]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
mm/vmalloc.c: spelling> s/informaion/information/
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/mm.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/seq_buf.h>
61 #include "internal.h"
62 #include <net/sock.h>
63 #include <net/ip.h>
64 #include "slab.h"
65
66 #include <linux/uaccess.h>
67
68 #include <trace/events/vmscan.h>
69
70 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
71 EXPORT_SYMBOL(memory_cgrp_subsys);
72
73 struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #define MEM_CGROUP_RECLAIM_RETRIES 5
76
77 /* Socket memory accounting disabled? */
78 static bool cgroup_memory_nosocket;
79
80 /* Kernel memory accounting disabled? */
81 static bool cgroup_memory_nokmem;
82
83 /* Whether the swap controller is active */
84 #ifdef CONFIG_MEMCG_SWAP
85 int do_swap_account __read_mostly;
86 #else
87 #define do_swap_account 0
88 #endif
89
90 /* Whether legacy memory+swap accounting is active */
91 static bool do_memsw_account(void)
92 {
93 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
94 }
95
96 static const char *const mem_cgroup_lru_names[] = {
97 "inactive_anon",
98 "active_anon",
99 "inactive_file",
100 "active_file",
101 "unevictable",
102 };
103
104 #define THRESHOLDS_EVENTS_TARGET 128
105 #define SOFTLIMIT_EVENTS_TARGET 1024
106 #define NUMAINFO_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 enum charge_type {
207 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
208 MEM_CGROUP_CHARGE_TYPE_ANON,
209 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
210 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
211 NR_CHARGE_TYPE,
212 };
213
214 /* for encoding cft->private value on file */
215 enum res_type {
216 _MEM,
217 _MEMSWAP,
218 _OOM_TYPE,
219 _KMEM,
220 _TCP,
221 };
222
223 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
224 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
225 #define MEMFILE_ATTR(val) ((val) & 0xffff)
226 /* Used for OOM nofiier */
227 #define OOM_CONTROL (0)
228
229 /*
230 * Iteration constructs for visiting all cgroups (under a tree). If
231 * loops are exited prematurely (break), mem_cgroup_iter_break() must
232 * be used for reference counting.
233 */
234 #define for_each_mem_cgroup_tree(iter, root) \
235 for (iter = mem_cgroup_iter(root, NULL, NULL); \
236 iter != NULL; \
237 iter = mem_cgroup_iter(root, iter, NULL))
238
239 #define for_each_mem_cgroup(iter) \
240 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
241 iter != NULL; \
242 iter = mem_cgroup_iter(NULL, iter, NULL))
243
244 static inline bool should_force_charge(void)
245 {
246 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
247 (current->flags & PF_EXITING);
248 }
249
250 /* Some nice accessors for the vmpressure. */
251 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
252 {
253 if (!memcg)
254 memcg = root_mem_cgroup;
255 return &memcg->vmpressure;
256 }
257
258 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
259 {
260 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
261 }
262
263 #ifdef CONFIG_MEMCG_KMEM
264 /*
265 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
266 * The main reason for not using cgroup id for this:
267 * this works better in sparse environments, where we have a lot of memcgs,
268 * but only a few kmem-limited. Or also, if we have, for instance, 200
269 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
270 * 200 entry array for that.
271 *
272 * The current size of the caches array is stored in memcg_nr_cache_ids. It
273 * will double each time we have to increase it.
274 */
275 static DEFINE_IDA(memcg_cache_ida);
276 int memcg_nr_cache_ids;
277
278 /* Protects memcg_nr_cache_ids */
279 static DECLARE_RWSEM(memcg_cache_ids_sem);
280
281 void memcg_get_cache_ids(void)
282 {
283 down_read(&memcg_cache_ids_sem);
284 }
285
286 void memcg_put_cache_ids(void)
287 {
288 up_read(&memcg_cache_ids_sem);
289 }
290
291 /*
292 * MIN_SIZE is different than 1, because we would like to avoid going through
293 * the alloc/free process all the time. In a small machine, 4 kmem-limited
294 * cgroups is a reasonable guess. In the future, it could be a parameter or
295 * tunable, but that is strictly not necessary.
296 *
297 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
298 * this constant directly from cgroup, but it is understandable that this is
299 * better kept as an internal representation in cgroup.c. In any case, the
300 * cgrp_id space is not getting any smaller, and we don't have to necessarily
301 * increase ours as well if it increases.
302 */
303 #define MEMCG_CACHES_MIN_SIZE 4
304 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
305
306 /*
307 * A lot of the calls to the cache allocation functions are expected to be
308 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
309 * conditional to this static branch, we'll have to allow modules that does
310 * kmem_cache_alloc and the such to see this symbol as well
311 */
312 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
313 EXPORT_SYMBOL(memcg_kmem_enabled_key);
314
315 struct workqueue_struct *memcg_kmem_cache_wq;
316
317 static int memcg_shrinker_map_size;
318 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
319
320 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
321 {
322 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
323 }
324
325 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
326 int size, int old_size)
327 {
328 struct memcg_shrinker_map *new, *old;
329 int nid;
330
331 lockdep_assert_held(&memcg_shrinker_map_mutex);
332
333 for_each_node(nid) {
334 old = rcu_dereference_protected(
335 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
336 /* Not yet online memcg */
337 if (!old)
338 return 0;
339
340 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
341 if (!new)
342 return -ENOMEM;
343
344 /* Set all old bits, clear all new bits */
345 memset(new->map, (int)0xff, old_size);
346 memset((void *)new->map + old_size, 0, size - old_size);
347
348 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
349 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
350 }
351
352 return 0;
353 }
354
355 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
356 {
357 struct mem_cgroup_per_node *pn;
358 struct memcg_shrinker_map *map;
359 int nid;
360
361 if (mem_cgroup_is_root(memcg))
362 return;
363
364 for_each_node(nid) {
365 pn = mem_cgroup_nodeinfo(memcg, nid);
366 map = rcu_dereference_protected(pn->shrinker_map, true);
367 if (map)
368 kvfree(map);
369 rcu_assign_pointer(pn->shrinker_map, NULL);
370 }
371 }
372
373 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
374 {
375 struct memcg_shrinker_map *map;
376 int nid, size, ret = 0;
377
378 if (mem_cgroup_is_root(memcg))
379 return 0;
380
381 mutex_lock(&memcg_shrinker_map_mutex);
382 size = memcg_shrinker_map_size;
383 for_each_node(nid) {
384 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
385 if (!map) {
386 memcg_free_shrinker_maps(memcg);
387 ret = -ENOMEM;
388 break;
389 }
390 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
391 }
392 mutex_unlock(&memcg_shrinker_map_mutex);
393
394 return ret;
395 }
396
397 int memcg_expand_shrinker_maps(int new_id)
398 {
399 int size, old_size, ret = 0;
400 struct mem_cgroup *memcg;
401
402 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
403 old_size = memcg_shrinker_map_size;
404 if (size <= old_size)
405 return 0;
406
407 mutex_lock(&memcg_shrinker_map_mutex);
408 if (!root_mem_cgroup)
409 goto unlock;
410
411 for_each_mem_cgroup(memcg) {
412 if (mem_cgroup_is_root(memcg))
413 continue;
414 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
415 if (ret)
416 goto unlock;
417 }
418 unlock:
419 if (!ret)
420 memcg_shrinker_map_size = size;
421 mutex_unlock(&memcg_shrinker_map_mutex);
422 return ret;
423 }
424
425 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
426 {
427 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
428 struct memcg_shrinker_map *map;
429
430 rcu_read_lock();
431 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
432 /* Pairs with smp mb in shrink_slab() */
433 smp_mb__before_atomic();
434 set_bit(shrinker_id, map->map);
435 rcu_read_unlock();
436 }
437 }
438
439 #else /* CONFIG_MEMCG_KMEM */
440 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 return 0;
443 }
444 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg) { }
445 #endif /* CONFIG_MEMCG_KMEM */
446
447 /**
448 * mem_cgroup_css_from_page - css of the memcg associated with a page
449 * @page: page of interest
450 *
451 * If memcg is bound to the default hierarchy, css of the memcg associated
452 * with @page is returned. The returned css remains associated with @page
453 * until it is released.
454 *
455 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
456 * is returned.
457 */
458 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
459 {
460 struct mem_cgroup *memcg;
461
462 memcg = page->mem_cgroup;
463
464 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
465 memcg = root_mem_cgroup;
466
467 return &memcg->css;
468 }
469
470 /**
471 * page_cgroup_ino - return inode number of the memcg a page is charged to
472 * @page: the page
473 *
474 * Look up the closest online ancestor of the memory cgroup @page is charged to
475 * and return its inode number or 0 if @page is not charged to any cgroup. It
476 * is safe to call this function without holding a reference to @page.
477 *
478 * Note, this function is inherently racy, because there is nothing to prevent
479 * the cgroup inode from getting torn down and potentially reallocated a moment
480 * after page_cgroup_ino() returns, so it only should be used by callers that
481 * do not care (such as procfs interfaces).
482 */
483 ino_t page_cgroup_ino(struct page *page)
484 {
485 struct mem_cgroup *memcg;
486 unsigned long ino = 0;
487
488 rcu_read_lock();
489 if (PageHead(page) && PageSlab(page))
490 memcg = memcg_from_slab_page(page);
491 else
492 memcg = READ_ONCE(page->mem_cgroup);
493 while (memcg && !(memcg->css.flags & CSS_ONLINE))
494 memcg = parent_mem_cgroup(memcg);
495 if (memcg)
496 ino = cgroup_ino(memcg->css.cgroup);
497 rcu_read_unlock();
498 return ino;
499 }
500
501 static struct mem_cgroup_per_node *
502 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
503 {
504 int nid = page_to_nid(page);
505
506 return memcg->nodeinfo[nid];
507 }
508
509 static struct mem_cgroup_tree_per_node *
510 soft_limit_tree_node(int nid)
511 {
512 return soft_limit_tree.rb_tree_per_node[nid];
513 }
514
515 static struct mem_cgroup_tree_per_node *
516 soft_limit_tree_from_page(struct page *page)
517 {
518 int nid = page_to_nid(page);
519
520 return soft_limit_tree.rb_tree_per_node[nid];
521 }
522
523 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
524 struct mem_cgroup_tree_per_node *mctz,
525 unsigned long new_usage_in_excess)
526 {
527 struct rb_node **p = &mctz->rb_root.rb_node;
528 struct rb_node *parent = NULL;
529 struct mem_cgroup_per_node *mz_node;
530 bool rightmost = true;
531
532 if (mz->on_tree)
533 return;
534
535 mz->usage_in_excess = new_usage_in_excess;
536 if (!mz->usage_in_excess)
537 return;
538 while (*p) {
539 parent = *p;
540 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
541 tree_node);
542 if (mz->usage_in_excess < mz_node->usage_in_excess) {
543 p = &(*p)->rb_left;
544 rightmost = false;
545 }
546
547 /*
548 * We can't avoid mem cgroups that are over their soft
549 * limit by the same amount
550 */
551 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
552 p = &(*p)->rb_right;
553 }
554
555 if (rightmost)
556 mctz->rb_rightmost = &mz->tree_node;
557
558 rb_link_node(&mz->tree_node, parent, p);
559 rb_insert_color(&mz->tree_node, &mctz->rb_root);
560 mz->on_tree = true;
561 }
562
563 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
564 struct mem_cgroup_tree_per_node *mctz)
565 {
566 if (!mz->on_tree)
567 return;
568
569 if (&mz->tree_node == mctz->rb_rightmost)
570 mctz->rb_rightmost = rb_prev(&mz->tree_node);
571
572 rb_erase(&mz->tree_node, &mctz->rb_root);
573 mz->on_tree = false;
574 }
575
576 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
577 struct mem_cgroup_tree_per_node *mctz)
578 {
579 unsigned long flags;
580
581 spin_lock_irqsave(&mctz->lock, flags);
582 __mem_cgroup_remove_exceeded(mz, mctz);
583 spin_unlock_irqrestore(&mctz->lock, flags);
584 }
585
586 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
587 {
588 unsigned long nr_pages = page_counter_read(&memcg->memory);
589 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
590 unsigned long excess = 0;
591
592 if (nr_pages > soft_limit)
593 excess = nr_pages - soft_limit;
594
595 return excess;
596 }
597
598 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
599 {
600 unsigned long excess;
601 struct mem_cgroup_per_node *mz;
602 struct mem_cgroup_tree_per_node *mctz;
603
604 mctz = soft_limit_tree_from_page(page);
605 if (!mctz)
606 return;
607 /*
608 * Necessary to update all ancestors when hierarchy is used.
609 * because their event counter is not touched.
610 */
611 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
612 mz = mem_cgroup_page_nodeinfo(memcg, page);
613 excess = soft_limit_excess(memcg);
614 /*
615 * We have to update the tree if mz is on RB-tree or
616 * mem is over its softlimit.
617 */
618 if (excess || mz->on_tree) {
619 unsigned long flags;
620
621 spin_lock_irqsave(&mctz->lock, flags);
622 /* if on-tree, remove it */
623 if (mz->on_tree)
624 __mem_cgroup_remove_exceeded(mz, mctz);
625 /*
626 * Insert again. mz->usage_in_excess will be updated.
627 * If excess is 0, no tree ops.
628 */
629 __mem_cgroup_insert_exceeded(mz, mctz, excess);
630 spin_unlock_irqrestore(&mctz->lock, flags);
631 }
632 }
633 }
634
635 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
636 {
637 struct mem_cgroup_tree_per_node *mctz;
638 struct mem_cgroup_per_node *mz;
639 int nid;
640
641 for_each_node(nid) {
642 mz = mem_cgroup_nodeinfo(memcg, nid);
643 mctz = soft_limit_tree_node(nid);
644 if (mctz)
645 mem_cgroup_remove_exceeded(mz, mctz);
646 }
647 }
648
649 static struct mem_cgroup_per_node *
650 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
651 {
652 struct mem_cgroup_per_node *mz;
653
654 retry:
655 mz = NULL;
656 if (!mctz->rb_rightmost)
657 goto done; /* Nothing to reclaim from */
658
659 mz = rb_entry(mctz->rb_rightmost,
660 struct mem_cgroup_per_node, tree_node);
661 /*
662 * Remove the node now but someone else can add it back,
663 * we will to add it back at the end of reclaim to its correct
664 * position in the tree.
665 */
666 __mem_cgroup_remove_exceeded(mz, mctz);
667 if (!soft_limit_excess(mz->memcg) ||
668 !css_tryget_online(&mz->memcg->css))
669 goto retry;
670 done:
671 return mz;
672 }
673
674 static struct mem_cgroup_per_node *
675 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
676 {
677 struct mem_cgroup_per_node *mz;
678
679 spin_lock_irq(&mctz->lock);
680 mz = __mem_cgroup_largest_soft_limit_node(mctz);
681 spin_unlock_irq(&mctz->lock);
682 return mz;
683 }
684
685 /**
686 * __mod_memcg_state - update cgroup memory statistics
687 * @memcg: the memory cgroup
688 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
689 * @val: delta to add to the counter, can be negative
690 */
691 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
692 {
693 long x;
694
695 if (mem_cgroup_disabled())
696 return;
697
698 __this_cpu_add(memcg->vmstats_local->stat[idx], val);
699
700 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
701 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
702 struct mem_cgroup *mi;
703
704 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
705 atomic_long_add(x, &mi->vmstats[idx]);
706 x = 0;
707 }
708 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
709 }
710
711 static struct mem_cgroup_per_node *
712 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
713 {
714 struct mem_cgroup *parent;
715
716 parent = parent_mem_cgroup(pn->memcg);
717 if (!parent)
718 return NULL;
719 return mem_cgroup_nodeinfo(parent, nid);
720 }
721
722 /**
723 * __mod_lruvec_state - update lruvec memory statistics
724 * @lruvec: the lruvec
725 * @idx: the stat item
726 * @val: delta to add to the counter, can be negative
727 *
728 * The lruvec is the intersection of the NUMA node and a cgroup. This
729 * function updates the all three counters that are affected by a
730 * change of state at this level: per-node, per-cgroup, per-lruvec.
731 */
732 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
733 int val)
734 {
735 pg_data_t *pgdat = lruvec_pgdat(lruvec);
736 struct mem_cgroup_per_node *pn;
737 struct mem_cgroup *memcg;
738 long x;
739
740 /* Update node */
741 __mod_node_page_state(pgdat, idx, val);
742
743 if (mem_cgroup_disabled())
744 return;
745
746 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
747 memcg = pn->memcg;
748
749 /* Update memcg */
750 __mod_memcg_state(memcg, idx, val);
751
752 /* Update lruvec */
753 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
754
755 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
756 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
757 struct mem_cgroup_per_node *pi;
758
759 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
760 atomic_long_add(x, &pi->lruvec_stat[idx]);
761 x = 0;
762 }
763 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
764 }
765
766 /**
767 * __count_memcg_events - account VM events in a cgroup
768 * @memcg: the memory cgroup
769 * @idx: the event item
770 * @count: the number of events that occured
771 */
772 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
773 unsigned long count)
774 {
775 unsigned long x;
776
777 if (mem_cgroup_disabled())
778 return;
779
780 __this_cpu_add(memcg->vmstats_local->events[idx], count);
781
782 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
783 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
784 struct mem_cgroup *mi;
785
786 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
787 atomic_long_add(x, &mi->vmevents[idx]);
788 x = 0;
789 }
790 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
791 }
792
793 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
794 {
795 return atomic_long_read(&memcg->vmevents[event]);
796 }
797
798 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
799 {
800 long x = 0;
801 int cpu;
802
803 for_each_possible_cpu(cpu)
804 x += per_cpu(memcg->vmstats_local->events[event], cpu);
805 return x;
806 }
807
808 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
809 struct page *page,
810 bool compound, int nr_pages)
811 {
812 /*
813 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
814 * counted as CACHE even if it's on ANON LRU.
815 */
816 if (PageAnon(page))
817 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
818 else {
819 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
820 if (PageSwapBacked(page))
821 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
822 }
823
824 if (compound) {
825 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
826 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
827 }
828
829 /* pagein of a big page is an event. So, ignore page size */
830 if (nr_pages > 0)
831 __count_memcg_events(memcg, PGPGIN, 1);
832 else {
833 __count_memcg_events(memcg, PGPGOUT, 1);
834 nr_pages = -nr_pages; /* for event */
835 }
836
837 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
838 }
839
840 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
841 enum mem_cgroup_events_target target)
842 {
843 unsigned long val, next;
844
845 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
846 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
847 /* from time_after() in jiffies.h */
848 if ((long)(next - val) < 0) {
849 switch (target) {
850 case MEM_CGROUP_TARGET_THRESH:
851 next = val + THRESHOLDS_EVENTS_TARGET;
852 break;
853 case MEM_CGROUP_TARGET_SOFTLIMIT:
854 next = val + SOFTLIMIT_EVENTS_TARGET;
855 break;
856 case MEM_CGROUP_TARGET_NUMAINFO:
857 next = val + NUMAINFO_EVENTS_TARGET;
858 break;
859 default:
860 break;
861 }
862 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
863 return true;
864 }
865 return false;
866 }
867
868 /*
869 * Check events in order.
870 *
871 */
872 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
873 {
874 /* threshold event is triggered in finer grain than soft limit */
875 if (unlikely(mem_cgroup_event_ratelimit(memcg,
876 MEM_CGROUP_TARGET_THRESH))) {
877 bool do_softlimit;
878 bool do_numainfo __maybe_unused;
879
880 do_softlimit = mem_cgroup_event_ratelimit(memcg,
881 MEM_CGROUP_TARGET_SOFTLIMIT);
882 #if MAX_NUMNODES > 1
883 do_numainfo = mem_cgroup_event_ratelimit(memcg,
884 MEM_CGROUP_TARGET_NUMAINFO);
885 #endif
886 mem_cgroup_threshold(memcg);
887 if (unlikely(do_softlimit))
888 mem_cgroup_update_tree(memcg, page);
889 #if MAX_NUMNODES > 1
890 if (unlikely(do_numainfo))
891 atomic_inc(&memcg->numainfo_events);
892 #endif
893 }
894 }
895
896 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
897 {
898 /*
899 * mm_update_next_owner() may clear mm->owner to NULL
900 * if it races with swapoff, page migration, etc.
901 * So this can be called with p == NULL.
902 */
903 if (unlikely(!p))
904 return NULL;
905
906 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
907 }
908 EXPORT_SYMBOL(mem_cgroup_from_task);
909
910 /**
911 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
912 * @mm: mm from which memcg should be extracted. It can be NULL.
913 *
914 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
915 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
916 * returned.
917 */
918 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
919 {
920 struct mem_cgroup *memcg;
921
922 if (mem_cgroup_disabled())
923 return NULL;
924
925 rcu_read_lock();
926 do {
927 /*
928 * Page cache insertions can happen withou an
929 * actual mm context, e.g. during disk probing
930 * on boot, loopback IO, acct() writes etc.
931 */
932 if (unlikely(!mm))
933 memcg = root_mem_cgroup;
934 else {
935 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
936 if (unlikely(!memcg))
937 memcg = root_mem_cgroup;
938 }
939 } while (!css_tryget_online(&memcg->css));
940 rcu_read_unlock();
941 return memcg;
942 }
943 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
944
945 /**
946 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
947 * @page: page from which memcg should be extracted.
948 *
949 * Obtain a reference on page->memcg and returns it if successful. Otherwise
950 * root_mem_cgroup is returned.
951 */
952 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
953 {
954 struct mem_cgroup *memcg = page->mem_cgroup;
955
956 if (mem_cgroup_disabled())
957 return NULL;
958
959 rcu_read_lock();
960 if (!memcg || !css_tryget_online(&memcg->css))
961 memcg = root_mem_cgroup;
962 rcu_read_unlock();
963 return memcg;
964 }
965 EXPORT_SYMBOL(get_mem_cgroup_from_page);
966
967 /**
968 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
969 */
970 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
971 {
972 if (unlikely(current->active_memcg)) {
973 struct mem_cgroup *memcg = root_mem_cgroup;
974
975 rcu_read_lock();
976 if (css_tryget_online(&current->active_memcg->css))
977 memcg = current->active_memcg;
978 rcu_read_unlock();
979 return memcg;
980 }
981 return get_mem_cgroup_from_mm(current->mm);
982 }
983
984 /**
985 * mem_cgroup_iter - iterate over memory cgroup hierarchy
986 * @root: hierarchy root
987 * @prev: previously returned memcg, NULL on first invocation
988 * @reclaim: cookie for shared reclaim walks, NULL for full walks
989 *
990 * Returns references to children of the hierarchy below @root, or
991 * @root itself, or %NULL after a full round-trip.
992 *
993 * Caller must pass the return value in @prev on subsequent
994 * invocations for reference counting, or use mem_cgroup_iter_break()
995 * to cancel a hierarchy walk before the round-trip is complete.
996 *
997 * Reclaimers can specify a node and a priority level in @reclaim to
998 * divide up the memcgs in the hierarchy among all concurrent
999 * reclaimers operating on the same node and priority.
1000 */
1001 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1002 struct mem_cgroup *prev,
1003 struct mem_cgroup_reclaim_cookie *reclaim)
1004 {
1005 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1006 struct cgroup_subsys_state *css = NULL;
1007 struct mem_cgroup *memcg = NULL;
1008 struct mem_cgroup *pos = NULL;
1009
1010 if (mem_cgroup_disabled())
1011 return NULL;
1012
1013 if (!root)
1014 root = root_mem_cgroup;
1015
1016 if (prev && !reclaim)
1017 pos = prev;
1018
1019 if (!root->use_hierarchy && root != root_mem_cgroup) {
1020 if (prev)
1021 goto out;
1022 return root;
1023 }
1024
1025 rcu_read_lock();
1026
1027 if (reclaim) {
1028 struct mem_cgroup_per_node *mz;
1029
1030 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1031 iter = &mz->iter[reclaim->priority];
1032
1033 if (prev && reclaim->generation != iter->generation)
1034 goto out_unlock;
1035
1036 while (1) {
1037 pos = READ_ONCE(iter->position);
1038 if (!pos || css_tryget(&pos->css))
1039 break;
1040 /*
1041 * css reference reached zero, so iter->position will
1042 * be cleared by ->css_released. However, we should not
1043 * rely on this happening soon, because ->css_released
1044 * is called from a work queue, and by busy-waiting we
1045 * might block it. So we clear iter->position right
1046 * away.
