memory usage by memory cgroup and he _always_ requires exact value because
562 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
563 * have to visit all online cpus and make sum. So, for now, unnecessary
564 * synchronization is not implemented. (just implemented for cpu hotplug)
565 *
566 * If there are kernel internal actions which can make use of some not-exact
567 * value, and reading all cpu value can be performance bottleneck in some
568 * common workload, threshold and synchronization as vmstat[] should be
569 * implemented.
570 */
571 static unsigned long
572 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
573 {
574 long val = 0;
575 int cpu;
576
577 /* Per-cpu values can be negative, use a signed accumulator */
578 for_each_possible_cpu(cpu)
579 val += per_cpu(memcg->stat->count[idx], cpu);
580 /*
581 * Summing races with updates, so val may be negative. Avoid exposing
582 * transient negative values.
583 */
584 if (val < 0)
585 val = 0;
586 return val;
587 }
588
589 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
590 enum mem_cgroup_events_index idx)
591 {
592 unsigned long val = 0;
593 int cpu;
594
595 for_each_possible_cpu(cpu)
596 val += per_cpu(memcg->stat->events[idx], cpu);
597 return val;
598 }
599
600 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
601 struct page *page,
602 bool compound, int nr_pages)
603 {
604 /*
605 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
606 * counted as CACHE even if it's on ANON LRU.
607 */
608 if (PageAnon(page))
609 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
610 nr_pages);
611 else
612 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
613 nr_pages);
614
615 if (compound) {
616 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
617 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
618 nr_pages);
619 }
620
621 /* pagein of a big page is an event. So, ignore page size */
622 if (nr_pages > 0)
623 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
624 else {
625 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
626 nr_pages = -nr_pages; /* for event */
627 }
628
629 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
630 }
631
632 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
633 int nid, unsigned int lru_mask)
634 {
635 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
636 unsigned long nr = 0;
637 enum lru_list lru;
638
639 VM_BUG_ON((unsigned)nid >= nr_node_ids);
640
641 for_each_lru(lru) {
642 if (!(BIT(lru) & lru_mask))
643 continue;
644 nr += mem_cgroup_get_lru_size(lruvec, lru);
645 }
646 return nr;
647 }
648
649 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
650 unsigned int lru_mask)
651 {
652 unsigned long nr = 0;
653 int nid;
654
655 for_each_node_state(nid, N_MEMORY)
656 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
657 return nr;
658 }
659
660 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
661 enum mem_cgroup_events_target target)
662 {
663 unsigned long val, next;
664
665 val = __this_cpu_read(memcg->stat->nr_page_events);
666 next = __this_cpu_read(memcg->stat->targets[target]);
667 /* from time_after() in jiffies.h */
668 if ((long)next - (long)val < 0) {
669 switch (target) {
670 case MEM_CGROUP_TARGET_THRESH:
671 next = val + THRESHOLDS_EVENTS_TARGET;
672 break;
673 case MEM_CGROUP_TARGET_SOFTLIMIT:
674 next = val + SOFTLIMIT_EVENTS_TARGET;
675 break;
676 case MEM_CGROUP_TARGET_NUMAINFO:
677 next = val + NUMAINFO_EVENTS_TARGET;
678 break;
679 default:
680 break;
681 }
682 __this_cpu_write(memcg->stat->targets[target], next);
683 return true;
684 }
685 return false;
686 }
687
688 /*
689 * Check events in order.
690 *
691 */
692 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
693 {
694 /* threshold event is triggered in finer grain than soft limit */
695 if (unlikely(mem_cgroup_event_ratelimit(memcg,
696 MEM_CGROUP_TARGET_THRESH))) {
697 bool do_softlimit;
698 bool do_numainfo __maybe_unused;
699
700 do_softlimit = mem_cgroup_event_ratelimit(memcg,
701 MEM_CGROUP_TARGET_SOFTLIMIT);
702 #if MAX_NUMNODES > 1
703 do_numainfo = mem_cgroup_event_ratelimit(memcg,
704 MEM_CGROUP_TARGET_NUMAINFO);
705 #endif
706 mem_cgroup_threshold(memcg);
707 if (unlikely(do_softlimit))
708 mem_cgroup_update_tree(memcg, page);
709 #if MAX_NUMNODES > 1
710 if (unlikely(do_numainfo))
711 atomic_inc(&memcg->numainfo_events);
712 #endif
713 }
714 }
715
716 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
717 {
718 /*
719 * mm_update_next_owner() may clear mm->owner to NULL
720 * if it races with swapoff, page migration, etc.
721 * So this can be called with p == NULL.
722 */
723 if (unlikely(!p))
724 return NULL;
725
726 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
727 }
728 EXPORT_SYMBOL(mem_cgroup_from_task);
729
730 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
731 {
732 struct mem_cgroup *memcg = NULL;
733
734 rcu_read_lock();
735 do {
736 /*
737 * Page cache insertions can happen withou an
738 * actual mm context, e.g. during disk probing
739 * on boot, loopback IO, acct() writes etc.
740 */
741 if (unlikely(!mm))
742 memcg = root_mem_cgroup;
743 else {
744 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
745 if (unlikely(!memcg))
746 memcg = root_mem_cgroup;
747 }
748 } while (!css_tryget_online(&memcg->css));
749 rcu_read_unlock();
750 return memcg;
751 }
752
753 /**
754 * mem_cgroup_iter - iterate over memory cgroup hierarchy
755 * @root: hierarchy root
756 * @prev: previously returned memcg, NULL on first invocation
757 * @reclaim: cookie for shared reclaim walks, NULL for full walks
758 *
759 * Returns references to children of the hierarchy below @root, or
760 * @root itself, or %NULL after a full round-trip.
761 *
762 * Caller must pass the return value in @prev on subsequent
763 * invocations for reference counting, or use mem_cgroup_iter_break()
764 * to cancel a hierarchy walk before the round-trip is complete.
765 *
766 * Reclaimers can specify a zone and a priority level in @reclaim to
767 * divide up the memcgs in the hierarchy among all concurrent
768 * reclaimers operating on the same zone and priority.
769 */
770 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
771 struct mem_cgroup *prev,
772 struct mem_cgroup_reclaim_cookie *reclaim)
773 {
774 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
775 struct cgroup_subsys_state *css = NULL;
776 struct mem_cgroup *memcg = NULL;
777 struct mem_cgroup *pos = NULL;
778
779 if (mem_cgroup_disabled())
780 return NULL;
781
782 if (!root)
783 root = root_mem_cgroup;
784
785 if (prev && !reclaim)
786 pos = prev;
787
788 if (!root->use_hierarchy && root != root_mem_cgroup) {
789 if (prev)
790 goto out;
791 return root;
792 }
793
794 rcu_read_lock();
795
796 if (reclaim) {
797 struct mem_cgroup_per_node *mz;
798
799 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
800 iter = &mz->iter[reclaim->priority];
801
802 if (prev && reclaim->generation != iter->generation)
803 goto out_unlock;
804
805 while (1) {
806 pos = READ_ONCE(iter->position);
807 if (!pos || css_tryget(&pos->css))
808 break;
809 /*
810 * css reference reached zero, so iter->position will
811 * be cleared by ->css_released. However, we should not
812 * rely on this happening soon, because ->css_released
813 * is called from a work queue, and by busy-waiting we
814 * might block it. So we clear iter->position right
815 * away.
816 */
817 (void)cmpxchg(&iter->position, pos, NULL);
818 }
819 }
820
821 if (pos)
822 css = &pos->css;
823
824 for (;;) {
825 css = css_next_descendant_pre(css, &root->css);
826 if (!css) {
827 /*
828 * Reclaimers share the hierarchy walk, and a
829 * new one might jump in right at the end of
830 * the hierarchy - make sure they see at least
831 * one group and restart from the beginning.
832 */
833 if (!prev)
834 continue;
835 break;
836 }
837
838 /*
839 * Verify the css and acquire a reference. The root
840 * is provided by the caller, so we know it's alive
841 * and kicking, and don't take an extra reference.
842 */
843 memcg = mem_cgroup_from_css(css);
844
845 if (css == &root->css)
846 break;
847
848 if (css_tryget(css))
849 break;
850
851 memcg = NULL;
852 }
853
854 if (reclaim) {
855 /*
856 * The position could have already been updated by a competing
857 * thread, so check that the value hasn't changed since we read
858 * it to avoid reclaiming from the same cgroup twice.
859 */
860 (void)cmpxchg(&iter->position, pos, memcg);
861
862 if (pos)
863 css_put(&pos->css);
864
865 if (!memcg)
866 iter->generation++;
867 else if (!prev)
868 reclaim->generation = iter->generation;
869 }
870
871 out_unlock:
872 rcu_read_unlock();
873 out:
874 if (prev && prev != root)
875 css_put(&prev->css);
876
877 return memcg;
878 }
879
880 /**
881 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
882 * @root: hierarchy root
883 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
884 */
885 void mem_cgroup_iter_break(struct mem_cgroup *root,
886 struct mem_cgroup *prev)
887 {
888 if (!root)
889 root = root_mem_cgroup;
890 if (prev && prev != root)
891 css_put(&prev->css);
892 }
893
894 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
895 {
896 struct mem_cgroup *memcg = dead_memcg;
897 struct mem_cgroup_reclaim_iter *iter;
898 struct mem_cgroup_per_node *mz;
899 int nid;
900 int i;
901
902 while ((memcg = parent_mem_cgroup(memcg))) {
903 for_each_node(nid) {
904 mz = mem_cgroup_nodeinfo(memcg, nid);
905 for (i = 0; i <= DEF_PRIORITY; i++) {
906 iter = &mz->iter[i];
907 cmpxchg(&iter->position,
908 dead_memcg, NULL);
909 }
910 }
911 }
912 }
913
914 /*
915 * Iteration constructs for visiting all cgroups (under a tree). If
916 * loops are exited prematurely (break), mem_cgroup_iter_break() must
917 * be used for reference counting.
918 */
919 #define for_each_mem_cgroup_tree(iter, root) \
920 for (iter = mem_cgroup_iter(root, NULL, NULL); \
921 iter != NULL; \
922 iter = mem_cgroup_iter(root, iter, NULL))
923
924 #define for_each_mem_cgroup(iter) \
925 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
926 iter != NULL; \
927 iter = mem_cgroup_iter(NULL, iter, NULL))
928
929 /**
930 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
931 * @memcg: hierarchy root
932 * @fn: function to call for each task
933 * @arg: argument passed to @fn
934 *
935 * This function iterates over tasks attached to @memcg or to any of its
936 * descendants and calls @fn for each task. If @fn returns a non-zero
937 * value, the function breaks the iteration loop and returns the value.
938 * Otherwise, it will iterate over all tasks and return 0.
939 *
940 * This function must not be called for the root memory cgroup.
941 */
942 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
943 int (*fn)(struct task_struct *, void *), void *arg)
944 {
945 struct mem_cgroup *iter;
946 int ret = 0;
947
948 BUG_ON(memcg == root_mem_cgroup);
949
950 for_each_mem_cgroup_tree(iter, memcg) {
951 struct css_task_iter it;
952 struct task_struct *task;
953
954 css_task_iter_start(&iter->css, &it);
955 while (!ret && (task = css_task_iter_next(&it)))
956 ret = fn(task, arg);
957 css_task_iter_end(&it);
958 if (ret) {
959 mem_cgroup_iter_break(memcg, iter);
960 break;
961 }
962 }
963 return ret;
964 }
965
966 /**
967 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
968 * @page: the page
969 * @zone: zone of the page
970 *
971 * This function is only safe when following the LRU page isolation
972 * and putback protocol: the LRU lock must be held, and the page must
973 * either be PageLRU() or the caller must have isolated/allocated it.
974 */
975 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
976 {
977 struct mem_cgroup_per_node *mz;
978 struct mem_cgroup *memcg;
979 struct lruvec *lruvec;
980
981 if (mem_cgroup_disabled()) {
982 lruvec = &pgdat->lruvec;
983 goto out;
984 }
985
986 memcg = page->mem_cgroup;
987 /*
988 * Swapcache readahead pages are added to the LRU - and
989 * possibly migrated - before they are charged.
990 */
991 if (!memcg)
992 memcg = root_mem_cgroup;
993
994 mz = mem_cgroup_page_nodeinfo(memcg, page);
995 lruvec = &mz->lruvec;
996 out:
997 /*
998 * Since a node can be onlined after the mem_cgroup was created,
999 * we have to be prepared to initialize lruvec->zone here;
1000 * and if offlined then reonlined, we need to reinitialize it.
1001 */
1002 if (unlikely(lruvec->pgdat != pgdat))
1003 lruvec->pgdat = pgdat;
1004 return lruvec;
1005 }
1006
1007 /**
1008 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1009 * @lruvec: mem_cgroup per zone lru vector
1010 * @lru: index of lru list the page is sitting on
1011 * @zid: zone id of the accounted pages
1012 * @nr_pages: positive when adding or negative when removing
1013 *
1014 * This function must be called under lru_lock, just before a page is added
1015 * to or just after a page is removed from an lru list (that ordering being
1016 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1017 */
1018 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1019 int zid, int nr_pages)
1020 {
1021 struct mem_cgroup_per_node *mz;
1022 unsigned long *lru_size;
1023 long size;
1024
1025 if (mem_cgroup_disabled())
1026 return;
1027
1028 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1029 lru_size = &mz->lru_zone_size[zid][lru];
1030
1031 if (nr_pages < 0)
1032 *lru_size += nr_pages;
1033
1034 size = *lru_size;
1035 if (WARN_ONCE(size < 0,
1036 "%s(%p, %d, %d): lru_size %ld\n",
1037 __func__, lruvec, lru, nr_pages, size)) {
1038 VM_BUG_ON(1);
1039 *lru_size = 0;
1040 }
1041
1042 if (nr_pages > 0)
1043 *lru_size += nr_pages;
1044 }
1045
1046 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1047 {
1048 struct mem_cgroup *task_memcg;
1049 struct task_struct *p;
1050 bool ret;
1051
1052 p = find_lock_task_mm(task);
1053 if (p) {
1054 task_memcg = get_mem_cgroup_from_mm(p->mm);
1055 task_unlock(p);
1056 } else {
1057 /*
1058 * All threads may have already detached their mm's, but the oom
1059 * killer still needs to detect if they have already been oom
1060 * killed to prevent needlessly killing additional tasks.
1061 */
1062 rcu_read_lock();
1063 task_memcg = mem_cgroup_from_task(task);
1064 css_get(&task_memcg->css);
1065 rcu_read_unlock();
1066 }
1067 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1068 css_put(&task_memcg->css);
1069 return ret;
1070 }
1071
1072 /**
1073 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1074 * @memcg: the memory cgroup
1075 *
1076 * Returns the maximum amount of memory @mem can be charged with, in
1077 * pages.
1078 */
1079 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1080 {
1081 unsigned long margin = 0;
1082 unsigned long count;
1083 unsigned long limit;
1084
1085 count = page_counter_read(&memcg->memory);
1086 limit = READ_ONCE(memcg->memory.limit);
1087 if (count < limit)
1088 margin = limit - count;
1089
1090 if (do_memsw_account()) {
1091 count = page_counter_read(&memcg->memsw);
1092 limit = READ_ONCE(memcg->memsw.limit);
1093 if (count <= limit)
1094 margin = min(margin, limit - count);
1095 else
1096 margin = 0;
1097 }
1098
1099 return margin;
1100 }
1101
1102 /*
1103 * A routine for checking "mem" is under move_account() or not.
1104 *
1105 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1106 * moving cgroups. This is for waiting at high-memory pressure
1107 * caused by "move".
1108 */
1109 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1110 {
1111 struct mem_cgroup *from;
1112 struct mem_cgroup *to;
1113 bool ret = false;
1114 /*
1115 * Unlike task_move routines, we access mc.to, mc.from not under
1116 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1117 */
1118 spin_lock(&mc.lock);
1119 from = mc.from;
1120 to = mc.to;
1121 if (!from)
1122 goto unlock;
1123
1124 ret = mem_cgroup_is_descendant(from, memcg) ||
1125 mem_cgroup_is_descendant(to, memcg);
1126 unlock:
1127 spin_unlock(&mc.lock);
1128 return ret;
1129 }
1130
1131 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1132 {
1133 if (mc.moving_task && current != mc.moving_task) {
1134 if (mem_cgroup_under_move(memcg)) {
1135 DEFINE_WAIT(wait);
1136 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1137 /* moving charge context might have finished. */
1138 if (mc.moving_task)
1139 schedule();
1140 finish_wait(&mc.waitq, &wait);
1141 return true;
1142 }
1143 }
1144 return false;
1145 }
1146
1147 #define K(x) ((x) << (PAGE_SHIFT-10))
1148 /**
1149 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1150 * @memcg: The memory cgroup that went over limit
1151 * @p: Task that is going to be killed
1152 *
1153 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1154 * enabled
1155 */
1156 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1157 {
1158 struct mem_cgroup *iter;
1159 unsigned int i;
1160
1161 rcu_read_lock();
1162
1163 if (p) {
1164 pr_info("Task in ");
1165 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1166 pr_cont(" killed as a result of limit of ");
1167 } else {
1168 pr_info("Memory limit reached of cgroup ");
1169 }
1170
1171 pr_cont_cgroup_path(memcg->css.cgroup);
1172 pr_cont("\n");
1173
1174 rcu_read_unlock();
1175
1176 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1177 K((u64)page_counter_read(&memcg->memory)),
1178 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1179 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1180 K((u64)page_counter_read(&memcg->memsw)),
1181 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1182 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1183 K((u64)page_counter_read(&memcg->kmem)),
1184 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1185
1186 for_each_mem_cgroup_tree(iter, memcg) {
1187 pr_info("Memory cgroup stats for ");
1188 pr_cont_cgroup_path(iter->css.cgroup);
1189 pr_cont(":");
1190
1191 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1192 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1193 continue;
1194 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1195 K(mem_cgroup_read_stat(iter, i)));
1196 }
1197
1198 for (i = 0; i < NR_LRU_LISTS; i++)
1199 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1200 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1201
1202 pr_cont("\n");
1203 }
1204 }
1205
1206 /*
1207 * This function returns the number of memcg under hierarchy tree. Returns
1208 * 1(self count) if no children.
1209 */
1210 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1211 {
1212 int num = 0;
1213 struct mem_cgroup *iter;
1214
1215 for_each_mem_cgroup_tree(iter, memcg)
1216 num++;
1217 return num;
1218 }
1219
1220 /*
1221 * Return the memory (and swap, if configured) limit for a memcg.
1222 */
1223 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1224 {
1225 unsigned long limit;
1226
1227 limit = memcg->memory.limit;
1228 if (mem_cgroup_swappiness(memcg)) {
1229 unsigned long memsw_limit;
1230 unsigned long swap_limit;
1231
1232 memsw_limit = memcg->memsw.limit;
1233 swap_limit = memcg->swap.limit;
1234 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1235 limit = min(limit + swap_limit, memsw_limit);
1236 }
1237 return limit;
1238 }
1239
1240 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1241 int order)
1242 {
1243 struct oom_control oc = {
1244 .zonelist = NULL,
1245 .nodemask = NULL,
1246 .memcg = memcg,
1247 .gfp_mask = gfp_mask,
1248 .order = order,
1249 };
1250 bool ret;
1251
1252 mutex_lock(&oom_lock);
1253 ret = out_of_memory(&oc);
1254 mutex_unlock(&oom_lock);
1255 return ret;
1256 }
1257
1258 #if MAX_NUMNODES > 1
1259
1260 /**
1261 * test_mem_cgroup_node_reclaimable
1262 * @memcg: the target memcg
1263 * @nid: the node ID to be checked.
1264 * @noswap : specify true here if the user wants flle only information.
1265 *
1266 * This function returns whether the specified memcg contains any
1267 * reclaimable pages on a node. Returns true if there are any reclaimable
1268 * pages in the node.
1269 */
1270 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1271 int nid, bool noswap)
1272 {
1273 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1274 return true;
1275 if (noswap || !total_swap_pages)
1276 return false;
1277 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1278 return true;
1279 return false;
1280
1281 }
1282
1283 /*
1284 * Always updating the nodemask is not very good - even if we have an empty
1285 * list or the wrong list here, we can start from some node and traverse all
1286 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1287 *
1288 */
1289 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1290 {
1291 int nid;
1292 /*
1293 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1294 * pagein/pageout changes since the last update.
