]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - mm/memcontrol.c
30f938c8645394b306eca3c89d5c0e984cfb0fcd
[mirror_ubuntu-eoan-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/export.h>
37 #include <linux/mutex.h>
38 #include <linux/rbtree.h>
39 #include <linux/slab.h>
40 #include <linux/swap.h>
41 #include <linux/swapops.h>
42 #include <linux/spinlock.h>
43 #include <linux/eventfd.h>
44 #include <linux/sort.h>
45 #include <linux/fs.h>
46 #include <linux/seq_file.h>
47 #include <linux/vmalloc.h>
48 #include <linux/mm_inline.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/cpu.h>
51 #include <linux/oom.h>
52 #include "internal.h"
53 #include <net/sock.h>
54 #include <net/tcp_memcontrol.h>
55
56 #include <asm/uaccess.h>
57
58 #include <trace/events/vmscan.h>
59
60 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
61 #define MEM_CGROUP_RECLAIM_RETRIES 5
62 struct mem_cgroup *root_mem_cgroup __read_mostly;
63
64 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
65 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
66 int do_swap_account __read_mostly;
67
68 /* for remember boot option*/
69 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
70 static int really_do_swap_account __initdata = 1;
71 #else
72 static int really_do_swap_account __initdata = 0;
73 #endif
74
75 #else
76 #define do_swap_account (0)
77 #endif
78
79
80 /*
81 * Statistics for memory cgroup.
82 */
83 enum mem_cgroup_stat_index {
84 /*
85 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
86 */
87 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
88 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
89 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
90 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
91 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
92 MEM_CGROUP_STAT_NSTATS,
93 };
94
95 enum mem_cgroup_events_index {
96 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
97 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
98 MEM_CGROUP_EVENTS_COUNT, /* # of pages paged in/out */
99 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
100 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
101 MEM_CGROUP_EVENTS_NSTATS,
102 };
103 /*
104 * Per memcg event counter is incremented at every pagein/pageout. With THP,
105 * it will be incremated by the number of pages. This counter is used for
106 * for trigger some periodic events. This is straightforward and better
107 * than using jiffies etc. to handle periodic memcg event.
108 */
109 enum mem_cgroup_events_target {
110 MEM_CGROUP_TARGET_THRESH,
111 MEM_CGROUP_TARGET_SOFTLIMIT,
112 MEM_CGROUP_TARGET_NUMAINFO,
113 MEM_CGROUP_NTARGETS,
114 };
115 #define THRESHOLDS_EVENTS_TARGET (128)
116 #define SOFTLIMIT_EVENTS_TARGET (1024)
117 #define NUMAINFO_EVENTS_TARGET (1024)
118
119 struct mem_cgroup_stat_cpu {
120 long count[MEM_CGROUP_STAT_NSTATS];
121 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
122 unsigned long targets[MEM_CGROUP_NTARGETS];
123 };
124
125 struct mem_cgroup_reclaim_iter {
126 /* css_id of the last scanned hierarchy member */
127 int position;
128 /* scan generation, increased every round-trip */
129 unsigned int generation;
130 };
131
132 /*
133 * per-zone information in memory controller.
134 */
135 struct mem_cgroup_per_zone {
136 struct lruvec lruvec;
137 unsigned long lru_size[NR_LRU_LISTS];
138
139 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
140
141 struct zone_reclaim_stat reclaim_stat;
142 struct rb_node tree_node; /* RB tree node */
143 unsigned long long usage_in_excess;/* Set to the value by which */
144 /* the soft limit is exceeded*/
145 bool on_tree;
146 struct mem_cgroup *memcg; /* Back pointer, we cannot */
147 /* use container_of */
148 };
149
150 struct mem_cgroup_per_node {
151 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_lru_info {
155 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
156 };
157
158 /*
159 * Cgroups above their limits are maintained in a RB-Tree, independent of
160 * their hierarchy representation
161 */
162
163 struct mem_cgroup_tree_per_zone {
164 struct rb_root rb_root;
165 spinlock_t lock;
166 };
167
168 struct mem_cgroup_tree_per_node {
169 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
170 };
171
172 struct mem_cgroup_tree {
173 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
174 };
175
176 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
177
178 struct mem_cgroup_threshold {
179 struct eventfd_ctx *eventfd;
180 u64 threshold;
181 };
182
183 /* For threshold */
184 struct mem_cgroup_threshold_ary {
185 /* An array index points to threshold just below usage. */
186 int current_threshold;
187 /* Size of entries[] */
188 unsigned int size;
189 /* Array of thresholds */
190 struct mem_cgroup_threshold entries[0];
191 };
192
193 struct mem_cgroup_thresholds {
194 /* Primary thresholds array */
195 struct mem_cgroup_threshold_ary *primary;
196 /*
197 * Spare threshold array.
198 * This is needed to make mem_cgroup_unregister_event() "never fail".
199 * It must be able to store at least primary->size - 1 entries.
200 */
201 struct mem_cgroup_threshold_ary *spare;
202 };
203
204 /* for OOM */
205 struct mem_cgroup_eventfd_list {
206 struct list_head list;
207 struct eventfd_ctx *eventfd;
208 };
209
210 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
211 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
212
213 /*
214 * The memory controller data structure. The memory controller controls both
215 * page cache and RSS per cgroup. We would eventually like to provide
216 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
217 * to help the administrator determine what knobs to tune.
218 *
219 * TODO: Add a water mark for the memory controller. Reclaim will begin when
220 * we hit the water mark. May be even add a low water mark, such that
221 * no reclaim occurs from a cgroup at it's low water mark, this is
222 * a feature that will be implemented much later in the future.
223 */
224 struct mem_cgroup {
225 struct cgroup_subsys_state css;
226 /*
227 * the counter to account for memory usage
228 */
229 struct res_counter res;
230
231 union {
232 /*
233 * the counter to account for mem+swap usage.
234 */
235 struct res_counter memsw;
236
237 /*
238 * rcu_freeing is used only when freeing struct mem_cgroup,
239 * so put it into a union to avoid wasting more memory.
240 * It must be disjoint from the css field. It could be
241 * in a union with the res field, but res plays a much
242 * larger part in mem_cgroup life than memsw, and might
243 * be of interest, even at time of free, when debugging.
244 * So share rcu_head with the less interesting memsw.
245 */
246 struct rcu_head rcu_freeing;
247 /*
248 * But when using vfree(), that cannot be done at
249 * interrupt time, so we must then queue the work.
250 */
251 struct work_struct work_freeing;
252 };
253
254 /*
255 * Per cgroup active and inactive list, similar to the
256 * per zone LRU lists.
257 */
258 struct mem_cgroup_lru_info info;
259 int last_scanned_node;
260 #if MAX_NUMNODES > 1
261 nodemask_t scan_nodes;
262 atomic_t numainfo_events;
263 atomic_t numainfo_updating;
264 #endif
265 /*
266 * Should the accounting and control be hierarchical, per subtree?
267 */
268 bool use_hierarchy;
269
270 bool oom_lock;
271 atomic_t under_oom;
272
273 atomic_t refcnt;
274
275 int swappiness;
276 /* OOM-Killer disable */
277 int oom_kill_disable;
278
279 /* set when res.limit == memsw.limit */
280 bool memsw_is_minimum;
281
282 /* protect arrays of thresholds */
283 struct mutex thresholds_lock;
284
285 /* thresholds for memory usage. RCU-protected */
286 struct mem_cgroup_thresholds thresholds;
287
288 /* thresholds for mem+swap usage. RCU-protected */
289 struct mem_cgroup_thresholds memsw_thresholds;
290
291 /* For oom notifier event fd */
292 struct list_head oom_notify;
293
294 /*
295 * Should we move charges of a task when a task is moved into this
296 * mem_cgroup ? And what type of charges should we move ?
297 */
298 unsigned long move_charge_at_immigrate;
299 /*
300 * set > 0 if pages under this cgroup are moving to other cgroup.
301 */
302 atomic_t moving_account;
303 /* taken only while moving_account > 0 */
304 spinlock_t move_lock;
305 /*
306 * percpu counter.
307 */
308 struct mem_cgroup_stat_cpu *stat;
309 /*
310 * used when a cpu is offlined or other synchronizations
311 * See mem_cgroup_read_stat().
312 */
313 struct mem_cgroup_stat_cpu nocpu_base;
314 spinlock_t pcp_counter_lock;
315
316 #ifdef CONFIG_INET
317 struct tcp_memcontrol tcp_mem;
318 #endif
319 };
320
321 /* Stuffs for move charges at task migration. */
322 /*
323 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
324 * left-shifted bitmap of these types.
325 */
326 enum move_type {
327 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
328 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
329 NR_MOVE_TYPE,
330 };
331
332 /* "mc" and its members are protected by cgroup_mutex */
333 static struct move_charge_struct {
334 spinlock_t lock; /* for from, to */
335 struct mem_cgroup *from;
336 struct mem_cgroup *to;
337 unsigned long precharge;
338 unsigned long moved_charge;
339 unsigned long moved_swap;
340 struct task_struct *moving_task; /* a task moving charges */
341 wait_queue_head_t waitq; /* a waitq for other context */
342 } mc = {
343 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
344 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
345 };
346
347 static bool move_anon(void)
348 {
349 return test_bit(MOVE_CHARGE_TYPE_ANON,
350 &mc.to->move_charge_at_immigrate);
351 }
352
353 static bool move_file(void)
354 {
355 return test_bit(MOVE_CHARGE_TYPE_FILE,
356 &mc.to->move_charge_at_immigrate);
357 }
358
359 /*
360 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
361 * limit reclaim to prevent infinite loops, if they ever occur.
362 */
363 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
364 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
365
366 enum charge_type {
367 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
368 MEM_CGROUP_CHARGE_TYPE_MAPPED,
369 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
370 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
371 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
372 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
373 NR_CHARGE_TYPE,
374 };
375
376 /* for encoding cft->private value on file */
377 #define _MEM (0)
378 #define _MEMSWAP (1)
379 #define _OOM_TYPE (2)
380 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
381 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
382 #define MEMFILE_ATTR(val) ((val) & 0xffff)
383 /* Used for OOM nofiier */
384 #define OOM_CONTROL (0)
385
386 /*
387 * Reclaim flags for mem_cgroup_hierarchical_reclaim
388 */
389 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
390 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
391 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
392 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
393
394 static void mem_cgroup_get(struct mem_cgroup *memcg);
395 static void mem_cgroup_put(struct mem_cgroup *memcg);
396
397 /* Writing them here to avoid exposing memcg's inner layout */
398 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
399 #include <net/sock.h>
400 #include <net/ip.h>
401
402 static bool mem_cgroup_is_root(struct mem_cgroup *memcg);
403 void sock_update_memcg(struct sock *sk)
404 {
405 if (mem_cgroup_sockets_enabled) {
406 struct mem_cgroup *memcg;
407
408 BUG_ON(!sk->sk_prot->proto_cgroup);
409
410 /* Socket cloning can throw us here with sk_cgrp already
411 * filled. It won't however, necessarily happen from
412 * process context. So the test for root memcg given
413 * the current task's memcg won't help us in this case.
414 *
415 * Respecting the original socket's memcg is a better
416 * decision in this case.
417 */
418 if (sk->sk_cgrp) {
419 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
420 mem_cgroup_get(sk->sk_cgrp->memcg);
421 return;
422 }
423
424 rcu_read_lock();
425 memcg = mem_cgroup_from_task(current);
426 if (!mem_cgroup_is_root(memcg)) {
427 mem_cgroup_get(memcg);
428 sk->sk_cgrp = sk->sk_prot->proto_cgroup(memcg);
429 }
430 rcu_read_unlock();
431 }
432 }
433 EXPORT_SYMBOL(sock_update_memcg);
434
435 void sock_release_memcg(struct sock *sk)
436 {
437 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
438 struct mem_cgroup *memcg;
439 WARN_ON(!sk->sk_cgrp->memcg);
440 memcg = sk->sk_cgrp->memcg;
441 mem_cgroup_put(memcg);
442 }
443 }
444
445 #ifdef CONFIG_INET
446 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
447 {
448 if (!memcg || mem_cgroup_is_root(memcg))
449 return NULL;
450
451 return &memcg->tcp_mem.cg_proto;
452 }
453 EXPORT_SYMBOL(tcp_proto_cgroup);
454 #endif /* CONFIG_INET */
455 #endif /* CONFIG_CGROUP_MEM_RES_CTLR_KMEM */
456
457 static void drain_all_stock_async(struct mem_cgroup *memcg);
458
459 static struct mem_cgroup_per_zone *
460 mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
461 {
462 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
463 }
464
465 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
466 {
467 return &memcg->css;
468 }
469
470 static struct mem_cgroup_per_zone *
471 page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
472 {
473 int nid = page_to_nid(page);
474 int zid = page_zonenum(page);
475
476 return mem_cgroup_zoneinfo(memcg, nid, zid);
477 }
478
479 static struct mem_cgroup_tree_per_zone *
480 soft_limit_tree_node_zone(int nid, int zid)
481 {
482 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
483 }
484
485 static struct mem_cgroup_tree_per_zone *
486 soft_limit_tree_from_page(struct page *page)
487 {
488 int nid = page_to_nid(page);
489 int zid = page_zonenum(page);
490
491 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
492 }
493
494 static void
495 __mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
496 struct mem_cgroup_per_zone *mz,
497 struct mem_cgroup_tree_per_zone *mctz,
498 unsigned long long new_usage_in_excess)
499 {
500 struct rb_node **p = &mctz->rb_root.rb_node;
501 struct rb_node *parent = NULL;
502 struct mem_cgroup_per_zone *mz_node;
503
504 if (mz->on_tree)
505 return;
506
507 mz->usage_in_excess = new_usage_in_excess;
508 if (!mz->usage_in_excess)
509 return;
510 while (*p) {
511 parent = *p;
512 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
513 tree_node);
514 if (mz->usage_in_excess < mz_node->usage_in_excess)
515 p = &(*p)->rb_left;
516 /*
517 * We can't avoid mem cgroups that are over their soft
518 * limit by the same amount
519 */
520 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
521 p = &(*p)->rb_right;
522 }
523 rb_link_node(&mz->tree_node, parent, p);
524 rb_insert_color(&mz->tree_node, &mctz->rb_root);
525 mz->on_tree = true;
526 }
527
528 static void
529 __mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
530 struct mem_cgroup_per_zone *mz,
531 struct mem_cgroup_tree_per_zone *mctz)
532 {
533 if (!mz->on_tree)
534 return;
535 rb_erase(&mz->tree_node, &mctz->rb_root);
536 mz->on_tree = false;
537 }
538
539 static void
540 mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
541 struct mem_cgroup_per_zone *mz,
542 struct mem_cgroup_tree_per_zone *mctz)
543 {
544 spin_lock(&mctz->lock);
545 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
546 spin_unlock(&mctz->lock);
547 }
548
549
550 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
551 {
552 unsigned long long excess;
553 struct mem_cgroup_per_zone *mz;
554 struct mem_cgroup_tree_per_zone *mctz;
555 int nid = page_to_nid(page);
556 int zid = page_zonenum(page);
557 mctz = soft_limit_tree_from_page(page);
558
559 /*
560 * Necessary to update all ancestors when hierarchy is used.
561 * because their event counter is not touched.
562 */
563 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
564 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
565 excess = res_counter_soft_limit_excess(&memcg->res);
566 /*
567 * We have to update the tree if mz is on RB-tree or
568 * mem is over its softlimit.
569 */
570 if (excess || mz->on_tree) {
571 spin_lock(&mctz->lock);
572 /* if on-tree, remove it */
573 if (mz->on_tree)
574 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
575 /*
576 * Insert again. mz->usage_in_excess will be updated.
577 * If excess is 0, no tree ops.
578 */
579 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
580 spin_unlock(&mctz->lock);
581 }
582 }
583 }
584
585 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
586 {
587 int node, zone;
588 struct mem_cgroup_per_zone *mz;
589 struct mem_cgroup_tree_per_zone *mctz;
590
591 for_each_node(node) {
592 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
593 mz = mem_cgroup_zoneinfo(memcg, node, zone);
594 mctz = soft_limit_tree_node_zone(node, zone);
595 mem_cgroup_remove_exceeded(memcg, mz, mctz);
596 }
597 }
598 }
599
600 static struct mem_cgroup_per_zone *
601 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
602 {
603 struct rb_node *rightmost = NULL;
604 struct mem_cgroup_per_zone *mz;
605
606 retry:
607 mz = NULL;
608 rightmost = rb_last(&mctz->rb_root);
609 if (!rightmost)
610 goto done; /* Nothing to reclaim from */
611
612 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
613 /*
614 * Remove the node now but someone else can add it back,
615 * we will to add it back at the end of reclaim to its correct
616 * position in the tree.
617 */
618 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
619 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
620 !css_tryget(&mz->memcg->css))
621 goto retry;
622 done:
623 return mz;
624 }
625
626 static struct mem_cgroup_per_zone *
627 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
628 {
629 struct mem_cgroup_per_zone *mz;
630
631 spin_lock(&mctz->lock);
632 mz = __mem_cgroup_largest_soft_limit_node(mctz);
633 spin_unlock(&mctz->lock);
634 return mz;
635 }
636
637 /*
638 * Implementation Note: reading percpu statistics for memcg.
639 *
640 * Both of vmstat[] and percpu_counter has threshold and do periodic
641 * synchronization to implement "quick" read. There are trade-off between
642 * reading cost and precision of value. Then, we may have a chance to implement
643 * a periodic synchronizion of counter in memcg's counter.
644 *
645 * But this _read() function is used for user interface now. The user accounts
646 * memory usage by memory cgroup and he _always_ requires exact value because
647 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
648 * have to visit all online cpus and make sum. So, for now, unnecessary
649 * synchronization is not implemented. (just implemented for cpu hotplug)
650 *
651 * If there are kernel internal actions which can make use of some not-exact
652 * value, and reading all cpu value can be performance bottleneck in some
653 * common workload, threashold and synchonization as vmstat[] should be
654 * implemented.
655 */
656 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
657 enum mem_cgroup_stat_index idx)
658 {
659 long val = 0;
660 int cpu;
661
662 get_online_cpus();
663 for_each_online_cpu(cpu)
664 val += per_cpu(memcg->stat->count[idx], cpu);
665 #ifdef CONFIG_HOTPLUG_CPU
666 spin_lock(&memcg->pcp_counter_lock);
667 val += memcg->nocpu_base.count[idx];
668 spin_unlock(&memcg->pcp_counter_lock);
669 #endif
670 put_online_cpus();
671 return val;
672 }
673
674 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
675 bool charge)
676 {
677 int val = (charge) ? 1 : -1;
678 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
679 }
680
681 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
682 enum mem_cgroup_events_index idx)
683 {
684 unsigned long val = 0;
685 int cpu;
686
687 for_each_online_cpu(cpu)
688 val += per_cpu(memcg->stat->events[idx], cpu);
689 #ifdef CONFIG_HOTPLUG_CPU
690 spin_lock(&memcg->pcp_counter_lock);
691 val += memcg->nocpu_base.events[idx];
692 spin_unlock(&memcg->pcp_counter_lock);
693 #endif
694 return val;
695 }
696
697 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
698 bool anon, int nr_pages)
699 {
700 preempt_disable();
701
702 /*
703 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
704 * counted as CACHE even if it's on ANON LRU.
705 */
706 if (anon)
707 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
708 nr_pages);
709 else
710 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
711 nr_pages);
712
713 /* pagein of a big page is an event. So, ignore page size */
714 if (nr_pages > 0)
715 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
716 else {
717 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
718 nr_pages = -nr_pages; /* for event */
719 }
720
721 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT], nr_pages);
722
723 preempt_enable();
724 }
725
726 unsigned long
727 mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
728 unsigned int lru_mask)
729 {
730 struct mem_cgroup_per_zone *mz;
731 enum lru_list lru;
732 unsigned long ret = 0;
733
734 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
735
736 for_each_lru(lru) {
737 if (BIT(lru) & lru_mask)
738 ret += mz->lru_size[lru];
739 }
740 return ret;
741 }
742
743 static unsigned long
744 mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
745 int nid, unsigned int lru_mask)
746 {
747 u64 total = 0;
748 int zid;
749
750 for (zid = 0; zid < MAX_NR_ZONES; zid++)
751 total += mem_cgroup_zone_nr_lru_pages(memcg,
752 nid, zid, lru_mask);
753
754 return total;
755 }
756
757 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
758 unsigned int lru_mask)
759 {
760 int nid;
761 u64 total = 0;
762
763 for_each_node_state(nid, N_HIGH_MEMORY)
764 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
765 return total;
766 }
767
768 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
769 enum mem_cgroup_events_target target)
770 {
771 unsigned long val, next;
772
773 val = __this_cpu_read(memcg->stat->events[MEM_CGROUP_EVENTS_COUNT]);
774 next = __this_cpu_read(memcg->stat->targets[target]);
775 /* from time_after() in jiffies.h */
776 if ((long)next - (long)val < 0) {
777 switch (target) {
778 case MEM_CGROUP_TARGET_THRESH:
779 next = val + THRESHOLDS_EVENTS_TARGET;
780 break;
781 case MEM_CGROUP_TARGET_SOFTLIMIT:
782 next = val + SOFTLIMIT_EVENTS_TARGET;
783 break;
784 case MEM_CGROUP_TARGET_NUMAINFO:
785 next = val + NUMAINFO_EVENTS_TARGET;
786 break;
787 default:
788 break;
789 }
790 __this_cpu_write(memcg->stat->targets[target], next);
791 return true;
792 }
793 return false;
794 }
795
796 /*
797 * Check events in order.