1047 */
1048 (void)cmpxchg(&iter->position, pos, NULL);
1049 }
1050 }
1051
1052 if (pos)
1053 css = &pos->css;
1054
1055 for (;;) {
1056 css = css_next_descendant_pre(css, &root->css);
1057 if (!css) {
1058 /*
1059 * Reclaimers share the hierarchy walk, and a
1060 * new one might jump in right at the end of
1061 * the hierarchy - make sure they see at least
1062 * one group and restart from the beginning.
1063 */
1064 if (!prev)
1065 continue;
1066 break;
1067 }
1068
1069 /*
1070 * Verify the css and acquire a reference. The root
1071 * is provided by the caller, so we know it's alive
1072 * and kicking, and don't take an extra reference.
1073 */
1074 memcg = mem_cgroup_from_css(css);
1075
1076 if (css == &root->css)
1077 break;
1078
1079 if (css_tryget(css))
1080 break;
1081
1082 memcg = NULL;
1083 }
1084
1085 if (reclaim) {
1086 /*
1087 * The position could have already been updated by a competing
1088 * thread, so check that the value hasn't changed since we read
1089 * it to avoid reclaiming from the same cgroup twice.
1090 */
1091 (void)cmpxchg(&iter->position, pos, memcg);
1092
1093 if (pos)
1094 css_put(&pos->css);
1095
1096 if (!memcg)
1097 iter->generation++;
1098 else if (!prev)
1099 reclaim->generation = iter->generation;
1100 }
1101
1102 out_unlock:
1103 rcu_read_unlock();
1104 out:
1105 if (prev && prev != root)
1106 css_put(&prev->css);
1107
1108 return memcg;
1109 }
1110
1111 /**
1112 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1113 * @root: hierarchy root
1114 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1115 */
1116 void mem_cgroup_iter_break(struct mem_cgroup *root,
1117 struct mem_cgroup *prev)
1118 {
1119 if (!root)
1120 root = root_mem_cgroup;
1121 if (prev && prev != root)
1122 css_put(&prev->css);
1123 }
1124
1125 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1126 {
1127 struct mem_cgroup *memcg = dead_memcg;
1128 struct mem_cgroup_reclaim_iter *iter;
1129 struct mem_cgroup_per_node *mz;
1130 int nid;
1131 int i;
1132
1133 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1134 for_each_node(nid) {
1135 mz = mem_cgroup_nodeinfo(memcg, nid);
1136 for (i = 0; i <= DEF_PRIORITY; i++) {
1137 iter = &mz->iter[i];
1138 cmpxchg(&iter->position,
1139 dead_memcg, NULL);
1140 }
1141 }
1142 }
1143 }
1144
1145 /**
1146 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1147 * @memcg: hierarchy root
1148 * @fn: function to call for each task
1149 * @arg: argument passed to @fn
1150 *
1151 * This function iterates over tasks attached to @memcg or to any of its
1152 * descendants and calls @fn for each task. If @fn returns a non-zero
1153 * value, the function breaks the iteration loop and returns the value.
1154 * Otherwise, it will iterate over all tasks and return 0.
1155 *
1156 * This function must not be called for the root memory cgroup.
1157 */
1158 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1159 int (*fn)(struct task_struct *, void *), void *arg)
1160 {
1161 struct mem_cgroup *iter;
1162 int ret = 0;
1163
1164 BUG_ON(memcg == root_mem_cgroup);
1165
1166 for_each_mem_cgroup_tree(iter, memcg) {
1167 struct css_task_iter it;
1168 struct task_struct *task;
1169
1170 css_task_iter_start(&iter->css, 0, &it);
1171 while (!ret && (task = css_task_iter_next(&it)))
1172 ret = fn(task, arg);
1173 css_task_iter_end(&it);
1174 if (ret) {
1175 mem_cgroup_iter_break(memcg, iter);
1176 break;
1177 }
1178 }
1179 return ret;
1180 }
1181
1182 /**
1183 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1184 * @page: the page
1185 * @pgdat: pgdat of the page
1186 *
1187 * This function is only safe when following the LRU page isolation
1188 * and putback protocol: the LRU lock must be held, and the page must
1189 * either be PageLRU() or the caller must have isolated/allocated it.
1190 */
1191 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1192 {
1193 struct mem_cgroup_per_node *mz;
1194 struct mem_cgroup *memcg;
1195 struct lruvec *lruvec;
1196
1197 if (mem_cgroup_disabled()) {
1198 lruvec = &pgdat->lruvec;
1199 goto out;
1200 }
1201
1202 memcg = page->mem_cgroup;
1203 /*
1204 * Swapcache readahead pages are added to the LRU - and
1205 * possibly migrated - before they are charged.
1206 */
1207 if (!memcg)
1208 memcg = root_mem_cgroup;
1209
1210 mz = mem_cgroup_page_nodeinfo(memcg, page);
1211 lruvec = &mz->lruvec;
1212 out:
1213 /*
1214 * Since a node can be onlined after the mem_cgroup was created,
1215 * we have to be prepared to initialize lruvec->zone here;
1216 * and if offlined then reonlined, we need to reinitialize it.
1217 */
1218 if (unlikely(lruvec->pgdat != pgdat))
1219 lruvec->pgdat = pgdat;
1220 return lruvec;
1221 }
1222
1223 /**
1224 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1225 * @lruvec: mem_cgroup per zone lru vector
1226 * @lru: index of lru list the page is sitting on
1227 * @zid: zone id of the accounted pages
1228 * @nr_pages: positive when adding or negative when removing
1229 *
1230 * This function must be called under lru_lock, just before a page is added
1231 * to or just after a page is removed from an lru list (that ordering being
1232 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1233 */
1234 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1235 int zid, int nr_pages)
1236 {
1237 struct mem_cgroup_per_node *mz;
1238 unsigned long *lru_size;
1239 long size;
1240
1241 if (mem_cgroup_disabled())
1242 return;
1243
1244 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1245 lru_size = &mz->lru_zone_size[zid][lru];
1246
1247 if (nr_pages < 0)
1248 *lru_size += nr_pages;
1249
1250 size = *lru_size;
1251 if (WARN_ONCE(size < 0,
1252 "%s(%p, %d, %d): lru_size %ld\n",
1253 __func__, lruvec, lru, nr_pages, size)) {
1254 VM_BUG_ON(1);
1255 *lru_size = 0;
1256 }
1257
1258 if (nr_pages > 0)
1259 *lru_size += nr_pages;
1260 }
1261
1262 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1263 {
1264 struct mem_cgroup *task_memcg;
1265 struct task_struct *p;
1266 bool ret;
1267
1268 p = find_lock_task_mm(task);
1269 if (p) {
1270 task_memcg = get_mem_cgroup_from_mm(p->mm);
1271 task_unlock(p);
1272 } else {
1273 /*
1274 * All threads may have already detached their mm's, but the oom
1275 * killer still needs to detect if they have already been oom
1276 * killed to prevent needlessly killing additional tasks.
1277 */
1278 rcu_read_lock();
1279 task_memcg = mem_cgroup_from_task(task);
1280 css_get(&task_memcg->css);
1281 rcu_read_unlock();
1282 }
1283 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1284 css_put(&task_memcg->css);
1285 return ret;
1286 }
1287
1288 /**
1289 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1290 * @memcg: the memory cgroup
1291 *
1292 * Returns the maximum amount of memory @mem can be charged with, in
1293 * pages.
1294 */
1295 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1296 {
1297 unsigned long margin = 0;
1298 unsigned long count;
1299 unsigned long limit;
1300
1301 count = page_counter_read(&memcg->memory);
1302 limit = READ_ONCE(memcg->memory.max);
1303 if (count < limit)
1304 margin = limit - count;
1305
1306 if (do_memsw_account()) {
1307 count = page_counter_read(&memcg->memsw);
1308 limit = READ_ONCE(memcg->memsw.max);
1309 if (count <= limit)
1310 margin = min(margin, limit - count);
1311 else
1312 margin = 0;
1313 }
1314
1315 return margin;
1316 }
1317
1318 /*
1319 * A routine for checking "mem" is under move_account() or not.
1320 *
1321 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1322 * moving cgroups. This is for waiting at high-memory pressure
1323 * caused by "move".
1324 */
1325 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1326 {
1327 struct mem_cgroup *from;
1328 struct mem_cgroup *to;
1329 bool ret = false;
1330 /*
1331 * Unlike task_move routines, we access mc.to, mc.from not under
1332 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1333 */
1334 spin_lock(&mc.lock);
1335 from = mc.from;
1336 to = mc.to;
1337 if (!from)
1338 goto unlock;
1339
1340 ret = mem_cgroup_is_descendant(from, memcg) ||
1341 mem_cgroup_is_descendant(to, memcg);
1342 unlock:
1343 spin_unlock(&mc.lock);
1344 return ret;
1345 }
1346
1347 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1348 {
1349 if (mc.moving_task && current != mc.moving_task) {
1350 if (mem_cgroup_under_move(memcg)) {
1351 DEFINE_WAIT(wait);
1352 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1353 /* moving charge context might have finished. */
1354 if (mc.moving_task)
1355 schedule();
1356 finish_wait(&mc.waitq, &wait);
1357 return true;
1358 }
1359 }
1360 return false;
1361 }
1362
1363 static char *memory_stat_format(struct mem_cgroup *memcg)
1364 {
1365 struct seq_buf s;
1366 int i;
1367
1368 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1369 if (!s.buffer)
1370 return NULL;
1371
1372 /*
1373 * Provide statistics on the state of the memory subsystem as
1374 * well as cumulative event counters that show past behavior.
1375 *
1376 * This list is ordered following a combination of these gradients:
1377 * 1) generic big picture -> specifics and details
1378 * 2) reflecting userspace activity -> reflecting kernel heuristics
1379 *
1380 * Current memory state:
1381 */
1382
1383 seq_buf_printf(&s, "anon %llu\n",
1384 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1385 PAGE_SIZE);
1386 seq_buf_printf(&s, "file %llu\n",
1387 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1388 PAGE_SIZE);
1389 seq_buf_printf(&s, "kernel_stack %llu\n",
1390 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1391 1024);
1392 seq_buf_printf(&s, "slab %llu\n",
1393 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1394 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1395 PAGE_SIZE);
1396 seq_buf_printf(&s, "sock %llu\n",
1397 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1398 PAGE_SIZE);
1399
1400 seq_buf_printf(&s, "shmem %llu\n",
1401 (u64)memcg_page_state(memcg, NR_SHMEM) *
1402 PAGE_SIZE);
1403 seq_buf_printf(&s, "file_mapped %llu\n",
1404 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1405 PAGE_SIZE);
1406 seq_buf_printf(&s, "file_dirty %llu\n",
1407 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1408 PAGE_SIZE);
1409 seq_buf_printf(&s, "file_writeback %llu\n",
1410 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1411 PAGE_SIZE);
1412
1413 /*
1414 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1415 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1416 * arse because it requires migrating the work out of rmap to a place
1417 * where the page->mem_cgroup is set up and stable.
1418 */
1419 seq_buf_printf(&s, "anon_thp %llu\n",
1420 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1421 PAGE_SIZE);
1422
1423 for (i = 0; i < NR_LRU_LISTS; i++)
1424 seq_buf_printf(&s, "%s %llu\n", mem_cgroup_lru_names[i],
1425 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1426 PAGE_SIZE);
1427
1428 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1429 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1430 PAGE_SIZE);
1431 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1432 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1433 PAGE_SIZE);
1434
1435 /* Accumulated memory events */
1436
1437 seq_buf_printf(&s, "pgfault %lu\n", memcg_events(memcg, PGFAULT));
1438 seq_buf_printf(&s, "pgmajfault %lu\n", memcg_events(memcg, PGMAJFAULT));
1439
1440 seq_buf_printf(&s, "workingset_refault %lu\n",
1441 memcg_page_state(memcg, WORKINGSET_REFAULT));
1442 seq_buf_printf(&s, "workingset_activate %lu\n",
1443 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1444 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1445 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1446
1447 seq_buf_printf(&s, "pgrefill %lu\n", memcg_events(memcg, PGREFILL));
1448 seq_buf_printf(&s, "pgscan %lu\n",
1449 memcg_events(memcg, PGSCAN_KSWAPD) +
1450 memcg_events(memcg, PGSCAN_DIRECT));
1451 seq_buf_printf(&s, "pgsteal %lu\n",
1452 memcg_events(memcg, PGSTEAL_KSWAPD) +
1453 memcg_events(memcg, PGSTEAL_DIRECT));
1454 seq_buf_printf(&s, "pgactivate %lu\n", memcg_events(memcg, PGACTIVATE));
1455 seq_buf_printf(&s, "pgdeactivate %lu\n", memcg_events(memcg, PGDEACTIVATE));
1456 seq_buf_printf(&s, "pglazyfree %lu\n", memcg_events(memcg, PGLAZYFREE));
1457 seq_buf_printf(&s, "pglazyfreed %lu\n", memcg_events(memcg, PGLAZYFREED));
1458
1459 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1460 seq_buf_printf(&s, "thp_fault_alloc %lu\n",
1461 memcg_events(memcg, THP_FAULT_ALLOC));
1462 seq_buf_printf(&s, "thp_collapse_alloc %lu\n",
1463 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1464 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1465
1466 /* The above should easily fit into one page */
1467 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1468
1469 return s.buffer;
1470 }
1471
1472 #define K(x) ((x) << (PAGE_SHIFT-10))
1473 /**
1474 * mem_cgroup_print_oom_context: Print OOM information relevant to
1475 * memory controller.
1476 * @memcg: The memory cgroup that went over limit
1477 * @p: Task that is going to be killed
1478 *
1479 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1480 * enabled
1481 */
1482 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1483 {
1484 rcu_read_lock();
1485
1486 if (memcg) {
1487 pr_cont(",oom_memcg=");
1488 pr_cont_cgroup_path(memcg->css.cgroup);
1489 } else
1490 pr_cont(",global_oom");
1491 if (p) {
1492 pr_cont(",task_memcg=");
1493 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1494 }
1495 rcu_read_unlock();
1496 }
1497
1498 /**
1499 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1500 * memory controller.
1501 * @memcg: The memory cgroup that went over limit
1502 */
1503 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1504 {
1505 char *buf;
1506
1507 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1508 K((u64)page_counter_read(&memcg->memory)),
1509 K((u64)memcg->memory.max), memcg->memory.failcnt);
1510 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1511 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1512 K((u64)page_counter_read(&memcg->swap)),
1513 K((u64)memcg->swap.max), memcg->swap.failcnt);
1514 else {
1515 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1516 K((u64)page_counter_read(&memcg->memsw)),
1517 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1518 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1519 K((u64)page_counter_read(&memcg->kmem)),
1520 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1521 }
1522
1523 pr_info("Memory cgroup stats for ");
1524 pr_cont_cgroup_path(memcg->css.cgroup);
1525 pr_cont(":");
1526 buf = memory_stat_format(memcg);
1527 if (!buf)
1528 return;
1529 pr_info("%s", buf);
1530 kfree(buf);
1531 }
1532
1533 /*
1534 * Return the memory (and swap, if configured) limit for a memcg.
1535 */
1536 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1537 {
1538 unsigned long max;
1539
1540 max = memcg->memory.max;
1541 if (mem_cgroup_swappiness(memcg)) {
1542 unsigned long memsw_max;
1543 unsigned long swap_max;
1544
1545 memsw_max = memcg->memsw.max;
1546 swap_max = memcg->swap.max;
1547 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1548 max = min(max + swap_max, memsw_max);
1549 }
1550 return max;
1551 }
1552
1553 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1554 int order)
1555 {
1556 struct oom_control oc = {
1557 .zonelist = NULL,
1558 .nodemask = NULL,
1559 .memcg = memcg,
1560 .gfp_mask = gfp_mask,
1561 .order = order,
1562 };
1563 bool ret;
1564
1565 if (mutex_lock_killable(&oom_lock))
1566 return true;
1567 /*
1568 * A few threads which were not waiting at mutex_lock_killable() can
1569 * fail to bail out. Therefore, check again after holding oom_lock.
1570 */
1571 ret = should_force_charge() || out_of_memory(&oc);
1572 mutex_unlock(&oom_lock);
1573 return ret;
1574 }
1575
1576 #if MAX_NUMNODES > 1
1577
1578 /**
1579 * test_mem_cgroup_node_reclaimable
1580 * @memcg: the target memcg
1581 * @nid: the node ID to be checked.
1582 * @noswap : specify true here if the user wants flle only information.
1583 *
1584 * This function returns whether the specified memcg contains any
1585 * reclaimable pages on a node. Returns true if there are any reclaimable
1586 * pages in the node.
1587 */
1588 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1589 int nid, bool noswap)
1590 {
1591 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
1592
1593 if (lruvec_page_state(lruvec, NR_INACTIVE_FILE) ||
1594 lruvec_page_state(lruvec, NR_ACTIVE_FILE))
1595 return true;
1596 if (noswap || !total_swap_pages)
1597 return false;
1598 if (lruvec_page_state(lruvec, NR_INACTIVE_ANON) ||
1599 lruvec_page_state(lruvec, NR_ACTIVE_ANON))
1600 return true;
1601 return false;
1602
1603 }
1604
1605 /*
1606 * Always updating the nodemask is not very good - even if we have an empty
1607 * list or the wrong list here, we can start from some node and traverse all
1608 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1609 *
1610 */
1611 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1612 {
1613 int nid;
1614 /*
1615 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1616 * pagein/pageout changes since the last update.
1617 */
1618 if (!atomic_read(&memcg->numainfo_events))
1619 return;
1620 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1621 return;
1622
1623 /* make a nodemask where this memcg uses memory from */
1624 memcg->scan_nodes = node_states[N_MEMORY];
1625
1626 for_each_node_mask(nid, node_states[N_MEMORY]) {
1627
1628 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1629 node_clear(nid, memcg->scan_nodes);
1630 }
1631
1632 atomic_set(&memcg->numainfo_events, 0);
1633 atomic_set(&memcg->numainfo_updating, 0);
1634 }
1635
1636 /*
1637 * Selecting a node where we start reclaim from. Because what we need is just
1638 * reducing usage counter, start from anywhere is O,K. Considering
1639 * memory reclaim from current node, there are pros. and cons.
1640 *
1641 * Freeing memory from current node means freeing memory from a node which
1642 * we'll use or we've used. So, it may make LRU bad. And if several threads
1643 * hit limits, it will see a contention on a node. But freeing from remote
1644 * node means more costs for memory reclaim because of memory latency.
1645 *
1646 * Now, we use round-robin. Better algorithm is welcomed.
1647 */
1648 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1649 {
1650 int node;
1651
1652 mem_cgroup_may_update_nodemask(memcg);
1653 node = memcg->last_scanned_node;
1654
1655 node = next_node_in(node, memcg->scan_nodes);
1656 /*
1657 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1658 * last time it really checked all the LRUs due to rate limiting.
1659 * Fallback to the current node in that case for simplicity.
1660 */
1661 if (unlikely(node == MAX_NUMNODES))
1662 node = numa_node_id();
1663
1664 memcg->last_scanned_node = node;
1665 return node;
1666 }
1667 #else
1668 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1669 {
1670 return 0;
1671 }
1672 #endif
1673
1674 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1675 pg_data_t *pgdat,
1676 gfp_t gfp_mask,
1677 unsigned long *total_scanned)
1678 {
1679 struct mem_cgroup *victim = NULL;
1680 int total = 0;
1681 int loop = 0;
1682 unsigned long excess;
1683 unsigned long nr_scanned;
1684 struct mem_cgroup_reclaim_cookie reclaim = {
1685 .pgdat = pgdat,
1686 .priority = 0,
1687 };
1688
1689 excess = soft_limit_excess(root_memcg);
1690
1691 while (1) {
1692 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1693 if (!victim) {
1694 loop++;
1695 if (loop >= 2) {
1696 /*
1697 * If we have not been able to reclaim
1698 * anything, it might because there are
1699 * no reclaimable pages under this hierarchy
1700 */
1701 if (!total)
1702 break;
1703 /*
1704 * We want to do more targeted reclaim.
1705 * excess >> 2 is not to excessive so as to
1706 * reclaim too much, nor too less that we keep
1707 * coming back to reclaim from this cgroup
1708 */
1709 if (total >= (excess >> 2) ||
1710 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1711 break;
1712 }
1713 continue;
1714 }
1715 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1716 pgdat, &nr_scanned);
1717 *total_scanned += nr_scanned;
1718 if (!soft_limit_excess(root_memcg))
1719 break;
1720 }
1721 mem_cgroup_iter_break(root_memcg, victim);
1722 return total;
1723 }
1724
1725 #ifdef CONFIG_LOCKDEP
1726 static struct lockdep_map memcg_oom_lock_dep_map = {
1727 .name = "memcg_oom_lock",
1728 };
1729 #endif
1730
1731 static DEFINE_SPINLOCK(memcg_oom_lock);
1732
1733 /*
1734 * Check OOM-Killer is already running under our hierarchy.
1735 * If someone is running, return false.
1736 */
1737 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1738 {
1739 struct mem_cgroup *iter, *failed = NULL;
1740
1741 spin_lock(&memcg_oom_lock);
1742
1743 for_each_mem_cgroup_tree(iter, memcg) {
1744 if (iter->oom_lock) {
1745 /*
1746 * this subtree of our hierarchy is already locked
1747 * so we cannot give a lock.
1748 */
1749 failed = iter;
1750 mem_cgroup_iter_break(memcg, iter);
1751 break;
1752 } else
1753 iter->oom_lock = true;
1754 }
1755
1756 if (failed) {
1757 /*
1758 * OK, we failed to lock the whole subtree so we have
1759 * to clean up what we set up to the failing subtree
1760 */
1761 for_each_mem_cgroup_tree(iter, memcg) {
1762 if (iter == failed) {
1763 mem_cgroup_iter_break(memcg, iter);
1764 break;
1765 }
1766 iter->oom_lock = false;
1767 }
1768 } else
1769 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1770
1771 spin_unlock(&memcg_oom_lock);
1772
1773 return !failed;
1774 }
1775
1776 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1777 {
1778 struct mem_cgroup *iter;
1779
1780 spin_lock(&memcg_oom_lock);
1781 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1782 for_each_mem_cgroup_tree(iter, memcg)
1783 iter->oom_lock = false;
1784 spin_unlock(&memcg_oom_lock);
1785 }
1786
1787 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1788 {
1789 struct mem_cgroup *iter;
1790
1791 spin_lock(&memcg_oom_lock);
1792 for_each_mem_cgroup_tree(iter, memcg)
1793 iter->under_oom++;
1794 spin_unlock(&memcg_oom_lock);
1795 }
1796
1797 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1798 {
1799 struct mem_cgroup *iter;
1800
1801 /*
1802 * When a new child is created while the hierarchy is under oom,
1803 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1804 */
1805 spin_lock(&memcg_oom_lock);
1806 for_each_mem_cgroup_tree(iter, memcg)
1807 if (iter->under_oom > 0)
1808 iter->under_oom--;
1809 spin_unlock(&memcg_oom_lock);
1810 }
1811
1812 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1813
1814 struct oom_wait_info {
1815 struct mem_cgroup *memcg;
1816 wait_queue_entry_t wait;
1817 };
1818
1819 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1820 unsigned mode, int sync, void *arg)
1821 {
1822 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1823 struct mem_cgroup *oom_wait_memcg;
1824 struct oom_wait_info *oom_wait_info;
1825
1826 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1827 oom_wait_memcg = oom_wait_info->memcg;
1828
1829 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1830 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1831 return 0;
1832 return autoremove_wake_function(wait, mode, sync, arg);
1833 }
1834
1835 static void memcg_oom_recover(struct mem_cgroup *memcg)
1836 {
1837 /*
1838 * For the following lockless ->under_oom test, the only required
1839 * guarantee is that it must see the state asserted by an OOM when
1840 * this function is called as a result of userland actions
1841 * triggered by the notification of the OOM. This is trivially
1842 * achieved by invoking mem_cgroup_mark_under_oom() before
1843 * triggering notification.
1844 */
1845 if (memcg && memcg->under_oom)
1846 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1847 }
1848
1849 enum oom_status {
1850 OOM_SUCCESS,
1851 OOM_FAILED,
1852 OOM_ASYNC,
1853 OOM_SKIPPED
1854 };
1855
1856 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1857 {
1858 enum oom_status ret;
1859 bool locked;
1860
1861 if (order > PAGE_ALLOC_COSTLY_ORDER)
1862 return OOM_SKIPPED;
1863
1864 memcg_memory_event(memcg, MEMCG_OOM);
1865
1866 /*
1867 * We are in the middle of the charge context here, so we
1868 * don't want to block when potentially sitting on a callstack
1869 * that holds all kinds of filesystem and mm locks.