1295 */
1296 if (!atomic_read(&memcg->numainfo_events))
1297 return;
1298 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1299 return;
1300
1301 /* make a nodemask where this memcg uses memory from */
1302 memcg->scan_nodes = node_states[N_MEMORY];
1303
1304 for_each_node_mask(nid, node_states[N_MEMORY]) {
1305
1306 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1307 node_clear(nid, memcg->scan_nodes);
1308 }
1309
1310 atomic_set(&memcg->numainfo_events, 0);
1311 atomic_set(&memcg->numainfo_updating, 0);
1312 }
1313
1314 /*
1315 * Selecting a node where we start reclaim from. Because what we need is just
1316 * reducing usage counter, start from anywhere is O,K. Considering
1317 * memory reclaim from current node, there are pros. and cons.
1318 *
1319 * Freeing memory from current node means freeing memory from a node which
1320 * we'll use or we've used. So, it may make LRU bad. And if several threads
1321 * hit limits, it will see a contention on a node. But freeing from remote
1322 * node means more costs for memory reclaim because of memory latency.
1323 *
1324 * Now, we use round-robin. Better algorithm is welcomed.
1325 */
1326 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1327 {
1328 int node;
1329
1330 mem_cgroup_may_update_nodemask(memcg);
1331 node = memcg->last_scanned_node;
1332
1333 node = next_node_in(node, memcg->scan_nodes);
1334 /*
1335 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1336 * last time it really checked all the LRUs due to rate limiting.
1337 * Fallback to the current node in that case for simplicity.
1338 */
1339 if (unlikely(node == MAX_NUMNODES))
1340 node = numa_node_id();
1341
1342 memcg->last_scanned_node = node;
1343 return node;
1344 }
1345 #else
1346 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1347 {
1348 return 0;
1349 }
1350 #endif
1351
1352 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1353 pg_data_t *pgdat,
1354 gfp_t gfp_mask,
1355 unsigned long *total_scanned)
1356 {
1357 struct mem_cgroup *victim = NULL;
1358 int total = 0;
1359 int loop = 0;
1360 unsigned long excess;
1361 unsigned long nr_scanned;
1362 struct mem_cgroup_reclaim_cookie reclaim = {
1363 .pgdat = pgdat,
1364 .priority = 0,
1365 };
1366
1367 excess = soft_limit_excess(root_memcg);
1368
1369 while (1) {
1370 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1371 if (!victim) {
1372 loop++;
1373 if (loop >= 2) {
1374 /*
1375 * If we have not been able to reclaim
1376 * anything, it might because there are
1377 * no reclaimable pages under this hierarchy
1378 */
1379 if (!total)
1380 break;
1381 /*
1382 * We want to do more targeted reclaim.
1383 * excess >> 2 is not to excessive so as to
1384 * reclaim too much, nor too less that we keep
1385 * coming back to reclaim from this cgroup
1386 */
1387 if (total >= (excess >> 2) ||
1388 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1389 break;
1390 }
1391 continue;
1392 }
1393 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1394 pgdat, &nr_scanned);
1395 *total_scanned += nr_scanned;
1396 if (!soft_limit_excess(root_memcg))
1397 break;
1398 }
1399 mem_cgroup_iter_break(root_memcg, victim);
1400 return total;
1401 }
1402
1403 #ifdef CONFIG_LOCKDEP
1404 static struct lockdep_map memcg_oom_lock_dep_map = {
1405 .name = "memcg_oom_lock",
1406 };
1407 #endif
1408
1409 static DEFINE_SPINLOCK(memcg_oom_lock);
1410
1411 /*
1412 * Check OOM-Killer is already running under our hierarchy.
1413 * If someone is running, return false.
1414 */
1415 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1416 {
1417 struct mem_cgroup *iter, *failed = NULL;
1418
1419 spin_lock(&memcg_oom_lock);
1420
1421 for_each_mem_cgroup_tree(iter, memcg) {
1422 if (iter->oom_lock) {
1423 /*
1424 * this subtree of our hierarchy is already locked
1425 * so we cannot give a lock.
1426 */
1427 failed = iter;
1428 mem_cgroup_iter_break(memcg, iter);
1429 break;
1430 } else
1431 iter->oom_lock = true;
1432 }
1433
1434 if (failed) {
1435 /*
1436 * OK, we failed to lock the whole subtree so we have
1437 * to clean up what we set up to the failing subtree
1438 */
1439 for_each_mem_cgroup_tree(iter, memcg) {
1440 if (iter == failed) {
1441 mem_cgroup_iter_break(memcg, iter);
1442 break;
1443 }
1444 iter->oom_lock = false;
1445 }
1446 } else
1447 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1448
1449 spin_unlock(&memcg_oom_lock);
1450
1451 return !failed;
1452 }
1453
1454 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1455 {
1456 struct mem_cgroup *iter;
1457
1458 spin_lock(&memcg_oom_lock);
1459 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1460 for_each_mem_cgroup_tree(iter, memcg)
1461 iter->oom_lock = false;
1462 spin_unlock(&memcg_oom_lock);
1463 }
1464
1465 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1466 {
1467 struct mem_cgroup *iter;
1468
1469 spin_lock(&memcg_oom_lock);
1470 for_each_mem_cgroup_tree(iter, memcg)
1471 iter->under_oom++;
1472 spin_unlock(&memcg_oom_lock);
1473 }
1474
1475 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1476 {
1477 struct mem_cgroup *iter;
1478
1479 /*
1480 * When a new child is created while the hierarchy is under oom,
1481 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1482 */
1483 spin_lock(&memcg_oom_lock);
1484 for_each_mem_cgroup_tree(iter, memcg)
1485 if (iter->under_oom > 0)
1486 iter->under_oom--;
1487 spin_unlock(&memcg_oom_lock);
1488 }
1489
1490 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1491
1492 struct oom_wait_info {
1493 struct mem_cgroup *memcg;
1494 wait_queue_t wait;
1495 };
1496
1497 static int memcg_oom_wake_function(wait_queue_t *wait,
1498 unsigned mode, int sync, void *arg)
1499 {
1500 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1501 struct mem_cgroup *oom_wait_memcg;
1502 struct oom_wait_info *oom_wait_info;
1503
1504 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1505 oom_wait_memcg = oom_wait_info->memcg;
1506
1507 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1508 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1509 return 0;
1510 return autoremove_wake_function(wait, mode, sync, arg);
1511 }
1512
1513 static void memcg_oom_recover(struct mem_cgroup *memcg)
1514 {
1515 /*
1516 * For the following lockless ->under_oom test, the only required
1517 * guarantee is that it must see the state asserted by an OOM when
1518 * this function is called as a result of userland actions
1519 * triggered by the notification of the OOM. This is trivially
1520 * achieved by invoking mem_cgroup_mark_under_oom() before
1521 * triggering notification.
1522 */
1523 if (memcg && memcg->under_oom)
1524 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1525 }
1526
1527 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1528 {
1529 if (!current->memcg_may_oom)
1530 return;
1531 /*
1532 * We are in the middle of the charge context here, so we
1533 * don't want to block when potentially sitting on a callstack
1534 * that holds all kinds of filesystem and mm locks.
1535 *
1536 * Also, the caller may handle a failed allocation gracefully
1537 * (like optional page cache readahead) and so an OOM killer
1538 * invocation might not even be necessary.
1539 *
1540 * That's why we don't do anything here except remember the
1541 * OOM context and then deal with it at the end of the page
1542 * fault when the stack is unwound, the locks are released,
1543 * and when we know whether the fault was overall successful.
1544 */
1545 css_get(&memcg->css);
1546 current->memcg_in_oom = memcg;
1547 current->memcg_oom_gfp_mask = mask;
1548 current->memcg_oom_order = order;
1549 }
1550
1551 /**
1552 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1553 * @handle: actually kill/wait or just clean up the OOM state
1554 *
1555 * This has to be called at the end of a page fault if the memcg OOM
1556 * handler was enabled.
1557 *
1558 * Memcg supports userspace OOM handling where failed allocations must
1559 * sleep on a waitqueue until the userspace task resolves the
1560 * situation. Sleeping directly in the charge context with all kinds
1561 * of locks held is not a good idea, instead we remember an OOM state
1562 * in the task and mem_cgroup_oom_synchronize() has to be called at
1563 * the end of the page fault to complete the OOM handling.
1564 *
1565 * Returns %true if an ongoing memcg OOM situation was detected and
1566 * completed, %false otherwise.
1567 */
1568 bool mem_cgroup_oom_synchronize(bool handle)
1569 {
1570 struct mem_cgroup *memcg = current->memcg_in_oom;
1571 struct oom_wait_info owait;
1572 bool locked;
1573
1574 /* OOM is global, do not handle */
1575 if (!memcg)
1576 return false;
1577
1578 if (!handle)
1579 goto cleanup;
1580
1581 owait.memcg = memcg;
1582 owait.wait.flags = 0;
1583 owait.wait.func = memcg_oom_wake_function;
1584 owait.wait.private = current;
1585 INIT_LIST_HEAD(&owait.wait.task_list);
1586
1587 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1588 mem_cgroup_mark_under_oom(memcg);
1589
1590 locked = mem_cgroup_oom_trylock(memcg);
1591
1592 if (locked)
1593 mem_cgroup_oom_notify(memcg);
1594
1595 if (locked && !memcg->oom_kill_disable) {
1596 mem_cgroup_unmark_under_oom(memcg);
1597 finish_wait(&memcg_oom_waitq, &owait.wait);
1598 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1599 current->memcg_oom_order);
1600 } else {
1601 schedule();
1602 mem_cgroup_unmark_under_oom(memcg);
1603 finish_wait(&memcg_oom_waitq, &owait.wait);
1604 }
1605
1606 if (locked) {
1607 mem_cgroup_oom_unlock(memcg);
1608 /*
1609 * There is no guarantee that an OOM-lock contender
1610 * sees the wakeups triggered by the OOM kill
1611 * uncharges. Wake any sleepers explicitely.
1612 */
1613 memcg_oom_recover(memcg);
1614 }
1615 cleanup:
1616 current->memcg_in_oom = NULL;
1617 css_put(&memcg->css);
1618 return true;
1619 }
1620
1621 /**
1622 * lock_page_memcg - lock a page->mem_cgroup binding
1623 * @page: the page
1624 *
1625 * This function protects unlocked LRU pages from being moved to
1626 * another cgroup and stabilizes their page->mem_cgroup binding.
1627 */
1628 void lock_page_memcg(struct page *page)
1629 {
1630 struct mem_cgroup *memcg;
1631 unsigned long flags;
1632
1633 /*
1634 * The RCU lock is held throughout the transaction. The fast
1635 * path can get away without acquiring the memcg->move_lock
1636 * because page moving starts with an RCU grace period.
1637 */
1638 rcu_read_lock();
1639
1640 if (mem_cgroup_disabled())
1641 return;
1642 again:
1643 memcg = page->mem_cgroup;
1644 if (unlikely(!memcg))
1645 return;
1646
1647 if (atomic_read(&memcg->moving_account) <= 0)
1648 return;
1649
1650 spin_lock_irqsave(&memcg->move_lock, flags);
1651 if (memcg != page->mem_cgroup) {
1652 spin_unlock_irqrestore(&memcg->move_lock, flags);
1653 goto again;
1654 }
1655
1656 /*
1657 * When charge migration first begins, we can have locked and
1658 * unlocked page stat updates happening concurrently. Track
1659 * the task who has the lock for unlock_page_memcg().
1660 */
1661 memcg->move_lock_task = current;
1662 memcg->move_lock_flags = flags;
1663
1664 return;
1665 }
1666 EXPORT_SYMBOL(lock_page_memcg);
1667
1668 /**
1669 * unlock_page_memcg - unlock a page->mem_cgroup binding
1670 * @page: the page
1671 */
1672 void unlock_page_memcg(struct page *page)
1673 {
1674 struct mem_cgroup *memcg = page->mem_cgroup;
1675
1676 if (memcg && memcg->move_lock_task == current) {
1677 unsigned long flags = memcg->move_lock_flags;
1678
1679 memcg->move_lock_task = NULL;
1680 memcg->move_lock_flags = 0;
1681
1682 spin_unlock_irqrestore(&memcg->move_lock, flags);
1683 }
1684
1685 rcu_read_unlock();
1686 }
1687 EXPORT_SYMBOL(unlock_page_memcg);
1688
1689 /*
1690 * size of first charge trial. "32" comes from vmscan.c's magic value.
1691 * TODO: maybe necessary to use big numbers in big irons.
1692 */
1693 #define CHARGE_BATCH 32U
1694 struct memcg_stock_pcp {
1695 struct mem_cgroup *cached; /* this never be root cgroup */
1696 unsigned int nr_pages;
1697 struct work_struct work;
1698 unsigned long flags;
1699 #define FLUSHING_CACHED_CHARGE 0
1700 };
1701 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1702 static DEFINE_MUTEX(percpu_charge_mutex);
1703
1704 /**
1705 * consume_stock: Try to consume stocked charge on this cpu.
1706 * @memcg: memcg to consume from.
1707 * @nr_pages: how many pages to charge.
1708 *
1709 * The charges will only happen if @memcg matches the current cpu's memcg
1710 * stock, and at least @nr_pages are available in that stock. Failure to
1711 * service an allocation will refill the stock.
1712 *
1713 * returns true if successful, false otherwise.
1714 */
1715 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1716 {
1717 struct memcg_stock_pcp *stock;
1718 unsigned long flags;
1719 bool ret = false;
1720
1721 if (nr_pages > CHARGE_BATCH)
1722 return ret;
1723
1724 local_irq_save(flags);
1725
1726 stock = this_cpu_ptr(&memcg_stock);
1727 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1728 stock->nr_pages -= nr_pages;
1729 ret = true;
1730 }
1731
1732 local_irq_restore(flags);
1733
1734 return ret;
1735 }
1736
1737 /*
1738 * Returns stocks cached in percpu and reset cached information.
1739 */
1740 static void drain_stock(struct memcg_stock_pcp *stock)
1741 {
1742 struct mem_cgroup *old = stock->cached;
1743
1744 if (stock->nr_pages) {
1745 page_counter_uncharge(&old->memory, stock->nr_pages);
1746 if (do_memsw_account())
1747 page_counter_uncharge(&old->memsw, stock->nr_pages);
1748 css_put_many(&old->css, stock->nr_pages);
1749 stock->nr_pages = 0;
1750 }
1751 stock->cached = NULL;
1752 }
1753
1754 static void drain_local_stock(struct work_struct *dummy)
1755 {
1756 struct memcg_stock_pcp *stock;
1757 unsigned long flags;
1758
1759 local_irq_save(flags);
1760
1761 stock = this_cpu_ptr(&memcg_stock);
1762 drain_stock(stock);
1763 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1764
1765 local_irq_restore(flags);
1766 }
1767
1768 /*
1769 * Cache charges(val) to local per_cpu area.
1770 * This will be consumed by consume_stock() function, later.
1771 */
1772 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1773 {
1774 struct memcg_stock_pcp *stock;
1775 unsigned long flags;
1776
1777 local_irq_save(flags);
1778
1779 stock = this_cpu_ptr(&memcg_stock);
1780 if (stock->cached != memcg) { /* reset if necessary */
1781 drain_stock(stock);
1782 stock->cached = memcg;
1783 }
1784 stock->nr_pages += nr_pages;
1785
1786 local_irq_restore(flags);
1787 }
1788
1789 /*
1790 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1791 * of the hierarchy under it.
1792 */
1793 static void drain_all_stock(struct mem_cgroup *root_memcg)
1794 {
1795 int cpu, curcpu;
1796
1797 /* If someone's already draining, avoid adding running more workers. */
1798 if (!mutex_trylock(&percpu_charge_mutex))
1799 return;
1800 /* Notify other cpus that system-wide "drain" is running */
1801 get_online_cpus();
1802 curcpu = get_cpu();
1803 for_each_online_cpu(cpu) {
1804 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1805 struct mem_cgroup *memcg;
1806
1807 memcg = stock->cached;
1808 if (!memcg || !stock->nr_pages)
1809 continue;
1810 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1811 continue;
1812 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1813 if (cpu == curcpu)
1814 drain_local_stock(&stock->work);
1815 else
1816 schedule_work_on(cpu, &stock->work);
1817 }
1818 }
1819 put_cpu();
1820 put_online_cpus();
1821 mutex_unlock(&percpu_charge_mutex);
1822 }
1823
1824 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1825 {
1826 struct memcg_stock_pcp *stock;
1827
1828 stock = &per_cpu(memcg_stock, cpu);
1829 drain_stock(stock);
1830 return 0;
1831 }
1832
1833 static void reclaim_high(struct mem_cgroup *memcg,
1834 unsigned int nr_pages,
1835 gfp_t gfp_mask)
1836 {
1837 do {
1838 if (page_counter_read(&memcg->memory) <= memcg->high)
1839 continue;
1840 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1841 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1842 } while ((memcg = parent_mem_cgroup(memcg)));
1843 }
1844
1845 static void high_work_func(struct work_struct *work)
1846 {
1847 struct mem_cgroup *memcg;
1848
1849 memcg = container_of(work, struct mem_cgroup, high_work);
1850 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1851 }
1852
1853 /*
1854 * Scheduled by try_charge() to be executed from the userland return path
1855 * and reclaims memory over the high limit.
1856 */
1857 void mem_cgroup_handle_over_high(void)
1858 {
1859 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1860 struct mem_cgroup *memcg;
1861
1862 if (likely(!nr_pages))
1863 return;
1864
1865 memcg = get_mem_cgroup_from_mm(current->mm);
1866 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1867 css_put(&memcg->css);
1868 current->memcg_nr_pages_over_high = 0;
1869 }
1870
1871 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1872 unsigned int nr_pages)
1873 {
1874 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1875 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1876 struct mem_cgroup *mem_over_limit;
1877 struct page_counter *counter;
1878 unsigned long nr_reclaimed;
1879 bool may_swap = true;
1880 bool drained = false;
1881
1882 if (mem_cgroup_is_root(memcg))
1883 return 0;
1884 retry:
1885 if (consume_stock(memcg, nr_pages))
1886 return 0;
1887
1888 if (!do_memsw_account() ||
1889 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1890 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1891 goto done_restock;
1892 if (do_memsw_account())
1893 page_counter_uncharge(&memcg->memsw, batch);
1894 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1895 } else {
1896 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1897 may_swap = false;
1898 }
1899
1900 if (batch > nr_pages) {
1901 batch = nr_pages;
1902 goto retry;
1903 }
1904
1905 /*
1906 * Unlike in global OOM situations, memcg is not in a physical
1907 * memory shortage. Allow dying and OOM-killed tasks to
1908 * bypass the last charges so that they can exit quickly and
1909 * free their memory.
1910 */
1911 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1912 fatal_signal_pending(current) ||
1913 current->flags & PF_EXITING))
1914 goto force;
1915
1916 /*
1917 * Prevent unbounded recursion when reclaim operations need to
1918 * allocate memory. This might exceed the limits temporarily,
1919 * but we prefer facilitating memory reclaim and getting back
1920 * under the limit over triggering OOM kills in these cases.
1921 */
1922 if (unlikely(current->flags & PF_MEMALLOC))
1923 goto force;
1924
1925 if (unlikely(task_in_memcg_oom(current)))
1926 goto nomem;
1927
1928 if (!gfpflags_allow_blocking(gfp_mask))
1929 goto nomem;
1930
1931 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1932
1933 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1934 gfp_mask, may_swap);
1935
1936 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1937 goto retry;
1938
1939 if (!drained) {
1940 drain_all_stock(mem_over_limit);
1941 drained = true;
1942 goto retry;
1943 }
1944
1945 if (gfp_mask & __GFP_NORETRY)
1946 goto nomem;
1947 /*
1948 * Even though the limit is exceeded at this point, reclaim
1949 * may have been able to free some pages. Retry the charge
1950 * before killing the task.
1951 *
1952 * Only for regular pages, though: huge pages are rather
1953 * unlikely to succeed so close to the limit, and we fall back
1954 * to regular pages anyway in case of failure.