798 *
799 */
800 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
801 {
802 preempt_disable();
803 /* threshold event is triggered in finer grain than soft limit */
804 if (unlikely(mem_cgroup_event_ratelimit(memcg,
805 MEM_CGROUP_TARGET_THRESH))) {
806 bool do_softlimit;
807 bool do_numainfo __maybe_unused;
808
809 do_softlimit = mem_cgroup_event_ratelimit(memcg,
810 MEM_CGROUP_TARGET_SOFTLIMIT);
811 #if MAX_NUMNODES > 1
812 do_numainfo = mem_cgroup_event_ratelimit(memcg,
813 MEM_CGROUP_TARGET_NUMAINFO);
814 #endif
815 preempt_enable();
816
817 mem_cgroup_threshold(memcg);
818 if (unlikely(do_softlimit))
819 mem_cgroup_update_tree(memcg, page);
820 #if MAX_NUMNODES > 1
821 if (unlikely(do_numainfo))
822 atomic_inc(&memcg->numainfo_events);
823 #endif
824 } else
825 preempt_enable();
826 }
827
828 struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
829 {
830 return container_of(cgroup_subsys_state(cont,
831 mem_cgroup_subsys_id), struct mem_cgroup,
832 css);
833 }
834
835 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
836 {
837 /*
838 * mm_update_next_owner() may clear mm->owner to NULL
839 * if it races with swapoff, page migration, etc.
840 * So this can be called with p == NULL.
841 */
842 if (unlikely(!p))
843 return NULL;
844
845 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
846 struct mem_cgroup, css);
847 }
848
849 struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
850 {
851 struct mem_cgroup *memcg = NULL;
852
853 if (!mm)
854 return NULL;
855 /*
856 * Because we have no locks, mm->owner's may be being moved to other
857 * cgroup. We use css_tryget() here even if this looks
858 * pessimistic (rather than adding locks here).
859 */
860 rcu_read_lock();
861 do {
862 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
863 if (unlikely(!memcg))
864 break;
865 } while (!css_tryget(&memcg->css));
866 rcu_read_unlock();
867 return memcg;
868 }
869
870 /**
871 * mem_cgroup_iter - iterate over memory cgroup hierarchy
872 * @root: hierarchy root
873 * @prev: previously returned memcg, NULL on first invocation
874 * @reclaim: cookie for shared reclaim walks, NULL for full walks
875 *
876 * Returns references to children of the hierarchy below @root, or
877 * @root itself, or %NULL after a full round-trip.
878 *
879 * Caller must pass the return value in @prev on subsequent
880 * invocations for reference counting, or use mem_cgroup_iter_break()
881 * to cancel a hierarchy walk before the round-trip is complete.
882 *
883 * Reclaimers can specify a zone and a priority level in @reclaim to
884 * divide up the memcgs in the hierarchy among all concurrent
885 * reclaimers operating on the same zone and priority.
886 */
887 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
888 struct mem_cgroup *prev,
889 struct mem_cgroup_reclaim_cookie *reclaim)
890 {
891 struct mem_cgroup *memcg = NULL;
892 int id = 0;
893
894 if (mem_cgroup_disabled())
895 return NULL;
896
897 if (!root)
898 root = root_mem_cgroup;
899
900 if (prev && !reclaim)
901 id = css_id(&prev->css);
902
903 if (prev && prev != root)
904 css_put(&prev->css);
905
906 if (!root->use_hierarchy && root != root_mem_cgroup) {
907 if (prev)
908 return NULL;
909 return root;
910 }
911
912 while (!memcg) {
913 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
914 struct cgroup_subsys_state *css;
915
916 if (reclaim) {
917 int nid = zone_to_nid(reclaim->zone);
918 int zid = zone_idx(reclaim->zone);
919 struct mem_cgroup_per_zone *mz;
920
921 mz = mem_cgroup_zoneinfo(root, nid, zid);
922 iter = &mz->reclaim_iter[reclaim->priority];
923 if (prev && reclaim->generation != iter->generation)
924 return NULL;
925 id = iter->position;
926 }
927
928 rcu_read_lock();
929 css = css_get_next(&mem_cgroup_subsys, id + 1, &root->css, &id);
930 if (css) {
931 if (css == &root->css || css_tryget(css))
932 memcg = container_of(css,
933 struct mem_cgroup, css);
934 } else
935 id = 0;
936 rcu_read_unlock();
937
938 if (reclaim) {
939 iter->position = id;
940 if (!css)
941 iter->generation++;
942 else if (!prev && memcg)
943 reclaim->generation = iter->generation;
944 }
945
946 if (prev && !css)
947 return NULL;
948 }
949 return memcg;
950 }
951
952 /**
953 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
954 * @root: hierarchy root
955 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
956 */
957 void mem_cgroup_iter_break(struct mem_cgroup *root,
958 struct mem_cgroup *prev)
959 {
960 if (!root)
961 root = root_mem_cgroup;
962 if (prev && prev != root)
963 css_put(&prev->css);
964 }
965
966 /*
967 * Iteration constructs for visiting all cgroups (under a tree). If
968 * loops are exited prematurely (break), mem_cgroup_iter_break() must
969 * be used for reference counting.
970 */
971 #define for_each_mem_cgroup_tree(iter, root) \
972 for (iter = mem_cgroup_iter(root, NULL, NULL); \
973 iter != NULL; \
974 iter = mem_cgroup_iter(root, iter, NULL))
975
976 #define for_each_mem_cgroup(iter) \
977 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
978 iter != NULL; \
979 iter = mem_cgroup_iter(NULL, iter, NULL))
980
981 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
982 {
983 return (memcg == root_mem_cgroup);
984 }
985
986 void mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
987 {
988 struct mem_cgroup *memcg;
989
990 if (!mm)
991 return;
992
993 rcu_read_lock();
994 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
995 if (unlikely(!memcg))
996 goto out;
997
998 switch (idx) {
999 case PGFAULT:
1000 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1001 break;
1002 case PGMAJFAULT:
1003 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1004 break;
1005 default:
1006 BUG();
1007 }
1008 out:
1009 rcu_read_unlock();
1010 }
1011 EXPORT_SYMBOL(mem_cgroup_count_vm_event);
1012
1013 /**
1014 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1015 * @zone: zone of the wanted lruvec
1016 * @mem: memcg of the wanted lruvec
1017 *
1018 * Returns the lru list vector holding pages for the given @zone and
1019 * @mem. This can be the global zone lruvec, if the memory controller
1020 * is disabled.
1021 */
1022 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1023 struct mem_cgroup *memcg)
1024 {
1025 struct mem_cgroup_per_zone *mz;
1026
1027 if (mem_cgroup_disabled())
1028 return &zone->lruvec;
1029
1030 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1031 return &mz->lruvec;
1032 }
1033
1034 /*
1035 * Following LRU functions are allowed to be used without PCG_LOCK.
1036 * Operations are called by routine of global LRU independently from memcg.
1037 * What we have to take care of here is validness of pc->mem_cgroup.
1038 *
1039 * Changes to pc->mem_cgroup happens when
1040 * 1. charge
1041 * 2. moving account
1042 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1043 * It is added to LRU before charge.
1044 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1045 * When moving account, the page is not on LRU. It's isolated.
1046 */
1047
1048 /**
1049 * mem_cgroup_lru_add_list - account for adding an lru page and return lruvec
1050 * @zone: zone of the page
1051 * @page: the page
1052 * @lru: current lru
1053 *
1054 * This function accounts for @page being added to @lru, and returns
1055 * the lruvec for the given @zone and the memcg @page is charged to.
1056 *
1057 * The callsite is then responsible for physically linking the page to
1058 * the returned lruvec->lists[@lru].
1059 */
1060 struct lruvec *mem_cgroup_lru_add_list(struct zone *zone, struct page *page,
1061 enum lru_list lru)
1062 {
1063 struct mem_cgroup_per_zone *mz;
1064 struct mem_cgroup *memcg;
1065 struct page_cgroup *pc;
1066
1067 if (mem_cgroup_disabled())
1068 return &zone->lruvec;
1069
1070 pc = lookup_page_cgroup(page);
1071 memcg = pc->mem_cgroup;
1072
1073 /*
1074 * Surreptitiously switch any uncharged page to root:
1075 * an uncharged page off lru does nothing to secure
1076 * its former mem_cgroup from sudden removal.
1077 *
1078 * Our caller holds lru_lock, and PageCgroupUsed is updated
1079 * under page_cgroup lock: between them, they make all uses
1080 * of pc->mem_cgroup safe.
1081 */
1082 if (!PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1083 pc->mem_cgroup = memcg = root_mem_cgroup;
1084
1085 mz = page_cgroup_zoneinfo(memcg, page);
1086 /* compound_order() is stabilized through lru_lock */
1087 mz->lru_size[lru] += 1 << compound_order(page);
1088 return &mz->lruvec;
1089 }
1090
1091 /**
1092 * mem_cgroup_lru_del_list - account for removing an lru page
1093 * @page: the page
1094 * @lru: target lru
1095 *
1096 * This function accounts for @page being removed from @lru.
1097 *
1098 * The callsite is then responsible for physically unlinking
1099 * @page->lru.
1100 */
1101 void mem_cgroup_lru_del_list(struct page *page, enum lru_list lru)
1102 {
1103 struct mem_cgroup_per_zone *mz;
1104 struct mem_cgroup *memcg;
1105 struct page_cgroup *pc;
1106
1107 if (mem_cgroup_disabled())
1108 return;
1109
1110 pc = lookup_page_cgroup(page);
1111 memcg = pc->mem_cgroup;
1112 VM_BUG_ON(!memcg);
1113 mz = page_cgroup_zoneinfo(memcg, page);
1114 /* huge page split is done under lru_lock. so, we have no races. */
1115 VM_BUG_ON(mz->lru_size[lru] < (1 << compound_order(page)));
1116 mz->lru_size[lru] -= 1 << compound_order(page);
1117 }
1118
1119 void mem_cgroup_lru_del(struct page *page)
1120 {
1121 mem_cgroup_lru_del_list(page, page_lru(page));
1122 }
1123
1124 /**
1125 * mem_cgroup_lru_move_lists - account for moving a page between lrus
1126 * @zone: zone of the page
1127 * @page: the page
1128 * @from: current lru
1129 * @to: target lru
1130 *
1131 * This function accounts for @page being moved between the lrus @from
1132 * and @to, and returns the lruvec for the given @zone and the memcg
1133 * @page is charged to.
1134 *
1135 * The callsite is then responsible for physically relinking
1136 * @page->lru to the returned lruvec->lists[@to].
1137 */
1138 struct lruvec *mem_cgroup_lru_move_lists(struct zone *zone,
1139 struct page *page,
1140 enum lru_list from,
1141 enum lru_list to)
1142 {
1143 /* XXX: Optimize this, especially for @from == @to */
1144 mem_cgroup_lru_del_list(page, from);
1145 return mem_cgroup_lru_add_list(zone, page, to);
1146 }
1147
1148 /*
1149 * Checks whether given mem is same or in the root_mem_cgroup's
1150 * hierarchy subtree
1151 */
1152 bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1153 struct mem_cgroup *memcg)
1154 {
1155 if (root_memcg == memcg)
1156 return true;
1157 if (!root_memcg->use_hierarchy)
1158 return false;
1159 return css_is_ancestor(&memcg->css, &root_memcg->css);
1160 }
1161
1162 static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1163 struct mem_cgroup *memcg)
1164 {
1165 bool ret;
1166
1167 rcu_read_lock();
1168 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1169 rcu_read_unlock();
1170 return ret;
1171 }
1172
1173 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
1174 {
1175 int ret;
1176 struct mem_cgroup *curr = NULL;
1177 struct task_struct *p;
1178
1179 p = find_lock_task_mm(task);
1180 if (p) {
1181 curr = try_get_mem_cgroup_from_mm(p->mm);
1182 task_unlock(p);
1183 } else {
1184 /*
1185 * All threads may have already detached their mm's, but the oom
1186 * killer still needs to detect if they have already been oom
1187 * killed to prevent needlessly killing additional tasks.
1188 */
1189 task_lock(task);
1190 curr = mem_cgroup_from_task(task);
1191 if (curr)
1192 css_get(&curr->css);
1193 task_unlock(task);
1194 }
1195 if (!curr)
1196 return 0;
1197 /*
1198 * We should check use_hierarchy of "memcg" not "curr". Because checking
1199 * use_hierarchy of "curr" here make this function true if hierarchy is
1200 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1201 * hierarchy(even if use_hierarchy is disabled in "memcg").
1202 */
1203 ret = mem_cgroup_same_or_subtree(memcg, curr);
1204 css_put(&curr->css);
1205 return ret;
1206 }
1207
1208 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg, struct zone *zone)
1209 {
1210 unsigned long inactive_ratio;
1211 int nid = zone_to_nid(zone);
1212 int zid = zone_idx(zone);
1213 unsigned long inactive;
1214 unsigned long active;
1215 unsigned long gb;
1216
1217 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1218 BIT(LRU_INACTIVE_ANON));
1219 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1220 BIT(LRU_ACTIVE_ANON));
1221
1222 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1223 if (gb)
1224 inactive_ratio = int_sqrt(10 * gb);
1225 else
1226 inactive_ratio = 1;
1227
1228 return inactive * inactive_ratio < active;
1229 }
1230
1231 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg, struct zone *zone)
1232 {
1233 unsigned long active;
1234 unsigned long inactive;
1235 int zid = zone_idx(zone);
1236 int nid = zone_to_nid(zone);
1237
1238 inactive = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1239 BIT(LRU_INACTIVE_FILE));
1240 active = mem_cgroup_zone_nr_lru_pages(memcg, nid, zid,
1241 BIT(LRU_ACTIVE_FILE));
1242
1243 return (active > inactive);
1244 }
1245
1246 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1247 struct zone *zone)
1248 {
1249 int nid = zone_to_nid(zone);
1250 int zid = zone_idx(zone);
1251 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1252
1253 return &mz->reclaim_stat;
1254 }
1255
1256 struct zone_reclaim_stat *
1257 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1258 {
1259 struct page_cgroup *pc;
1260 struct mem_cgroup_per_zone *mz;
1261
1262 if (mem_cgroup_disabled())
1263 return NULL;
1264
1265 pc = lookup_page_cgroup(page);
1266 if (!PageCgroupUsed(pc))
1267 return NULL;
1268 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1269 smp_rmb();
1270 mz = page_cgroup_zoneinfo(pc->mem_cgroup, page);
1271 return &mz->reclaim_stat;
1272 }
1273
1274 #define mem_cgroup_from_res_counter(counter, member) \
1275 container_of(counter, struct mem_cgroup, member)
1276
1277 /**
1278 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1279 * @mem: the memory cgroup
1280 *
1281 * Returns the maximum amount of memory @mem can be charged with, in
1282 * pages.
1283 */
1284 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1285 {
1286 unsigned long long margin;
1287
1288 margin = res_counter_margin(&memcg->res);
1289 if (do_swap_account)
1290 margin = min(margin, res_counter_margin(&memcg->memsw));
1291 return margin >> PAGE_SHIFT;
1292 }
1293
1294 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1295 {
1296 struct cgroup *cgrp = memcg->css.cgroup;
1297
1298 /* root ? */
1299 if (cgrp->parent == NULL)
1300 return vm_swappiness;
1301
1302 return memcg->swappiness;
1303 }
1304
1305 /*
1306 * memcg->moving_account is used for checking possibility that some thread is
1307 * calling move_account(). When a thread on CPU-A starts moving pages under
1308 * a memcg, other threads should check memcg->moving_account under
1309 * rcu_read_lock(), like this:
1310 *
1311 * CPU-A CPU-B
1312 * rcu_read_lock()
1313 * memcg->moving_account+1 if (memcg->mocing_account)
1314 * take heavy locks.
1315 * synchronize_rcu() update something.
1316 * rcu_read_unlock()
1317 * start move here.
1318 */
1319
1320 /* for quick checking without looking up memcg */
1321 atomic_t memcg_moving __read_mostly;
1322
1323 static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1324 {
1325 atomic_inc(&memcg_moving);
1326 atomic_inc(&memcg->moving_account);
1327 synchronize_rcu();
1328 }
1329
1330 static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1331 {
1332 /*
1333 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1334 * We check NULL in callee rather than caller.
1335 */
1336 if (memcg) {
1337 atomic_dec(&memcg_moving);
1338 atomic_dec(&memcg->moving_account);
1339 }
1340 }
1341
1342 /*
1343 * 2 routines for checking "mem" is under move_account() or not.
1344 *
1345 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1346 * is used for avoiding races in accounting. If true,
1347 * pc->mem_cgroup may be overwritten.
1348 *
1349 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1350 * under hierarchy of moving cgroups. This is for
1351 * waiting at hith-memory prressure caused by "move".
1352 */
1353
1354 static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1355 {
1356 VM_BUG_ON(!rcu_read_lock_held());
1357 return atomic_read(&memcg->moving_account) > 0;
1358 }
1359
1360 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1361 {
1362 struct mem_cgroup *from;
1363 struct mem_cgroup *to;
1364 bool ret = false;
1365 /*
1366 * Unlike task_move routines, we access mc.to, mc.from not under
1367 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1368 */
1369 spin_lock(&mc.lock);
1370 from = mc.from;
1371 to = mc.to;
1372 if (!from)
1373 goto unlock;
1374
1375 ret = mem_cgroup_same_or_subtree(memcg, from)
1376 || mem_cgroup_same_or_subtree(memcg, to);
1377 unlock:
1378 spin_unlock(&mc.lock);
1379 return ret;
1380 }
1381
1382 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1383 {
1384 if (mc.moving_task && current != mc.moving_task) {
1385 if (mem_cgroup_under_move(memcg)) {
1386 DEFINE_WAIT(wait);
1387 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1388 /* moving charge context might have finished. */
1389 if (mc.moving_task)
1390 schedule();
1391 finish_wait(&mc.waitq, &wait);
1392 return true;
1393 }
1394 }
1395 return false;
1396 }
1397
1398 /*
1399 * Take this lock when
1400 * - a code tries to modify page's memcg while it's USED.
1401 * - a code tries to modify page state accounting in a memcg.
1402 * see mem_cgroup_stolen(), too.
1403 */
1404 static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1405 unsigned long *flags)
1406 {
1407 spin_lock_irqsave(&memcg->move_lock, *flags);
1408 }
1409
1410 static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1411 unsigned long *flags)
1412 {
1413 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1414 }
1415
1416 /**
1417 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1418 * @memcg: The memory cgroup that went over limit
1419 * @p: Task that is going to be killed
1420 *
1421 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1422 * enabled
1423 */
1424 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1425 {
1426 struct cgroup *task_cgrp;
1427 struct cgroup *mem_cgrp;
1428 /*
1429 * Need a buffer in BSS, can't rely on allocations. The code relies
1430 * on the assumption that OOM is serialized for memory controller.
1431 * If this assumption is broken, revisit this code.
1432 */
1433 static char memcg_name[PATH_MAX];
1434 int ret;
1435
1436 if (!memcg || !p)
1437 return;
1438
1439 rcu_read_lock();
1440
1441 mem_cgrp = memcg->css.cgroup;
1442 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1443
1444 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1445 if (ret < 0) {
1446 /*
1447 * Unfortunately, we are unable to convert to a useful name
1448 * But we'll still print out the usage information
1449 */
1450 rcu_read_unlock();
1451 goto done;
1452 }
1453 rcu_read_unlock();
1454
1455 printk(KERN_INFO "Task in %s killed", memcg_name);
1456
1457 rcu_read_lock();
1458 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1459 if (ret < 0) {
1460 rcu_read_unlock();
1461 goto done;
1462 }
1463 rcu_read_unlock();
1464
1465 /*
1466 * Continues from above, so we don't need an KERN_ level
1467 */
1468 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1469 done:
1470
1471 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1472 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1473 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1474 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1475 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1476 "failcnt %llu\n",
1477 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1478 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1479 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1480 }
1481
1482 /*
1483 * This function returns the number of memcg under hierarchy tree. Returns
1484 * 1(self count) if no children.
1485 */
1486 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1487 {
1488 int num = 0;
1489 struct mem_cgroup *iter;
1490
1491 for_each_mem_cgroup_tree(iter, memcg)
1492 num++;
1493 return num;
1494 }
1495
1496 /*
1497 * Return the memory (and swap, if configured) limit for a memcg.
1498 */
1499 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1500 {
1501 u64 limit;
1502 u64 memsw;
1503
1504 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1505 limit += total_swap_pages << PAGE_SHIFT;
1506
1507 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1508 /*
1509 * If memsw is finite and limits the amount of swap space available
1510 * to this memcg, return that limit.
