]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
Merge branch 'acpi-resources'
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/mm.h>
32 #include <linux/hugetlb.h>
33 #include <linux/pagemap.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include "internal.h"
60 #include <net/sock.h>
61 #include <net/ip.h>
62 #include <net/tcp_memcontrol.h>
63 #include "slab.h"
64
65 #include <asm/uaccess.h>
66
67 #include <trace/events/vmscan.h>
68
69 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70 EXPORT_SYMBOL(memory_cgrp_subsys);
71
72 #define MEM_CGROUP_RECLAIM_RETRIES 5
73 static struct mem_cgroup *root_mem_cgroup __read_mostly;
74
75 #ifdef CONFIG_MEMCG_SWAP
76 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
77 int do_swap_account __read_mostly;
78
79 /* for remember boot option*/
80 #ifdef CONFIG_MEMCG_SWAP_ENABLED
81 static int really_do_swap_account __initdata = 1;
82 #else
83 static int really_do_swap_account __initdata;
84 #endif
85
86 #else
87 #define do_swap_account 0
88 #endif
89
90
91 static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
94 "rss_huge",
95 "mapped_file",
96 "writeback",
97 "swap",
98 };
99
100 enum mem_cgroup_events_index {
101 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
102 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
103 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
104 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
105 MEM_CGROUP_EVENTS_NSTATS,
106 };
107
108 static const char * const mem_cgroup_events_names[] = {
109 "pgpgin",
110 "pgpgout",
111 "pgfault",
112 "pgmajfault",
113 };
114
115 static const char * const mem_cgroup_lru_names[] = {
116 "inactive_anon",
117 "active_anon",
118 "inactive_file",
119 "active_file",
120 "unevictable",
121 };
122
123 /*
124 * Per memcg event counter is incremented at every pagein/pageout. With THP,
125 * it will be incremated by the number of pages. This counter is used for
126 * for trigger some periodic events. This is straightforward and better
127 * than using jiffies etc. to handle periodic memcg event.
128 */
129 enum mem_cgroup_events_target {
130 MEM_CGROUP_TARGET_THRESH,
131 MEM_CGROUP_TARGET_SOFTLIMIT,
132 MEM_CGROUP_TARGET_NUMAINFO,
133 MEM_CGROUP_NTARGETS,
134 };
135 #define THRESHOLDS_EVENTS_TARGET 128
136 #define SOFTLIMIT_EVENTS_TARGET 1024
137 #define NUMAINFO_EVENTS_TARGET 1024
138
139 struct mem_cgroup_stat_cpu {
140 long count[MEM_CGROUP_STAT_NSTATS];
141 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
142 unsigned long nr_page_events;
143 unsigned long targets[MEM_CGROUP_NTARGETS];
144 };
145
146 struct reclaim_iter {
147 struct mem_cgroup *position;
148 /* scan generation, increased every round-trip */
149 unsigned int generation;
150 };
151
152 /*
153 * per-zone information in memory controller.
154 */
155 struct mem_cgroup_per_zone {
156 struct lruvec lruvec;
157 unsigned long lru_size[NR_LRU_LISTS];
158
159 struct reclaim_iter iter[DEF_PRIORITY + 1];
160
161 struct rb_node tree_node; /* RB tree node */
162 unsigned long usage_in_excess;/* Set to the value by which */
163 /* the soft limit is exceeded*/
164 bool on_tree;
165 struct mem_cgroup *memcg; /* Back pointer, we cannot */
166 /* use container_of */
167 };
168
169 struct mem_cgroup_per_node {
170 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
171 };
172
173 /*
174 * Cgroups above their limits are maintained in a RB-Tree, independent of
175 * their hierarchy representation
176 */
177
178 struct mem_cgroup_tree_per_zone {
179 struct rb_root rb_root;
180 spinlock_t lock;
181 };
182
183 struct mem_cgroup_tree_per_node {
184 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
185 };
186
187 struct mem_cgroup_tree {
188 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
189 };
190
191 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
192
193 struct mem_cgroup_threshold {
194 struct eventfd_ctx *eventfd;
195 unsigned long threshold;
196 };
197
198 /* For threshold */
199 struct mem_cgroup_threshold_ary {
200 /* An array index points to threshold just below or equal to usage. */
201 int current_threshold;
202 /* Size of entries[] */
203 unsigned int size;
204 /* Array of thresholds */
205 struct mem_cgroup_threshold entries[0];
206 };
207
208 struct mem_cgroup_thresholds {
209 /* Primary thresholds array */
210 struct mem_cgroup_threshold_ary *primary;
211 /*
212 * Spare threshold array.
213 * This is needed to make mem_cgroup_unregister_event() "never fail".
214 * It must be able to store at least primary->size - 1 entries.
215 */
216 struct mem_cgroup_threshold_ary *spare;
217 };
218
219 /* for OOM */
220 struct mem_cgroup_eventfd_list {
221 struct list_head list;
222 struct eventfd_ctx *eventfd;
223 };
224
225 /*
226 * cgroup_event represents events which userspace want to receive.
227 */
228 struct mem_cgroup_event {
229 /*
230 * memcg which the event belongs to.
231 */
232 struct mem_cgroup *memcg;
233 /*
234 * eventfd to signal userspace about the event.
235 */
236 struct eventfd_ctx *eventfd;
237 /*
238 * Each of these stored in a list by the cgroup.
239 */
240 struct list_head list;
241 /*
242 * register_event() callback will be used to add new userspace
243 * waiter for changes related to this event. Use eventfd_signal()
244 * on eventfd to send notification to userspace.
245 */
246 int (*register_event)(struct mem_cgroup *memcg,
247 struct eventfd_ctx *eventfd, const char *args);
248 /*
249 * unregister_event() callback will be called when userspace closes
250 * the eventfd or on cgroup removing. This callback must be set,
251 * if you want provide notification functionality.
252 */
253 void (*unregister_event)(struct mem_cgroup *memcg,
254 struct eventfd_ctx *eventfd);
255 /*
256 * All fields below needed to unregister event when
257 * userspace closes eventfd.
258 */
259 poll_table pt;
260 wait_queue_head_t *wqh;
261 wait_queue_t wait;
262 struct work_struct remove;
263 };
264
265 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
266 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
267
268 /*
269 * The memory controller data structure. The memory controller controls both
270 * page cache and RSS per cgroup. We would eventually like to provide
271 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
272 * to help the administrator determine what knobs to tune.
273 *
274 * TODO: Add a water mark for the memory controller. Reclaim will begin when
275 * we hit the water mark. May be even add a low water mark, such that
276 * no reclaim occurs from a cgroup at it's low water mark, this is
277 * a feature that will be implemented much later in the future.
278 */
279 struct mem_cgroup {
280 struct cgroup_subsys_state css;
281
282 /* Accounted resources */
283 struct page_counter memory;
284 struct page_counter memsw;
285 struct page_counter kmem;
286
287 unsigned long soft_limit;
288
289 /* vmpressure notifications */
290 struct vmpressure vmpressure;
291
292 /* css_online() has been completed */
293 int initialized;
294
295 /*
296 * Should the accounting and control be hierarchical, per subtree?
297 */
298 bool use_hierarchy;
299
300 bool oom_lock;
301 atomic_t under_oom;
302 atomic_t oom_wakeups;
303
304 int swappiness;
305 /* OOM-Killer disable */
306 int oom_kill_disable;
307
308 /* protect arrays of thresholds */
309 struct mutex thresholds_lock;
310
311 /* thresholds for memory usage. RCU-protected */
312 struct mem_cgroup_thresholds thresholds;
313
314 /* thresholds for mem+swap usage. RCU-protected */
315 struct mem_cgroup_thresholds memsw_thresholds;
316
317 /* For oom notifier event fd */
318 struct list_head oom_notify;
319
320 /*
321 * Should we move charges of a task when a task is moved into this
322 * mem_cgroup ? And what type of charges should we move ?
323 */
324 unsigned long move_charge_at_immigrate;
325 /*
326 * set > 0 if pages under this cgroup are moving to other cgroup.
327 */
328 atomic_t moving_account;
329 /* taken only while moving_account > 0 */
330 spinlock_t move_lock;
331 /*
332 * percpu counter.
333 */
334 struct mem_cgroup_stat_cpu __percpu *stat;
335 /*
336 * used when a cpu is offlined or other synchronizations
337 * See mem_cgroup_read_stat().
338 */
339 struct mem_cgroup_stat_cpu nocpu_base;
340 spinlock_t pcp_counter_lock;
341
342 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
343 struct cg_proto tcp_mem;
344 #endif
345 #if defined(CONFIG_MEMCG_KMEM)
346 /* analogous to slab_common's slab_caches list, but per-memcg;
347 * protected by memcg_slab_mutex */
348 struct list_head memcg_slab_caches;
349 /* Index in the kmem_cache->memcg_params->memcg_caches array */
350 int kmemcg_id;
351 #endif
352
353 int last_scanned_node;
354 #if MAX_NUMNODES > 1
355 nodemask_t scan_nodes;
356 atomic_t numainfo_events;
357 atomic_t numainfo_updating;
358 #endif
359
360 /* List of events which userspace want to receive */
361 struct list_head event_list;
362 spinlock_t event_list_lock;
363
364 struct mem_cgroup_per_node *nodeinfo[0];
365 /* WARNING: nodeinfo must be the last member here */
366 };
367
368 #ifdef CONFIG_MEMCG_KMEM
369 static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
370 {
371 return memcg->kmemcg_id >= 0;
372 }
373 #endif
374
375 /* Stuffs for move charges at task migration. */
376 /*
377 * Types of charges to be moved. "move_charge_at_immitgrate" and
378 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
379 */
380 enum move_type {
381 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
382 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
383 NR_MOVE_TYPE,
384 };
385
386 /* "mc" and its members are protected by cgroup_mutex */
387 static struct move_charge_struct {
388 spinlock_t lock; /* for from, to */
389 struct mem_cgroup *from;
390 struct mem_cgroup *to;
391 unsigned long immigrate_flags;
392 unsigned long precharge;
393 unsigned long moved_charge;
394 unsigned long moved_swap;
395 struct task_struct *moving_task; /* a task moving charges */
396 wait_queue_head_t waitq; /* a waitq for other context */
397 } mc = {
398 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
399 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
400 };
401
402 static bool move_anon(void)
403 {
404 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
405 }
406
407 static bool move_file(void)
408 {
409 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
410 }
411
412 /*
413 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
414 * limit reclaim to prevent infinite loops, if they ever occur.
415 */
416 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
417 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
418
419 enum charge_type {
420 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
421 MEM_CGROUP_CHARGE_TYPE_ANON,
422 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
423 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
424 NR_CHARGE_TYPE,
425 };
426
427 /* for encoding cft->private value on file */
428 enum res_type {
429 _MEM,
430 _MEMSWAP,
431 _OOM_TYPE,
432 _KMEM,
433 };
434
435 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
436 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
437 #define MEMFILE_ATTR(val) ((val) & 0xffff)
438 /* Used for OOM nofiier */
439 #define OOM_CONTROL (0)
440
441 /*
442 * The memcg_create_mutex will be held whenever a new cgroup is created.
443 * As a consequence, any change that needs to protect against new child cgroups
444 * appearing has to hold it as well.
445 */
446 static DEFINE_MUTEX(memcg_create_mutex);
447
448 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
449 {
450 return s ? container_of(s, struct mem_cgroup, css) : NULL;
451 }
452
453 /* Some nice accessors for the vmpressure. */
454 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
455 {
456 if (!memcg)
457 memcg = root_mem_cgroup;
458 return &memcg->vmpressure;
459 }
460
461 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
462 {
463 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
464 }
465
466 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
467 {
468 return (memcg == root_mem_cgroup);
469 }
470
471 /*
472 * We restrict the id in the range of [1, 65535], so it can fit into
473 * an unsigned short.
474 */
475 #define MEM_CGROUP_ID_MAX USHRT_MAX
476
477 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
478 {
479 return memcg->css.id;
480 }
481
482 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
483 {
484 struct cgroup_subsys_state *css;
485
486 css = css_from_id(id, &memory_cgrp_subsys);
487 return mem_cgroup_from_css(css);
488 }
489
490 /* Writing them here to avoid exposing memcg's inner layout */
491 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
492
493 void sock_update_memcg(struct sock *sk)
494 {
495 if (mem_cgroup_sockets_enabled) {
496 struct mem_cgroup *memcg;
497 struct cg_proto *cg_proto;
498
499 BUG_ON(!sk->sk_prot->proto_cgroup);
500
501 /* Socket cloning can throw us here with sk_cgrp already
502 * filled. It won't however, necessarily happen from
503 * process context. So the test for root memcg given
504 * the current task's memcg won't help us in this case.
505 *
506 * Respecting the original socket's memcg is a better
507 * decision in this case.
508 */
509 if (sk->sk_cgrp) {
510 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
511 css_get(&sk->sk_cgrp->memcg->css);
512 return;
513 }
514
515 rcu_read_lock();
516 memcg = mem_cgroup_from_task(current);
517 cg_proto = sk->sk_prot->proto_cgroup(memcg);
518 if (!mem_cgroup_is_root(memcg) &&
519 memcg_proto_active(cg_proto) &&
520 css_tryget_online(&memcg->css)) {
521 sk->sk_cgrp = cg_proto;
522 }
523 rcu_read_unlock();
524 }
525 }
526 EXPORT_SYMBOL(sock_update_memcg);
527
528 void sock_release_memcg(struct sock *sk)
529 {
530 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
531 struct mem_cgroup *memcg;
532 WARN_ON(!sk->sk_cgrp->memcg);
533 memcg = sk->sk_cgrp->memcg;
534 css_put(&sk->sk_cgrp->memcg->css);
535 }
536 }
537
538 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
539 {
540 if (!memcg || mem_cgroup_is_root(memcg))
541 return NULL;
542
543 return &memcg->tcp_mem;
544 }
545 EXPORT_SYMBOL(tcp_proto_cgroup);
546
547 static void disarm_sock_keys(struct mem_cgroup *memcg)
548 {
549 if (!memcg_proto_activated(&memcg->tcp_mem))
550 return;
551 static_key_slow_dec(&memcg_socket_limit_enabled);
552 }
553 #else
554 static void disarm_sock_keys(struct mem_cgroup *memcg)
555 {
556 }
557 #endif
558
559 #ifdef CONFIG_MEMCG_KMEM
560 /*
561 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
562 * The main reason for not using cgroup id for this:
563 * this works better in sparse environments, where we have a lot of memcgs,
564 * but only a few kmem-limited. Or also, if we have, for instance, 200
565 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
566 * 200 entry array for that.
567 *
568 * The current size of the caches array is stored in
569 * memcg_limited_groups_array_size. It will double each time we have to
570 * increase it.
571 */
572 static DEFINE_IDA(kmem_limited_groups);
573 int memcg_limited_groups_array_size;
574
575 /*
576 * MIN_SIZE is different than 1, because we would like to avoid going through
577 * the alloc/free process all the time. In a small machine, 4 kmem-limited
578 * cgroups is a reasonable guess. In the future, it could be a parameter or
579 * tunable, but that is strictly not necessary.
580 *
581 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
582 * this constant directly from cgroup, but it is understandable that this is
583 * better kept as an internal representation in cgroup.c. In any case, the
584 * cgrp_id space is not getting any smaller, and we don't have to necessarily
585 * increase ours as well if it increases.
586 */
587 #define MEMCG_CACHES_MIN_SIZE 4
588 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
589
590 /*
591 * A lot of the calls to the cache allocation functions are expected to be
592 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
593 * conditional to this static branch, we'll have to allow modules that does
594 * kmem_cache_alloc and the such to see this symbol as well
595 */
596 struct static_key memcg_kmem_enabled_key;
597 EXPORT_SYMBOL(memcg_kmem_enabled_key);
598
599 static void memcg_free_cache_id(int id);
600
601 static void disarm_kmem_keys(struct mem_cgroup *memcg)
602 {
603 if (memcg_kmem_is_active(memcg)) {
604 static_key_slow_dec(&memcg_kmem_enabled_key);
605 memcg_free_cache_id(memcg->kmemcg_id);
606 }
607 /*
608 * This check can't live in kmem destruction function,
609 * since the charges will outlive the cgroup
610 */
611 WARN_ON(page_counter_read(&memcg->kmem));
612 }
613 #else
614 static void disarm_kmem_keys(struct mem_cgroup *memcg)
615 {
616 }
617 #endif /* CONFIG_MEMCG_KMEM */
618
619 static void disarm_static_keys(struct mem_cgroup *memcg)
620 {
621 disarm_sock_keys(memcg);
622 disarm_kmem_keys(memcg);
623 }
624
625 static struct mem_cgroup_per_zone *
626 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
627 {
628 int nid = zone_to_nid(zone);
629 int zid = zone_idx(zone);
630
631 return &memcg->nodeinfo[nid]->zoneinfo[zid];
632 }
633
634 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
635 {
636 return &memcg->css;
637 }
638
639 static struct mem_cgroup_per_zone *
640 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
641 {
642 int nid = page_to_nid(page);
643 int zid = page_zonenum(page);
644
645 return &memcg->nodeinfo[nid]->zoneinfo[zid];
646 }
647
648 static struct mem_cgroup_tree_per_zone *
649 soft_limit_tree_node_zone(int nid, int zid)
650 {
651 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
652 }
653
654 static struct mem_cgroup_tree_per_zone *
655 soft_limit_tree_from_page(struct page *page)
656 {
657 int nid = page_to_nid(page);
658 int zid = page_zonenum(page);
659
660 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
661 }
662
663 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
664 struct mem_cgroup_tree_per_zone *mctz,
665 unsigned long new_usage_in_excess)
666 {
667 struct rb_node **p = &mctz->rb_root.rb_node;
668 struct rb_node *parent = NULL;
669 struct mem_cgroup_per_zone *mz_node;
670
671 if (mz->on_tree)
672 return;
673
674 mz->usage_in_excess = new_usage_in_excess;
675 if (!mz->usage_in_excess)
676 return;
677 while (*p) {
678 parent = *p;
679 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
680 tree_node);
681 if (mz->usage_in_excess < mz_node->usage_in_excess)
682 p = &(*p)->rb_left;
683 /*
684 * We can't avoid mem cgroups that are over their soft
685 * limit by the same amount
686 */
687 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&mz->tree_node, parent, p);
691 rb_insert_color(&mz->tree_node, &mctz->rb_root);
692 mz->on_tree = true;
693 }
694
695 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
696 struct mem_cgroup_tree_per_zone *mctz)
697 {
698 if (!mz->on_tree)
699 return;
700 rb_erase(&mz->tree_node, &mctz->rb_root);
701 mz->on_tree = false;
702 }
703
704 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
705 struct mem_cgroup_tree_per_zone *mctz)
706 {
707 unsigned long flags;
708
709 spin_lock_irqsave(&mctz->lock, flags);
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 spin_unlock_irqrestore(&mctz->lock, flags);
712 }
713
714 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
715 {
716 unsigned long nr_pages = page_counter_read(&memcg->memory);
717 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
718 unsigned long excess = 0;
719
720 if (nr_pages > soft_limit)
721 excess = nr_pages - soft_limit;
722
723 return excess;
724 }
725
726 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
727 {
728 unsigned long excess;
729 struct mem_cgroup_per_zone *mz;
730 struct mem_cgroup_tree_per_zone *mctz;
731
732 mctz = soft_limit_tree_from_page(page);
733 /*
734 * Necessary to update all ancestors when hierarchy is used.
735 * because their event counter is not touched.
736 */
737 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
738 mz = mem_cgroup_page_zoneinfo(memcg, page);
739 excess = soft_limit_excess(memcg);
740 /*
741 * We have to update the tree if mz is on RB-tree or
742 * mem is over its softlimit.
743 */
744 if (excess || mz->on_tree) {
745 unsigned long flags;
746
747 spin_lock_irqsave(&mctz->lock, flags);
748 /* if on-tree, remove it */
749 if (mz->on_tree)
750 __mem_cgroup_remove_exceeded(mz, mctz);
751 /*
752 * Insert again. mz->usage_in_excess will be updated.
753 * If excess is 0, no tree ops.
754 */
755 __mem_cgroup_insert_exceeded(mz, mctz, excess);
756 spin_unlock_irqrestore(&mctz->lock, flags);
757 }
758 }
759 }
760
761 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
762 {
763 struct mem_cgroup_tree_per_zone *mctz;
764 struct mem_cgroup_per_zone *mz;
765 int nid, zid;
766
767 for_each_node(nid) {
768 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
769 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
770 mctz = soft_limit_tree_node_zone(nid, zid);
771 mem_cgroup_remove_exceeded(mz, mctz);
772 }
773 }
774 }
775
776 static struct mem_cgroup_per_zone *
777 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
778 {
779 struct rb_node *rightmost = NULL;
780 struct mem_cgroup_per_zone *mz;
781
782 retry:
783 mz = NULL;
784 rightmost = rb_last(&mctz->rb_root);
785 if (!rightmost)
786 goto done; /* Nothing to reclaim from */
787
788 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
789 /*
790 * Remove the node now but someone else can add it back,
791 * we will to add it back at the end of reclaim to its correct
792 * position in the tree.