1955 */
1956 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1957 goto retry;
1958 /*
1959 * At task move, charge accounts can be doubly counted. So, it's
1960 * better to wait until the end of task_move if something is going on.
1961 */
1962 if (mem_cgroup_wait_acct_move(mem_over_limit))
1963 goto retry;
1964
1965 if (nr_retries--)
1966 goto retry;
1967
1968 if (gfp_mask & __GFP_NOFAIL)
1969 goto force;
1970
1971 if (fatal_signal_pending(current))
1972 goto force;
1973
1974 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1975
1976 mem_cgroup_oom(mem_over_limit, gfp_mask,
1977 get_order(nr_pages * PAGE_SIZE));
1978 nomem:
1979 if (!(gfp_mask & __GFP_NOFAIL))
1980 return -ENOMEM;
1981 force:
1982 /*
1983 * The allocation either can't fail or will lead to more memory
1984 * being freed very soon. Allow memory usage go over the limit
1985 * temporarily by force charging it.
1986 */
1987 page_counter_charge(&memcg->memory, nr_pages);
1988 if (do_memsw_account())
1989 page_counter_charge(&memcg->memsw, nr_pages);
1990 css_get_many(&memcg->css, nr_pages);
1991
1992 return 0;
1993
1994 done_restock:
1995 css_get_many(&memcg->css, batch);
1996 if (batch > nr_pages)
1997 refill_stock(memcg, batch - nr_pages);
1998
1999 /*
2000 * If the hierarchy is above the normal consumption range, schedule
2001 * reclaim on returning to userland. We can perform reclaim here
2002 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2003 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2004 * not recorded as it most likely matches current's and won't
2005 * change in the meantime. As high limit is checked again before
2006 * reclaim, the cost of mismatch is negligible.
2007 */
2008 do {
2009 if (page_counter_read(&memcg->memory) > memcg->high) {
2010 /* Don't bother a random interrupted task */
2011 if (in_interrupt()) {
2012 schedule_work(&memcg->high_work);
2013 break;
2014 }
2015 current->memcg_nr_pages_over_high += batch;
2016 set_notify_resume(current);
2017 break;
2018 }
2019 } while ((memcg = parent_mem_cgroup(memcg)));
2020
2021 return 0;
2022 }
2023
2024 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2025 {
2026 if (mem_cgroup_is_root(memcg))
2027 return;
2028
2029 page_counter_uncharge(&memcg->memory, nr_pages);
2030 if (do_memsw_account())
2031 page_counter_uncharge(&memcg->memsw, nr_pages);
2032
2033 css_put_many(&memcg->css, nr_pages);
2034 }
2035
2036 static void lock_page_lru(struct page *page, int *isolated)
2037 {
2038 struct zone *zone = page_zone(page);
2039
2040 spin_lock_irq(zone_lru_lock(zone));
2041 if (PageLRU(page)) {
2042 struct lruvec *lruvec;
2043
2044 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2045 ClearPageLRU(page);
2046 del_page_from_lru_list(page, lruvec, page_lru(page));
2047 *isolated = 1;
2048 } else
2049 *isolated = 0;
2050 }
2051
2052 static void unlock_page_lru(struct page *page, int isolated)
2053 {
2054 struct zone *zone = page_zone(page);
2055
2056 if (isolated) {
2057 struct lruvec *lruvec;
2058
2059 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2060 VM_BUG_ON_PAGE(PageLRU(page), page);
2061 SetPageLRU(page);
2062 add_page_to_lru_list(page, lruvec, page_lru(page));
2063 }
2064 spin_unlock_irq(zone_lru_lock(zone));
2065 }
2066
2067 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2068 bool lrucare)
2069 {
2070 int isolated;
2071
2072 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2073
2074 /*
2075 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2076 * may already be on some other mem_cgroup's LRU. Take care of it.
2077 */
2078 if (lrucare)
2079 lock_page_lru(page, &isolated);
2080
2081 /*
2082 * Nobody should be changing or seriously looking at
2083 * page->mem_cgroup at this point:
2084 *
2085 * - the page is uncharged
2086 *
2087 * - the page is off-LRU
2088 *
2089 * - an anonymous fault has exclusive page access, except for
2090 * a locked page table
2091 *
2092 * - a page cache insertion, a swapin fault, or a migration
2093 * have the page locked
2094 */
2095 page->mem_cgroup = memcg;
2096
2097 if (lrucare)
2098 unlock_page_lru(page, isolated);
2099 }
2100
2101 #ifndef CONFIG_SLOB
2102 static int memcg_alloc_cache_id(void)
2103 {
2104 int id, size;
2105 int err;
2106
2107 id = ida_simple_get(&memcg_cache_ida,
2108 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2109 if (id < 0)
2110 return id;
2111
2112 if (id < memcg_nr_cache_ids)
2113 return id;
2114
2115 /*
2116 * There's no space for the new id in memcg_caches arrays,
2117 * so we have to grow them.
2118 */
2119 down_write(&memcg_cache_ids_sem);
2120
2121 size = 2 * (id + 1);
2122 if (size < MEMCG_CACHES_MIN_SIZE)
2123 size = MEMCG_CACHES_MIN_SIZE;
2124 else if (size > MEMCG_CACHES_MAX_SIZE)
2125 size = MEMCG_CACHES_MAX_SIZE;
2126
2127 err = memcg_update_all_caches(size);
2128 if (!err)
2129 err = memcg_update_all_list_lrus(size);
2130 if (!err)
2131 memcg_nr_cache_ids = size;
2132
2133 up_write(&memcg_cache_ids_sem);
2134
2135 if (err) {
2136 ida_simple_remove(&memcg_cache_ida, id);
2137 return err;
2138 }
2139 return id;
2140 }
2141
2142 static void memcg_free_cache_id(int id)
2143 {
2144 ida_simple_remove(&memcg_cache_ida, id);
2145 }
2146
2147 struct memcg_kmem_cache_create_work {
2148 struct mem_cgroup *memcg;
2149 struct kmem_cache *cachep;
2150 struct work_struct work;
2151 };
2152
2153 static void memcg_kmem_cache_create_func(struct work_struct *w)
2154 {
2155 struct memcg_kmem_cache_create_work *cw =
2156 container_of(w, struct memcg_kmem_cache_create_work, work);
2157 struct mem_cgroup *memcg = cw->memcg;
2158 struct kmem_cache *cachep = cw->cachep;
2159
2160 memcg_create_kmem_cache(memcg, cachep);
2161
2162 css_put(&memcg->css);
2163 kfree(cw);
2164 }
2165
2166 /*
2167 * Enqueue the creation of a per-memcg kmem_cache.
2168 */
2169 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2170 struct kmem_cache *cachep)
2171 {
2172 struct memcg_kmem_cache_create_work *cw;
2173
2174 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2175 if (!cw)
2176 return;
2177
2178 css_get(&memcg->css);
2179
2180 cw->memcg = memcg;
2181 cw->cachep = cachep;
2182 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2183
2184 queue_work(memcg_kmem_cache_wq, &cw->work);
2185 }
2186
2187 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2188 struct kmem_cache *cachep)
2189 {
2190 /*
2191 * We need to stop accounting when we kmalloc, because if the
2192 * corresponding kmalloc cache is not yet created, the first allocation
2193 * in __memcg_schedule_kmem_cache_create will recurse.
2194 *
2195 * However, it is better to enclose the whole function. Depending on
2196 * the debugging options enabled, INIT_WORK(), for instance, can
2197 * trigger an allocation. This too, will make us recurse. Because at
2198 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2199 * the safest choice is to do it like this, wrapping the whole function.
2200 */
2201 current->memcg_kmem_skip_account = 1;
2202 __memcg_schedule_kmem_cache_create(memcg, cachep);
2203 current->memcg_kmem_skip_account = 0;
2204 }
2205
2206 static inline bool memcg_kmem_bypass(void)
2207 {
2208 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2209 return true;
2210 return false;
2211 }
2212
2213 /**
2214 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2215 * @cachep: the original global kmem cache
2216 *
2217 * Return the kmem_cache we're supposed to use for a slab allocation.
2218 * We try to use the current memcg's version of the cache.
2219 *
2220 * If the cache does not exist yet, if we are the first user of it, we
2221 * create it asynchronously in a workqueue and let the current allocation
2222 * go through with the original cache.
2223 *
2224 * This function takes a reference to the cache it returns to assure it
2225 * won't get destroyed while we are working with it. Once the caller is
2226 * done with it, memcg_kmem_put_cache() must be called to release the
2227 * reference.
2228 */
2229 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2230 {
2231 struct mem_cgroup *memcg;
2232 struct kmem_cache *memcg_cachep;
2233 int kmemcg_id;
2234
2235 VM_BUG_ON(!is_root_cache(cachep));
2236
2237 if (memcg_kmem_bypass())
2238 return cachep;
2239
2240 if (current->memcg_kmem_skip_account)
2241 return cachep;
2242
2243 memcg = get_mem_cgroup_from_mm(current->mm);
2244 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2245 if (kmemcg_id < 0)
2246 goto out;
2247
2248 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2249 if (likely(memcg_cachep))
2250 return memcg_cachep;
2251
2252 /*
2253 * If we are in a safe context (can wait, and not in interrupt
2254 * context), we could be be predictable and return right away.
2255 * This would guarantee that the allocation being performed
2256 * already belongs in the new cache.
2257 *
2258 * However, there are some clashes that can arrive from locking.
2259 * For instance, because we acquire the slab_mutex while doing
2260 * memcg_create_kmem_cache, this means no further allocation
2261 * could happen with the slab_mutex held. So it's better to
2262 * defer everything.
2263 */
2264 memcg_schedule_kmem_cache_create(memcg, cachep);
2265 out:
2266 css_put(&memcg->css);
2267 return cachep;
2268 }
2269
2270 /**
2271 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2272 * @cachep: the cache returned by memcg_kmem_get_cache
2273 */
2274 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2275 {
2276 if (!is_root_cache(cachep))
2277 css_put(&cachep->memcg_params.memcg->css);
2278 }
2279
2280 /**
2281 * memcg_kmem_charge: charge a kmem page
2282 * @page: page to charge
2283 * @gfp: reclaim mode
2284 * @order: allocation order
2285 * @memcg: memory cgroup to charge
2286 *
2287 * Returns 0 on success, an error code on failure.
2288 */
2289 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2290 struct mem_cgroup *memcg)
2291 {
2292 unsigned int nr_pages = 1 << order;
2293 struct page_counter *counter;
2294 int ret;
2295
2296 ret = try_charge(memcg, gfp, nr_pages);
2297 if (ret)
2298 return ret;
2299
2300 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2301 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2302 cancel_charge(memcg, nr_pages);
2303 return -ENOMEM;
2304 }
2305
2306 page->mem_cgroup = memcg;
2307
2308 return 0;
2309 }
2310
2311 /**
2312 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2313 * @page: page to charge
2314 * @gfp: reclaim mode
2315 * @order: allocation order
2316 *
2317 * Returns 0 on success, an error code on failure.
2318 */
2319 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2320 {
2321 struct mem_cgroup *memcg;
2322 int ret = 0;
2323
2324 if (memcg_kmem_bypass())
2325 return 0;
2326
2327 memcg = get_mem_cgroup_from_mm(current->mm);
2328 if (!mem_cgroup_is_root(memcg)) {
2329 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2330 if (!ret)
2331 __SetPageKmemcg(page);
2332 }
2333 css_put(&memcg->css);
2334 return ret;
2335 }
2336 /**
2337 * memcg_kmem_uncharge: uncharge a kmem page
2338 * @page: page to uncharge
2339 * @order: allocation order
2340 */
2341 void memcg_kmem_uncharge(struct page *page, int order)
2342 {
2343 struct mem_cgroup *memcg = page->mem_cgroup;
2344 unsigned int nr_pages = 1 << order;
2345
2346 if (!memcg)
2347 return;
2348
2349 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2350
2351 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2352 page_counter_uncharge(&memcg->kmem, nr_pages);
2353
2354 page_counter_uncharge(&memcg->memory, nr_pages);
2355 if (do_memsw_account())
2356 page_counter_uncharge(&memcg->memsw, nr_pages);
2357
2358 page->mem_cgroup = NULL;
2359
2360 /* slab pages do not have PageKmemcg flag set */
2361 if (PageKmemcg(page))
2362 __ClearPageKmemcg(page);
2363
2364 css_put_many(&memcg->css, nr_pages);
2365 }
2366 #endif /* !CONFIG_SLOB */
2367
2368 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2369
2370 /*
2371 * Because tail pages are not marked as "used", set it. We're under
2372 * zone_lru_lock and migration entries setup in all page mappings.
2373 */
2374 void mem_cgroup_split_huge_fixup(struct page *head)
2375 {
2376 int i;
2377
2378 if (mem_cgroup_disabled())
2379 return;
2380
2381 for (i = 1; i < HPAGE_PMD_NR; i++)
2382 head[i].mem_cgroup = head->mem_cgroup;
2383
2384 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2385 HPAGE_PMD_NR);
2386 }
2387 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2388
2389 #ifdef CONFIG_MEMCG_SWAP
2390 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2391 bool charge)
2392 {
2393 int val = (charge) ? 1 : -1;
2394 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2395 }
2396
2397 /**
2398 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2399 * @entry: swap entry to be moved
2400 * @from: mem_cgroup which the entry is moved from
2401 * @to: mem_cgroup which the entry is moved to
2402 *
2403 * It succeeds only when the swap_cgroup's record for this entry is the same
2404 * as the mem_cgroup's id of @from.
2405 *
2406 * Returns 0 on success, -EINVAL on failure.
2407 *
2408 * The caller must have charged to @to, IOW, called page_counter_charge() about
2409 * both res and memsw, and called css_get().
2410 */
2411 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2412 struct mem_cgroup *from, struct mem_cgroup *to)
2413 {
2414 unsigned short old_id, new_id;
2415
2416 old_id = mem_cgroup_id(from);
2417 new_id = mem_cgroup_id(to);
2418
2419 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2420 mem_cgroup_swap_statistics(from, false);
2421 mem_cgroup_swap_statistics(to, true);
2422 return 0;
2423 }
2424 return -EINVAL;
2425 }
2426 #else
2427 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2428 struct mem_cgroup *from, struct mem_cgroup *to)
2429 {
2430 return -EINVAL;
2431 }
2432 #endif
2433
2434 static DEFINE_MUTEX(memcg_limit_mutex);
2435
2436 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2437 unsigned long limit)
2438 {
2439 unsigned long curusage;
2440 unsigned long oldusage;
2441 bool enlarge = false;
2442 int retry_count;
2443 int ret;
2444
2445 /*
2446 * For keeping hierarchical_reclaim simple, how long we should retry
2447 * is depends on callers. We set our retry-count to be function
2448 * of # of children which we should visit in this loop.
2449 */
2450 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2451 mem_cgroup_count_children(memcg);
2452
2453 oldusage = page_counter_read(&memcg->memory);
2454
2455 do {
2456 if (signal_pending(current)) {
2457 ret = -EINTR;
2458 break;
2459 }
2460
2461 mutex_lock(&memcg_limit_mutex);
2462 if (limit > memcg->memsw.limit) {
2463 mutex_unlock(&memcg_limit_mutex);
2464 ret = -EINVAL;
2465 break;
2466 }
2467 if (limit > memcg->memory.limit)
2468 enlarge = true;
2469 ret = page_counter_limit(&memcg->memory, limit);
2470 mutex_unlock(&memcg_limit_mutex);
2471
2472 if (!ret)
2473 break;
2474
2475 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2476
2477 curusage = page_counter_read(&memcg->memory);
2478 /* Usage is reduced ? */
2479 if (curusage >= oldusage)
2480 retry_count--;
2481 else
2482 oldusage = curusage;
2483 } while (retry_count);
2484
2485 if (!ret && enlarge)
2486 memcg_oom_recover(memcg);
2487
2488 return ret;
2489 }
2490
2491 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2492 unsigned long limit)
2493 {
2494 unsigned long curusage;
2495 unsigned long oldusage;
2496 bool enlarge = false;
2497 int retry_count;
2498 int ret;
2499
2500 /* see mem_cgroup_resize_res_limit */
2501 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2502 mem_cgroup_count_children(memcg);
2503
2504 oldusage = page_counter_read(&memcg->memsw);
2505
2506 do {
2507 if (signal_pending(current)) {
2508 ret = -EINTR;
2509 break;
2510 }
2511
2512 mutex_lock(&memcg_limit_mutex);
2513 if (limit < memcg->memory.limit) {
2514 mutex_unlock(&memcg_limit_mutex);
2515 ret = -EINVAL;
2516 break;
2517 }
2518 if (limit > memcg->memsw.limit)
2519 enlarge = true;
2520 ret = page_counter_limit(&memcg->memsw, limit);
2521 mutex_unlock(&memcg_limit_mutex);
2522
2523 if (!ret)
2524 break;
2525
2526 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2527
2528 curusage = page_counter_read(&memcg->memsw);
2529 /* Usage is reduced ? */
2530 if (curusage >= oldusage)
2531 retry_count--;
2532 else
2533 oldusage = curusage;
2534 } while (retry_count);
2535
2536 if (!ret && enlarge)
2537 memcg_oom_recover(memcg);
2538
2539 return ret;
2540 }
2541
2542 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2543 gfp_t gfp_mask,
2544 unsigned long *total_scanned)
2545 {
2546 unsigned long nr_reclaimed = 0;
2547 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2548 unsigned long reclaimed;
2549 int loop = 0;
2550 struct mem_cgroup_tree_per_node *mctz;
2551 unsigned long excess;
2552 unsigned long nr_scanned;
2553
2554 if (order > 0)
2555 return 0;
2556
2557 mctz = soft_limit_tree_node(pgdat->node_id);
2558
2559 /*
2560 * Do not even bother to check the largest node if the root
2561 * is empty. Do it lockless to prevent lock bouncing. Races
2562 * are acceptable as soft limit is best effort anyway.
2563 */
2564 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
2565 return 0;
2566
2567 /*
2568 * This loop can run a while, specially if mem_cgroup's continuously
2569 * keep exceeding their soft limit and putting the system under
2570 * pressure
2571 */
2572 do {
2573 if (next_mz)
2574 mz = next_mz;
2575 else
2576 mz = mem_cgroup_largest_soft_limit_node(mctz);
2577 if (!mz)
2578 break;
2579
2580 nr_scanned = 0;
2581 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2582 gfp_mask, &nr_scanned);
2583 nr_reclaimed += reclaimed;
2584 *total_scanned += nr_scanned;
2585 spin_lock_irq(&mctz->lock);
2586 __mem_cgroup_remove_exceeded(mz, mctz);
2587
2588 /*
2589 * If we failed to reclaim anything from this memory cgroup
2590 * it is time to move on to the next cgroup
2591 */
2592 next_mz = NULL;
2593 if (!reclaimed)
2594 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2595
2596 excess = soft_limit_excess(mz->memcg);
2597 /*
2598 * One school of thought says that we should not add
2599 * back the node to the tree if reclaim returns 0.
2600 * But our reclaim could return 0, simply because due
2601 * to priority we are exposing a smaller subset of
2602 * memory to reclaim from. Consider this as a longer
2603 * term TODO.
2604 */
2605 /* If excess == 0, no tree ops */
2606 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2607 spin_unlock_irq(&mctz->lock);
2608 css_put(&mz->memcg->css);
2609 loop++;
2610 /*
2611 * Could not reclaim anything and there are no more
2612 * mem cgroups to try or we seem to be looping without
2613 * reclaiming anything.
2614 */
2615 if (!nr_reclaimed &&
2616 (next_mz == NULL ||
2617 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2618 break;
2619 } while (!nr_reclaimed);
2620 if (next_mz)
2621 css_put(&next_mz->memcg->css);
2622 return nr_reclaimed;
2623 }
2624
2625 /*
2626 * Test whether @memcg has children, dead or alive. Note that this
2627 * function doesn't care whether @memcg has use_hierarchy enabled and
2628 * returns %true if there are child csses according to the cgroup
2629 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2630 */
2631 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2632 {
2633 bool ret;
2634
2635 rcu_read_lock();
2636 ret = css_next_child(NULL, &memcg->css);
2637 rcu_read_unlock();
2638 return ret;
2639 }
2640
2641 /*
2642 * Reclaims as many pages from the given memcg as possible.