1511 */
1512 return min(limit, memsw);
1513 }
1514
1515 static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1516 gfp_t gfp_mask,
1517 unsigned long flags)
1518 {
1519 unsigned long total = 0;
1520 bool noswap = false;
1521 int loop;
1522
1523 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1524 noswap = true;
1525 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1526 noswap = true;
1527
1528 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1529 if (loop)
1530 drain_all_stock_async(memcg);
1531 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1532 /*
1533 * Allow limit shrinkers, which are triggered directly
1534 * by userspace, to catch signals and stop reclaim
1535 * after minimal progress, regardless of the margin.
1536 */
1537 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1538 break;
1539 if (mem_cgroup_margin(memcg))
1540 break;
1541 /*
1542 * If nothing was reclaimed after two attempts, there
1543 * may be no reclaimable pages in this hierarchy.
1544 */
1545 if (loop && !total)
1546 break;
1547 }
1548 return total;
1549 }
1550
1551 /**
1552 * test_mem_cgroup_node_reclaimable
1553 * @mem: the target memcg
1554 * @nid: the node ID to be checked.
1555 * @noswap : specify true here if the user wants flle only information.
1556 *
1557 * This function returns whether the specified memcg contains any
1558 * reclaimable pages on a node. Returns true if there are any reclaimable
1559 * pages in the node.
1560 */
1561 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1562 int nid, bool noswap)
1563 {
1564 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1565 return true;
1566 if (noswap || !total_swap_pages)
1567 return false;
1568 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1569 return true;
1570 return false;
1571
1572 }
1573 #if MAX_NUMNODES > 1
1574
1575 /*
1576 * Always updating the nodemask is not very good - even if we have an empty
1577 * list or the wrong list here, we can start from some node and traverse all
1578 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1579 *
1580 */
1581 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1582 {
1583 int nid;
1584 /*
1585 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1586 * pagein/pageout changes since the last update.
1587 */
1588 if (!atomic_read(&memcg->numainfo_events))
1589 return;
1590 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1591 return;
1592
1593 /* make a nodemask where this memcg uses memory from */
1594 memcg->scan_nodes = node_states[N_HIGH_MEMORY];
1595
1596 for_each_node_mask(nid, node_states[N_HIGH_MEMORY]) {
1597
1598 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1599 node_clear(nid, memcg->scan_nodes);
1600 }
1601
1602 atomic_set(&memcg->numainfo_events, 0);
1603 atomic_set(&memcg->numainfo_updating, 0);
1604 }
1605
1606 /*
1607 * Selecting a node where we start reclaim from. Because what we need is just
1608 * reducing usage counter, start from anywhere is O,K. Considering
1609 * memory reclaim from current node, there are pros. and cons.
1610 *
1611 * Freeing memory from current node means freeing memory from a node which
1612 * we'll use or we've used. So, it may make LRU bad. And if several threads
1613 * hit limits, it will see a contention on a node. But freeing from remote
1614 * node means more costs for memory reclaim because of memory latency.
1615 *
1616 * Now, we use round-robin. Better algorithm is welcomed.
1617 */
1618 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1619 {
1620 int node;
1621
1622 mem_cgroup_may_update_nodemask(memcg);
1623 node = memcg->last_scanned_node;
1624
1625 node = next_node(node, memcg->scan_nodes);
1626 if (node == MAX_NUMNODES)
1627 node = first_node(memcg->scan_nodes);
1628 /*
1629 * We call this when we hit limit, not when pages are added to LRU.
1630 * No LRU may hold pages because all pages are UNEVICTABLE or
1631 * memcg is too small and all pages are not on LRU. In that case,
1632 * we use curret node.
1633 */
1634 if (unlikely(node == MAX_NUMNODES))
1635 node = numa_node_id();
1636
1637 memcg->last_scanned_node = node;
1638 return node;
1639 }
1640
1641 /*
1642 * Check all nodes whether it contains reclaimable pages or not.
1643 * For quick scan, we make use of scan_nodes. This will allow us to skip
1644 * unused nodes. But scan_nodes is lazily updated and may not cotain
1645 * enough new information. We need to do double check.
1646 */
1647 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1648 {
1649 int nid;
1650
1651 /*
1652 * quick check...making use of scan_node.
1653 * We can skip unused nodes.
1654 */
1655 if (!nodes_empty(memcg->scan_nodes)) {
1656 for (nid = first_node(memcg->scan_nodes);
1657 nid < MAX_NUMNODES;
1658 nid = next_node(nid, memcg->scan_nodes)) {
1659
1660 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1661 return true;
1662 }
1663 }
1664 /*
1665 * Check rest of nodes.
1666 */
1667 for_each_node_state(nid, N_HIGH_MEMORY) {
1668 if (node_isset(nid, memcg->scan_nodes))
1669 continue;
1670 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
1671 return true;
1672 }
1673 return false;
1674 }
1675
1676 #else
1677 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1678 {
1679 return 0;
1680 }
1681
1682 bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
1683 {
1684 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
1685 }
1686 #endif
1687
1688 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1689 struct zone *zone,
1690 gfp_t gfp_mask,
1691 unsigned long *total_scanned)
1692 {
1693 struct mem_cgroup *victim = NULL;
1694 int total = 0;
1695 int loop = 0;
1696 unsigned long excess;
1697 unsigned long nr_scanned;
1698 struct mem_cgroup_reclaim_cookie reclaim = {
1699 .zone = zone,
1700 .priority = 0,
1701 };
1702
1703 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
1704
1705 while (1) {
1706 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1707 if (!victim) {
1708 loop++;
1709 if (loop >= 2) {
1710 /*
1711 * If we have not been able to reclaim
1712 * anything, it might because there are
1713 * no reclaimable pages under this hierarchy
1714 */
1715 if (!total)
1716 break;
1717 /*
1718 * We want to do more targeted reclaim.
1719 * excess >> 2 is not to excessive so as to
1720 * reclaim too much, nor too less that we keep
1721 * coming back to reclaim from this cgroup
1722 */
1723 if (total >= (excess >> 2) ||
1724 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1725 break;
1726 }
1727 continue;
1728 }
1729 if (!mem_cgroup_reclaimable(victim, false))
1730 continue;
1731 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1732 zone, &nr_scanned);
1733 *total_scanned += nr_scanned;
1734 if (!res_counter_soft_limit_excess(&root_memcg->res))
1735 break;
1736 }
1737 mem_cgroup_iter_break(root_memcg, victim);
1738 return total;
1739 }
1740
1741 /*
1742 * Check OOM-Killer is already running under our hierarchy.
1743 * If someone is running, return false.
1744 * Has to be called with memcg_oom_lock
1745 */
1746 static bool mem_cgroup_oom_lock(struct mem_cgroup *memcg)
1747 {
1748 struct mem_cgroup *iter, *failed = NULL;
1749
1750 for_each_mem_cgroup_tree(iter, memcg) {
1751 if (iter->oom_lock) {
1752 /*
1753 * this subtree of our hierarchy is already locked
1754 * so we cannot give a lock.
1755 */
1756 failed = iter;
1757 mem_cgroup_iter_break(memcg, iter);
1758 break;
1759 } else
1760 iter->oom_lock = true;
1761 }
1762
1763 if (!failed)
1764 return true;
1765
1766 /*
1767 * OK, we failed to lock the whole subtree so we have to clean up
1768 * what we set up to the failing subtree
1769 */
1770 for_each_mem_cgroup_tree(iter, memcg) {
1771 if (iter == failed) {
1772 mem_cgroup_iter_break(memcg, iter);
1773 break;
1774 }
1775 iter->oom_lock = false;
1776 }
1777 return false;
1778 }
1779
1780 /*
1781 * Has to be called with memcg_oom_lock
1782 */
1783 static int mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1784 {
1785 struct mem_cgroup *iter;
1786
1787 for_each_mem_cgroup_tree(iter, memcg)
1788 iter->oom_lock = false;
1789 return 0;
1790 }
1791
1792 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1793 {
1794 struct mem_cgroup *iter;
1795
1796 for_each_mem_cgroup_tree(iter, memcg)
1797 atomic_inc(&iter->under_oom);
1798 }
1799
1800 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1801 {
1802 struct mem_cgroup *iter;
1803
1804 /*
1805 * When a new child is created while the hierarchy is under oom,
1806 * mem_cgroup_oom_lock() may not be called. We have to use
1807 * atomic_add_unless() here.
1808 */
1809 for_each_mem_cgroup_tree(iter, memcg)
1810 atomic_add_unless(&iter->under_oom, -1, 0);
1811 }
1812
1813 static DEFINE_SPINLOCK(memcg_oom_lock);
1814 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1815
1816 struct oom_wait_info {
1817 struct mem_cgroup *memcg;
1818 wait_queue_t wait;
1819 };
1820
1821 static int memcg_oom_wake_function(wait_queue_t *wait,
1822 unsigned mode, int sync, void *arg)
1823 {
1824 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1825 struct mem_cgroup *oom_wait_memcg;
1826 struct oom_wait_info *oom_wait_info;
1827
1828 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1829 oom_wait_memcg = oom_wait_info->memcg;
1830
1831 /*
1832 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
1833 * Then we can use css_is_ancestor without taking care of RCU.
1834 */
1835 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
1836 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
1837 return 0;
1838 return autoremove_wake_function(wait, mode, sync, arg);
1839 }
1840
1841 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1842 {
1843 /* for filtering, pass "memcg" as argument. */
1844 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1845 }
1846
1847 static void memcg_oom_recover(struct mem_cgroup *memcg)
1848 {
1849 if (memcg && atomic_read(&memcg->under_oom))
1850 memcg_wakeup_oom(memcg);
1851 }
1852
1853 /*
1854 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1855 */
1856 bool mem_cgroup_handle_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1857 {
1858 struct oom_wait_info owait;
1859 bool locked, need_to_kill;
1860
1861 owait.memcg = memcg;
1862 owait.wait.flags = 0;
1863 owait.wait.func = memcg_oom_wake_function;
1864 owait.wait.private = current;
1865 INIT_LIST_HEAD(&owait.wait.task_list);
1866 need_to_kill = true;
1867 mem_cgroup_mark_under_oom(memcg);
1868
1869 /* At first, try to OOM lock hierarchy under memcg.*/
1870 spin_lock(&memcg_oom_lock);
1871 locked = mem_cgroup_oom_lock(memcg);
1872 /*
1873 * Even if signal_pending(), we can't quit charge() loop without
1874 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1875 * under OOM is always welcomed, use TASK_KILLABLE here.
1876 */
1877 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1878 if (!locked || memcg->oom_kill_disable)
1879 need_to_kill = false;
1880 if (locked)
1881 mem_cgroup_oom_notify(memcg);
1882 spin_unlock(&memcg_oom_lock);
1883
1884 if (need_to_kill) {
1885 finish_wait(&memcg_oom_waitq, &owait.wait);
1886 mem_cgroup_out_of_memory(memcg, mask, order);
1887 } else {
1888 schedule();
1889 finish_wait(&memcg_oom_waitq, &owait.wait);
1890 }
1891 spin_lock(&memcg_oom_lock);
1892 if (locked)
1893 mem_cgroup_oom_unlock(memcg);
1894 memcg_wakeup_oom(memcg);
1895 spin_unlock(&memcg_oom_lock);
1896
1897 mem_cgroup_unmark_under_oom(memcg);
1898
1899 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1900 return false;
1901 /* Give chance to dying process */
1902 schedule_timeout_uninterruptible(1);
1903 return true;
1904 }
1905
1906 /*
1907 * Currently used to update mapped file statistics, but the routine can be
1908 * generalized to update other statistics as well.
1909 *
1910 * Notes: Race condition
1911 *
1912 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1913 * it tends to be costly. But considering some conditions, we doesn't need
1914 * to do so _always_.
1915 *
1916 * Considering "charge", lock_page_cgroup() is not required because all
1917 * file-stat operations happen after a page is attached to radix-tree. There
1918 * are no race with "charge".
1919 *
1920 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1921 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1922 * if there are race with "uncharge". Statistics itself is properly handled
1923 * by flags.
1924 *
1925 * Considering "move", this is an only case we see a race. To make the race
1926 * small, we check mm->moving_account and detect there are possibility of race
1927 * If there is, we take a lock.
1928 */
1929
1930 void __mem_cgroup_begin_update_page_stat(struct page *page,
1931 bool *locked, unsigned long *flags)
1932 {
1933 struct mem_cgroup *memcg;
1934 struct page_cgroup *pc;
1935
1936 pc = lookup_page_cgroup(page);
1937 again:
1938 memcg = pc->mem_cgroup;
1939 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1940 return;
1941 /*
1942 * If this memory cgroup is not under account moving, we don't
1943 * need to take move_lock_page_cgroup(). Because we already hold
1944 * rcu_read_lock(), any calls to move_account will be delayed until
1945 * rcu_read_unlock() if mem_cgroup_stolen() == true.
1946 */
1947 if (!mem_cgroup_stolen(memcg))
1948 return;
1949
1950 move_lock_mem_cgroup(memcg, flags);
1951 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
1952 move_unlock_mem_cgroup(memcg, flags);
1953 goto again;
1954 }
1955 *locked = true;
1956 }
1957
1958 void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
1959 {
1960 struct page_cgroup *pc = lookup_page_cgroup(page);
1961
1962 /*
1963 * It's guaranteed that pc->mem_cgroup never changes while
1964 * lock is held because a routine modifies pc->mem_cgroup
1965 * should take move_lock_page_cgroup().
1966 */
1967 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
1968 }
1969
1970 void mem_cgroup_update_page_stat(struct page *page,
1971 enum mem_cgroup_page_stat_item idx, int val)
1972 {
1973 struct mem_cgroup *memcg;
1974 struct page_cgroup *pc = lookup_page_cgroup(page);
1975 unsigned long uninitialized_var(flags);
1976
1977 if (mem_cgroup_disabled())
1978 return;
1979
1980 memcg = pc->mem_cgroup;
1981 if (unlikely(!memcg || !PageCgroupUsed(pc)))
1982 return;
1983
1984 switch (idx) {
1985 case MEMCG_NR_FILE_MAPPED:
1986 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1987 break;
1988 default:
1989 BUG();
1990 }
1991
1992 this_cpu_add(memcg->stat->count[idx], val);
1993 }
1994
1995 /*
1996 * size of first charge trial. "32" comes from vmscan.c's magic value.
1997 * TODO: maybe necessary to use big numbers in big irons.
1998 */
1999 #define CHARGE_BATCH 32U
2000 struct memcg_stock_pcp {
2001 struct mem_cgroup *cached; /* this never be root cgroup */
2002 unsigned int nr_pages;
2003 struct work_struct work;
2004 unsigned long flags;
2005 #define FLUSHING_CACHED_CHARGE (0)
2006 };
2007 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2008 static DEFINE_MUTEX(percpu_charge_mutex);
2009
2010 /*
2011 * Try to consume stocked charge on this cpu. If success, one page is consumed
2012 * from local stock and true is returned. If the stock is 0 or charges from a
2013 * cgroup which is not current target, returns false. This stock will be
2014 * refilled.
2015 */
2016 static bool consume_stock(struct mem_cgroup *memcg)
2017 {
2018 struct memcg_stock_pcp *stock;
2019 bool ret = true;
2020
2021 stock = &get_cpu_var(memcg_stock);
2022 if (memcg == stock->cached && stock->nr_pages)
2023 stock->nr_pages--;
2024 else /* need to call res_counter_charge */
2025 ret = false;
2026 put_cpu_var(memcg_stock);
2027 return ret;
2028 }
2029
2030 /*
2031 * Returns stocks cached in percpu to res_counter and reset cached information.
2032 */
2033 static void drain_stock(struct memcg_stock_pcp *stock)
2034 {
2035 struct mem_cgroup *old = stock->cached;
2036
2037 if (stock->nr_pages) {
2038 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2039
2040 res_counter_uncharge(&old->res, bytes);
2041 if (do_swap_account)
2042 res_counter_uncharge(&old->memsw, bytes);
2043 stock->nr_pages = 0;
2044 }
2045 stock->cached = NULL;
2046 }
2047
2048 /*
2049 * This must be called under preempt disabled or must be called by
2050 * a thread which is pinned to local cpu.
2051 */
2052 static void drain_local_stock(struct work_struct *dummy)
2053 {
2054 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2055 drain_stock(stock);
2056 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2057 }
2058
2059 /*
2060 * Cache charges(val) which is from res_counter, to local per_cpu area.
2061 * This will be consumed by consume_stock() function, later.
2062 */
2063 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2064 {
2065 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2066
2067 if (stock->cached != memcg) { /* reset if necessary */
2068 drain_stock(stock);
2069 stock->cached = memcg;
2070 }
2071 stock->nr_pages += nr_pages;
2072 put_cpu_var(memcg_stock);
2073 }
2074
2075 /*
2076 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2077 * of the hierarchy under it. sync flag says whether we should block
2078 * until the work is done.
2079 */
2080 static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2081 {
2082 int cpu, curcpu;
2083
2084 /* Notify other cpus that system-wide "drain" is running */
2085 get_online_cpus();
2086 curcpu = get_cpu();
2087 for_each_online_cpu(cpu) {
2088 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2089 struct mem_cgroup *memcg;
2090
2091 memcg = stock->cached;
2092 if (!memcg || !stock->nr_pages)
2093 continue;
2094 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2095 continue;
2096 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2097 if (cpu == curcpu)
2098 drain_local_stock(&stock->work);
2099 else
2100 schedule_work_on(cpu, &stock->work);
2101 }
2102 }
2103 put_cpu();
2104
2105 if (!sync)
2106 goto out;
2107
2108 for_each_online_cpu(cpu) {
2109 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2110 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2111 flush_work(&stock->work);
2112 }
2113 out:
2114 put_online_cpus();
2115 }
2116
2117 /*
2118 * Tries to drain stocked charges in other cpus. This function is asynchronous
2119 * and just put a work per cpu for draining localy on each cpu. Caller can
2120 * expects some charges will be back to res_counter later but cannot wait for
2121 * it.
2122 */
2123 static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2124 {
2125 /*
2126 * If someone calls draining, avoid adding more kworker runs.
2127 */
2128 if (!mutex_trylock(&percpu_charge_mutex))
2129 return;
2130 drain_all_stock(root_memcg, false);
2131 mutex_unlock(&percpu_charge_mutex);
2132 }
2133
2134 /* This is a synchronous drain interface. */
2135 static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2136 {
2137 /* called when force_empty is called */
2138 mutex_lock(&percpu_charge_mutex);
2139 drain_all_stock(root_memcg, true);
2140 mutex_unlock(&percpu_charge_mutex);
2141 }
2142
2143 /*
2144 * This function drains percpu counter value from DEAD cpu and
2145 * move it to local cpu. Note that this function can be preempted.
2146 */
2147 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2148 {
2149 int i;
2150
2151 spin_lock(&memcg->pcp_counter_lock);
2152 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
2153 long x = per_cpu(memcg->stat->count[i], cpu);
2154
2155 per_cpu(memcg->stat->count[i], cpu) = 0;
2156 memcg->nocpu_base.count[i] += x;
2157 }
2158 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2159 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2160
2161 per_cpu(memcg->stat->events[i], cpu) = 0;
2162 memcg->nocpu_base.events[i] += x;
2163 }
2164 spin_unlock(&memcg->pcp_counter_lock);
2165 }
2166
2167 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
2168 unsigned long action,
2169 void *hcpu)
2170 {
2171 int cpu = (unsigned long)hcpu;
2172 struct memcg_stock_pcp *stock;
2173 struct mem_cgroup *iter;
2174
2175 if (action == CPU_ONLINE)
2176 return NOTIFY_OK;
2177
2178 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2179 return NOTIFY_OK;
2180
2181 for_each_mem_cgroup(iter)
2182 mem_cgroup_drain_pcp_counter(iter, cpu);
2183
2184 stock = &per_cpu(memcg_stock, cpu);
2185 drain_stock(stock);
2186 return NOTIFY_OK;
2187 }
2188
2189
2190 /* See __mem_cgroup_try_charge() for details */
2191 enum {
2192 CHARGE_OK, /* success */
2193 CHARGE_RETRY, /* need to retry but retry is not bad */
2194 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2195 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
2196 CHARGE_OOM_DIE, /* the current is killed because of OOM */
2197 };
2198
2199 static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2200 unsigned int nr_pages, bool oom_check)
2201 {
2202 unsigned long csize = nr_pages * PAGE_SIZE;
2203 struct mem_cgroup *mem_over_limit;
2204 struct res_counter *fail_res;
2205 unsigned long flags = 0;
2206 int ret;
2207
2208 ret = res_counter_charge(&memcg->res, csize, &fail_res);
2209
2210 if (likely(!ret)) {
2211 if (!do_swap_account)
2212 return CHARGE_OK;
2213 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2214 if (likely(!ret))
2215 return CHARGE_OK;
2216
2217 res_counter_uncharge(&memcg->res, csize);
2218 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2219 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2220 } else
2221 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2222 /*
2223 * nr_pages can be either a huge page (HPAGE_PMD_NR), a batch
2224 * of regular pages (CHARGE_BATCH), or a single regular page (1).
2225 *
2226 * Never reclaim on behalf of optional batching, retry with a
2227 * single page instead.