793 */
794 __mem_cgroup_remove_exceeded(mz, mctz);
795 if (!soft_limit_excess(mz->memcg) ||
796 !css_tryget_online(&mz->memcg->css))
797 goto retry;
798 done:
799 return mz;
800 }
801
802 static struct mem_cgroup_per_zone *
803 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
804 {
805 struct mem_cgroup_per_zone *mz;
806
807 spin_lock_irq(&mctz->lock);
808 mz = __mem_cgroup_largest_soft_limit_node(mctz);
809 spin_unlock_irq(&mctz->lock);
810 return mz;
811 }
812
813 /*
814 * Implementation Note: reading percpu statistics for memcg.
815 *
816 * Both of vmstat[] and percpu_counter has threshold and do periodic
817 * synchronization to implement "quick" read. There are trade-off between
818 * reading cost and precision of value. Then, we may have a chance to implement
819 * a periodic synchronizion of counter in memcg's counter.
820 *
821 * But this _read() function is used for user interface now. The user accounts
822 * memory usage by memory cgroup and he _always_ requires exact value because
823 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
824 * have to visit all online cpus and make sum. So, for now, unnecessary
825 * synchronization is not implemented. (just implemented for cpu hotplug)
826 *
827 * If there are kernel internal actions which can make use of some not-exact
828 * value, and reading all cpu value can be performance bottleneck in some
829 * common workload, threashold and synchonization as vmstat[] should be
830 * implemented.
831 */
832 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
833 enum mem_cgroup_stat_index idx)
834 {
835 long val = 0;
836 int cpu;
837
838 get_online_cpus();
839 for_each_online_cpu(cpu)
840 val += per_cpu(memcg->stat->count[idx], cpu);
841 #ifdef CONFIG_HOTPLUG_CPU
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.count[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
845 #endif
846 put_online_cpus();
847 return val;
848 }
849
850 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
851 enum mem_cgroup_events_index idx)
852 {
853 unsigned long val = 0;
854 int cpu;
855
856 get_online_cpus();
857 for_each_online_cpu(cpu)
858 val += per_cpu(memcg->stat->events[idx], cpu);
859 #ifdef CONFIG_HOTPLUG_CPU
860 spin_lock(&memcg->pcp_counter_lock);
861 val += memcg->nocpu_base.events[idx];
862 spin_unlock(&memcg->pcp_counter_lock);
863 #endif
864 put_online_cpus();
865 return val;
866 }
867
868 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
869 struct page *page,
870 int nr_pages)
871 {
872 /*
873 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
874 * counted as CACHE even if it's on ANON LRU.
875 */
876 if (PageAnon(page))
877 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
878 nr_pages);
879 else
880 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
881 nr_pages);
882
883 if (PageTransHuge(page))
884 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
885 nr_pages);
886
887 /* pagein of a big page is an event. So, ignore page size */
888 if (nr_pages > 0)
889 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
890 else {
891 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
892 nr_pages = -nr_pages; /* for event */
893 }
894
895 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
896 }
897
898 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
899 {
900 struct mem_cgroup_per_zone *mz;
901
902 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
903 return mz->lru_size[lru];
904 }
905
906 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
907 int nid,
908 unsigned int lru_mask)
909 {
910 unsigned long nr = 0;
911 int zid;
912
913 VM_BUG_ON((unsigned)nid >= nr_node_ids);
914
915 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
916 struct mem_cgroup_per_zone *mz;
917 enum lru_list lru;
918
919 for_each_lru(lru) {
920 if (!(BIT(lru) & lru_mask))
921 continue;
922 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
923 nr += mz->lru_size[lru];
924 }
925 }
926 return nr;
927 }
928
929 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
930 unsigned int lru_mask)
931 {
932 unsigned long nr = 0;
933 int nid;
934
935 for_each_node_state(nid, N_MEMORY)
936 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
937 return nr;
938 }
939
940 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
941 enum mem_cgroup_events_target target)
942 {
943 unsigned long val, next;
944
945 val = __this_cpu_read(memcg->stat->nr_page_events);
946 next = __this_cpu_read(memcg->stat->targets[target]);
947 /* from time_after() in jiffies.h */
948 if ((long)next - (long)val < 0) {
949 switch (target) {
950 case MEM_CGROUP_TARGET_THRESH:
951 next = val + THRESHOLDS_EVENTS_TARGET;
952 break;
953 case MEM_CGROUP_TARGET_SOFTLIMIT:
954 next = val + SOFTLIMIT_EVENTS_TARGET;
955 break;
956 case MEM_CGROUP_TARGET_NUMAINFO:
957 next = val + NUMAINFO_EVENTS_TARGET;
958 break;
959 default:
960 break;
961 }
962 __this_cpu_write(memcg->stat->targets[target], next);
963 return true;
964 }
965 return false;
966 }
967
968 /*
969 * Check events in order.
970 *
971 */
972 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
973 {
974 /* threshold event is triggered in finer grain than soft limit */
975 if (unlikely(mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_THRESH))) {
977 bool do_softlimit;
978 bool do_numainfo __maybe_unused;
979
980 do_softlimit = mem_cgroup_event_ratelimit(memcg,
981 MEM_CGROUP_TARGET_SOFTLIMIT);
982 #if MAX_NUMNODES > 1
983 do_numainfo = mem_cgroup_event_ratelimit(memcg,
984 MEM_CGROUP_TARGET_NUMAINFO);
985 #endif
986 mem_cgroup_threshold(memcg);
987 if (unlikely(do_softlimit))
988 mem_cgroup_update_tree(memcg, page);
989 #if MAX_NUMNODES > 1
990 if (unlikely(do_numainfo))
991 atomic_inc(&memcg->numainfo_events);
992 #endif
993 }
994 }
995
996 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
997 {
998 /*
999 * mm_update_next_owner() may clear mm->owner to NULL
1000 * if it races with swapoff, page migration, etc.
1001 * So this can be called with p == NULL.
1002 */
1003 if (unlikely(!p))
1004 return NULL;
1005
1006 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1007 }
1008
1009 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1010 {
1011 struct mem_cgroup *memcg = NULL;
1012
1013 rcu_read_lock();
1014 do {
1015 /*
1016 * Page cache insertions can happen withou an
1017 * actual mm context, e.g. during disk probing
1018 * on boot, loopback IO, acct() writes etc.
1019 */
1020 if (unlikely(!mm))
1021 memcg = root_mem_cgroup;
1022 else {
1023 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1024 if (unlikely(!memcg))
1025 memcg = root_mem_cgroup;
1026 }
1027 } while (!css_tryget_online(&memcg->css));
1028 rcu_read_unlock();
1029 return memcg;
1030 }
1031
1032 /**
1033 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1034 * @root: hierarchy root
1035 * @prev: previously returned memcg, NULL on first invocation
1036 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1037 *
1038 * Returns references to children of the hierarchy below @root, or
1039 * @root itself, or %NULL after a full round-trip.
1040 *
1041 * Caller must pass the return value in @prev on subsequent
1042 * invocations for reference counting, or use mem_cgroup_iter_break()
1043 * to cancel a hierarchy walk before the round-trip is complete.
1044 *
1045 * Reclaimers can specify a zone and a priority level in @reclaim to
1046 * divide up the memcgs in the hierarchy among all concurrent
1047 * reclaimers operating on the same zone and priority.
1048 */
1049 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1050 struct mem_cgroup *prev,
1051 struct mem_cgroup_reclaim_cookie *reclaim)
1052 {
1053 struct reclaim_iter *uninitialized_var(iter);
1054 struct cgroup_subsys_state *css = NULL;
1055 struct mem_cgroup *memcg = NULL;
1056 struct mem_cgroup *pos = NULL;
1057
1058 if (mem_cgroup_disabled())
1059 return NULL;
1060
1061 if (!root)
1062 root = root_mem_cgroup;
1063
1064 if (prev && !reclaim)
1065 pos = prev;
1066
1067 if (!root->use_hierarchy && root != root_mem_cgroup) {
1068 if (prev)
1069 goto out;
1070 return root;
1071 }
1072
1073 rcu_read_lock();
1074
1075 if (reclaim) {
1076 struct mem_cgroup_per_zone *mz;
1077
1078 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1079 iter = &mz->iter[reclaim->priority];
1080
1081 if (prev && reclaim->generation != iter->generation)
1082 goto out_unlock;
1083
1084 do {
1085 pos = ACCESS_ONCE(iter->position);
1086 /*
1087 * A racing update may change the position and
1088 * put the last reference, hence css_tryget(),
1089 * or retry to see the updated position.
1090 */
1091 } while (pos && !css_tryget(&pos->css));
1092 }
1093
1094 if (pos)
1095 css = &pos->css;
1096
1097 for (;;) {
1098 css = css_next_descendant_pre(css, &root->css);
1099 if (!css) {
1100 /*
1101 * Reclaimers share the hierarchy walk, and a
1102 * new one might jump in right at the end of
1103 * the hierarchy - make sure they see at least
1104 * one group and restart from the beginning.
1105 */
1106 if (!prev)
1107 continue;
1108 break;
1109 }
1110
1111 /*
1112 * Verify the css and acquire a reference. The root
1113 * is provided by the caller, so we know it's alive
1114 * and kicking, and don't take an extra reference.
1115 */
1116 memcg = mem_cgroup_from_css(css);
1117
1118 if (css == &root->css)
1119 break;
1120
1121 if (css_tryget(css)) {
1122 /*
1123 * Make sure the memcg is initialized:
1124 * mem_cgroup_css_online() orders the the
1125 * initialization against setting the flag.
1126 */
1127 if (smp_load_acquire(&memcg->initialized))
1128 break;
1129
1130 css_put(css);
1131 }
1132
1133 memcg = NULL;
1134 }
1135
1136 if (reclaim) {
1137 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1138 if (memcg)
1139 css_get(&memcg->css);
1140 if (pos)
1141 css_put(&pos->css);
1142 }
1143
1144 /*
1145 * pairs with css_tryget when dereferencing iter->position
1146 * above.
1147 */
1148 if (pos)
1149 css_put(&pos->css);
1150
1151 if (!memcg)
1152 iter->generation++;
1153 else if (!prev)
1154 reclaim->generation = iter->generation;
1155 }
1156
1157 out_unlock:
1158 rcu_read_unlock();
1159 out:
1160 if (prev && prev != root)
1161 css_put(&prev->css);
1162
1163 return memcg;
1164 }
1165
1166 /**
1167 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1168 * @root: hierarchy root
1169 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1170 */
1171 void mem_cgroup_iter_break(struct mem_cgroup *root,
1172 struct mem_cgroup *prev)
1173 {
1174 if (!root)
1175 root = root_mem_cgroup;
1176 if (prev && prev != root)
1177 css_put(&prev->css);
1178 }
1179
1180 /*
1181 * Iteration constructs for visiting all cgroups (under a tree). If
1182 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1183 * be used for reference counting.
1184 */
1185 #define for_each_mem_cgroup_tree(iter, root) \
1186 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1187 iter != NULL; \
1188 iter = mem_cgroup_iter(root, iter, NULL))
1189
1190 #define for_each_mem_cgroup(iter) \
1191 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1192 iter != NULL; \
1193 iter = mem_cgroup_iter(NULL, iter, NULL))
1194
1195 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1196 {
1197 struct mem_cgroup *memcg;
1198
1199 rcu_read_lock();
1200 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1201 if (unlikely(!memcg))
1202 goto out;
1203
1204 switch (idx) {
1205 case PGFAULT:
1206 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1207 break;
1208 case PGMAJFAULT:
1209 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1210 break;
1211 default:
1212 BUG();
1213 }
1214 out:
1215 rcu_read_unlock();
1216 }
1217 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1218
1219 /**
1220 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1221 * @zone: zone of the wanted lruvec
1222 * @memcg: memcg of the wanted lruvec
1223 *
1224 * Returns the lru list vector holding pages for the given @zone and
1225 * @mem. This can be the global zone lruvec, if the memory controller
1226 * is disabled.
1227 */
1228 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1229 struct mem_cgroup *memcg)
1230 {
1231 struct mem_cgroup_per_zone *mz;
1232 struct lruvec *lruvec;
1233
1234 if (mem_cgroup_disabled()) {
1235 lruvec = &zone->lruvec;
1236 goto out;
1237 }
1238
1239 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1240 lruvec = &mz->lruvec;
1241 out:
1242 /*
1243 * Since a node can be onlined after the mem_cgroup was created,
1244 * we have to be prepared to initialize lruvec->zone here;
1245 * and if offlined then reonlined, we need to reinitialize it.
1246 */
1247 if (unlikely(lruvec->zone != zone))
1248 lruvec->zone = zone;
1249 return lruvec;
1250 }
1251
1252 /**
1253 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1254 * @page: the page
1255 * @zone: zone of the page
1256 *
1257 * This function is only safe when following the LRU page isolation
1258 * and putback protocol: the LRU lock must be held, and the page must
1259 * either be PageLRU() or the caller must have isolated/allocated it.
1260 */
1261 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1262 {
1263 struct mem_cgroup_per_zone *mz;
1264 struct mem_cgroup *memcg;
1265 struct lruvec *lruvec;
1266
1267 if (mem_cgroup_disabled()) {
1268 lruvec = &zone->lruvec;
1269 goto out;
1270 }
1271
1272 memcg = page->mem_cgroup;
1273 /*
1274 * Swapcache readahead pages are added to the LRU - and
1275 * possibly migrated - before they are charged.
1276 */
1277 if (!memcg)
1278 memcg = root_mem_cgroup;
1279
1280 mz = mem_cgroup_page_zoneinfo(memcg, page);
1281 lruvec = &mz->lruvec;
1282 out:
1283 /*
1284 * Since a node can be onlined after the mem_cgroup was created,
1285 * we have to be prepared to initialize lruvec->zone here;
1286 * and if offlined then reonlined, we need to reinitialize it.
1287 */
1288 if (unlikely(lruvec->zone != zone))
1289 lruvec->zone = zone;
1290 return lruvec;
1291 }
1292
1293 /**
1294 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1295 * @lruvec: mem_cgroup per zone lru vector
1296 * @lru: index of lru list the page is sitting on
1297 * @nr_pages: positive when adding or negative when removing
1298 *
1299 * This function must be called when a page is added to or removed from an
1300 * lru list.
1301 */
1302 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1303 int nr_pages)
1304 {
1305 struct mem_cgroup_per_zone *mz;
1306 unsigned long *lru_size;
1307
1308 if (mem_cgroup_disabled())
1309 return;
1310
1311 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1312 lru_size = mz->lru_size + lru;
1313 *lru_size += nr_pages;
1314 VM_BUG_ON((long)(*lru_size) < 0);
1315 }
1316
1317 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1318 {
1319 if (root == memcg)
1320 return true;
1321 if (!root->use_hierarchy)
1322 return false;
1323 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1324 }
1325
1326 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1327 {
1328 struct mem_cgroup *task_memcg;
1329 struct task_struct *p;
1330 bool ret;
1331
1332 p = find_lock_task_mm(task);
1333 if (p) {
1334 task_memcg = get_mem_cgroup_from_mm(p->mm);
1335 task_unlock(p);
1336 } else {
1337 /*
1338 * All threads may have already detached their mm's, but the oom
1339 * killer still needs to detect if they have already been oom
1340 * killed to prevent needlessly killing additional tasks.
1341 */
1342 rcu_read_lock();
1343 task_memcg = mem_cgroup_from_task(task);
1344 css_get(&task_memcg->css);
1345 rcu_read_unlock();
1346 }
1347 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1348 css_put(&task_memcg->css);
1349 return ret;
1350 }
1351
1352 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1353 {
1354 unsigned long inactive_ratio;
1355 unsigned long inactive;
1356 unsigned long active;
1357 unsigned long gb;
1358
1359 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1360 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1361
1362 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1363 if (gb)
1364 inactive_ratio = int_sqrt(10 * gb);
1365 else
1366 inactive_ratio = 1;
1367
1368 return inactive * inactive_ratio < active;
1369 }
1370
1371 #define mem_cgroup_from_counter(counter, member) \
1372 container_of(counter, struct mem_cgroup, member)
1373
1374 /**
1375 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1376 * @memcg: the memory cgroup
1377 *
1378 * Returns the maximum amount of memory @mem can be charged with, in
1379 * pages.
1380 */
1381 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1382 {
1383 unsigned long margin = 0;
1384 unsigned long count;
1385 unsigned long limit;
1386
1387 count = page_counter_read(&memcg->memory);
1388 limit = ACCESS_ONCE(memcg->memory.limit);
1389 if (count < limit)
1390 margin = limit - count;
1391
1392 if (do_swap_account) {
1393 count = page_counter_read(&memcg->memsw);
1394 limit = ACCESS_ONCE(memcg->memsw.limit);
1395 if (count <= limit)
1396 margin = min(margin, limit - count);
1397 }
1398
1399 return margin;
1400 }
1401
1402 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1403 {
1404 /* root ? */
1405 if (mem_cgroup_disabled() || !memcg->css.parent)
1406 return vm_swappiness;
1407
1408 return memcg->swappiness;
1409 }
1410
1411 /*
1412 * A routine for checking "mem" is under move_account() or not.
1413 *
1414 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1415 * moving cgroups. This is for waiting at high-memory pressure
1416 * caused by "move".
1417 */
1418 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1419 {
1420 struct mem_cgroup *from;
1421 struct mem_cgroup *to;
1422 bool ret = false;
1423 /*
1424 * Unlike task_move routines, we access mc.to, mc.from not under
1425 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1426 */
1427 spin_lock(&mc.lock);
1428 from = mc.from;
1429 to = mc.to;
1430 if (!from)
1431 goto unlock;
1432
1433 ret = mem_cgroup_is_descendant(from, memcg) ||
1434 mem_cgroup_is_descendant(to, memcg);
1435 unlock:
1436 spin_unlock(&mc.lock);
1437 return ret;
1438 }
1439
1440 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1441 {
1442 if (mc.moving_task && current != mc.moving_task) {
1443 if (mem_cgroup_under_move(memcg)) {
1444 DEFINE_WAIT(wait);
1445 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1446 /* moving charge context might have finished. */
1447 if (mc.moving_task)
1448 schedule();
1449 finish_wait(&mc.waitq, &wait);
1450 return true;
1451 }
1452 }
1453 return false;
1454 }
1455
1456 #define K(x) ((x) << (PAGE_SHIFT-10))
1457 /**
1458 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1459 * @memcg: The memory cgroup that went over limit
1460 * @p: Task that is going to be killed
1461 *
1462 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1463 * enabled
1464 */
1465 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1466 {
1467 /* oom_info_lock ensures that parallel ooms do not interleave */
1468 static DEFINE_MUTEX(oom_info_lock);
1469 struct mem_cgroup *iter;
1470 unsigned int i;
1471
1472 if (!p)
1473 return;
1474
1475 mutex_lock(&oom_info_lock);
1476 rcu_read_lock();
1477
1478 pr_info("Task in ");
1479 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1480 pr_cont(" killed as a result of limit of ");
1481 pr_cont_cgroup_path(memcg->css.cgroup);
1482 pr_cont("\n");
1483
1484 rcu_read_unlock();
1485
1486 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1487 K((u64)page_counter_read(&memcg->memory)),
1488 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1489 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1490 K((u64)page_counter_read(&memcg->memsw)),
1491 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1492 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1493 K((u64)page_counter_read(&memcg->kmem)),
1494 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1495
1496 for_each_mem_cgroup_tree(iter, memcg) {
1497 pr_info("Memory cgroup stats for ");
1498 pr_cont_cgroup_path(iter->css.cgroup);
1499 pr_cont(":");
1500
1501 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1502 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1503 continue;
1504 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1505 K(mem_cgroup_read_stat(iter, i)));
1506 }
1507
1508 for (i = 0; i < NR_LRU_LISTS; i++)
1509 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1510 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1511
1512 pr_cont("\n");
1513 }
1514 mutex_unlock(&oom_info_lock);
1515 }
1516
1517 /*
1518 * This function returns the number of memcg under hierarchy tree. Returns
1519 * 1(self count) if no children.
1520 */
1521 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1522 {
1523 int num = 0;
1524 struct mem_cgroup *iter;
1525
1526 for_each_mem_cgroup_tree(iter, memcg)
1527 num++;
1528 return num;
1529 }
1530
1531 /*
1532 * Return the memory (and swap, if configured) limit for a memcg.
1533 */
1534 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1535 {
1536 unsigned long limit;
1537
1538 limit = memcg->memory.limit;
1539 if (mem_cgroup_swappiness(memcg)) {
1540 unsigned long memsw_limit;
1541
1542 memsw_limit = memcg->memsw.limit;
1543 limit = min(limit + total_swap_pages, memsw_limit);
1544 }
1545 return limit;
1546 }
1547
1548 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1549 int order)
1550 {
1551 struct mem_cgroup *iter;
1552 unsigned long chosen_points = 0;
1553 unsigned long totalpages;
1554 unsigned int points = 0;
1555 struct task_struct *chosen = NULL;
1556
1557 /*
1558 * If current has a pending SIGKILL or is exiting, then automatically
1559 * select it. The goal is to allow it to allocate so that it may
1560 * quickly exit and free its memory.