2643 *
2644 * Caller is responsible for holding css reference for memcg.
2645 */
2646 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2647 {
2648 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2649
2650 /* we call try-to-free pages for make this cgroup empty */
2651 lru_add_drain_all();
2652 /* try to free all pages in this cgroup */
2653 while (nr_retries && page_counter_read(&memcg->memory)) {
2654 int progress;
2655
2656 if (signal_pending(current))
2657 return -EINTR;
2658
2659 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2660 GFP_KERNEL, true);
2661 if (!progress) {
2662 nr_retries--;
2663 /* maybe some writeback is necessary */
2664 congestion_wait(BLK_RW_ASYNC, HZ/10);
2665 }
2666
2667 }
2668
2669 return 0;
2670 }
2671
2672 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2673 char *buf, size_t nbytes,
2674 loff_t off)
2675 {
2676 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2677
2678 if (mem_cgroup_is_root(memcg))
2679 return -EINVAL;
2680 return mem_cgroup_force_empty(memcg) ?: nbytes;
2681 }
2682
2683 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2684 struct cftype *cft)
2685 {
2686 return mem_cgroup_from_css(css)->use_hierarchy;
2687 }
2688
2689 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2690 struct cftype *cft, u64 val)
2691 {
2692 int retval = 0;
2693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2694 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2695
2696 if (memcg->use_hierarchy == val)
2697 return 0;
2698
2699 /*
2700 * If parent's use_hierarchy is set, we can't make any modifications
2701 * in the child subtrees. If it is unset, then the change can
2702 * occur, provided the current cgroup has no children.
2703 *
2704 * For the root cgroup, parent_mem is NULL, we allow value to be
2705 * set if there are no children.
2706 */
2707 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2708 (val == 1 || val == 0)) {
2709 if (!memcg_has_children(memcg))
2710 memcg->use_hierarchy = val;
2711 else
2712 retval = -EBUSY;
2713 } else
2714 retval = -EINVAL;
2715
2716 return retval;
2717 }
2718
2719 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2720 {
2721 struct mem_cgroup *iter;
2722 int i;
2723
2724 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2725
2726 for_each_mem_cgroup_tree(iter, memcg) {
2727 for (i = 0; i < MEMCG_NR_STAT; i++)
2728 stat[i] += mem_cgroup_read_stat(iter, i);
2729 }
2730 }
2731
2732 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2733 {
2734 struct mem_cgroup *iter;
2735 int i;
2736
2737 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2738
2739 for_each_mem_cgroup_tree(iter, memcg) {
2740 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2741 events[i] += mem_cgroup_read_events(iter, i);
2742 }
2743 }
2744
2745 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2746 {
2747 unsigned long val = 0;
2748
2749 if (mem_cgroup_is_root(memcg)) {
2750 struct mem_cgroup *iter;
2751
2752 for_each_mem_cgroup_tree(iter, memcg) {
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_CACHE);
2755 val += mem_cgroup_read_stat(iter,
2756 MEM_CGROUP_STAT_RSS);
2757 if (swap)
2758 val += mem_cgroup_read_stat(iter,
2759 MEM_CGROUP_STAT_SWAP);
2760 }
2761 } else {
2762 if (!swap)
2763 val = page_counter_read(&memcg->memory);
2764 else
2765 val = page_counter_read(&memcg->memsw);
2766 }
2767 return val;
2768 }
2769
2770 enum {
2771 RES_USAGE,
2772 RES_LIMIT,
2773 RES_MAX_USAGE,
2774 RES_FAILCNT,
2775 RES_SOFT_LIMIT,
2776 };
2777
2778 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2779 struct cftype *cft)
2780 {
2781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2782 struct page_counter *counter;
2783
2784 switch (MEMFILE_TYPE(cft->private)) {
2785 case _MEM:
2786 counter = &memcg->memory;
2787 break;
2788 case _MEMSWAP:
2789 counter = &memcg->memsw;
2790 break;
2791 case _KMEM:
2792 counter = &memcg->kmem;
2793 break;
2794 case _TCP:
2795 counter = &memcg->tcpmem;
2796 break;
2797 default:
2798 BUG();
2799 }
2800
2801 switch (MEMFILE_ATTR(cft->private)) {
2802 case RES_USAGE:
2803 if (counter == &memcg->memory)
2804 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2805 if (counter == &memcg->memsw)
2806 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2807 return (u64)page_counter_read(counter) * PAGE_SIZE;
2808 case RES_LIMIT:
2809 return (u64)counter->limit * PAGE_SIZE;
2810 case RES_MAX_USAGE:
2811 return (u64)counter->watermark * PAGE_SIZE;
2812 case RES_FAILCNT:
2813 return counter->failcnt;
2814 case RES_SOFT_LIMIT:
2815 return (u64)memcg->soft_limit * PAGE_SIZE;
2816 default:
2817 BUG();
2818 }
2819 }
2820
2821 #ifndef CONFIG_SLOB
2822 static int memcg_online_kmem(struct mem_cgroup *memcg)
2823 {
2824 int memcg_id;
2825
2826 if (cgroup_memory_nokmem)
2827 return 0;
2828
2829 BUG_ON(memcg->kmemcg_id >= 0);
2830 BUG_ON(memcg->kmem_state);
2831
2832 memcg_id = memcg_alloc_cache_id();
2833 if (memcg_id < 0)
2834 return memcg_id;
2835
2836 static_branch_inc(&memcg_kmem_enabled_key);
2837 /*
2838 * A memory cgroup is considered kmem-online as soon as it gets
2839 * kmemcg_id. Setting the id after enabling static branching will
2840 * guarantee no one starts accounting before all call sites are
2841 * patched.
2842 */
2843 memcg->kmemcg_id = memcg_id;
2844 memcg->kmem_state = KMEM_ONLINE;
2845 INIT_LIST_HEAD(&memcg->kmem_caches);
2846
2847 return 0;
2848 }
2849
2850 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2851 {
2852 struct cgroup_subsys_state *css;
2853 struct mem_cgroup *parent, *child;
2854 int kmemcg_id;
2855
2856 if (memcg->kmem_state != KMEM_ONLINE)
2857 return;
2858 /*
2859 * Clear the online state before clearing memcg_caches array
2860 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2861 * guarantees that no cache will be created for this cgroup
2862 * after we are done (see memcg_create_kmem_cache()).
2863 */
2864 memcg->kmem_state = KMEM_ALLOCATED;
2865
2866 memcg_deactivate_kmem_caches(memcg);
2867
2868 kmemcg_id = memcg->kmemcg_id;
2869 BUG_ON(kmemcg_id < 0);
2870
2871 parent = parent_mem_cgroup(memcg);
2872 if (!parent)
2873 parent = root_mem_cgroup;
2874
2875 /*
2876 * Change kmemcg_id of this cgroup and all its descendants to the
2877 * parent's id, and then move all entries from this cgroup's list_lrus
2878 * to ones of the parent. After we have finished, all list_lrus
2879 * corresponding to this cgroup are guaranteed to remain empty. The
2880 * ordering is imposed by list_lru_node->lock taken by
2881 * memcg_drain_all_list_lrus().
2882 */
2883 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2884 css_for_each_descendant_pre(css, &memcg->css) {
2885 child = mem_cgroup_from_css(css);
2886 BUG_ON(child->kmemcg_id != kmemcg_id);
2887 child->kmemcg_id = parent->kmemcg_id;
2888 if (!memcg->use_hierarchy)
2889 break;
2890 }
2891 rcu_read_unlock();
2892
2893 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2894
2895 memcg_free_cache_id(kmemcg_id);
2896 }
2897
2898 static void memcg_free_kmem(struct mem_cgroup *memcg)
2899 {
2900 /* css_alloc() failed, offlining didn't happen */
2901 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2902 memcg_offline_kmem(memcg);
2903
2904 if (memcg->kmem_state == KMEM_ALLOCATED) {
2905 memcg_destroy_kmem_caches(memcg);
2906 static_branch_dec(&memcg_kmem_enabled_key);
2907 WARN_ON(page_counter_read(&memcg->kmem));
2908 }
2909 }
2910 #else
2911 static int memcg_online_kmem(struct mem_cgroup *memcg)
2912 {
2913 return 0;
2914 }
2915 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2916 {
2917 }
2918 static void memcg_free_kmem(struct mem_cgroup *memcg)
2919 {
2920 }
2921 #endif /* !CONFIG_SLOB */
2922
2923 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2924 unsigned long limit)
2925 {
2926 int ret;
2927
2928 mutex_lock(&memcg_limit_mutex);
2929 ret = page_counter_limit(&memcg->kmem, limit);
2930 mutex_unlock(&memcg_limit_mutex);
2931 return ret;
2932 }
2933
2934 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2935 {
2936 int ret;
2937
2938 mutex_lock(&memcg_limit_mutex);
2939
2940 ret = page_counter_limit(&memcg->tcpmem, limit);
2941 if (ret)
2942 goto out;
2943
2944 if (!memcg->tcpmem_active) {
2945 /*
2946 * The active flag needs to be written after the static_key
2947 * update. This is what guarantees that the socket activation
2948 * function is the last one to run. See mem_cgroup_sk_alloc()
2949 * for details, and note that we don't mark any socket as
2950 * belonging to this memcg until that flag is up.
2951 *
2952 * We need to do this, because static_keys will span multiple
2953 * sites, but we can't control their order. If we mark a socket
2954 * as accounted, but the accounting functions are not patched in
2955 * yet, we'll lose accounting.
2956 *
2957 * We never race with the readers in mem_cgroup_sk_alloc(),
2958 * because when this value change, the code to process it is not
2959 * patched in yet.
2960 */
2961 static_branch_inc(&memcg_sockets_enabled_key);
2962 memcg->tcpmem_active = true;
2963 }
2964 out:
2965 mutex_unlock(&memcg_limit_mutex);
2966 return ret;
2967 }
2968
2969 /*
2970 * The user of this function is...
2971 * RES_LIMIT.
2972 */
2973 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2974 char *buf, size_t nbytes, loff_t off)
2975 {
2976 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2977 unsigned long nr_pages;
2978 int ret;
2979
2980 buf = strstrip(buf);
2981 ret = page_counter_memparse(buf, "-1", &nr_pages);
2982 if (ret)
2983 return ret;
2984
2985 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2986 case RES_LIMIT:
2987 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2988 ret = -EINVAL;
2989 break;
2990 }
2991 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2992 case _MEM:
2993 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2994 break;
2995 case _MEMSWAP:
2996 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2997 break;
2998 case _KMEM:
2999 ret = memcg_update_kmem_limit(memcg, nr_pages);
3000 break;
3001 case _TCP:
3002 ret = memcg_update_tcp_limit(memcg, nr_pages);
3003 break;
3004 }
3005 break;
3006 case RES_SOFT_LIMIT:
3007 memcg->soft_limit = nr_pages;
3008 ret = 0;
3009 break;
3010 }
3011 return ret ?: nbytes;
3012 }
3013
3014 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3015 size_t nbytes, loff_t off)
3016 {
3017 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3018 struct page_counter *counter;
3019
3020 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3021 case _MEM:
3022 counter = &memcg->memory;
3023 break;
3024 case _MEMSWAP:
3025 counter = &memcg->memsw;
3026 break;
3027 case _KMEM:
3028 counter = &memcg->kmem;
3029 break;
3030 case _TCP:
3031 counter = &memcg->tcpmem;
3032 break;
3033 default:
3034 BUG();
3035 }
3036
3037 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3038 case RES_MAX_USAGE:
3039 page_counter_reset_watermark(counter);
3040 break;
3041 case RES_FAILCNT:
3042 counter->failcnt = 0;
3043 break;
3044 default:
3045 BUG();
3046 }
3047
3048 return nbytes;
3049 }
3050
3051 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3052 struct cftype *cft)
3053 {
3054 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3055 }
3056
3057 #ifdef CONFIG_MMU
3058 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3059 struct cftype *cft, u64 val)
3060 {
3061 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3062
3063 if (val & ~MOVE_MASK)
3064 return -EINVAL;
3065
3066 /*
3067 * No kind of locking is needed in here, because ->can_attach() will
3068 * check this value once in the beginning of the process, and then carry
3069 * on with stale data. This means that changes to this value will only
3070 * affect task migrations starting after the change.
3071 */
3072 memcg->move_charge_at_immigrate = val;
3073 return 0;
3074 }
3075 #else
3076 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3077 struct cftype *cft, u64 val)
3078 {
3079 return -ENOSYS;
3080 }
3081 #endif
3082
3083 #ifdef CONFIG_NUMA
3084 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3085 {
3086 struct numa_stat {
3087 const char *name;
3088 unsigned int lru_mask;
3089 };
3090
3091 static const struct numa_stat stats[] = {
3092 { "total", LRU_ALL },
3093 { "file", LRU_ALL_FILE },
3094 { "anon", LRU_ALL_ANON },
3095 { "unevictable", BIT(LRU_UNEVICTABLE) },
3096 };
3097 const struct numa_stat *stat;
3098 int nid;
3099 unsigned long nr;
3100 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3101
3102 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3103 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3104 seq_printf(m, "%s=%lu", stat->name, nr);
3105 for_each_node_state(nid, N_MEMORY) {
3106 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3107 stat->lru_mask);
3108 seq_printf(m, " N%d=%lu", nid, nr);
3109 }
3110 seq_putc(m, '\n');
3111 }
3112
3113 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 struct mem_cgroup *iter;
3115
3116 nr = 0;
3117 for_each_mem_cgroup_tree(iter, memcg)
3118 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3119 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3120 for_each_node_state(nid, N_MEMORY) {
3121 nr = 0;
3122 for_each_mem_cgroup_tree(iter, memcg)
3123 nr += mem_cgroup_node_nr_lru_pages(
3124 iter, nid, stat->lru_mask);
3125 seq_printf(m, " N%d=%lu", nid, nr);
3126 }
3127 seq_putc(m, '\n');
3128 }
3129
3130 return 0;
3131 }
3132 #endif /* CONFIG_NUMA */
3133
3134 static int memcg_stat_show(struct seq_file *m, void *v)
3135 {
3136 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3137 unsigned long memory, memsw;
3138 struct mem_cgroup *mi;
3139 unsigned int i;
3140
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3142 MEM_CGROUP_STAT_NSTATS);
3143 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3144 MEM_CGROUP_EVENTS_NSTATS);
3145 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3146
3147 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3148 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3149 continue;
3150 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3151 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3152 }
3153
3154 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3155 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3156 mem_cgroup_read_events(memcg, i));
3157
3158 for (i = 0; i < NR_LRU_LISTS; i++)
3159 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3160 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3161
3162 /* Hierarchical information */
3163 memory = memsw = PAGE_COUNTER_MAX;
3164 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3165 memory = min(memory, mi->memory.limit);
3166 memsw = min(memsw, mi->memsw.limit);
3167 }
3168 seq_printf(m, "hierarchical_memory_limit %llu\n",
3169 (u64)memory * PAGE_SIZE);
3170 if (do_memsw_account())
3171 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3172 (u64)memsw * PAGE_SIZE);
3173
3174 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3175 unsigned long long val = 0;
3176
3177 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3178 continue;
3179 for_each_mem_cgroup_tree(mi, memcg)
3180 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3181 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3182 }
3183
3184 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3185 unsigned long long val = 0;
3186
3187 for_each_mem_cgroup_tree(mi, memcg)
3188 val += mem_cgroup_read_events(mi, i);
3189 seq_printf(m, "total_%s %llu\n",
3190 mem_cgroup_events_names[i], val);
3191 }
3192
3193 for (i = 0; i < NR_LRU_LISTS; i++) {
3194 unsigned long long val = 0;
3195
3196 for_each_mem_cgroup_tree(mi, memcg)
3197 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3198 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3199 }
3200
3201 #ifdef CONFIG_DEBUG_VM
3202 {
3203 pg_data_t *pgdat;
3204 struct mem_cgroup_per_node *mz;
3205 struct zone_reclaim_stat *rstat;
3206 unsigned long recent_rotated[2] = {0, 0};
3207 unsigned long recent_scanned[2] = {0, 0};
3208
3209 for_each_online_pgdat(pgdat) {
3210 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3211 rstat = &mz->lruvec.reclaim_stat;
3212
3213 recent_rotated[0] += rstat->recent_rotated[0];
3214 recent_rotated[1] += rstat->recent_rotated[1];
3215 recent_scanned[0] += rstat->recent_scanned[0];
3216 recent_scanned[1] += rstat->recent_scanned[1];
3217 }
3218 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3219 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3220 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3221 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3222 }
3223 #endif
3224
3225 return 0;
3226 }
3227
3228 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3229 struct cftype *cft)
3230 {
3231 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3232
3233 return mem_cgroup_swappiness(memcg);
3234 }
3235
3236 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3237 struct cftype *cft, u64 val)
3238 {
3239 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3240
3241 if (val > 100)
3242 return -EINVAL;
3243
3244 if (css->parent)
3245 memcg->swappiness = val;
3246 else
3247 vm_swappiness = val;
3248
3249 return 0;
3250 }
3251
3252 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3253 {
3254 struct mem_cgroup_threshold_ary *t;
3255 unsigned long usage;
3256 int i;
3257
3258 rcu_read_lock();
3259 if (!swap)
3260 t = rcu_dereference(memcg->thresholds.primary);
3261 else
3262 t = rcu_dereference(memcg->memsw_thresholds.primary);
3263
3264 if (!t)
3265 goto unlock;
3266
3267 usage = mem_cgroup_usage(memcg, swap);
3268
3269 /*
3270 * current_threshold points to threshold just below or equal to usage.
3271 * If it's not true, a threshold was crossed after last
3272 * call of __mem_cgroup_threshold().
3273 */
3274 i = t->current_threshold;
3275
3276 /*
3277 * Iterate backward over array of thresholds starting from
3278 * current_threshold and check if a threshold is crossed.
3279 * If none of thresholds below usage is crossed, we read
3280 * only one element of the array here.
3281 */
3282 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3283 eventfd_signal(t->entries[i].eventfd, 1);
3284
3285 /* i = current_threshold + 1 */
3286 i++;
3287
3288 /*
3289 * Iterate forward over array of thresholds starting from
3290 * current_threshold+1 and check if a threshold is crossed.
3291 * If none of thresholds above usage is crossed, we read
3292 * only one element of the array here.
3293 */
3294 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3295 eventfd_signal(t->entries[i].eventfd, 1);
3296
3297 /* Update current_threshold */
3298 t->current_threshold = i - 1;
3299 unlock:
3300 rcu_read_unlock();
3301 }
3302
3303 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3304 {
3305 while (memcg) {
3306 __mem_cgroup_threshold(memcg, false);
3307 if (do_memsw_account())
3308 __mem_cgroup_threshold(memcg, true);
3309
3310 memcg = parent_mem_cgroup(memcg);
3311 }
3312 }
3313
3314 static int compare_thresholds(const void *a, const void *b)
3315 {
3316 const struct mem_cgroup_threshold *_a = a;
3317 const struct mem_cgroup_threshold *_b = b;
3318
3319 if (_a->threshold > _b->threshold)
3320 return 1;
3321
3322 if (_a->threshold < _b->threshold)
3323 return -1;
3324
3325 return 0;
3326 }
3327
3328 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3329 {
3330 struct mem_cgroup_eventfd_list *ev;
3331
3332 spin_lock(&memcg_oom_lock);
3333
3334 list_for_each_entry(ev, &memcg->oom_notify, list)
3335 eventfd_signal(ev->eventfd, 1);
3336
3337 spin_unlock(&memcg_oom_lock);
3338 return 0;
3339 }
3340
3341 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3342 {
3343 struct mem_cgroup *iter;
3344
3345 for_each_mem_cgroup_tree(iter, memcg)
3346 mem_cgroup_oom_notify_cb(iter);
3347 }
3348
3349 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3350 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3351 {
3352 struct mem_cgroup_thresholds *thresholds;
3353 struct mem_cgroup_threshold_ary *new;
3354 unsigned long threshold;
3355 unsigned long usage;
3356 int i, size, ret;
3357
3358 ret = page_counter_memparse(args, "-1", &threshold);
3359 if (ret)
3360 return ret;
3361
3362 mutex_lock(&memcg->thresholds_lock);
3363
3364 if (type == _MEM) {
3365 thresholds = &memcg->thresholds;
3366 usage = mem_cgroup_usage(memcg, false);
3367 } else if (type == _MEMSWAP) {
3368 thresholds = &memcg->memsw_thresholds;
3369 usage = mem_cgroup_usage(memcg, true);
3370 } else
3371 BUG();
3372
3373 /* Check if a threshold crossed before adding a new one */
3374 if (thresholds->primary)
3375 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3376
3377 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3378
3379 /* Allocate memory for new array of thresholds */
3380 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3381 GFP_KERNEL);
3382 if (!new) {
3383 ret = -ENOMEM;
3384 goto unlock;
3385 }
3386 new->size = size;
3387
3388 /* Copy thresholds (if any) to new array */
3389 if (thresholds->primary) {
3390 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3391 sizeof(struct mem_cgroup_threshold));
3392 }
3393
3394 /* Add new threshold */
3395 new->entries[size - 1].eventfd = eventfd;
3396 new->entries[size - 1].threshold = threshold;
3397
3398 /* Sort thresholds. Registering of new threshold isn't time-critical */
3399 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3400 compare_thresholds, NULL);
3401
3402 /* Find current threshold */
3403 new->current_threshold = -1;
3404 for (i = 0; i < size; i++) {
3405 if (new->entries[i].threshold <= usage) {
3406 /*
3407 * new->current_threshold will not be used until
3408 * rcu_assign_pointer(), so it's safe to increment
3409 * it here.