2228 */
2229 if (nr_pages == CHARGE_BATCH)
2230 return CHARGE_RETRY;
2231
2232 if (!(gfp_mask & __GFP_WAIT))
2233 return CHARGE_WOULDBLOCK;
2234
2235 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2236 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2237 return CHARGE_RETRY;
2238 /*
2239 * Even though the limit is exceeded at this point, reclaim
2240 * may have been able to free some pages. Retry the charge
2241 * before killing the task.
2242 *
2243 * Only for regular pages, though: huge pages are rather
2244 * unlikely to succeed so close to the limit, and we fall back
2245 * to regular pages anyway in case of failure.
2246 */
2247 if (nr_pages == 1 && ret)
2248 return CHARGE_RETRY;
2249
2250 /*
2251 * At task move, charge accounts can be doubly counted. So, it's
2252 * better to wait until the end of task_move if something is going on.
2253 */
2254 if (mem_cgroup_wait_acct_move(mem_over_limit))
2255 return CHARGE_RETRY;
2256
2257 /* If we don't need to call oom-killer at el, return immediately */
2258 if (!oom_check)
2259 return CHARGE_NOMEM;
2260 /* check OOM */
2261 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask, get_order(csize)))
2262 return CHARGE_OOM_DIE;
2263
2264 return CHARGE_RETRY;
2265 }
2266
2267 /*
2268 * __mem_cgroup_try_charge() does
2269 * 1. detect memcg to be charged against from passed *mm and *ptr,
2270 * 2. update res_counter
2271 * 3. call memory reclaim if necessary.
2272 *
2273 * In some special case, if the task is fatal, fatal_signal_pending() or
2274 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2275 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2276 * as possible without any hazards. 2: all pages should have a valid
2277 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2278 * pointer, that is treated as a charge to root_mem_cgroup.
2279 *
2280 * So __mem_cgroup_try_charge() will return
2281 * 0 ... on success, filling *ptr with a valid memcg pointer.
2282 * -ENOMEM ... charge failure because of resource limits.
2283 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2284 *
2285 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2286 * the oom-killer can be invoked.
2287 */
2288 static int __mem_cgroup_try_charge(struct mm_struct *mm,
2289 gfp_t gfp_mask,
2290 unsigned int nr_pages,
2291 struct mem_cgroup **ptr,
2292 bool oom)
2293 {
2294 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2295 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2296 struct mem_cgroup *memcg = NULL;
2297 int ret;
2298
2299 /*
2300 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2301 * in system level. So, allow to go ahead dying process in addition to
2302 * MEMDIE process.
2303 */
2304 if (unlikely(test_thread_flag(TIF_MEMDIE)
2305 || fatal_signal_pending(current)))
2306 goto bypass;
2307
2308 /*
2309 * We always charge the cgroup the mm_struct belongs to.
2310 * The mm_struct's mem_cgroup changes on task migration if the
2311 * thread group leader migrates. It's possible that mm is not
2312 * set, if so charge the init_mm (happens for pagecache usage).
2313 */
2314 if (!*ptr && !mm)
2315 *ptr = root_mem_cgroup;
2316 again:
2317 if (*ptr) { /* css should be a valid one */
2318 memcg = *ptr;
2319 VM_BUG_ON(css_is_removed(&memcg->css));
2320 if (mem_cgroup_is_root(memcg))
2321 goto done;
2322 if (nr_pages == 1 && consume_stock(memcg))
2323 goto done;
2324 css_get(&memcg->css);
2325 } else {
2326 struct task_struct *p;
2327
2328 rcu_read_lock();
2329 p = rcu_dereference(mm->owner);
2330 /*
2331 * Because we don't have task_lock(), "p" can exit.
2332 * In that case, "memcg" can point to root or p can be NULL with
2333 * race with swapoff. Then, we have small risk of mis-accouning.
2334 * But such kind of mis-account by race always happens because
2335 * we don't have cgroup_mutex(). It's overkill and we allo that
2336 * small race, here.
2337 * (*) swapoff at el will charge against mm-struct not against
2338 * task-struct. So, mm->owner can be NULL.
2339 */
2340 memcg = mem_cgroup_from_task(p);
2341 if (!memcg)
2342 memcg = root_mem_cgroup;
2343 if (mem_cgroup_is_root(memcg)) {
2344 rcu_read_unlock();
2345 goto done;
2346 }
2347 if (nr_pages == 1 && consume_stock(memcg)) {
2348 /*
2349 * It seems dagerous to access memcg without css_get().
2350 * But considering how consume_stok works, it's not
2351 * necessary. If consume_stock success, some charges
2352 * from this memcg are cached on this cpu. So, we
2353 * don't need to call css_get()/css_tryget() before
2354 * calling consume_stock().
2355 */
2356 rcu_read_unlock();
2357 goto done;
2358 }
2359 /* after here, we may be blocked. we need to get refcnt */
2360 if (!css_tryget(&memcg->css)) {
2361 rcu_read_unlock();
2362 goto again;
2363 }
2364 rcu_read_unlock();
2365 }
2366
2367 do {
2368 bool oom_check;
2369
2370 /* If killed, bypass charge */
2371 if (fatal_signal_pending(current)) {
2372 css_put(&memcg->css);
2373 goto bypass;
2374 }
2375
2376 oom_check = false;
2377 if (oom && !nr_oom_retries) {
2378 oom_check = true;
2379 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2380 }
2381
2382 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch, oom_check);
2383 switch (ret) {
2384 case CHARGE_OK:
2385 break;
2386 case CHARGE_RETRY: /* not in OOM situation but retry */
2387 batch = nr_pages;
2388 css_put(&memcg->css);
2389 memcg = NULL;
2390 goto again;
2391 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2392 css_put(&memcg->css);
2393 goto nomem;
2394 case CHARGE_NOMEM: /* OOM routine works */
2395 if (!oom) {
2396 css_put(&memcg->css);
2397 goto nomem;
2398 }
2399 /* If oom, we never return -ENOMEM */
2400 nr_oom_retries--;
2401 break;
2402 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2403 css_put(&memcg->css);
2404 goto bypass;
2405 }
2406 } while (ret != CHARGE_OK);
2407
2408 if (batch > nr_pages)
2409 refill_stock(memcg, batch - nr_pages);
2410 css_put(&memcg->css);
2411 done:
2412 *ptr = memcg;
2413 return 0;
2414 nomem:
2415 *ptr = NULL;
2416 return -ENOMEM;
2417 bypass:
2418 *ptr = root_mem_cgroup;
2419 return -EINTR;
2420 }
2421
2422 /*
2423 * Somemtimes we have to undo a charge we got by try_charge().
2424 * This function is for that and do uncharge, put css's refcnt.
2425 * gotten by try_charge().
2426 */
2427 static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2428 unsigned int nr_pages)
2429 {
2430 if (!mem_cgroup_is_root(memcg)) {
2431 unsigned long bytes = nr_pages * PAGE_SIZE;
2432
2433 res_counter_uncharge(&memcg->res, bytes);
2434 if (do_swap_account)
2435 res_counter_uncharge(&memcg->memsw, bytes);
2436 }
2437 }
2438
2439 /*
2440 * A helper function to get mem_cgroup from ID. must be called under
2441 * rcu_read_lock(). The caller must check css_is_removed() or some if
2442 * it's concern. (dropping refcnt from swap can be called against removed
2443 * memcg.)
2444 */
2445 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2446 {
2447 struct cgroup_subsys_state *css;
2448
2449 /* ID 0 is unused ID */
2450 if (!id)
2451 return NULL;
2452 css = css_lookup(&mem_cgroup_subsys, id);
2453 if (!css)
2454 return NULL;
2455 return container_of(css, struct mem_cgroup, css);
2456 }
2457
2458 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2459 {
2460 struct mem_cgroup *memcg = NULL;
2461 struct page_cgroup *pc;
2462 unsigned short id;
2463 swp_entry_t ent;
2464
2465 VM_BUG_ON(!PageLocked(page));
2466
2467 pc = lookup_page_cgroup(page);
2468 lock_page_cgroup(pc);
2469 if (PageCgroupUsed(pc)) {
2470 memcg = pc->mem_cgroup;
2471 if (memcg && !css_tryget(&memcg->css))
2472 memcg = NULL;
2473 } else if (PageSwapCache(page)) {
2474 ent.val = page_private(page);
2475 id = lookup_swap_cgroup_id(ent);
2476 rcu_read_lock();
2477 memcg = mem_cgroup_lookup(id);
2478 if (memcg && !css_tryget(&memcg->css))
2479 memcg = NULL;
2480 rcu_read_unlock();
2481 }
2482 unlock_page_cgroup(pc);
2483 return memcg;
2484 }
2485
2486 static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2487 struct page *page,
2488 unsigned int nr_pages,
2489 enum charge_type ctype,
2490 bool lrucare)
2491 {
2492 struct page_cgroup *pc = lookup_page_cgroup(page);
2493 struct zone *uninitialized_var(zone);
2494 bool was_on_lru = false;
2495 bool anon;
2496
2497 lock_page_cgroup(pc);
2498 if (unlikely(PageCgroupUsed(pc))) {
2499 unlock_page_cgroup(pc);
2500 __mem_cgroup_cancel_charge(memcg, nr_pages);
2501 return;
2502 }
2503 /*
2504 * we don't need page_cgroup_lock about tail pages, becase they are not
2505 * accessed by any other context at this point.
2506 */
2507
2508 /*
2509 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2510 * may already be on some other mem_cgroup's LRU. Take care of it.
2511 */
2512 if (lrucare) {
2513 zone = page_zone(page);
2514 spin_lock_irq(&zone->lru_lock);
2515 if (PageLRU(page)) {
2516 ClearPageLRU(page);
2517 del_page_from_lru_list(zone, page, page_lru(page));
2518 was_on_lru = true;
2519 }
2520 }
2521
2522 pc->mem_cgroup = memcg;
2523 /*
2524 * We access a page_cgroup asynchronously without lock_page_cgroup().
2525 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2526 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2527 * before USED bit, we need memory barrier here.
2528 * See mem_cgroup_add_lru_list(), etc.
2529 */
2530 smp_wmb();
2531 SetPageCgroupUsed(pc);
2532
2533 if (lrucare) {
2534 if (was_on_lru) {
2535 VM_BUG_ON(PageLRU(page));
2536 SetPageLRU(page);
2537 add_page_to_lru_list(zone, page, page_lru(page));
2538 }
2539 spin_unlock_irq(&zone->lru_lock);
2540 }
2541
2542 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
2543 anon = true;
2544 else
2545 anon = false;
2546
2547 mem_cgroup_charge_statistics(memcg, anon, nr_pages);
2548 unlock_page_cgroup(pc);
2549
2550 /*
2551 * "charge_statistics" updated event counter. Then, check it.
2552 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2553 * if they exceeds softlimit.
2554 */
2555 memcg_check_events(memcg, page);
2556 }
2557
2558 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2559
2560 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MIGRATION))
2561 /*
2562 * Because tail pages are not marked as "used", set it. We're under
2563 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2564 * charge/uncharge will be never happen and move_account() is done under
2565 * compound_lock(), so we don't have to take care of races.
2566 */
2567 void mem_cgroup_split_huge_fixup(struct page *head)
2568 {
2569 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2570 struct page_cgroup *pc;
2571 int i;
2572
2573 if (mem_cgroup_disabled())
2574 return;
2575 for (i = 1; i < HPAGE_PMD_NR; i++) {
2576 pc = head_pc + i;
2577 pc->mem_cgroup = head_pc->mem_cgroup;
2578 smp_wmb();/* see __commit_charge() */
2579 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2580 }
2581 }
2582 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2583
2584 /**
2585 * mem_cgroup_move_account - move account of the page
2586 * @page: the page
2587 * @nr_pages: number of regular pages (>1 for huge pages)
2588 * @pc: page_cgroup of the page.
2589 * @from: mem_cgroup which the page is moved from.
2590 * @to: mem_cgroup which the page is moved to. @from != @to.
2591 * @uncharge: whether we should call uncharge and css_put against @from.
2592 *
2593 * The caller must confirm following.
2594 * - page is not on LRU (isolate_page() is useful.)
2595 * - compound_lock is held when nr_pages > 1
2596 *
2597 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2598 * done by a caller(__mem_cgroup_try_charge would be useful). If @uncharge is
2599 * true, this function does "uncharge" from old cgroup, but it doesn't if
2600 * @uncharge is false, so a caller should do "uncharge".
2601 */
2602 static int mem_cgroup_move_account(struct page *page,
2603 unsigned int nr_pages,
2604 struct page_cgroup *pc,
2605 struct mem_cgroup *from,
2606 struct mem_cgroup *to,
2607 bool uncharge)
2608 {
2609 unsigned long flags;
2610 int ret;
2611 bool anon = PageAnon(page);
2612
2613 VM_BUG_ON(from == to);
2614 VM_BUG_ON(PageLRU(page));
2615 /*
2616 * The page is isolated from LRU. So, collapse function
2617 * will not handle this page. But page splitting can happen.
2618 * Do this check under compound_page_lock(). The caller should
2619 * hold it.
2620 */
2621 ret = -EBUSY;
2622 if (nr_pages > 1 && !PageTransHuge(page))
2623 goto out;
2624
2625 lock_page_cgroup(pc);
2626
2627 ret = -EINVAL;
2628 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
2629 goto unlock;
2630
2631 move_lock_mem_cgroup(from, &flags);
2632
2633 if (!anon && page_mapped(page)) {
2634 /* Update mapped_file data for mem_cgroup */
2635 preempt_disable();
2636 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2637 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2638 preempt_enable();
2639 }
2640 mem_cgroup_charge_statistics(from, anon, -nr_pages);
2641 if (uncharge)
2642 /* This is not "cancel", but cancel_charge does all we need. */
2643 __mem_cgroup_cancel_charge(from, nr_pages);
2644
2645 /* caller should have done css_get */
2646 pc->mem_cgroup = to;
2647 mem_cgroup_charge_statistics(to, anon, nr_pages);
2648 /*
2649 * We charges against "to" which may not have any tasks. Then, "to"
2650 * can be under rmdir(). But in current implementation, caller of
2651 * this function is just force_empty() and move charge, so it's
2652 * guaranteed that "to" is never removed. So, we don't check rmdir
2653 * status here.
2654 */
2655 move_unlock_mem_cgroup(from, &flags);
2656 ret = 0;
2657 unlock:
2658 unlock_page_cgroup(pc);
2659 /*
2660 * check events
2661 */
2662 memcg_check_events(to, page);
2663 memcg_check_events(from, page);
2664 out:
2665 return ret;
2666 }
2667
2668 /*
2669 * move charges to its parent.
2670 */
2671
2672 static int mem_cgroup_move_parent(struct page *page,
2673 struct page_cgroup *pc,
2674 struct mem_cgroup *child,
2675 gfp_t gfp_mask)
2676 {
2677 struct cgroup *cg = child->css.cgroup;
2678 struct cgroup *pcg = cg->parent;
2679 struct mem_cgroup *parent;
2680 unsigned int nr_pages;
2681 unsigned long uninitialized_var(flags);
2682 int ret;
2683
2684 /* Is ROOT ? */
2685 if (!pcg)
2686 return -EINVAL;
2687
2688 ret = -EBUSY;
2689 if (!get_page_unless_zero(page))
2690 goto out;
2691 if (isolate_lru_page(page))
2692 goto put;
2693
2694 nr_pages = hpage_nr_pages(page);
2695
2696 parent = mem_cgroup_from_cont(pcg);
2697 ret = __mem_cgroup_try_charge(NULL, gfp_mask, nr_pages, &parent, false);
2698 if (ret)
2699 goto put_back;
2700
2701 if (nr_pages > 1)
2702 flags = compound_lock_irqsave(page);
2703
2704 ret = mem_cgroup_move_account(page, nr_pages, pc, child, parent, true);
2705 if (ret)
2706 __mem_cgroup_cancel_charge(parent, nr_pages);
2707
2708 if (nr_pages > 1)
2709 compound_unlock_irqrestore(page, flags);
2710 put_back:
2711 putback_lru_page(page);
2712 put:
2713 put_page(page);
2714 out:
2715 return ret;
2716 }
2717
2718 /*
2719 * Charge the memory controller for page usage.
2720 * Return
2721 * 0 if the charge was successful
2722 * < 0 if the cgroup is over its limit
2723 */
2724 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2725 gfp_t gfp_mask, enum charge_type ctype)
2726 {
2727 struct mem_cgroup *memcg = NULL;
2728 unsigned int nr_pages = 1;
2729 bool oom = true;
2730 int ret;
2731
2732 if (PageTransHuge(page)) {
2733 nr_pages <<= compound_order(page);
2734 VM_BUG_ON(!PageTransHuge(page));
2735 /*
2736 * Never OOM-kill a process for a huge page. The
2737 * fault handler will fall back to regular pages.
2738 */
2739 oom = false;
2740 }
2741
2742 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
2743 if (ret == -ENOMEM)
2744 return ret;
2745 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
2746 return 0;
2747 }
2748
2749 int mem_cgroup_newpage_charge(struct page *page,
2750 struct mm_struct *mm, gfp_t gfp_mask)
2751 {
2752 if (mem_cgroup_disabled())
2753 return 0;
2754 VM_BUG_ON(page_mapped(page));
2755 VM_BUG_ON(page->mapping && !PageAnon(page));
2756 VM_BUG_ON(!mm);
2757 return mem_cgroup_charge_common(page, mm, gfp_mask,
2758 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2759 }
2760
2761 static void
2762 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2763 enum charge_type ctype);
2764
2765 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2766 gfp_t gfp_mask)
2767 {
2768 struct mem_cgroup *memcg = NULL;
2769 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
2770 int ret;
2771
2772 if (mem_cgroup_disabled())
2773 return 0;
2774 if (PageCompound(page))
2775 return 0;
2776
2777 if (unlikely(!mm))
2778 mm = &init_mm;
2779 if (!page_is_file_cache(page))
2780 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2781
2782 if (!PageSwapCache(page))
2783 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
2784 else { /* page is swapcache/shmem */
2785 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &memcg);
2786 if (!ret)
2787 __mem_cgroup_commit_charge_swapin(page, memcg, type);
2788 }
2789 return ret;
2790 }
2791
2792 /*
2793 * While swap-in, try_charge -> commit or cancel, the page is locked.
2794 * And when try_charge() successfully returns, one refcnt to memcg without
2795 * struct page_cgroup is acquired. This refcnt will be consumed by
2796 * "commit()" or removed by "cancel()"
2797 */
2798 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2799 struct page *page,
2800 gfp_t mask, struct mem_cgroup **memcgp)
2801 {
2802 struct mem_cgroup *memcg;
2803 int ret;
2804
2805 *memcgp = NULL;
2806
2807 if (mem_cgroup_disabled())
2808 return 0;
2809
2810 if (!do_swap_account)
2811 goto charge_cur_mm;
2812 /*
2813 * A racing thread's fault, or swapoff, may have already updated
2814 * the pte, and even removed page from swap cache: in those cases
2815 * do_swap_page()'s pte_same() test will fail; but there's also a
2816 * KSM case which does need to charge the page.
2817 */
2818 if (!PageSwapCache(page))
2819 goto charge_cur_mm;
2820 memcg = try_get_mem_cgroup_from_page(page);
2821 if (!memcg)
2822 goto charge_cur_mm;
2823 *memcgp = memcg;
2824 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
2825 css_put(&memcg->css);
2826 if (ret == -EINTR)
2827 ret = 0;
2828 return ret;
2829 charge_cur_mm:
2830 if (unlikely(!mm))
2831 mm = &init_mm;
2832 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
2833 if (ret == -EINTR)
2834 ret = 0;
2835 return ret;
2836 }
2837
2838 static void
2839 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
2840 enum charge_type ctype)
2841 {
2842 if (mem_cgroup_disabled())
2843 return;
2844 if (!memcg)
2845 return;
2846 cgroup_exclude_rmdir(&memcg->css);
2847
2848 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
2849 /*
2850 * Now swap is on-memory. This means this page may be
2851 * counted both as mem and swap....double count.
2852 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2853 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2854 * may call delete_from_swap_cache() before reach here.
2855 */
2856 if (do_swap_account && PageSwapCache(page)) {
2857 swp_entry_t ent = {.val = page_private(page)};
2858 mem_cgroup_uncharge_swap(ent);
2859 }
2860 /*
2861 * At swapin, we may charge account against cgroup which has no tasks.
2862 * So, rmdir()->pre_destroy() can be called while we do this charge.
2863 * In that case, we need to call pre_destroy() again. check it here.
2864 */
2865 cgroup_release_and_wakeup_rmdir(&memcg->css);
2866 }
2867
2868 void mem_cgroup_commit_charge_swapin(struct page *page,
2869 struct mem_cgroup *memcg)
2870 {
2871 __mem_cgroup_commit_charge_swapin(page, memcg,
2872 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2873 }
2874
2875 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
2876 {
2877 if (mem_cgroup_disabled())
2878 return;
2879 if (!memcg)
2880 return;
2881 __mem_cgroup_cancel_charge(memcg, 1);
2882 }
2883
2884 static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
2885 unsigned int nr_pages,
2886 const enum charge_type ctype)
2887 {
2888 struct memcg_batch_info *batch = NULL;
2889 bool uncharge_memsw = true;
2890
2891 /* If swapout, usage of swap doesn't decrease */
2892 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2893 uncharge_memsw = false;
2894
2895 batch = &current->memcg_batch;
2896 /*
2897 * In usual, we do css_get() when we remember memcg pointer.