1561 */
1562 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1563 set_thread_flag(TIF_MEMDIE);
1564 return;
1565 }
1566
1567 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1568 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1569 for_each_mem_cgroup_tree(iter, memcg) {
1570 struct css_task_iter it;
1571 struct task_struct *task;
1572
1573 css_task_iter_start(&iter->css, &it);
1574 while ((task = css_task_iter_next(&it))) {
1575 switch (oom_scan_process_thread(task, totalpages, NULL,
1576 false)) {
1577 case OOM_SCAN_SELECT:
1578 if (chosen)
1579 put_task_struct(chosen);
1580 chosen = task;
1581 chosen_points = ULONG_MAX;
1582 get_task_struct(chosen);
1583 /* fall through */
1584 case OOM_SCAN_CONTINUE:
1585 continue;
1586 case OOM_SCAN_ABORT:
1587 css_task_iter_end(&it);
1588 mem_cgroup_iter_break(memcg, iter);
1589 if (chosen)
1590 put_task_struct(chosen);
1591 return;
1592 case OOM_SCAN_OK:
1593 break;
1594 };
1595 points = oom_badness(task, memcg, NULL, totalpages);
1596 if (!points || points < chosen_points)
1597 continue;
1598 /* Prefer thread group leaders for display purposes */
1599 if (points == chosen_points &&
1600 thread_group_leader(chosen))
1601 continue;
1602
1603 if (chosen)
1604 put_task_struct(chosen);
1605 chosen = task;
1606 chosen_points = points;
1607 get_task_struct(chosen);
1608 }
1609 css_task_iter_end(&it);
1610 }
1611
1612 if (!chosen)
1613 return;
1614 points = chosen_points * 1000 / totalpages;
1615 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1616 NULL, "Memory cgroup out of memory");
1617 }
1618
1619 #if MAX_NUMNODES > 1
1620
1621 /**
1622 * test_mem_cgroup_node_reclaimable
1623 * @memcg: the target memcg
1624 * @nid: the node ID to be checked.
1625 * @noswap : specify true here if the user wants flle only information.
1626 *
1627 * This function returns whether the specified memcg contains any
1628 * reclaimable pages on a node. Returns true if there are any reclaimable
1629 * pages in the node.
1630 */
1631 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1632 int nid, bool noswap)
1633 {
1634 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1635 return true;
1636 if (noswap || !total_swap_pages)
1637 return false;
1638 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1639 return true;
1640 return false;
1641
1642 }
1643
1644 /*
1645 * Always updating the nodemask is not very good - even if we have an empty
1646 * list or the wrong list here, we can start from some node and traverse all
1647 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1648 *
1649 */
1650 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1651 {
1652 int nid;
1653 /*
1654 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1655 * pagein/pageout changes since the last update.
1656 */
1657 if (!atomic_read(&memcg->numainfo_events))
1658 return;
1659 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1660 return;
1661
1662 /* make a nodemask where this memcg uses memory from */
1663 memcg->scan_nodes = node_states[N_MEMORY];
1664
1665 for_each_node_mask(nid, node_states[N_MEMORY]) {
1666
1667 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1668 node_clear(nid, memcg->scan_nodes);
1669 }
1670
1671 atomic_set(&memcg->numainfo_events, 0);
1672 atomic_set(&memcg->numainfo_updating, 0);
1673 }
1674
1675 /*
1676 * Selecting a node where we start reclaim from. Because what we need is just
1677 * reducing usage counter, start from anywhere is O,K. Considering
1678 * memory reclaim from current node, there are pros. and cons.
1679 *
1680 * Freeing memory from current node means freeing memory from a node which
1681 * we'll use or we've used. So, it may make LRU bad. And if several threads
1682 * hit limits, it will see a contention on a node. But freeing from remote
1683 * node means more costs for memory reclaim because of memory latency.
1684 *
1685 * Now, we use round-robin. Better algorithm is welcomed.
1686 */
1687 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1688 {
1689 int node;
1690
1691 mem_cgroup_may_update_nodemask(memcg);
1692 node = memcg->last_scanned_node;
1693
1694 node = next_node(node, memcg->scan_nodes);
1695 if (node == MAX_NUMNODES)
1696 node = first_node(memcg->scan_nodes);
1697 /*
1698 * We call this when we hit limit, not when pages are added to LRU.
1699 * No LRU may hold pages because all pages are UNEVICTABLE or
1700 * memcg is too small and all pages are not on LRU. In that case,
1701 * we use curret node.
1702 */
1703 if (unlikely(node == MAX_NUMNODES))
1704 node = numa_node_id();
1705
1706 memcg->last_scanned_node = node;
1707 return node;
1708 }
1709 #else
1710 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1711 {
1712 return 0;
1713 }
1714 #endif
1715
1716 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1717 struct zone *zone,
1718 gfp_t gfp_mask,
1719 unsigned long *total_scanned)
1720 {
1721 struct mem_cgroup *victim = NULL;
1722 int total = 0;
1723 int loop = 0;
1724 unsigned long excess;
1725 unsigned long nr_scanned;
1726 struct mem_cgroup_reclaim_cookie reclaim = {
1727 .zone = zone,
1728 .priority = 0,
1729 };
1730
1731 excess = soft_limit_excess(root_memcg);
1732
1733 while (1) {
1734 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1735 if (!victim) {
1736 loop++;
1737 if (loop >= 2) {
1738 /*
1739 * If we have not been able to reclaim
1740 * anything, it might because there are
1741 * no reclaimable pages under this hierarchy
1742 */
1743 if (!total)
1744 break;
1745 /*
1746 * We want to do more targeted reclaim.
1747 * excess >> 2 is not to excessive so as to
1748 * reclaim too much, nor too less that we keep
1749 * coming back to reclaim from this cgroup
1750 */
1751 if (total >= (excess >> 2) ||
1752 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1753 break;
1754 }
1755 continue;
1756 }
1757 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1758 zone, &nr_scanned);
1759 *total_scanned += nr_scanned;
1760 if (!soft_limit_excess(root_memcg))
1761 break;
1762 }
1763 mem_cgroup_iter_break(root_memcg, victim);
1764 return total;
1765 }
1766
1767 #ifdef CONFIG_LOCKDEP
1768 static struct lockdep_map memcg_oom_lock_dep_map = {
1769 .name = "memcg_oom_lock",
1770 };
1771 #endif
1772
1773 static DEFINE_SPINLOCK(memcg_oom_lock);
1774
1775 /*
1776 * Check OOM-Killer is already running under our hierarchy.
1777 * If someone is running, return false.
1778 */
1779 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1780 {
1781 struct mem_cgroup *iter, *failed = NULL;
1782
1783 spin_lock(&memcg_oom_lock);
1784
1785 for_each_mem_cgroup_tree(iter, memcg) {
1786 if (iter->oom_lock) {
1787 /*
1788 * this subtree of our hierarchy is already locked
1789 * so we cannot give a lock.
1790 */
1791 failed = iter;
1792 mem_cgroup_iter_break(memcg, iter);
1793 break;
1794 } else
1795 iter->oom_lock = true;
1796 }
1797
1798 if (failed) {
1799 /*
1800 * OK, we failed to lock the whole subtree so we have
1801 * to clean up what we set up to the failing subtree
1802 */
1803 for_each_mem_cgroup_tree(iter, memcg) {
1804 if (iter == failed) {
1805 mem_cgroup_iter_break(memcg, iter);
1806 break;
1807 }
1808 iter->oom_lock = false;
1809 }
1810 } else
1811 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1812
1813 spin_unlock(&memcg_oom_lock);
1814
1815 return !failed;
1816 }
1817
1818 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1819 {
1820 struct mem_cgroup *iter;
1821
1822 spin_lock(&memcg_oom_lock);
1823 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1824 for_each_mem_cgroup_tree(iter, memcg)
1825 iter->oom_lock = false;
1826 spin_unlock(&memcg_oom_lock);
1827 }
1828
1829 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1830 {
1831 struct mem_cgroup *iter;
1832
1833 for_each_mem_cgroup_tree(iter, memcg)
1834 atomic_inc(&iter->under_oom);
1835 }
1836
1837 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1838 {
1839 struct mem_cgroup *iter;
1840
1841 /*
1842 * When a new child is created while the hierarchy is under oom,
1843 * mem_cgroup_oom_lock() may not be called. We have to use
1844 * atomic_add_unless() here.
1845 */
1846 for_each_mem_cgroup_tree(iter, memcg)
1847 atomic_add_unless(&iter->under_oom, -1, 0);
1848 }
1849
1850 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1851
1852 struct oom_wait_info {
1853 struct mem_cgroup *memcg;
1854 wait_queue_t wait;
1855 };
1856
1857 static int memcg_oom_wake_function(wait_queue_t *wait,
1858 unsigned mode, int sync, void *arg)
1859 {
1860 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1861 struct mem_cgroup *oom_wait_memcg;
1862 struct oom_wait_info *oom_wait_info;
1863
1864 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1865 oom_wait_memcg = oom_wait_info->memcg;
1866
1867 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1868 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1869 return 0;
1870 return autoremove_wake_function(wait, mode, sync, arg);
1871 }
1872
1873 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1874 {
1875 atomic_inc(&memcg->oom_wakeups);
1876 /* for filtering, pass "memcg" as argument. */
1877 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1878 }
1879
1880 static void memcg_oom_recover(struct mem_cgroup *memcg)
1881 {
1882 if (memcg && atomic_read(&memcg->under_oom))
1883 memcg_wakeup_oom(memcg);
1884 }
1885
1886 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1887 {
1888 if (!current->memcg_oom.may_oom)
1889 return;
1890 /*
1891 * We are in the middle of the charge context here, so we
1892 * don't want to block when potentially sitting on a callstack
1893 * that holds all kinds of filesystem and mm locks.
1894 *
1895 * Also, the caller may handle a failed allocation gracefully
1896 * (like optional page cache readahead) and so an OOM killer
1897 * invocation might not even be necessary.
1898 *
1899 * That's why we don't do anything here except remember the
1900 * OOM context and then deal with it at the end of the page
1901 * fault when the stack is unwound, the locks are released,
1902 * and when we know whether the fault was overall successful.
1903 */
1904 css_get(&memcg->css);
1905 current->memcg_oom.memcg = memcg;
1906 current->memcg_oom.gfp_mask = mask;
1907 current->memcg_oom.order = order;
1908 }
1909
1910 /**
1911 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1912 * @handle: actually kill/wait or just clean up the OOM state
1913 *
1914 * This has to be called at the end of a page fault if the memcg OOM
1915 * handler was enabled.
1916 *
1917 * Memcg supports userspace OOM handling where failed allocations must
1918 * sleep on a waitqueue until the userspace task resolves the
1919 * situation. Sleeping directly in the charge context with all kinds
1920 * of locks held is not a good idea, instead we remember an OOM state
1921 * in the task and mem_cgroup_oom_synchronize() has to be called at
1922 * the end of the page fault to complete the OOM handling.
1923 *
1924 * Returns %true if an ongoing memcg OOM situation was detected and
1925 * completed, %false otherwise.
1926 */
1927 bool mem_cgroup_oom_synchronize(bool handle)
1928 {
1929 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1930 struct oom_wait_info owait;
1931 bool locked;
1932
1933 /* OOM is global, do not handle */
1934 if (!memcg)
1935 return false;
1936
1937 if (!handle)
1938 goto cleanup;
1939
1940 owait.memcg = memcg;
1941 owait.wait.flags = 0;
1942 owait.wait.func = memcg_oom_wake_function;
1943 owait.wait.private = current;
1944 INIT_LIST_HEAD(&owait.wait.task_list);
1945
1946 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1947 mem_cgroup_mark_under_oom(memcg);
1948
1949 locked = mem_cgroup_oom_trylock(memcg);
1950
1951 if (locked)
1952 mem_cgroup_oom_notify(memcg);
1953
1954 if (locked && !memcg->oom_kill_disable) {
1955 mem_cgroup_unmark_under_oom(memcg);
1956 finish_wait(&memcg_oom_waitq, &owait.wait);
1957 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1958 current->memcg_oom.order);
1959 } else {
1960 schedule();
1961 mem_cgroup_unmark_under_oom(memcg);
1962 finish_wait(&memcg_oom_waitq, &owait.wait);
1963 }
1964
1965 if (locked) {
1966 mem_cgroup_oom_unlock(memcg);
1967 /*
1968 * There is no guarantee that an OOM-lock contender
1969 * sees the wakeups triggered by the OOM kill
1970 * uncharges. Wake any sleepers explicitely.
1971 */
1972 memcg_oom_recover(memcg);
1973 }
1974 cleanup:
1975 current->memcg_oom.memcg = NULL;
1976 css_put(&memcg->css);
1977 return true;
1978 }
1979
1980 /**
1981 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1982 * @page: page that is going to change accounted state
1983 * @locked: &memcg->move_lock slowpath was taken
1984 * @flags: IRQ-state flags for &memcg->move_lock
1985 *
1986 * This function must mark the beginning of an accounted page state
1987 * change to prevent double accounting when the page is concurrently
1988 * being moved to another memcg:
1989 *
1990 * memcg = mem_cgroup_begin_page_stat(page, &locked, &flags);
1991 * if (TestClearPageState(page))
1992 * mem_cgroup_update_page_stat(memcg, state, -1);
1993 * mem_cgroup_end_page_stat(memcg, locked, flags);
1994 *
1995 * The RCU lock is held throughout the transaction. The fast path can
1996 * get away without acquiring the memcg->move_lock (@locked is false)
1997 * because page moving starts with an RCU grace period.
1998 *
1999 * The RCU lock also protects the memcg from being freed when the page
2000 * state that is going to change is the only thing preventing the page
2001 * from being uncharged. E.g. end-writeback clearing PageWriteback(),
2002 * which allows migration to go ahead and uncharge the page before the
2003 * account transaction might be complete.
2004 */
2005 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page,
2006 bool *locked,
2007 unsigned long *flags)
2008 {
2009 struct mem_cgroup *memcg;
2010
2011 rcu_read_lock();
2012
2013 if (mem_cgroup_disabled())
2014 return NULL;
2015 again:
2016 memcg = page->mem_cgroup;
2017 if (unlikely(!memcg))
2018 return NULL;
2019
2020 *locked = false;
2021 if (atomic_read(&memcg->moving_account) <= 0)
2022 return memcg;
2023
2024 spin_lock_irqsave(&memcg->move_lock, *flags);
2025 if (memcg != page->mem_cgroup) {
2026 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2027 goto again;
2028 }
2029 *locked = true;
2030
2031 return memcg;
2032 }
2033
2034 /**
2035 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2036 * @memcg: the memcg that was accounted against
2037 * @locked: value received from mem_cgroup_begin_page_stat()
2038 * @flags: value received from mem_cgroup_begin_page_stat()
2039 */
2040 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg, bool *locked,
2041 unsigned long *flags)
2042 {
2043 if (memcg && *locked)
2044 spin_unlock_irqrestore(&memcg->move_lock, *flags);
2045
2046 rcu_read_unlock();
2047 }
2048
2049 /**
2050 * mem_cgroup_update_page_stat - update page state statistics
2051 * @memcg: memcg to account against
2052 * @idx: page state item to account
2053 * @val: number of pages (positive or negative)
2054 *
2055 * See mem_cgroup_begin_page_stat() for locking requirements.
2056 */
2057 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2058 enum mem_cgroup_stat_index idx, int val)
2059 {
2060 VM_BUG_ON(!rcu_read_lock_held());
2061
2062 if (memcg)
2063 this_cpu_add(memcg->stat->count[idx], val);
2064 }
2065
2066 /*
2067 * size of first charge trial. "32" comes from vmscan.c's magic value.
2068 * TODO: maybe necessary to use big numbers in big irons.
2069 */
2070 #define CHARGE_BATCH 32U
2071 struct memcg_stock_pcp {
2072 struct mem_cgroup *cached; /* this never be root cgroup */
2073 unsigned int nr_pages;
2074 struct work_struct work;
2075 unsigned long flags;
2076 #define FLUSHING_CACHED_CHARGE 0
2077 };
2078 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2079 static DEFINE_MUTEX(percpu_charge_mutex);
2080
2081 /**
2082 * consume_stock: Try to consume stocked charge on this cpu.
2083 * @memcg: memcg to consume from.
2084 * @nr_pages: how many pages to charge.
2085 *
2086 * The charges will only happen if @memcg matches the current cpu's memcg
2087 * stock, and at least @nr_pages are available in that stock. Failure to
2088 * service an allocation will refill the stock.
2089 *
2090 * returns true if successful, false otherwise.
2091 */
2092 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2093 {
2094 struct memcg_stock_pcp *stock;
2095 bool ret = false;
2096
2097 if (nr_pages > CHARGE_BATCH)
2098 return ret;
2099
2100 stock = &get_cpu_var(memcg_stock);
2101 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2102 stock->nr_pages -= nr_pages;
2103 ret = true;
2104 }
2105 put_cpu_var(memcg_stock);
2106 return ret;
2107 }
2108
2109 /*
2110 * Returns stocks cached in percpu and reset cached information.
2111 */
2112 static void drain_stock(struct memcg_stock_pcp *stock)
2113 {
2114 struct mem_cgroup *old = stock->cached;
2115
2116 if (stock->nr_pages) {
2117 page_counter_uncharge(&old->memory, stock->nr_pages);
2118 if (do_swap_account)
2119 page_counter_uncharge(&old->memsw, stock->nr_pages);
2120 css_put_many(&old->css, stock->nr_pages);
2121 stock->nr_pages = 0;
2122 }
2123 stock->cached = NULL;
2124 }
2125
2126 /*
2127 * This must be called under preempt disabled or must be called by
2128 * a thread which is pinned to local cpu.
2129 */
2130 static void drain_local_stock(struct work_struct *dummy)
2131 {
2132 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2133 drain_stock(stock);
2134 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2135 }
2136
2137 static void __init memcg_stock_init(void)
2138 {
2139 int cpu;
2140
2141 for_each_possible_cpu(cpu) {
2142 struct memcg_stock_pcp *stock =
2143 &per_cpu(memcg_stock, cpu);
2144 INIT_WORK(&stock->work, drain_local_stock);
2145 }
2146 }
2147
2148 /*
2149 * Cache charges(val) to local per_cpu area.
2150 * This will be consumed by consume_stock() function, later.
2151 */
2152 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2153 {
2154 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2155
2156 if (stock->cached != memcg) { /* reset if necessary */
2157 drain_stock(stock);
2158 stock->cached = memcg;
2159 }
2160 stock->nr_pages += nr_pages;
2161 put_cpu_var(memcg_stock);
2162 }
2163
2164 /*
2165 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2166 * of the hierarchy under it.
2167 */
2168 static void drain_all_stock(struct mem_cgroup *root_memcg)
2169 {
2170 int cpu, curcpu;
2171
2172 /* If someone's already draining, avoid adding running more workers. */
2173 if (!mutex_trylock(&percpu_charge_mutex))
2174 return;
2175 /* Notify other cpus that system-wide "drain" is running */
2176 get_online_cpus();
2177 curcpu = get_cpu();
2178 for_each_online_cpu(cpu) {
2179 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2180 struct mem_cgroup *memcg;
2181
2182 memcg = stock->cached;
2183 if (!memcg || !stock->nr_pages)
2184 continue;
2185 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2186 continue;
2187 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2188 if (cpu == curcpu)
2189 drain_local_stock(&stock->work);
2190 else
2191 schedule_work_on(cpu, &stock->work);
2192 }
2193 }
2194 put_cpu();
2195 put_online_cpus();
2196 mutex_unlock(&percpu_charge_mutex);
2197 }
2198
2199 /*
2200 * This function drains percpu counter value from DEAD cpu and
2201 * move it to local cpu. Note that this function can be preempted.
2202 */
2203 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2204 {
2205 int i;
2206
2207 spin_lock(&memcg->pcp_counter_lock);
2208 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2209 long x = per_cpu(memcg->stat->count[i], cpu);
2210
2211 per_cpu(memcg->stat->count[i], cpu) = 0;
2212 memcg->nocpu_base.count[i] += x;
2213 }
2214 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2215 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2216
2217 per_cpu(memcg->stat->events[i], cpu) = 0;
2218 memcg->nocpu_base.events[i] += x;
2219 }
2220 spin_unlock(&memcg->pcp_counter_lock);
2221 }
2222
2223 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2224 unsigned long action,
2225 void *hcpu)
2226 {
2227 int cpu = (unsigned long)hcpu;
2228 struct memcg_stock_pcp *stock;
2229 struct mem_cgroup *iter;
2230
2231 if (action == CPU_ONLINE)
2232 return NOTIFY_OK;
2233
2234 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2235 return NOTIFY_OK;
2236
2237 for_each_mem_cgroup(iter)
2238 mem_cgroup_drain_pcp_counter(iter, cpu);
2239
2240 stock = &per_cpu(memcg_stock, cpu);
2241 drain_stock(stock);
2242 return NOTIFY_OK;
2243 }
2244
2245 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2246 unsigned int nr_pages)
2247 {
2248 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2249 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2250 struct mem_cgroup *mem_over_limit;
2251 struct page_counter *counter;
2252 unsigned long nr_reclaimed;
2253 bool may_swap = true;
2254 bool drained = false;
2255 int ret = 0;
2256
2257 if (mem_cgroup_is_root(memcg))
2258 goto done;
2259 retry:
2260 if (consume_stock(memcg, nr_pages))
2261 goto done;
2262
2263 if (!do_swap_account ||
2264 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2265 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2266 goto done_restock;
2267 if (do_swap_account)
2268 page_counter_uncharge(&memcg->memsw, batch);
2269 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2270 } else {
2271 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2272 may_swap = false;
2273 }
2274
2275 if (batch > nr_pages) {
2276 batch = nr_pages;
2277 goto retry;
2278 }
2279
2280 /*
2281 * Unlike in global OOM situations, memcg is not in a physical
2282 * memory shortage. Allow dying and OOM-killed tasks to
2283 * bypass the last charges so that they can exit quickly and
2284 * free their memory.