3410 */
3411 ++new->current_threshold;
3412 } else
3413 break;
3414 }
3415
3416 /* Free old spare buffer and save old primary buffer as spare */
3417 kfree(thresholds->spare);
3418 thresholds->spare = thresholds->primary;
3419
3420 rcu_assign_pointer(thresholds->primary, new);
3421
3422 /* To be sure that nobody uses thresholds */
3423 synchronize_rcu();
3424
3425 unlock:
3426 mutex_unlock(&memcg->thresholds_lock);
3427
3428 return ret;
3429 }
3430
3431 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3432 struct eventfd_ctx *eventfd, const char *args)
3433 {
3434 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3435 }
3436
3437 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3438 struct eventfd_ctx *eventfd, const char *args)
3439 {
3440 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3441 }
3442
3443 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3444 struct eventfd_ctx *eventfd, enum res_type type)
3445 {
3446 struct mem_cgroup_thresholds *thresholds;
3447 struct mem_cgroup_threshold_ary *new;
3448 unsigned long usage;
3449 int i, j, size;
3450
3451 mutex_lock(&memcg->thresholds_lock);
3452
3453 if (type == _MEM) {
3454 thresholds = &memcg->thresholds;
3455 usage = mem_cgroup_usage(memcg, false);
3456 } else if (type == _MEMSWAP) {
3457 thresholds = &memcg->memsw_thresholds;
3458 usage = mem_cgroup_usage(memcg, true);
3459 } else
3460 BUG();
3461
3462 if (!thresholds->primary)
3463 goto unlock;
3464
3465 /* Check if a threshold crossed before removing */
3466 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3467
3468 /* Calculate new number of threshold */
3469 size = 0;
3470 for (i = 0; i < thresholds->primary->size; i++) {
3471 if (thresholds->primary->entries[i].eventfd != eventfd)
3472 size++;
3473 }
3474
3475 new = thresholds->spare;
3476
3477 /* Set thresholds array to NULL if we don't have thresholds */
3478 if (!size) {
3479 kfree(new);
3480 new = NULL;
3481 goto swap_buffers;
3482 }
3483
3484 new->size = size;
3485
3486 /* Copy thresholds and find current threshold */
3487 new->current_threshold = -1;
3488 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3489 if (thresholds->primary->entries[i].eventfd == eventfd)
3490 continue;
3491
3492 new->entries[j] = thresholds->primary->entries[i];
3493 if (new->entries[j].threshold <= usage) {
3494 /*
3495 * new->current_threshold will not be used
3496 * until rcu_assign_pointer(), so it's safe to increment
3497 * it here.
3498 */
3499 ++new->current_threshold;
3500 }
3501 j++;
3502 }
3503
3504 swap_buffers:
3505 /* Swap primary and spare array */
3506 thresholds->spare = thresholds->primary;
3507
3508 rcu_assign_pointer(thresholds->primary, new);
3509
3510 /* To be sure that nobody uses thresholds */
3511 synchronize_rcu();
3512
3513 /* If all events are unregistered, free the spare array */
3514 if (!new) {
3515 kfree(thresholds->spare);
3516 thresholds->spare = NULL;
3517 }
3518 unlock:
3519 mutex_unlock(&memcg->thresholds_lock);
3520 }
3521
3522 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3523 struct eventfd_ctx *eventfd)
3524 {
3525 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3526 }
3527
3528 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3529 struct eventfd_ctx *eventfd)
3530 {
3531 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3532 }
3533
3534 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3535 struct eventfd_ctx *eventfd, const char *args)
3536 {
3537 struct mem_cgroup_eventfd_list *event;
3538
3539 event = kmalloc(sizeof(*event), GFP_KERNEL);
3540 if (!event)
3541 return -ENOMEM;
3542
3543 spin_lock(&memcg_oom_lock);
3544
3545 event->eventfd = eventfd;
3546 list_add(&event->list, &memcg->oom_notify);
3547
3548 /* already in OOM ? */
3549 if (memcg->under_oom)
3550 eventfd_signal(eventfd, 1);
3551 spin_unlock(&memcg_oom_lock);
3552
3553 return 0;
3554 }
3555
3556 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3557 struct eventfd_ctx *eventfd)
3558 {
3559 struct mem_cgroup_eventfd_list *ev, *tmp;
3560
3561 spin_lock(&memcg_oom_lock);
3562
3563 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3564 if (ev->eventfd == eventfd) {
3565 list_del(&ev->list);
3566 kfree(ev);
3567 }
3568 }
3569
3570 spin_unlock(&memcg_oom_lock);
3571 }
3572
3573 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3574 {
3575 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3576
3577 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3578 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3579 return 0;
3580 }
3581
3582 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3583 struct cftype *cft, u64 val)
3584 {
3585 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3586
3587 /* cannot set to root cgroup and only 0 and 1 are allowed */
3588 if (!css->parent || !((val == 0) || (val == 1)))
3589 return -EINVAL;
3590
3591 memcg->oom_kill_disable = val;
3592 if (!val)
3593 memcg_oom_recover(memcg);
3594
3595 return 0;
3596 }
3597
3598 #ifdef CONFIG_CGROUP_WRITEBACK
3599
3600 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3601 {
3602 return &memcg->cgwb_list;
3603 }
3604
3605 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3606 {
3607 return wb_domain_init(&memcg->cgwb_domain, gfp);
3608 }
3609
3610 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3611 {
3612 wb_domain_exit(&memcg->cgwb_domain);
3613 }
3614
3615 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3616 {
3617 wb_domain_size_changed(&memcg->cgwb_domain);
3618 }
3619
3620 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3621 {
3622 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3623
3624 if (!memcg->css.parent)
3625 return NULL;
3626
3627 return &memcg->cgwb_domain;
3628 }
3629
3630 /**
3631 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3632 * @wb: bdi_writeback in question
3633 * @pfilepages: out parameter for number of file pages
3634 * @pheadroom: out parameter for number of allocatable pages according to memcg
3635 * @pdirty: out parameter for number of dirty pages
3636 * @pwriteback: out parameter for number of pages under writeback
3637 *
3638 * Determine the numbers of file, headroom, dirty, and writeback pages in
3639 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3640 * is a bit more involved.
3641 *
3642 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3643 * headroom is calculated as the lowest headroom of itself and the
3644 * ancestors. Note that this doesn't consider the actual amount of
3645 * available memory in the system. The caller should further cap
3646 * *@pheadroom accordingly.
3647 */
3648 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3649 unsigned long *pheadroom, unsigned long *pdirty,
3650 unsigned long *pwriteback)
3651 {
3652 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3653 struct mem_cgroup *parent;
3654
3655 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3656
3657 /* this should eventually include NR_UNSTABLE_NFS */
3658 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3659 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3660 (1 << LRU_ACTIVE_FILE));
3661 *pheadroom = PAGE_COUNTER_MAX;
3662
3663 while ((parent = parent_mem_cgroup(memcg))) {
3664 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3665 unsigned long used = page_counter_read(&memcg->memory);
3666
3667 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3668 memcg = parent;
3669 }
3670 }
3671
3672 #else /* CONFIG_CGROUP_WRITEBACK */
3673
3674 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3675 {
3676 return 0;
3677 }
3678
3679 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3680 {
3681 }
3682
3683 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3684 {
3685 }
3686
3687 #endif /* CONFIG_CGROUP_WRITEBACK */
3688
3689 /*
3690 * DO NOT USE IN NEW FILES.
3691 *
3692 * "cgroup.event_control" implementation.
3693 *
3694 * This is way over-engineered. It tries to support fully configurable
3695 * events for each user. Such level of flexibility is completely
3696 * unnecessary especially in the light of the planned unified hierarchy.
3697 *
3698 * Please deprecate this and replace with something simpler if at all
3699 * possible.
3700 */
3701
3702 /*
3703 * Unregister event and free resources.
3704 *
3705 * Gets called from workqueue.
3706 */
3707 static void memcg_event_remove(struct work_struct *work)
3708 {
3709 struct mem_cgroup_event *event =
3710 container_of(work, struct mem_cgroup_event, remove);
3711 struct mem_cgroup *memcg = event->memcg;
3712
3713 remove_wait_queue(event->wqh, &event->wait);
3714
3715 event->unregister_event(memcg, event->eventfd);
3716
3717 /* Notify userspace the event is going away. */
3718 eventfd_signal(event->eventfd, 1);
3719
3720 eventfd_ctx_put(event->eventfd);
3721 kfree(event);
3722 css_put(&memcg->css);
3723 }
3724
3725 /*
3726 * Gets called on POLLHUP on eventfd when user closes it.
3727 *
3728 * Called with wqh->lock held and interrupts disabled.
3729 */
3730 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3731 int sync, void *key)
3732 {
3733 struct mem_cgroup_event *event =
3734 container_of(wait, struct mem_cgroup_event, wait);
3735 struct mem_cgroup *memcg = event->memcg;
3736 unsigned long flags = (unsigned long)key;
3737
3738 if (flags & POLLHUP) {
3739 /*
3740 * If the event has been detached at cgroup removal, we
3741 * can simply return knowing the other side will cleanup
3742 * for us.
3743 *
3744 * We can't race against event freeing since the other
3745 * side will require wqh->lock via remove_wait_queue(),
3746 * which we hold.
3747 */
3748 spin_lock(&memcg->event_list_lock);
3749 if (!list_empty(&event->list)) {
3750 list_del_init(&event->list);
3751 /*
3752 * We are in atomic context, but cgroup_event_remove()
3753 * may sleep, so we have to call it in workqueue.
3754 */
3755 schedule_work(&event->remove);
3756 }
3757 spin_unlock(&memcg->event_list_lock);
3758 }
3759
3760 return 0;
3761 }
3762
3763 static void memcg_event_ptable_queue_proc(struct file *file,
3764 wait_queue_head_t *wqh, poll_table *pt)
3765 {
3766 struct mem_cgroup_event *event =
3767 container_of(pt, struct mem_cgroup_event, pt);
3768
3769 event->wqh = wqh;
3770 add_wait_queue(wqh, &event->wait);
3771 }
3772
3773 /*
3774 * DO NOT USE IN NEW FILES.
3775 *
3776 * Parse input and register new cgroup event handler.
3777 *
3778 * Input must be in format '<event_fd> <control_fd> <args>'.
3779 * Interpretation of args is defined by control file implementation.
3780 */
3781 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3782 char *buf, size_t nbytes, loff_t off)
3783 {
3784 struct cgroup_subsys_state *css = of_css(of);
3785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3786 struct mem_cgroup_event *event;
3787 struct cgroup_subsys_state *cfile_css;
3788 unsigned int efd, cfd;
3789 struct fd efile;
3790 struct fd cfile;
3791 const char *name;
3792 char *endp;
3793 int ret;
3794
3795 buf = strstrip(buf);
3796
3797 efd = simple_strtoul(buf, &endp, 10);
3798 if (*endp != ' ')
3799 return -EINVAL;
3800 buf = endp + 1;
3801
3802 cfd = simple_strtoul(buf, &endp, 10);
3803 if ((*endp != ' ') && (*endp != '\0'))
3804 return -EINVAL;
3805 buf = endp + 1;
3806
3807 event = kzalloc(sizeof(*event), GFP_KERNEL);
3808 if (!event)
3809 return -ENOMEM;
3810
3811 event->memcg = memcg;
3812 INIT_LIST_HEAD(&event->list);
3813 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3814 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3815 INIT_WORK(&event->remove, memcg_event_remove);
3816
3817 efile = fdget(efd);
3818 if (!efile.file) {
3819 ret = -EBADF;
3820 goto out_kfree;
3821 }
3822
3823 event->eventfd = eventfd_ctx_fileget(efile.file);
3824 if (IS_ERR(event->eventfd)) {
3825 ret = PTR_ERR(event->eventfd);
3826 goto out_put_efile;
3827 }
3828
3829 cfile = fdget(cfd);
3830 if (!cfile.file) {
3831 ret = -EBADF;
3832 goto out_put_eventfd;
3833 }
3834
3835 /* the process need read permission on control file */
3836 /* AV: shouldn't we check that it's been opened for read instead? */
3837 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3838 if (ret < 0)
3839 goto out_put_cfile;
3840
3841 /*
3842 * Determine the event callbacks and set them in @event. This used
3843 * to be done via struct cftype but cgroup core no longer knows
3844 * about these events. The following is crude but the whole thing
3845 * is for compatibility anyway.
3846 *
3847 * DO NOT ADD NEW FILES.
3848 */
3849 name = cfile.file->f_path.dentry->d_name.name;
3850
3851 if (!strcmp(name, "memory.usage_in_bytes")) {
3852 event->register_event = mem_cgroup_usage_register_event;
3853 event->unregister_event = mem_cgroup_usage_unregister_event;
3854 } else if (!strcmp(name, "memory.oom_control")) {
3855 event->register_event = mem_cgroup_oom_register_event;
3856 event->unregister_event = mem_cgroup_oom_unregister_event;
3857 } else if (!strcmp(name, "memory.pressure_level")) {
3858 event->register_event = vmpressure_register_event;
3859 event->unregister_event = vmpressure_unregister_event;
3860 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3861 event->register_event = memsw_cgroup_usage_register_event;
3862 event->unregister_event = memsw_cgroup_usage_unregister_event;
3863 } else {
3864 ret = -EINVAL;
3865 goto out_put_cfile;
3866 }
3867
3868 /*
3869 * Verify @cfile should belong to @css. Also, remaining events are
3870 * automatically removed on cgroup destruction but the removal is
3871 * asynchronous, so take an extra ref on @css.
3872 */
3873 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3874 &memory_cgrp_subsys);
3875 ret = -EINVAL;
3876 if (IS_ERR(cfile_css))
3877 goto out_put_cfile;
3878 if (cfile_css != css) {
3879 css_put(cfile_css);
3880 goto out_put_cfile;
3881 }
3882
3883 ret = event->register_event(memcg, event->eventfd, buf);
3884 if (ret)
3885 goto out_put_css;
3886
3887 efile.file->f_op->poll(efile.file, &event->pt);
3888
3889 spin_lock(&memcg->event_list_lock);
3890 list_add(&event->list, &memcg->event_list);
3891 spin_unlock(&memcg->event_list_lock);
3892
3893 fdput(cfile);
3894 fdput(efile);
3895
3896 return nbytes;
3897
3898 out_put_css:
3899 css_put(css);
3900 out_put_cfile:
3901 fdput(cfile);
3902 out_put_eventfd:
3903 eventfd_ctx_put(event->eventfd);
3904 out_put_efile:
3905 fdput(efile);
3906 out_kfree:
3907 kfree(event);
3908
3909 return ret;
3910 }
3911
3912 static struct cftype mem_cgroup_legacy_files[] = {
3913 {
3914 .name = "usage_in_bytes",
3915 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3916 .read_u64 = mem_cgroup_read_u64,
3917 },
3918 {
3919 .name = "max_usage_in_bytes",
3920 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3921 .write = mem_cgroup_reset,
3922 .read_u64 = mem_cgroup_read_u64,
3923 },
3924 {
3925 .name = "limit_in_bytes",
3926 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3927 .write = mem_cgroup_write,
3928 .read_u64 = mem_cgroup_read_u64,
3929 },
3930 {
3931 .name = "soft_limit_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3933 .write = mem_cgroup_write,
3934 .read_u64 = mem_cgroup_read_u64,
3935 },
3936 {
3937 .name = "failcnt",
3938 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3939 .write = mem_cgroup_reset,
3940 .read_u64 = mem_cgroup_read_u64,
3941 },
3942 {
3943 .name = "stat",
3944 .seq_show = memcg_stat_show,
3945 },
3946 {
3947 .name = "force_empty",
3948 .write = mem_cgroup_force_empty_write,
3949 },
3950 {
3951 .name = "use_hierarchy",
3952 .write_u64 = mem_cgroup_hierarchy_write,
3953 .read_u64 = mem_cgroup_hierarchy_read,
3954 },
3955 {
3956 .name = "cgroup.event_control", /* XXX: for compat */
3957 .write = memcg_write_event_control,
3958 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3959 },
3960 {
3961 .name = "swappiness",
3962 .read_u64 = mem_cgroup_swappiness_read,
3963 .write_u64 = mem_cgroup_swappiness_write,
3964 },
3965 {
3966 .name = "move_charge_at_immigrate",
3967 .read_u64 = mem_cgroup_move_charge_read,
3968 .write_u64 = mem_cgroup_move_charge_write,
3969 },
3970 {
3971 .name = "oom_control",
3972 .seq_show = mem_cgroup_oom_control_read,
3973 .write_u64 = mem_cgroup_oom_control_write,
3974 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3975 },
3976 {
3977 .name = "pressure_level",
3978 },
3979 #ifdef CONFIG_NUMA
3980 {
3981 .name = "numa_stat",
3982 .seq_show = memcg_numa_stat_show,
3983 },
3984 #endif
3985 {
3986 .name = "kmem.limit_in_bytes",
3987 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3988 .write = mem_cgroup_write,
3989 .read_u64 = mem_cgroup_read_u64,
3990 },
3991 {
3992 .name = "kmem.usage_in_bytes",
3993 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3994 .read_u64 = mem_cgroup_read_u64,
3995 },
3996 {
3997 .name = "kmem.failcnt",
3998 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3999 .write = mem_cgroup_reset,
4000 .read_u64 = mem_cgroup_read_u64,
4001 },
4002 {
4003 .name = "kmem.max_usage_in_bytes",
4004 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4005 .write = mem_cgroup_reset,
4006 .read_u64 = mem_cgroup_read_u64,
4007 },
4008 #ifdef CONFIG_SLABINFO
4009 {
4010 .name = "kmem.slabinfo",
4011 .seq_start = memcg_slab_start,
4012 .seq_next = memcg_slab_next,
4013 .seq_stop = memcg_slab_stop,
4014 .seq_show = memcg_slab_show,
4015 },
4016 #endif
4017 {
4018 .name = "kmem.tcp.limit_in_bytes",
4019 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4020 .write = mem_cgroup_write,
4021 .read_u64 = mem_cgroup_read_u64,
4022 },
4023 {
4024 .name = "kmem.tcp.usage_in_bytes",
4025 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4026 .read_u64 = mem_cgroup_read_u64,
4027 },
4028 {
4029 .name = "kmem.tcp.failcnt",
4030 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4031 .write = mem_cgroup_reset,
4032 .read_u64 = mem_cgroup_read_u64,
4033 },
4034 {
4035 .name = "kmem.tcp.max_usage_in_bytes",
4036 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4037 .write = mem_cgroup_reset,
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
4040 { }, /* terminate */
4041 };
4042
4043 /*
4044 * Private memory cgroup IDR
4045 *
4046 * Swap-out records and page cache shadow entries need to store memcg
4047 * references in constrained space, so we maintain an ID space that is
4048 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4049 * memory-controlled cgroups to 64k.