2898 * But in this case, we keep res->usage until end of a series of
2899 * uncharges. Then, it's ok to ignore memcg's refcnt.
2900 */
2901 if (!batch->memcg)
2902 batch->memcg = memcg;
2903 /*
2904 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2905 * In those cases, all pages freed continuously can be expected to be in
2906 * the same cgroup and we have chance to coalesce uncharges.
2907 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2908 * because we want to do uncharge as soon as possible.
2909 */
2910
2911 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2912 goto direct_uncharge;
2913
2914 if (nr_pages > 1)
2915 goto direct_uncharge;
2916
2917 /*
2918 * In typical case, batch->memcg == mem. This means we can
2919 * merge a series of uncharges to an uncharge of res_counter.
2920 * If not, we uncharge res_counter ony by one.
2921 */
2922 if (batch->memcg != memcg)
2923 goto direct_uncharge;
2924 /* remember freed charge and uncharge it later */
2925 batch->nr_pages++;
2926 if (uncharge_memsw)
2927 batch->memsw_nr_pages++;
2928 return;
2929 direct_uncharge:
2930 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
2931 if (uncharge_memsw)
2932 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
2933 if (unlikely(batch->memcg != memcg))
2934 memcg_oom_recover(memcg);
2935 }
2936
2937 /*
2938 * uncharge if !page_mapped(page)
2939 */
2940 static struct mem_cgroup *
2941 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2942 {
2943 struct mem_cgroup *memcg = NULL;
2944 unsigned int nr_pages = 1;
2945 struct page_cgroup *pc;
2946 bool anon;
2947
2948 if (mem_cgroup_disabled())
2949 return NULL;
2950
2951 if (PageSwapCache(page))
2952 return NULL;
2953
2954 if (PageTransHuge(page)) {
2955 nr_pages <<= compound_order(page);
2956 VM_BUG_ON(!PageTransHuge(page));
2957 }
2958 /*
2959 * Check if our page_cgroup is valid
2960 */
2961 pc = lookup_page_cgroup(page);
2962 if (unlikely(!PageCgroupUsed(pc)))
2963 return NULL;
2964
2965 lock_page_cgroup(pc);
2966
2967 memcg = pc->mem_cgroup;
2968
2969 if (!PageCgroupUsed(pc))
2970 goto unlock_out;
2971
2972 anon = PageAnon(page);
2973
2974 switch (ctype) {
2975 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2976 /*
2977 * Generally PageAnon tells if it's the anon statistics to be
2978 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
2979 * used before page reached the stage of being marked PageAnon.
2980 */
2981 anon = true;
2982 /* fallthrough */
2983 case MEM_CGROUP_CHARGE_TYPE_DROP:
2984 /* See mem_cgroup_prepare_migration() */
2985 if (page_mapped(page) || PageCgroupMigration(pc))
2986 goto unlock_out;
2987 break;
2988 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2989 if (!PageAnon(page)) { /* Shared memory */
2990 if (page->mapping && !page_is_file_cache(page))
2991 goto unlock_out;
2992 } else if (page_mapped(page)) /* Anon */
2993 goto unlock_out;
2994 break;
2995 default:
2996 break;
2997 }
2998
2999 mem_cgroup_charge_statistics(memcg, anon, -nr_pages);
3000
3001 ClearPageCgroupUsed(pc);
3002 /*
3003 * pc->mem_cgroup is not cleared here. It will be accessed when it's
3004 * freed from LRU. This is safe because uncharged page is expected not
3005 * to be reused (freed soon). Exception is SwapCache, it's handled by
3006 * special functions.
3007 */
3008
3009 unlock_page_cgroup(pc);
3010 /*
3011 * even after unlock, we have memcg->res.usage here and this memcg
3012 * will never be freed.
3013 */
3014 memcg_check_events(memcg, page);
3015 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
3016 mem_cgroup_swap_statistics(memcg, true);
3017 mem_cgroup_get(memcg);
3018 }
3019 if (!mem_cgroup_is_root(memcg))
3020 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
3021
3022 return memcg;
3023
3024 unlock_out:
3025 unlock_page_cgroup(pc);
3026 return NULL;
3027 }
3028
3029 void mem_cgroup_uncharge_page(struct page *page)
3030 {
3031 /* early check. */
3032 if (page_mapped(page))
3033 return;
3034 VM_BUG_ON(page->mapping && !PageAnon(page));
3035 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
3036 }
3037
3038 void mem_cgroup_uncharge_cache_page(struct page *page)
3039 {
3040 VM_BUG_ON(page_mapped(page));
3041 VM_BUG_ON(page->mapping);
3042 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
3043 }
3044
3045 /*
3046 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
3047 * In that cases, pages are freed continuously and we can expect pages
3048 * are in the same memcg. All these calls itself limits the number of
3049 * pages freed at once, then uncharge_start/end() is called properly.
3050 * This may be called prural(2) times in a context,
3051 */
3052
3053 void mem_cgroup_uncharge_start(void)
3054 {
3055 current->memcg_batch.do_batch++;
3056 /* We can do nest. */
3057 if (current->memcg_batch.do_batch == 1) {
3058 current->memcg_batch.memcg = NULL;
3059 current->memcg_batch.nr_pages = 0;
3060 current->memcg_batch.memsw_nr_pages = 0;
3061 }
3062 }
3063
3064 void mem_cgroup_uncharge_end(void)
3065 {
3066 struct memcg_batch_info *batch = &current->memcg_batch;
3067
3068 if (!batch->do_batch)
3069 return;
3070
3071 batch->do_batch--;
3072 if (batch->do_batch) /* If stacked, do nothing. */
3073 return;
3074
3075 if (!batch->memcg)
3076 return;
3077 /*
3078 * This "batch->memcg" is valid without any css_get/put etc...
3079 * bacause we hide charges behind us.
3080 */
3081 if (batch->nr_pages)
3082 res_counter_uncharge(&batch->memcg->res,
3083 batch->nr_pages * PAGE_SIZE);
3084 if (batch->memsw_nr_pages)
3085 res_counter_uncharge(&batch->memcg->memsw,
3086 batch->memsw_nr_pages * PAGE_SIZE);
3087 memcg_oom_recover(batch->memcg);
3088 /* forget this pointer (for sanity check) */
3089 batch->memcg = NULL;
3090 }
3091
3092 #ifdef CONFIG_SWAP
3093 /*
3094 * called after __delete_from_swap_cache() and drop "page" account.
3095 * memcg information is recorded to swap_cgroup of "ent"
3096 */
3097 void
3098 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
3099 {
3100 struct mem_cgroup *memcg;
3101 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
3102
3103 if (!swapout) /* this was a swap cache but the swap is unused ! */
3104 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
3105
3106 memcg = __mem_cgroup_uncharge_common(page, ctype);
3107
3108 /*
3109 * record memcg information, if swapout && memcg != NULL,
3110 * mem_cgroup_get() was called in uncharge().
3111 */
3112 if (do_swap_account && swapout && memcg)
3113 swap_cgroup_record(ent, css_id(&memcg->css));
3114 }
3115 #endif
3116
3117 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
3118 /*
3119 * called from swap_entry_free(). remove record in swap_cgroup and
3120 * uncharge "memsw" account.
3121 */
3122 void mem_cgroup_uncharge_swap(swp_entry_t ent)
3123 {
3124 struct mem_cgroup *memcg;
3125 unsigned short id;
3126
3127 if (!do_swap_account)
3128 return;
3129
3130 id = swap_cgroup_record(ent, 0);
3131 rcu_read_lock();
3132 memcg = mem_cgroup_lookup(id);
3133 if (memcg) {
3134 /*
3135 * We uncharge this because swap is freed.
3136 * This memcg can be obsolete one. We avoid calling css_tryget
3137 */
3138 if (!mem_cgroup_is_root(memcg))
3139 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
3140 mem_cgroup_swap_statistics(memcg, false);
3141 mem_cgroup_put(memcg);
3142 }
3143 rcu_read_unlock();
3144 }
3145
3146 /**
3147 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3148 * @entry: swap entry to be moved
3149 * @from: mem_cgroup which the entry is moved from
3150 * @to: mem_cgroup which the entry is moved to
3151 *
3152 * It succeeds only when the swap_cgroup's record for this entry is the same
3153 * as the mem_cgroup's id of @from.
3154 *
3155 * Returns 0 on success, -EINVAL on failure.
3156 *
3157 * The caller must have charged to @to, IOW, called res_counter_charge() about
3158 * both res and memsw, and called css_get().
3159 */
3160 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3161 struct mem_cgroup *from, struct mem_cgroup *to)
3162 {
3163 unsigned short old_id, new_id;
3164
3165 old_id = css_id(&from->css);
3166 new_id = css_id(&to->css);
3167
3168 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3169 mem_cgroup_swap_statistics(from, false);
3170 mem_cgroup_swap_statistics(to, true);
3171 /*
3172 * This function is only called from task migration context now.
3173 * It postpones res_counter and refcount handling till the end
3174 * of task migration(mem_cgroup_clear_mc()) for performance
3175 * improvement. But we cannot postpone mem_cgroup_get(to)
3176 * because if the process that has been moved to @to does
3177 * swap-in, the refcount of @to might be decreased to 0.
3178 */
3179 mem_cgroup_get(to);
3180 return 0;
3181 }
3182 return -EINVAL;
3183 }
3184 #else
3185 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3186 struct mem_cgroup *from, struct mem_cgroup *to)
3187 {
3188 return -EINVAL;
3189 }
3190 #endif
3191
3192 /*
3193 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
3194 * page belongs to.
3195 */
3196 int mem_cgroup_prepare_migration(struct page *page,
3197 struct page *newpage, struct mem_cgroup **memcgp, gfp_t gfp_mask)
3198 {
3199 struct mem_cgroup *memcg = NULL;
3200 struct page_cgroup *pc;
3201 enum charge_type ctype;
3202 int ret = 0;
3203
3204 *memcgp = NULL;
3205
3206 VM_BUG_ON(PageTransHuge(page));
3207 if (mem_cgroup_disabled())
3208 return 0;
3209
3210 pc = lookup_page_cgroup(page);
3211 lock_page_cgroup(pc);
3212 if (PageCgroupUsed(pc)) {
3213 memcg = pc->mem_cgroup;
3214 css_get(&memcg->css);
3215 /*
3216 * At migrating an anonymous page, its mapcount goes down
3217 * to 0 and uncharge() will be called. But, even if it's fully
3218 * unmapped, migration may fail and this page has to be
3219 * charged again. We set MIGRATION flag here and delay uncharge
3220 * until end_migration() is called
3221 *
3222 * Corner Case Thinking
3223 * A)
3224 * When the old page was mapped as Anon and it's unmap-and-freed
3225 * while migration was ongoing.
3226 * If unmap finds the old page, uncharge() of it will be delayed
3227 * until end_migration(). If unmap finds a new page, it's
3228 * uncharged when it make mapcount to be 1->0. If unmap code
3229 * finds swap_migration_entry, the new page will not be mapped
3230 * and end_migration() will find it(mapcount==0).
3231 *
3232 * B)
3233 * When the old page was mapped but migraion fails, the kernel
3234 * remaps it. A charge for it is kept by MIGRATION flag even
3235 * if mapcount goes down to 0. We can do remap successfully
3236 * without charging it again.
3237 *
3238 * C)
3239 * The "old" page is under lock_page() until the end of
3240 * migration, so, the old page itself will not be swapped-out.
3241 * If the new page is swapped out before end_migraton, our
3242 * hook to usual swap-out path will catch the event.
3243 */
3244 if (PageAnon(page))
3245 SetPageCgroupMigration(pc);
3246 }
3247 unlock_page_cgroup(pc);
3248 /*
3249 * If the page is not charged at this point,
3250 * we return here.
3251 */
3252 if (!memcg)
3253 return 0;
3254
3255 *memcgp = memcg;
3256 ret = __mem_cgroup_try_charge(NULL, gfp_mask, 1, memcgp, false);
3257 css_put(&memcg->css);/* drop extra refcnt */
3258 if (ret) {
3259 if (PageAnon(page)) {
3260 lock_page_cgroup(pc);
3261 ClearPageCgroupMigration(pc);
3262 unlock_page_cgroup(pc);
3263 /*
3264 * The old page may be fully unmapped while we kept it.
3265 */
3266 mem_cgroup_uncharge_page(page);
3267 }
3268 /* we'll need to revisit this error code (we have -EINTR) */
3269 return -ENOMEM;
3270 }
3271 /*
3272 * We charge new page before it's used/mapped. So, even if unlock_page()
3273 * is called before end_migration, we can catch all events on this new
3274 * page. In the case new page is migrated but not remapped, new page's
3275 * mapcount will be finally 0 and we call uncharge in end_migration().
3276 */
3277 if (PageAnon(page))
3278 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
3279 else if (page_is_file_cache(page))
3280 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
3281 else
3282 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3283 __mem_cgroup_commit_charge(memcg, newpage, 1, ctype, false);
3284 return ret;
3285 }
3286
3287 /* remove redundant charge if migration failed*/
3288 void mem_cgroup_end_migration(struct mem_cgroup *memcg,
3289 struct page *oldpage, struct page *newpage, bool migration_ok)
3290 {
3291 struct page *used, *unused;
3292 struct page_cgroup *pc;
3293 bool anon;
3294
3295 if (!memcg)
3296 return;
3297 /* blocks rmdir() */
3298 cgroup_exclude_rmdir(&memcg->css);
3299 if (!migration_ok) {
3300 used = oldpage;
3301 unused = newpage;
3302 } else {
3303 used = newpage;
3304 unused = oldpage;
3305 }
3306 /*
3307 * We disallowed uncharge of pages under migration because mapcount
3308 * of the page goes down to zero, temporarly.
3309 * Clear the flag and check the page should be charged.
3310 */
3311 pc = lookup_page_cgroup(oldpage);
3312 lock_page_cgroup(pc);
3313 ClearPageCgroupMigration(pc);
3314 unlock_page_cgroup(pc);
3315 anon = PageAnon(used);
3316 __mem_cgroup_uncharge_common(unused,
3317 anon ? MEM_CGROUP_CHARGE_TYPE_MAPPED
3318 : MEM_CGROUP_CHARGE_TYPE_CACHE);
3319
3320 /*
3321 * If a page is a file cache, radix-tree replacement is very atomic
3322 * and we can skip this check. When it was an Anon page, its mapcount
3323 * goes down to 0. But because we added MIGRATION flage, it's not
3324 * uncharged yet. There are several case but page->mapcount check
3325 * and USED bit check in mem_cgroup_uncharge_page() will do enough
3326 * check. (see prepare_charge() also)
3327 */
3328 if (anon)
3329 mem_cgroup_uncharge_page(used);
3330 /*
3331 * At migration, we may charge account against cgroup which has no
3332 * tasks.
3333 * So, rmdir()->pre_destroy() can be called while we do this charge.
3334 * In that case, we need to call pre_destroy() again. check it here.
3335 */
3336 cgroup_release_and_wakeup_rmdir(&memcg->css);
3337 }
3338
3339 /*
3340 * At replace page cache, newpage is not under any memcg but it's on
3341 * LRU. So, this function doesn't touch res_counter but handles LRU
3342 * in correct way. Both pages are locked so we cannot race with uncharge.
3343 */
3344 void mem_cgroup_replace_page_cache(struct page *oldpage,
3345 struct page *newpage)
3346 {
3347 struct mem_cgroup *memcg = NULL;
3348 struct page_cgroup *pc;
3349 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
3350
3351 if (mem_cgroup_disabled())
3352 return;
3353
3354 pc = lookup_page_cgroup(oldpage);
3355 /* fix accounting on old pages */
3356 lock_page_cgroup(pc);
3357 if (PageCgroupUsed(pc)) {
3358 memcg = pc->mem_cgroup;
3359 mem_cgroup_charge_statistics(memcg, false, -1);
3360 ClearPageCgroupUsed(pc);
3361 }
3362 unlock_page_cgroup(pc);
3363
3364 /*
3365 * When called from shmem_replace_page(), in some cases the
3366 * oldpage has already been charged, and in some cases not.
3367 */
3368 if (!memcg)
3369 return;
3370
3371 if (PageSwapBacked(oldpage))
3372 type = MEM_CGROUP_CHARGE_TYPE_SHMEM;
3373
3374 /*
3375 * Even if newpage->mapping was NULL before starting replacement,
3376 * the newpage may be on LRU(or pagevec for LRU) already. We lock
3377 * LRU while we overwrite pc->mem_cgroup.
3378 */
3379 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
3380 }
3381
3382 #ifdef CONFIG_DEBUG_VM
3383 static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
3384 {
3385 struct page_cgroup *pc;
3386
3387 pc = lookup_page_cgroup(page);
3388 /*
3389 * Can be NULL while feeding pages into the page allocator for
3390 * the first time, i.e. during boot or memory hotplug;
3391 * or when mem_cgroup_disabled().
3392 */
3393 if (likely(pc) && PageCgroupUsed(pc))
3394 return pc;
3395 return NULL;
3396 }
3397
3398 bool mem_cgroup_bad_page_check(struct page *page)
3399 {
3400 if (mem_cgroup_disabled())
3401 return false;
3402
3403 return lookup_page_cgroup_used(page) != NULL;
3404 }
3405
3406 void mem_cgroup_print_bad_page(struct page *page)
3407 {
3408 struct page_cgroup *pc;
3409
3410 pc = lookup_page_cgroup_used(page);
3411 if (pc) {
3412 printk(KERN_ALERT "pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
3413 pc, pc->flags, pc->mem_cgroup);
3414 }
3415 }
3416 #endif
3417
3418 static DEFINE_MUTEX(set_limit_mutex);
3419
3420 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3421 unsigned long long val)
3422 {
3423 int retry_count;
3424 u64 memswlimit, memlimit;
3425 int ret = 0;
3426 int children = mem_cgroup_count_children(memcg);
3427 u64 curusage, oldusage;
3428 int enlarge;
3429
3430 /*
3431 * For keeping hierarchical_reclaim simple, how long we should retry
3432 * is depends on callers. We set our retry-count to be function
3433 * of # of children which we should visit in this loop.
3434 */
3435 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3436
3437 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3438
3439 enlarge = 0;
3440 while (retry_count) {
3441 if (signal_pending(current)) {
3442 ret = -EINTR;
3443 break;
3444 }
3445 /*
3446 * Rather than hide all in some function, I do this in
3447 * open coded manner. You see what this really does.
3448 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3449 */
3450 mutex_lock(&set_limit_mutex);
3451 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3452 if (memswlimit < val) {
3453 ret = -EINVAL;
3454 mutex_unlock(&set_limit_mutex);
3455 break;
3456 }
3457
3458 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3459 if (memlimit < val)
3460 enlarge = 1;
3461
3462 ret = res_counter_set_limit(&memcg->res, val);
3463 if (!ret) {
3464 if (memswlimit == val)
3465 memcg->memsw_is_minimum = true;
3466 else
3467 memcg->memsw_is_minimum = false;
3468 }
3469 mutex_unlock(&set_limit_mutex);
3470
3471 if (!ret)
3472 break;
3473
3474 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3475 MEM_CGROUP_RECLAIM_SHRINK);
3476 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3477 /* Usage is reduced ? */
3478 if (curusage >= oldusage)
3479 retry_count--;
3480 else
3481 oldusage = curusage;
3482 }
3483 if (!ret && enlarge)
3484 memcg_oom_recover(memcg);
3485
3486 return ret;
3487 }
3488
3489 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3490 unsigned long long val)
3491 {
3492 int retry_count;
3493 u64 memlimit, memswlimit, oldusage, curusage;
3494 int children = mem_cgroup_count_children(memcg);
3495 int ret = -EBUSY;
3496 int enlarge = 0;
3497
3498 /* see mem_cgroup_resize_res_limit */
3499 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3500 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3501 while (retry_count) {
3502 if (signal_pending(current)) {
3503 ret = -EINTR;
3504 break;
3505 }
3506 /*
3507 * Rather than hide all in some function, I do this in
3508 * open coded manner. You see what this really does.
3509 * We have to guarantee memcg->res.limit < memcg->memsw.limit.