2285 */
2286 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2287 fatal_signal_pending(current) ||
2288 current->flags & PF_EXITING))
2289 goto bypass;
2290
2291 if (unlikely(task_in_memcg_oom(current)))
2292 goto nomem;
2293
2294 if (!(gfp_mask & __GFP_WAIT))
2295 goto nomem;
2296
2297 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2298 gfp_mask, may_swap);
2299
2300 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2301 goto retry;
2302
2303 if (!drained) {
2304 drain_all_stock(mem_over_limit);
2305 drained = true;
2306 goto retry;
2307 }
2308
2309 if (gfp_mask & __GFP_NORETRY)
2310 goto nomem;
2311 /*
2312 * Even though the limit is exceeded at this point, reclaim
2313 * may have been able to free some pages. Retry the charge
2314 * before killing the task.
2315 *
2316 * Only for regular pages, though: huge pages are rather
2317 * unlikely to succeed so close to the limit, and we fall back
2318 * to regular pages anyway in case of failure.
2319 */
2320 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2321 goto retry;
2322 /*
2323 * At task move, charge accounts can be doubly counted. So, it's
2324 * better to wait until the end of task_move if something is going on.
2325 */
2326 if (mem_cgroup_wait_acct_move(mem_over_limit))
2327 goto retry;
2328
2329 if (nr_retries--)
2330 goto retry;
2331
2332 if (gfp_mask & __GFP_NOFAIL)
2333 goto bypass;
2334
2335 if (fatal_signal_pending(current))
2336 goto bypass;
2337
2338 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2339 nomem:
2340 if (!(gfp_mask & __GFP_NOFAIL))
2341 return -ENOMEM;
2342 bypass:
2343 return -EINTR;
2344
2345 done_restock:
2346 css_get_many(&memcg->css, batch);
2347 if (batch > nr_pages)
2348 refill_stock(memcg, batch - nr_pages);
2349 done:
2350 return ret;
2351 }
2352
2353 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2354 {
2355 if (mem_cgroup_is_root(memcg))
2356 return;
2357
2358 page_counter_uncharge(&memcg->memory, nr_pages);
2359 if (do_swap_account)
2360 page_counter_uncharge(&memcg->memsw, nr_pages);
2361
2362 css_put_many(&memcg->css, nr_pages);
2363 }
2364
2365 /*
2366 * A helper function to get mem_cgroup from ID. must be called under
2367 * rcu_read_lock(). The caller is responsible for calling
2368 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2369 * refcnt from swap can be called against removed memcg.)
2370 */
2371 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2372 {
2373 /* ID 0 is unused ID */
2374 if (!id)
2375 return NULL;
2376 return mem_cgroup_from_id(id);
2377 }
2378
2379 /*
2380 * try_get_mem_cgroup_from_page - look up page's memcg association
2381 * @page: the page
2382 *
2383 * Look up, get a css reference, and return the memcg that owns @page.
2384 *
2385 * The page must be locked to prevent racing with swap-in and page
2386 * cache charges. If coming from an unlocked page table, the caller
2387 * must ensure the page is on the LRU or this can race with charging.
2388 */
2389 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2390 {
2391 struct mem_cgroup *memcg;
2392 unsigned short id;
2393 swp_entry_t ent;
2394
2395 VM_BUG_ON_PAGE(!PageLocked(page), page);
2396
2397 memcg = page->mem_cgroup;
2398 if (memcg) {
2399 if (!css_tryget_online(&memcg->css))
2400 memcg = NULL;
2401 } else if (PageSwapCache(page)) {
2402 ent.val = page_private(page);
2403 id = lookup_swap_cgroup_id(ent);
2404 rcu_read_lock();
2405 memcg = mem_cgroup_lookup(id);
2406 if (memcg && !css_tryget_online(&memcg->css))
2407 memcg = NULL;
2408 rcu_read_unlock();
2409 }
2410 return memcg;
2411 }
2412
2413 static void lock_page_lru(struct page *page, int *isolated)
2414 {
2415 struct zone *zone = page_zone(page);
2416
2417 spin_lock_irq(&zone->lru_lock);
2418 if (PageLRU(page)) {
2419 struct lruvec *lruvec;
2420
2421 lruvec = mem_cgroup_page_lruvec(page, zone);
2422 ClearPageLRU(page);
2423 del_page_from_lru_list(page, lruvec, page_lru(page));
2424 *isolated = 1;
2425 } else
2426 *isolated = 0;
2427 }
2428
2429 static void unlock_page_lru(struct page *page, int isolated)
2430 {
2431 struct zone *zone = page_zone(page);
2432
2433 if (isolated) {
2434 struct lruvec *lruvec;
2435
2436 lruvec = mem_cgroup_page_lruvec(page, zone);
2437 VM_BUG_ON_PAGE(PageLRU(page), page);
2438 SetPageLRU(page);
2439 add_page_to_lru_list(page, lruvec, page_lru(page));
2440 }
2441 spin_unlock_irq(&zone->lru_lock);
2442 }
2443
2444 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2445 bool lrucare)
2446 {
2447 int isolated;
2448
2449 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2450
2451 /*
2452 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2453 * may already be on some other mem_cgroup's LRU. Take care of it.
2454 */
2455 if (lrucare)
2456 lock_page_lru(page, &isolated);
2457
2458 /*
2459 * Nobody should be changing or seriously looking at
2460 * page->mem_cgroup at this point:
2461 *
2462 * - the page is uncharged
2463 *
2464 * - the page is off-LRU
2465 *
2466 * - an anonymous fault has exclusive page access, except for
2467 * a locked page table
2468 *
2469 * - a page cache insertion, a swapin fault, or a migration
2470 * have the page locked
2471 */
2472 page->mem_cgroup = memcg;
2473
2474 if (lrucare)
2475 unlock_page_lru(page, isolated);
2476 }
2477
2478 #ifdef CONFIG_MEMCG_KMEM
2479 /*
2480 * The memcg_slab_mutex is held whenever a per memcg kmem cache is created or
2481 * destroyed. It protects memcg_caches arrays and memcg_slab_caches lists.
2482 */
2483 static DEFINE_MUTEX(memcg_slab_mutex);
2484
2485 /*
2486 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2487 * in the memcg_cache_params struct.
2488 */
2489 static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2490 {
2491 struct kmem_cache *cachep;
2492
2493 VM_BUG_ON(p->is_root_cache);
2494 cachep = p->root_cache;
2495 return cache_from_memcg_idx(cachep, memcg_cache_id(p->memcg));
2496 }
2497
2498 static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2499 unsigned long nr_pages)
2500 {
2501 struct page_counter *counter;
2502 int ret = 0;
2503
2504 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2505 if (ret < 0)
2506 return ret;
2507
2508 ret = try_charge(memcg, gfp, nr_pages);
2509 if (ret == -EINTR) {
2510 /*
2511 * try_charge() chose to bypass to root due to OOM kill or
2512 * fatal signal. Since our only options are to either fail
2513 * the allocation or charge it to this cgroup, do it as a
2514 * temporary condition. But we can't fail. From a kmem/slab
2515 * perspective, the cache has already been selected, by
2516 * mem_cgroup_kmem_get_cache(), so it is too late to change
2517 * our minds.
2518 *
2519 * This condition will only trigger if the task entered
2520 * memcg_charge_kmem in a sane state, but was OOM-killed
2521 * during try_charge() above. Tasks that were already dying
2522 * when the allocation triggers should have been already
2523 * directed to the root cgroup in memcontrol.h
2524 */
2525 page_counter_charge(&memcg->memory, nr_pages);
2526 if (do_swap_account)
2527 page_counter_charge(&memcg->memsw, nr_pages);
2528 css_get_many(&memcg->css, nr_pages);
2529 ret = 0;
2530 } else if (ret)
2531 page_counter_uncharge(&memcg->kmem, nr_pages);
2532
2533 return ret;
2534 }
2535
2536 static void memcg_uncharge_kmem(struct mem_cgroup *memcg,
2537 unsigned long nr_pages)
2538 {
2539 page_counter_uncharge(&memcg->memory, nr_pages);
2540 if (do_swap_account)
2541 page_counter_uncharge(&memcg->memsw, nr_pages);
2542
2543 page_counter_uncharge(&memcg->kmem, nr_pages);
2544
2545 css_put_many(&memcg->css, nr_pages);
2546 }
2547
2548 /*
2549 * helper for acessing a memcg's index. It will be used as an index in the
2550 * child cache array in kmem_cache, and also to derive its name. This function
2551 * will return -1 when this is not a kmem-limited memcg.
2552 */
2553 int memcg_cache_id(struct mem_cgroup *memcg)
2554 {
2555 return memcg ? memcg->kmemcg_id : -1;
2556 }
2557
2558 static int memcg_alloc_cache_id(void)
2559 {
2560 int id, size;
2561 int err;
2562
2563 id = ida_simple_get(&kmem_limited_groups,
2564 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2565 if (id < 0)
2566 return id;
2567
2568 if (id < memcg_limited_groups_array_size)
2569 return id;
2570
2571 /*
2572 * There's no space for the new id in memcg_caches arrays,
2573 * so we have to grow them.
2574 */
2575
2576 size = 2 * (id + 1);
2577 if (size < MEMCG_CACHES_MIN_SIZE)
2578 size = MEMCG_CACHES_MIN_SIZE;
2579 else if (size > MEMCG_CACHES_MAX_SIZE)
2580 size = MEMCG_CACHES_MAX_SIZE;
2581
2582 mutex_lock(&memcg_slab_mutex);
2583 err = memcg_update_all_caches(size);
2584 mutex_unlock(&memcg_slab_mutex);
2585
2586 if (err) {
2587 ida_simple_remove(&kmem_limited_groups, id);
2588 return err;
2589 }
2590 return id;
2591 }
2592
2593 static void memcg_free_cache_id(int id)
2594 {
2595 ida_simple_remove(&kmem_limited_groups, id);
2596 }
2597
2598 /*
2599 * We should update the current array size iff all caches updates succeed. This
2600 * can only be done from the slab side. The slab mutex needs to be held when
2601 * calling this.
2602 */
2603 void memcg_update_array_size(int num)
2604 {
2605 memcg_limited_groups_array_size = num;
2606 }
2607
2608 static void memcg_register_cache(struct mem_cgroup *memcg,
2609 struct kmem_cache *root_cache)
2610 {
2611 static char memcg_name_buf[NAME_MAX + 1]; /* protected by
2612 memcg_slab_mutex */
2613 struct kmem_cache *cachep;
2614 int id;
2615
2616 lockdep_assert_held(&memcg_slab_mutex);
2617
2618 id = memcg_cache_id(memcg);
2619
2620 /*
2621 * Since per-memcg caches are created asynchronously on first
2622 * allocation (see memcg_kmem_get_cache()), several threads can try to
2623 * create the same cache, but only one of them may succeed.
2624 */
2625 if (cache_from_memcg_idx(root_cache, id))
2626 return;
2627
2628 cgroup_name(memcg->css.cgroup, memcg_name_buf, NAME_MAX + 1);
2629 cachep = memcg_create_kmem_cache(memcg, root_cache, memcg_name_buf);
2630 /*
2631 * If we could not create a memcg cache, do not complain, because
2632 * that's not critical at all as we can always proceed with the root
2633 * cache.
2634 */
2635 if (!cachep)
2636 return;
2637
2638 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
2639
2640 /*
2641 * Since readers won't lock (see cache_from_memcg_idx()), we need a
2642 * barrier here to ensure nobody will see the kmem_cache partially
2643 * initialized.
2644 */
2645 smp_wmb();
2646
2647 BUG_ON(root_cache->memcg_params->memcg_caches[id]);
2648 root_cache->memcg_params->memcg_caches[id] = cachep;
2649 }
2650
2651 static void memcg_unregister_cache(struct kmem_cache *cachep)
2652 {
2653 struct kmem_cache *root_cache;
2654 struct mem_cgroup *memcg;
2655 int id;
2656
2657 lockdep_assert_held(&memcg_slab_mutex);
2658
2659 BUG_ON(is_root_cache(cachep));
2660
2661 root_cache = cachep->memcg_params->root_cache;
2662 memcg = cachep->memcg_params->memcg;
2663 id = memcg_cache_id(memcg);
2664
2665 BUG_ON(root_cache->memcg_params->memcg_caches[id] != cachep);
2666 root_cache->memcg_params->memcg_caches[id] = NULL;
2667
2668 list_del(&cachep->memcg_params->list);
2669
2670 kmem_cache_destroy(cachep);
2671 }
2672
2673 int __memcg_cleanup_cache_params(struct kmem_cache *s)
2674 {
2675 struct kmem_cache *c;
2676 int i, failed = 0;
2677
2678 mutex_lock(&memcg_slab_mutex);
2679 for_each_memcg_cache_index(i) {
2680 c = cache_from_memcg_idx(s, i);
2681 if (!c)
2682 continue;
2683
2684 memcg_unregister_cache(c);
2685
2686 if (cache_from_memcg_idx(s, i))
2687 failed++;
2688 }
2689 mutex_unlock(&memcg_slab_mutex);
2690 return failed;
2691 }
2692
2693 static void memcg_unregister_all_caches(struct mem_cgroup *memcg)
2694 {
2695 struct kmem_cache *cachep;
2696 struct memcg_cache_params *params, *tmp;
2697
2698 if (!memcg_kmem_is_active(memcg))
2699 return;
2700
2701 mutex_lock(&memcg_slab_mutex);
2702 list_for_each_entry_safe(params, tmp, &memcg->memcg_slab_caches, list) {
2703 cachep = memcg_params_to_cache(params);
2704 memcg_unregister_cache(cachep);
2705 }
2706 mutex_unlock(&memcg_slab_mutex);
2707 }
2708
2709 struct memcg_register_cache_work {
2710 struct mem_cgroup *memcg;
2711 struct kmem_cache *cachep;
2712 struct work_struct work;
2713 };
2714
2715 static void memcg_register_cache_func(struct work_struct *w)
2716 {
2717 struct memcg_register_cache_work *cw =
2718 container_of(w, struct memcg_register_cache_work, work);
2719 struct mem_cgroup *memcg = cw->memcg;
2720 struct kmem_cache *cachep = cw->cachep;
2721
2722 mutex_lock(&memcg_slab_mutex);
2723 memcg_register_cache(memcg, cachep);
2724 mutex_unlock(&memcg_slab_mutex);
2725
2726 css_put(&memcg->css);
2727 kfree(cw);
2728 }
2729
2730 /*
2731 * Enqueue the creation of a per-memcg kmem_cache.
2732 */
2733 static void __memcg_schedule_register_cache(struct mem_cgroup *memcg,
2734 struct kmem_cache *cachep)
2735 {
2736 struct memcg_register_cache_work *cw;
2737
2738 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2739 if (!cw)
2740 return;
2741
2742 css_get(&memcg->css);
2743
2744 cw->memcg = memcg;
2745 cw->cachep = cachep;
2746
2747 INIT_WORK(&cw->work, memcg_register_cache_func);
2748 schedule_work(&cw->work);
2749 }
2750
2751 static void memcg_schedule_register_cache(struct mem_cgroup *memcg,
2752 struct kmem_cache *cachep)
2753 {
2754 /*
2755 * We need to stop accounting when we kmalloc, because if the
2756 * corresponding kmalloc cache is not yet created, the first allocation
2757 * in __memcg_schedule_register_cache will recurse.
2758 *
2759 * However, it is better to enclose the whole function. Depending on
2760 * the debugging options enabled, INIT_WORK(), for instance, can
2761 * trigger an allocation. This too, will make us recurse. Because at
2762 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2763 * the safest choice is to do it like this, wrapping the whole function.
2764 */
2765 current->memcg_kmem_skip_account = 1;
2766 __memcg_schedule_register_cache(memcg, cachep);
2767 current->memcg_kmem_skip_account = 0;
2768 }
2769
2770 int __memcg_charge_slab(struct kmem_cache *cachep, gfp_t gfp, int order)
2771 {
2772 unsigned int nr_pages = 1 << order;
2773
2774 return memcg_charge_kmem(cachep->memcg_params->memcg, gfp, nr_pages);
2775 }
2776
2777 void __memcg_uncharge_slab(struct kmem_cache *cachep, int order)
2778 {
2779 unsigned int nr_pages = 1 << order;
2780
2781 memcg_uncharge_kmem(cachep->memcg_params->memcg, nr_pages);
2782 }
2783
2784 /*
2785 * Return the kmem_cache we're supposed to use for a slab allocation.
2786 * We try to use the current memcg's version of the cache.
2787 *
2788 * If the cache does not exist yet, if we are the first user of it,
2789 * we either create it immediately, if possible, or create it asynchronously
2790 * in a workqueue.
2791 * In the latter case, we will let the current allocation go through with
2792 * the original cache.
2793 *
2794 * Can't be called in interrupt context or from kernel threads.
2795 * This function needs to be called with rcu_read_lock() held.
2796 */
2797 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2798 {
2799 struct mem_cgroup *memcg;
2800 struct kmem_cache *memcg_cachep;
2801
2802 VM_BUG_ON(!cachep->memcg_params);
2803 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2804
2805 if (current->memcg_kmem_skip_account)
2806 return cachep;
2807
2808 memcg = get_mem_cgroup_from_mm(current->mm);
2809 if (!memcg_kmem_is_active(memcg))
2810 goto out;
2811
2812 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
2813 if (likely(memcg_cachep))
2814 return memcg_cachep;
2815
2816 /*
2817 * If we are in a safe context (can wait, and not in interrupt
2818 * context), we could be be predictable and return right away.
2819 * This would guarantee that the allocation being performed
2820 * already belongs in the new cache.
2821 *
2822 * However, there are some clashes that can arrive from locking.
2823 * For instance, because we acquire the slab_mutex while doing
2824 * memcg_create_kmem_cache, this means no further allocation
2825 * could happen with the slab_mutex held. So it's better to
2826 * defer everything.
2827 */
2828 memcg_schedule_register_cache(memcg, cachep);
2829 out:
2830 css_put(&memcg->css);
2831 return cachep;
2832 }
2833
2834 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2835 {
2836 if (!is_root_cache(cachep))
2837 css_put(&cachep->memcg_params->memcg->css);
2838 }
2839
2840 /*
2841 * We need to verify if the allocation against current->mm->owner's memcg is
2842 * possible for the given order. But the page is not allocated yet, so we'll
2843 * need a further commit step to do the final arrangements.
2844 *
2845 * It is possible for the task to switch cgroups in this mean time, so at
2846 * commit time, we can't rely on task conversion any longer. We'll then use
2847 * the handle argument to return to the caller which cgroup we should commit
2848 * against. We could also return the memcg directly and avoid the pointer
2849 * passing, but a boolean return value gives better semantics considering
2850 * the compiled-out case as well.
2851 *
2852 * Returning true means the allocation is possible.
2853 */
2854 bool
2855 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2856 {
2857 struct mem_cgroup *memcg;
2858 int ret;
2859
2860 *_memcg = NULL;
2861
2862 memcg = get_mem_cgroup_from_mm(current->mm);
2863
2864 if (!memcg_kmem_is_active(memcg)) {
2865 css_put(&memcg->css);
2866 return true;
2867 }
2868
2869 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2870 if (!ret)
2871 *_memcg = memcg;
2872
2873 css_put(&memcg->css);
2874 return (ret == 0);
2875 }
2876
2877 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2878 int order)
2879 {
2880 VM_BUG_ON(mem_cgroup_is_root(memcg));
2881
2882 /* The page allocation failed. Revert */
2883 if (!page) {
2884 memcg_uncharge_kmem(memcg, 1 << order);
2885 return;
2886 }
2887 page->mem_cgroup = memcg;
2888 }
2889
2890 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2891 {
2892 struct mem_cgroup *memcg = page->mem_cgroup;
2893
2894 if (!memcg)
2895 return;
2896
2897 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2898
2899 memcg_uncharge_kmem(memcg, 1 << order);
2900 page->mem_cgroup = NULL;
2901 }
2902 #endif /* CONFIG_MEMCG_KMEM */
2903
2904 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2905
2906 /*
2907 * Because tail pages are not marked as "used", set it. We're under
2908 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2909 * charge/uncharge will be never happen and move_account() is done under
2910 * compound_lock(), so we don't have to take care of races.
2911 */
2912 void mem_cgroup_split_huge_fixup(struct page *head)
2913 {
2914 int i;
2915
2916 if (mem_cgroup_disabled())
2917 return;
2918
2919 for (i = 1; i < HPAGE_PMD_NR; i++)
2920 head[i].mem_cgroup = head->mem_cgroup;
2921
2922 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2923 HPAGE_PMD_NR);
2924 }
2925 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2926
2927 /**
2928 * mem_cgroup_move_account - move account of the page
2929 * @page: the page
2930 * @nr_pages: number of regular pages (>1 for huge pages)
2931 * @from: mem_cgroup which the page is moved from.