1870 *
1871 * cgroup1 allows disabling the OOM killer and waiting for outside
1872 * handling until the charge can succeed; remember the context and put
1873 * the task to sleep at the end of the page fault when all locks are
1874 * released.
1875 *
1876 * On the other hand, in-kernel OOM killer allows for an async victim
1877 * memory reclaim (oom_reaper) and that means that we are not solely
1878 * relying on the oom victim to make a forward progress and we can
1879 * invoke the oom killer here.
1880 *
1881 * Please note that mem_cgroup_out_of_memory might fail to find a
1882 * victim and then we have to bail out from the charge path.
1883 */
1884 if (memcg->oom_kill_disable) {
1885 if (!current->in_user_fault)
1886 return OOM_SKIPPED;
1887 css_get(&memcg->css);
1888 current->memcg_in_oom = memcg;
1889 current->memcg_oom_gfp_mask = mask;
1890 current->memcg_oom_order = order;
1891
1892 return OOM_ASYNC;
1893 }
1894
1895 mem_cgroup_mark_under_oom(memcg);
1896
1897 locked = mem_cgroup_oom_trylock(memcg);
1898
1899 if (locked)
1900 mem_cgroup_oom_notify(memcg);
1901
1902 mem_cgroup_unmark_under_oom(memcg);
1903 if (mem_cgroup_out_of_memory(memcg, mask, order))
1904 ret = OOM_SUCCESS;
1905 else
1906 ret = OOM_FAILED;
1907
1908 if (locked)
1909 mem_cgroup_oom_unlock(memcg);
1910
1911 return ret;
1912 }
1913
1914 /**
1915 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1916 * @handle: actually kill/wait or just clean up the OOM state
1917 *
1918 * This has to be called at the end of a page fault if the memcg OOM
1919 * handler was enabled.
1920 *
1921 * Memcg supports userspace OOM handling where failed allocations must
1922 * sleep on a waitqueue until the userspace task resolves the
1923 * situation. Sleeping directly in the charge context with all kinds
1924 * of locks held is not a good idea, instead we remember an OOM state
1925 * in the task and mem_cgroup_oom_synchronize() has to be called at
1926 * the end of the page fault to complete the OOM handling.
1927 *
1928 * Returns %true if an ongoing memcg OOM situation was detected and
1929 * completed, %false otherwise.
1930 */
1931 bool mem_cgroup_oom_synchronize(bool handle)
1932 {
1933 struct mem_cgroup *memcg = current->memcg_in_oom;
1934 struct oom_wait_info owait;
1935 bool locked;
1936
1937 /* OOM is global, do not handle */
1938 if (!memcg)
1939 return false;
1940
1941 if (!handle)
1942 goto cleanup;
1943
1944 owait.memcg = memcg;
1945 owait.wait.flags = 0;
1946 owait.wait.func = memcg_oom_wake_function;
1947 owait.wait.private = current;
1948 INIT_LIST_HEAD(&owait.wait.entry);
1949
1950 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1951 mem_cgroup_mark_under_oom(memcg);
1952
1953 locked = mem_cgroup_oom_trylock(memcg);
1954
1955 if (locked)
1956 mem_cgroup_oom_notify(memcg);
1957
1958 if (locked && !memcg->oom_kill_disable) {
1959 mem_cgroup_unmark_under_oom(memcg);
1960 finish_wait(&memcg_oom_waitq, &owait.wait);
1961 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1962 current->memcg_oom_order);
1963 } else {
1964 schedule();
1965 mem_cgroup_unmark_under_oom(memcg);
1966 finish_wait(&memcg_oom_waitq, &owait.wait);
1967 }
1968
1969 if (locked) {
1970 mem_cgroup_oom_unlock(memcg);
1971 /*
1972 * There is no guarantee that an OOM-lock contender
1973 * sees the wakeups triggered by the OOM kill
1974 * uncharges. Wake any sleepers explicitely.
1975 */
1976 memcg_oom_recover(memcg);
1977 }
1978 cleanup:
1979 current->memcg_in_oom = NULL;
1980 css_put(&memcg->css);
1981 return true;
1982 }
1983
1984 /**
1985 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1986 * @victim: task to be killed by the OOM killer
1987 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1988 *
1989 * Returns a pointer to a memory cgroup, which has to be cleaned up
1990 * by killing all belonging OOM-killable tasks.
1991 *
1992 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1993 */
1994 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1995 struct mem_cgroup *oom_domain)
1996 {
1997 struct mem_cgroup *oom_group = NULL;
1998 struct mem_cgroup *memcg;
1999
2000 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2001 return NULL;
2002
2003 if (!oom_domain)
2004 oom_domain = root_mem_cgroup;
2005
2006 rcu_read_lock();
2007
2008 memcg = mem_cgroup_from_task(victim);
2009 if (memcg == root_mem_cgroup)
2010 goto out;
2011
2012 /*
2013 * Traverse the memory cgroup hierarchy from the victim task's
2014 * cgroup up to the OOMing cgroup (or root) to find the
2015 * highest-level memory cgroup with oom.group set.
2016 */
2017 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2018 if (memcg->oom_group)
2019 oom_group = memcg;
2020
2021 if (memcg == oom_domain)
2022 break;
2023 }
2024
2025 if (oom_group)
2026 css_get(&oom_group->css);
2027 out:
2028 rcu_read_unlock();
2029
2030 return oom_group;
2031 }
2032
2033 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2034 {
2035 pr_info("Tasks in ");
2036 pr_cont_cgroup_path(memcg->css.cgroup);
2037 pr_cont(" are going to be killed due to memory.oom.group set\n");
2038 }
2039
2040 /**
2041 * lock_page_memcg - lock a page->mem_cgroup binding
2042 * @page: the page
2043 *
2044 * This function protects unlocked LRU pages from being moved to
2045 * another cgroup.
2046 *
2047 * It ensures lifetime of the returned memcg. Caller is responsible
2048 * for the lifetime of the page; __unlock_page_memcg() is available
2049 * when @page might get freed inside the locked section.
2050 */
2051 struct mem_cgroup *lock_page_memcg(struct page *page)
2052 {
2053 struct mem_cgroup *memcg;
2054 unsigned long flags;
2055
2056 /*
2057 * The RCU lock is held throughout the transaction. The fast
2058 * path can get away without acquiring the memcg->move_lock
2059 * because page moving starts with an RCU grace period.
2060 *
2061 * The RCU lock also protects the memcg from being freed when
2062 * the page state that is going to change is the only thing
2063 * preventing the page itself from being freed. E.g. writeback
2064 * doesn't hold a page reference and relies on PG_writeback to
2065 * keep off truncation, migration and so forth.
2066 */
2067 rcu_read_lock();
2068
2069 if (mem_cgroup_disabled())
2070 return NULL;
2071 again:
2072 memcg = page->mem_cgroup;
2073 if (unlikely(!memcg))
2074 return NULL;
2075
2076 if (atomic_read(&memcg->moving_account) <= 0)
2077 return memcg;
2078
2079 spin_lock_irqsave(&memcg->move_lock, flags);
2080 if (memcg != page->mem_cgroup) {
2081 spin_unlock_irqrestore(&memcg->move_lock, flags);
2082 goto again;
2083 }
2084
2085 /*
2086 * When charge migration first begins, we can have locked and
2087 * unlocked page stat updates happening concurrently. Track
2088 * the task who has the lock for unlock_page_memcg().
2089 */
2090 memcg->move_lock_task = current;
2091 memcg->move_lock_flags = flags;
2092
2093 return memcg;
2094 }
2095 EXPORT_SYMBOL(lock_page_memcg);
2096
2097 /**
2098 * __unlock_page_memcg - unlock and unpin a memcg
2099 * @memcg: the memcg
2100 *
2101 * Unlock and unpin a memcg returned by lock_page_memcg().
2102 */
2103 void __unlock_page_memcg(struct mem_cgroup *memcg)
2104 {
2105 if (memcg && memcg->move_lock_task == current) {
2106 unsigned long flags = memcg->move_lock_flags;
2107
2108 memcg->move_lock_task = NULL;
2109 memcg->move_lock_flags = 0;
2110
2111 spin_unlock_irqrestore(&memcg->move_lock, flags);
2112 }
2113
2114 rcu_read_unlock();
2115 }
2116
2117 /**
2118 * unlock_page_memcg - unlock a page->mem_cgroup binding
2119 * @page: the page
2120 */
2121 void unlock_page_memcg(struct page *page)
2122 {
2123 __unlock_page_memcg(page->mem_cgroup);
2124 }
2125 EXPORT_SYMBOL(unlock_page_memcg);
2126
2127 struct memcg_stock_pcp {
2128 struct mem_cgroup *cached; /* this never be root cgroup */
2129 unsigned int nr_pages;
2130 struct work_struct work;
2131 unsigned long flags;
2132 #define FLUSHING_CACHED_CHARGE 0
2133 };
2134 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2135 static DEFINE_MUTEX(percpu_charge_mutex);
2136
2137 /**
2138 * consume_stock: Try to consume stocked charge on this cpu.
2139 * @memcg: memcg to consume from.
2140 * @nr_pages: how many pages to charge.
2141 *
2142 * The charges will only happen if @memcg matches the current cpu's memcg
2143 * stock, and at least @nr_pages are available in that stock. Failure to
2144 * service an allocation will refill the stock.
2145 *
2146 * returns true if successful, false otherwise.
2147 */
2148 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2149 {
2150 struct memcg_stock_pcp *stock;
2151 unsigned long flags;
2152 bool ret = false;
2153
2154 if (nr_pages > MEMCG_CHARGE_BATCH)
2155 return ret;
2156
2157 local_irq_save(flags);
2158
2159 stock = this_cpu_ptr(&memcg_stock);
2160 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2161 stock->nr_pages -= nr_pages;
2162 ret = true;
2163 }
2164
2165 local_irq_restore(flags);
2166
2167 return ret;
2168 }
2169
2170 /*
2171 * Returns stocks cached in percpu and reset cached information.
2172 */
2173 static void drain_stock(struct memcg_stock_pcp *stock)
2174 {
2175 struct mem_cgroup *old = stock->cached;
2176
2177 if (stock->nr_pages) {
2178 page_counter_uncharge(&old->memory, stock->nr_pages);
2179 if (do_memsw_account())
2180 page_counter_uncharge(&old->memsw, stock->nr_pages);
2181 css_put_many(&old->css, stock->nr_pages);
2182 stock->nr_pages = 0;
2183 }
2184 stock->cached = NULL;
2185 }
2186
2187 static void drain_local_stock(struct work_struct *dummy)
2188 {
2189 struct memcg_stock_pcp *stock;
2190 unsigned long flags;
2191
2192 /*
2193 * The only protection from memory hotplug vs. drain_stock races is
2194 * that we always operate on local CPU stock here with IRQ disabled
2195 */
2196 local_irq_save(flags);
2197
2198 stock = this_cpu_ptr(&memcg_stock);
2199 drain_stock(stock);
2200 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2201
2202 local_irq_restore(flags);
2203 }
2204
2205 /*
2206 * Cache charges(val) to local per_cpu area.
2207 * This will be consumed by consume_stock() function, later.
2208 */
2209 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2210 {
2211 struct memcg_stock_pcp *stock;
2212 unsigned long flags;
2213
2214 local_irq_save(flags);
2215
2216 stock = this_cpu_ptr(&memcg_stock);
2217 if (stock->cached != memcg) { /* reset if necessary */
2218 drain_stock(stock);
2219 stock->cached = memcg;
2220 }
2221 stock->nr_pages += nr_pages;
2222
2223 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2224 drain_stock(stock);
2225
2226 local_irq_restore(flags);
2227 }
2228
2229 /*
2230 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2231 * of the hierarchy under it.
2232 */
2233 static void drain_all_stock(struct mem_cgroup *root_memcg)
2234 {
2235 int cpu, curcpu;
2236
2237 /* If someone's already draining, avoid adding running more workers. */
2238 if (!mutex_trylock(&percpu_charge_mutex))
2239 return;
2240 /*
2241 * Notify other cpus that system-wide "drain" is running
2242 * We do not care about races with the cpu hotplug because cpu down
2243 * as well as workers from this path always operate on the local
2244 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2245 */
2246 curcpu = get_cpu();
2247 for_each_online_cpu(cpu) {
2248 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2249 struct mem_cgroup *memcg;
2250
2251 memcg = stock->cached;
2252 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
2253 continue;
2254 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
2255 css_put(&memcg->css);
2256 continue;
2257 }
2258 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2259 if (cpu == curcpu)
2260 drain_local_stock(&stock->work);
2261 else
2262 schedule_work_on(cpu, &stock->work);
2263 }
2264 css_put(&memcg->css);
2265 }
2266 put_cpu();
2267 mutex_unlock(&percpu_charge_mutex);
2268 }
2269
2270 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2271 {
2272 struct memcg_stock_pcp *stock;
2273 struct mem_cgroup *memcg, *mi;
2274
2275 stock = &per_cpu(memcg_stock, cpu);
2276 drain_stock(stock);
2277
2278 for_each_mem_cgroup(memcg) {
2279 int i;
2280
2281 for (i = 0; i < MEMCG_NR_STAT; i++) {
2282 int nid;
2283 long x;
2284
2285 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2286 if (x)
2287 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2288 atomic_long_add(x, &memcg->vmstats[i]);
2289
2290 if (i >= NR_VM_NODE_STAT_ITEMS)
2291 continue;
2292
2293 for_each_node(nid) {
2294 struct mem_cgroup_per_node *pn;
2295
2296 pn = mem_cgroup_nodeinfo(memcg, nid);
2297 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2298 if (x)
2299 do {
2300 atomic_long_add(x, &pn->lruvec_stat[i]);
2301 } while ((pn = parent_nodeinfo(pn, nid)));
2302 }
2303 }
2304
2305 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2306 long x;
2307
2308 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2309 if (x)
2310 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2311 atomic_long_add(x, &memcg->vmevents[i]);
2312 }
2313 }
2314
2315 return 0;
2316 }
2317
2318 static void reclaim_high(struct mem_cgroup *memcg,
2319 unsigned int nr_pages,
2320 gfp_t gfp_mask)
2321 {
2322 do {
2323 if (page_counter_read(&memcg->memory) <= memcg->high)
2324 continue;
2325 memcg_memory_event(memcg, MEMCG_HIGH);
2326 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2327 } while ((memcg = parent_mem_cgroup(memcg)));
2328 }
2329
2330 static void high_work_func(struct work_struct *work)
2331 {
2332 struct mem_cgroup *memcg;
2333
2334 memcg = container_of(work, struct mem_cgroup, high_work);
2335 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2336 }
2337
2338 /*
2339 * Scheduled by try_charge() to be executed from the userland return path
2340 * and reclaims memory over the high limit.
2341 */
2342 void mem_cgroup_handle_over_high(void)
2343 {
2344 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2345 struct mem_cgroup *memcg;
2346
2347 if (likely(!nr_pages))
2348 return;
2349
2350 memcg = get_mem_cgroup_from_mm(current->mm);
2351 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2352 css_put(&memcg->css);
2353 current->memcg_nr_pages_over_high = 0;
2354 }
2355
2356 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2357 unsigned int nr_pages)
2358 {
2359 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2360 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2361 struct mem_cgroup *mem_over_limit;
2362 struct page_counter *counter;
2363 unsigned long nr_reclaimed;
2364 bool may_swap = true;
2365 bool drained = false;
2366 enum oom_status oom_status;
2367
2368 if (mem_cgroup_is_root(memcg))
2369 return 0;
2370 retry:
2371 if (consume_stock(memcg, nr_pages))
2372 return 0;
2373
2374 if (!do_memsw_account() ||
2375 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2376 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2377 goto done_restock;
2378 if (do_memsw_account())
2379 page_counter_uncharge(&memcg->memsw, batch);
2380 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2381 } else {
2382 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2383 may_swap = false;
2384 }
2385
2386 if (batch > nr_pages) {
2387 batch = nr_pages;
2388 goto retry;
2389 }
2390
2391 /*
2392 * Unlike in global OOM situations, memcg is not in a physical
2393 * memory shortage. Allow dying and OOM-killed tasks to
2394 * bypass the last charges so that they can exit quickly and
2395 * free their memory.
2396 */
2397 if (unlikely(should_force_charge()))
2398 goto force;
2399
2400 /*
2401 * Prevent unbounded recursion when reclaim operations need to
2402 * allocate memory. This might exceed the limits temporarily,
2403 * but we prefer facilitating memory reclaim and getting back
2404 * under the limit over triggering OOM kills in these cases.
2405 */
2406 if (unlikely(current->flags & PF_MEMALLOC))
2407 goto force;
2408
2409 if (unlikely(task_in_memcg_oom(current)))
2410 goto nomem;
2411
2412 if (!gfpflags_allow_blocking(gfp_mask))
2413 goto nomem;
2414
2415 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2416
2417 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2418 gfp_mask, may_swap);
2419
2420 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2421 goto retry;
2422
2423 if (!drained) {
2424 drain_all_stock(mem_over_limit);
2425 drained = true;
2426 goto retry;
2427 }
2428
2429 if (gfp_mask & __GFP_NORETRY)
2430 goto nomem;
2431 /*
2432 * Even though the limit is exceeded at this point, reclaim
2433 * may have been able to free some pages. Retry the charge
2434 * before killing the task.
2435 *
2436 * Only for regular pages, though: huge pages are rather
2437 * unlikely to succeed so close to the limit, and we fall back
2438 * to regular pages anyway in case of failure.
2439 */
2440 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2441 goto retry;
2442 /*
2443 * At task move, charge accounts can be doubly counted. So, it's
2444 * better to wait until the end of task_move if something is going on.
2445 */
2446 if (mem_cgroup_wait_acct_move(mem_over_limit))
2447 goto retry;
2448
2449 if (nr_retries--)
2450 goto retry;
2451
2452 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2453 goto nomem;
2454
2455 if (gfp_mask & __GFP_NOFAIL)
2456 goto force;
2457
2458 if (fatal_signal_pending(current))
2459 goto force;
2460
2461 /*
2462 * keep retrying as long as the memcg oom killer is able to make
2463 * a forward progress or bypass the charge if the oom killer
2464 * couldn't make any progress.
2465 */
2466 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2467 get_order(nr_pages * PAGE_SIZE));
2468 switch (oom_status) {
2469 case OOM_SUCCESS:
2470 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2471 goto retry;
2472 case OOM_FAILED:
2473 goto force;
2474 default:
2475 goto nomem;
2476 }
2477 nomem:
2478 if (!(gfp_mask & __GFP_NOFAIL))
2479 return -ENOMEM;
2480 force:
2481 /*
2482 * The allocation either can't fail or will lead to more memory
2483 * being freed very soon. Allow memory usage go over the limit
2484 * temporarily by force charging it.
2485 */
2486 page_counter_charge(&memcg->memory, nr_pages);
2487 if (do_memsw_account())
2488 page_counter_charge(&memcg->memsw, nr_pages);
2489 css_get_many(&memcg->css, nr_pages);
2490
2491 return 0;
2492
2493 done_restock:
2494 css_get_many(&memcg->css, batch);
2495 if (batch > nr_pages)
2496 refill_stock(memcg, batch - nr_pages);
2497
2498 /*
2499 * If the hierarchy is above the normal consumption range, schedule
2500 * reclaim on returning to userland. We can perform reclaim here
2501 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2502 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2503 * not recorded as it most likely matches current's and won't
2504 * change in the meantime. As high limit is checked again before
2505 * reclaim, the cost of mismatch is negligible.
2506 */
2507 do {
2508 if (page_counter_read(&memcg->memory) > memcg->high) {
2509 /* Don't bother a random interrupted task */
2510 if (in_interrupt()) {
2511 schedule_work(&memcg->high_work);
2512 break;
2513 }
2514 current->memcg_nr_pages_over_high += batch;
2515 set_notify_resume(current);
2516 break;
2517 }
2518 } while ((memcg = parent_mem_cgroup(memcg)));
2519
2520 return 0;
2521 }
2522
2523 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2524 {
2525 if (mem_cgroup_is_root(memcg))
2526 return;
2527
2528 page_counter_uncharge(&memcg->memory, nr_pages);
2529 if (do_memsw_account())
2530 page_counter_uncharge(&memcg->memsw, nr_pages);
2531
2532 css_put_many(&memcg->css, nr_pages);
2533 }
2534
2535 static void lock_page_lru(struct page *page, int *isolated)
2536 {
2537 pg_data_t *pgdat = page_pgdat(page);
2538
2539 spin_lock_irq(&pgdat->lru_lock);
2540 if (PageLRU(page)) {
2541 struct lruvec *lruvec;
2542
2543 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2544 ClearPageLRU(page);
2545 del_page_from_lru_list(page, lruvec, page_lru(page));
2546 *isolated = 1;
2547 } else
2548 *isolated = 0;
2549 }
2550
2551 static void unlock_page_lru(struct page *page, int isolated)
2552 {
2553 pg_data_t *pgdat = page_pgdat(page);
2554
2555 if (isolated) {
2556 struct lruvec *lruvec;
2557
2558 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2559 VM_BUG_ON_PAGE(PageLRU(page), page);
2560 SetPageLRU(page);
2561 add_page_to_lru_list(page, lruvec, page_lru(page));
2562 }
2563 spin_unlock_irq(&pgdat->lru_lock);
2564 }
2565
2566 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2567 bool lrucare)
2568 {
2569 int isolated;
2570
2571 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2572
2573 /*
2574 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2575 * may already be on some other mem_cgroup's LRU. Take care of it.
2576 */
2577 if (lrucare)
2578 lock_page_lru(page, &isolated);
2579
2580 /*
2581 * Nobody should be changing or seriously looking at
2582 * page->mem_cgroup at this point:
2583 *
2584 * - the page is uncharged
2585 *
2586 * - the page is off-LRU
2587 *
2588 * - an anonymous fault has exclusive page access, except for
2589 * a locked page table
2590 *
2591 * - a page cache insertion, a swapin fault, or a migration
2592 * have the page locked
2593 */
2594 page->mem_cgroup = memcg;
2595
2596 if (lrucare)
2597 unlock_page_lru(page, isolated);
2598 }
2599
2600 #ifdef CONFIG_MEMCG_KMEM
2601 static int memcg_alloc_cache_id(void)
2602 {
2603 int id, size;
2604 int err;
2605
2606 id = ida_simple_get(&memcg_cache_ida,
2607 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2608 if (id < 0)
2609 return id;
2610
2611 if (id < memcg_nr_cache_ids)
2612 return id;
2613
2614 /*
2615 * There's no space for the new id in memcg_caches arrays,
2616 * so we have to grow them.
2617 */
2618 down_write(&memcg_cache_ids_sem);
2619
2620 size = 2 * (id + 1);
2621 if (size < MEMCG_CACHES_MIN_SIZE)
2622 size = MEMCG_CACHES_MIN_SIZE;
2623 else if (size > MEMCG_CACHES_MAX_SIZE)
2624 size = MEMCG_CACHES_MAX_SIZE;
2625
2626 err = memcg_update_all_caches(size);
2627 if (!err)
2628 err = memcg_update_all_list_lrus(size);
2629 if (!err)
2630 memcg_nr_cache_ids = size;
2631
2632 up_write(&memcg_cache_ids_sem);
2633
2634 if (err) {
2635 ida_simple_remove(&memcg_cache_ida, id);
2636 return err;
2637 }
2638 return id;
2639 }
2640
2641 static void memcg_free_cache_id(int id)
2642 {
2643 ida_simple_remove(&memcg_cache_ida, id);
2644 }
2645
2646 struct memcg_kmem_cache_create_work {
2647 struct mem_cgroup *memcg;
2648 struct kmem_cache *cachep;
2649 struct work_struct work;
2650 };
2651
2652 static void memcg_kmem_cache_create_func(struct work_struct *w)
2653 {
2654 struct memcg_kmem_cache_create_work *cw =
2655 container_of(w, struct memcg_kmem_cache_create_work, work);
2656 struct mem_cgroup *memcg = cw->memcg;
2657 struct kmem_cache *cachep = cw->cachep;
2658
2659 memcg_create_kmem_cache(memcg, cachep);
2660
2661 css_put(&memcg->css);
2662 kfree(cw);
2663 }
2664
2665 /*
2666 * Enqueue the creation of a per-memcg kmem_cache.
2667 */
2668 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2669 struct kmem_cache *cachep)
2670 {
2671 struct memcg_kmem_cache_create_work *cw;
2672
2673 if (!css_tryget_online(&memcg->css))
2674 return;
2675
2676 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2677 if (!cw)
2678 return;
2679
2680 cw->memcg = memcg;
2681 cw->cachep = cachep;
2682 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2683
2684 queue_work(memcg_kmem_cache_wq, &cw->work);
2685 }
2686
2687 static inline bool memcg_kmem_bypass(void)
2688 {
2689 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2690 return true;
2691 return false;
2692 }
2693
2694 /**
2695 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2696 * @cachep: the original global kmem cache
2697 *
2698 * Return the kmem_cache we're supposed to use for a slab allocation.