4050 *
4051 * However, there usually are many references to the oflline CSS after
4052 * the cgroup has been destroyed, such as page cache or reclaimable
4053 * slab objects, that don't need to hang on to the ID. We want to keep
4054 * those dead CSS from occupying IDs, or we might quickly exhaust the
4055 * relatively small ID space and prevent the creation of new cgroups
4056 * even when there are much fewer than 64k cgroups - possibly none.
4057 *
4058 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4059 * be freed and recycled when it's no longer needed, which is usually
4060 * when the CSS is offlined.
4061 *
4062 * The only exception to that are records of swapped out tmpfs/shmem
4063 * pages that need to be attributed to live ancestors on swapin. But
4064 * those references are manageable from userspace.
4065 */
4066
4067 static DEFINE_IDR(mem_cgroup_idr);
4068
4069 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4070 {
4071 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4072 atomic_add(n, &memcg->id.ref);
4073 }
4074
4075 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4076 {
4077 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4078 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4079 idr_remove(&mem_cgroup_idr, memcg->id.id);
4080 memcg->id.id = 0;
4081
4082 /* Memcg ID pins CSS */
4083 css_put(&memcg->css);
4084 }
4085 }
4086
4087 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4088 {
4089 mem_cgroup_id_get_many(memcg, 1);
4090 }
4091
4092 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4093 {
4094 mem_cgroup_id_put_many(memcg, 1);
4095 }
4096
4097 /**
4098 * mem_cgroup_from_id - look up a memcg from a memcg id
4099 * @id: the memcg id to look up
4100 *
4101 * Caller must hold rcu_read_lock().
4102 */
4103 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4104 {
4105 WARN_ON_ONCE(!rcu_read_lock_held());
4106 return idr_find(&mem_cgroup_idr, id);
4107 }
4108
4109 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4110 {
4111 struct mem_cgroup_per_node *pn;
4112 int tmp = node;
4113 /*
4114 * This routine is called against possible nodes.
4115 * But it's BUG to call kmalloc() against offline node.
4116 *
4117 * TODO: this routine can waste much memory for nodes which will
4118 * never be onlined. It's better to use memory hotplug callback
4119 * function.
4120 */
4121 if (!node_state(node, N_NORMAL_MEMORY))
4122 tmp = -1;
4123 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4124 if (!pn)
4125 return 1;
4126
4127 lruvec_init(&pn->lruvec);
4128 pn->usage_in_excess = 0;
4129 pn->on_tree = false;
4130 pn->memcg = memcg;
4131
4132 memcg->nodeinfo[node] = pn;
4133 return 0;
4134 }
4135
4136 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4137 {
4138 kfree(memcg->nodeinfo[node]);
4139 }
4140
4141 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4142 {
4143 int node;
4144
4145 for_each_node(node)
4146 free_mem_cgroup_per_node_info(memcg, node);
4147 free_percpu(memcg->stat);
4148 kfree(memcg);
4149 }
4150
4151 static void mem_cgroup_free(struct mem_cgroup *memcg)
4152 {
4153 memcg_wb_domain_exit(memcg);
4154 __mem_cgroup_free(memcg);
4155 }
4156
4157 static struct mem_cgroup *mem_cgroup_alloc(void)
4158 {
4159 struct mem_cgroup *memcg;
4160 size_t size;
4161 int node;
4162
4163 size = sizeof(struct mem_cgroup);
4164 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4165
4166 memcg = kzalloc(size, GFP_KERNEL);
4167 if (!memcg)
4168 return NULL;
4169
4170 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4171 1, MEM_CGROUP_ID_MAX,
4172 GFP_KERNEL);
4173 if (memcg->id.id < 0)
4174 goto fail;
4175
4176 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4177 if (!memcg->stat)
4178 goto fail;
4179
4180 for_each_node(node)
4181 if (alloc_mem_cgroup_per_node_info(memcg, node))
4182 goto fail;
4183
4184 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4185 goto fail;
4186
4187 INIT_WORK(&memcg->high_work, high_work_func);
4188 memcg->last_scanned_node = MAX_NUMNODES;
4189 INIT_LIST_HEAD(&memcg->oom_notify);
4190 mutex_init(&memcg->thresholds_lock);
4191 spin_lock_init(&memcg->move_lock);
4192 vmpressure_init(&memcg->vmpressure);
4193 INIT_LIST_HEAD(&memcg->event_list);
4194 spin_lock_init(&memcg->event_list_lock);
4195 memcg->socket_pressure = jiffies;
4196 #ifndef CONFIG_SLOB
4197 memcg->kmemcg_id = -1;
4198 #endif
4199 #ifdef CONFIG_CGROUP_WRITEBACK
4200 INIT_LIST_HEAD(&memcg->cgwb_list);
4201 #endif
4202 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4203 return memcg;
4204 fail:
4205 if (memcg->id.id > 0)
4206 idr_remove(&mem_cgroup_idr, memcg->id.id);
4207 __mem_cgroup_free(memcg);
4208 return NULL;
4209 }
4210
4211 static struct cgroup_subsys_state * __ref
4212 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4213 {
4214 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4215 struct mem_cgroup *memcg;
4216 long error = -ENOMEM;
4217
4218 memcg = mem_cgroup_alloc();
4219 if (!memcg)
4220 return ERR_PTR(error);
4221
4222 memcg->high = PAGE_COUNTER_MAX;
4223 memcg->soft_limit = PAGE_COUNTER_MAX;
4224 if (parent) {
4225 memcg->swappiness = mem_cgroup_swappiness(parent);
4226 memcg->oom_kill_disable = parent->oom_kill_disable;
4227 }
4228 if (parent && parent->use_hierarchy) {
4229 memcg->use_hierarchy = true;
4230 page_counter_init(&memcg->memory, &parent->memory);
4231 page_counter_init(&memcg->swap, &parent->swap);
4232 page_counter_init(&memcg->memsw, &parent->memsw);
4233 page_counter_init(&memcg->kmem, &parent->kmem);
4234 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4235 } else {
4236 page_counter_init(&memcg->memory, NULL);
4237 page_counter_init(&memcg->swap, NULL);
4238 page_counter_init(&memcg->memsw, NULL);
4239 page_counter_init(&memcg->kmem, NULL);
4240 page_counter_init(&memcg->tcpmem, NULL);
4241 /*
4242 * Deeper hierachy with use_hierarchy == false doesn't make
4243 * much sense so let cgroup subsystem know about this
4244 * unfortunate state in our controller.
4245 */
4246 if (parent != root_mem_cgroup)
4247 memory_cgrp_subsys.broken_hierarchy = true;
4248 }
4249
4250 /* The following stuff does not apply to the root */
4251 if (!parent) {
4252 root_mem_cgroup = memcg;
4253 return &memcg->css;
4254 }
4255
4256 error = memcg_online_kmem(memcg);
4257 if (error)
4258 goto fail;
4259
4260 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4261 static_branch_inc(&memcg_sockets_enabled_key);
4262
4263 return &memcg->css;
4264 fail:
4265 mem_cgroup_free(memcg);
4266 return ERR_PTR(-ENOMEM);
4267 }
4268
4269 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4270 {
4271 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4272
4273 /* Online state pins memcg ID, memcg ID pins CSS */
4274 atomic_set(&memcg->id.ref, 1);
4275 css_get(css);
4276 return 0;
4277 }
4278
4279 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4280 {
4281 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4282 struct mem_cgroup_event *event, *tmp;
4283
4284 /*
4285 * Unregister events and notify userspace.
4286 * Notify userspace about cgroup removing only after rmdir of cgroup
4287 * directory to avoid race between userspace and kernelspace.
4288 */
4289 spin_lock(&memcg->event_list_lock);
4290 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4291 list_del_init(&event->list);
4292 schedule_work(&event->remove);
4293 }
4294 spin_unlock(&memcg->event_list_lock);
4295
4296 memcg_offline_kmem(memcg);
4297 wb_memcg_offline(memcg);
4298
4299 mem_cgroup_id_put(memcg);
4300 }
4301
4302 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4303 {
4304 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4305
4306 invalidate_reclaim_iterators(memcg);
4307 }
4308
4309 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4310 {
4311 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4312
4313 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4314 static_branch_dec(&memcg_sockets_enabled_key);
4315
4316 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4317 static_branch_dec(&memcg_sockets_enabled_key);
4318
4319 vmpressure_cleanup(&memcg->vmpressure);
4320 cancel_work_sync(&memcg->high_work);
4321 mem_cgroup_remove_from_trees(memcg);
4322 memcg_free_kmem(memcg);
4323 mem_cgroup_free(memcg);
4324 }
4325
4326 /**
4327 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4328 * @css: the target css
4329 *
4330 * Reset the states of the mem_cgroup associated with @css. This is
4331 * invoked when the userland requests disabling on the default hierarchy
4332 * but the memcg is pinned through dependency. The memcg should stop
4333 * applying policies and should revert to the vanilla state as it may be
4334 * made visible again.
4335 *
4336 * The current implementation only resets the essential configurations.
4337 * This needs to be expanded to cover all the visible parts.
4338 */
4339 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4340 {
4341 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4342
4343 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4344 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4345 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4346 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4347 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4348 memcg->low = 0;
4349 memcg->high = PAGE_COUNTER_MAX;
4350 memcg->soft_limit = PAGE_COUNTER_MAX;
4351 memcg_wb_domain_size_changed(memcg);
4352 }
4353
4354 #ifdef CONFIG_MMU
4355 /* Handlers for move charge at task migration. */
4356 static int mem_cgroup_do_precharge(unsigned long count)
4357 {
4358 int ret;
4359
4360 /* Try a single bulk charge without reclaim first, kswapd may wake */
4361 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4362 if (!ret) {
4363 mc.precharge += count;
4364 return ret;
4365 }
4366
4367 /* Try charges one by one with reclaim, but do not retry */
4368 while (count--) {
4369 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4370 if (ret)
4371 return ret;
4372 mc.precharge++;
4373 cond_resched();
4374 }
4375 return 0;
4376 }
4377
4378 union mc_target {
4379 struct page *page;
4380 swp_entry_t ent;
4381 };
4382
4383 enum mc_target_type {
4384 MC_TARGET_NONE = 0,
4385 MC_TARGET_PAGE,
4386 MC_TARGET_SWAP,
4387 };
4388
4389 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4390 unsigned long addr, pte_t ptent)
4391 {
4392 struct page *page = vm_normal_page(vma, addr, ptent);
4393
4394 if (!page || !page_mapped(page))
4395 return NULL;
4396 if (PageAnon(page)) {
4397 if (!(mc.flags & MOVE_ANON))
4398 return NULL;
4399 } else {
4400 if (!(mc.flags & MOVE_FILE))
4401 return NULL;
4402 }
4403 if (!get_page_unless_zero(page))
4404 return NULL;
4405
4406 return page;
4407 }
4408
4409 #ifdef CONFIG_SWAP
4410 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4411 pte_t ptent, swp_entry_t *entry)
4412 {
4413 struct page *page = NULL;
4414 swp_entry_t ent = pte_to_swp_entry(ptent);
4415
4416 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4417 return NULL;
4418 /*
4419 * Because lookup_swap_cache() updates some statistics counter,
4420 * we call find_get_page() with swapper_space directly.
4421 */
4422 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4423 if (do_memsw_account())
4424 entry->val = ent.val;
4425
4426 return page;
4427 }
4428 #else
4429 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4430 pte_t ptent, swp_entry_t *entry)
4431 {
4432 return NULL;
4433 }
4434 #endif
4435
4436 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4437 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4438 {
4439 struct page *page = NULL;
4440 struct address_space *mapping;
4441 pgoff_t pgoff;
4442
4443 if (!vma->vm_file) /* anonymous vma */
4444 return NULL;
4445 if (!(mc.flags & MOVE_FILE))
4446 return NULL;
4447
4448 mapping = vma->vm_file->f_mapping;
4449 pgoff = linear_page_index(vma, addr);
4450
4451 /* page is moved even if it's not RSS of this task(page-faulted). */
4452 #ifdef CONFIG_SWAP
4453 /* shmem/tmpfs may report page out on swap: account for that too. */
4454 if (shmem_mapping(mapping)) {
4455 page = find_get_entry(mapping, pgoff);
4456 if (radix_tree_exceptional_entry(page)) {
4457 swp_entry_t swp = radix_to_swp_entry(page);
4458 if (do_memsw_account())
4459 *entry = swp;
4460 page = find_get_page(swap_address_space(swp),
4461 swp_offset(swp));
4462 }
4463 } else
4464 page = find_get_page(mapping, pgoff);
4465 #else
4466 page = find_get_page(mapping, pgoff);
4467 #endif
4468 return page;
4469 }
4470
4471 /**
4472 * mem_cgroup_move_account - move account of the page
4473 * @page: the page
4474 * @compound: charge the page as compound or small page
4475 * @from: mem_cgroup which the page is moved from.
4476 * @to: mem_cgroup which the page is moved to. @from != @to.
4477 *
4478 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4479 *
4480 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4481 * from old cgroup.
4482 */
4483 static int mem_cgroup_move_account(struct page *page,
4484 bool compound,
4485 struct mem_cgroup *from,
4486 struct mem_cgroup *to)
4487 {
4488 unsigned long flags;
4489 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4490 int ret;
4491 bool anon;
4492
4493 VM_BUG_ON(from == to);
4494 VM_BUG_ON_PAGE(PageLRU(page), page);
4495 VM_BUG_ON(compound && !PageTransHuge(page));
4496
4497 /*
4498 * Prevent mem_cgroup_migrate() from looking at
4499 * page->mem_cgroup of its source page while we change it.
4500 */
4501 ret = -EBUSY;
4502 if (!trylock_page(page))
4503 goto out;
4504
4505 ret = -EINVAL;
4506 if (page->mem_cgroup != from)
4507 goto out_unlock;
4508
4509 anon = PageAnon(page);
4510
4511 spin_lock_irqsave(&from->move_lock, flags);
4512
4513 if (!anon && page_mapped(page)) {
4514 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4515 nr_pages);
4516 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4517 nr_pages);
4518 }
4519
4520 /*
4521 * move_lock grabbed above and caller set from->moving_account, so
4522 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4523 * So mapping should be stable for dirty pages.
4524 */
4525 if (!anon && PageDirty(page)) {
4526 struct address_space *mapping = page_mapping(page);
4527
4528 if (mapping_cap_account_dirty(mapping)) {
4529 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4530 nr_pages);
4531 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4532 nr_pages);
4533 }
4534 }
4535
4536 if (PageWriteback(page)) {
4537 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4538 nr_pages);
4539 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4540 nr_pages);
4541 }
4542
4543 /*
4544 * It is safe to change page->mem_cgroup here because the page
4545 * is referenced, charged, and isolated - we can't race with
4546 * uncharging, charging, migration, or LRU putback.
4547 */
4548
4549 /* caller should have done css_get */
4550 page->mem_cgroup = to;
4551 spin_unlock_irqrestore(&from->move_lock, flags);
4552
4553 ret = 0;
4554
4555 local_irq_disable();
4556 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4557 memcg_check_events(to, page);
4558 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4559 memcg_check_events(from, page);
4560 local_irq_enable();
4561 out_unlock:
4562 unlock_page(page);
4563 out:
4564 return ret;
4565 }
4566
4567 /**
4568 * get_mctgt_type - get target type of moving charge
4569 * @vma: the vma the pte to be checked belongs
4570 * @addr: the address corresponding to the pte to be checked
4571 * @ptent: the pte to be checked
4572 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4573 *
4574 * Returns
4575 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4576 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4577 * move charge. if @target is not NULL, the page is stored in target->page
4578 * with extra refcnt got(Callers should handle it).
4579 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4580 * target for charge migration. if @target is not NULL, the entry is stored
4581 * in target->ent.
4582 *
4583 * Called with pte lock held.
4584 */
4585
4586 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4587 unsigned long addr, pte_t ptent, union mc_target *target)
4588 {
4589 struct page *page = NULL;
4590 enum mc_target_type ret = MC_TARGET_NONE;
4591 swp_entry_t ent = { .val = 0 };
4592
4593 if (pte_present(ptent))
4594 page = mc_handle_present_pte(vma, addr, ptent);
4595 else if (is_swap_pte(ptent))
4596 page = mc_handle_swap_pte(vma, ptent, &ent);
4597 else if (pte_none(ptent))
4598 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4599
4600 if (!page && !ent.val)
4601 return ret;
4602 if (page) {
4603 /*
4604 * Do only loose check w/o serialization.
4605 * mem_cgroup_move_account() checks the page is valid or
4606 * not under LRU exclusion.
4607 */
4608 if (page->mem_cgroup == mc.from) {
4609 ret = MC_TARGET_PAGE;
4610 if (target)
4611 target->page = page;
4612 }
4613 if (!ret || !target)
4614 put_page(page);
4615 }
4616 /* There is a swap entry and a page doesn't exist or isn't charged */
4617 if (ent.val && !ret &&
4618 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4619 ret = MC_TARGET_SWAP;
4620 if (target)
4621 target->ent = ent;
4622 }
4623 return ret;
4624 }
4625
4626 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4627 /*
4628 * We don't consider swapping or file mapped pages because THP does not
4629 * support them for now.
4630 * Caller should make sure that pmd_trans_huge(pmd) is true.
4631 */
4632 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4633 unsigned long addr, pmd_t pmd, union mc_target *target)
4634 {
4635 struct page *page = NULL;
4636 enum mc_target_type ret = MC_TARGET_NONE;
4637
4638 page = pmd_page(pmd);
4639 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4640 if (!(mc.flags & MOVE_ANON))
4641 return ret;
4642 if (page->mem_cgroup == mc.from) {
4643 ret = MC_TARGET_PAGE;
4644 if (target) {
4645 get_page(page);
4646 target->page = page;
4647 }
4648 }
4649 return ret;
4650 }
4651 #else
4652 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4653 unsigned long addr, pmd_t pmd, union mc_target *target)
4654 {
4655 return MC_TARGET_NONE;
4656 }
4657 #endif
4658
4659 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4660 unsigned long addr, unsigned long end,
4661 struct mm_walk *walk)
4662 {
4663 struct vm_area_struct *vma = walk->vma;
4664 pte_t *pte;
4665 spinlock_t *ptl;
4666
4667 ptl = pmd_trans_huge_lock(pmd, vma);
4668 if (ptl) {
4669 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4670 mc.precharge += HPAGE_PMD_NR;
4671 spin_unlock(ptl);
4672 return 0;
4673 }
4674
4675 if (pmd_trans_unstable(pmd))
4676 return 0;
4677 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4678 for (; addr != end; pte++, addr += PAGE_SIZE)
4679 if (get_mctgt_type(vma, addr, *pte, NULL))
4680 mc.precharge++; /* increment precharge temporarily */
4681 pte_unmap_unlock(pte - 1, ptl);
4682 cond_resched();
4683
4684 return 0;
4685 }
4686
4687 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4688 {
4689 unsigned long precharge;
4690
4691 struct mm_walk mem_cgroup_count_precharge_walk = {
4692 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4693 .mm = mm,
4694 };
4695 down_read(&mm->mmap_sem);
4696 walk_page_range(0, mm->highest_vm_end,
4697 &mem_cgroup_count_precharge_walk);
4698 up_read(&mm->mmap_sem);
4699
4700 precharge = mc.precharge;
4701 mc.precharge = 0;
4702
4703 return precharge;
4704 }
4705
4706 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4707 {
4708 unsigned long precharge = mem_cgroup_count_precharge(mm);
4709
4710 VM_BUG_ON(mc.moving_task);
4711 mc.moving_task = current;
4712 return mem_cgroup_do_precharge(precharge);
4713 }
4714
4715 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4716 static void __mem_cgroup_clear_mc(void)
4717 {
4718 struct mem_cgroup *from = mc.from;
4719 struct mem_cgroup *to = mc.to;
4720
4721 /* we must uncharge all the leftover precharges from mc.to */
4722 if (mc.precharge) {
4723 cancel_charge(mc.to, mc.precharge);
4724 mc.precharge = 0;
4725 }
4726 /*
4727 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4728 * we must uncharge here.