2932 * @to: mem_cgroup which the page is moved to. @from != @to.
2933 *
2934 * The caller must confirm following.
2935 * - page is not on LRU (isolate_page() is useful.)
2936 * - compound_lock is held when nr_pages > 1
2937 *
2938 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2939 * from old cgroup.
2940 */
2941 static int mem_cgroup_move_account(struct page *page,
2942 unsigned int nr_pages,
2943 struct mem_cgroup *from,
2944 struct mem_cgroup *to)
2945 {
2946 unsigned long flags;
2947 int ret;
2948
2949 VM_BUG_ON(from == to);
2950 VM_BUG_ON_PAGE(PageLRU(page), page);
2951 /*
2952 * The page is isolated from LRU. So, collapse function
2953 * will not handle this page. But page splitting can happen.
2954 * Do this check under compound_page_lock(). The caller should
2955 * hold it.
2956 */
2957 ret = -EBUSY;
2958 if (nr_pages > 1 && !PageTransHuge(page))
2959 goto out;
2960
2961 /*
2962 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
2963 * of its source page while we change it: page migration takes
2964 * both pages off the LRU, but page cache replacement doesn't.
2965 */
2966 if (!trylock_page(page))
2967 goto out;
2968
2969 ret = -EINVAL;
2970 if (page->mem_cgroup != from)
2971 goto out_unlock;
2972
2973 spin_lock_irqsave(&from->move_lock, flags);
2974
2975 if (!PageAnon(page) && page_mapped(page)) {
2976 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2977 nr_pages);
2978 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2979 nr_pages);
2980 }
2981
2982 if (PageWriteback(page)) {
2983 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2984 nr_pages);
2985 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2986 nr_pages);
2987 }
2988
2989 /*
2990 * It is safe to change page->mem_cgroup here because the page
2991 * is referenced, charged, and isolated - we can't race with
2992 * uncharging, charging, migration, or LRU putback.
2993 */
2994
2995 /* caller should have done css_get */
2996 page->mem_cgroup = to;
2997 spin_unlock_irqrestore(&from->move_lock, flags);
2998
2999 ret = 0;
3000
3001 local_irq_disable();
3002 mem_cgroup_charge_statistics(to, page, nr_pages);
3003 memcg_check_events(to, page);
3004 mem_cgroup_charge_statistics(from, page, -nr_pages);
3005 memcg_check_events(from, page);
3006 local_irq_enable();
3007 out_unlock:
3008 unlock_page(page);
3009 out:
3010 return ret;
3011 }
3012
3013 #ifdef CONFIG_MEMCG_SWAP
3014 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
3015 bool charge)
3016 {
3017 int val = (charge) ? 1 : -1;
3018 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
3019 }
3020
3021 /**
3022 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3023 * @entry: swap entry to be moved
3024 * @from: mem_cgroup which the entry is moved from
3025 * @to: mem_cgroup which the entry is moved to
3026 *
3027 * It succeeds only when the swap_cgroup's record for this entry is the same
3028 * as the mem_cgroup's id of @from.
3029 *
3030 * Returns 0 on success, -EINVAL on failure.
3031 *
3032 * The caller must have charged to @to, IOW, called page_counter_charge() about
3033 * both res and memsw, and called css_get().
3034 */
3035 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3036 struct mem_cgroup *from, struct mem_cgroup *to)
3037 {
3038 unsigned short old_id, new_id;
3039
3040 old_id = mem_cgroup_id(from);
3041 new_id = mem_cgroup_id(to);
3042
3043 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3044 mem_cgroup_swap_statistics(from, false);
3045 mem_cgroup_swap_statistics(to, true);
3046 return 0;
3047 }
3048 return -EINVAL;
3049 }
3050 #else
3051 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3052 struct mem_cgroup *from, struct mem_cgroup *to)
3053 {
3054 return -EINVAL;
3055 }
3056 #endif
3057
3058 static DEFINE_MUTEX(memcg_limit_mutex);
3059
3060 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3061 unsigned long limit)
3062 {
3063 unsigned long curusage;
3064 unsigned long oldusage;
3065 bool enlarge = false;
3066 int retry_count;
3067 int ret;
3068
3069 /*
3070 * For keeping hierarchical_reclaim simple, how long we should retry
3071 * is depends on callers. We set our retry-count to be function
3072 * of # of children which we should visit in this loop.
3073 */
3074 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3075 mem_cgroup_count_children(memcg);
3076
3077 oldusage = page_counter_read(&memcg->memory);
3078
3079 do {
3080 if (signal_pending(current)) {
3081 ret = -EINTR;
3082 break;
3083 }
3084
3085 mutex_lock(&memcg_limit_mutex);
3086 if (limit > memcg->memsw.limit) {
3087 mutex_unlock(&memcg_limit_mutex);
3088 ret = -EINVAL;
3089 break;
3090 }
3091 if (limit > memcg->memory.limit)
3092 enlarge = true;
3093 ret = page_counter_limit(&memcg->memory, limit);
3094 mutex_unlock(&memcg_limit_mutex);
3095
3096 if (!ret)
3097 break;
3098
3099 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
3100
3101 curusage = page_counter_read(&memcg->memory);
3102 /* Usage is reduced ? */
3103 if (curusage >= oldusage)
3104 retry_count--;
3105 else
3106 oldusage = curusage;
3107 } while (retry_count);
3108
3109 if (!ret && enlarge)
3110 memcg_oom_recover(memcg);
3111
3112 return ret;
3113 }
3114
3115 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3116 unsigned long limit)
3117 {
3118 unsigned long curusage;
3119 unsigned long oldusage;
3120 bool enlarge = false;
3121 int retry_count;
3122 int ret;
3123
3124 /* see mem_cgroup_resize_res_limit */
3125 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3126 mem_cgroup_count_children(memcg);
3127
3128 oldusage = page_counter_read(&memcg->memsw);
3129
3130 do {
3131 if (signal_pending(current)) {
3132 ret = -EINTR;
3133 break;
3134 }
3135
3136 mutex_lock(&memcg_limit_mutex);
3137 if (limit < memcg->memory.limit) {
3138 mutex_unlock(&memcg_limit_mutex);
3139 ret = -EINVAL;
3140 break;
3141 }
3142 if (limit > memcg->memsw.limit)
3143 enlarge = true;
3144 ret = page_counter_limit(&memcg->memsw, limit);
3145 mutex_unlock(&memcg_limit_mutex);
3146
3147 if (!ret)
3148 break;
3149
3150 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3151
3152 curusage = page_counter_read(&memcg->memsw);
3153 /* Usage is reduced ? */
3154 if (curusage >= oldusage)
3155 retry_count--;
3156 else
3157 oldusage = curusage;
3158 } while (retry_count);
3159
3160 if (!ret && enlarge)
3161 memcg_oom_recover(memcg);
3162
3163 return ret;
3164 }
3165
3166 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3167 gfp_t gfp_mask,
3168 unsigned long *total_scanned)
3169 {
3170 unsigned long nr_reclaimed = 0;
3171 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3172 unsigned long reclaimed;
3173 int loop = 0;
3174 struct mem_cgroup_tree_per_zone *mctz;
3175 unsigned long excess;
3176 unsigned long nr_scanned;
3177
3178 if (order > 0)
3179 return 0;
3180
3181 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3182 /*
3183 * This loop can run a while, specially if mem_cgroup's continuously
3184 * keep exceeding their soft limit and putting the system under
3185 * pressure
3186 */
3187 do {
3188 if (next_mz)
3189 mz = next_mz;
3190 else
3191 mz = mem_cgroup_largest_soft_limit_node(mctz);
3192 if (!mz)
3193 break;
3194
3195 nr_scanned = 0;
3196 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3197 gfp_mask, &nr_scanned);
3198 nr_reclaimed += reclaimed;
3199 *total_scanned += nr_scanned;
3200 spin_lock_irq(&mctz->lock);
3201 __mem_cgroup_remove_exceeded(mz, mctz);
3202
3203 /*
3204 * If we failed to reclaim anything from this memory cgroup
3205 * it is time to move on to the next cgroup
3206 */
3207 next_mz = NULL;
3208 if (!reclaimed)
3209 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3210
3211 excess = soft_limit_excess(mz->memcg);
3212 /*
3213 * One school of thought says that we should not add
3214 * back the node to the tree if reclaim returns 0.
3215 * But our reclaim could return 0, simply because due
3216 * to priority we are exposing a smaller subset of
3217 * memory to reclaim from. Consider this as a longer
3218 * term TODO.
3219 */
3220 /* If excess == 0, no tree ops */
3221 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3222 spin_unlock_irq(&mctz->lock);
3223 css_put(&mz->memcg->css);
3224 loop++;
3225 /*
3226 * Could not reclaim anything and there are no more
3227 * mem cgroups to try or we seem to be looping without
3228 * reclaiming anything.
3229 */
3230 if (!nr_reclaimed &&
3231 (next_mz == NULL ||
3232 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3233 break;
3234 } while (!nr_reclaimed);
3235 if (next_mz)
3236 css_put(&next_mz->memcg->css);
3237 return nr_reclaimed;
3238 }
3239
3240 /*
3241 * Test whether @memcg has children, dead or alive. Note that this
3242 * function doesn't care whether @memcg has use_hierarchy enabled and
3243 * returns %true if there are child csses according to the cgroup
3244 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3245 */
3246 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3247 {
3248 bool ret;
3249
3250 /*
3251 * The lock does not prevent addition or deletion of children, but
3252 * it prevents a new child from being initialized based on this
3253 * parent in css_online(), so it's enough to decide whether
3254 * hierarchically inherited attributes can still be changed or not.
3255 */
3256 lockdep_assert_held(&memcg_create_mutex);
3257
3258 rcu_read_lock();
3259 ret = css_next_child(NULL, &memcg->css);
3260 rcu_read_unlock();
3261 return ret;
3262 }
3263
3264 /*
3265 * Reclaims as many pages from the given memcg as possible and moves
3266 * the rest to the parent.
3267 *
3268 * Caller is responsible for holding css reference for memcg.
3269 */
3270 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3271 {
3272 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3273
3274 /* we call try-to-free pages for make this cgroup empty */
3275 lru_add_drain_all();
3276 /* try to free all pages in this cgroup */
3277 while (nr_retries && page_counter_read(&memcg->memory)) {
3278 int progress;
3279
3280 if (signal_pending(current))
3281 return -EINTR;
3282
3283 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3284 GFP_KERNEL, true);
3285 if (!progress) {
3286 nr_retries--;
3287 /* maybe some writeback is necessary */
3288 congestion_wait(BLK_RW_ASYNC, HZ/10);
3289 }
3290
3291 }
3292
3293 return 0;
3294 }
3295
3296 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3297 char *buf, size_t nbytes,
3298 loff_t off)
3299 {
3300 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3301
3302 if (mem_cgroup_is_root(memcg))
3303 return -EINVAL;
3304 return mem_cgroup_force_empty(memcg) ?: nbytes;
3305 }
3306
3307 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3308 struct cftype *cft)
3309 {
3310 return mem_cgroup_from_css(css)->use_hierarchy;
3311 }
3312
3313 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3314 struct cftype *cft, u64 val)
3315 {
3316 int retval = 0;
3317 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3318 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3319
3320 mutex_lock(&memcg_create_mutex);
3321
3322 if (memcg->use_hierarchy == val)
3323 goto out;
3324
3325 /*
3326 * If parent's use_hierarchy is set, we can't make any modifications
3327 * in the child subtrees. If it is unset, then the change can
3328 * occur, provided the current cgroup has no children.
3329 *
3330 * For the root cgroup, parent_mem is NULL, we allow value to be
3331 * set if there are no children.
3332 */
3333 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3334 (val == 1 || val == 0)) {
3335 if (!memcg_has_children(memcg))
3336 memcg->use_hierarchy = val;
3337 else
3338 retval = -EBUSY;
3339 } else
3340 retval = -EINVAL;
3341
3342 out:
3343 mutex_unlock(&memcg_create_mutex);
3344
3345 return retval;
3346 }
3347
3348 static unsigned long tree_stat(struct mem_cgroup *memcg,
3349 enum mem_cgroup_stat_index idx)
3350 {
3351 struct mem_cgroup *iter;
3352 long val = 0;
3353
3354 /* Per-cpu values can be negative, use a signed accumulator */
3355 for_each_mem_cgroup_tree(iter, memcg)
3356 val += mem_cgroup_read_stat(iter, idx);
3357
3358 if (val < 0) /* race ? */
3359 val = 0;
3360 return val;
3361 }
3362
3363 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3364 {
3365 u64 val;
3366
3367 if (mem_cgroup_is_root(memcg)) {
3368 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3369 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3370 if (swap)
3371 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3372 } else {
3373 if (!swap)
3374 val = page_counter_read(&memcg->memory);
3375 else
3376 val = page_counter_read(&memcg->memsw);
3377 }
3378 return val << PAGE_SHIFT;
3379 }
3380
3381 enum {
3382 RES_USAGE,
3383 RES_LIMIT,
3384 RES_MAX_USAGE,
3385 RES_FAILCNT,
3386 RES_SOFT_LIMIT,
3387 };
3388
3389 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3390 struct cftype *cft)
3391 {
3392 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3393 struct page_counter *counter;
3394
3395 switch (MEMFILE_TYPE(cft->private)) {
3396 case _MEM:
3397 counter = &memcg->memory;
3398 break;
3399 case _MEMSWAP:
3400 counter = &memcg->memsw;
3401 break;
3402 case _KMEM:
3403 counter = &memcg->kmem;
3404 break;
3405 default:
3406 BUG();
3407 }
3408
3409 switch (MEMFILE_ATTR(cft->private)) {
3410 case RES_USAGE:
3411 if (counter == &memcg->memory)
3412 return mem_cgroup_usage(memcg, false);
3413 if (counter == &memcg->memsw)
3414 return mem_cgroup_usage(memcg, true);
3415 return (u64)page_counter_read(counter) * PAGE_SIZE;
3416 case RES_LIMIT:
3417 return (u64)counter->limit * PAGE_SIZE;
3418 case RES_MAX_USAGE:
3419 return (u64)counter->watermark * PAGE_SIZE;
3420 case RES_FAILCNT:
3421 return counter->failcnt;
3422 case RES_SOFT_LIMIT:
3423 return (u64)memcg->soft_limit * PAGE_SIZE;
3424 default:
3425 BUG();
3426 }
3427 }
3428
3429 #ifdef CONFIG_MEMCG_KMEM
3430 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3431 unsigned long nr_pages)
3432 {
3433 int err = 0;
3434 int memcg_id;
3435
3436 if (memcg_kmem_is_active(memcg))
3437 return 0;
3438
3439 /*
3440 * For simplicity, we won't allow this to be disabled. It also can't
3441 * be changed if the cgroup has children already, or if tasks had
3442 * already joined.
3443 *
3444 * If tasks join before we set the limit, a person looking at
3445 * kmem.usage_in_bytes will have no way to determine when it took
3446 * place, which makes the value quite meaningless.
3447 *
3448 * After it first became limited, changes in the value of the limit are
3449 * of course permitted.
3450 */
3451 mutex_lock(&memcg_create_mutex);
3452 if (cgroup_has_tasks(memcg->css.cgroup) ||
3453 (memcg->use_hierarchy && memcg_has_children(memcg)))
3454 err = -EBUSY;
3455 mutex_unlock(&memcg_create_mutex);
3456 if (err)
3457 goto out;
3458
3459 memcg_id = memcg_alloc_cache_id();
3460 if (memcg_id < 0) {
3461 err = memcg_id;
3462 goto out;
3463 }
3464
3465 /*
3466 * We couldn't have accounted to this cgroup, because it hasn't got
3467 * activated yet, so this should succeed.
3468 */
3469 err = page_counter_limit(&memcg->kmem, nr_pages);
3470 VM_BUG_ON(err);
3471
3472 static_key_slow_inc(&memcg_kmem_enabled_key);
3473 /*
3474 * A memory cgroup is considered kmem-active as soon as it gets
3475 * kmemcg_id. Setting the id after enabling static branching will
3476 * guarantee no one starts accounting before all call sites are
3477 * patched.
3478 */
3479 memcg->kmemcg_id = memcg_id;
3480 out:
3481 return err;
3482 }
3483
3484 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3485 unsigned long limit)
3486 {
3487 int ret;
3488
3489 mutex_lock(&memcg_limit_mutex);
3490 if (!memcg_kmem_is_active(memcg))
3491 ret = memcg_activate_kmem(memcg, limit);
3492 else
3493 ret = page_counter_limit(&memcg->kmem, limit);
3494 mutex_unlock(&memcg_limit_mutex);
3495 return ret;
3496 }
3497
3498 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3499 {
3500 int ret = 0;
3501 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3502
3503 if (!parent)
3504 return 0;
3505
3506 mutex_lock(&memcg_limit_mutex);
3507 /*
3508 * If the parent cgroup is not kmem-active now, it cannot be activated
3509 * after this point, because it has at least one child already.
3510 */
3511 if (memcg_kmem_is_active(parent))
3512 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3513 mutex_unlock(&memcg_limit_mutex);
3514 return ret;
3515 }
3516 #else
3517 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3518 unsigned long limit)
3519 {
3520 return -EINVAL;
3521 }
3522 #endif /* CONFIG_MEMCG_KMEM */
3523
3524 /*
3525 * The user of this function is...
3526 * RES_LIMIT.
3527 */
3528 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3529 char *buf, size_t nbytes, loff_t off)
3530 {
3531 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3532 unsigned long nr_pages;
3533 int ret;
3534
3535 buf = strstrip(buf);
3536 ret = page_counter_memparse(buf, &nr_pages);
3537 if (ret)
3538 return ret;
3539
3540 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3541 case RES_LIMIT:
3542 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3543 ret = -EINVAL;
3544 break;
3545 }
3546 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3547 case _MEM:
3548 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3549 break;
3550 case _MEMSWAP:
3551 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3552 break;
3553 case _KMEM:
3554 ret = memcg_update_kmem_limit(memcg, nr_pages);
3555 break;
3556 }
3557 break;
3558 case RES_SOFT_LIMIT:
3559 memcg->soft_limit = nr_pages;
3560 ret = 0;
3561 break;
3562 }
3563 return ret ?: nbytes;
3564 }
3565
3566 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3567 size_t nbytes, loff_t off)
3568 {
3569 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3570 struct page_counter *counter;
3571
3572 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3573 case _MEM:
3574 counter = &memcg->memory;
3575 break;
3576 case _MEMSWAP:
3577 counter = &memcg->memsw;
3578 break;
3579 case _KMEM:
3580 counter = &memcg->kmem;
3581 break;
3582 default:
3583 BUG();
3584 }
3585
3586 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3587 case RES_MAX_USAGE:
3588 page_counter_reset_watermark(counter);
3589 break;
3590 case RES_FAILCNT:
3591 counter->failcnt = 0;
3592 break;
3593 default:
3594 BUG();
3595 }
3596
3597 return nbytes;
3598 }
3599
3600 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3601 struct cftype *cft)
3602 {
3603 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3604 }
3605
3606 #ifdef CONFIG_MMU
3607 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3608 struct cftype *cft, u64 val)
3609 {
3610 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3611
3612 if (val >= (1 << NR_MOVE_TYPE))
3613 return -EINVAL;
3614
3615 /*
3616 * No kind of locking is needed in here, because ->can_attach() will
3617 * check this value once in the beginning of the process, and then carry
3618 * on with stale data. This means that changes to this value will only
3619 * affect task migrations starting after the change.