2699 * We try to use the current memcg's version of the cache.
2700 *
2701 * If the cache does not exist yet, if we are the first user of it, we
2702 * create it asynchronously in a workqueue and let the current allocation
2703 * go through with the original cache.
2704 *
2705 * This function takes a reference to the cache it returns to assure it
2706 * won't get destroyed while we are working with it. Once the caller is
2707 * done with it, memcg_kmem_put_cache() must be called to release the
2708 * reference.
2709 */
2710 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2711 {
2712 struct mem_cgroup *memcg;
2713 struct kmem_cache *memcg_cachep;
2714 struct memcg_cache_array *arr;
2715 int kmemcg_id;
2716
2717 VM_BUG_ON(!is_root_cache(cachep));
2718
2719 if (memcg_kmem_bypass())
2720 return cachep;
2721
2722 rcu_read_lock();
2723
2724 if (unlikely(current->active_memcg))
2725 memcg = current->active_memcg;
2726 else
2727 memcg = mem_cgroup_from_task(current);
2728
2729 if (!memcg || memcg == root_mem_cgroup)
2730 goto out_unlock;
2731
2732 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2733 if (kmemcg_id < 0)
2734 goto out_unlock;
2735
2736 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2737
2738 /*
2739 * Make sure we will access the up-to-date value. The code updating
2740 * memcg_caches issues a write barrier to match the data dependency
2741 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2742 */
2743 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2744
2745 /*
2746 * If we are in a safe context (can wait, and not in interrupt
2747 * context), we could be be predictable and return right away.
2748 * This would guarantee that the allocation being performed
2749 * already belongs in the new cache.
2750 *
2751 * However, there are some clashes that can arrive from locking.
2752 * For instance, because we acquire the slab_mutex while doing
2753 * memcg_create_kmem_cache, this means no further allocation
2754 * could happen with the slab_mutex held. So it's better to
2755 * defer everything.
2756 *
2757 * If the memcg is dying or memcg_cache is about to be released,
2758 * don't bother creating new kmem_caches. Because memcg_cachep
2759 * is ZEROed as the fist step of kmem offlining, we don't need
2760 * percpu_ref_tryget_live() here. css_tryget_online() check in
2761 * memcg_schedule_kmem_cache_create() will prevent us from
2762 * creation of a new kmem_cache.
2763 */
2764 if (unlikely(!memcg_cachep))
2765 memcg_schedule_kmem_cache_create(memcg, cachep);
2766 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2767 cachep = memcg_cachep;
2768 out_unlock:
2769 rcu_read_unlock();
2770 return cachep;
2771 }
2772
2773 /**
2774 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2775 * @cachep: the cache returned by memcg_kmem_get_cache
2776 */
2777 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2778 {
2779 if (!is_root_cache(cachep))
2780 percpu_ref_put(&cachep->memcg_params.refcnt);
2781 }
2782
2783 /**
2784 * __memcg_kmem_charge_memcg: charge a kmem page
2785 * @page: page to charge
2786 * @gfp: reclaim mode
2787 * @order: allocation order
2788 * @memcg: memory cgroup to charge
2789 *
2790 * Returns 0 on success, an error code on failure.
2791 */
2792 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2793 struct mem_cgroup *memcg)
2794 {
2795 unsigned int nr_pages = 1 << order;
2796 struct page_counter *counter;
2797 int ret;
2798
2799 ret = try_charge(memcg, gfp, nr_pages);
2800 if (ret)
2801 return ret;
2802
2803 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2804 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2805 cancel_charge(memcg, nr_pages);
2806 return -ENOMEM;
2807 }
2808 return 0;
2809 }
2810
2811 /**
2812 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2813 * @page: page to charge
2814 * @gfp: reclaim mode
2815 * @order: allocation order
2816 *
2817 * Returns 0 on success, an error code on failure.
2818 */
2819 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2820 {
2821 struct mem_cgroup *memcg;
2822 int ret = 0;
2823
2824 if (memcg_kmem_bypass())
2825 return 0;
2826
2827 memcg = get_mem_cgroup_from_current();
2828 if (!mem_cgroup_is_root(memcg)) {
2829 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2830 if (!ret) {
2831 page->mem_cgroup = memcg;
2832 __SetPageKmemcg(page);
2833 }
2834 }
2835 css_put(&memcg->css);
2836 return ret;
2837 }
2838
2839 /**
2840 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2841 * @memcg: memcg to uncharge
2842 * @nr_pages: number of pages to uncharge
2843 */
2844 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2845 unsigned int nr_pages)
2846 {
2847 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2848 page_counter_uncharge(&memcg->kmem, nr_pages);
2849
2850 page_counter_uncharge(&memcg->memory, nr_pages);
2851 if (do_memsw_account())
2852 page_counter_uncharge(&memcg->memsw, nr_pages);
2853 }
2854 /**
2855 * __memcg_kmem_uncharge: uncharge a kmem page
2856 * @page: page to uncharge
2857 * @order: allocation order
2858 */
2859 void __memcg_kmem_uncharge(struct page *page, int order)
2860 {
2861 struct mem_cgroup *memcg = page->mem_cgroup;
2862 unsigned int nr_pages = 1 << order;
2863
2864 if (!memcg)
2865 return;
2866
2867 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2868 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2869 page->mem_cgroup = NULL;
2870
2871 /* slab pages do not have PageKmemcg flag set */
2872 if (PageKmemcg(page))
2873 __ClearPageKmemcg(page);
2874
2875 css_put_many(&memcg->css, nr_pages);
2876 }
2877 #endif /* CONFIG_MEMCG_KMEM */
2878
2879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2880
2881 /*
2882 * Because tail pages are not marked as "used", set it. We're under
2883 * pgdat->lru_lock and migration entries setup in all page mappings.
2884 */
2885 void mem_cgroup_split_huge_fixup(struct page *head)
2886 {
2887 int i;
2888
2889 if (mem_cgroup_disabled())
2890 return;
2891
2892 for (i = 1; i < HPAGE_PMD_NR; i++)
2893 head[i].mem_cgroup = head->mem_cgroup;
2894
2895 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2896 }
2897 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2898
2899 #ifdef CONFIG_MEMCG_SWAP
2900 /**
2901 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2902 * @entry: swap entry to be moved
2903 * @from: mem_cgroup which the entry is moved from
2904 * @to: mem_cgroup which the entry is moved to
2905 *
2906 * It succeeds only when the swap_cgroup's record for this entry is the same
2907 * as the mem_cgroup's id of @from.
2908 *
2909 * Returns 0 on success, -EINVAL on failure.
2910 *
2911 * The caller must have charged to @to, IOW, called page_counter_charge() about
2912 * both res and memsw, and called css_get().
2913 */
2914 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2915 struct mem_cgroup *from, struct mem_cgroup *to)
2916 {
2917 unsigned short old_id, new_id;
2918
2919 old_id = mem_cgroup_id(from);
2920 new_id = mem_cgroup_id(to);
2921
2922 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2923 mod_memcg_state(from, MEMCG_SWAP, -1);
2924 mod_memcg_state(to, MEMCG_SWAP, 1);
2925 return 0;
2926 }
2927 return -EINVAL;
2928 }
2929 #else
2930 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2931 struct mem_cgroup *from, struct mem_cgroup *to)
2932 {
2933 return -EINVAL;
2934 }
2935 #endif
2936
2937 static DEFINE_MUTEX(memcg_max_mutex);
2938
2939 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2940 unsigned long max, bool memsw)
2941 {
2942 bool enlarge = false;
2943 bool drained = false;
2944 int ret;
2945 bool limits_invariant;
2946 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2947
2948 do {
2949 if (signal_pending(current)) {
2950 ret = -EINTR;
2951 break;
2952 }
2953
2954 mutex_lock(&memcg_max_mutex);
2955 /*
2956 * Make sure that the new limit (memsw or memory limit) doesn't
2957 * break our basic invariant rule memory.max <= memsw.max.
2958 */
2959 limits_invariant = memsw ? max >= memcg->memory.max :
2960 max <= memcg->memsw.max;
2961 if (!limits_invariant) {
2962 mutex_unlock(&memcg_max_mutex);
2963 ret = -EINVAL;
2964 break;
2965 }
2966 if (max > counter->max)
2967 enlarge = true;
2968 ret = page_counter_set_max(counter, max);
2969 mutex_unlock(&memcg_max_mutex);
2970
2971 if (!ret)
2972 break;
2973
2974 if (!drained) {
2975 drain_all_stock(memcg);
2976 drained = true;
2977 continue;
2978 }
2979
2980 if (!try_to_free_mem_cgroup_pages(memcg, 1,
2981 GFP_KERNEL, !memsw)) {
2982 ret = -EBUSY;
2983 break;
2984 }
2985 } while (true);
2986
2987 if (!ret && enlarge)
2988 memcg_oom_recover(memcg);
2989
2990 return ret;
2991 }
2992
2993 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2994 gfp_t gfp_mask,
2995 unsigned long *total_scanned)
2996 {
2997 unsigned long nr_reclaimed = 0;
2998 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2999 unsigned long reclaimed;
3000 int loop = 0;
3001 struct mem_cgroup_tree_per_node *mctz;
3002 unsigned long excess;
3003 unsigned long nr_scanned;
3004
3005 if (order > 0)
3006 return 0;
3007
3008 mctz = soft_limit_tree_node(pgdat->node_id);
3009
3010 /*
3011 * Do not even bother to check the largest node if the root
3012 * is empty. Do it lockless to prevent lock bouncing. Races
3013 * are acceptable as soft limit is best effort anyway.
3014 */
3015 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3016 return 0;
3017
3018 /*
3019 * This loop can run a while, specially if mem_cgroup's continuously
3020 * keep exceeding their soft limit and putting the system under
3021 * pressure
3022 */
3023 do {
3024 if (next_mz)
3025 mz = next_mz;
3026 else
3027 mz = mem_cgroup_largest_soft_limit_node(mctz);
3028 if (!mz)
3029 break;
3030
3031 nr_scanned = 0;
3032 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3033 gfp_mask, &nr_scanned);
3034 nr_reclaimed += reclaimed;
3035 *total_scanned += nr_scanned;
3036 spin_lock_irq(&mctz->lock);
3037 __mem_cgroup_remove_exceeded(mz, mctz);
3038
3039 /*
3040 * If we failed to reclaim anything from this memory cgroup
3041 * it is time to move on to the next cgroup
3042 */
3043 next_mz = NULL;
3044 if (!reclaimed)
3045 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3046
3047 excess = soft_limit_excess(mz->memcg);
3048 /*
3049 * One school of thought says that we should not add
3050 * back the node to the tree if reclaim returns 0.
3051 * But our reclaim could return 0, simply because due
3052 * to priority we are exposing a smaller subset of
3053 * memory to reclaim from. Consider this as a longer
3054 * term TODO.
3055 */
3056 /* If excess == 0, no tree ops */
3057 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3058 spin_unlock_irq(&mctz->lock);
3059 css_put(&mz->memcg->css);
3060 loop++;
3061 /*
3062 * Could not reclaim anything and there are no more
3063 * mem cgroups to try or we seem to be looping without
3064 * reclaiming anything.
3065 */
3066 if (!nr_reclaimed &&
3067 (next_mz == NULL ||
3068 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3069 break;
3070 } while (!nr_reclaimed);
3071 if (next_mz)
3072 css_put(&next_mz->memcg->css);
3073 return nr_reclaimed;
3074 }
3075
3076 /*
3077 * Test whether @memcg has children, dead or alive. Note that this
3078 * function doesn't care whether @memcg has use_hierarchy enabled and
3079 * returns %true if there are child csses according to the cgroup
3080 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3081 */
3082 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3083 {
3084 bool ret;
3085
3086 rcu_read_lock();
3087 ret = css_next_child(NULL, &memcg->css);
3088 rcu_read_unlock();
3089 return ret;
3090 }
3091
3092 /*
3093 * Reclaims as many pages from the given memcg as possible.
3094 *
3095 * Caller is responsible for holding css reference for memcg.
3096 */
3097 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3098 {
3099 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3100
3101 /* we call try-to-free pages for make this cgroup empty */
3102 lru_add_drain_all();
3103
3104 drain_all_stock(memcg);
3105
3106 /* try to free all pages in this cgroup */
3107 while (nr_retries && page_counter_read(&memcg->memory)) {
3108 int progress;
3109
3110 if (signal_pending(current))
3111 return -EINTR;
3112
3113 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3114 GFP_KERNEL, true);
3115 if (!progress) {
3116 nr_retries--;
3117 /* maybe some writeback is necessary */
3118 congestion_wait(BLK_RW_ASYNC, HZ/10);
3119 }
3120
3121 }
3122
3123 return 0;
3124 }
3125
3126 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3127 char *buf, size_t nbytes,
3128 loff_t off)
3129 {
3130 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3131
3132 if (mem_cgroup_is_root(memcg))
3133 return -EINVAL;
3134 return mem_cgroup_force_empty(memcg) ?: nbytes;
3135 }
3136
3137 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3138 struct cftype *cft)
3139 {
3140 return mem_cgroup_from_css(css)->use_hierarchy;
3141 }
3142
3143 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3144 struct cftype *cft, u64 val)
3145 {
3146 int retval = 0;
3147 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3148 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3149
3150 if (memcg->use_hierarchy == val)
3151 return 0;
3152
3153 /*
3154 * If parent's use_hierarchy is set, we can't make any modifications
3155 * in the child subtrees. If it is unset, then the change can
3156 * occur, provided the current cgroup has no children.
3157 *
3158 * For the root cgroup, parent_mem is NULL, we allow value to be
3159 * set if there are no children.
3160 */
3161 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3162 (val == 1 || val == 0)) {
3163 if (!memcg_has_children(memcg))
3164 memcg->use_hierarchy = val;
3165 else
3166 retval = -EBUSY;
3167 } else
3168 retval = -EINVAL;
3169
3170 return retval;
3171 }
3172
3173 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3174 {
3175 unsigned long val;
3176
3177 if (mem_cgroup_is_root(memcg)) {
3178 val = memcg_page_state(memcg, MEMCG_CACHE) +
3179 memcg_page_state(memcg, MEMCG_RSS);
3180 if (swap)
3181 val += memcg_page_state(memcg, MEMCG_SWAP);
3182 } else {
3183 if (!swap)
3184 val = page_counter_read(&memcg->memory);
3185 else
3186 val = page_counter_read(&memcg->memsw);
3187 }
3188 return val;
3189 }
3190
3191 enum {
3192 RES_USAGE,
3193 RES_LIMIT,
3194 RES_MAX_USAGE,
3195 RES_FAILCNT,
3196 RES_SOFT_LIMIT,
3197 };
3198
3199 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3200 struct cftype *cft)
3201 {
3202 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3203 struct page_counter *counter;
3204
3205 switch (MEMFILE_TYPE(cft->private)) {
3206 case _MEM:
3207 counter = &memcg->memory;
3208 break;
3209 case _MEMSWAP:
3210 counter = &memcg->memsw;
3211 break;
3212 case _KMEM:
3213 counter = &memcg->kmem;
3214 break;
3215 case _TCP:
3216 counter = &memcg->tcpmem;
3217 break;
3218 default:
3219 BUG();
3220 }
3221
3222 switch (MEMFILE_ATTR(cft->private)) {
3223 case RES_USAGE:
3224 if (counter == &memcg->memory)
3225 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3226 if (counter == &memcg->memsw)
3227 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3228 return (u64)page_counter_read(counter) * PAGE_SIZE;
3229 case RES_LIMIT:
3230 return (u64)counter->max * PAGE_SIZE;
3231 case RES_MAX_USAGE:
3232 return (u64)counter->watermark * PAGE_SIZE;
3233 case RES_FAILCNT:
3234 return counter->failcnt;
3235 case RES_SOFT_LIMIT:
3236 return (u64)memcg->soft_limit * PAGE_SIZE;
3237 default:
3238 BUG();
3239 }
3240 }
3241
3242 #ifdef CONFIG_MEMCG_KMEM
3243 static int memcg_online_kmem(struct mem_cgroup *memcg)
3244 {
3245 int memcg_id;
3246
3247 if (cgroup_memory_nokmem)
3248 return 0;
3249
3250 BUG_ON(memcg->kmemcg_id >= 0);
3251 BUG_ON(memcg->kmem_state);
3252
3253 memcg_id = memcg_alloc_cache_id();
3254 if (memcg_id < 0)
3255 return memcg_id;
3256
3257 static_branch_inc(&memcg_kmem_enabled_key);
3258 /*
3259 * A memory cgroup is considered kmem-online as soon as it gets
3260 * kmemcg_id. Setting the id after enabling static branching will
3261 * guarantee no one starts accounting before all call sites are
3262 * patched.
3263 */
3264 memcg->kmemcg_id = memcg_id;
3265 memcg->kmem_state = KMEM_ONLINE;
3266 INIT_LIST_HEAD(&memcg->kmem_caches);
3267
3268 return 0;
3269 }
3270
3271 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3272 {
3273 struct cgroup_subsys_state *css;
3274 struct mem_cgroup *parent, *child;
3275 int kmemcg_id;
3276
3277 if (memcg->kmem_state != KMEM_ONLINE)
3278 return;
3279 /*
3280 * Clear the online state before clearing memcg_caches array
3281 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3282 * guarantees that no cache will be created for this cgroup
3283 * after we are done (see memcg_create_kmem_cache()).
3284 */
3285 memcg->kmem_state = KMEM_ALLOCATED;
3286
3287 parent = parent_mem_cgroup(memcg);
3288 if (!parent)
3289 parent = root_mem_cgroup;
3290
3291 memcg_deactivate_kmem_caches(memcg, parent);
3292
3293 kmemcg_id = memcg->kmemcg_id;
3294 BUG_ON(kmemcg_id < 0);
3295
3296 /*
3297 * Change kmemcg_id of this cgroup and all its descendants to the
3298 * parent's id, and then move all entries from this cgroup's list_lrus
3299 * to ones of the parent. After we have finished, all list_lrus
3300 * corresponding to this cgroup are guaranteed to remain empty. The
3301 * ordering is imposed by list_lru_node->lock taken by
3302 * memcg_drain_all_list_lrus().
3303 */
3304 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3305 css_for_each_descendant_pre(css, &memcg->css) {
3306 child = mem_cgroup_from_css(css);
3307 BUG_ON(child->kmemcg_id != kmemcg_id);
3308 child->kmemcg_id = parent->kmemcg_id;
3309 if (!memcg->use_hierarchy)
3310 break;
3311 }
3312 rcu_read_unlock();
3313
3314 memcg_drain_all_list_lrus(kmemcg_id, parent);
3315
3316 memcg_free_cache_id(kmemcg_id);
3317 }
3318
3319 static void memcg_free_kmem(struct mem_cgroup *memcg)
3320 {
3321 /* css_alloc() failed, offlining didn't happen */
3322 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3323 memcg_offline_kmem(memcg);
3324
3325 if (memcg->kmem_state == KMEM_ALLOCATED) {
3326 WARN_ON(!list_empty(&memcg->kmem_caches));
3327 static_branch_dec(&memcg_kmem_enabled_key);
3328 }
3329 }
3330 #else
3331 static int memcg_online_kmem(struct mem_cgroup *memcg)
3332 {
3333 return 0;
3334 }
3335 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3336 {
3337 }
3338 static void memcg_free_kmem(struct mem_cgroup *memcg)
3339 {
3340 }
3341 #endif /* CONFIG_MEMCG_KMEM */
3342
3343 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3344 unsigned long max)
3345 {
3346 int ret;
3347
3348 mutex_lock(&memcg_max_mutex);
3349 ret = page_counter_set_max(&memcg->kmem, max);
3350 mutex_unlock(&memcg_max_mutex);
3351 return ret;
3352 }
3353
3354 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3355 {
3356 int ret;
3357
3358 mutex_lock(&memcg_max_mutex);
3359
3360 ret = page_counter_set_max(&memcg->tcpmem, max);
3361 if (ret)
3362 goto out;
3363
3364 if (!memcg->tcpmem_active) {
3365 /*
3366 * The active flag needs to be written after the static_key
3367 * update. This is what guarantees that the socket activation
3368 * function is the last one to run. See mem_cgroup_sk_alloc()
3369 * for details, and note that we don't mark any socket as
3370 * belonging to this memcg until that flag is up.
3371 *
3372 * We need to do this, because static_keys will span multiple
3373 * sites, but we can't control their order. If we mark a socket
3374 * as accounted, but the accounting functions are not patched in
3375 * yet, we'll lose accounting.
3376 *
3377 * We never race with the readers in mem_cgroup_sk_alloc(),
3378 * because when this value change, the code to process it is not
3379 * patched in yet.
3380 */
3381 static_branch_inc(&memcg_sockets_enabled_key);
3382 memcg->tcpmem_active = true;
3383 }
3384 out:
3385 mutex_unlock(&memcg_max_mutex);
3386 return ret;
3387 }
3388
3389 /*
3390 * The user of this function is...
3391 * RES_LIMIT.
3392 */
3393 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3394 char *buf, size_t nbytes, loff_t off)
3395 {
3396 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3397 unsigned long nr_pages;
3398 int ret;
3399
3400 buf = strstrip(buf);
3401 ret = page_counter_memparse(buf, "-1", &nr_pages);
3402 if (ret)
3403 return ret;
3404
3405 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3406 case RES_LIMIT:
3407 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3408 ret = -EINVAL;
3409 break;
3410 }
3411 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3412 case _MEM:
3413 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3414 break;
3415 case _MEMSWAP:
3416 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3417 break;
3418 case _KMEM:
3419 ret = memcg_update_kmem_max(memcg, nr_pages);
3420 break;
3421 case _TCP:
3422 ret = memcg_update_tcp_max(memcg, nr_pages);
3423 break;
3424 }
3425 break;
3426 case RES_SOFT_LIMIT:
3427 memcg->soft_limit = nr_pages;
3428 ret = 0;
3429 break;
3430 }
3431 return ret ?: nbytes;
3432 }
3433
3434 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3435 size_t nbytes, loff_t off)
3436 {
3437 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3438 struct page_counter *counter;
3439
3440 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3441 case _MEM:
3442 counter = &memcg->memory;
3443 break;
3444 case _MEMSWAP:
3445 counter = &memcg->memsw;
3446 break;
3447 case _KMEM:
3448 counter = &memcg->kmem;
3449 break;
3450 case _TCP:
3451 counter = &memcg->tcpmem;
3452 break;
3453 default:
3454 BUG();
3455 }
3456
3457 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3458 case RES_MAX_USAGE:
3459 page_counter_reset_watermark(counter);
3460 break;
3461 case RES_FAILCNT:
3462 counter->failcnt = 0;
3463 break;
3464 default:
3465 BUG();
3466 }
3467
3468 return nbytes;
3469 }
3470
3471 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3472 struct cftype *cft)
3473 {
3474 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3475 }
3476
3477 #ifdef CONFIG_MMU
3478 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3479 struct cftype *cft, u64 val)
3480 {
3481 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3482
3483 if (val & ~MOVE_MASK)
3484 return -EINVAL;
3485
3486 /*
3487 * No kind of locking is needed in here, because ->can_attach() will
3488 * check this value once in the beginning of the process, and then carry
3489 * on with stale data. This means that changes to this value will only
3490 * affect task migrations starting after the change.