4729 */
4730 if (mc.moved_charge) {
4731 cancel_charge(mc.from, mc.moved_charge);
4732 mc.moved_charge = 0;
4733 }
4734 /* we must fixup refcnts and charges */
4735 if (mc.moved_swap) {
4736 /* uncharge swap account from the old cgroup */
4737 if (!mem_cgroup_is_root(mc.from))
4738 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4739
4740 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4741
4742 /*
4743 * we charged both to->memory and to->memsw, so we
4744 * should uncharge to->memory.
4745 */
4746 if (!mem_cgroup_is_root(mc.to))
4747 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4748
4749 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4750 css_put_many(&mc.to->css, mc.moved_swap);
4751
4752 mc.moved_swap = 0;
4753 }
4754 memcg_oom_recover(from);
4755 memcg_oom_recover(to);
4756 wake_up_all(&mc.waitq);
4757 }
4758
4759 static void mem_cgroup_clear_mc(void)
4760 {
4761 struct mm_struct *mm = mc.mm;
4762
4763 /*
4764 * we must clear moving_task before waking up waiters at the end of
4765 * task migration.
4766 */
4767 mc.moving_task = NULL;
4768 __mem_cgroup_clear_mc();
4769 spin_lock(&mc.lock);
4770 mc.from = NULL;
4771 mc.to = NULL;
4772 mc.mm = NULL;
4773 spin_unlock(&mc.lock);
4774
4775 mmput(mm);
4776 }
4777
4778 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4779 {
4780 struct cgroup_subsys_state *css;
4781 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4782 struct mem_cgroup *from;
4783 struct task_struct *leader, *p;
4784 struct mm_struct *mm;
4785 unsigned long move_flags;
4786 int ret = 0;
4787
4788 /* charge immigration isn't supported on the default hierarchy */
4789 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4790 return 0;
4791
4792 /*
4793 * Multi-process migrations only happen on the default hierarchy
4794 * where charge immigration is not used. Perform charge
4795 * immigration if @tset contains a leader and whine if there are
4796 * multiple.
4797 */
4798 p = NULL;
4799 cgroup_taskset_for_each_leader(leader, css, tset) {
4800 WARN_ON_ONCE(p);
4801 p = leader;
4802 memcg = mem_cgroup_from_css(css);
4803 }
4804 if (!p)
4805 return 0;
4806
4807 /*
4808 * We are now commited to this value whatever it is. Changes in this
4809 * tunable will only affect upcoming migrations, not the current one.
4810 * So we need to save it, and keep it going.
4811 */
4812 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4813 if (!move_flags)
4814 return 0;
4815
4816 from = mem_cgroup_from_task(p);
4817
4818 VM_BUG_ON(from == memcg);
4819
4820 mm = get_task_mm(p);
4821 if (!mm)
4822 return 0;
4823 /* We move charges only when we move a owner of the mm */
4824 if (mm->owner == p) {
4825 VM_BUG_ON(mc.from);
4826 VM_BUG_ON(mc.to);
4827 VM_BUG_ON(mc.precharge);
4828 VM_BUG_ON(mc.moved_charge);
4829 VM_BUG_ON(mc.moved_swap);
4830
4831 spin_lock(&mc.lock);
4832 mc.mm = mm;
4833 mc.from = from;
4834 mc.to = memcg;
4835 mc.flags = move_flags;
4836 spin_unlock(&mc.lock);
4837 /* We set mc.moving_task later */
4838
4839 ret = mem_cgroup_precharge_mc(mm);
4840 if (ret)
4841 mem_cgroup_clear_mc();
4842 } else {
4843 mmput(mm);
4844 }
4845 return ret;
4846 }
4847
4848 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4849 {
4850 if (mc.to)
4851 mem_cgroup_clear_mc();
4852 }
4853
4854 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4855 unsigned long addr, unsigned long end,
4856 struct mm_walk *walk)
4857 {
4858 int ret = 0;
4859 struct vm_area_struct *vma = walk->vma;
4860 pte_t *pte;
4861 spinlock_t *ptl;
4862 enum mc_target_type target_type;
4863 union mc_target target;
4864 struct page *page;
4865
4866 ptl = pmd_trans_huge_lock(pmd, vma);
4867 if (ptl) {
4868 if (mc.precharge < HPAGE_PMD_NR) {
4869 spin_unlock(ptl);
4870 return 0;
4871 }
4872 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4873 if (target_type == MC_TARGET_PAGE) {
4874 page = target.page;
4875 if (!isolate_lru_page(page)) {
4876 if (!mem_cgroup_move_account(page, true,
4877 mc.from, mc.to)) {
4878 mc.precharge -= HPAGE_PMD_NR;
4879 mc.moved_charge += HPAGE_PMD_NR;
4880 }
4881 putback_lru_page(page);
4882 }
4883 put_page(page);
4884 }
4885 spin_unlock(ptl);
4886 return 0;
4887 }
4888
4889 if (pmd_trans_unstable(pmd))
4890 return 0;
4891 retry:
4892 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4893 for (; addr != end; addr += PAGE_SIZE) {
4894 pte_t ptent = *(pte++);
4895 swp_entry_t ent;
4896
4897 if (!mc.precharge)
4898 break;
4899
4900 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4901 case MC_TARGET_PAGE:
4902 page = target.page;
4903 /*
4904 * We can have a part of the split pmd here. Moving it
4905 * can be done but it would be too convoluted so simply
4906 * ignore such a partial THP and keep it in original
4907 * memcg. There should be somebody mapping the head.
4908 */
4909 if (PageTransCompound(page))
4910 goto put;
4911 if (isolate_lru_page(page))
4912 goto put;
4913 if (!mem_cgroup_move_account(page, false,
4914 mc.from, mc.to)) {
4915 mc.precharge--;
4916 /* we uncharge from mc.from later. */
4917 mc.moved_charge++;
4918 }
4919 putback_lru_page(page);
4920 put: /* get_mctgt_type() gets the page */
4921 put_page(page);
4922 break;
4923 case MC_TARGET_SWAP:
4924 ent = target.ent;
4925 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4926 mc.precharge--;
4927 /* we fixup refcnts and charges later. */
4928 mc.moved_swap++;
4929 }
4930 break;
4931 default:
4932 break;
4933 }
4934 }
4935 pte_unmap_unlock(pte - 1, ptl);
4936 cond_resched();
4937
4938 if (addr != end) {
4939 /*
4940 * We have consumed all precharges we got in can_attach().
4941 * We try charge one by one, but don't do any additional
4942 * charges to mc.to if we have failed in charge once in attach()
4943 * phase.
4944 */
4945 ret = mem_cgroup_do_precharge(1);
4946 if (!ret)
4947 goto retry;
4948 }
4949
4950 return ret;
4951 }
4952
4953 static void mem_cgroup_move_charge(void)
4954 {
4955 struct mm_walk mem_cgroup_move_charge_walk = {
4956 .pmd_entry = mem_cgroup_move_charge_pte_range,
4957 .mm = mc.mm,
4958 };
4959
4960 lru_add_drain_all();
4961 /*
4962 * Signal lock_page_memcg() to take the memcg's move_lock
4963 * while we're moving its pages to another memcg. Then wait
4964 * for already started RCU-only updates to finish.
4965 */
4966 atomic_inc(&mc.from->moving_account);
4967 synchronize_rcu();
4968 retry:
4969 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4970 /*
4971 * Someone who are holding the mmap_sem might be waiting in
4972 * waitq. So we cancel all extra charges, wake up all waiters,
4973 * and retry. Because we cancel precharges, we might not be able
4974 * to move enough charges, but moving charge is a best-effort
4975 * feature anyway, so it wouldn't be a big problem.
4976 */
4977 __mem_cgroup_clear_mc();
4978 cond_resched();
4979 goto retry;
4980 }
4981 /*
4982 * When we have consumed all precharges and failed in doing
4983 * additional charge, the page walk just aborts.
4984 */
4985 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4986
4987 up_read(&mc.mm->mmap_sem);
4988 atomic_dec(&mc.from->moving_account);
4989 }
4990
4991 static void mem_cgroup_move_task(void)
4992 {
4993 if (mc.to) {
4994 mem_cgroup_move_charge();
4995 mem_cgroup_clear_mc();
4996 }
4997 }
4998 #else /* !CONFIG_MMU */
4999 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5000 {
5001 return 0;
5002 }
5003 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5004 {
5005 }
5006 static void mem_cgroup_move_task(void)
5007 {
5008 }
5009 #endif
5010
5011 /*
5012 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5013 * to verify whether we're attached to the default hierarchy on each mount
5014 * attempt.
5015 */
5016 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5017 {
5018 /*
5019 * use_hierarchy is forced on the default hierarchy. cgroup core
5020 * guarantees that @root doesn't have any children, so turning it
5021 * on for the root memcg is enough.
5022 */
5023 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5024 root_mem_cgroup->use_hierarchy = true;
5025 else
5026 root_mem_cgroup->use_hierarchy = false;
5027 }
5028
5029 static u64 memory_current_read(struct cgroup_subsys_state *css,
5030 struct cftype *cft)
5031 {
5032 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5033
5034 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5035 }
5036
5037 static int memory_low_show(struct seq_file *m, void *v)
5038 {
5039 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5040 unsigned long low = READ_ONCE(memcg->low);
5041
5042 if (low == PAGE_COUNTER_MAX)
5043 seq_puts(m, "max\n");
5044 else
5045 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5046
5047 return 0;
5048 }
5049
5050 static ssize_t memory_low_write(struct kernfs_open_file *of,
5051 char *buf, size_t nbytes, loff_t off)
5052 {
5053 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5054 unsigned long low;
5055 int err;
5056
5057 buf = strstrip(buf);
5058 err = page_counter_memparse(buf, "max", &low);
5059 if (err)
5060 return err;
5061
5062 memcg->low = low;
5063
5064 return nbytes;
5065 }
5066
5067 static int memory_high_show(struct seq_file *m, void *v)
5068 {
5069 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5070 unsigned long high = READ_ONCE(memcg->high);
5071
5072 if (high == PAGE_COUNTER_MAX)
5073 seq_puts(m, "max\n");
5074 else
5075 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5076
5077 return 0;
5078 }
5079
5080 static ssize_t memory_high_write(struct kernfs_open_file *of,
5081 char *buf, size_t nbytes, loff_t off)
5082 {
5083 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5084 unsigned long nr_pages;
5085 unsigned long high;
5086 int err;
5087
5088 buf = strstrip(buf);
5089 err = page_counter_memparse(buf, "max", &high);
5090 if (err)
5091 return err;
5092
5093 memcg->high = high;
5094
5095 nr_pages = page_counter_read(&memcg->memory);
5096 if (nr_pages > high)
5097 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5098 GFP_KERNEL, true);
5099
5100 memcg_wb_domain_size_changed(memcg);
5101 return nbytes;
5102 }
5103
5104 static int memory_max_show(struct seq_file *m, void *v)
5105 {
5106 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5107 unsigned long max = READ_ONCE(memcg->memory.limit);
5108
5109 if (max == PAGE_COUNTER_MAX)
5110 seq_puts(m, "max\n");
5111 else
5112 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5113
5114 return 0;
5115 }
5116
5117 static ssize_t memory_max_write(struct kernfs_open_file *of,
5118 char *buf, size_t nbytes, loff_t off)
5119 {
5120 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5121 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5122 bool drained = false;
5123 unsigned long max;
5124 int err;
5125
5126 buf = strstrip(buf);
5127 err = page_counter_memparse(buf, "max", &max);
5128 if (err)
5129 return err;
5130
5131 xchg(&memcg->memory.limit, max);
5132
5133 for (;;) {
5134 unsigned long nr_pages = page_counter_read(&memcg->memory);
5135
5136 if (nr_pages <= max)
5137 break;
5138
5139 if (signal_pending(current)) {
5140 err = -EINTR;
5141 break;
5142 }
5143
5144 if (!drained) {
5145 drain_all_stock(memcg);
5146 drained = true;
5147 continue;
5148 }
5149
5150 if (nr_reclaims) {
5151 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5152 GFP_KERNEL, true))
5153 nr_reclaims--;
5154 continue;
5155 }
5156
5157 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5158 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5159 break;
5160 }
5161
5162 memcg_wb_domain_size_changed(memcg);
5163 return nbytes;
5164 }
5165
5166 static int memory_events_show(struct seq_file *m, void *v)
5167 {
5168 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5169
5170 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5171 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5172 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5173 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5174
5175 return 0;
5176 }
5177
5178 static int memory_stat_show(struct seq_file *m, void *v)
5179 {
5180 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5181 unsigned long stat[MEMCG_NR_STAT];
5182 unsigned long events[MEMCG_NR_EVENTS];
5183 int i;
5184
5185 /*
5186 * Provide statistics on the state of the memory subsystem as
5187 * well as cumulative event counters that show past behavior.
5188 *
5189 * This list is ordered following a combination of these gradients:
5190 * 1) generic big picture -> specifics and details
5191 * 2) reflecting userspace activity -> reflecting kernel heuristics
5192 *
5193 * Current memory state:
5194 */
5195
5196 tree_stat(memcg, stat);
5197 tree_events(memcg, events);
5198
5199 seq_printf(m, "anon %llu\n",
5200 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5201 seq_printf(m, "file %llu\n",
5202 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5203 seq_printf(m, "kernel_stack %llu\n",
5204 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5205 seq_printf(m, "slab %llu\n",
5206 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5207 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5208 seq_printf(m, "sock %llu\n",
5209 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5210
5211 seq_printf(m, "file_mapped %llu\n",
5212 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5213 seq_printf(m, "file_dirty %llu\n",
5214 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5215 seq_printf(m, "file_writeback %llu\n",
5216 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5217
5218 for (i = 0; i < NR_LRU_LISTS; i++) {
5219 struct mem_cgroup *mi;
5220 unsigned long val = 0;
5221
5222 for_each_mem_cgroup_tree(mi, memcg)
5223 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5224 seq_printf(m, "%s %llu\n",
5225 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5226 }
5227
5228 seq_printf(m, "slab_reclaimable %llu\n",
5229 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5230 seq_printf(m, "slab_unreclaimable %llu\n",
5231 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5232
5233 /* Accumulated memory events */
5234
5235 seq_printf(m, "pgfault %lu\n",
5236 events[MEM_CGROUP_EVENTS_PGFAULT]);
5237 seq_printf(m, "pgmajfault %lu\n",
5238 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5239
5240 return 0;
5241 }
5242
5243 static struct cftype memory_files[] = {
5244 {
5245 .name = "current",
5246 .flags = CFTYPE_NOT_ON_ROOT,
5247 .read_u64 = memory_current_read,
5248 },
5249 {
5250 .name = "low",
5251 .flags = CFTYPE_NOT_ON_ROOT,
5252 .seq_show = memory_low_show,
5253 .write = memory_low_write,
5254 },
5255 {
5256 .name = "high",
5257 .flags = CFTYPE_NOT_ON_ROOT,
5258 .seq_show = memory_high_show,
5259 .write = memory_high_write,
5260 },
5261 {
5262 .name = "max",
5263 .flags = CFTYPE_NOT_ON_ROOT,
5264 .seq_show = memory_max_show,
5265 .write = memory_max_write,
5266 },
5267 {
5268 .name = "events",
5269 .flags = CFTYPE_NOT_ON_ROOT,
5270 .file_offset = offsetof(struct mem_cgroup, events_file),
5271 .seq_show = memory_events_show,
5272 },
5273 {
5274 .name = "stat",
5275 .flags = CFTYPE_NOT_ON_ROOT,
5276 .seq_show = memory_stat_show,
5277 },
5278 { } /* terminate */
5279 };
5280
5281 struct cgroup_subsys memory_cgrp_subsys = {
5282 .css_alloc = mem_cgroup_css_alloc,
5283 .css_online = mem_cgroup_css_online,
5284 .css_offline = mem_cgroup_css_offline,
5285 .css_released = mem_cgroup_css_released,
5286 .css_free = mem_cgroup_css_free,
5287 .css_reset = mem_cgroup_css_reset,
5288 .can_attach = mem_cgroup_can_attach,
5289 .cancel_attach = mem_cgroup_cancel_attach,
5290 .post_attach = mem_cgroup_move_task,
5291 .bind = mem_cgroup_bind,
5292 .dfl_cftypes = memory_files,
5293 .legacy_cftypes = mem_cgroup_legacy_files,
5294 .early_init = 0,
5295 };
5296
5297 /**
5298 * mem_cgroup_low - check if memory consumption is below the normal range
5299 * @root: the highest ancestor to consider
5300 * @memcg: the memory cgroup to check
5301 *
5302 * Returns %true if memory consumption of @memcg, and that of all
5303 * configurable ancestors up to @root, is below the normal range.
5304 */
5305 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5306 {
5307 if (mem_cgroup_disabled())
5308 return false;
5309
5310 /*
5311 * The toplevel group doesn't have a configurable range, so
5312 * it's never low when looked at directly, and it is not
5313 * considered an ancestor when assessing the hierarchy.
5314 */
5315
5316 if (memcg == root_mem_cgroup)
5317 return false;
5318
5319 if (page_counter_read(&memcg->memory) >= memcg->low)
5320 return false;
5321
5322 while (memcg != root) {
5323 memcg = parent_mem_cgroup(memcg);
5324
5325 if (memcg == root_mem_cgroup)
5326 break;
5327
5328 if (page_counter_read(&memcg->memory) >= memcg->low)
5329 return false;
5330 }
5331 return true;
5332 }
5333
5334 /**
5335 * mem_cgroup_try_charge - try charging a page
5336 * @page: page to charge
5337 * @mm: mm context of the victim
5338 * @gfp_mask: reclaim mode
5339 * @memcgp: charged memcg return
5340 * @compound: charge the page as compound or small page
5341 *
5342 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5343 * pages according to @gfp_mask if necessary.
5344 *
5345 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5346 * Otherwise, an error code is returned.
5347 *
5348 * After page->mapping has been set up, the caller must finalize the
5349 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5350 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5351 */
5352 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5353 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5354 bool compound)
5355 {
5356 struct mem_cgroup *memcg = NULL;
5357 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5358 int ret = 0;
5359
5360 if (mem_cgroup_disabled())
5361 goto out;
5362
5363 if (PageSwapCache(page)) {
5364 /*
5365 * Every swap fault against a single page tries to charge the
5366 * page, bail as early as possible. shmem_unuse() encounters
5367 * already charged pages, too. The USED bit is protected by
5368 * the page lock, which serializes swap cache removal, which
5369 * in turn serializes uncharging.
5370 */
5371 VM_BUG_ON_PAGE(!PageLocked(page), page);
5372 if (page->mem_cgroup)
5373 goto out;
5374
5375 if (do_swap_account) {
5376 swp_entry_t ent = { .val = page_private(page), };
5377 unsigned short id = lookup_swap_cgroup_id(ent);
5378
5379 rcu_read_lock();
5380 memcg = mem_cgroup_from_id(id);
5381 if (memcg && !css_tryget_online(&memcg->css))
5382 memcg = NULL;
5383 rcu_read_unlock();
5384 }
5385 }
5386
5387 if (!memcg)
5388 memcg = get_mem_cgroup_from_mm(mm);
5389
5390 ret = try_charge(memcg, gfp_mask, nr_pages);
5391
5392 css_put(&memcg->css);
5393 out:
5394 *memcgp = memcg;
5395 return ret;
5396 }
5397
5398 /**
5399 * mem_cgroup_commit_charge - commit a page charge
5400 * @page: page to charge
5401 * @memcg: memcg to charge the page to
5402 * @lrucare: page might be on LRU already
5403 * @compound: charge the page as compound or small page
5404 *
5405 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5406 * after page->mapping has been set up. This must happen atomically
5407 * as part of the page instantiation, i.e. under the page table lock
5408 * for anonymous pages, under the page lock for page and swap cache.
5409 *
5410 * In addition, the page must not be on the LRU during the commit, to
5411 * prevent racing with task migration. If it might be, use @lrucare.