3510 */
3511 mutex_lock(&set_limit_mutex);
3512 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3513 if (memlimit > val) {
3514 ret = -EINVAL;
3515 mutex_unlock(&set_limit_mutex);
3516 break;
3517 }
3518 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3519 if (memswlimit < val)
3520 enlarge = 1;
3521 ret = res_counter_set_limit(&memcg->memsw, val);
3522 if (!ret) {
3523 if (memlimit == val)
3524 memcg->memsw_is_minimum = true;
3525 else
3526 memcg->memsw_is_minimum = false;
3527 }
3528 mutex_unlock(&set_limit_mutex);
3529
3530 if (!ret)
3531 break;
3532
3533 mem_cgroup_reclaim(memcg, GFP_KERNEL,
3534 MEM_CGROUP_RECLAIM_NOSWAP |
3535 MEM_CGROUP_RECLAIM_SHRINK);
3536 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3537 /* Usage is reduced ? */
3538 if (curusage >= oldusage)
3539 retry_count--;
3540 else
3541 oldusage = curusage;
3542 }
3543 if (!ret && enlarge)
3544 memcg_oom_recover(memcg);
3545 return ret;
3546 }
3547
3548 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3549 gfp_t gfp_mask,
3550 unsigned long *total_scanned)
3551 {
3552 unsigned long nr_reclaimed = 0;
3553 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3554 unsigned long reclaimed;
3555 int loop = 0;
3556 struct mem_cgroup_tree_per_zone *mctz;
3557 unsigned long long excess;
3558 unsigned long nr_scanned;
3559
3560 if (order > 0)
3561 return 0;
3562
3563 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3564 /*
3565 * This loop can run a while, specially if mem_cgroup's continuously
3566 * keep exceeding their soft limit and putting the system under
3567 * pressure
3568 */
3569 do {
3570 if (next_mz)
3571 mz = next_mz;
3572 else
3573 mz = mem_cgroup_largest_soft_limit_node(mctz);
3574 if (!mz)
3575 break;
3576
3577 nr_scanned = 0;
3578 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3579 gfp_mask, &nr_scanned);
3580 nr_reclaimed += reclaimed;
3581 *total_scanned += nr_scanned;
3582 spin_lock(&mctz->lock);
3583
3584 /*
3585 * If we failed to reclaim anything from this memory cgroup
3586 * it is time to move on to the next cgroup
3587 */
3588 next_mz = NULL;
3589 if (!reclaimed) {
3590 do {
3591 /*
3592 * Loop until we find yet another one.
3593 *
3594 * By the time we get the soft_limit lock
3595 * again, someone might have aded the
3596 * group back on the RB tree. Iterate to
3597 * make sure we get a different mem.
3598 * mem_cgroup_largest_soft_limit_node returns
3599 * NULL if no other cgroup is present on
3600 * the tree
3601 */
3602 next_mz =
3603 __mem_cgroup_largest_soft_limit_node(mctz);
3604 if (next_mz == mz)
3605 css_put(&next_mz->memcg->css);
3606 else /* next_mz == NULL or other memcg */
3607 break;
3608 } while (1);
3609 }
3610 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
3611 excess = res_counter_soft_limit_excess(&mz->memcg->res);
3612 /*
3613 * One school of thought says that we should not add
3614 * back the node to the tree if reclaim returns 0.
3615 * But our reclaim could return 0, simply because due
3616 * to priority we are exposing a smaller subset of
3617 * memory to reclaim from. Consider this as a longer
3618 * term TODO.
3619 */
3620 /* If excess == 0, no tree ops */
3621 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
3622 spin_unlock(&mctz->lock);
3623 css_put(&mz->memcg->css);
3624 loop++;
3625 /*
3626 * Could not reclaim anything and there are no more
3627 * mem cgroups to try or we seem to be looping without
3628 * reclaiming anything.
3629 */
3630 if (!nr_reclaimed &&
3631 (next_mz == NULL ||
3632 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3633 break;
3634 } while (!nr_reclaimed);
3635 if (next_mz)
3636 css_put(&next_mz->memcg->css);
3637 return nr_reclaimed;
3638 }
3639
3640 /*
3641 * This routine traverse page_cgroup in given list and drop them all.
3642 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3643 */
3644 static int mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
3645 int node, int zid, enum lru_list lru)
3646 {
3647 struct mem_cgroup_per_zone *mz;
3648 unsigned long flags, loop;
3649 struct list_head *list;
3650 struct page *busy;
3651 struct zone *zone;
3652 int ret = 0;
3653
3654 zone = &NODE_DATA(node)->node_zones[zid];
3655 mz = mem_cgroup_zoneinfo(memcg, node, zid);
3656 list = &mz->lruvec.lists[lru];
3657
3658 loop = mz->lru_size[lru];
3659 /* give some margin against EBUSY etc...*/
3660 loop += 256;
3661 busy = NULL;
3662 while (loop--) {
3663 struct page_cgroup *pc;
3664 struct page *page;
3665
3666 ret = 0;
3667 spin_lock_irqsave(&zone->lru_lock, flags);
3668 if (list_empty(list)) {
3669 spin_unlock_irqrestore(&zone->lru_lock, flags);
3670 break;
3671 }
3672 page = list_entry(list->prev, struct page, lru);
3673 if (busy == page) {
3674 list_move(&page->lru, list);
3675 busy = NULL;
3676 spin_unlock_irqrestore(&zone->lru_lock, flags);
3677 continue;
3678 }
3679 spin_unlock_irqrestore(&zone->lru_lock, flags);
3680
3681 pc = lookup_page_cgroup(page);
3682
3683 ret = mem_cgroup_move_parent(page, pc, memcg, GFP_KERNEL);
3684 if (ret == -ENOMEM || ret == -EINTR)
3685 break;
3686
3687 if (ret == -EBUSY || ret == -EINVAL) {
3688 /* found lock contention or "pc" is obsolete. */
3689 busy = page;
3690 cond_resched();
3691 } else
3692 busy = NULL;
3693 }
3694
3695 if (!ret && !list_empty(list))
3696 return -EBUSY;
3697 return ret;
3698 }
3699
3700 /*
3701 * make mem_cgroup's charge to be 0 if there is no task.
3702 * This enables deleting this mem_cgroup.
3703 */
3704 static int mem_cgroup_force_empty(struct mem_cgroup *memcg, bool free_all)
3705 {
3706 int ret;
3707 int node, zid, shrink;
3708 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3709 struct cgroup *cgrp = memcg->css.cgroup;
3710
3711 css_get(&memcg->css);
3712
3713 shrink = 0;
3714 /* should free all ? */
3715 if (free_all)
3716 goto try_to_free;
3717 move_account:
3718 do {
3719 ret = -EBUSY;
3720 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3721 goto out;
3722 ret = -EINTR;
3723 if (signal_pending(current))
3724 goto out;
3725 /* This is for making all *used* pages to be on LRU. */
3726 lru_add_drain_all();
3727 drain_all_stock_sync(memcg);
3728 ret = 0;
3729 mem_cgroup_start_move(memcg);
3730 for_each_node_state(node, N_HIGH_MEMORY) {
3731 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3732 enum lru_list lru;
3733 for_each_lru(lru) {
3734 ret = mem_cgroup_force_empty_list(memcg,
3735 node, zid, lru);
3736 if (ret)
3737 break;
3738 }
3739 }
3740 if (ret)
3741 break;
3742 }
3743 mem_cgroup_end_move(memcg);
3744 memcg_oom_recover(memcg);
3745 /* it seems parent cgroup doesn't have enough mem */
3746 if (ret == -ENOMEM)
3747 goto try_to_free;
3748 cond_resched();
3749 /* "ret" should also be checked to ensure all lists are empty. */
3750 } while (res_counter_read_u64(&memcg->res, RES_USAGE) > 0 || ret);
3751 out:
3752 css_put(&memcg->css);
3753 return ret;
3754
3755 try_to_free:
3756 /* returns EBUSY if there is a task or if we come here twice. */
3757 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3758 ret = -EBUSY;
3759 goto out;
3760 }
3761 /* we call try-to-free pages for make this cgroup empty */
3762 lru_add_drain_all();
3763 /* try to free all pages in this cgroup */
3764 shrink = 1;
3765 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
3766 int progress;
3767
3768 if (signal_pending(current)) {
3769 ret = -EINTR;
3770 goto out;
3771 }
3772 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
3773 false);
3774 if (!progress) {
3775 nr_retries--;
3776 /* maybe some writeback is necessary */
3777 congestion_wait(BLK_RW_ASYNC, HZ/10);
3778 }
3779
3780 }
3781 lru_add_drain();
3782 /* try move_account...there may be some *locked* pages. */
3783 goto move_account;
3784 }
3785
3786 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3787 {
3788 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3789 }
3790
3791
3792 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3793 {
3794 return mem_cgroup_from_cont(cont)->use_hierarchy;
3795 }
3796
3797 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3798 u64 val)
3799 {
3800 int retval = 0;
3801 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3802 struct cgroup *parent = cont->parent;
3803 struct mem_cgroup *parent_memcg = NULL;
3804
3805 if (parent)
3806 parent_memcg = mem_cgroup_from_cont(parent);
3807
3808 cgroup_lock();
3809 /*
3810 * If parent's use_hierarchy is set, we can't make any modifications
3811 * in the child subtrees. If it is unset, then the change can
3812 * occur, provided the current cgroup has no children.
3813 *
3814 * For the root cgroup, parent_mem is NULL, we allow value to be
3815 * set if there are no children.
3816 */
3817 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3818 (val == 1 || val == 0)) {
3819 if (list_empty(&cont->children))
3820 memcg->use_hierarchy = val;
3821 else
3822 retval = -EBUSY;
3823 } else
3824 retval = -EINVAL;
3825 cgroup_unlock();
3826
3827 return retval;
3828 }
3829
3830
3831 static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
3832 enum mem_cgroup_stat_index idx)
3833 {
3834 struct mem_cgroup *iter;
3835 long val = 0;
3836
3837 /* Per-cpu values can be negative, use a signed accumulator */
3838 for_each_mem_cgroup_tree(iter, memcg)
3839 val += mem_cgroup_read_stat(iter, idx);
3840
3841 if (val < 0) /* race ? */
3842 val = 0;
3843 return val;
3844 }
3845
3846 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3847 {
3848 u64 val;
3849
3850 if (!mem_cgroup_is_root(memcg)) {
3851 if (!swap)
3852 return res_counter_read_u64(&memcg->res, RES_USAGE);
3853 else
3854 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
3855 }
3856
3857 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
3858 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
3859
3860 if (swap)
3861 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
3862
3863 return val << PAGE_SHIFT;
3864 }
3865
3866 static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
3867 struct file *file, char __user *buf,
3868 size_t nbytes, loff_t *ppos)
3869 {
3870 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3871 char str[64];
3872 u64 val;
3873 int type, name, len;
3874
3875 type = MEMFILE_TYPE(cft->private);
3876 name = MEMFILE_ATTR(cft->private);
3877
3878 if (!do_swap_account && type == _MEMSWAP)
3879 return -EOPNOTSUPP;
3880
3881 switch (type) {
3882 case _MEM:
3883 if (name == RES_USAGE)
3884 val = mem_cgroup_usage(memcg, false);
3885 else
3886 val = res_counter_read_u64(&memcg->res, name);
3887 break;
3888 case _MEMSWAP:
3889 if (name == RES_USAGE)
3890 val = mem_cgroup_usage(memcg, true);
3891 else
3892 val = res_counter_read_u64(&memcg->memsw, name);
3893 break;
3894 default:
3895 BUG();
3896 }
3897
3898 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
3899 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
3900 }
3901 /*
3902 * The user of this function is...
3903 * RES_LIMIT.
3904 */
3905 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3906 const char *buffer)
3907 {
3908 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3909 int type, name;
3910 unsigned long long val;
3911 int ret;
3912
3913 type = MEMFILE_TYPE(cft->private);
3914 name = MEMFILE_ATTR(cft->private);
3915
3916 if (!do_swap_account && type == _MEMSWAP)
3917 return -EOPNOTSUPP;
3918
3919 switch (name) {
3920 case RES_LIMIT:
3921 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3922 ret = -EINVAL;
3923 break;
3924 }
3925 /* This function does all necessary parse...reuse it */
3926 ret = res_counter_memparse_write_strategy(buffer, &val);
3927 if (ret)
3928 break;
3929 if (type == _MEM)
3930 ret = mem_cgroup_resize_limit(memcg, val);
3931 else
3932 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3933 break;
3934 case RES_SOFT_LIMIT:
3935 ret = res_counter_memparse_write_strategy(buffer, &val);
3936 if (ret)
3937 break;
3938 /*
3939 * For memsw, soft limits are hard to implement in terms
3940 * of semantics, for now, we support soft limits for
3941 * control without swap
3942 */
3943 if (type == _MEM)
3944 ret = res_counter_set_soft_limit(&memcg->res, val);
3945 else
3946 ret = -EINVAL;
3947 break;
3948 default:
3949 ret = -EINVAL; /* should be BUG() ? */
3950 break;
3951 }
3952 return ret;
3953 }
3954
3955 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3956 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3957 {
3958 struct cgroup *cgroup;
3959 unsigned long long min_limit, min_memsw_limit, tmp;
3960
3961 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3962 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3963 cgroup = memcg->css.cgroup;
3964 if (!memcg->use_hierarchy)
3965 goto out;
3966
3967 while (cgroup->parent) {
3968 cgroup = cgroup->parent;
3969 memcg = mem_cgroup_from_cont(cgroup);
3970 if (!memcg->use_hierarchy)
3971 break;
3972 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3973 min_limit = min(min_limit, tmp);
3974 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3975 min_memsw_limit = min(min_memsw_limit, tmp);
3976 }
3977 out:
3978 *mem_limit = min_limit;
3979 *memsw_limit = min_memsw_limit;
3980 }
3981
3982 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3983 {
3984 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3985 int type, name;
3986
3987 type = MEMFILE_TYPE(event);
3988 name = MEMFILE_ATTR(event);
3989
3990 if (!do_swap_account && type == _MEMSWAP)
3991 return -EOPNOTSUPP;
3992
3993 switch (name) {
3994 case RES_MAX_USAGE:
3995 if (type == _MEM)
3996 res_counter_reset_max(&memcg->res);
3997 else
3998 res_counter_reset_max(&memcg->memsw);
3999 break;
4000 case RES_FAILCNT:
4001 if (type == _MEM)
4002 res_counter_reset_failcnt(&memcg->res);
4003 else
4004 res_counter_reset_failcnt(&memcg->memsw);
4005 break;
4006 }
4007
4008 return 0;
4009 }
4010
4011 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
4012 struct cftype *cft)
4013 {
4014 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
4015 }
4016
4017 #ifdef CONFIG_MMU
4018 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4019 struct cftype *cft, u64 val)
4020 {
4021 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4022
4023 if (val >= (1 << NR_MOVE_TYPE))
4024 return -EINVAL;
4025 /*
4026 * We check this value several times in both in can_attach() and
4027 * attach(), so we need cgroup lock to prevent this value from being
4028 * inconsistent.
4029 */
4030 cgroup_lock();
4031 memcg->move_charge_at_immigrate = val;
4032 cgroup_unlock();
4033
4034 return 0;
4035 }
4036 #else
4037 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
4038 struct cftype *cft, u64 val)
4039 {
4040 return -ENOSYS;
4041 }
4042 #endif
4043
4044
4045 /* For read statistics */
4046 enum {
4047 MCS_CACHE,
4048 MCS_RSS,
4049 MCS_FILE_MAPPED,
4050 MCS_PGPGIN,
4051 MCS_PGPGOUT,
4052 MCS_SWAP,
4053 MCS_PGFAULT,
4054 MCS_PGMAJFAULT,
4055 MCS_INACTIVE_ANON,
4056 MCS_ACTIVE_ANON,
4057 MCS_INACTIVE_FILE,
4058 MCS_ACTIVE_FILE,
4059 MCS_UNEVICTABLE,
4060 NR_MCS_STAT,
4061 };
4062
4063 struct mcs_total_stat {
4064 s64 stat[NR_MCS_STAT];
4065 };
4066
4067 struct {
4068 char *local_name;
4069 char *total_name;
4070 } memcg_stat_strings[NR_MCS_STAT] = {
4071 {"cache", "total_cache"},
4072 {"rss", "total_rss"},
4073 {"mapped_file", "total_mapped_file"},
4074 {"pgpgin", "total_pgpgin"},
4075 {"pgpgout", "total_pgpgout"},
4076 {"swap", "total_swap"},
4077 {"pgfault", "total_pgfault"},
4078 {"pgmajfault", "total_pgmajfault"},
4079 {"inactive_anon", "total_inactive_anon"},
4080 {"active_anon", "total_active_anon"},
4081 {"inactive_file", "total_inactive_file"},
4082 {"active_file", "total_active_file"},
4083 {"unevictable", "total_unevictable"}
4084 };
4085
4086
4087 static void
4088 mem_cgroup_get_local_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4089 {
4090 s64 val;
4091
4092 /* per cpu stat */
4093 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_CACHE);
4094 s->stat[MCS_CACHE] += val * PAGE_SIZE;
4095 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_RSS);
4096 s->stat[MCS_RSS] += val * PAGE_SIZE;
4097 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_FILE_MAPPED);
4098 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
4099 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGIN);
4100 s->stat[MCS_PGPGIN] += val;
4101 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGPGOUT);
4102 s->stat[MCS_PGPGOUT] += val;
4103 if (do_swap_account) {
4104 val = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_SWAPOUT);
4105 s->stat[MCS_SWAP] += val * PAGE_SIZE;
4106 }
4107 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGFAULT);
4108 s->stat[MCS_PGFAULT] += val;
4109 val = mem_cgroup_read_events(memcg, MEM_CGROUP_EVENTS_PGMAJFAULT);
4110 s->stat[MCS_PGMAJFAULT] += val;
4111
4112 /* per zone stat */
4113 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_ANON));
4114 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
4115 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_ANON));
4116 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
4117 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_INACTIVE_FILE));
4118 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
4119 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_ACTIVE_FILE));
4120 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
4121 val = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4122 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
4123 }
4124
4125 static void
4126 mem_cgroup_get_total_stat(struct mem_cgroup *memcg, struct mcs_total_stat *s)
4127 {
4128 struct mem_cgroup *iter;
4129
4130 for_each_mem_cgroup_tree(iter, memcg)
4131 mem_cgroup_get_local_stat(iter, s);
4132 }
4133
4134 #ifdef CONFIG_NUMA
4135 static int mem_control_numa_stat_show(struct seq_file *m, void *arg)
4136 {
4137 int nid;
4138 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
4139 unsigned long node_nr;
4140 struct cgroup *cont = m->private;
4141 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4142
4143 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
4144 seq_printf(m, "total=%lu", total_nr);
4145 for_each_node_state(nid, N_HIGH_MEMORY) {
4146 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
4147 seq_printf(m, " N%d=%lu", nid, node_nr);
4148 }
4149 seq_putc(m, '\n');
4150
4151 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
4152 seq_printf(m, "file=%lu", file_nr);
4153 for_each_node_state(nid, N_HIGH_MEMORY) {
4154 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4155 LRU_ALL_FILE);
4156 seq_printf(m, " N%d=%lu", nid, node_nr);
4157 }
4158 seq_putc(m, '\n');
4159
4160 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
4161 seq_printf(m, "anon=%lu", anon_nr);
4162 for_each_node_state(nid, N_HIGH_MEMORY) {
4163 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4164 LRU_ALL_ANON);
4165 seq_printf(m, " N%d=%lu", nid, node_nr);
4166 }
4167 seq_putc(m, '\n');
4168
4169 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
4170 seq_printf(m, "unevictable=%lu", unevictable_nr);
4171 for_each_node_state(nid, N_HIGH_MEMORY) {
4172 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
4173 BIT(LRU_UNEVICTABLE));
4174 seq_printf(m, " N%d=%lu", nid, node_nr);
4175 }
4176 seq_putc(m, '\n');
4177 return 0;
4178 }
4179 #endif /* CONFIG_NUMA */
4180
4181 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
4182 struct cgroup_map_cb *cb)
4183 {
4184 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
4185 struct mcs_total_stat mystat;
4186 int i;
4187
4188 memset(&mystat, 0, sizeof(mystat));
4189 mem_cgroup_get_local_stat(memcg, &mystat);
4190
4191
4192 for (i = 0; i < NR_MCS_STAT; i++) {
4193 if (i == MCS_SWAP && !do_swap_account)
4194 continue;
4195 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
4196 }
4197
4198 /* Hierarchical information */
4199 {
4200 unsigned long long limit, memsw_limit;
4201 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
4202 cb->fill(cb, "hierarchical_memory_limit", limit);
4203 if (do_swap_account)
4204 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
4205 }
4206
4207 memset(&mystat, 0, sizeof(mystat));
4208 mem_cgroup_get_total_stat(memcg, &mystat);
4209 for (i = 0; i < NR_MCS_STAT; i++) {
4210 if (i == MCS_SWAP && !do_swap_account)
4211 continue;
4212 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
4213 }
4214
4215 #ifdef CONFIG_DEBUG_VM
4216 {
4217 int nid, zid;
4218 struct mem_cgroup_per_zone *mz;
4219 unsigned long recent_rotated[2] = {0, 0};
4220 unsigned long recent_scanned[2] = {0, 0};
4221
4222 for_each_online_node(nid)
4223 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
4224 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
4225
4226 recent_rotated[0] +=
4227 mz->reclaim_stat.recent_rotated[0];
4228 recent_rotated[1] +=
4229 mz->reclaim_stat.recent_rotated[1];
4230 recent_scanned[0] +=
4231 mz->reclaim_stat.recent_scanned[0];
4232 recent_scanned[1] +=
4233 mz->reclaim_stat.recent_scanned[1];
4234 }
4235 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
4236 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
4237 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
4238 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
4239 }
4240 #endif
4241
4242 return 0;
4243 }
4244
4245 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
4246 {
4247 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4248
4249 return mem_cgroup_swappiness(memcg);
4250 }
4251
4252 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
4253 u64 val)
4254 {
4255 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4256 struct mem_cgroup *parent;
4257
4258 if (val > 100)
4259 return -EINVAL;
4260
4261 if (cgrp->parent == NULL)
4262 return -EINVAL;
4263
4264 parent = mem_cgroup_from_cont(cgrp->parent);
4265
4266 cgroup_lock();
4267
4268 /* If under hierarchy, only empty-root can set this value */
4269 if ((parent->use_hierarchy) ||
4270 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4271 cgroup_unlock();
4272 return -EINVAL;
4273 }
4274
4275 memcg->swappiness = val;
4276
4277 cgroup_unlock();
4278
4279 return 0;
4280 }
4281
4282 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4283 {
4284 struct mem_cgroup_threshold_ary *t;
4285 u64 usage;
4286 int i;
4287
4288 rcu_read_lock();
4289 if (!swap)
4290 t = rcu_dereference(memcg->thresholds.primary);
4291 else
4292 t = rcu_dereference(memcg->memsw_thresholds.primary);
4293
4294 if (!t)
4295 goto unlock;
4296
4297 usage = mem_cgroup_usage(memcg, swap);
4298
4299 /*
4300 * current_threshold points to threshold just below usage.