3491 */
3492 memcg->move_charge_at_immigrate = val;
3493 return 0;
3494 }
3495 #else
3496 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3497 struct cftype *cft, u64 val)
3498 {
3499 return -ENOSYS;
3500 }
3501 #endif
3502
3503 #ifdef CONFIG_NUMA
3504
3505 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3506 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3507 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3508
3509 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3510 int nid, unsigned int lru_mask)
3511 {
3512 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
3513 unsigned long nr = 0;
3514 enum lru_list lru;
3515
3516 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3517
3518 for_each_lru(lru) {
3519 if (!(BIT(lru) & lru_mask))
3520 continue;
3521 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3522 }
3523 return nr;
3524 }
3525
3526 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3527 unsigned int lru_mask)
3528 {
3529 unsigned long nr = 0;
3530 enum lru_list lru;
3531
3532 for_each_lru(lru) {
3533 if (!(BIT(lru) & lru_mask))
3534 continue;
3535 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3536 }
3537 return nr;
3538 }
3539
3540 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3541 {
3542 struct numa_stat {
3543 const char *name;
3544 unsigned int lru_mask;
3545 };
3546
3547 static const struct numa_stat stats[] = {
3548 { "total", LRU_ALL },
3549 { "file", LRU_ALL_FILE },
3550 { "anon", LRU_ALL_ANON },
3551 { "unevictable", BIT(LRU_UNEVICTABLE) },
3552 };
3553 const struct numa_stat *stat;
3554 int nid;
3555 unsigned long nr;
3556 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3557
3558 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3559 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3560 seq_printf(m, "%s=%lu", stat->name, nr);
3561 for_each_node_state(nid, N_MEMORY) {
3562 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3563 stat->lru_mask);
3564 seq_printf(m, " N%d=%lu", nid, nr);
3565 }
3566 seq_putc(m, '\n');
3567 }
3568
3569 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3570 struct mem_cgroup *iter;
3571
3572 nr = 0;
3573 for_each_mem_cgroup_tree(iter, memcg)
3574 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3575 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3576 for_each_node_state(nid, N_MEMORY) {
3577 nr = 0;
3578 for_each_mem_cgroup_tree(iter, memcg)
3579 nr += mem_cgroup_node_nr_lru_pages(
3580 iter, nid, stat->lru_mask);
3581 seq_printf(m, " N%d=%lu", nid, nr);
3582 }
3583 seq_putc(m, '\n');
3584 }
3585
3586 return 0;
3587 }
3588 #endif /* CONFIG_NUMA */
3589
3590 static const unsigned int memcg1_stats[] = {
3591 MEMCG_CACHE,
3592 MEMCG_RSS,
3593 MEMCG_RSS_HUGE,
3594 NR_SHMEM,
3595 NR_FILE_MAPPED,
3596 NR_FILE_DIRTY,
3597 NR_WRITEBACK,
3598 MEMCG_SWAP,
3599 };
3600
3601 static const char *const memcg1_stat_names[] = {
3602 "cache",
3603 "rss",
3604 "rss_huge",
3605 "shmem",
3606 "mapped_file",
3607 "dirty",
3608 "writeback",
3609 "swap",
3610 };
3611
3612 /* Universal VM events cgroup1 shows, original sort order */
3613 static const unsigned int memcg1_events[] = {
3614 PGPGIN,
3615 PGPGOUT,
3616 PGFAULT,
3617 PGMAJFAULT,
3618 };
3619
3620 static const char *const memcg1_event_names[] = {
3621 "pgpgin",
3622 "pgpgout",
3623 "pgfault",
3624 "pgmajfault",
3625 };
3626
3627 static int memcg_stat_show(struct seq_file *m, void *v)
3628 {
3629 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3630 unsigned long memory, memsw;
3631 struct mem_cgroup *mi;
3632 unsigned int i;
3633
3634 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3635 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3636
3637 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3638 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3639 continue;
3640 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3641 memcg_page_state_local(memcg, memcg1_stats[i]) *
3642 PAGE_SIZE);
3643 }
3644
3645 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3646 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
3647 memcg_events_local(memcg, memcg1_events[i]));
3648
3649 for (i = 0; i < NR_LRU_LISTS; i++)
3650 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3651 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3652 PAGE_SIZE);
3653
3654 /* Hierarchical information */
3655 memory = memsw = PAGE_COUNTER_MAX;
3656 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3657 memory = min(memory, mi->memory.max);
3658 memsw = min(memsw, mi->memsw.max);
3659 }
3660 seq_printf(m, "hierarchical_memory_limit %llu\n",
3661 (u64)memory * PAGE_SIZE);
3662 if (do_memsw_account())
3663 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3664 (u64)memsw * PAGE_SIZE);
3665
3666 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3667 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3668 continue;
3669 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3670 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3671 PAGE_SIZE);
3672 }
3673
3674 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3675 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i],
3676 (u64)memcg_events(memcg, memcg1_events[i]));
3677
3678 for (i = 0; i < NR_LRU_LISTS; i++)
3679 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i],
3680 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3681 PAGE_SIZE);
3682
3683 #ifdef CONFIG_DEBUG_VM
3684 {
3685 pg_data_t *pgdat;
3686 struct mem_cgroup_per_node *mz;
3687 struct zone_reclaim_stat *rstat;
3688 unsigned long recent_rotated[2] = {0, 0};
3689 unsigned long recent_scanned[2] = {0, 0};
3690
3691 for_each_online_pgdat(pgdat) {
3692 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3693 rstat = &mz->lruvec.reclaim_stat;
3694
3695 recent_rotated[0] += rstat->recent_rotated[0];
3696 recent_rotated[1] += rstat->recent_rotated[1];
3697 recent_scanned[0] += rstat->recent_scanned[0];
3698 recent_scanned[1] += rstat->recent_scanned[1];
3699 }
3700 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3701 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3702 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3703 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3704 }
3705 #endif
3706
3707 return 0;
3708 }
3709
3710 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3711 struct cftype *cft)
3712 {
3713 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3714
3715 return mem_cgroup_swappiness(memcg);
3716 }
3717
3718 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3719 struct cftype *cft, u64 val)
3720 {
3721 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3722
3723 if (val > 100)
3724 return -EINVAL;
3725
3726 if (css->parent)
3727 memcg->swappiness = val;
3728 else
3729 vm_swappiness = val;
3730
3731 return 0;
3732 }
3733
3734 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3735 {
3736 struct mem_cgroup_threshold_ary *t;
3737 unsigned long usage;
3738 int i;
3739
3740 rcu_read_lock();
3741 if (!swap)
3742 t = rcu_dereference(memcg->thresholds.primary);
3743 else
3744 t = rcu_dereference(memcg->memsw_thresholds.primary);
3745
3746 if (!t)
3747 goto unlock;
3748
3749 usage = mem_cgroup_usage(memcg, swap);
3750
3751 /*
3752 * current_threshold points to threshold just below or equal to usage.
3753 * If it's not true, a threshold was crossed after last
3754 * call of __mem_cgroup_threshold().
3755 */
3756 i = t->current_threshold;
3757
3758 /*
3759 * Iterate backward over array of thresholds starting from
3760 * current_threshold and check if a threshold is crossed.
3761 * If none of thresholds below usage is crossed, we read
3762 * only one element of the array here.
3763 */
3764 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3765 eventfd_signal(t->entries[i].eventfd, 1);
3766
3767 /* i = current_threshold + 1 */
3768 i++;
3769
3770 /*
3771 * Iterate forward over array of thresholds starting from
3772 * current_threshold+1 and check if a threshold is crossed.
3773 * If none of thresholds above usage is crossed, we read
3774 * only one element of the array here.
3775 */
3776 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3777 eventfd_signal(t->entries[i].eventfd, 1);
3778
3779 /* Update current_threshold */
3780 t->current_threshold = i - 1;
3781 unlock:
3782 rcu_read_unlock();
3783 }
3784
3785 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3786 {
3787 while (memcg) {
3788 __mem_cgroup_threshold(memcg, false);
3789 if (do_memsw_account())
3790 __mem_cgroup_threshold(memcg, true);
3791
3792 memcg = parent_mem_cgroup(memcg);
3793 }
3794 }
3795
3796 static int compare_thresholds(const void *a, const void *b)
3797 {
3798 const struct mem_cgroup_threshold *_a = a;
3799 const struct mem_cgroup_threshold *_b = b;
3800
3801 if (_a->threshold > _b->threshold)
3802 return 1;
3803
3804 if (_a->threshold < _b->threshold)
3805 return -1;
3806
3807 return 0;
3808 }
3809
3810 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3811 {
3812 struct mem_cgroup_eventfd_list *ev;
3813
3814 spin_lock(&memcg_oom_lock);
3815
3816 list_for_each_entry(ev, &memcg->oom_notify, list)
3817 eventfd_signal(ev->eventfd, 1);
3818
3819 spin_unlock(&memcg_oom_lock);
3820 return 0;
3821 }
3822
3823 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3824 {
3825 struct mem_cgroup *iter;
3826
3827 for_each_mem_cgroup_tree(iter, memcg)
3828 mem_cgroup_oom_notify_cb(iter);
3829 }
3830
3831 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3832 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3833 {
3834 struct mem_cgroup_thresholds *thresholds;
3835 struct mem_cgroup_threshold_ary *new;
3836 unsigned long threshold;
3837 unsigned long usage;
3838 int i, size, ret;
3839
3840 ret = page_counter_memparse(args, "-1", &threshold);
3841 if (ret)
3842 return ret;
3843
3844 mutex_lock(&memcg->thresholds_lock);
3845
3846 if (type == _MEM) {
3847 thresholds = &memcg->thresholds;
3848 usage = mem_cgroup_usage(memcg, false);
3849 } else if (type == _MEMSWAP) {
3850 thresholds = &memcg->memsw_thresholds;
3851 usage = mem_cgroup_usage(memcg, true);
3852 } else
3853 BUG();
3854
3855 /* Check if a threshold crossed before adding a new one */
3856 if (thresholds->primary)
3857 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3858
3859 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3860
3861 /* Allocate memory for new array of thresholds */
3862 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3863 if (!new) {
3864 ret = -ENOMEM;
3865 goto unlock;
3866 }
3867 new->size = size;
3868
3869 /* Copy thresholds (if any) to new array */
3870 if (thresholds->primary) {
3871 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3872 sizeof(struct mem_cgroup_threshold));
3873 }
3874
3875 /* Add new threshold */
3876 new->entries[size - 1].eventfd = eventfd;
3877 new->entries[size - 1].threshold = threshold;
3878
3879 /* Sort thresholds. Registering of new threshold isn't time-critical */
3880 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3881 compare_thresholds, NULL);
3882
3883 /* Find current threshold */
3884 new->current_threshold = -1;
3885 for (i = 0; i < size; i++) {
3886 if (new->entries[i].threshold <= usage) {
3887 /*
3888 * new->current_threshold will not be used until
3889 * rcu_assign_pointer(), so it's safe to increment
3890 * it here.
3891 */
3892 ++new->current_threshold;
3893 } else
3894 break;
3895 }
3896
3897 /* Free old spare buffer and save old primary buffer as spare */
3898 kfree(thresholds->spare);
3899 thresholds->spare = thresholds->primary;
3900
3901 rcu_assign_pointer(thresholds->primary, new);
3902
3903 /* To be sure that nobody uses thresholds */
3904 synchronize_rcu();
3905
3906 unlock:
3907 mutex_unlock(&memcg->thresholds_lock);
3908
3909 return ret;
3910 }
3911
3912 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3913 struct eventfd_ctx *eventfd, const char *args)
3914 {
3915 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3916 }
3917
3918 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3919 struct eventfd_ctx *eventfd, const char *args)
3920 {
3921 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3922 }
3923
3924 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3925 struct eventfd_ctx *eventfd, enum res_type type)
3926 {
3927 struct mem_cgroup_thresholds *thresholds;
3928 struct mem_cgroup_threshold_ary *new;
3929 unsigned long usage;
3930 int i, j, size;
3931
3932 mutex_lock(&memcg->thresholds_lock);
3933
3934 if (type == _MEM) {
3935 thresholds = &memcg->thresholds;
3936 usage = mem_cgroup_usage(memcg, false);
3937 } else if (type == _MEMSWAP) {
3938 thresholds = &memcg->memsw_thresholds;
3939 usage = mem_cgroup_usage(memcg, true);
3940 } else
3941 BUG();
3942
3943 if (!thresholds->primary)
3944 goto unlock;
3945
3946 /* Check if a threshold crossed before removing */
3947 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3948
3949 /* Calculate new number of threshold */
3950 size = 0;
3951 for (i = 0; i < thresholds->primary->size; i++) {
3952 if (thresholds->primary->entries[i].eventfd != eventfd)
3953 size++;
3954 }
3955
3956 new = thresholds->spare;
3957
3958 /* Set thresholds array to NULL if we don't have thresholds */
3959 if (!size) {
3960 kfree(new);
3961 new = NULL;
3962 goto swap_buffers;
3963 }
3964
3965 new->size = size;
3966
3967 /* Copy thresholds and find current threshold */
3968 new->current_threshold = -1;
3969 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3970 if (thresholds->primary->entries[i].eventfd == eventfd)
3971 continue;
3972
3973 new->entries[j] = thresholds->primary->entries[i];
3974 if (new->entries[j].threshold <= usage) {
3975 /*
3976 * new->current_threshold will not be used
3977 * until rcu_assign_pointer(), so it's safe to increment
3978 * it here.
3979 */
3980 ++new->current_threshold;
3981 }
3982 j++;
3983 }
3984
3985 swap_buffers:
3986 /* Swap primary and spare array */
3987 thresholds->spare = thresholds->primary;
3988
3989 rcu_assign_pointer(thresholds->primary, new);
3990
3991 /* To be sure that nobody uses thresholds */
3992 synchronize_rcu();
3993
3994 /* If all events are unregistered, free the spare array */
3995 if (!new) {
3996 kfree(thresholds->spare);
3997 thresholds->spare = NULL;
3998 }
3999 unlock:
4000 mutex_unlock(&memcg->thresholds_lock);
4001 }
4002
4003 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4004 struct eventfd_ctx *eventfd)
4005 {
4006 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4007 }
4008
4009 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4010 struct eventfd_ctx *eventfd)
4011 {
4012 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4013 }
4014
4015 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4016 struct eventfd_ctx *eventfd, const char *args)
4017 {
4018 struct mem_cgroup_eventfd_list *event;
4019
4020 event = kmalloc(sizeof(*event), GFP_KERNEL);
4021 if (!event)
4022 return -ENOMEM;
4023
4024 spin_lock(&memcg_oom_lock);
4025
4026 event->eventfd = eventfd;
4027 list_add(&event->list, &memcg->oom_notify);
4028
4029 /* already in OOM ? */
4030 if (memcg->under_oom)
4031 eventfd_signal(eventfd, 1);
4032 spin_unlock(&memcg_oom_lock);
4033
4034 return 0;
4035 }
4036
4037 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4038 struct eventfd_ctx *eventfd)
4039 {
4040 struct mem_cgroup_eventfd_list *ev, *tmp;
4041
4042 spin_lock(&memcg_oom_lock);
4043
4044 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4045 if (ev->eventfd == eventfd) {
4046 list_del(&ev->list);
4047 kfree(ev);
4048 }
4049 }
4050
4051 spin_unlock(&memcg_oom_lock);
4052 }
4053
4054 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4055 {
4056 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4057
4058 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4059 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4060 seq_printf(sf, "oom_kill %lu\n",
4061 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4062 return 0;
4063 }
4064
4065 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4066 struct cftype *cft, u64 val)
4067 {
4068 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4069
4070 /* cannot set to root cgroup and only 0 and 1 are allowed */
4071 if (!css->parent || !((val == 0) || (val == 1)))
4072 return -EINVAL;
4073
4074 memcg->oom_kill_disable = val;
4075 if (!val)
4076 memcg_oom_recover(memcg);
4077
4078 return 0;
4079 }
4080
4081 #ifdef CONFIG_CGROUP_WRITEBACK
4082
4083 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4084 {
4085 return wb_domain_init(&memcg->cgwb_domain, gfp);
4086 }
4087
4088 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4089 {
4090 wb_domain_exit(&memcg->cgwb_domain);
4091 }
4092
4093 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4094 {
4095 wb_domain_size_changed(&memcg->cgwb_domain);
4096 }
4097
4098 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4099 {
4100 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4101
4102 if (!memcg->css.parent)
4103 return NULL;
4104
4105 return &memcg->cgwb_domain;
4106 }
4107
4108 /*
4109 * idx can be of type enum memcg_stat_item or node_stat_item.
4110 * Keep in sync with memcg_exact_page().
4111 */
4112 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4113 {
4114 long x = atomic_long_read(&memcg->vmstats[idx]);
4115 int cpu;
4116
4117 for_each_online_cpu(cpu)
4118 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4119 if (x < 0)
4120 x = 0;
4121 return x;
4122 }
4123
4124 /**
4125 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4126 * @wb: bdi_writeback in question
4127 * @pfilepages: out parameter for number of file pages
4128 * @pheadroom: out parameter for number of allocatable pages according to memcg
4129 * @pdirty: out parameter for number of dirty pages
4130 * @pwriteback: out parameter for number of pages under writeback
4131 *
4132 * Determine the numbers of file, headroom, dirty, and writeback pages in
4133 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4134 * is a bit more involved.
4135 *
4136 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4137 * headroom is calculated as the lowest headroom of itself and the
4138 * ancestors. Note that this doesn't consider the actual amount of
4139 * available memory in the system. The caller should further cap
4140 * *@pheadroom accordingly.
4141 */
4142 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4143 unsigned long *pheadroom, unsigned long *pdirty,
4144 unsigned long *pwriteback)
4145 {
4146 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4147 struct mem_cgroup *parent;
4148
4149 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4150
4151 /* this should eventually include NR_UNSTABLE_NFS */
4152 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4153 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4154 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4155 *pheadroom = PAGE_COUNTER_MAX;
4156
4157 while ((parent = parent_mem_cgroup(memcg))) {
4158 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4159 unsigned long used = page_counter_read(&memcg->memory);
4160
4161 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4162 memcg = parent;
4163 }
4164 }
4165
4166 #else /* CONFIG_CGROUP_WRITEBACK */
4167
4168 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4169 {
4170 return 0;
4171 }
4172
4173 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4174 {
4175 }
4176
4177 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4178 {
4179 }
4180
4181 #endif /* CONFIG_CGROUP_WRITEBACK */
4182
4183 /*
4184 * DO NOT USE IN NEW FILES.
4185 *
4186 * "cgroup.event_control" implementation.
4187 *
4188 * This is way over-engineered. It tries to support fully configurable
4189 * events for each user. Such level of flexibility is completely
4190 * unnecessary especially in the light of the planned unified hierarchy.
4191 *
4192 * Please deprecate this and replace with something simpler if at all
4193 * possible.
4194 */
4195
4196 /*
4197 * Unregister event and free resources.
4198 *
4199 * Gets called from workqueue.
4200 */
4201 static void memcg_event_remove(struct work_struct *work)
4202 {
4203 struct mem_cgroup_event *event =
4204 container_of(work, struct mem_cgroup_event, remove);
4205 struct mem_cgroup *memcg = event->memcg;
4206
4207 remove_wait_queue(event->wqh, &event->wait);
4208
4209 event->unregister_event(memcg, event->eventfd);
4210
4211 /* Notify userspace the event is going away. */
4212 eventfd_signal(event->eventfd, 1);
4213
4214 eventfd_ctx_put(event->eventfd);
4215 kfree(event);
4216 css_put(&memcg->css);
4217 }
4218
4219 /*
4220 * Gets called on EPOLLHUP on eventfd when user closes it.
4221 *
4222 * Called with wqh->lock held and interrupts disabled.
4223 */
4224 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4225 int sync, void *key)
4226 {
4227 struct mem_cgroup_event *event =
4228 container_of(wait, struct mem_cgroup_event, wait);
4229 struct mem_cgroup *memcg = event->memcg;
4230 __poll_t flags = key_to_poll(key);
4231
4232 if (flags & EPOLLHUP) {
4233 /*
4234 * If the event has been detached at cgroup removal, we
4235 * can simply return knowing the other side will cleanup
4236 * for us.
4237 *
4238 * We can't race against event freeing since the other
4239 * side will require wqh->lock via remove_wait_queue(),
4240 * which we hold.
4241 */
4242 spin_lock(&memcg->event_list_lock);
4243 if (!list_empty(&event->list)) {
4244 list_del_init(&event->list);
4245 /*
4246 * We are in atomic context, but cgroup_event_remove()
4247 * may sleep, so we have to call it in workqueue.
4248 */
4249 schedule_work(&event->remove);
4250 }
4251 spin_unlock(&memcg->event_list_lock);
4252 }
4253
4254 return 0;
4255 }
4256
4257 static void memcg_event_ptable_queue_proc(struct file *file,
4258 wait_queue_head_t *wqh, poll_table *pt)
4259 {
4260 struct mem_cgroup_event *event =
4261 container_of(pt, struct mem_cgroup_event, pt);
4262
4263 event->wqh = wqh;
4264 add_wait_queue(wqh, &event->wait);
4265 }
4266
4267 /*
4268 * DO NOT USE IN NEW FILES.
4269 *
4270 * Parse input and register new cgroup event handler.
4271 *
4272 * Input must be in format '<event_fd> <control_fd> <args>'.
4273 * Interpretation of args is defined by control file implementation.
4274 */
4275 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4276 char *buf, size_t nbytes, loff_t off)
4277 {
4278 struct cgroup_subsys_state *css = of_css(of);
4279 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4280 struct mem_cgroup_event *event;
4281 struct cgroup_subsys_state *cfile_css;
4282 unsigned int efd, cfd;
4283 struct fd efile;
4284 struct fd cfile;
4285 const char *name;
4286 char *endp;
4287 int ret;
4288
4289 buf = strstrip(buf);
4290
4291 efd = simple_strtoul(buf, &endp, 10);
4292 if (*endp != ' ')
4293 return -EINVAL;
4294 buf = endp + 1;
4295
4296 cfd = simple_strtoul(buf, &endp, 10);
4297 if ((*endp != ' ') && (*endp != '\0'))
4298 return -EINVAL;
4299 buf = endp + 1;
4300
4301 event = kzalloc(sizeof(*event), GFP_KERNEL);
4302 if (!event)
4303 return -ENOMEM;
4304
4305 event->memcg = memcg;
4306 INIT_LIST_HEAD(&event->list);
4307 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4308 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4309 INIT_WORK(&event->remove, memcg_event_remove);
4310
4311 efile = fdget(efd);
4312 if (!efile.file) {
4313 ret = -EBADF;
4314 goto out_kfree;
4315 }
4316
4317 event->eventfd = eventfd_ctx_fileget(efile.file);
4318 if (IS_ERR(event->eventfd)) {
4319 ret = PTR_ERR(event->eventfd);
4320 goto out_put_efile;
4321 }
4322
4323 cfile = fdget(cfd);
4324 if (!cfile.file) {
4325 ret = -EBADF;
4326 goto out_put_eventfd;
4327 }
4328
4329 /* the process need read permission on control file */
4330 /* AV: shouldn't we check that it's been opened for read instead? */
4331 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4332 if (ret < 0)
4333 goto out_put_cfile;
4334
4335 /*
4336 * Determine the event callbacks and set them in @event. This used
4337 * to be done via struct cftype but cgroup core no longer knows
4338 * about these events. The following is crude but the whole thing
4339 * is for compatibility anyway.
4340 *
4341 * DO NOT ADD NEW FILES.
4342 */
4343 name = cfile.file->f_path.dentry->d_name.name;
4344
4345 if (!strcmp(name, "memory.usage_in_bytes")) {
4346 event->register_event = mem_cgroup_usage_register_event;
4347 event->unregister_event = mem_cgroup_usage_unregister_event;
4348 } else if (!strcmp(name, "memory.oom_control")) {
4349 event->register_event = mem_cgroup_oom_register_event;
4350 event->unregister_event = mem_cgroup_oom_unregister_event;
4351 } else if (!strcmp(name, "memory.pressure_level")) {
4352 event->register_event = vmpressure_register_event;
4353 event->unregister_event = vmpressure_unregister_event;
4354 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4355 event->register_event = memsw_cgroup_usage_register_event;
4356 event->unregister_event = memsw_cgroup_usage_unregister_event;
4357 } else {
4358 ret = -EINVAL;
4359 goto out_put_cfile;
4360 }
4361
4362 /*
4363 * Verify @cfile should belong to @css. Also, remaining events are
4364 * automatically removed on cgroup destruction but the removal is
4365 * asynchronous, so take an extra ref on @css.