3620 */
3621 memcg->move_charge_at_immigrate = val;
3622 return 0;
3623 }
3624 #else
3625 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3626 struct cftype *cft, u64 val)
3627 {
3628 return -ENOSYS;
3629 }
3630 #endif
3631
3632 #ifdef CONFIG_NUMA
3633 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3634 {
3635 struct numa_stat {
3636 const char *name;
3637 unsigned int lru_mask;
3638 };
3639
3640 static const struct numa_stat stats[] = {
3641 { "total", LRU_ALL },
3642 { "file", LRU_ALL_FILE },
3643 { "anon", LRU_ALL_ANON },
3644 { "unevictable", BIT(LRU_UNEVICTABLE) },
3645 };
3646 const struct numa_stat *stat;
3647 int nid;
3648 unsigned long nr;
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3650
3651 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3652 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3653 seq_printf(m, "%s=%lu", stat->name, nr);
3654 for_each_node_state(nid, N_MEMORY) {
3655 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3656 stat->lru_mask);
3657 seq_printf(m, " N%d=%lu", nid, nr);
3658 }
3659 seq_putc(m, '\n');
3660 }
3661
3662 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3663 struct mem_cgroup *iter;
3664
3665 nr = 0;
3666 for_each_mem_cgroup_tree(iter, memcg)
3667 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3668 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3669 for_each_node_state(nid, N_MEMORY) {
3670 nr = 0;
3671 for_each_mem_cgroup_tree(iter, memcg)
3672 nr += mem_cgroup_node_nr_lru_pages(
3673 iter, nid, stat->lru_mask);
3674 seq_printf(m, " N%d=%lu", nid, nr);
3675 }
3676 seq_putc(m, '\n');
3677 }
3678
3679 return 0;
3680 }
3681 #endif /* CONFIG_NUMA */
3682
3683 static int memcg_stat_show(struct seq_file *m, void *v)
3684 {
3685 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3686 unsigned long memory, memsw;
3687 struct mem_cgroup *mi;
3688 unsigned int i;
3689
3690 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3691
3692 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3693 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3694 continue;
3695 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3696 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3697 }
3698
3699 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3700 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3701 mem_cgroup_read_events(memcg, i));
3702
3703 for (i = 0; i < NR_LRU_LISTS; i++)
3704 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3705 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3706
3707 /* Hierarchical information */
3708 memory = memsw = PAGE_COUNTER_MAX;
3709 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3710 memory = min(memory, mi->memory.limit);
3711 memsw = min(memsw, mi->memsw.limit);
3712 }
3713 seq_printf(m, "hierarchical_memory_limit %llu\n",
3714 (u64)memory * PAGE_SIZE);
3715 if (do_swap_account)
3716 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3717 (u64)memsw * PAGE_SIZE);
3718
3719 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3720 long long val = 0;
3721
3722 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3723 continue;
3724 for_each_mem_cgroup_tree(mi, memcg)
3725 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3726 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3727 }
3728
3729 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3730 unsigned long long val = 0;
3731
3732 for_each_mem_cgroup_tree(mi, memcg)
3733 val += mem_cgroup_read_events(mi, i);
3734 seq_printf(m, "total_%s %llu\n",
3735 mem_cgroup_events_names[i], val);
3736 }
3737
3738 for (i = 0; i < NR_LRU_LISTS; i++) {
3739 unsigned long long val = 0;
3740
3741 for_each_mem_cgroup_tree(mi, memcg)
3742 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3743 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3744 }
3745
3746 #ifdef CONFIG_DEBUG_VM
3747 {
3748 int nid, zid;
3749 struct mem_cgroup_per_zone *mz;
3750 struct zone_reclaim_stat *rstat;
3751 unsigned long recent_rotated[2] = {0, 0};
3752 unsigned long recent_scanned[2] = {0, 0};
3753
3754 for_each_online_node(nid)
3755 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3756 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3757 rstat = &mz->lruvec.reclaim_stat;
3758
3759 recent_rotated[0] += rstat->recent_rotated[0];
3760 recent_rotated[1] += rstat->recent_rotated[1];
3761 recent_scanned[0] += rstat->recent_scanned[0];
3762 recent_scanned[1] += rstat->recent_scanned[1];
3763 }
3764 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3765 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3766 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3767 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3768 }
3769 #endif
3770
3771 return 0;
3772 }
3773
3774 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3775 struct cftype *cft)
3776 {
3777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3778
3779 return mem_cgroup_swappiness(memcg);
3780 }
3781
3782 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3783 struct cftype *cft, u64 val)
3784 {
3785 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3786
3787 if (val > 100)
3788 return -EINVAL;
3789
3790 if (css->parent)
3791 memcg->swappiness = val;
3792 else
3793 vm_swappiness = val;
3794
3795 return 0;
3796 }
3797
3798 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3799 {
3800 struct mem_cgroup_threshold_ary *t;
3801 unsigned long usage;
3802 int i;
3803
3804 rcu_read_lock();
3805 if (!swap)
3806 t = rcu_dereference(memcg->thresholds.primary);
3807 else
3808 t = rcu_dereference(memcg->memsw_thresholds.primary);
3809
3810 if (!t)
3811 goto unlock;
3812
3813 usage = mem_cgroup_usage(memcg, swap);
3814
3815 /*
3816 * current_threshold points to threshold just below or equal to usage.
3817 * If it's not true, a threshold was crossed after last
3818 * call of __mem_cgroup_threshold().
3819 */
3820 i = t->current_threshold;
3821
3822 /*
3823 * Iterate backward over array of thresholds starting from
3824 * current_threshold and check if a threshold is crossed.
3825 * If none of thresholds below usage is crossed, we read
3826 * only one element of the array here.
3827 */
3828 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3829 eventfd_signal(t->entries[i].eventfd, 1);
3830
3831 /* i = current_threshold + 1 */
3832 i++;
3833
3834 /*
3835 * Iterate forward over array of thresholds starting from
3836 * current_threshold+1 and check if a threshold is crossed.
3837 * If none of thresholds above usage is crossed, we read
3838 * only one element of the array here.
3839 */
3840 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3841 eventfd_signal(t->entries[i].eventfd, 1);
3842
3843 /* Update current_threshold */
3844 t->current_threshold = i - 1;
3845 unlock:
3846 rcu_read_unlock();
3847 }
3848
3849 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3850 {
3851 while (memcg) {
3852 __mem_cgroup_threshold(memcg, false);
3853 if (do_swap_account)
3854 __mem_cgroup_threshold(memcg, true);
3855
3856 memcg = parent_mem_cgroup(memcg);
3857 }
3858 }
3859
3860 static int compare_thresholds(const void *a, const void *b)
3861 {
3862 const struct mem_cgroup_threshold *_a = a;
3863 const struct mem_cgroup_threshold *_b = b;
3864
3865 if (_a->threshold > _b->threshold)
3866 return 1;
3867
3868 if (_a->threshold < _b->threshold)
3869 return -1;
3870
3871 return 0;
3872 }
3873
3874 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3875 {
3876 struct mem_cgroup_eventfd_list *ev;
3877
3878 spin_lock(&memcg_oom_lock);
3879
3880 list_for_each_entry(ev, &memcg->oom_notify, list)
3881 eventfd_signal(ev->eventfd, 1);
3882
3883 spin_unlock(&memcg_oom_lock);
3884 return 0;
3885 }
3886
3887 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3888 {
3889 struct mem_cgroup *iter;
3890
3891 for_each_mem_cgroup_tree(iter, memcg)
3892 mem_cgroup_oom_notify_cb(iter);
3893 }
3894
3895 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3896 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3897 {
3898 struct mem_cgroup_thresholds *thresholds;
3899 struct mem_cgroup_threshold_ary *new;
3900 unsigned long threshold;
3901 unsigned long usage;
3902 int i, size, ret;
3903
3904 ret = page_counter_memparse(args, &threshold);
3905 if (ret)
3906 return ret;
3907
3908 mutex_lock(&memcg->thresholds_lock);
3909
3910 if (type == _MEM) {
3911 thresholds = &memcg->thresholds;
3912 usage = mem_cgroup_usage(memcg, false);
3913 } else if (type == _MEMSWAP) {
3914 thresholds = &memcg->memsw_thresholds;
3915 usage = mem_cgroup_usage(memcg, true);
3916 } else
3917 BUG();
3918
3919 /* Check if a threshold crossed before adding a new one */
3920 if (thresholds->primary)
3921 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3922
3923 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3924
3925 /* Allocate memory for new array of thresholds */
3926 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3927 GFP_KERNEL);
3928 if (!new) {
3929 ret = -ENOMEM;
3930 goto unlock;
3931 }
3932 new->size = size;
3933
3934 /* Copy thresholds (if any) to new array */
3935 if (thresholds->primary) {
3936 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3937 sizeof(struct mem_cgroup_threshold));
3938 }
3939
3940 /* Add new threshold */
3941 new->entries[size - 1].eventfd = eventfd;
3942 new->entries[size - 1].threshold = threshold;
3943
3944 /* Sort thresholds. Registering of new threshold isn't time-critical */
3945 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3946 compare_thresholds, NULL);
3947
3948 /* Find current threshold */
3949 new->current_threshold = -1;
3950 for (i = 0; i < size; i++) {
3951 if (new->entries[i].threshold <= usage) {
3952 /*
3953 * new->current_threshold will not be used until
3954 * rcu_assign_pointer(), so it's safe to increment
3955 * it here.
3956 */
3957 ++new->current_threshold;
3958 } else
3959 break;
3960 }
3961
3962 /* Free old spare buffer and save old primary buffer as spare */
3963 kfree(thresholds->spare);
3964 thresholds->spare = thresholds->primary;
3965
3966 rcu_assign_pointer(thresholds->primary, new);
3967
3968 /* To be sure that nobody uses thresholds */
3969 synchronize_rcu();
3970
3971 unlock:
3972 mutex_unlock(&memcg->thresholds_lock);
3973
3974 return ret;
3975 }
3976
3977 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3978 struct eventfd_ctx *eventfd, const char *args)
3979 {
3980 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3981 }
3982
3983 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3984 struct eventfd_ctx *eventfd, const char *args)
3985 {
3986 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3987 }
3988
3989 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3990 struct eventfd_ctx *eventfd, enum res_type type)
3991 {
3992 struct mem_cgroup_thresholds *thresholds;
3993 struct mem_cgroup_threshold_ary *new;
3994 unsigned long usage;
3995 int i, j, size;
3996
3997 mutex_lock(&memcg->thresholds_lock);
3998
3999 if (type == _MEM) {
4000 thresholds = &memcg->thresholds;
4001 usage = mem_cgroup_usage(memcg, false);
4002 } else if (type == _MEMSWAP) {
4003 thresholds = &memcg->memsw_thresholds;
4004 usage = mem_cgroup_usage(memcg, true);
4005 } else
4006 BUG();
4007
4008 if (!thresholds->primary)
4009 goto unlock;
4010
4011 /* Check if a threshold crossed before removing */
4012 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4013
4014 /* Calculate new number of threshold */
4015 size = 0;
4016 for (i = 0; i < thresholds->primary->size; i++) {
4017 if (thresholds->primary->entries[i].eventfd != eventfd)
4018 size++;
4019 }
4020
4021 new = thresholds->spare;
4022
4023 /* Set thresholds array to NULL if we don't have thresholds */
4024 if (!size) {
4025 kfree(new);
4026 new = NULL;
4027 goto swap_buffers;
4028 }
4029
4030 new->size = size;
4031
4032 /* Copy thresholds and find current threshold */
4033 new->current_threshold = -1;
4034 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4035 if (thresholds->primary->entries[i].eventfd == eventfd)
4036 continue;
4037
4038 new->entries[j] = thresholds->primary->entries[i];
4039 if (new->entries[j].threshold <= usage) {
4040 /*
4041 * new->current_threshold will not be used
4042 * until rcu_assign_pointer(), so it's safe to increment
4043 * it here.
4044 */
4045 ++new->current_threshold;
4046 }
4047 j++;
4048 }
4049
4050 swap_buffers:
4051 /* Swap primary and spare array */
4052 thresholds->spare = thresholds->primary;
4053 /* If all events are unregistered, free the spare array */
4054 if (!new) {
4055 kfree(thresholds->spare);
4056 thresholds->spare = NULL;
4057 }
4058
4059 rcu_assign_pointer(thresholds->primary, new);
4060
4061 /* To be sure that nobody uses thresholds */
4062 synchronize_rcu();
4063 unlock:
4064 mutex_unlock(&memcg->thresholds_lock);
4065 }
4066
4067 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4068 struct eventfd_ctx *eventfd)
4069 {
4070 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4071 }
4072
4073 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4074 struct eventfd_ctx *eventfd)
4075 {
4076 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4077 }
4078
4079 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4080 struct eventfd_ctx *eventfd, const char *args)
4081 {
4082 struct mem_cgroup_eventfd_list *event;
4083
4084 event = kmalloc(sizeof(*event), GFP_KERNEL);
4085 if (!event)
4086 return -ENOMEM;
4087
4088 spin_lock(&memcg_oom_lock);
4089
4090 event->eventfd = eventfd;
4091 list_add(&event->list, &memcg->oom_notify);
4092
4093 /* already in OOM ? */
4094 if (atomic_read(&memcg->under_oom))
4095 eventfd_signal(eventfd, 1);
4096 spin_unlock(&memcg_oom_lock);
4097
4098 return 0;
4099 }
4100
4101 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4102 struct eventfd_ctx *eventfd)
4103 {
4104 struct mem_cgroup_eventfd_list *ev, *tmp;
4105
4106 spin_lock(&memcg_oom_lock);
4107
4108 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4109 if (ev->eventfd == eventfd) {
4110 list_del(&ev->list);
4111 kfree(ev);
4112 }
4113 }
4114
4115 spin_unlock(&memcg_oom_lock);
4116 }
4117
4118 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4119 {
4120 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
4121
4122 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4123 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
4124 return 0;
4125 }
4126
4127 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4128 struct cftype *cft, u64 val)
4129 {
4130 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4131
4132 /* cannot set to root cgroup and only 0 and 1 are allowed */
4133 if (!css->parent || !((val == 0) || (val == 1)))
4134 return -EINVAL;
4135
4136 memcg->oom_kill_disable = val;
4137 if (!val)
4138 memcg_oom_recover(memcg);
4139
4140 return 0;
4141 }
4142
4143 #ifdef CONFIG_MEMCG_KMEM
4144 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4145 {
4146 int ret;
4147
4148 ret = memcg_propagate_kmem(memcg);
4149 if (ret)
4150 return ret;
4151
4152 return mem_cgroup_sockets_init(memcg, ss);
4153 }
4154
4155 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4156 {
4157 memcg_unregister_all_caches(memcg);
4158 mem_cgroup_sockets_destroy(memcg);
4159 }
4160 #else
4161 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4162 {
4163 return 0;
4164 }
4165
4166 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4167 {
4168 }
4169 #endif
4170
4171 /*
4172 * DO NOT USE IN NEW FILES.
4173 *
4174 * "cgroup.event_control" implementation.
4175 *
4176 * This is way over-engineered. It tries to support fully configurable
4177 * events for each user. Such level of flexibility is completely
4178 * unnecessary especially in the light of the planned unified hierarchy.
4179 *
4180 * Please deprecate this and replace with something simpler if at all
4181 * possible.
4182 */
4183
4184 /*
4185 * Unregister event and free resources.
4186 *
4187 * Gets called from workqueue.
4188 */
4189 static void memcg_event_remove(struct work_struct *work)
4190 {
4191 struct mem_cgroup_event *event =
4192 container_of(work, struct mem_cgroup_event, remove);
4193 struct mem_cgroup *memcg = event->memcg;
4194
4195 remove_wait_queue(event->wqh, &event->wait);
4196
4197 event->unregister_event(memcg, event->eventfd);
4198
4199 /* Notify userspace the event is going away. */
4200 eventfd_signal(event->eventfd, 1);
4201
4202 eventfd_ctx_put(event->eventfd);
4203 kfree(event);
4204 css_put(&memcg->css);
4205 }
4206
4207 /*
4208 * Gets called on POLLHUP on eventfd when user closes it.
4209 *
4210 * Called with wqh->lock held and interrupts disabled.
4211 */
4212 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4213 int sync, void *key)
4214 {
4215 struct mem_cgroup_event *event =
4216 container_of(wait, struct mem_cgroup_event, wait);
4217 struct mem_cgroup *memcg = event->memcg;
4218 unsigned long flags = (unsigned long)key;
4219
4220 if (flags & POLLHUP) {
4221 /*
4222 * If the event has been detached at cgroup removal, we
4223 * can simply return knowing the other side will cleanup
4224 * for us.
4225 *
4226 * We can't race against event freeing since the other
4227 * side will require wqh->lock via remove_wait_queue(),
4228 * which we hold.
4229 */
4230 spin_lock(&memcg->event_list_lock);
4231 if (!list_empty(&event->list)) {
4232 list_del_init(&event->list);
4233 /*
4234 * We are in atomic context, but cgroup_event_remove()
4235 * may sleep, so we have to call it in workqueue.
4236 */
4237 schedule_work(&event->remove);
4238 }
4239 spin_unlock(&memcg->event_list_lock);
4240 }
4241
4242 return 0;
4243 }
4244
4245 static void memcg_event_ptable_queue_proc(struct file *file,
4246 wait_queue_head_t *wqh, poll_table *pt)
4247 {
4248 struct mem_cgroup_event *event =
4249 container_of(pt, struct mem_cgroup_event, pt);
4250
4251 event->wqh = wqh;
4252 add_wait_queue(wqh, &event->wait);
4253 }
4254
4255 /*
4256 * DO NOT USE IN NEW FILES.
4257 *
4258 * Parse input and register new cgroup event handler.
4259 *
4260 * Input must be in format '<event_fd> <control_fd> <args>'.
4261 * Interpretation of args is defined by control file implementation.
4262 */
4263 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4264 char *buf, size_t nbytes, loff_t off)
4265 {
4266 struct cgroup_subsys_state *css = of_css(of);
4267 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4268 struct mem_cgroup_event *event;
4269 struct cgroup_subsys_state *cfile_css;
4270 unsigned int efd, cfd;
4271 struct fd efile;
4272 struct fd cfile;
4273 const char *name;
4274 char *endp;
4275 int ret;
4276
4277 buf = strstrip(buf);
4278
4279 efd = simple_strtoul(buf, &endp, 10);
4280 if (*endp != ' ')
4281 return -EINVAL;
4282 buf = endp + 1;
4283
4284 cfd = simple_strtoul(buf, &endp, 10);
4285 if ((*endp != ' ') && (*endp != '\0'))
4286 return -EINVAL;
4287 buf = endp + 1;
4288
4289 event = kzalloc(sizeof(*event), GFP_KERNEL);
4290 if (!event)
4291 return -ENOMEM;
4292
4293 event->memcg = memcg;
4294 INIT_LIST_HEAD(&event->list);
4295 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4296 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4297 INIT_WORK(&event->remove, memcg_event_remove);
4298
4299 efile = fdget(efd);
4300 if (!efile.file) {
4301 ret = -EBADF;
4302 goto out_kfree;
4303 }
4304
4305 event->eventfd = eventfd_ctx_fileget(efile.file);
4306 if (IS_ERR(event->eventfd)) {
4307 ret = PTR_ERR(event->eventfd);
4308 goto out_put_efile;
4309 }
4310
4311 cfile = fdget(cfd);
4312 if (!cfile.file) {
4313 ret = -EBADF;
4314 goto out_put_eventfd;
4315 }
4316
4317 /* the process need read permission on control file */
4318 /* AV: shouldn't we check that it's been opened for read instead? */
4319 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4320 if (ret < 0)
4321 goto out_put_cfile;
4322
4323 /*
4324 * Determine the event callbacks and set them in @event. This used
4325 * to be done via struct cftype but cgroup core no longer knows
4326 * about these events. The following is crude but the whole thing
4327 * is for compatibility anyway.
4328 *
4329 * DO NOT ADD NEW FILES.
4330 */
4331 name = cfile.file->f_path.dentry->d_name.name;
4332
4333 if (!strcmp(name, "memory.usage_in_bytes")) {
4334 event->register_event = mem_cgroup_usage_register_event;
4335 event->unregister_event = mem_cgroup_usage_unregister_event;
4336 } else if (!strcmp(name, "memory.oom_control")) {
4337 event->register_event = mem_cgroup_oom_register_event;
4338 event->unregister_event = mem_cgroup_oom_unregister_event;
4339 } else if (!strcmp(name, "memory.pressure_level")) {
4340 event->register_event = vmpressure_register_event;
4341 event->unregister_event = vmpressure_unregister_event;
4342 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4343 event->register_event = memsw_cgroup_usage_register_event;
4344 event->unregister_event = memsw_cgroup_usage_unregister_event;
4345 } else {
4346 ret = -EINVAL;
4347 goto out_put_cfile;
4348 }
4349
4350 /*
4351 * Verify @cfile should belong to @css. Also, remaining events are
4352 * automatically removed on cgroup destruction but the removal is
4353 * asynchronous, so take an extra ref on @css.