5412 *
5413 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5414 */
5415 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5416 bool lrucare, bool compound)
5417 {
5418 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5419
5420 VM_BUG_ON_PAGE(!page->mapping, page);
5421 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5422
5423 if (mem_cgroup_disabled())
5424 return;
5425 /*
5426 * Swap faults will attempt to charge the same page multiple
5427 * times. But reuse_swap_page() might have removed the page
5428 * from swapcache already, so we can't check PageSwapCache().
5429 */
5430 if (!memcg)
5431 return;
5432
5433 commit_charge(page, memcg, lrucare);
5434
5435 local_irq_disable();
5436 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5437 memcg_check_events(memcg, page);
5438 local_irq_enable();
5439
5440 if (do_memsw_account() && PageSwapCache(page)) {
5441 swp_entry_t entry = { .val = page_private(page) };
5442 /*
5443 * The swap entry might not get freed for a long time,
5444 * let's not wait for it. The page already received a
5445 * memory+swap charge, drop the swap entry duplicate.
5446 */
5447 mem_cgroup_uncharge_swap(entry);
5448 }
5449 }
5450
5451 /**
5452 * mem_cgroup_cancel_charge - cancel a page charge
5453 * @page: page to charge
5454 * @memcg: memcg to charge the page to
5455 * @compound: charge the page as compound or small page
5456 *
5457 * Cancel a charge transaction started by mem_cgroup_try_charge().
5458 */
5459 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5460 bool compound)
5461 {
5462 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5463
5464 if (mem_cgroup_disabled())
5465 return;
5466 /*
5467 * Swap faults will attempt to charge the same page multiple
5468 * times. But reuse_swap_page() might have removed the page
5469 * from swapcache already, so we can't check PageSwapCache().
5470 */
5471 if (!memcg)
5472 return;
5473
5474 cancel_charge(memcg, nr_pages);
5475 }
5476
5477 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5478 unsigned long nr_anon, unsigned long nr_file,
5479 unsigned long nr_huge, unsigned long nr_kmem,
5480 struct page *dummy_page)
5481 {
5482 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5483 unsigned long flags;
5484
5485 if (!mem_cgroup_is_root(memcg)) {
5486 page_counter_uncharge(&memcg->memory, nr_pages);
5487 if (do_memsw_account())
5488 page_counter_uncharge(&memcg->memsw, nr_pages);
5489 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5490 page_counter_uncharge(&memcg->kmem, nr_kmem);
5491 memcg_oom_recover(memcg);
5492 }
5493
5494 local_irq_save(flags);
5495 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5496 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5497 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5498 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5499 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5500 memcg_check_events(memcg, dummy_page);
5501 local_irq_restore(flags);
5502
5503 if (!mem_cgroup_is_root(memcg))
5504 css_put_many(&memcg->css, nr_pages);
5505 }
5506
5507 static void uncharge_list(struct list_head *page_list)
5508 {
5509 struct mem_cgroup *memcg = NULL;
5510 unsigned long nr_anon = 0;
5511 unsigned long nr_file = 0;
5512 unsigned long nr_huge = 0;
5513 unsigned long nr_kmem = 0;
5514 unsigned long pgpgout = 0;
5515 struct list_head *next;
5516 struct page *page;
5517
5518 /*
5519 * Note that the list can be a single page->lru; hence the
5520 * do-while loop instead of a simple list_for_each_entry().
5521 */
5522 next = page_list->next;
5523 do {
5524 page = list_entry(next, struct page, lru);
5525 next = page->lru.next;
5526
5527 VM_BUG_ON_PAGE(PageLRU(page), page);
5528 VM_BUG_ON_PAGE(page_count(page), page);
5529
5530 if (!page->mem_cgroup)
5531 continue;
5532
5533 /*
5534 * Nobody should be changing or seriously looking at
5535 * page->mem_cgroup at this point, we have fully
5536 * exclusive access to the page.
5537 */
5538
5539 if (memcg != page->mem_cgroup) {
5540 if (memcg) {
5541 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5542 nr_huge, nr_kmem, page);
5543 pgpgout = nr_anon = nr_file =
5544 nr_huge = nr_kmem = 0;
5545 }
5546 memcg = page->mem_cgroup;
5547 }
5548
5549 if (!PageKmemcg(page)) {
5550 unsigned int nr_pages = 1;
5551
5552 if (PageTransHuge(page)) {
5553 nr_pages <<= compound_order(page);
5554 nr_huge += nr_pages;
5555 }
5556 if (PageAnon(page))
5557 nr_anon += nr_pages;
5558 else
5559 nr_file += nr_pages;
5560 pgpgout++;
5561 } else {
5562 nr_kmem += 1 << compound_order(page);
5563 __ClearPageKmemcg(page);
5564 }
5565
5566 page->mem_cgroup = NULL;
5567 } while (next != page_list);
5568
5569 if (memcg)
5570 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5571 nr_huge, nr_kmem, page);
5572 }
5573
5574 /**
5575 * mem_cgroup_uncharge - uncharge a page
5576 * @page: page to uncharge
5577 *
5578 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5579 * mem_cgroup_commit_charge().
5580 */
5581 void mem_cgroup_uncharge(struct page *page)
5582 {
5583 if (mem_cgroup_disabled())
5584 return;
5585
5586 /* Don't touch page->lru of any random page, pre-check: */
5587 if (!page->mem_cgroup)
5588 return;
5589
5590 INIT_LIST_HEAD(&page->lru);
5591 uncharge_list(&page->lru);
5592 }
5593
5594 /**
5595 * mem_cgroup_uncharge_list - uncharge a list of page
5596 * @page_list: list of pages to uncharge
5597 *
5598 * Uncharge a list of pages previously charged with
5599 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5600 */
5601 void mem_cgroup_uncharge_list(struct list_head *page_list)
5602 {
5603 if (mem_cgroup_disabled())
5604 return;
5605
5606 if (!list_empty(page_list))
5607 uncharge_list(page_list);
5608 }
5609
5610 /**
5611 * mem_cgroup_migrate - charge a page's replacement
5612 * @oldpage: currently circulating page
5613 * @newpage: replacement page
5614 *
5615 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5616 * be uncharged upon free.
5617 *
5618 * Both pages must be locked, @newpage->mapping must be set up.
5619 */
5620 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5621 {
5622 struct mem_cgroup *memcg;
5623 unsigned int nr_pages;
5624 bool compound;
5625 unsigned long flags;
5626
5627 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5628 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5629 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5630 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5631 newpage);
5632
5633 if (mem_cgroup_disabled())
5634 return;
5635
5636 /* Page cache replacement: new page already charged? */
5637 if (newpage->mem_cgroup)
5638 return;
5639
5640 /* Swapcache readahead pages can get replaced before being charged */
5641 memcg = oldpage->mem_cgroup;
5642 if (!memcg)
5643 return;
5644
5645 /* Force-charge the new page. The old one will be freed soon */
5646 compound = PageTransHuge(newpage);
5647 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5648
5649 page_counter_charge(&memcg->memory, nr_pages);
5650 if (do_memsw_account())
5651 page_counter_charge(&memcg->memsw, nr_pages);
5652 css_get_many(&memcg->css, nr_pages);
5653
5654 commit_charge(newpage, memcg, false);
5655
5656 local_irq_save(flags);
5657 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5658 memcg_check_events(memcg, newpage);
5659 local_irq_restore(flags);
5660 }
5661
5662 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5663 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5664
5665 void mem_cgroup_sk_alloc(struct sock *sk)
5666 {
5667 struct mem_cgroup *memcg;
5668
5669 if (!mem_cgroup_sockets_enabled)
5670 return;
5671
5672 /*
5673 * Socket cloning can throw us here with sk_memcg already
5674 * filled. It won't however, necessarily happen from
5675 * process context. So the test for root memcg given
5676 * the current task's memcg won't help us in this case.
5677 *
5678 * Respecting the original socket's memcg is a better
5679 * decision in this case.
5680 */
5681 if (sk->sk_memcg) {
5682 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5683 css_get(&sk->sk_memcg->css);
5684 return;
5685 }
5686
5687 rcu_read_lock();
5688 memcg = mem_cgroup_from_task(current);
5689 if (memcg == root_mem_cgroup)
5690 goto out;
5691 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5692 goto out;
5693 if (css_tryget_online(&memcg->css))
5694 sk->sk_memcg = memcg;
5695 out:
5696 rcu_read_unlock();
5697 }
5698
5699 void mem_cgroup_sk_free(struct sock *sk)
5700 {
5701 if (sk->sk_memcg)
5702 css_put(&sk->sk_memcg->css);
5703 }
5704
5705 /**
5706 * mem_cgroup_charge_skmem - charge socket memory
5707 * @memcg: memcg to charge
5708 * @nr_pages: number of pages to charge
5709 *
5710 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5711 * @memcg's configured limit, %false if the charge had to be forced.
5712 */
5713 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5714 {
5715 gfp_t gfp_mask = GFP_KERNEL;
5716
5717 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5718 struct page_counter *fail;
5719
5720 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5721 memcg->tcpmem_pressure = 0;
5722 return true;
5723 }
5724 page_counter_charge(&memcg->tcpmem, nr_pages);
5725 memcg->tcpmem_pressure = 1;
5726 return false;
5727 }
5728
5729 /* Don't block in the packet receive path */
5730 if (in_softirq())
5731 gfp_mask = GFP_NOWAIT;
5732
5733 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5734
5735 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5736 return true;
5737
5738 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5739 return false;
5740 }
5741
5742 /**
5743 * mem_cgroup_uncharge_skmem - uncharge socket memory
5744 * @memcg - memcg to uncharge
5745 * @nr_pages - number of pages to uncharge
5746 */
5747 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5748 {
5749 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5750 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5751 return;
5752 }
5753
5754 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5755
5756 page_counter_uncharge(&memcg->memory, nr_pages);
5757 css_put_many(&memcg->css, nr_pages);
5758 }
5759
5760 static int __init cgroup_memory(char *s)
5761 {
5762 char *token;
5763
5764 while ((token = strsep(&s, ",")) != NULL) {
5765 if (!*token)
5766 continue;
5767 if (!strcmp(token, "nosocket"))
5768 cgroup_memory_nosocket = true;
5769 if (!strcmp(token, "nokmem"))
5770 cgroup_memory_nokmem = true;
5771 }
5772 return 0;
5773 }
5774 __setup("cgroup.memory=", cgroup_memory);
5775
5776 /*
5777 * subsys_initcall() for memory controller.
5778 *
5779 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5780 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5781 * basically everything that doesn't depend on a specific mem_cgroup structure
5782 * should be initialized from here.
5783 */
5784 static int __init mem_cgroup_init(void)
5785 {
5786 int cpu, node;
5787
5788 #ifndef CONFIG_SLOB
5789 /*
5790 * Kmem cache creation is mostly done with the slab_mutex held,
5791 * so use a workqueue with limited concurrency to avoid stalling
5792 * all worker threads in case lots of cgroups are created and
5793 * destroyed simultaneously.
5794 */
5795 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5796 BUG_ON(!memcg_kmem_cache_wq);
5797 #endif
5798
5799 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5800 memcg_hotplug_cpu_dead);
5801
5802 for_each_possible_cpu(cpu)
5803 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5804 drain_local_stock);
5805
5806 for_each_node(node) {
5807 struct mem_cgroup_tree_per_node *rtpn;
5808
5809 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5810 node_online(node) ? node : NUMA_NO_NODE);
5811
5812 rtpn->rb_root = RB_ROOT;
5813 spin_lock_init(&rtpn->lock);
5814 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5815 }
5816
5817 return 0;
5818 }
5819 subsys_initcall(mem_cgroup_init);
5820
5821 #ifdef CONFIG_MEMCG_SWAP
5822 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5823 {
5824 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5825 /*
5826 * The root cgroup cannot be destroyed, so it's refcount must
5827 * always be >= 1.
5828 */
5829 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5830 VM_BUG_ON(1);
5831 break;
5832 }
5833 memcg = parent_mem_cgroup(memcg);
5834 if (!memcg)
5835 memcg = root_mem_cgroup;
5836 }
5837 return memcg;
5838 }
5839
5840 /**
5841 * mem_cgroup_swapout - transfer a memsw charge to swap
5842 * @page: page whose memsw charge to transfer
5843 * @entry: swap entry to move the charge to
5844 *
5845 * Transfer the memsw charge of @page to @entry.
5846 */
5847 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5848 {
5849 struct mem_cgroup *memcg, *swap_memcg;
5850 unsigned short oldid;
5851
5852 VM_BUG_ON_PAGE(PageLRU(page), page);
5853 VM_BUG_ON_PAGE(page_count(page), page);
5854
5855 if (!do_memsw_account())
5856 return;
5857
5858 memcg = page->mem_cgroup;
5859
5860 /* Readahead page, never charged */
5861 if (!memcg)
5862 return;
5863
5864 /*
5865 * In case the memcg owning these pages has been offlined and doesn't
5866 * have an ID allocated to it anymore, charge the closest online
5867 * ancestor for the swap instead and transfer the memory+swap charge.
5868 */
5869 swap_memcg = mem_cgroup_id_get_online(memcg);
5870 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5871 VM_BUG_ON_PAGE(oldid, page);
5872 mem_cgroup_swap_statistics(swap_memcg, true);
5873
5874 page->mem_cgroup = NULL;
5875
5876 if (!mem_cgroup_is_root(memcg))
5877 page_counter_uncharge(&memcg->memory, 1);
5878
5879 if (memcg != swap_memcg) {
5880 if (!mem_cgroup_is_root(swap_memcg))
5881 page_counter_charge(&swap_memcg->memsw, 1);
5882 page_counter_uncharge(&memcg->memsw, 1);
5883 }
5884
5885 /*
5886 * Interrupts should be disabled here because the caller holds the
5887 * mapping->tree_lock lock which is taken with interrupts-off. It is
5888 * important here to have the interrupts disabled because it is the
5889 * only synchronisation we have for udpating the per-CPU variables.
5890 */
5891 VM_BUG_ON(!irqs_disabled());
5892 mem_cgroup_charge_statistics(memcg, page, false, -1);
5893 memcg_check_events(memcg, page);
5894
5895 if (!mem_cgroup_is_root(memcg))
5896 css_put(&memcg->css);
5897 }
5898
5899 /*
5900 * mem_cgroup_try_charge_swap - try charging a swap entry
5901 * @page: page being added to swap
5902 * @entry: swap entry to charge
5903 *
5904 * Try to charge @entry to the memcg that @page belongs to.
5905 *
5906 * Returns 0 on success, -ENOMEM on failure.
5907 */
5908 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5909 {
5910 struct mem_cgroup *memcg;
5911 struct page_counter *counter;
5912 unsigned short oldid;
5913
5914 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5915 return 0;
5916
5917 memcg = page->mem_cgroup;
5918
5919 /* Readahead page, never charged */
5920 if (!memcg)
5921 return 0;
5922
5923 memcg = mem_cgroup_id_get_online(memcg);
5924
5925 if (!mem_cgroup_is_root(memcg) &&
5926 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5927 mem_cgroup_id_put(memcg);
5928 return -ENOMEM;
5929 }
5930
5931 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5932 VM_BUG_ON_PAGE(oldid, page);
5933 mem_cgroup_swap_statistics(memcg, true);
5934
5935 return 0;
5936 }
5937
5938 /**
5939 * mem_cgroup_uncharge_swap - uncharge a swap entry
5940 * @entry: swap entry to uncharge
5941 *
5942 * Drop the swap charge associated with @entry.
5943 */
5944 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5945 {
5946 struct mem_cgroup *memcg;
5947 unsigned short id;
5948
5949 if (!do_swap_account)
5950 return;
5951
5952 id = swap_cgroup_record(entry, 0);
5953 rcu_read_lock();
5954 memcg = mem_cgroup_from_id(id);
5955 if (memcg) {
5956 if (!mem_cgroup_is_root(memcg)) {
5957 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5958 page_counter_uncharge(&memcg->swap, 1);
5959 else
5960 page_counter_uncharge(&memcg->memsw, 1);
5961 }
5962 mem_cgroup_swap_statistics(memcg, false);
5963 mem_cgroup_id_put(memcg);
5964 }
5965 rcu_read_unlock();
5966 }
5967
5968 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5969 {
5970 long nr_swap_pages = get_nr_swap_pages();
5971
5972 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5973 return nr_swap_pages;
5974 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5975 nr_swap_pages = min_t(long, nr_swap_pages,
5976 READ_ONCE(memcg->swap.limit) -
5977 page_counter_read(&memcg->swap));
5978 return nr_swap_pages;
5979 }
5980
5981 bool mem_cgroup_swap_full(struct page *page)
5982 {
5983 struct mem_cgroup *memcg;
5984
5985 VM_BUG_ON_PAGE(!PageLocked(page), page);
5986
5987 if (vm_swap_full())
5988 return true;
5989 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5990 return false;
5991
5992 memcg = page->mem_cgroup;
5993 if (!memcg)
5994 return false;
5995
5996 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5997 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5998 return true;
5999
6000 return false;
6001 }
6002
6003 /* for remember boot option*/
6004 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6005 static int really_do_swap_account __initdata = 1;
6006 #else
6007 static int really_do_swap_account __initdata;
6008 #endif
6009
6010 static int __init enable_swap_account(char *s)
6011 {
6012 if (!strcmp(s, "1"))
6013 really_do_swap_account = 1;
6014 else if (!strcmp(s, "0"))
6015 really_do_swap_account = 0;
6016 return 1;
6017 }
6018 __setup("swapaccount=", enable_swap_account);
6019
6020 static u64 swap_current_read(struct cgroup_subsys_state *css,
6021 struct cftype *cft)
6022 {
6023 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6024
6025 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6026 }
6027
6028 static int swap_max_show(struct seq_file *m, void *v)
6029 {
6030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6031 unsigned long max = READ_ONCE(memcg->swap.limit);
6032
6033 if (max == PAGE_COUNTER_MAX)
6034 seq_puts(m, "max\n");
6035 else
6036 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6037
6038 return 0;
6039 }
6040
6041 static ssize_t swap_max_write(struct kernfs_open_file *of,
6042 char *buf, size_t nbytes, loff_t off)
6043 {
6044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6045 unsigned long max;
6046 int err;
6047
6048 buf = strstrip(buf);
6049 err = page_counter_memparse(buf, "max", &max);
6050 if (err)
6051 return err;
6052
6053 mutex_lock(&memcg_limit_mutex);
6054 err = page_counter_limit(&memcg->swap, max);
6055 mutex_unlock(&memcg_limit_mutex);
6056 if (err)
6057 return err;
6058
6059 return nbytes;
6060 }
6061
6062 static struct cftype swap_files[] = {
6063 {
6064 .name = "swap.current",
6065 .flags = CFTYPE_NOT_ON_ROOT,
6066 .read_u64 = swap_current_read,
6067 },
6068 {
6069 .name = "swap.max",
6070 .flags = CFTYPE_NOT_ON_ROOT,
6071 .seq_show = swap_max_show,
6072 .write = swap_max_write,
6073 },
6074 { } /* terminate */
6075 };
6076
6077 static struct cftype memsw_cgroup_files[] = {
6078 {
6079 .name = "memsw.usage_in_bytes",
6080 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6081 .read_u64 = mem_cgroup_read_u64,
6082 },
6083 {
6084 .name = "memsw.max_usage_in_bytes",
6085 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6086 .write = mem_cgroup_reset,
6087 .read_u64 = mem_cgroup_read_u64,
6088 },
6089 {
6090 .name = "memsw.limit_in_bytes",
6091 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6092 .write = mem_cgroup_write,
6093 .read_u64 = mem_cgroup_read_u64,
6094 },
6095 {
6096 .name = "memsw.failcnt",
6097 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6098 .write = mem_cgroup_reset,
6099 .read_u64 = mem_cgroup_read_u64,
6100 },
6101 { }, /* terminate */
6102 };
6103
6104 static int __init mem_cgroup_swap_init(void)
6105 {
6106 if (!mem_cgroup_disabled() && really_do_swap_account) {
6107 do_swap_account = 1;
6108 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6109 swap_files));
6110 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6111 memsw_cgroup_files));
6112 }
6113 return 0;
6114 }
6115 subsys_initcall(mem_cgroup_swap_init);
6116
6117 #endif /* CONFIG_MEMCG_SWAP */