4366 */
4367 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4368 &memory_cgrp_subsys);
4369 ret = -EINVAL;
4370 if (IS_ERR(cfile_css))
4371 goto out_put_cfile;
4372 if (cfile_css != css) {
4373 css_put(cfile_css);
4374 goto out_put_cfile;
4375 }
4376
4377 ret = event->register_event(memcg, event->eventfd, buf);
4378 if (ret)
4379 goto out_put_css;
4380
4381 vfs_poll(efile.file, &event->pt);
4382
4383 spin_lock(&memcg->event_list_lock);
4384 list_add(&event->list, &memcg->event_list);
4385 spin_unlock(&memcg->event_list_lock);
4386
4387 fdput(cfile);
4388 fdput(efile);
4389
4390 return nbytes;
4391
4392 out_put_css:
4393 css_put(css);
4394 out_put_cfile:
4395 fdput(cfile);
4396 out_put_eventfd:
4397 eventfd_ctx_put(event->eventfd);
4398 out_put_efile:
4399 fdput(efile);
4400 out_kfree:
4401 kfree(event);
4402
4403 return ret;
4404 }
4405
4406 static struct cftype mem_cgroup_legacy_files[] = {
4407 {
4408 .name = "usage_in_bytes",
4409 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4410 .read_u64 = mem_cgroup_read_u64,
4411 },
4412 {
4413 .name = "max_usage_in_bytes",
4414 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4415 .write = mem_cgroup_reset,
4416 .read_u64 = mem_cgroup_read_u64,
4417 },
4418 {
4419 .name = "limit_in_bytes",
4420 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4421 .write = mem_cgroup_write,
4422 .read_u64 = mem_cgroup_read_u64,
4423 },
4424 {
4425 .name = "soft_limit_in_bytes",
4426 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4427 .write = mem_cgroup_write,
4428 .read_u64 = mem_cgroup_read_u64,
4429 },
4430 {
4431 .name = "failcnt",
4432 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4433 .write = mem_cgroup_reset,
4434 .read_u64 = mem_cgroup_read_u64,
4435 },
4436 {
4437 .name = "stat",
4438 .seq_show = memcg_stat_show,
4439 },
4440 {
4441 .name = "force_empty",
4442 .write = mem_cgroup_force_empty_write,
4443 },
4444 {
4445 .name = "use_hierarchy",
4446 .write_u64 = mem_cgroup_hierarchy_write,
4447 .read_u64 = mem_cgroup_hierarchy_read,
4448 },
4449 {
4450 .name = "cgroup.event_control", /* XXX: for compat */
4451 .write = memcg_write_event_control,
4452 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4453 },
4454 {
4455 .name = "swappiness",
4456 .read_u64 = mem_cgroup_swappiness_read,
4457 .write_u64 = mem_cgroup_swappiness_write,
4458 },
4459 {
4460 .name = "move_charge_at_immigrate",
4461 .read_u64 = mem_cgroup_move_charge_read,
4462 .write_u64 = mem_cgroup_move_charge_write,
4463 },
4464 {
4465 .name = "oom_control",
4466 .seq_show = mem_cgroup_oom_control_read,
4467 .write_u64 = mem_cgroup_oom_control_write,
4468 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4469 },
4470 {
4471 .name = "pressure_level",
4472 },
4473 #ifdef CONFIG_NUMA
4474 {
4475 .name = "numa_stat",
4476 .seq_show = memcg_numa_stat_show,
4477 },
4478 #endif
4479 {
4480 .name = "kmem.limit_in_bytes",
4481 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4482 .write = mem_cgroup_write,
4483 .read_u64 = mem_cgroup_read_u64,
4484 },
4485 {
4486 .name = "kmem.usage_in_bytes",
4487 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4488 .read_u64 = mem_cgroup_read_u64,
4489 },
4490 {
4491 .name = "kmem.failcnt",
4492 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4493 .write = mem_cgroup_reset,
4494 .read_u64 = mem_cgroup_read_u64,
4495 },
4496 {
4497 .name = "kmem.max_usage_in_bytes",
4498 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4499 .write = mem_cgroup_reset,
4500 .read_u64 = mem_cgroup_read_u64,
4501 },
4502 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4503 {
4504 .name = "kmem.slabinfo",
4505 .seq_start = memcg_slab_start,
4506 .seq_next = memcg_slab_next,
4507 .seq_stop = memcg_slab_stop,
4508 .seq_show = memcg_slab_show,
4509 },
4510 #endif
4511 {
4512 .name = "kmem.tcp.limit_in_bytes",
4513 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4514 .write = mem_cgroup_write,
4515 .read_u64 = mem_cgroup_read_u64,
4516 },
4517 {
4518 .name = "kmem.tcp.usage_in_bytes",
4519 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4520 .read_u64 = mem_cgroup_read_u64,
4521 },
4522 {
4523 .name = "kmem.tcp.failcnt",
4524 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4525 .write = mem_cgroup_reset,
4526 .read_u64 = mem_cgroup_read_u64,
4527 },
4528 {
4529 .name = "kmem.tcp.max_usage_in_bytes",
4530 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4531 .write = mem_cgroup_reset,
4532 .read_u64 = mem_cgroup_read_u64,
4533 },
4534 { }, /* terminate */
4535 };
4536
4537 /*
4538 * Private memory cgroup IDR
4539 *
4540 * Swap-out records and page cache shadow entries need to store memcg
4541 * references in constrained space, so we maintain an ID space that is
4542 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4543 * memory-controlled cgroups to 64k.
4544 *
4545 * However, there usually are many references to the oflline CSS after
4546 * the cgroup has been destroyed, such as page cache or reclaimable
4547 * slab objects, that don't need to hang on to the ID. We want to keep
4548 * those dead CSS from occupying IDs, or we might quickly exhaust the
4549 * relatively small ID space and prevent the creation of new cgroups
4550 * even when there are much fewer than 64k cgroups - possibly none.
4551 *
4552 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4553 * be freed and recycled when it's no longer needed, which is usually
4554 * when the CSS is offlined.
4555 *
4556 * The only exception to that are records of swapped out tmpfs/shmem
4557 * pages that need to be attributed to live ancestors on swapin. But
4558 * those references are manageable from userspace.
4559 */
4560
4561 static DEFINE_IDR(mem_cgroup_idr);
4562
4563 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4564 {
4565 if (memcg->id.id > 0) {
4566 idr_remove(&mem_cgroup_idr, memcg->id.id);
4567 memcg->id.id = 0;
4568 }
4569 }
4570
4571 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4572 {
4573 refcount_add(n, &memcg->id.ref);
4574 }
4575
4576 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4577 {
4578 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4579 mem_cgroup_id_remove(memcg);
4580
4581 /* Memcg ID pins CSS */
4582 css_put(&memcg->css);
4583 }
4584 }
4585
4586 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4587 {
4588 mem_cgroup_id_get_many(memcg, 1);
4589 }
4590
4591 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4592 {
4593 mem_cgroup_id_put_many(memcg, 1);
4594 }
4595
4596 /**
4597 * mem_cgroup_from_id - look up a memcg from a memcg id
4598 * @id: the memcg id to look up
4599 *
4600 * Caller must hold rcu_read_lock().
4601 */
4602 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4603 {
4604 WARN_ON_ONCE(!rcu_read_lock_held());
4605 return idr_find(&mem_cgroup_idr, id);
4606 }
4607
4608 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4609 {
4610 struct mem_cgroup_per_node *pn;
4611 int tmp = node;
4612 /*
4613 * This routine is called against possible nodes.
4614 * But it's BUG to call kmalloc() against offline node.
4615 *
4616 * TODO: this routine can waste much memory for nodes which will
4617 * never be onlined. It's better to use memory hotplug callback
4618 * function.
4619 */
4620 if (!node_state(node, N_NORMAL_MEMORY))
4621 tmp = -1;
4622 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4623 if (!pn)
4624 return 1;
4625
4626 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4627 if (!pn->lruvec_stat_local) {
4628 kfree(pn);
4629 return 1;
4630 }
4631
4632 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4633 if (!pn->lruvec_stat_cpu) {
4634 free_percpu(pn->lruvec_stat_local);
4635 kfree(pn);
4636 return 1;
4637 }
4638
4639 lruvec_init(&pn->lruvec);
4640 pn->usage_in_excess = 0;
4641 pn->on_tree = false;
4642 pn->memcg = memcg;
4643
4644 memcg->nodeinfo[node] = pn;
4645 return 0;
4646 }
4647
4648 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4649 {
4650 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4651
4652 if (!pn)
4653 return;
4654
4655 free_percpu(pn->lruvec_stat_cpu);
4656 free_percpu(pn->lruvec_stat_local);
4657 kfree(pn);
4658 }
4659
4660 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4661 {
4662 int node;
4663
4664 for_each_node(node)
4665 free_mem_cgroup_per_node_info(memcg, node);
4666 free_percpu(memcg->vmstats_percpu);
4667 free_percpu(memcg->vmstats_local);
4668 kfree(memcg);
4669 }
4670
4671 static void mem_cgroup_free(struct mem_cgroup *memcg)
4672 {
4673 memcg_wb_domain_exit(memcg);
4674 __mem_cgroup_free(memcg);
4675 }
4676
4677 static struct mem_cgroup *mem_cgroup_alloc(void)
4678 {
4679 struct mem_cgroup *memcg;
4680 unsigned int size;
4681 int node;
4682
4683 size = sizeof(struct mem_cgroup);
4684 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4685
4686 memcg = kzalloc(size, GFP_KERNEL);
4687 if (!memcg)
4688 return NULL;
4689
4690 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4691 1, MEM_CGROUP_ID_MAX,
4692 GFP_KERNEL);
4693 if (memcg->id.id < 0)
4694 goto fail;
4695
4696 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4697 if (!memcg->vmstats_local)
4698 goto fail;
4699
4700 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4701 if (!memcg->vmstats_percpu)
4702 goto fail;
4703
4704 for_each_node(node)
4705 if (alloc_mem_cgroup_per_node_info(memcg, node))
4706 goto fail;
4707
4708 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4709 goto fail;
4710
4711 INIT_WORK(&memcg->high_work, high_work_func);
4712 memcg->last_scanned_node = MAX_NUMNODES;
4713 INIT_LIST_HEAD(&memcg->oom_notify);
4714 mutex_init(&memcg->thresholds_lock);
4715 spin_lock_init(&memcg->move_lock);
4716 vmpressure_init(&memcg->vmpressure);
4717 INIT_LIST_HEAD(&memcg->event_list);
4718 spin_lock_init(&memcg->event_list_lock);
4719 memcg->socket_pressure = jiffies;
4720 #ifdef CONFIG_MEMCG_KMEM
4721 memcg->kmemcg_id = -1;
4722 #endif
4723 #ifdef CONFIG_CGROUP_WRITEBACK
4724 INIT_LIST_HEAD(&memcg->cgwb_list);
4725 #endif
4726 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4727 return memcg;
4728 fail:
4729 mem_cgroup_id_remove(memcg);
4730 __mem_cgroup_free(memcg);
4731 return NULL;
4732 }
4733
4734 static struct cgroup_subsys_state * __ref
4735 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4736 {
4737 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4738 struct mem_cgroup *memcg;
4739 long error = -ENOMEM;
4740
4741 memcg = mem_cgroup_alloc();
4742 if (!memcg)
4743 return ERR_PTR(error);
4744
4745 memcg->high = PAGE_COUNTER_MAX;
4746 memcg->soft_limit = PAGE_COUNTER_MAX;
4747 if (parent) {
4748 memcg->swappiness = mem_cgroup_swappiness(parent);
4749 memcg->oom_kill_disable = parent->oom_kill_disable;
4750 }
4751 if (parent && parent->use_hierarchy) {
4752 memcg->use_hierarchy = true;
4753 page_counter_init(&memcg->memory, &parent->memory);
4754 page_counter_init(&memcg->swap, &parent->swap);
4755 page_counter_init(&memcg->memsw, &parent->memsw);
4756 page_counter_init(&memcg->kmem, &parent->kmem);
4757 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4758 } else {
4759 page_counter_init(&memcg->memory, NULL);
4760 page_counter_init(&memcg->swap, NULL);
4761 page_counter_init(&memcg->memsw, NULL);
4762 page_counter_init(&memcg->kmem, NULL);
4763 page_counter_init(&memcg->tcpmem, NULL);
4764 /*
4765 * Deeper hierachy with use_hierarchy == false doesn't make
4766 * much sense so let cgroup subsystem know about this
4767 * unfortunate state in our controller.
4768 */
4769 if (parent != root_mem_cgroup)
4770 memory_cgrp_subsys.broken_hierarchy = true;
4771 }
4772
4773 /* The following stuff does not apply to the root */
4774 if (!parent) {
4775 #ifdef CONFIG_MEMCG_KMEM
4776 INIT_LIST_HEAD(&memcg->kmem_caches);
4777 #endif
4778 root_mem_cgroup = memcg;
4779 return &memcg->css;
4780 }
4781
4782 error = memcg_online_kmem(memcg);
4783 if (error)
4784 goto fail;
4785
4786 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4787 static_branch_inc(&memcg_sockets_enabled_key);
4788
4789 return &memcg->css;
4790 fail:
4791 mem_cgroup_id_remove(memcg);
4792 mem_cgroup_free(memcg);
4793 return ERR_PTR(-ENOMEM);
4794 }
4795
4796 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4797 {
4798 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4799
4800 /*
4801 * A memcg must be visible for memcg_expand_shrinker_maps()
4802 * by the time the maps are allocated. So, we allocate maps
4803 * here, when for_each_mem_cgroup() can't skip it.
4804 */
4805 if (memcg_alloc_shrinker_maps(memcg)) {
4806 mem_cgroup_id_remove(memcg);
4807 return -ENOMEM;
4808 }
4809
4810 /* Online state pins memcg ID, memcg ID pins CSS */
4811 refcount_set(&memcg->id.ref, 1);
4812 css_get(css);
4813 return 0;
4814 }
4815
4816 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4817 {
4818 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4819 struct mem_cgroup_event *event, *tmp;
4820
4821 /*
4822 * Unregister events and notify userspace.
4823 * Notify userspace about cgroup removing only after rmdir of cgroup
4824 * directory to avoid race between userspace and kernelspace.
4825 */
4826 spin_lock(&memcg->event_list_lock);
4827 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4828 list_del_init(&event->list);
4829 schedule_work(&event->remove);
4830 }
4831 spin_unlock(&memcg->event_list_lock);
4832
4833 page_counter_set_min(&memcg->memory, 0);
4834 page_counter_set_low(&memcg->memory, 0);
4835
4836 memcg_offline_kmem(memcg);
4837 wb_memcg_offline(memcg);
4838
4839 drain_all_stock(memcg);
4840
4841 mem_cgroup_id_put(memcg);
4842 }
4843
4844 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4845 {
4846 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4847
4848 invalidate_reclaim_iterators(memcg);
4849 }
4850
4851 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4852 {
4853 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4854
4855 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4856 static_branch_dec(&memcg_sockets_enabled_key);
4857
4858 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4859 static_branch_dec(&memcg_sockets_enabled_key);
4860
4861 vmpressure_cleanup(&memcg->vmpressure);
4862 cancel_work_sync(&memcg->high_work);
4863 mem_cgroup_remove_from_trees(memcg);
4864 memcg_free_shrinker_maps(memcg);
4865 memcg_free_kmem(memcg);
4866 mem_cgroup_free(memcg);
4867 }
4868
4869 /**
4870 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4871 * @css: the target css
4872 *
4873 * Reset the states of the mem_cgroup associated with @css. This is
4874 * invoked when the userland requests disabling on the default hierarchy
4875 * but the memcg is pinned through dependency. The memcg should stop
4876 * applying policies and should revert to the vanilla state as it may be
4877 * made visible again.
4878 *
4879 * The current implementation only resets the essential configurations.
4880 * This needs to be expanded to cover all the visible parts.
4881 */
4882 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4883 {
4884 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4885
4886 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
4887 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
4888 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
4889 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
4890 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
4891 page_counter_set_min(&memcg->memory, 0);
4892 page_counter_set_low(&memcg->memory, 0);
4893 memcg->high = PAGE_COUNTER_MAX;
4894 memcg->soft_limit = PAGE_COUNTER_MAX;
4895 memcg_wb_domain_size_changed(memcg);
4896 }
4897
4898 #ifdef CONFIG_MMU
4899 /* Handlers for move charge at task migration. */
4900 static int mem_cgroup_do_precharge(unsigned long count)
4901 {
4902 int ret;
4903
4904 /* Try a single bulk charge without reclaim first, kswapd may wake */
4905 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4906 if (!ret) {
4907 mc.precharge += count;
4908 return ret;
4909 }
4910
4911 /* Try charges one by one with reclaim, but do not retry */
4912 while (count--) {
4913 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4914 if (ret)
4915 return ret;
4916 mc.precharge++;
4917 cond_resched();
4918 }
4919 return 0;
4920 }
4921
4922 union mc_target {
4923 struct page *page;
4924 swp_entry_t ent;
4925 };
4926
4927 enum mc_target_type {
4928 MC_TARGET_NONE = 0,
4929 MC_TARGET_PAGE,
4930 MC_TARGET_SWAP,
4931 MC_TARGET_DEVICE,
4932 };
4933
4934 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4935 unsigned long addr, pte_t ptent)
4936 {
4937 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4938
4939 if (!page || !page_mapped(page))
4940 return NULL;
4941 if (PageAnon(page)) {
4942 if (!(mc.flags & MOVE_ANON))
4943 return NULL;
4944 } else {
4945 if (!(mc.flags & MOVE_FILE))
4946 return NULL;
4947 }
4948 if (!get_page_unless_zero(page))
4949 return NULL;
4950
4951 return page;
4952 }
4953
4954 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
4955 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4956 pte_t ptent, swp_entry_t *entry)
4957 {
4958 struct page *page = NULL;
4959 swp_entry_t ent = pte_to_swp_entry(ptent);
4960
4961 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4962 return NULL;
4963
4964 /*
4965 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4966 * a device and because they are not accessible by CPU they are store
4967 * as special swap entry in the CPU page table.
4968 */
4969 if (is_device_private_entry(ent)) {
4970 page = device_private_entry_to_page(ent);
4971 /*
4972 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4973 * a refcount of 1 when free (unlike normal page)
4974 */
4975 if (!page_ref_add_unless(page, 1, 1))
4976 return NULL;
4977 return page;
4978 }
4979
4980 /*
4981 * Because lookup_swap_cache() updates some statistics counter,
4982 * we call find_get_page() with swapper_space directly.
4983 */
4984 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4985 if (do_memsw_account())
4986 entry->val = ent.val;
4987
4988 return page;
4989 }
4990 #else
4991 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4992 pte_t ptent, swp_entry_t *entry)
4993 {
4994 return NULL;
4995 }
4996 #endif
4997
4998 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4999 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5000 {
5001 struct page *page = NULL;
5002 struct address_space *mapping;
5003 pgoff_t pgoff;
5004
5005 if (!vma->vm_file) /* anonymous vma */
5006 return NULL;
5007 if (!(mc.flags & MOVE_FILE))
5008 return NULL;
5009
5010 mapping = vma->vm_file->f_mapping;
5011 pgoff = linear_page_index(vma, addr);
5012
5013 /* page is moved even if it's not RSS of this task(page-faulted). */
5014 #ifdef CONFIG_SWAP
5015 /* shmem/tmpfs may report page out on swap: account for that too. */
5016 if (shmem_mapping(mapping)) {
5017 page = find_get_entry(mapping, pgoff);
5018 if (xa_is_value(page)) {
5019 swp_entry_t swp = radix_to_swp_entry(page);
5020 if (do_memsw_account())
5021 *entry = swp;
5022 page = find_get_page(swap_address_space(swp),
5023 swp_offset(swp));
5024 }
5025 } else
5026 page = find_get_page(mapping, pgoff);
5027 #else
5028 page = find_get_page(mapping, pgoff);
5029 #endif
5030 return page;
5031 }
5032
5033 /**
5034 * mem_cgroup_move_account - move account of the page
5035 * @page: the page
5036 * @compound: charge the page as compound or small page
5037 * @from: mem_cgroup which the page is moved from.
5038 * @to: mem_cgroup which the page is moved to. @from != @to.
5039 *
5040 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5041 *
5042 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5043 * from old cgroup.
5044 */
5045 static int mem_cgroup_move_account(struct page *page,
5046 bool compound,
5047 struct mem_cgroup *from,
5048 struct mem_cgroup *to)
5049 {
5050 unsigned long flags;
5051 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5052 int ret;
5053 bool anon;
5054
5055 VM_BUG_ON(from == to);
5056 VM_BUG_ON_PAGE(PageLRU(page), page);
5057 VM_BUG_ON(compound && !PageTransHuge(page));
5058
5059 /*
5060 * Prevent mem_cgroup_migrate() from looking at
5061 * page->mem_cgroup of its source page while we change it.
5062 */
5063 ret = -EBUSY;
5064 if (!trylock_page(page))
5065 goto out;
5066
5067 ret = -EINVAL;
5068 if (page->mem_cgroup != from)
5069 goto out_unlock;
5070
5071 anon = PageAnon(page);
5072
5073 spin_lock_irqsave(&from->move_lock, flags);
5074
5075 if (!anon && page_mapped(page)) {
5076 __mod_memcg_state(from, NR_FILE_MAPPED, -nr_pages);
5077 __mod_memcg_state(to, NR_FILE_MAPPED, nr_pages);
5078 }
5079
5080 /*
5081 * move_lock grabbed above and caller set from->moving_account, so
5082 * mod_memcg_page_state will serialize updates to PageDirty.
5083 * So mapping should be stable for dirty pages.
5084 */
5085 if (!anon && PageDirty(page)) {
5086 struct address_space *mapping = page_mapping(page);
5087
5088 if (mapping_cap_account_dirty(mapping)) {
5089 __mod_memcg_state(from, NR_FILE_DIRTY, -nr_pages);
5090 __mod_memcg_state(to, NR_FILE_DIRTY, nr_pages);
5091 }
5092 }
5093
5094 if (PageWriteback(page)) {
5095 __mod_memcg_state(from, NR_WRITEBACK, -nr_pages);
5096 __mod_memcg_state(to, NR_WRITEBACK, nr_pages);
5097 }
5098
5099 /*
5100 * It is safe to change page->mem_cgroup here because the page
5101 * is referenced, charged, and isolated - we can't race with
5102 * uncharging, charging, migration, or LRU putback.
5103 */
5104
5105 /* caller should have done css_get */
5106 page->mem_cgroup = to;
5107 spin_unlock_irqrestore(&from->move_lock, flags);
5108
5109 ret = 0;
5110
5111 local_irq_disable();
5112 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5113 memcg_check_events(to, page);
5114 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5115 memcg_check_events(from, page);
5116 local_irq_enable();
5117 out_unlock:
5118 unlock_page(page);
5119 out:
5120 return ret;
5121 }
5122
5123 /**
5124 * get_mctgt_type - get target type of moving charge
5125 * @vma: the vma the pte to be checked belongs
5126 * @addr: the address corresponding to the pte to be checked
5127 * @ptent: the pte to be checked
5128 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5129 *
5130 * Returns
5131 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5132 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5133 * move charge. if @target is not NULL, the page is stored in target->page
5134 * with extra refcnt got(Callers should handle it).
5135 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5136 * target for charge migration. if @target is not NULL, the entry is stored
5137 * in target->ent.
5138 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
5139 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
5140 * For now we such page is charge like a regular page would be as for all
5141 * intent and purposes it is just special memory taking the place of a
5142 * regular page.
5143 *
5144 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5145 *
5146 * Called with pte lock held.
5147 */
5148
5149 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5150 unsigned long addr, pte_t ptent, union mc_target *target)
5151 {
5152 struct page *page = NULL;
5153 enum mc_target_type ret = MC_TARGET_NONE;
5154 swp_entry_t ent = { .val = 0 };
5155
5156 if (pte_present(ptent))
5157 page = mc_handle_present_pte(vma, addr, ptent);
5158 else if (is_swap_pte(ptent))
5159 page = mc_handle_swap_pte(vma, ptent, &ent);
5160 else if (pte_none(ptent))
5161 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5162
5163 if (!page && !ent.val)
5164 return ret;
5165 if (page) {
5166 /*
5167 * Do only loose check w/o serialization.
5168 * mem_cgroup_move_account() checks the page is valid or
5169 * not under LRU exclusion.
5170 */
5171 if (page->mem_cgroup == mc.from) {
5172 ret = MC_TARGET_PAGE;
5173 if (is_device_private_page(page) ||
5174 is_device_public_page(page))
5175 ret = MC_TARGET_DEVICE;
5176 if (target)
5177 target->page = page;
5178 }
5179 if (!ret || !target)
5180 put_page(page);
5181 }
5182 /*
5183 * There is a swap entry and a page doesn't exist or isn't charged.
5184 * But we cannot move a tail-page in a THP.
5185 */
5186 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5187 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5188 ret = MC_TARGET_SWAP;
5189 if (target)
5190 target->ent = ent;
5191 }
5192 return ret;
5193 }
5194
5195 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5196 /*
5197 * We don't consider PMD mapped swapping or file mapped pages because THP does
5198 * not support them for now.
5199 * Caller should make sure that pmd_trans_huge(pmd) is true.