4301 * If it's not true, a threshold was crossed after last
4302 * call of __mem_cgroup_threshold().
4303 */
4304 i = t->current_threshold;
4305
4306 /*
4307 * Iterate backward over array of thresholds starting from
4308 * current_threshold and check if a threshold is crossed.
4309 * If none of thresholds below usage is crossed, we read
4310 * only one element of the array here.
4311 */
4312 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4313 eventfd_signal(t->entries[i].eventfd, 1);
4314
4315 /* i = current_threshold + 1 */
4316 i++;
4317
4318 /*
4319 * Iterate forward over array of thresholds starting from
4320 * current_threshold+1 and check if a threshold is crossed.
4321 * If none of thresholds above usage is crossed, we read
4322 * only one element of the array here.
4323 */
4324 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4325 eventfd_signal(t->entries[i].eventfd, 1);
4326
4327 /* Update current_threshold */
4328 t->current_threshold = i - 1;
4329 unlock:
4330 rcu_read_unlock();
4331 }
4332
4333 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4334 {
4335 while (memcg) {
4336 __mem_cgroup_threshold(memcg, false);
4337 if (do_swap_account)
4338 __mem_cgroup_threshold(memcg, true);
4339
4340 memcg = parent_mem_cgroup(memcg);
4341 }
4342 }
4343
4344 static int compare_thresholds(const void *a, const void *b)
4345 {
4346 const struct mem_cgroup_threshold *_a = a;
4347 const struct mem_cgroup_threshold *_b = b;
4348
4349 return _a->threshold - _b->threshold;
4350 }
4351
4352 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4353 {
4354 struct mem_cgroup_eventfd_list *ev;
4355
4356 list_for_each_entry(ev, &memcg->oom_notify, list)
4357 eventfd_signal(ev->eventfd, 1);
4358 return 0;
4359 }
4360
4361 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4362 {
4363 struct mem_cgroup *iter;
4364
4365 for_each_mem_cgroup_tree(iter, memcg)
4366 mem_cgroup_oom_notify_cb(iter);
4367 }
4368
4369 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
4370 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4371 {
4372 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4373 struct mem_cgroup_thresholds *thresholds;
4374 struct mem_cgroup_threshold_ary *new;
4375 int type = MEMFILE_TYPE(cft->private);
4376 u64 threshold, usage;
4377 int i, size, ret;
4378
4379 ret = res_counter_memparse_write_strategy(args, &threshold);
4380 if (ret)
4381 return ret;
4382
4383 mutex_lock(&memcg->thresholds_lock);
4384
4385 if (type == _MEM)
4386 thresholds = &memcg->thresholds;
4387 else if (type == _MEMSWAP)
4388 thresholds = &memcg->memsw_thresholds;
4389 else
4390 BUG();
4391
4392 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4393
4394 /* Check if a threshold crossed before adding a new one */
4395 if (thresholds->primary)
4396 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4397
4398 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4399
4400 /* Allocate memory for new array of thresholds */
4401 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
4402 GFP_KERNEL);
4403 if (!new) {
4404 ret = -ENOMEM;
4405 goto unlock;
4406 }
4407 new->size = size;
4408
4409 /* Copy thresholds (if any) to new array */
4410 if (thresholds->primary) {
4411 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4412 sizeof(struct mem_cgroup_threshold));
4413 }
4414
4415 /* Add new threshold */
4416 new->entries[size - 1].eventfd = eventfd;
4417 new->entries[size - 1].threshold = threshold;
4418
4419 /* Sort thresholds. Registering of new threshold isn't time-critical */
4420 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4421 compare_thresholds, NULL);
4422
4423 /* Find current threshold */
4424 new->current_threshold = -1;
4425 for (i = 0; i < size; i++) {
4426 if (new->entries[i].threshold < usage) {
4427 /*
4428 * new->current_threshold will not be used until
4429 * rcu_assign_pointer(), so it's safe to increment
4430 * it here.
4431 */
4432 ++new->current_threshold;
4433 }
4434 }
4435
4436 /* Free old spare buffer and save old primary buffer as spare */
4437 kfree(thresholds->spare);
4438 thresholds->spare = thresholds->primary;
4439
4440 rcu_assign_pointer(thresholds->primary, new);
4441
4442 /* To be sure that nobody uses thresholds */
4443 synchronize_rcu();
4444
4445 unlock:
4446 mutex_unlock(&memcg->thresholds_lock);
4447
4448 return ret;
4449 }
4450
4451 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
4452 struct cftype *cft, struct eventfd_ctx *eventfd)
4453 {
4454 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4455 struct mem_cgroup_thresholds *thresholds;
4456 struct mem_cgroup_threshold_ary *new;
4457 int type = MEMFILE_TYPE(cft->private);
4458 u64 usage;
4459 int i, j, size;
4460
4461 mutex_lock(&memcg->thresholds_lock);
4462 if (type == _MEM)
4463 thresholds = &memcg->thresholds;
4464 else if (type == _MEMSWAP)
4465 thresholds = &memcg->memsw_thresholds;
4466 else
4467 BUG();
4468
4469 if (!thresholds->primary)
4470 goto unlock;
4471
4472 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4473
4474 /* Check if a threshold crossed before removing */
4475 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4476
4477 /* Calculate new number of threshold */
4478 size = 0;
4479 for (i = 0; i < thresholds->primary->size; i++) {
4480 if (thresholds->primary->entries[i].eventfd != eventfd)
4481 size++;
4482 }
4483
4484 new = thresholds->spare;
4485
4486 /* Set thresholds array to NULL if we don't have thresholds */
4487 if (!size) {
4488 kfree(new);
4489 new = NULL;
4490 goto swap_buffers;
4491 }
4492
4493 new->size = size;
4494
4495 /* Copy thresholds and find current threshold */
4496 new->current_threshold = -1;
4497 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4498 if (thresholds->primary->entries[i].eventfd == eventfd)
4499 continue;
4500
4501 new->entries[j] = thresholds->primary->entries[i];
4502 if (new->entries[j].threshold < usage) {
4503 /*
4504 * new->current_threshold will not be used
4505 * until rcu_assign_pointer(), so it's safe to increment
4506 * it here.
4507 */
4508 ++new->current_threshold;
4509 }
4510 j++;
4511 }
4512
4513 swap_buffers:
4514 /* Swap primary and spare array */
4515 thresholds->spare = thresholds->primary;
4516 /* If all events are unregistered, free the spare array */
4517 if (!new) {
4518 kfree(thresholds->spare);
4519 thresholds->spare = NULL;
4520 }
4521
4522 rcu_assign_pointer(thresholds->primary, new);
4523
4524 /* To be sure that nobody uses thresholds */
4525 synchronize_rcu();
4526 unlock:
4527 mutex_unlock(&memcg->thresholds_lock);
4528 }
4529
4530 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4531 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4532 {
4533 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4534 struct mem_cgroup_eventfd_list *event;
4535 int type = MEMFILE_TYPE(cft->private);
4536
4537 BUG_ON(type != _OOM_TYPE);
4538 event = kmalloc(sizeof(*event), GFP_KERNEL);
4539 if (!event)
4540 return -ENOMEM;
4541
4542 spin_lock(&memcg_oom_lock);
4543
4544 event->eventfd = eventfd;
4545 list_add(&event->list, &memcg->oom_notify);
4546
4547 /* already in OOM ? */
4548 if (atomic_read(&memcg->under_oom))
4549 eventfd_signal(eventfd, 1);
4550 spin_unlock(&memcg_oom_lock);
4551
4552 return 0;
4553 }
4554
4555 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4556 struct cftype *cft, struct eventfd_ctx *eventfd)
4557 {
4558 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4559 struct mem_cgroup_eventfd_list *ev, *tmp;
4560 int type = MEMFILE_TYPE(cft->private);
4561
4562 BUG_ON(type != _OOM_TYPE);
4563
4564 spin_lock(&memcg_oom_lock);
4565
4566 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4567 if (ev->eventfd == eventfd) {
4568 list_del(&ev->list);
4569 kfree(ev);
4570 }
4571 }
4572
4573 spin_unlock(&memcg_oom_lock);
4574 }
4575
4576 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4577 struct cftype *cft, struct cgroup_map_cb *cb)
4578 {
4579 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4580
4581 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
4582
4583 if (atomic_read(&memcg->under_oom))
4584 cb->fill(cb, "under_oom", 1);
4585 else
4586 cb->fill(cb, "under_oom", 0);
4587 return 0;
4588 }
4589
4590 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4591 struct cftype *cft, u64 val)
4592 {
4593 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4594 struct mem_cgroup *parent;
4595
4596 /* cannot set to root cgroup and only 0 and 1 are allowed */
4597 if (!cgrp->parent || !((val == 0) || (val == 1)))
4598 return -EINVAL;
4599
4600 parent = mem_cgroup_from_cont(cgrp->parent);
4601
4602 cgroup_lock();
4603 /* oom-kill-disable is a flag for subhierarchy. */
4604 if ((parent->use_hierarchy) ||
4605 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
4606 cgroup_unlock();
4607 return -EINVAL;
4608 }
4609 memcg->oom_kill_disable = val;
4610 if (!val)
4611 memcg_oom_recover(memcg);
4612 cgroup_unlock();
4613 return 0;
4614 }
4615
4616 #ifdef CONFIG_NUMA
4617 static const struct file_operations mem_control_numa_stat_file_operations = {
4618 .read = seq_read,
4619 .llseek = seq_lseek,
4620 .release = single_release,
4621 };
4622
4623 static int mem_control_numa_stat_open(struct inode *unused, struct file *file)
4624 {
4625 struct cgroup *cont = file->f_dentry->d_parent->d_fsdata;
4626
4627 file->f_op = &mem_control_numa_stat_file_operations;
4628 return single_open(file, mem_control_numa_stat_show, cont);
4629 }
4630 #endif /* CONFIG_NUMA */
4631
4632 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_KMEM
4633 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4634 {
4635 return mem_cgroup_sockets_init(memcg, ss);
4636 };
4637
4638 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4639 {
4640 mem_cgroup_sockets_destroy(memcg);
4641 }
4642 #else
4643 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4644 {
4645 return 0;
4646 }
4647
4648 static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
4649 {
4650 }
4651 #endif
4652
4653 static struct cftype mem_cgroup_files[] = {
4654 {
4655 .name = "usage_in_bytes",
4656 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4657 .read = mem_cgroup_read,
4658 .register_event = mem_cgroup_usage_register_event,
4659 .unregister_event = mem_cgroup_usage_unregister_event,
4660 },
4661 {
4662 .name = "max_usage_in_bytes",
4663 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4664 .trigger = mem_cgroup_reset,
4665 .read = mem_cgroup_read,
4666 },
4667 {
4668 .name = "limit_in_bytes",
4669 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4670 .write_string = mem_cgroup_write,
4671 .read = mem_cgroup_read,
4672 },
4673 {
4674 .name = "soft_limit_in_bytes",
4675 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4676 .write_string = mem_cgroup_write,
4677 .read = mem_cgroup_read,
4678 },
4679 {
4680 .name = "failcnt",
4681 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4682 .trigger = mem_cgroup_reset,
4683 .read = mem_cgroup_read,
4684 },
4685 {
4686 .name = "stat",
4687 .read_map = mem_control_stat_show,
4688 },
4689 {
4690 .name = "force_empty",
4691 .trigger = mem_cgroup_force_empty_write,
4692 },
4693 {
4694 .name = "use_hierarchy",
4695 .write_u64 = mem_cgroup_hierarchy_write,
4696 .read_u64 = mem_cgroup_hierarchy_read,
4697 },
4698 {
4699 .name = "swappiness",
4700 .read_u64 = mem_cgroup_swappiness_read,
4701 .write_u64 = mem_cgroup_swappiness_write,
4702 },
4703 {
4704 .name = "move_charge_at_immigrate",
4705 .read_u64 = mem_cgroup_move_charge_read,
4706 .write_u64 = mem_cgroup_move_charge_write,
4707 },
4708 {
4709 .name = "oom_control",
4710 .read_map = mem_cgroup_oom_control_read,
4711 .write_u64 = mem_cgroup_oom_control_write,
4712 .register_event = mem_cgroup_oom_register_event,
4713 .unregister_event = mem_cgroup_oom_unregister_event,
4714 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4715 },
4716 #ifdef CONFIG_NUMA
4717 {
4718 .name = "numa_stat",
4719 .open = mem_control_numa_stat_open,
4720 .mode = S_IRUGO,
4721 },
4722 #endif
4723 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4724 {
4725 .name = "memsw.usage_in_bytes",
4726 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4727 .read = mem_cgroup_read,
4728 .register_event = mem_cgroup_usage_register_event,
4729 .unregister_event = mem_cgroup_usage_unregister_event,
4730 },
4731 {
4732 .name = "memsw.max_usage_in_bytes",
4733 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4734 .trigger = mem_cgroup_reset,
4735 .read = mem_cgroup_read,
4736 },
4737 {
4738 .name = "memsw.limit_in_bytes",
4739 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4740 .write_string = mem_cgroup_write,
4741 .read = mem_cgroup_read,
4742 },
4743 {
4744 .name = "memsw.failcnt",
4745 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4746 .trigger = mem_cgroup_reset,
4747 .read = mem_cgroup_read,
4748 },
4749 #endif
4750 { }, /* terminate */
4751 };
4752
4753 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4754 {
4755 struct mem_cgroup_per_node *pn;
4756 struct mem_cgroup_per_zone *mz;
4757 enum lru_list lru;
4758 int zone, tmp = node;
4759 /*
4760 * This routine is called against possible nodes.
4761 * But it's BUG to call kmalloc() against offline node.
4762 *
4763 * TODO: this routine can waste much memory for nodes which will
4764 * never be onlined. It's better to use memory hotplug callback
4765 * function.
4766 */
4767 if (!node_state(node, N_NORMAL_MEMORY))
4768 tmp = -1;
4769 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4770 if (!pn)
4771 return 1;
4772
4773 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4774 mz = &pn->zoneinfo[zone];
4775 for_each_lru(lru)
4776 INIT_LIST_HEAD(&mz->lruvec.lists[lru]);
4777 mz->usage_in_excess = 0;
4778 mz->on_tree = false;
4779 mz->memcg = memcg;
4780 }
4781 memcg->info.nodeinfo[node] = pn;
4782 return 0;
4783 }
4784
4785 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4786 {
4787 kfree(memcg->info.nodeinfo[node]);
4788 }
4789
4790 static struct mem_cgroup *mem_cgroup_alloc(void)
4791 {
4792 struct mem_cgroup *memcg;
4793 int size = sizeof(struct mem_cgroup);
4794
4795 /* Can be very big if MAX_NUMNODES is very big */
4796 if (size < PAGE_SIZE)
4797 memcg = kzalloc(size, GFP_KERNEL);
4798 else
4799 memcg = vzalloc(size);
4800
4801 if (!memcg)
4802 return NULL;
4803
4804 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4805 if (!memcg->stat)
4806 goto out_free;
4807 spin_lock_init(&memcg->pcp_counter_lock);
4808 return memcg;
4809
4810 out_free:
4811 if (size < PAGE_SIZE)
4812 kfree(memcg);
4813 else
4814 vfree(memcg);
4815 return NULL;
4816 }
4817
4818 /*
4819 * Helpers for freeing a vzalloc()ed mem_cgroup by RCU,
4820 * but in process context. The work_freeing structure is overlaid
4821 * on the rcu_freeing structure, which itself is overlaid on memsw.
4822 */
4823 static void vfree_work(struct work_struct *work)
4824 {
4825 struct mem_cgroup *memcg;
4826
4827 memcg = container_of(work, struct mem_cgroup, work_freeing);
4828 vfree(memcg);
4829 }
4830 static void vfree_rcu(struct rcu_head *rcu_head)
4831 {
4832 struct mem_cgroup *memcg;
4833
4834 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
4835 INIT_WORK(&memcg->work_freeing, vfree_work);
4836 schedule_work(&memcg->work_freeing);
4837 }
4838
4839 /*
4840 * At destroying mem_cgroup, references from swap_cgroup can remain.
4841 * (scanning all at force_empty is too costly...)
4842 *
4843 * Instead of clearing all references at force_empty, we remember
4844 * the number of reference from swap_cgroup and free mem_cgroup when
4845 * it goes down to 0.
4846 *
4847 * Removal of cgroup itself succeeds regardless of refs from swap.
4848 */
4849
4850 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4851 {
4852 int node;
4853
4854 mem_cgroup_remove_from_trees(memcg);
4855 free_css_id(&mem_cgroup_subsys, &memcg->css);
4856
4857 for_each_node(node)
4858 free_mem_cgroup_per_zone_info(memcg, node);
4859
4860 free_percpu(memcg->stat);
4861 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4862 kfree_rcu(memcg, rcu_freeing);
4863 else
4864 call_rcu(&memcg->rcu_freeing, vfree_rcu);
4865 }
4866
4867 static void mem_cgroup_get(struct mem_cgroup *memcg)
4868 {
4869 atomic_inc(&memcg->refcnt);
4870 }
4871
4872 static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
4873 {
4874 if (atomic_sub_and_test(count, &memcg->refcnt)) {
4875 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
4876 __mem_cgroup_free(memcg);
4877 if (parent)
4878 mem_cgroup_put(parent);
4879 }
4880 }
4881
4882 static void mem_cgroup_put(struct mem_cgroup *memcg)
4883 {
4884 __mem_cgroup_put(memcg, 1);
4885 }
4886
4887 /*
4888 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4889 */
4890 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4891 {
4892 if (!memcg->res.parent)
4893 return NULL;
4894 return mem_cgroup_from_res_counter(memcg->res.parent, res);
4895 }
4896 EXPORT_SYMBOL(parent_mem_cgroup);
4897
4898 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4899 static void __init enable_swap_cgroup(void)
4900 {
4901 if (!mem_cgroup_disabled() && really_do_swap_account)
4902 do_swap_account = 1;
4903 }
4904 #else
4905 static void __init enable_swap_cgroup(void)
4906 {
4907 }
4908 #endif
4909
4910 static int mem_cgroup_soft_limit_tree_init(void)
4911 {
4912 struct mem_cgroup_tree_per_node *rtpn;
4913 struct mem_cgroup_tree_per_zone *rtpz;
4914 int tmp, node, zone;
4915
4916 for_each_node(node) {
4917 tmp = node;
4918 if (!node_state(node, N_NORMAL_MEMORY))
4919 tmp = -1;
4920 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4921 if (!rtpn)
4922 goto err_cleanup;
4923
4924 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4925
4926 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4927 rtpz = &rtpn->rb_tree_per_zone[zone];
4928 rtpz->rb_root = RB_ROOT;
4929 spin_lock_init(&rtpz->lock);
4930 }
4931 }
4932 return 0;
4933
4934 err_cleanup:
4935 for_each_node(node) {
4936 if (!soft_limit_tree.rb_tree_per_node[node])
4937 break;
4938 kfree(soft_limit_tree.rb_tree_per_node[node]);
4939 soft_limit_tree.rb_tree_per_node[node] = NULL;
4940 }
4941 return 1;
4942
4943 }
4944
4945 static struct cgroup_subsys_state * __ref
4946 mem_cgroup_create(struct cgroup *cont)
4947 {
4948 struct mem_cgroup *memcg, *parent;
4949 long error = -ENOMEM;
4950 int node;
4951
4952 memcg = mem_cgroup_alloc();
4953 if (!memcg)
4954 return ERR_PTR(error);
4955
4956 for_each_node(node)
4957 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4958 goto free_out;
4959
4960 /* root ? */
4961 if (cont->parent == NULL) {
4962 int cpu;
4963 enable_swap_cgroup();
4964 parent = NULL;
4965 if (mem_cgroup_soft_limit_tree_init())
4966 goto free_out;
4967 root_mem_cgroup = memcg;
4968 for_each_possible_cpu(cpu) {
4969 struct memcg_stock_pcp *stock =
4970 &per_cpu(memcg_stock, cpu);
4971 INIT_WORK(&stock->work, drain_local_stock);
4972 }
4973 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4974 } else {
4975 parent = mem_cgroup_from_cont(cont->parent);
4976 memcg->use_hierarchy = parent->use_hierarchy;
4977 memcg->oom_kill_disable = parent->oom_kill_disable;
4978 }
4979
4980 if (parent && parent->use_hierarchy) {
4981 res_counter_init(&memcg->res, &parent->res);
4982 res_counter_init(&memcg->memsw, &parent->memsw);
4983 /*
4984 * We increment refcnt of the parent to ensure that we can
4985 * safely access it on res_counter_charge/uncharge.