4354 */
4355 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4356 &memory_cgrp_subsys);
4357 ret = -EINVAL;
4358 if (IS_ERR(cfile_css))
4359 goto out_put_cfile;
4360 if (cfile_css != css) {
4361 css_put(cfile_css);
4362 goto out_put_cfile;
4363 }
4364
4365 ret = event->register_event(memcg, event->eventfd, buf);
4366 if (ret)
4367 goto out_put_css;
4368
4369 efile.file->f_op->poll(efile.file, &event->pt);
4370
4371 spin_lock(&memcg->event_list_lock);
4372 list_add(&event->list, &memcg->event_list);
4373 spin_unlock(&memcg->event_list_lock);
4374
4375 fdput(cfile);
4376 fdput(efile);
4377
4378 return nbytes;
4379
4380 out_put_css:
4381 css_put(css);
4382 out_put_cfile:
4383 fdput(cfile);
4384 out_put_eventfd:
4385 eventfd_ctx_put(event->eventfd);
4386 out_put_efile:
4387 fdput(efile);
4388 out_kfree:
4389 kfree(event);
4390
4391 return ret;
4392 }
4393
4394 static struct cftype mem_cgroup_files[] = {
4395 {
4396 .name = "usage_in_bytes",
4397 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4398 .read_u64 = mem_cgroup_read_u64,
4399 },
4400 {
4401 .name = "max_usage_in_bytes",
4402 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4403 .write = mem_cgroup_reset,
4404 .read_u64 = mem_cgroup_read_u64,
4405 },
4406 {
4407 .name = "limit_in_bytes",
4408 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4409 .write = mem_cgroup_write,
4410 .read_u64 = mem_cgroup_read_u64,
4411 },
4412 {
4413 .name = "soft_limit_in_bytes",
4414 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4415 .write = mem_cgroup_write,
4416 .read_u64 = mem_cgroup_read_u64,
4417 },
4418 {
4419 .name = "failcnt",
4420 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4421 .write = mem_cgroup_reset,
4422 .read_u64 = mem_cgroup_read_u64,
4423 },
4424 {
4425 .name = "stat",
4426 .seq_show = memcg_stat_show,
4427 },
4428 {
4429 .name = "force_empty",
4430 .write = mem_cgroup_force_empty_write,
4431 },
4432 {
4433 .name = "use_hierarchy",
4434 .write_u64 = mem_cgroup_hierarchy_write,
4435 .read_u64 = mem_cgroup_hierarchy_read,
4436 },
4437 {
4438 .name = "cgroup.event_control", /* XXX: for compat */
4439 .write = memcg_write_event_control,
4440 .flags = CFTYPE_NO_PREFIX,
4441 .mode = S_IWUGO,
4442 },
4443 {
4444 .name = "swappiness",
4445 .read_u64 = mem_cgroup_swappiness_read,
4446 .write_u64 = mem_cgroup_swappiness_write,
4447 },
4448 {
4449 .name = "move_charge_at_immigrate",
4450 .read_u64 = mem_cgroup_move_charge_read,
4451 .write_u64 = mem_cgroup_move_charge_write,
4452 },
4453 {
4454 .name = "oom_control",
4455 .seq_show = mem_cgroup_oom_control_read,
4456 .write_u64 = mem_cgroup_oom_control_write,
4457 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4458 },
4459 {
4460 .name = "pressure_level",
4461 },
4462 #ifdef CONFIG_NUMA
4463 {
4464 .name = "numa_stat",
4465 .seq_show = memcg_numa_stat_show,
4466 },
4467 #endif
4468 #ifdef CONFIG_MEMCG_KMEM
4469 {
4470 .name = "kmem.limit_in_bytes",
4471 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4472 .write = mem_cgroup_write,
4473 .read_u64 = mem_cgroup_read_u64,
4474 },
4475 {
4476 .name = "kmem.usage_in_bytes",
4477 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4478 .read_u64 = mem_cgroup_read_u64,
4479 },
4480 {
4481 .name = "kmem.failcnt",
4482 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4483 .write = mem_cgroup_reset,
4484 .read_u64 = mem_cgroup_read_u64,
4485 },
4486 {
4487 .name = "kmem.max_usage_in_bytes",
4488 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4489 .write = mem_cgroup_reset,
4490 .read_u64 = mem_cgroup_read_u64,
4491 },
4492 #ifdef CONFIG_SLABINFO
4493 {
4494 .name = "kmem.slabinfo",
4495 .seq_start = slab_start,
4496 .seq_next = slab_next,
4497 .seq_stop = slab_stop,
4498 .seq_show = memcg_slab_show,
4499 },
4500 #endif
4501 #endif
4502 { }, /* terminate */
4503 };
4504
4505 #ifdef CONFIG_MEMCG_SWAP
4506 static struct cftype memsw_cgroup_files[] = {
4507 {
4508 .name = "memsw.usage_in_bytes",
4509 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4510 .read_u64 = mem_cgroup_read_u64,
4511 },
4512 {
4513 .name = "memsw.max_usage_in_bytes",
4514 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4515 .write = mem_cgroup_reset,
4516 .read_u64 = mem_cgroup_read_u64,
4517 },
4518 {
4519 .name = "memsw.limit_in_bytes",
4520 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4521 .write = mem_cgroup_write,
4522 .read_u64 = mem_cgroup_read_u64,
4523 },
4524 {
4525 .name = "memsw.failcnt",
4526 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4527 .write = mem_cgroup_reset,
4528 .read_u64 = mem_cgroup_read_u64,
4529 },
4530 { }, /* terminate */
4531 };
4532 #endif
4533 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4534 {
4535 struct mem_cgroup_per_node *pn;
4536 struct mem_cgroup_per_zone *mz;
4537 int zone, tmp = node;
4538 /*
4539 * This routine is called against possible nodes.
4540 * But it's BUG to call kmalloc() against offline node.
4541 *
4542 * TODO: this routine can waste much memory for nodes which will
4543 * never be onlined. It's better to use memory hotplug callback
4544 * function.
4545 */
4546 if (!node_state(node, N_NORMAL_MEMORY))
4547 tmp = -1;
4548 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4549 if (!pn)
4550 return 1;
4551
4552 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4553 mz = &pn->zoneinfo[zone];
4554 lruvec_init(&mz->lruvec);
4555 mz->usage_in_excess = 0;
4556 mz->on_tree = false;
4557 mz->memcg = memcg;
4558 }
4559 memcg->nodeinfo[node] = pn;
4560 return 0;
4561 }
4562
4563 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4564 {
4565 kfree(memcg->nodeinfo[node]);
4566 }
4567
4568 static struct mem_cgroup *mem_cgroup_alloc(void)
4569 {
4570 struct mem_cgroup *memcg;
4571 size_t size;
4572
4573 size = sizeof(struct mem_cgroup);
4574 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4575
4576 memcg = kzalloc(size, GFP_KERNEL);
4577 if (!memcg)
4578 return NULL;
4579
4580 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4581 if (!memcg->stat)
4582 goto out_free;
4583 spin_lock_init(&memcg->pcp_counter_lock);
4584 return memcg;
4585
4586 out_free:
4587 kfree(memcg);
4588 return NULL;
4589 }
4590
4591 /*
4592 * At destroying mem_cgroup, references from swap_cgroup can remain.
4593 * (scanning all at force_empty is too costly...)
4594 *
4595 * Instead of clearing all references at force_empty, we remember
4596 * the number of reference from swap_cgroup and free mem_cgroup when
4597 * it goes down to 0.
4598 *
4599 * Removal of cgroup itself succeeds regardless of refs from swap.
4600 */
4601
4602 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4603 {
4604 int node;
4605
4606 mem_cgroup_remove_from_trees(memcg);
4607
4608 for_each_node(node)
4609 free_mem_cgroup_per_zone_info(memcg, node);
4610
4611 free_percpu(memcg->stat);
4612
4613 disarm_static_keys(memcg);
4614 kfree(memcg);
4615 }
4616
4617 /*
4618 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4619 */
4620 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4621 {
4622 if (!memcg->memory.parent)
4623 return NULL;
4624 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4625 }
4626 EXPORT_SYMBOL(parent_mem_cgroup);
4627
4628 static void __init mem_cgroup_soft_limit_tree_init(void)
4629 {
4630 struct mem_cgroup_tree_per_node *rtpn;
4631 struct mem_cgroup_tree_per_zone *rtpz;
4632 int tmp, node, zone;
4633
4634 for_each_node(node) {
4635 tmp = node;
4636 if (!node_state(node, N_NORMAL_MEMORY))
4637 tmp = -1;
4638 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4639 BUG_ON(!rtpn);
4640
4641 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4642
4643 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4644 rtpz = &rtpn->rb_tree_per_zone[zone];
4645 rtpz->rb_root = RB_ROOT;
4646 spin_lock_init(&rtpz->lock);
4647 }
4648 }
4649 }
4650
4651 static struct cgroup_subsys_state * __ref
4652 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4653 {
4654 struct mem_cgroup *memcg;
4655 long error = -ENOMEM;
4656 int node;
4657
4658 memcg = mem_cgroup_alloc();
4659 if (!memcg)
4660 return ERR_PTR(error);
4661
4662 for_each_node(node)
4663 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4664 goto free_out;
4665
4666 /* root ? */
4667 if (parent_css == NULL) {
4668 root_mem_cgroup = memcg;
4669 page_counter_init(&memcg->memory, NULL);
4670 memcg->soft_limit = PAGE_COUNTER_MAX;
4671 page_counter_init(&memcg->memsw, NULL);
4672 page_counter_init(&memcg->kmem, NULL);
4673 }
4674
4675 memcg->last_scanned_node = MAX_NUMNODES;
4676 INIT_LIST_HEAD(&memcg->oom_notify);
4677 memcg->move_charge_at_immigrate = 0;
4678 mutex_init(&memcg->thresholds_lock);
4679 spin_lock_init(&memcg->move_lock);
4680 vmpressure_init(&memcg->vmpressure);
4681 INIT_LIST_HEAD(&memcg->event_list);
4682 spin_lock_init(&memcg->event_list_lock);
4683 #ifdef CONFIG_MEMCG_KMEM
4684 memcg->kmemcg_id = -1;
4685 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
4686 #endif
4687
4688 return &memcg->css;
4689
4690 free_out:
4691 __mem_cgroup_free(memcg);
4692 return ERR_PTR(error);
4693 }
4694
4695 static int
4696 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4697 {
4698 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4699 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4700 int ret;
4701
4702 if (css->id > MEM_CGROUP_ID_MAX)
4703 return -ENOSPC;
4704
4705 if (!parent)
4706 return 0;
4707
4708 mutex_lock(&memcg_create_mutex);
4709
4710 memcg->use_hierarchy = parent->use_hierarchy;
4711 memcg->oom_kill_disable = parent->oom_kill_disable;
4712 memcg->swappiness = mem_cgroup_swappiness(parent);
4713
4714 if (parent->use_hierarchy) {
4715 page_counter_init(&memcg->memory, &parent->memory);
4716 memcg->soft_limit = PAGE_COUNTER_MAX;
4717 page_counter_init(&memcg->memsw, &parent->memsw);
4718 page_counter_init(&memcg->kmem, &parent->kmem);
4719
4720 /*
4721 * No need to take a reference to the parent because cgroup
4722 * core guarantees its existence.
4723 */
4724 } else {
4725 page_counter_init(&memcg->memory, NULL);
4726 memcg->soft_limit = PAGE_COUNTER_MAX;
4727 page_counter_init(&memcg->memsw, NULL);
4728 page_counter_init(&memcg->kmem, NULL);
4729 /*
4730 * Deeper hierachy with use_hierarchy == false doesn't make
4731 * much sense so let cgroup subsystem know about this
4732 * unfortunate state in our controller.
4733 */
4734 if (parent != root_mem_cgroup)
4735 memory_cgrp_subsys.broken_hierarchy = true;
4736 }
4737 mutex_unlock(&memcg_create_mutex);
4738
4739 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4740 if (ret)
4741 return ret;
4742
4743 /*
4744 * Make sure the memcg is initialized: mem_cgroup_iter()
4745 * orders reading memcg->initialized against its callers
4746 * reading the memcg members.
4747 */
4748 smp_store_release(&memcg->initialized, 1);
4749
4750 return 0;
4751 }
4752
4753 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4754 {
4755 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4756 struct mem_cgroup_event *event, *tmp;
4757
4758 /*
4759 * Unregister events and notify userspace.
4760 * Notify userspace about cgroup removing only after rmdir of cgroup
4761 * directory to avoid race between userspace and kernelspace.
4762 */
4763 spin_lock(&memcg->event_list_lock);
4764 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4765 list_del_init(&event->list);
4766 schedule_work(&event->remove);
4767 }
4768 spin_unlock(&memcg->event_list_lock);
4769
4770 vmpressure_cleanup(&memcg->vmpressure);
4771 }
4772
4773 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4774 {
4775 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4776
4777 memcg_destroy_kmem(memcg);
4778 __mem_cgroup_free(memcg);
4779 }
4780
4781 /**
4782 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4783 * @css: the target css
4784 *
4785 * Reset the states of the mem_cgroup associated with @css. This is
4786 * invoked when the userland requests disabling on the default hierarchy
4787 * but the memcg is pinned through dependency. The memcg should stop
4788 * applying policies and should revert to the vanilla state as it may be
4789 * made visible again.
4790 *
4791 * The current implementation only resets the essential configurations.
4792 * This needs to be expanded to cover all the visible parts.
4793 */
4794 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4795 {
4796 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4797
4798 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4799 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4800 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4801 memcg->soft_limit = PAGE_COUNTER_MAX;
4802 }
4803
4804 #ifdef CONFIG_MMU
4805 /* Handlers for move charge at task migration. */
4806 static int mem_cgroup_do_precharge(unsigned long count)
4807 {
4808 int ret;
4809
4810 /* Try a single bulk charge without reclaim first */
4811 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4812 if (!ret) {
4813 mc.precharge += count;
4814 return ret;
4815 }
4816 if (ret == -EINTR) {
4817 cancel_charge(root_mem_cgroup, count);
4818 return ret;
4819 }
4820
4821 /* Try charges one by one with reclaim */
4822 while (count--) {
4823 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4824 /*
4825 * In case of failure, any residual charges against
4826 * mc.to will be dropped by mem_cgroup_clear_mc()
4827 * later on. However, cancel any charges that are
4828 * bypassed to root right away or they'll be lost.
4829 */
4830 if (ret == -EINTR)
4831 cancel_charge(root_mem_cgroup, 1);
4832 if (ret)
4833 return ret;
4834 mc.precharge++;
4835 cond_resched();
4836 }
4837 return 0;
4838 }
4839
4840 /**
4841 * get_mctgt_type - get target type of moving charge
4842 * @vma: the vma the pte to be checked belongs
4843 * @addr: the address corresponding to the pte to be checked
4844 * @ptent: the pte to be checked
4845 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4846 *
4847 * Returns
4848 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4849 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4850 * move charge. if @target is not NULL, the page is stored in target->page
4851 * with extra refcnt got(Callers should handle it).
4852 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4853 * target for charge migration. if @target is not NULL, the entry is stored
4854 * in target->ent.
4855 *
4856 * Called with pte lock held.
4857 */
4858 union mc_target {
4859 struct page *page;
4860 swp_entry_t ent;
4861 };
4862
4863 enum mc_target_type {
4864 MC_TARGET_NONE = 0,
4865 MC_TARGET_PAGE,
4866 MC_TARGET_SWAP,
4867 };
4868
4869 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4870 unsigned long addr, pte_t ptent)
4871 {
4872 struct page *page = vm_normal_page(vma, addr, ptent);
4873
4874 if (!page || !page_mapped(page))
4875 return NULL;
4876 if (PageAnon(page)) {
4877 /* we don't move shared anon */
4878 if (!move_anon())
4879 return NULL;
4880 } else if (!move_file())
4881 /* we ignore mapcount for file pages */
4882 return NULL;
4883 if (!get_page_unless_zero(page))
4884 return NULL;
4885
4886 return page;
4887 }
4888
4889 #ifdef CONFIG_SWAP
4890 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4891 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4892 {
4893 struct page *page = NULL;
4894 swp_entry_t ent = pte_to_swp_entry(ptent);
4895
4896 if (!move_anon() || non_swap_entry(ent))
4897 return NULL;
4898 /*
4899 * Because lookup_swap_cache() updates some statistics counter,
4900 * we call find_get_page() with swapper_space directly.
4901 */
4902 page = find_get_page(swap_address_space(ent), ent.val);
4903 if (do_swap_account)
4904 entry->val = ent.val;
4905
4906 return page;
4907 }
4908 #else
4909 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4910 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4911 {
4912 return NULL;
4913 }
4914 #endif
4915
4916 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4917 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4918 {
4919 struct page *page = NULL;
4920 struct address_space *mapping;
4921 pgoff_t pgoff;
4922
4923 if (!vma->vm_file) /* anonymous vma */
4924 return NULL;
4925 if (!move_file())
4926 return NULL;
4927
4928 mapping = vma->vm_file->f_mapping;
4929 if (pte_none(ptent))
4930 pgoff = linear_page_index(vma, addr);
4931 else /* pte_file(ptent) is true */
4932 pgoff = pte_to_pgoff(ptent);
4933
4934 /* page is moved even if it's not RSS of this task(page-faulted). */
4935 #ifdef CONFIG_SWAP
4936 /* shmem/tmpfs may report page out on swap: account for that too. */
4937 if (shmem_mapping(mapping)) {
4938 page = find_get_entry(mapping, pgoff);
4939 if (radix_tree_exceptional_entry(page)) {
4940 swp_entry_t swp = radix_to_swp_entry(page);
4941 if (do_swap_account)
4942 *entry = swp;
4943 page = find_get_page(swap_address_space(swp), swp.val);
4944 }
4945 } else
4946 page = find_get_page(mapping, pgoff);
4947 #else
4948 page = find_get_page(mapping, pgoff);
4949 #endif
4950 return page;
4951 }
4952
4953 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4954 unsigned long addr, pte_t ptent, union mc_target *target)
4955 {
4956 struct page *page = NULL;
4957 enum mc_target_type ret = MC_TARGET_NONE;
4958 swp_entry_t ent = { .val = 0 };
4959
4960 if (pte_present(ptent))
4961 page = mc_handle_present_pte(vma, addr, ptent);
4962 else if (is_swap_pte(ptent))
4963 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4964 else if (pte_none(ptent) || pte_file(ptent))
4965 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4966
4967 if (!page && !ent.val)
4968 return ret;
4969 if (page) {
4970 /*
4971 * Do only loose check w/o serialization.
4972 * mem_cgroup_move_account() checks the page is valid or
4973 * not under LRU exclusion.
4974 */
4975 if (page->mem_cgroup == mc.from) {
4976 ret = MC_TARGET_PAGE;
4977 if (target)
4978 target->page = page;
4979 }
4980 if (!ret || !target)
4981 put_page(page);
4982 }
4983 /* There is a swap entry and a page doesn't exist or isn't charged */
4984 if (ent.val && !ret &&
4985 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4986 ret = MC_TARGET_SWAP;
4987 if (target)
4988 target->ent = ent;
4989 }
4990 return ret;
4991 }
4992
4993 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4994 /*
4995 * We don't consider swapping or file mapped pages because THP does not
4996 * support them for now.
4997 * Caller should make sure that pmd_trans_huge(pmd) is true.
4998 */
4999 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5000 unsigned long addr, pmd_t pmd, union mc_target *target)
5001 {
5002 struct page *page = NULL;
5003 enum mc_target_type ret = MC_TARGET_NONE;
5004
5005 page = pmd_page(pmd);
5006 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5007 if (!move_anon())
5008 return ret;
5009 if (page->mem_cgroup == mc.from) {
5010 ret = MC_TARGET_PAGE;
5011 if (target) {
5012 get_page(page);
5013 target->page = page;
5014 }
5015 }
5016 return ret;
5017 }
5018 #else
5019 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5020 unsigned long addr, pmd_t pmd, union mc_target *target)
5021 {
5022 return MC_TARGET_NONE;
5023 }
5024 #endif
5025
5026 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5027 unsigned long addr, unsigned long end,
5028 struct mm_walk *walk)
5029 {
5030 struct vm_area_struct *vma = walk->private;
5031 pte_t *pte;
5032 spinlock_t *ptl;
5033
5034 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5035 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5036 mc.precharge += HPAGE_PMD_NR;
5037 spin_unlock(ptl);
5038 return 0;
5039 }
5040
5041 if (pmd_trans_unstable(pmd))
5042 return 0;
5043 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5044 for (; addr != end; pte++, addr += PAGE_SIZE)
5045 if (get_mctgt_type(vma, addr, *pte, NULL))
5046 mc.precharge++; /* increment precharge temporarily */
5047 pte_unmap_unlock(pte - 1, ptl);
5048 cond_resched();
5049
5050 return 0;
5051 }
5052
5053 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5054 {
5055 unsigned long precharge;
5056 struct vm_area_struct *vma;
5057
5058 down_read(&mm->mmap_sem);
5059 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5060 struct mm_walk mem_cgroup_count_precharge_walk = {
5061 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5062 .mm = mm,
5063 .private = vma,
5064 };
5065 if (is_vm_hugetlb_page(vma))
5066 continue;
5067 walk_page_range(vma->vm_start, vma->vm_end,
5068 &mem_cgroup_count_precharge_walk);
5069 }
5070 up_read(&mm->mmap_sem);
5071
5072 precharge = mc.precharge;
5073 mc.precharge = 0;
5074
5075 return precharge;
5076 }
5077
5078 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5079 {
5080 unsigned long precharge = mem_cgroup_count_precharge(mm);
5081
5082 VM_BUG_ON(mc.moving_task);
5083 mc.moving_task = current;
5084 return mem_cgroup_do_precharge(precharge);
5085 }
5086
5087 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5088 static void __mem_cgroup_clear_mc(void)
5089 {
5090 struct mem_cgroup *from = mc.from;
5091 struct mem_cgroup *to = mc.to;
5092
5093 /* we must uncharge all the leftover precharges from mc.to */
5094 if (mc.precharge) {
5095 cancel_charge(mc.to, mc.precharge);
5096 mc.precharge = 0;
5097 }
5098 /*
5099 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5100 * we must uncharge here.
5101 */
5102 if (mc.moved_charge) {
5103 cancel_charge(mc.from, mc.moved_charge);
5104 mc.moved_charge = 0;
5105 }
5106 /* we must fixup refcnts and charges */
5107 if (mc.moved_swap) {
5108 /* uncharge swap account from the old cgroup */
5109 if (!mem_cgroup_is_root(mc.from))
5110 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5111
5112 /*
5113 * we charged both to->memory and to->memsw, so we
5114 * should uncharge to->memory.
5115 */
5116 if (!mem_cgroup_is_root(mc.to))
5117 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5118
5119 css_put_many(&mc.from->css, mc.moved_swap);
5120
5121 /* we've already done css_get(mc.to) */
5122 mc.moved_swap = 0;
5123 }
5124 memcg_oom_recover(from);
5125 memcg_oom_recover(to);
5126 wake_up_all(&mc.waitq);
5127 }
5128
5129 static void mem_cgroup_clear_mc(void)
5130 {
5131 /*
5132 * we must clear moving_task before waking up waiters at the end of
5133 * task migration.