5200 */
5201 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5202 unsigned long addr, pmd_t pmd, union mc_target *target)
5203 {
5204 struct page *page = NULL;
5205 enum mc_target_type ret = MC_TARGET_NONE;
5206
5207 if (unlikely(is_swap_pmd(pmd))) {
5208 VM_BUG_ON(thp_migration_supported() &&
5209 !is_pmd_migration_entry(pmd));
5210 return ret;
5211 }
5212 page = pmd_page(pmd);
5213 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5214 if (!(mc.flags & MOVE_ANON))
5215 return ret;
5216 if (page->mem_cgroup == mc.from) {
5217 ret = MC_TARGET_PAGE;
5218 if (target) {
5219 get_page(page);
5220 target->page = page;
5221 }
5222 }
5223 return ret;
5224 }
5225 #else
5226 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5227 unsigned long addr, pmd_t pmd, union mc_target *target)
5228 {
5229 return MC_TARGET_NONE;
5230 }
5231 #endif
5232
5233 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5234 unsigned long addr, unsigned long end,
5235 struct mm_walk *walk)
5236 {
5237 struct vm_area_struct *vma = walk->vma;
5238 pte_t *pte;
5239 spinlock_t *ptl;
5240
5241 ptl = pmd_trans_huge_lock(pmd, vma);
5242 if (ptl) {
5243 /*
5244 * Note their can not be MC_TARGET_DEVICE for now as we do not
5245 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
5246 * MEMORY_DEVICE_PRIVATE but this might change.
5247 */
5248 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5249 mc.precharge += HPAGE_PMD_NR;
5250 spin_unlock(ptl);
5251 return 0;
5252 }
5253
5254 if (pmd_trans_unstable(pmd))
5255 return 0;
5256 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5257 for (; addr != end; pte++, addr += PAGE_SIZE)
5258 if (get_mctgt_type(vma, addr, *pte, NULL))
5259 mc.precharge++; /* increment precharge temporarily */
5260 pte_unmap_unlock(pte - 1, ptl);
5261 cond_resched();
5262
5263 return 0;
5264 }
5265
5266 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5267 {
5268 unsigned long precharge;
5269
5270 struct mm_walk mem_cgroup_count_precharge_walk = {
5271 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5272 .mm = mm,
5273 };
5274 down_read(&mm->mmap_sem);
5275 walk_page_range(0, mm->highest_vm_end,
5276 &mem_cgroup_count_precharge_walk);
5277 up_read(&mm->mmap_sem);
5278
5279 precharge = mc.precharge;
5280 mc.precharge = 0;
5281
5282 return precharge;
5283 }
5284
5285 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5286 {
5287 unsigned long precharge = mem_cgroup_count_precharge(mm);
5288
5289 VM_BUG_ON(mc.moving_task);
5290 mc.moving_task = current;
5291 return mem_cgroup_do_precharge(precharge);
5292 }
5293
5294 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5295 static void __mem_cgroup_clear_mc(void)
5296 {
5297 struct mem_cgroup *from = mc.from;
5298 struct mem_cgroup *to = mc.to;
5299
5300 /* we must uncharge all the leftover precharges from mc.to */
5301 if (mc.precharge) {
5302 cancel_charge(mc.to, mc.precharge);
5303 mc.precharge = 0;
5304 }
5305 /*
5306 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5307 * we must uncharge here.
5308 */
5309 if (mc.moved_charge) {
5310 cancel_charge(mc.from, mc.moved_charge);
5311 mc.moved_charge = 0;
5312 }
5313 /* we must fixup refcnts and charges */
5314 if (mc.moved_swap) {
5315 /* uncharge swap account from the old cgroup */
5316 if (!mem_cgroup_is_root(mc.from))
5317 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5318
5319 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5320
5321 /*
5322 * we charged both to->memory and to->memsw, so we
5323 * should uncharge to->memory.
5324 */
5325 if (!mem_cgroup_is_root(mc.to))
5326 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5327
5328 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5329 css_put_many(&mc.to->css, mc.moved_swap);
5330
5331 mc.moved_swap = 0;
5332 }
5333 memcg_oom_recover(from);
5334 memcg_oom_recover(to);
5335 wake_up_all(&mc.waitq);
5336 }
5337
5338 static void mem_cgroup_clear_mc(void)
5339 {
5340 struct mm_struct *mm = mc.mm;
5341
5342 /*
5343 * we must clear moving_task before waking up waiters at the end of
5344 * task migration.
5345 */
5346 mc.moving_task = NULL;
5347 __mem_cgroup_clear_mc();
5348 spin_lock(&mc.lock);
5349 mc.from = NULL;
5350 mc.to = NULL;
5351 mc.mm = NULL;
5352 spin_unlock(&mc.lock);
5353
5354 mmput(mm);
5355 }
5356
5357 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5358 {
5359 struct cgroup_subsys_state *css;
5360 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5361 struct mem_cgroup *from;
5362 struct task_struct *leader, *p;
5363 struct mm_struct *mm;
5364 unsigned long move_flags;
5365 int ret = 0;
5366
5367 /* charge immigration isn't supported on the default hierarchy */
5368 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5369 return 0;
5370
5371 /*
5372 * Multi-process migrations only happen on the default hierarchy
5373 * where charge immigration is not used. Perform charge
5374 * immigration if @tset contains a leader and whine if there are
5375 * multiple.
5376 */
5377 p = NULL;
5378 cgroup_taskset_for_each_leader(leader, css, tset) {
5379 WARN_ON_ONCE(p);
5380 p = leader;
5381 memcg = mem_cgroup_from_css(css);
5382 }
5383 if (!p)
5384 return 0;
5385
5386 /*
5387 * We are now commited to this value whatever it is. Changes in this
5388 * tunable will only affect upcoming migrations, not the current one.
5389 * So we need to save it, and keep it going.
5390 */
5391 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5392 if (!move_flags)
5393 return 0;
5394
5395 from = mem_cgroup_from_task(p);
5396
5397 VM_BUG_ON(from == memcg);
5398
5399 mm = get_task_mm(p);
5400 if (!mm)
5401 return 0;
5402 /* We move charges only when we move a owner of the mm */
5403 if (mm->owner == p) {
5404 VM_BUG_ON(mc.from);
5405 VM_BUG_ON(mc.to);
5406 VM_BUG_ON(mc.precharge);
5407 VM_BUG_ON(mc.moved_charge);
5408 VM_BUG_ON(mc.moved_swap);
5409
5410 spin_lock(&mc.lock);
5411 mc.mm = mm;
5412 mc.from = from;
5413 mc.to = memcg;
5414 mc.flags = move_flags;
5415 spin_unlock(&mc.lock);
5416 /* We set mc.moving_task later */
5417
5418 ret = mem_cgroup_precharge_mc(mm);
5419 if (ret)
5420 mem_cgroup_clear_mc();
5421 } else {
5422 mmput(mm);
5423 }
5424 return ret;
5425 }
5426
5427 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5428 {
5429 if (mc.to)
5430 mem_cgroup_clear_mc();
5431 }
5432
5433 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5434 unsigned long addr, unsigned long end,
5435 struct mm_walk *walk)
5436 {
5437 int ret = 0;
5438 struct vm_area_struct *vma = walk->vma;
5439 pte_t *pte;
5440 spinlock_t *ptl;
5441 enum mc_target_type target_type;
5442 union mc_target target;
5443 struct page *page;
5444
5445 ptl = pmd_trans_huge_lock(pmd, vma);
5446 if (ptl) {
5447 if (mc.precharge < HPAGE_PMD_NR) {
5448 spin_unlock(ptl);
5449 return 0;
5450 }
5451 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5452 if (target_type == MC_TARGET_PAGE) {
5453 page = target.page;
5454 if (!isolate_lru_page(page)) {
5455 if (!mem_cgroup_move_account(page, true,
5456 mc.from, mc.to)) {
5457 mc.precharge -= HPAGE_PMD_NR;
5458 mc.moved_charge += HPAGE_PMD_NR;
5459 }
5460 putback_lru_page(page);
5461 }
5462 put_page(page);
5463 } else if (target_type == MC_TARGET_DEVICE) {
5464 page = target.page;
5465 if (!mem_cgroup_move_account(page, true,
5466 mc.from, mc.to)) {
5467 mc.precharge -= HPAGE_PMD_NR;
5468 mc.moved_charge += HPAGE_PMD_NR;
5469 }
5470 put_page(page);
5471 }
5472 spin_unlock(ptl);
5473 return 0;
5474 }
5475
5476 if (pmd_trans_unstable(pmd))
5477 return 0;
5478 retry:
5479 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5480 for (; addr != end; addr += PAGE_SIZE) {
5481 pte_t ptent = *(pte++);
5482 bool device = false;
5483 swp_entry_t ent;
5484
5485 if (!mc.precharge)
5486 break;
5487
5488 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5489 case MC_TARGET_DEVICE:
5490 device = true;
5491 /* fall through */
5492 case MC_TARGET_PAGE:
5493 page = target.page;
5494 /*
5495 * We can have a part of the split pmd here. Moving it
5496 * can be done but it would be too convoluted so simply
5497 * ignore such a partial THP and keep it in original
5498 * memcg. There should be somebody mapping the head.
5499 */
5500 if (PageTransCompound(page))
5501 goto put;
5502 if (!device && isolate_lru_page(page))
5503 goto put;
5504 if (!mem_cgroup_move_account(page, false,
5505 mc.from, mc.to)) {
5506 mc.precharge--;
5507 /* we uncharge from mc.from later. */
5508 mc.moved_charge++;
5509 }
5510 if (!device)
5511 putback_lru_page(page);
5512 put: /* get_mctgt_type() gets the page */
5513 put_page(page);
5514 break;
5515 case MC_TARGET_SWAP:
5516 ent = target.ent;
5517 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5518 mc.precharge--;
5519 /* we fixup refcnts and charges later. */
5520 mc.moved_swap++;
5521 }
5522 break;
5523 default:
5524 break;
5525 }
5526 }
5527 pte_unmap_unlock(pte - 1, ptl);
5528 cond_resched();
5529
5530 if (addr != end) {
5531 /*
5532 * We have consumed all precharges we got in can_attach().
5533 * We try charge one by one, but don't do any additional
5534 * charges to mc.to if we have failed in charge once in attach()
5535 * phase.
5536 */
5537 ret = mem_cgroup_do_precharge(1);
5538 if (!ret)
5539 goto retry;
5540 }
5541
5542 return ret;
5543 }
5544
5545 static void mem_cgroup_move_charge(void)
5546 {
5547 struct mm_walk mem_cgroup_move_charge_walk = {
5548 .pmd_entry = mem_cgroup_move_charge_pte_range,
5549 .mm = mc.mm,
5550 };
5551
5552 lru_add_drain_all();
5553 /*
5554 * Signal lock_page_memcg() to take the memcg's move_lock
5555 * while we're moving its pages to another memcg. Then wait
5556 * for already started RCU-only updates to finish.
5557 */
5558 atomic_inc(&mc.from->moving_account);
5559 synchronize_rcu();
5560 retry:
5561 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5562 /*
5563 * Someone who are holding the mmap_sem might be waiting in
5564 * waitq. So we cancel all extra charges, wake up all waiters,
5565 * and retry. Because we cancel precharges, we might not be able
5566 * to move enough charges, but moving charge is a best-effort
5567 * feature anyway, so it wouldn't be a big problem.
5568 */
5569 __mem_cgroup_clear_mc();
5570 cond_resched();
5571 goto retry;
5572 }
5573 /*
5574 * When we have consumed all precharges and failed in doing
5575 * additional charge, the page walk just aborts.
5576 */
5577 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5578
5579 up_read(&mc.mm->mmap_sem);
5580 atomic_dec(&mc.from->moving_account);
5581 }
5582
5583 static void mem_cgroup_move_task(void)
5584 {
5585 if (mc.to) {
5586 mem_cgroup_move_charge();
5587 mem_cgroup_clear_mc();
5588 }
5589 }
5590 #else /* !CONFIG_MMU */
5591 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5592 {
5593 return 0;
5594 }
5595 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5596 {
5597 }
5598 static void mem_cgroup_move_task(void)
5599 {
5600 }
5601 #endif
5602
5603 /*
5604 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5605 * to verify whether we're attached to the default hierarchy on each mount
5606 * attempt.
5607 */
5608 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5609 {
5610 /*
5611 * use_hierarchy is forced on the default hierarchy. cgroup core
5612 * guarantees that @root doesn't have any children, so turning it
5613 * on for the root memcg is enough.
5614 */
5615 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5616 root_mem_cgroup->use_hierarchy = true;
5617 else
5618 root_mem_cgroup->use_hierarchy = false;
5619 }
5620
5621 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5622 {
5623 if (value == PAGE_COUNTER_MAX)
5624 seq_puts(m, "max\n");
5625 else
5626 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5627
5628 return 0;
5629 }
5630
5631 static u64 memory_current_read(struct cgroup_subsys_state *css,
5632 struct cftype *cft)
5633 {
5634 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5635
5636 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5637 }
5638
5639 static int memory_min_show(struct seq_file *m, void *v)
5640 {
5641 return seq_puts_memcg_tunable(m,
5642 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5643 }
5644
5645 static ssize_t memory_min_write(struct kernfs_open_file *of,
5646 char *buf, size_t nbytes, loff_t off)
5647 {
5648 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5649 unsigned long min;
5650 int err;
5651
5652 buf = strstrip(buf);
5653 err = page_counter_memparse(buf, "max", &min);
5654 if (err)
5655 return err;
5656
5657 page_counter_set_min(&memcg->memory, min);
5658
5659 return nbytes;
5660 }
5661
5662 static int memory_low_show(struct seq_file *m, void *v)
5663 {
5664 return seq_puts_memcg_tunable(m,
5665 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5666 }
5667
5668 static ssize_t memory_low_write(struct kernfs_open_file *of,
5669 char *buf, size_t nbytes, loff_t off)
5670 {
5671 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5672 unsigned long low;
5673 int err;
5674
5675 buf = strstrip(buf);
5676 err = page_counter_memparse(buf, "max", &low);
5677 if (err)
5678 return err;
5679
5680 page_counter_set_low(&memcg->memory, low);
5681
5682 return nbytes;
5683 }
5684
5685 static int memory_high_show(struct seq_file *m, void *v)
5686 {
5687 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5688 }
5689
5690 static ssize_t memory_high_write(struct kernfs_open_file *of,
5691 char *buf, size_t nbytes, loff_t off)
5692 {
5693 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5694 unsigned long nr_pages;
5695 unsigned long high;
5696 int err;
5697
5698 buf = strstrip(buf);
5699 err = page_counter_memparse(buf, "max", &high);
5700 if (err)
5701 return err;
5702
5703 memcg->high = high;
5704
5705 nr_pages = page_counter_read(&memcg->memory);
5706 if (nr_pages > high)
5707 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5708 GFP_KERNEL, true);
5709
5710 memcg_wb_domain_size_changed(memcg);
5711 return nbytes;
5712 }
5713
5714 static int memory_max_show(struct seq_file *m, void *v)
5715 {
5716 return seq_puts_memcg_tunable(m,
5717 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5718 }
5719
5720 static ssize_t memory_max_write(struct kernfs_open_file *of,
5721 char *buf, size_t nbytes, loff_t off)
5722 {
5723 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5724 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5725 bool drained = false;
5726 unsigned long max;
5727 int err;
5728
5729 buf = strstrip(buf);
5730 err = page_counter_memparse(buf, "max", &max);
5731 if (err)
5732 return err;
5733
5734 xchg(&memcg->memory.max, max);
5735
5736 for (;;) {
5737 unsigned long nr_pages = page_counter_read(&memcg->memory);
5738
5739 if (nr_pages <= max)
5740 break;
5741
5742 if (signal_pending(current)) {
5743 err = -EINTR;
5744 break;
5745 }
5746
5747 if (!drained) {
5748 drain_all_stock(memcg);
5749 drained = true;
5750 continue;
5751 }
5752
5753 if (nr_reclaims) {
5754 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5755 GFP_KERNEL, true))
5756 nr_reclaims--;
5757 continue;
5758 }
5759
5760 memcg_memory_event(memcg, MEMCG_OOM);
5761 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5762 break;
5763 }
5764
5765 memcg_wb_domain_size_changed(memcg);
5766 return nbytes;
5767 }
5768
5769 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
5770 {
5771 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
5772 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
5773 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
5774 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
5775 seq_printf(m, "oom_kill %lu\n",
5776 atomic_long_read(&events[MEMCG_OOM_KILL]));
5777 }
5778
5779 static int memory_events_show(struct seq_file *m, void *v)
5780 {
5781 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5782
5783 __memory_events_show(m, memcg->memory_events);
5784 return 0;
5785 }
5786
5787 static int memory_events_local_show(struct seq_file *m, void *v)
5788 {
5789 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5790
5791 __memory_events_show(m, memcg->memory_events_local);
5792 return 0;
5793 }
5794
5795 static int memory_stat_show(struct seq_file *m, void *v)
5796 {
5797 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5798 char *buf;
5799
5800 buf = memory_stat_format(memcg);
5801 if (!buf)
5802 return -ENOMEM;
5803 seq_puts(m, buf);
5804 kfree(buf);
5805 return 0;
5806 }
5807
5808 static int memory_oom_group_show(struct seq_file *m, void *v)
5809 {
5810 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
5811
5812 seq_printf(m, "%d\n", memcg->oom_group);
5813
5814 return 0;
5815 }
5816
5817 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
5818 char *buf, size_t nbytes, loff_t off)
5819 {
5820 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5821 int ret, oom_group;
5822
5823 buf = strstrip(buf);
5824 if (!buf)
5825 return -EINVAL;
5826
5827 ret = kstrtoint(buf, 0, &oom_group);
5828 if (ret)
5829 return ret;
5830
5831 if (oom_group != 0 && oom_group != 1)
5832 return -EINVAL;
5833
5834 memcg->oom_group = oom_group;
5835
5836 return nbytes;
5837 }
5838
5839 static struct cftype memory_files[] = {
5840 {
5841 .name = "current",
5842 .flags = CFTYPE_NOT_ON_ROOT,
5843 .read_u64 = memory_current_read,
5844 },
5845 {
5846 .name = "min",
5847 .flags = CFTYPE_NOT_ON_ROOT,
5848 .seq_show = memory_min_show,
5849 .write = memory_min_write,
5850 },
5851 {
5852 .name = "low",
5853 .flags = CFTYPE_NOT_ON_ROOT,
5854 .seq_show = memory_low_show,
5855 .write = memory_low_write,
5856 },
5857 {
5858 .name = "high",
5859 .flags = CFTYPE_NOT_ON_ROOT,
5860 .seq_show = memory_high_show,
5861 .write = memory_high_write,
5862 },
5863 {
5864 .name = "max",
5865 .flags = CFTYPE_NOT_ON_ROOT,
5866 .seq_show = memory_max_show,
5867 .write = memory_max_write,
5868 },
5869 {
5870 .name = "events",
5871 .flags = CFTYPE_NOT_ON_ROOT,
5872 .file_offset = offsetof(struct mem_cgroup, events_file),
5873 .seq_show = memory_events_show,
5874 },
5875 {
5876 .name = "events.local",
5877 .flags = CFTYPE_NOT_ON_ROOT,
5878 .file_offset = offsetof(struct mem_cgroup, events_local_file),
5879 .seq_show = memory_events_local_show,
5880 },
5881 {
5882 .name = "stat",
5883 .flags = CFTYPE_NOT_ON_ROOT,
5884 .seq_show = memory_stat_show,
5885 },
5886 {
5887 .name = "oom.group",
5888 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
5889 .seq_show = memory_oom_group_show,
5890 .write = memory_oom_group_write,
5891 },
5892 { } /* terminate */
5893 };
5894
5895 struct cgroup_subsys memory_cgrp_subsys = {
5896 .css_alloc = mem_cgroup_css_alloc,
5897 .css_online = mem_cgroup_css_online,
5898 .css_offline = mem_cgroup_css_offline,
5899 .css_released = mem_cgroup_css_released,
5900 .css_free = mem_cgroup_css_free,
5901 .css_reset = mem_cgroup_css_reset,
5902 .can_attach = mem_cgroup_can_attach,
5903 .cancel_attach = mem_cgroup_cancel_attach,
5904 .post_attach = mem_cgroup_move_task,
5905 .bind = mem_cgroup_bind,
5906 .dfl_cftypes = memory_files,
5907 .legacy_cftypes = mem_cgroup_legacy_files,
5908 .early_init = 0,
5909 };
5910
5911 /**
5912 * mem_cgroup_protected - check if memory consumption is in the normal range
5913 * @root: the top ancestor of the sub-tree being checked
5914 * @memcg: the memory cgroup to check
5915 *
5916 * WARNING: This function is not stateless! It can only be used as part
5917 * of a top-down tree iteration, not for isolated queries.
5918 *
5919 * Returns one of the following:
5920 * MEMCG_PROT_NONE: cgroup memory is not protected
5921 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
5922 * an unprotected supply of reclaimable memory from other cgroups.
5923 * MEMCG_PROT_MIN: cgroup memory is protected
5924 *
5925 * @root is exclusive; it is never protected when looked at directly
5926 *
5927 * To provide a proper hierarchical behavior, effective memory.min/low values
5928 * are used. Below is the description of how effective memory.low is calculated.
5929 * Effective memory.min values is calculated in the same way.
5930 *
5931 * Effective memory.low is always equal or less than the original memory.low.
5932 * If there is no memory.low overcommittment (which is always true for
5933 * top-level memory cgroups), these two values are equal.
5934 * Otherwise, it's a part of parent's effective memory.low,
5935 * calculated as a cgroup's memory.low usage divided by sum of sibling's
5936 * memory.low usages, where memory.low usage is the size of actually
5937 * protected memory.
5938 *
5939 * low_usage
5940 * elow = min( memory.low, parent->elow * ------------------ ),
5941 * siblings_low_usage
5942 *
5943 * | memory.current, if memory.current < memory.low
5944 * low_usage = |
5945 * | 0, otherwise.
5946 *
5947 *
5948 * Such definition of the effective memory.low provides the expected
5949 * hierarchical behavior: parent's memory.low value is limiting
5950 * children, unprotected memory is reclaimed first and cgroups,
5951 * which are not using their guarantee do not affect actual memory
5952 * distribution.
5953 *
5954 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
5955 *
5956 * A A/memory.low = 2G, A/memory.current = 6G
5957 * //\\
5958 * BC DE B/memory.low = 3G B/memory.current = 2G
5959 * C/memory.low = 1G C/memory.current = 2G
5960 * D/memory.low = 0 D/memory.current = 2G
5961 * E/memory.low = 10G E/memory.current = 0
5962 *
5963 * and the memory pressure is applied, the following memory distribution
5964 * is expected (approximately):
5965 *
5966 * A/memory.current = 2G
5967 *
5968 * B/memory.current = 1.3G
5969 * C/memory.current = 0.6G
5970 * D/memory.current = 0
5971 * E/memory.current = 0
5972 *
5973 * These calculations require constant tracking of the actual low usages
5974 * (see propagate_protected_usage()), as well as recursive calculation of
5975 * effective memory.low values. But as we do call mem_cgroup_protected()
5976 * path for each memory cgroup top-down from the reclaim,
5977 * it's possible to optimize this part, and save calculated elow
5978 * for next usage. This part is intentionally racy, but it's ok,
5979 * as memory.low is a best-effort mechanism.
5980 */
5981 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
5982 struct mem_cgroup *memcg)
5983 {
5984 struct mem_cgroup *parent;
5985 unsigned long emin, parent_emin;
5986 unsigned long elow, parent_elow;
5987 unsigned long usage;
5988
5989 if (mem_cgroup_disabled())
5990 return MEMCG_PROT_NONE;
5991
5992 if (!root)
5993 root = root_mem_cgroup;
5994 if (memcg == root)
5995 return MEMCG_PROT_NONE;
5996
5997 usage = page_counter_read(&memcg->memory);
5998 if (!usage)
5999 return MEMCG_PROT_NONE;
6000
6001 emin = memcg->memory.min;
6002 elow = memcg->memory.low;
6003
6004 parent = parent_mem_cgroup(memcg);
6005 /* No parent means a non-hierarchical mode on v1 memcg */
6006 if (!parent)
6007 return MEMCG_PROT_NONE;
6008
6009 if (parent == root)
6010 goto exit;
6011
6012 parent_emin = READ_ONCE(parent->memory.emin);
6013 emin = min(emin, parent_emin);
6014 if (emin && parent_emin) {
6015 unsigned long min_usage, siblings_min_usage;
6016
6017 min_usage = min(usage, memcg->memory.min);
6018 siblings_min_usage = atomic_long_read(
6019 &parent->memory.children_min_usage);
6020
6021 if (min_usage && siblings_min_usage)
6022 emin = min(emin, parent_emin * min_usage /
6023 siblings_min_usage);
6024 }
6025
6026 parent_elow = READ_ONCE(parent->memory.elow);
6027 elow = min(elow, parent_elow);
6028 if (elow && parent_elow) {
6029 unsigned long low_usage, siblings_low_usage;
6030
6031 low_usage = min(usage, memcg->memory.low);
6032 siblings_low_usage = atomic_long_read(
6033 &parent->memory.children_low_usage);
6034
6035 if (low_usage && siblings_low_usage)
6036 elow = min(elow, parent_elow * low_usage /
6037 siblings_low_usage);
6038 }
6039
6040 exit:
6041 memcg->memory.emin = emin;
6042 memcg->memory.elow = elow;
6043
6044 if (usage <= emin)
6045 return MEMCG_PROT_MIN;
6046 else if (usage <= elow)
6047 return MEMCG_PROT_LOW;
6048 else
6049 return MEMCG_PROT_NONE;
6050 }
6051
6052 /**
6053 * mem_cgroup_try_charge - try charging a page
6054 * @page: page to charge
6055 * @mm: mm context of the victim
6056 * @gfp_mask: reclaim mode
6057 * @memcgp: charged memcg return
6058 * @compound: charge the page as compound or small page
6059 *
6060 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6061 * pages according to @gfp_mask if necessary.