4986 * This refcnt will be decremented when freeing this
4987 * mem_cgroup(see mem_cgroup_put).
4988 */
4989 mem_cgroup_get(parent);
4990 } else {
4991 res_counter_init(&memcg->res, NULL);
4992 res_counter_init(&memcg->memsw, NULL);
4993 }
4994 memcg->last_scanned_node = MAX_NUMNODES;
4995 INIT_LIST_HEAD(&memcg->oom_notify);
4996
4997 if (parent)
4998 memcg->swappiness = mem_cgroup_swappiness(parent);
4999 atomic_set(&memcg->refcnt, 1);
5000 memcg->move_charge_at_immigrate = 0;
5001 mutex_init(&memcg->thresholds_lock);
5002 spin_lock_init(&memcg->move_lock);
5003
5004 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
5005 if (error) {
5006 /*
5007 * We call put now because our (and parent's) refcnts
5008 * are already in place. mem_cgroup_put() will internally
5009 * call __mem_cgroup_free, so return directly
5010 */
5011 mem_cgroup_put(memcg);
5012 return ERR_PTR(error);
5013 }
5014 return &memcg->css;
5015 free_out:
5016 __mem_cgroup_free(memcg);
5017 return ERR_PTR(error);
5018 }
5019
5020 static int mem_cgroup_pre_destroy(struct cgroup *cont)
5021 {
5022 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5023
5024 return mem_cgroup_force_empty(memcg, false);
5025 }
5026
5027 static void mem_cgroup_destroy(struct cgroup *cont)
5028 {
5029 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5030
5031 kmem_cgroup_destroy(memcg);
5032
5033 mem_cgroup_put(memcg);
5034 }
5035
5036 #ifdef CONFIG_MMU
5037 /* Handlers for move charge at task migration. */
5038 #define PRECHARGE_COUNT_AT_ONCE 256
5039 static int mem_cgroup_do_precharge(unsigned long count)
5040 {
5041 int ret = 0;
5042 int batch_count = PRECHARGE_COUNT_AT_ONCE;
5043 struct mem_cgroup *memcg = mc.to;
5044
5045 if (mem_cgroup_is_root(memcg)) {
5046 mc.precharge += count;
5047 /* we don't need css_get for root */
5048 return ret;
5049 }
5050 /* try to charge at once */
5051 if (count > 1) {
5052 struct res_counter *dummy;
5053 /*
5054 * "memcg" cannot be under rmdir() because we've already checked
5055 * by cgroup_lock_live_cgroup() that it is not removed and we
5056 * are still under the same cgroup_mutex. So we can postpone
5057 * css_get().
5058 */
5059 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
5060 goto one_by_one;
5061 if (do_swap_account && res_counter_charge(&memcg->memsw,
5062 PAGE_SIZE * count, &dummy)) {
5063 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
5064 goto one_by_one;
5065 }
5066 mc.precharge += count;
5067 return ret;
5068 }
5069 one_by_one:
5070 /* fall back to one by one charge */
5071 while (count--) {
5072 if (signal_pending(current)) {
5073 ret = -EINTR;
5074 break;
5075 }
5076 if (!batch_count--) {
5077 batch_count = PRECHARGE_COUNT_AT_ONCE;
5078 cond_resched();
5079 }
5080 ret = __mem_cgroup_try_charge(NULL,
5081 GFP_KERNEL, 1, &memcg, false);
5082 if (ret)
5083 /* mem_cgroup_clear_mc() will do uncharge later */
5084 return ret;
5085 mc.precharge++;
5086 }
5087 return ret;
5088 }
5089
5090 /**
5091 * get_mctgt_type - get target type of moving charge
5092 * @vma: the vma the pte to be checked belongs
5093 * @addr: the address corresponding to the pte to be checked
5094 * @ptent: the pte to be checked
5095 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5096 *
5097 * Returns
5098 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5099 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5100 * move charge. if @target is not NULL, the page is stored in target->page
5101 * with extra refcnt got(Callers should handle it).
5102 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5103 * target for charge migration. if @target is not NULL, the entry is stored
5104 * in target->ent.
5105 *
5106 * Called with pte lock held.
5107 */
5108 union mc_target {
5109 struct page *page;
5110 swp_entry_t ent;
5111 };
5112
5113 enum mc_target_type {
5114 MC_TARGET_NONE = 0,
5115 MC_TARGET_PAGE,
5116 MC_TARGET_SWAP,
5117 };
5118
5119 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5120 unsigned long addr, pte_t ptent)
5121 {
5122 struct page *page = vm_normal_page(vma, addr, ptent);
5123
5124 if (!page || !page_mapped(page))
5125 return NULL;
5126 if (PageAnon(page)) {
5127 /* we don't move shared anon */
5128 if (!move_anon())
5129 return NULL;
5130 } else if (!move_file())
5131 /* we ignore mapcount for file pages */
5132 return NULL;
5133 if (!get_page_unless_zero(page))
5134 return NULL;
5135
5136 return page;
5137 }
5138
5139 #ifdef CONFIG_SWAP
5140 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5141 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5142 {
5143 struct page *page = NULL;
5144 swp_entry_t ent = pte_to_swp_entry(ptent);
5145
5146 if (!move_anon() || non_swap_entry(ent))
5147 return NULL;
5148 /*
5149 * Because lookup_swap_cache() updates some statistics counter,
5150 * we call find_get_page() with swapper_space directly.
5151 */
5152 page = find_get_page(&swapper_space, ent.val);
5153 if (do_swap_account)
5154 entry->val = ent.val;
5155
5156 return page;
5157 }
5158 #else
5159 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5160 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5161 {
5162 return NULL;
5163 }
5164 #endif
5165
5166 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5167 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5168 {
5169 struct page *page = NULL;
5170 struct inode *inode;
5171 struct address_space *mapping;
5172 pgoff_t pgoff;
5173
5174 if (!vma->vm_file) /* anonymous vma */
5175 return NULL;
5176 if (!move_file())
5177 return NULL;
5178
5179 inode = vma->vm_file->f_path.dentry->d_inode;
5180 mapping = vma->vm_file->f_mapping;
5181 if (pte_none(ptent))
5182 pgoff = linear_page_index(vma, addr);
5183 else /* pte_file(ptent) is true */
5184 pgoff = pte_to_pgoff(ptent);
5185
5186 /* page is moved even if it's not RSS of this task(page-faulted). */
5187 page = find_get_page(mapping, pgoff);
5188
5189 #ifdef CONFIG_SWAP
5190 /* shmem/tmpfs may report page out on swap: account for that too. */
5191 if (radix_tree_exceptional_entry(page)) {
5192 swp_entry_t swap = radix_to_swp_entry(page);
5193 if (do_swap_account)
5194 *entry = swap;
5195 page = find_get_page(&swapper_space, swap.val);
5196 }
5197 #endif
5198 return page;
5199 }
5200
5201 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5202 unsigned long addr, pte_t ptent, union mc_target *target)
5203 {
5204 struct page *page = NULL;
5205 struct page_cgroup *pc;
5206 enum mc_target_type ret = MC_TARGET_NONE;
5207 swp_entry_t ent = { .val = 0 };
5208
5209 if (pte_present(ptent))
5210 page = mc_handle_present_pte(vma, addr, ptent);
5211 else if (is_swap_pte(ptent))
5212 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
5213 else if (pte_none(ptent) || pte_file(ptent))
5214 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5215
5216 if (!page && !ent.val)
5217 return ret;
5218 if (page) {
5219 pc = lookup_page_cgroup(page);
5220 /*
5221 * Do only loose check w/o page_cgroup lock.
5222 * mem_cgroup_move_account() checks the pc is valid or not under
5223 * the lock.
5224 */
5225 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5226 ret = MC_TARGET_PAGE;
5227 if (target)
5228 target->page = page;
5229 }
5230 if (!ret || !target)
5231 put_page(page);
5232 }
5233 /* There is a swap entry and a page doesn't exist or isn't charged */
5234 if (ent.val && !ret &&
5235 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
5236 ret = MC_TARGET_SWAP;
5237 if (target)
5238 target->ent = ent;
5239 }
5240 return ret;
5241 }
5242
5243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5244 /*
5245 * We don't consider swapping or file mapped pages because THP does not
5246 * support them for now.
5247 * Caller should make sure that pmd_trans_huge(pmd) is true.
5248 */
5249 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5250 unsigned long addr, pmd_t pmd, union mc_target *target)
5251 {
5252 struct page *page = NULL;
5253 struct page_cgroup *pc;
5254 enum mc_target_type ret = MC_TARGET_NONE;
5255
5256 page = pmd_page(pmd);
5257 VM_BUG_ON(!page || !PageHead(page));
5258 if (!move_anon())
5259 return ret;
5260 pc = lookup_page_cgroup(page);
5261 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
5262 ret = MC_TARGET_PAGE;
5263 if (target) {
5264 get_page(page);
5265 target->page = page;
5266 }
5267 }
5268 return ret;
5269 }
5270 #else
5271 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5272 unsigned long addr, pmd_t pmd, union mc_target *target)
5273 {
5274 return MC_TARGET_NONE;
5275 }
5276 #endif
5277
5278 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5279 unsigned long addr, unsigned long end,
5280 struct mm_walk *walk)
5281 {
5282 struct vm_area_struct *vma = walk->private;
5283 pte_t *pte;
5284 spinlock_t *ptl;
5285
5286 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5287 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5288 mc.precharge += HPAGE_PMD_NR;
5289 spin_unlock(&vma->vm_mm->page_table_lock);
5290 return 0;
5291 }
5292
5293 if (pmd_trans_unstable(pmd))
5294 return 0;
5295 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5296 for (; addr != end; pte++, addr += PAGE_SIZE)
5297 if (get_mctgt_type(vma, addr, *pte, NULL))
5298 mc.precharge++; /* increment precharge temporarily */
5299 pte_unmap_unlock(pte - 1, ptl);
5300 cond_resched();
5301
5302 return 0;
5303 }
5304
5305 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5306 {
5307 unsigned long precharge;
5308 struct vm_area_struct *vma;
5309
5310 down_read(&mm->mmap_sem);
5311 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5312 struct mm_walk mem_cgroup_count_precharge_walk = {
5313 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5314 .mm = mm,
5315 .private = vma,
5316 };
5317 if (is_vm_hugetlb_page(vma))
5318 continue;
5319 walk_page_range(vma->vm_start, vma->vm_end,
5320 &mem_cgroup_count_precharge_walk);
5321 }
5322 up_read(&mm->mmap_sem);
5323
5324 precharge = mc.precharge;
5325 mc.precharge = 0;
5326
5327 return precharge;
5328 }
5329
5330 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5331 {
5332 unsigned long precharge = mem_cgroup_count_precharge(mm);
5333
5334 VM_BUG_ON(mc.moving_task);
5335 mc.moving_task = current;
5336 return mem_cgroup_do_precharge(precharge);
5337 }
5338
5339 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5340 static void __mem_cgroup_clear_mc(void)
5341 {
5342 struct mem_cgroup *from = mc.from;
5343 struct mem_cgroup *to = mc.to;
5344
5345 /* we must uncharge all the leftover precharges from mc.to */
5346 if (mc.precharge) {
5347 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
5348 mc.precharge = 0;
5349 }
5350 /*
5351 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5352 * we must uncharge here.
5353 */
5354 if (mc.moved_charge) {
5355 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
5356 mc.moved_charge = 0;
5357 }
5358 /* we must fixup refcnts and charges */
5359 if (mc.moved_swap) {
5360 /* uncharge swap account from the old cgroup */
5361 if (!mem_cgroup_is_root(mc.from))
5362 res_counter_uncharge(&mc.from->memsw,
5363 PAGE_SIZE * mc.moved_swap);
5364 __mem_cgroup_put(mc.from, mc.moved_swap);
5365
5366 if (!mem_cgroup_is_root(mc.to)) {
5367 /*
5368 * we charged both to->res and to->memsw, so we should
5369 * uncharge to->res.
5370 */
5371 res_counter_uncharge(&mc.to->res,
5372 PAGE_SIZE * mc.moved_swap);
5373 }
5374 /* we've already done mem_cgroup_get(mc.to) */
5375 mc.moved_swap = 0;
5376 }
5377 memcg_oom_recover(from);
5378 memcg_oom_recover(to);
5379 wake_up_all(&mc.waitq);
5380 }
5381
5382 static void mem_cgroup_clear_mc(void)
5383 {
5384 struct mem_cgroup *from = mc.from;
5385
5386 /*
5387 * we must clear moving_task before waking up waiters at the end of
5388 * task migration.
5389 */
5390 mc.moving_task = NULL;
5391 __mem_cgroup_clear_mc();
5392 spin_lock(&mc.lock);
5393 mc.from = NULL;
5394 mc.to = NULL;
5395 spin_unlock(&mc.lock);
5396 mem_cgroup_end_move(from);
5397 }
5398
5399 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5400 struct cgroup_taskset *tset)
5401 {
5402 struct task_struct *p = cgroup_taskset_first(tset);
5403 int ret = 0;
5404 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
5405
5406 if (memcg->move_charge_at_immigrate) {
5407 struct mm_struct *mm;
5408 struct mem_cgroup *from = mem_cgroup_from_task(p);
5409
5410 VM_BUG_ON(from == memcg);
5411
5412 mm = get_task_mm(p);
5413 if (!mm)
5414 return 0;
5415 /* We move charges only when we move a owner of the mm */
5416 if (mm->owner == p) {
5417 VM_BUG_ON(mc.from);
5418 VM_BUG_ON(mc.to);
5419 VM_BUG_ON(mc.precharge);
5420 VM_BUG_ON(mc.moved_charge);
5421 VM_BUG_ON(mc.moved_swap);
5422 mem_cgroup_start_move(from);
5423 spin_lock(&mc.lock);
5424 mc.from = from;
5425 mc.to = memcg;
5426 spin_unlock(&mc.lock);
5427 /* We set mc.moving_task later */
5428
5429 ret = mem_cgroup_precharge_mc(mm);
5430 if (ret)
5431 mem_cgroup_clear_mc();
5432 }
5433 mmput(mm);
5434 }
5435 return ret;
5436 }
5437
5438 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5439 struct cgroup_taskset *tset)
5440 {
5441 mem_cgroup_clear_mc();
5442 }
5443
5444 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5445 unsigned long addr, unsigned long end,
5446 struct mm_walk *walk)
5447 {
5448 int ret = 0;
5449 struct vm_area_struct *vma = walk->private;
5450 pte_t *pte;
5451 spinlock_t *ptl;
5452 enum mc_target_type target_type;
5453 union mc_target target;
5454 struct page *page;
5455 struct page_cgroup *pc;
5456
5457 /*
5458 * We don't take compound_lock() here but no race with splitting thp
5459 * happens because:
5460 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5461 * under splitting, which means there's no concurrent thp split,
5462 * - if another thread runs into split_huge_page() just after we
5463 * entered this if-block, the thread must wait for page table lock
5464 * to be unlocked in __split_huge_page_splitting(), where the main
5465 * part of thp split is not executed yet.
5466 */
5467 if (pmd_trans_huge_lock(pmd, vma) == 1) {
5468 if (mc.precharge < HPAGE_PMD_NR) {
5469 spin_unlock(&vma->vm_mm->page_table_lock);
5470 return 0;
5471 }
5472 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5473 if (target_type == MC_TARGET_PAGE) {
5474 page = target.page;
5475 if (!isolate_lru_page(page)) {
5476 pc = lookup_page_cgroup(page);
5477 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5478 pc, mc.from, mc.to,
5479 false)) {
5480 mc.precharge -= HPAGE_PMD_NR;
5481 mc.moved_charge += HPAGE_PMD_NR;
5482 }
5483 putback_lru_page(page);
5484 }
5485 put_page(page);
5486 }
5487 spin_unlock(&vma->vm_mm->page_table_lock);
5488 return 0;
5489 }
5490
5491 if (pmd_trans_unstable(pmd))
5492 return 0;
5493 retry:
5494 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5495 for (; addr != end; addr += PAGE_SIZE) {
5496 pte_t ptent = *(pte++);
5497 swp_entry_t ent;
5498
5499 if (!mc.precharge)
5500 break;
5501
5502 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5503 case MC_TARGET_PAGE:
5504 page = target.page;
5505 if (isolate_lru_page(page))
5506 goto put;
5507 pc = lookup_page_cgroup(page);
5508 if (!mem_cgroup_move_account(page, 1, pc,
5509 mc.from, mc.to, false)) {
5510 mc.precharge--;
5511 /* we uncharge from mc.from later. */
5512 mc.moved_charge++;
5513 }
5514 putback_lru_page(page);
5515 put: /* get_mctgt_type() gets the page */
5516 put_page(page);
5517 break;
5518 case MC_TARGET_SWAP:
5519 ent = target.ent;
5520 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5521 mc.precharge--;
5522 /* we fixup refcnts and charges later. */
5523 mc.moved_swap++;
5524 }
5525 break;
5526 default:
5527 break;
5528 }
5529 }
5530 pte_unmap_unlock(pte - 1, ptl);
5531 cond_resched();
5532
5533 if (addr != end) {
5534 /*
5535 * We have consumed all precharges we got in can_attach().
5536 * We try charge one by one, but don't do any additional
5537 * charges to mc.to if we have failed in charge once in attach()
5538 * phase.
5539 */
5540 ret = mem_cgroup_do_precharge(1);
5541 if (!ret)
5542 goto retry;
5543 }
5544
5545 return ret;
5546 }
5547
5548 static void mem_cgroup_move_charge(struct mm_struct *mm)
5549 {
5550 struct vm_area_struct *vma;
5551
5552 lru_add_drain_all();
5553 retry:
5554 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5555 /*
5556 * Someone who are holding the mmap_sem might be waiting in
5557 * waitq. So we cancel all extra charges, wake up all waiters,
5558 * and retry. Because we cancel precharges, we might not be able
5559 * to move enough charges, but moving charge is a best-effort
5560 * feature anyway, so it wouldn't be a big problem.
5561 */
5562 __mem_cgroup_clear_mc();
5563 cond_resched();
5564 goto retry;
5565 }
5566 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5567 int ret;
5568 struct mm_walk mem_cgroup_move_charge_walk = {
5569 .pmd_entry = mem_cgroup_move_charge_pte_range,
5570 .mm = mm,
5571 .private = vma,
5572 };
5573 if (is_vm_hugetlb_page(vma))
5574 continue;
5575 ret = walk_page_range(vma->vm_start, vma->vm_end,
5576 &mem_cgroup_move_charge_walk);
5577 if (ret)
5578 /*
5579 * means we have consumed all precharges and failed in
5580 * doing additional charge. Just abandon here.
5581 */
5582 break;
5583 }
5584 up_read(&mm->mmap_sem);
5585 }
5586
5587 static void mem_cgroup_move_task(struct cgroup *cont,
5588 struct cgroup_taskset *tset)
5589 {
5590 struct task_struct *p = cgroup_taskset_first(tset);
5591 struct mm_struct *mm = get_task_mm(p);
5592
5593 if (mm) {
5594 if (mc.to)
5595 mem_cgroup_move_charge(mm);
5596 mmput(mm);
5597 }
5598 if (mc.to)
5599 mem_cgroup_clear_mc();
5600 }
5601 #else /* !CONFIG_MMU */
5602 static int mem_cgroup_can_attach(struct cgroup *cgroup,
5603 struct cgroup_taskset *tset)
5604 {
5605 return 0;
5606 }
5607 static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
5608 struct cgroup_taskset *tset)
5609 {
5610 }
5611 static void mem_cgroup_move_task(struct cgroup *cont,
5612 struct cgroup_taskset *tset)
5613 {
5614 }
5615 #endif
5616
5617 struct cgroup_subsys mem_cgroup_subsys = {
5618 .name = "memory",
5619 .subsys_id = mem_cgroup_subsys_id,
5620 .create = mem_cgroup_create,
5621 .pre_destroy = mem_cgroup_pre_destroy,
5622 .destroy = mem_cgroup_destroy,
5623 .can_attach = mem_cgroup_can_attach,
5624 .cancel_attach = mem_cgroup_cancel_attach,
5625 .attach = mem_cgroup_move_task,
5626 .base_cftypes = mem_cgroup_files,
5627 .early_init = 0,
5628 .use_id = 1,
5629 .__DEPRECATED_clear_css_refs = true,
5630 };
5631
5632 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5633 static int __init enable_swap_account(char *s)
5634 {
5635 /* consider enabled if no parameter or 1 is given */
5636 if (!strcmp(s, "1"))
5637 really_do_swap_account = 1;
5638 else if (!strcmp(s, "0"))
5639 really_do_swap_account = 0;
5640 return 1;
5641 }
5642 __setup("swapaccount=", enable_swap_account);
5643
5644 #endif