5134 */
5135 mc.moving_task = NULL;
5136 __mem_cgroup_clear_mc();
5137 spin_lock(&mc.lock);
5138 mc.from = NULL;
5139 mc.to = NULL;
5140 spin_unlock(&mc.lock);
5141 }
5142
5143 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5144 struct cgroup_taskset *tset)
5145 {
5146 struct task_struct *p = cgroup_taskset_first(tset);
5147 int ret = 0;
5148 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5149 unsigned long move_charge_at_immigrate;
5150
5151 /*
5152 * We are now commited to this value whatever it is. Changes in this
5153 * tunable will only affect upcoming migrations, not the current one.
5154 * So we need to save it, and keep it going.
5155 */
5156 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
5157 if (move_charge_at_immigrate) {
5158 struct mm_struct *mm;
5159 struct mem_cgroup *from = mem_cgroup_from_task(p);
5160
5161 VM_BUG_ON(from == memcg);
5162
5163 mm = get_task_mm(p);
5164 if (!mm)
5165 return 0;
5166 /* We move charges only when we move a owner of the mm */
5167 if (mm->owner == p) {
5168 VM_BUG_ON(mc.from);
5169 VM_BUG_ON(mc.to);
5170 VM_BUG_ON(mc.precharge);
5171 VM_BUG_ON(mc.moved_charge);
5172 VM_BUG_ON(mc.moved_swap);
5173
5174 spin_lock(&mc.lock);
5175 mc.from = from;
5176 mc.to = memcg;
5177 mc.immigrate_flags = move_charge_at_immigrate;
5178 spin_unlock(&mc.lock);
5179 /* We set mc.moving_task later */
5180
5181 ret = mem_cgroup_precharge_mc(mm);
5182 if (ret)
5183 mem_cgroup_clear_mc();
5184 }
5185 mmput(mm);
5186 }
5187 return ret;
5188 }
5189
5190 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5191 struct cgroup_taskset *tset)
5192 {
5193 if (mc.to)
5194 mem_cgroup_clear_mc();
5195 }
5196
5197 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5198 unsigned long addr, unsigned long end,
5199 struct mm_walk *walk)
5200 {
5201 int ret = 0;
5202 struct vm_area_struct *vma = walk->private;
5203 pte_t *pte;
5204 spinlock_t *ptl;
5205 enum mc_target_type target_type;
5206 union mc_target target;
5207 struct page *page;
5208
5209 /*
5210 * We don't take compound_lock() here but no race with splitting thp
5211 * happens because:
5212 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5213 * under splitting, which means there's no concurrent thp split,
5214 * - if another thread runs into split_huge_page() just after we
5215 * entered this if-block, the thread must wait for page table lock
5216 * to be unlocked in __split_huge_page_splitting(), where the main
5217 * part of thp split is not executed yet.
5218 */
5219 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5220 if (mc.precharge < HPAGE_PMD_NR) {
5221 spin_unlock(ptl);
5222 return 0;
5223 }
5224 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5225 if (target_type == MC_TARGET_PAGE) {
5226 page = target.page;
5227 if (!isolate_lru_page(page)) {
5228 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5229 mc.from, mc.to)) {
5230 mc.precharge -= HPAGE_PMD_NR;
5231 mc.moved_charge += HPAGE_PMD_NR;
5232 }
5233 putback_lru_page(page);
5234 }
5235 put_page(page);
5236 }
5237 spin_unlock(ptl);
5238 return 0;
5239 }
5240
5241 if (pmd_trans_unstable(pmd))
5242 return 0;
5243 retry:
5244 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5245 for (; addr != end; addr += PAGE_SIZE) {
5246 pte_t ptent = *(pte++);
5247 swp_entry_t ent;
5248
5249 if (!mc.precharge)
5250 break;
5251
5252 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5253 case MC_TARGET_PAGE:
5254 page = target.page;
5255 if (isolate_lru_page(page))
5256 goto put;
5257 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5258 mc.precharge--;
5259 /* we uncharge from mc.from later. */
5260 mc.moved_charge++;
5261 }
5262 putback_lru_page(page);
5263 put: /* get_mctgt_type() gets the page */
5264 put_page(page);
5265 break;
5266 case MC_TARGET_SWAP:
5267 ent = target.ent;
5268 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5269 mc.precharge--;
5270 /* we fixup refcnts and charges later. */
5271 mc.moved_swap++;
5272 }
5273 break;
5274 default:
5275 break;
5276 }
5277 }
5278 pte_unmap_unlock(pte - 1, ptl);
5279 cond_resched();
5280
5281 if (addr != end) {
5282 /*
5283 * We have consumed all precharges we got in can_attach().
5284 * We try charge one by one, but don't do any additional
5285 * charges to mc.to if we have failed in charge once in attach()
5286 * phase.
5287 */
5288 ret = mem_cgroup_do_precharge(1);
5289 if (!ret)
5290 goto retry;
5291 }
5292
5293 return ret;
5294 }
5295
5296 static void mem_cgroup_move_charge(struct mm_struct *mm)
5297 {
5298 struct vm_area_struct *vma;
5299
5300 lru_add_drain_all();
5301 /*
5302 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5303 * move_lock while we're moving its pages to another memcg.
5304 * Then wait for already started RCU-only updates to finish.
5305 */
5306 atomic_inc(&mc.from->moving_account);
5307 synchronize_rcu();
5308 retry:
5309 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5310 /*
5311 * Someone who are holding the mmap_sem might be waiting in
5312 * waitq. So we cancel all extra charges, wake up all waiters,
5313 * and retry. Because we cancel precharges, we might not be able
5314 * to move enough charges, but moving charge is a best-effort
5315 * feature anyway, so it wouldn't be a big problem.
5316 */
5317 __mem_cgroup_clear_mc();
5318 cond_resched();
5319 goto retry;
5320 }
5321 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5322 int ret;
5323 struct mm_walk mem_cgroup_move_charge_walk = {
5324 .pmd_entry = mem_cgroup_move_charge_pte_range,
5325 .mm = mm,
5326 .private = vma,
5327 };
5328 if (is_vm_hugetlb_page(vma))
5329 continue;
5330 ret = walk_page_range(vma->vm_start, vma->vm_end,
5331 &mem_cgroup_move_charge_walk);
5332 if (ret)
5333 /*
5334 * means we have consumed all precharges and failed in
5335 * doing additional charge. Just abandon here.
5336 */
5337 break;
5338 }
5339 up_read(&mm->mmap_sem);
5340 atomic_dec(&mc.from->moving_account);
5341 }
5342
5343 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5344 struct cgroup_taskset *tset)
5345 {
5346 struct task_struct *p = cgroup_taskset_first(tset);
5347 struct mm_struct *mm = get_task_mm(p);
5348
5349 if (mm) {
5350 if (mc.to)
5351 mem_cgroup_move_charge(mm);
5352 mmput(mm);
5353 }
5354 if (mc.to)
5355 mem_cgroup_clear_mc();
5356 }
5357 #else /* !CONFIG_MMU */
5358 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5359 struct cgroup_taskset *tset)
5360 {
5361 return 0;
5362 }
5363 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5364 struct cgroup_taskset *tset)
5365 {
5366 }
5367 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5368 struct cgroup_taskset *tset)
5369 {
5370 }
5371 #endif
5372
5373 /*
5374 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5375 * to verify whether we're attached to the default hierarchy on each mount
5376 * attempt.
5377 */
5378 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5379 {
5380 /*
5381 * use_hierarchy is forced on the default hierarchy. cgroup core
5382 * guarantees that @root doesn't have any children, so turning it
5383 * on for the root memcg is enough.
5384 */
5385 if (cgroup_on_dfl(root_css->cgroup))
5386 mem_cgroup_from_css(root_css)->use_hierarchy = true;
5387 }
5388
5389 struct cgroup_subsys memory_cgrp_subsys = {
5390 .css_alloc = mem_cgroup_css_alloc,
5391 .css_online = mem_cgroup_css_online,
5392 .css_offline = mem_cgroup_css_offline,
5393 .css_free = mem_cgroup_css_free,
5394 .css_reset = mem_cgroup_css_reset,
5395 .can_attach = mem_cgroup_can_attach,
5396 .cancel_attach = mem_cgroup_cancel_attach,
5397 .attach = mem_cgroup_move_task,
5398 .bind = mem_cgroup_bind,
5399 .legacy_cftypes = mem_cgroup_files,
5400 .early_init = 0,
5401 };
5402
5403 #ifdef CONFIG_MEMCG_SWAP
5404 static int __init enable_swap_account(char *s)
5405 {
5406 if (!strcmp(s, "1"))
5407 really_do_swap_account = 1;
5408 else if (!strcmp(s, "0"))
5409 really_do_swap_account = 0;
5410 return 1;
5411 }
5412 __setup("swapaccount=", enable_swap_account);
5413
5414 static void __init memsw_file_init(void)
5415 {
5416 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5417 memsw_cgroup_files));
5418 }
5419
5420 static void __init enable_swap_cgroup(void)
5421 {
5422 if (!mem_cgroup_disabled() && really_do_swap_account) {
5423 do_swap_account = 1;
5424 memsw_file_init();
5425 }
5426 }
5427
5428 #else
5429 static void __init enable_swap_cgroup(void)
5430 {
5431 }
5432 #endif
5433
5434 #ifdef CONFIG_MEMCG_SWAP
5435 /**
5436 * mem_cgroup_swapout - transfer a memsw charge to swap
5437 * @page: page whose memsw charge to transfer
5438 * @entry: swap entry to move the charge to
5439 *
5440 * Transfer the memsw charge of @page to @entry.
5441 */
5442 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5443 {
5444 struct mem_cgroup *memcg;
5445 unsigned short oldid;
5446
5447 VM_BUG_ON_PAGE(PageLRU(page), page);
5448 VM_BUG_ON_PAGE(page_count(page), page);
5449
5450 if (!do_swap_account)
5451 return;
5452
5453 memcg = page->mem_cgroup;
5454
5455 /* Readahead page, never charged */
5456 if (!memcg)
5457 return;
5458
5459 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5460 VM_BUG_ON_PAGE(oldid, page);
5461 mem_cgroup_swap_statistics(memcg, true);
5462
5463 page->mem_cgroup = NULL;
5464
5465 if (!mem_cgroup_is_root(memcg))
5466 page_counter_uncharge(&memcg->memory, 1);
5467
5468 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5469 VM_BUG_ON(!irqs_disabled());
5470
5471 mem_cgroup_charge_statistics(memcg, page, -1);
5472 memcg_check_events(memcg, page);
5473 }
5474
5475 /**
5476 * mem_cgroup_uncharge_swap - uncharge a swap entry
5477 * @entry: swap entry to uncharge
5478 *
5479 * Drop the memsw charge associated with @entry.
5480 */
5481 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5482 {
5483 struct mem_cgroup *memcg;
5484 unsigned short id;
5485
5486 if (!do_swap_account)
5487 return;
5488
5489 id = swap_cgroup_record(entry, 0);
5490 rcu_read_lock();
5491 memcg = mem_cgroup_lookup(id);
5492 if (memcg) {
5493 if (!mem_cgroup_is_root(memcg))
5494 page_counter_uncharge(&memcg->memsw, 1);
5495 mem_cgroup_swap_statistics(memcg, false);
5496 css_put(&memcg->css);
5497 }
5498 rcu_read_unlock();
5499 }
5500 #endif
5501
5502 /**
5503 * mem_cgroup_try_charge - try charging a page
5504 * @page: page to charge
5505 * @mm: mm context of the victim
5506 * @gfp_mask: reclaim mode
5507 * @memcgp: charged memcg return
5508 *
5509 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5510 * pages according to @gfp_mask if necessary.
5511 *
5512 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5513 * Otherwise, an error code is returned.
5514 *
5515 * After page->mapping has been set up, the caller must finalize the
5516 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5517 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5518 */
5519 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5520 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5521 {
5522 struct mem_cgroup *memcg = NULL;
5523 unsigned int nr_pages = 1;
5524 int ret = 0;
5525
5526 if (mem_cgroup_disabled())
5527 goto out;
5528
5529 if (PageSwapCache(page)) {
5530 /*
5531 * Every swap fault against a single page tries to charge the
5532 * page, bail as early as possible. shmem_unuse() encounters
5533 * already charged pages, too. The USED bit is protected by
5534 * the page lock, which serializes swap cache removal, which
5535 * in turn serializes uncharging.
5536 */
5537 if (page->mem_cgroup)
5538 goto out;
5539 }
5540
5541 if (PageTransHuge(page)) {
5542 nr_pages <<= compound_order(page);
5543 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5544 }
5545
5546 if (do_swap_account && PageSwapCache(page))
5547 memcg = try_get_mem_cgroup_from_page(page);
5548 if (!memcg)
5549 memcg = get_mem_cgroup_from_mm(mm);
5550
5551 ret = try_charge(memcg, gfp_mask, nr_pages);
5552
5553 css_put(&memcg->css);
5554
5555 if (ret == -EINTR) {
5556 memcg = root_mem_cgroup;
5557 ret = 0;
5558 }
5559 out:
5560 *memcgp = memcg;
5561 return ret;
5562 }
5563
5564 /**
5565 * mem_cgroup_commit_charge - commit a page charge
5566 * @page: page to charge
5567 * @memcg: memcg to charge the page to
5568 * @lrucare: page might be on LRU already
5569 *
5570 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5571 * after page->mapping has been set up. This must happen atomically
5572 * as part of the page instantiation, i.e. under the page table lock
5573 * for anonymous pages, under the page lock for page and swap cache.
5574 *
5575 * In addition, the page must not be on the LRU during the commit, to
5576 * prevent racing with task migration. If it might be, use @lrucare.
5577 *
5578 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5579 */
5580 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5581 bool lrucare)
5582 {
5583 unsigned int nr_pages = 1;
5584
5585 VM_BUG_ON_PAGE(!page->mapping, page);
5586 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5587
5588 if (mem_cgroup_disabled())
5589 return;
5590 /*
5591 * Swap faults will attempt to charge the same page multiple
5592 * times. But reuse_swap_page() might have removed the page
5593 * from swapcache already, so we can't check PageSwapCache().
5594 */
5595 if (!memcg)
5596 return;
5597
5598 commit_charge(page, memcg, lrucare);
5599
5600 if (PageTransHuge(page)) {
5601 nr_pages <<= compound_order(page);
5602 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5603 }
5604
5605 local_irq_disable();
5606 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5607 memcg_check_events(memcg, page);
5608 local_irq_enable();
5609
5610 if (do_swap_account && PageSwapCache(page)) {
5611 swp_entry_t entry = { .val = page_private(page) };
5612 /*
5613 * The swap entry might not get freed for a long time,
5614 * let's not wait for it. The page already received a
5615 * memory+swap charge, drop the swap entry duplicate.
5616 */
5617 mem_cgroup_uncharge_swap(entry);
5618 }
5619 }
5620
5621 /**
5622 * mem_cgroup_cancel_charge - cancel a page charge
5623 * @page: page to charge
5624 * @memcg: memcg to charge the page to
5625 *
5626 * Cancel a charge transaction started by mem_cgroup_try_charge().
5627 */
5628 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5629 {
5630 unsigned int nr_pages = 1;
5631
5632 if (mem_cgroup_disabled())
5633 return;
5634 /*
5635 * Swap faults will attempt to charge the same page multiple
5636 * times. But reuse_swap_page() might have removed the page
5637 * from swapcache already, so we can't check PageSwapCache().
5638 */
5639 if (!memcg)
5640 return;
5641
5642 if (PageTransHuge(page)) {
5643 nr_pages <<= compound_order(page);
5644 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5645 }
5646
5647 cancel_charge(memcg, nr_pages);
5648 }
5649
5650 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5651 unsigned long nr_anon, unsigned long nr_file,
5652 unsigned long nr_huge, struct page *dummy_page)
5653 {
5654 unsigned long nr_pages = nr_anon + nr_file;
5655 unsigned long flags;
5656
5657 if (!mem_cgroup_is_root(memcg)) {
5658 page_counter_uncharge(&memcg->memory, nr_pages);
5659 if (do_swap_account)
5660 page_counter_uncharge(&memcg->memsw, nr_pages);
5661 memcg_oom_recover(memcg);
5662 }
5663
5664 local_irq_save(flags);
5665 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5666 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5667 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5668 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5669 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5670 memcg_check_events(memcg, dummy_page);
5671 local_irq_restore(flags);
5672
5673 if (!mem_cgroup_is_root(memcg))
5674 css_put_many(&memcg->css, nr_pages);
5675 }
5676
5677 static void uncharge_list(struct list_head *page_list)
5678 {
5679 struct mem_cgroup *memcg = NULL;
5680 unsigned long nr_anon = 0;
5681 unsigned long nr_file = 0;
5682 unsigned long nr_huge = 0;
5683 unsigned long pgpgout = 0;
5684 struct list_head *next;
5685 struct page *page;
5686
5687 next = page_list->next;
5688 do {
5689 unsigned int nr_pages = 1;
5690
5691 page = list_entry(next, struct page, lru);
5692 next = page->lru.next;
5693
5694 VM_BUG_ON_PAGE(PageLRU(page), page);
5695 VM_BUG_ON_PAGE(page_count(page), page);
5696
5697 if (!page->mem_cgroup)
5698 continue;
5699
5700 /*
5701 * Nobody should be changing or seriously looking at
5702 * page->mem_cgroup at this point, we have fully
5703 * exclusive access to the page.
5704 */
5705
5706 if (memcg != page->mem_cgroup) {
5707 if (memcg) {
5708 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5709 nr_huge, page);
5710 pgpgout = nr_anon = nr_file = nr_huge = 0;
5711 }
5712 memcg = page->mem_cgroup;
5713 }
5714
5715 if (PageTransHuge(page)) {
5716 nr_pages <<= compound_order(page);
5717 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5718 nr_huge += nr_pages;
5719 }
5720
5721 if (PageAnon(page))
5722 nr_anon += nr_pages;
5723 else
5724 nr_file += nr_pages;
5725
5726 page->mem_cgroup = NULL;
5727
5728 pgpgout++;
5729 } while (next != page_list);
5730
5731 if (memcg)
5732 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5733 nr_huge, page);
5734 }
5735
5736 /**
5737 * mem_cgroup_uncharge - uncharge a page
5738 * @page: page to uncharge
5739 *
5740 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5741 * mem_cgroup_commit_charge().
5742 */
5743 void mem_cgroup_uncharge(struct page *page)
5744 {
5745 if (mem_cgroup_disabled())
5746 return;
5747
5748 /* Don't touch page->lru of any random page, pre-check: */
5749 if (!page->mem_cgroup)
5750 return;
5751
5752 INIT_LIST_HEAD(&page->lru);
5753 uncharge_list(&page->lru);
5754 }
5755
5756 /**
5757 * mem_cgroup_uncharge_list - uncharge a list of page
5758 * @page_list: list of pages to uncharge
5759 *
5760 * Uncharge a list of pages previously charged with
5761 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5762 */
5763 void mem_cgroup_uncharge_list(struct list_head *page_list)
5764 {
5765 if (mem_cgroup_disabled())
5766 return;
5767
5768 if (!list_empty(page_list))
5769 uncharge_list(page_list);
5770 }
5771
5772 /**
5773 * mem_cgroup_migrate - migrate a charge to another page
5774 * @oldpage: currently charged page
5775 * @newpage: page to transfer the charge to
5776 * @lrucare: either or both pages might be on the LRU already
5777 *
5778 * Migrate the charge from @oldpage to @newpage.
5779 *
5780 * Both pages must be locked, @newpage->mapping must be set up.
5781 */
5782 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5783 bool lrucare)
5784 {
5785 struct mem_cgroup *memcg;
5786 int isolated;
5787
5788 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5789 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5790 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5791 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5792 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5793 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5794 newpage);
5795
5796 if (mem_cgroup_disabled())
5797 return;
5798
5799 /* Page cache replacement: new page already charged? */
5800 if (newpage->mem_cgroup)
5801 return;
5802
5803 /*
5804 * Swapcache readahead pages can get migrated before being
5805 * charged, and migration from compaction can happen to an
5806 * uncharged page when the PFN walker finds a page that
5807 * reclaim just put back on the LRU but has not released yet.
5808 */
5809 memcg = oldpage->mem_cgroup;
5810 if (!memcg)
5811 return;
5812
5813 if (lrucare)
5814 lock_page_lru(oldpage, &isolated);
5815
5816 oldpage->mem_cgroup = NULL;
5817
5818 if (lrucare)
5819 unlock_page_lru(oldpage, isolated);
5820
5821 commit_charge(newpage, memcg, lrucare);
5822 }
5823
5824 /*
5825 * subsys_initcall() for memory controller.
5826 *
5827 * Some parts like hotcpu_notifier() have to be initialized from this context
5828 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5829 * everything that doesn't depend on a specific mem_cgroup structure should
5830 * be initialized from here.
5831 */
5832 static int __init mem_cgroup_init(void)
5833 {
5834 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5835 enable_swap_cgroup();
5836 mem_cgroup_soft_limit_tree_init();
5837 memcg_stock_init();
5838 return 0;
5839 }
5840 subsys_initcall(mem_cgroup_init);