6062 *
6063 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6064 * Otherwise, an error code is returned.
6065 *
6066 * After page->mapping has been set up, the caller must finalize the
6067 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6068 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6069 */
6070 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6071 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6072 bool compound)
6073 {
6074 struct mem_cgroup *memcg = NULL;
6075 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6076 int ret = 0;
6077
6078 if (mem_cgroup_disabled())
6079 goto out;
6080
6081 if (PageSwapCache(page)) {
6082 /*
6083 * Every swap fault against a single page tries to charge the
6084 * page, bail as early as possible. shmem_unuse() encounters
6085 * already charged pages, too. The USED bit is protected by
6086 * the page lock, which serializes swap cache removal, which
6087 * in turn serializes uncharging.
6088 */
6089 VM_BUG_ON_PAGE(!PageLocked(page), page);
6090 if (compound_head(page)->mem_cgroup)
6091 goto out;
6092
6093 if (do_swap_account) {
6094 swp_entry_t ent = { .val = page_private(page), };
6095 unsigned short id = lookup_swap_cgroup_id(ent);
6096
6097 rcu_read_lock();
6098 memcg = mem_cgroup_from_id(id);
6099 if (memcg && !css_tryget_online(&memcg->css))
6100 memcg = NULL;
6101 rcu_read_unlock();
6102 }
6103 }
6104
6105 if (!memcg)
6106 memcg = get_mem_cgroup_from_mm(mm);
6107
6108 ret = try_charge(memcg, gfp_mask, nr_pages);
6109
6110 css_put(&memcg->css);
6111 out:
6112 *memcgp = memcg;
6113 return ret;
6114 }
6115
6116 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6117 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6118 bool compound)
6119 {
6120 struct mem_cgroup *memcg;
6121 int ret;
6122
6123 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6124 memcg = *memcgp;
6125 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6126 return ret;
6127 }
6128
6129 /**
6130 * mem_cgroup_commit_charge - commit a page charge
6131 * @page: page to charge
6132 * @memcg: memcg to charge the page to
6133 * @lrucare: page might be on LRU already
6134 * @compound: charge the page as compound or small page
6135 *
6136 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6137 * after page->mapping has been set up. This must happen atomically
6138 * as part of the page instantiation, i.e. under the page table lock
6139 * for anonymous pages, under the page lock for page and swap cache.
6140 *
6141 * In addition, the page must not be on the LRU during the commit, to
6142 * prevent racing with task migration. If it might be, use @lrucare.
6143 *
6144 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6145 */
6146 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6147 bool lrucare, bool compound)
6148 {
6149 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6150
6151 VM_BUG_ON_PAGE(!page->mapping, page);
6152 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6153
6154 if (mem_cgroup_disabled())
6155 return;
6156 /*
6157 * Swap faults will attempt to charge the same page multiple
6158 * times. But reuse_swap_page() might have removed the page
6159 * from swapcache already, so we can't check PageSwapCache().
6160 */
6161 if (!memcg)
6162 return;
6163
6164 commit_charge(page, memcg, lrucare);
6165
6166 local_irq_disable();
6167 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6168 memcg_check_events(memcg, page);
6169 local_irq_enable();
6170
6171 if (do_memsw_account() && PageSwapCache(page)) {
6172 swp_entry_t entry = { .val = page_private(page) };
6173 /*
6174 * The swap entry might not get freed for a long time,
6175 * let's not wait for it. The page already received a
6176 * memory+swap charge, drop the swap entry duplicate.
6177 */
6178 mem_cgroup_uncharge_swap(entry, nr_pages);
6179 }
6180 }
6181
6182 /**
6183 * mem_cgroup_cancel_charge - cancel a page charge
6184 * @page: page to charge
6185 * @memcg: memcg to charge the page to
6186 * @compound: charge the page as compound or small page
6187 *
6188 * Cancel a charge transaction started by mem_cgroup_try_charge().
6189 */
6190 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6191 bool compound)
6192 {
6193 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6194
6195 if (mem_cgroup_disabled())
6196 return;
6197 /*
6198 * Swap faults will attempt to charge the same page multiple
6199 * times. But reuse_swap_page() might have removed the page
6200 * from swapcache already, so we can't check PageSwapCache().
6201 */
6202 if (!memcg)
6203 return;
6204
6205 cancel_charge(memcg, nr_pages);
6206 }
6207
6208 struct uncharge_gather {
6209 struct mem_cgroup *memcg;
6210 unsigned long pgpgout;
6211 unsigned long nr_anon;
6212 unsigned long nr_file;
6213 unsigned long nr_kmem;
6214 unsigned long nr_huge;
6215 unsigned long nr_shmem;
6216 struct page *dummy_page;
6217 };
6218
6219 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6220 {
6221 memset(ug, 0, sizeof(*ug));
6222 }
6223
6224 static void uncharge_batch(const struct uncharge_gather *ug)
6225 {
6226 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6227 unsigned long flags;
6228
6229 if (!mem_cgroup_is_root(ug->memcg)) {
6230 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6231 if (do_memsw_account())
6232 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6233 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6234 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6235 memcg_oom_recover(ug->memcg);
6236 }
6237
6238 local_irq_save(flags);
6239 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6240 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6241 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6242 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6243 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6244 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6245 memcg_check_events(ug->memcg, ug->dummy_page);
6246 local_irq_restore(flags);
6247
6248 if (!mem_cgroup_is_root(ug->memcg))
6249 css_put_many(&ug->memcg->css, nr_pages);
6250 }
6251
6252 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6253 {
6254 VM_BUG_ON_PAGE(PageLRU(page), page);
6255 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6256 !PageHWPoison(page) , page);
6257
6258 if (!page->mem_cgroup)
6259 return;
6260
6261 /*
6262 * Nobody should be changing or seriously looking at
6263 * page->mem_cgroup at this point, we have fully
6264 * exclusive access to the page.
6265 */
6266
6267 if (ug->memcg != page->mem_cgroup) {
6268 if (ug->memcg) {
6269 uncharge_batch(ug);
6270 uncharge_gather_clear(ug);
6271 }
6272 ug->memcg = page->mem_cgroup;
6273 }
6274
6275 if (!PageKmemcg(page)) {
6276 unsigned int nr_pages = 1;
6277
6278 if (PageTransHuge(page)) {
6279 nr_pages <<= compound_order(page);
6280 ug->nr_huge += nr_pages;
6281 }
6282 if (PageAnon(page))
6283 ug->nr_anon += nr_pages;
6284 else {
6285 ug->nr_file += nr_pages;
6286 if (PageSwapBacked(page))
6287 ug->nr_shmem += nr_pages;
6288 }
6289 ug->pgpgout++;
6290 } else {
6291 ug->nr_kmem += 1 << compound_order(page);
6292 __ClearPageKmemcg(page);
6293 }
6294
6295 ug->dummy_page = page;
6296 page->mem_cgroup = NULL;
6297 }
6298
6299 static void uncharge_list(struct list_head *page_list)
6300 {
6301 struct uncharge_gather ug;
6302 struct list_head *next;
6303
6304 uncharge_gather_clear(&ug);
6305
6306 /*
6307 * Note that the list can be a single page->lru; hence the
6308 * do-while loop instead of a simple list_for_each_entry().
6309 */
6310 next = page_list->next;
6311 do {
6312 struct page *page;
6313
6314 page = list_entry(next, struct page, lru);
6315 next = page->lru.next;
6316
6317 uncharge_page(page, &ug);
6318 } while (next != page_list);
6319
6320 if (ug.memcg)
6321 uncharge_batch(&ug);
6322 }
6323
6324 /**
6325 * mem_cgroup_uncharge - uncharge a page
6326 * @page: page to uncharge
6327 *
6328 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6329 * mem_cgroup_commit_charge().
6330 */
6331 void mem_cgroup_uncharge(struct page *page)
6332 {
6333 struct uncharge_gather ug;
6334
6335 if (mem_cgroup_disabled())
6336 return;
6337
6338 /* Don't touch page->lru of any random page, pre-check: */
6339 if (!page->mem_cgroup)
6340 return;
6341
6342 uncharge_gather_clear(&ug);
6343 uncharge_page(page, &ug);
6344 uncharge_batch(&ug);
6345 }
6346
6347 /**
6348 * mem_cgroup_uncharge_list - uncharge a list of page
6349 * @page_list: list of pages to uncharge
6350 *
6351 * Uncharge a list of pages previously charged with
6352 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6353 */
6354 void mem_cgroup_uncharge_list(struct list_head *page_list)
6355 {
6356 if (mem_cgroup_disabled())
6357 return;
6358
6359 if (!list_empty(page_list))
6360 uncharge_list(page_list);
6361 }
6362
6363 /**
6364 * mem_cgroup_migrate - charge a page's replacement
6365 * @oldpage: currently circulating page
6366 * @newpage: replacement page
6367 *
6368 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6369 * be uncharged upon free.
6370 *
6371 * Both pages must be locked, @newpage->mapping must be set up.
6372 */
6373 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6374 {
6375 struct mem_cgroup *memcg;
6376 unsigned int nr_pages;
6377 bool compound;
6378 unsigned long flags;
6379
6380 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6381 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6382 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6383 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6384 newpage);
6385
6386 if (mem_cgroup_disabled())
6387 return;
6388
6389 /* Page cache replacement: new page already charged? */
6390 if (newpage->mem_cgroup)
6391 return;
6392
6393 /* Swapcache readahead pages can get replaced before being charged */
6394 memcg = oldpage->mem_cgroup;
6395 if (!memcg)
6396 return;
6397
6398 /* Force-charge the new page. The old one will be freed soon */
6399 compound = PageTransHuge(newpage);
6400 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
6401
6402 page_counter_charge(&memcg->memory, nr_pages);
6403 if (do_memsw_account())
6404 page_counter_charge(&memcg->memsw, nr_pages);
6405 css_get_many(&memcg->css, nr_pages);
6406
6407 commit_charge(newpage, memcg, false);
6408
6409 local_irq_save(flags);
6410 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
6411 memcg_check_events(memcg, newpage);
6412 local_irq_restore(flags);
6413 }
6414
6415 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6416 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6417
6418 void mem_cgroup_sk_alloc(struct sock *sk)
6419 {
6420 struct mem_cgroup *memcg;
6421
6422 if (!mem_cgroup_sockets_enabled)
6423 return;
6424
6425 /*
6426 * Socket cloning can throw us here with sk_memcg already
6427 * filled. It won't however, necessarily happen from
6428 * process context. So the test for root memcg given
6429 * the current task's memcg won't help us in this case.
6430 *
6431 * Respecting the original socket's memcg is a better
6432 * decision in this case.
6433 */
6434 if (sk->sk_memcg) {
6435 css_get(&sk->sk_memcg->css);
6436 return;
6437 }
6438
6439 rcu_read_lock();
6440 memcg = mem_cgroup_from_task(current);
6441 if (memcg == root_mem_cgroup)
6442 goto out;
6443 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6444 goto out;
6445 if (css_tryget_online(&memcg->css))
6446 sk->sk_memcg = memcg;
6447 out:
6448 rcu_read_unlock();
6449 }
6450
6451 void mem_cgroup_sk_free(struct sock *sk)
6452 {
6453 if (sk->sk_memcg)
6454 css_put(&sk->sk_memcg->css);
6455 }
6456
6457 /**
6458 * mem_cgroup_charge_skmem - charge socket memory
6459 * @memcg: memcg to charge
6460 * @nr_pages: number of pages to charge
6461 *
6462 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6463 * @memcg's configured limit, %false if the charge had to be forced.
6464 */
6465 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6466 {
6467 gfp_t gfp_mask = GFP_KERNEL;
6468
6469 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6470 struct page_counter *fail;
6471
6472 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6473 memcg->tcpmem_pressure = 0;
6474 return true;
6475 }
6476 page_counter_charge(&memcg->tcpmem, nr_pages);
6477 memcg->tcpmem_pressure = 1;
6478 return false;
6479 }
6480
6481 /* Don't block in the packet receive path */
6482 if (in_softirq())
6483 gfp_mask = GFP_NOWAIT;
6484
6485 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6486
6487 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6488 return true;
6489
6490 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6491 return false;
6492 }
6493
6494 /**
6495 * mem_cgroup_uncharge_skmem - uncharge socket memory
6496 * @memcg: memcg to uncharge
6497 * @nr_pages: number of pages to uncharge
6498 */
6499 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6500 {
6501 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6502 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6503 return;
6504 }
6505
6506 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6507
6508 refill_stock(memcg, nr_pages);
6509 }
6510
6511 static int __init cgroup_memory(char *s)
6512 {
6513 char *token;
6514
6515 while ((token = strsep(&s, ",")) != NULL) {
6516 if (!*token)
6517 continue;
6518 if (!strcmp(token, "nosocket"))
6519 cgroup_memory_nosocket = true;
6520 if (!strcmp(token, "nokmem"))
6521 cgroup_memory_nokmem = true;
6522 }
6523 return 0;
6524 }
6525 __setup("cgroup.memory=", cgroup_memory);
6526
6527 /*
6528 * subsys_initcall() for memory controller.
6529 *
6530 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6531 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6532 * basically everything that doesn't depend on a specific mem_cgroup structure
6533 * should be initialized from here.
6534 */
6535 static int __init mem_cgroup_init(void)
6536 {
6537 int cpu, node;
6538
6539 #ifdef CONFIG_MEMCG_KMEM
6540 /*
6541 * Kmem cache creation is mostly done with the slab_mutex held,
6542 * so use a workqueue with limited concurrency to avoid stalling
6543 * all worker threads in case lots of cgroups are created and
6544 * destroyed simultaneously.
6545 */
6546 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6547 BUG_ON(!memcg_kmem_cache_wq);
6548 #endif
6549
6550 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6551 memcg_hotplug_cpu_dead);
6552
6553 for_each_possible_cpu(cpu)
6554 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6555 drain_local_stock);
6556
6557 for_each_node(node) {
6558 struct mem_cgroup_tree_per_node *rtpn;
6559
6560 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6561 node_online(node) ? node : NUMA_NO_NODE);
6562
6563 rtpn->rb_root = RB_ROOT;
6564 rtpn->rb_rightmost = NULL;
6565 spin_lock_init(&rtpn->lock);
6566 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6567 }
6568
6569 return 0;
6570 }
6571 subsys_initcall(mem_cgroup_init);
6572
6573 #ifdef CONFIG_MEMCG_SWAP
6574 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6575 {
6576 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6577 /*
6578 * The root cgroup cannot be destroyed, so it's refcount must
6579 * always be >= 1.
6580 */
6581 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6582 VM_BUG_ON(1);
6583 break;
6584 }
6585 memcg = parent_mem_cgroup(memcg);
6586 if (!memcg)
6587 memcg = root_mem_cgroup;
6588 }
6589 return memcg;
6590 }
6591
6592 /**
6593 * mem_cgroup_swapout - transfer a memsw charge to swap
6594 * @page: page whose memsw charge to transfer
6595 * @entry: swap entry to move the charge to
6596 *
6597 * Transfer the memsw charge of @page to @entry.
6598 */
6599 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6600 {
6601 struct mem_cgroup *memcg, *swap_memcg;
6602 unsigned int nr_entries;
6603 unsigned short oldid;
6604
6605 VM_BUG_ON_PAGE(PageLRU(page), page);
6606 VM_BUG_ON_PAGE(page_count(page), page);
6607
6608 if (!do_memsw_account())
6609 return;
6610
6611 memcg = page->mem_cgroup;
6612
6613 /* Readahead page, never charged */
6614 if (!memcg)
6615 return;
6616
6617 /*
6618 * In case the memcg owning these pages has been offlined and doesn't
6619 * have an ID allocated to it anymore, charge the closest online
6620 * ancestor for the swap instead and transfer the memory+swap charge.
6621 */
6622 swap_memcg = mem_cgroup_id_get_online(memcg);
6623 nr_entries = hpage_nr_pages(page);
6624 /* Get references for the tail pages, too */
6625 if (nr_entries > 1)
6626 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6627 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6628 nr_entries);
6629 VM_BUG_ON_PAGE(oldid, page);
6630 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6631
6632 page->mem_cgroup = NULL;
6633
6634 if (!mem_cgroup_is_root(memcg))
6635 page_counter_uncharge(&memcg->memory, nr_entries);
6636
6637 if (memcg != swap_memcg) {
6638 if (!mem_cgroup_is_root(swap_memcg))
6639 page_counter_charge(&swap_memcg->memsw, nr_entries);
6640 page_counter_uncharge(&memcg->memsw, nr_entries);
6641 }
6642
6643 /*
6644 * Interrupts should be disabled here because the caller holds the
6645 * i_pages lock which is taken with interrupts-off. It is
6646 * important here to have the interrupts disabled because it is the
6647 * only synchronisation we have for updating the per-CPU variables.
6648 */
6649 VM_BUG_ON(!irqs_disabled());
6650 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6651 -nr_entries);
6652 memcg_check_events(memcg, page);
6653
6654 if (!mem_cgroup_is_root(memcg))
6655 css_put_many(&memcg->css, nr_entries);
6656 }
6657
6658 /**
6659 * mem_cgroup_try_charge_swap - try charging swap space for a page
6660 * @page: page being added to swap
6661 * @entry: swap entry to charge
6662 *
6663 * Try to charge @page's memcg for the swap space at @entry.
6664 *
6665 * Returns 0 on success, -ENOMEM on failure.
6666 */
6667 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6668 {
6669 unsigned int nr_pages = hpage_nr_pages(page);
6670 struct page_counter *counter;
6671 struct mem_cgroup *memcg;
6672 unsigned short oldid;
6673
6674 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6675 return 0;
6676
6677 memcg = page->mem_cgroup;
6678
6679 /* Readahead page, never charged */
6680 if (!memcg)
6681 return 0;
6682
6683 if (!entry.val) {
6684 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6685 return 0;
6686 }
6687
6688 memcg = mem_cgroup_id_get_online(memcg);
6689
6690 if (!mem_cgroup_is_root(memcg) &&
6691 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6692 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6693 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6694 mem_cgroup_id_put(memcg);
6695 return -ENOMEM;
6696 }
6697
6698 /* Get references for the tail pages, too */
6699 if (nr_pages > 1)
6700 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6701 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6702 VM_BUG_ON_PAGE(oldid, page);
6703 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6704
6705 return 0;
6706 }
6707
6708 /**
6709 * mem_cgroup_uncharge_swap - uncharge swap space
6710 * @entry: swap entry to uncharge
6711 * @nr_pages: the amount of swap space to uncharge
6712 */
6713 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6714 {
6715 struct mem_cgroup *memcg;
6716 unsigned short id;
6717
6718 if (!do_swap_account)
6719 return;
6720
6721 id = swap_cgroup_record(entry, 0, nr_pages);
6722 rcu_read_lock();
6723 memcg = mem_cgroup_from_id(id);
6724 if (memcg) {
6725 if (!mem_cgroup_is_root(memcg)) {
6726 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6727 page_counter_uncharge(&memcg->swap, nr_pages);
6728 else
6729 page_counter_uncharge(&memcg->memsw, nr_pages);
6730 }
6731 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6732 mem_cgroup_id_put_many(memcg, nr_pages);
6733 }
6734 rcu_read_unlock();
6735 }
6736
6737 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6738 {
6739 long nr_swap_pages = get_nr_swap_pages();
6740
6741 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6742 return nr_swap_pages;
6743 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6744 nr_swap_pages = min_t(long, nr_swap_pages,
6745 READ_ONCE(memcg->swap.max) -
6746 page_counter_read(&memcg->swap));
6747 return nr_swap_pages;
6748 }
6749
6750 bool mem_cgroup_swap_full(struct page *page)
6751 {
6752 struct mem_cgroup *memcg;
6753
6754 VM_BUG_ON_PAGE(!PageLocked(page), page);
6755
6756 if (vm_swap_full())
6757 return true;
6758 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6759 return false;
6760
6761 memcg = page->mem_cgroup;
6762 if (!memcg)
6763 return false;
6764
6765 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6766 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
6767 return true;
6768
6769 return false;
6770 }
6771
6772 /* for remember boot option*/
6773 #ifdef CONFIG_MEMCG_SWAP_ENABLED
6774 static int really_do_swap_account __initdata = 1;
6775 #else
6776 static int really_do_swap_account __initdata;
6777 #endif
6778
6779 static int __init enable_swap_account(char *s)
6780 {
6781 if (!strcmp(s, "1"))
6782 really_do_swap_account = 1;
6783 else if (!strcmp(s, "0"))
6784 really_do_swap_account = 0;
6785 return 1;
6786 }
6787 __setup("swapaccount=", enable_swap_account);
6788
6789 static u64 swap_current_read(struct cgroup_subsys_state *css,
6790 struct cftype *cft)
6791 {
6792 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6793
6794 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6795 }
6796
6797 static int swap_max_show(struct seq_file *m, void *v)
6798 {
6799 return seq_puts_memcg_tunable(m,
6800 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
6801 }
6802
6803 static ssize_t swap_max_write(struct kernfs_open_file *of,
6804 char *buf, size_t nbytes, loff_t off)
6805 {
6806 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6807 unsigned long max;
6808 int err;
6809
6810 buf = strstrip(buf);
6811 err = page_counter_memparse(buf, "max", &max);
6812 if (err)
6813 return err;
6814
6815 xchg(&memcg->swap.max, max);
6816
6817 return nbytes;
6818 }
6819
6820 static int swap_events_show(struct seq_file *m, void *v)
6821 {
6822 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6823
6824 seq_printf(m, "max %lu\n",
6825 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
6826 seq_printf(m, "fail %lu\n",
6827 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
6828
6829 return 0;
6830 }
6831
6832 static struct cftype swap_files[] = {
6833 {
6834 .name = "swap.current",
6835 .flags = CFTYPE_NOT_ON_ROOT,
6836 .read_u64 = swap_current_read,
6837 },
6838 {
6839 .name = "swap.max",
6840 .flags = CFTYPE_NOT_ON_ROOT,
6841 .seq_show = swap_max_show,
6842 .write = swap_max_write,
6843 },
6844 {
6845 .name = "swap.events",
6846 .flags = CFTYPE_NOT_ON_ROOT,
6847 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
6848 .seq_show = swap_events_show,
6849 },
6850 { } /* terminate */
6851 };
6852
6853 static struct cftype memsw_cgroup_files[] = {
6854 {
6855 .name = "memsw.usage_in_bytes",
6856 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6857 .read_u64 = mem_cgroup_read_u64,
6858 },
6859 {
6860 .name = "memsw.max_usage_in_bytes",
6861 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6862 .write = mem_cgroup_reset,
6863 .read_u64 = mem_cgroup_read_u64,
6864 },
6865 {
6866 .name = "memsw.limit_in_bytes",
6867 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6868 .write = mem_cgroup_write,
6869 .read_u64 = mem_cgroup_read_u64,
6870 },
6871 {
6872 .name = "memsw.failcnt",
6873 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6874 .write = mem_cgroup_reset,
6875 .read_u64 = mem_cgroup_read_u64,
6876 },
6877 { }, /* terminate */
6878 };
6879
6880 static int __init mem_cgroup_swap_init(void)
6881 {
6882 if (!mem_cgroup_disabled() && really_do_swap_account) {
6883 do_swap_account = 1;
6884 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6885 swap_files));
6886 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6887 memsw_cgroup_files));
6888 }
6889 return 0;
6890 }
6891 subsys_initcall(mem_cgroup_swap_init);
6892
6893 #endif /* CONFIG_MEMCG_SWAP */