]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/gerg/m68knommu
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/shmem_fs.h>
39 #include <linux/hugetlb.h>
40 #include <linux/pagemap.h>
41 #include <linux/smp.h>
42 #include <linux/page-flags.h>
43 #include <linux/backing-dev.h>
44 #include <linux/bit_spinlock.h>
45 #include <linux/rcupdate.h>
46 #include <linux/limits.h>
47 #include <linux/export.h>
48 #include <linux/mutex.h>
49 #include <linux/rbtree.h>
50 #include <linux/slab.h>
51 #include <linux/swap.h>
52 #include <linux/swapops.h>
53 #include <linux/spinlock.h>
54 #include <linux/eventfd.h>
55 #include <linux/poll.h>
56 #include <linux/sort.h>
57 #include <linux/fs.h>
58 #include <linux/seq_file.h>
59 #include <linux/vmpressure.h>
60 #include <linux/mm_inline.h>
61 #include <linux/swap_cgroup.h>
62 #include <linux/cpu.h>
63 #include <linux/oom.h>
64 #include <linux/lockdep.h>
65 #include <linux/file.h>
66 #include <linux/tracehook.h>
67 #include "internal.h"
68 #include <net/sock.h>
69 #include <net/ip.h>
70 #include "slab.h"
71
72 #include <linux/uaccess.h>
73
74 #include <trace/events/vmscan.h>
75
76 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
77 EXPORT_SYMBOL(memory_cgrp_subsys);
78
79 struct mem_cgroup *root_mem_cgroup __read_mostly;
80
81 #define MEM_CGROUP_RECLAIM_RETRIES 5
82
83 /* Socket memory accounting disabled? */
84 static bool cgroup_memory_nosocket;
85
86 /* Kernel memory accounting disabled? */
87 static bool cgroup_memory_nokmem;
88
89 /* Whether the swap controller is active */
90 #ifdef CONFIG_MEMCG_SWAP
91 int do_swap_account __read_mostly;
92 #else
93 #define do_swap_account 0
94 #endif
95
96 /* Whether legacy memory+swap accounting is active */
97 static bool do_memsw_account(void)
98 {
99 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
100 }
101
102 static const char * const mem_cgroup_stat_names[] = {
103 "cache",
104 "rss",
105 "rss_huge",
106 "mapped_file",
107 "dirty",
108 "writeback",
109 "swap",
110 };
111
112 static const char * const mem_cgroup_events_names[] = {
113 "pgpgin",
114 "pgpgout",
115 "pgfault",
116 "pgmajfault",
117 };
118
119 static const char * const mem_cgroup_lru_names[] = {
120 "inactive_anon",
121 "active_anon",
122 "inactive_file",
123 "active_file",
124 "unevictable",
125 };
126
127 #define THRESHOLDS_EVENTS_TARGET 128
128 #define SOFTLIMIT_EVENTS_TARGET 1024
129 #define NUMAINFO_EVENTS_TARGET 1024
130
131 /*
132 * Cgroups above their limits are maintained in a RB-Tree, independent of
133 * their hierarchy representation
134 */
135
136 struct mem_cgroup_tree_per_node {
137 struct rb_root rb_root;
138 spinlock_t lock;
139 };
140
141 struct mem_cgroup_tree {
142 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
143 };
144
145 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
146
147 /* for OOM */
148 struct mem_cgroup_eventfd_list {
149 struct list_head list;
150 struct eventfd_ctx *eventfd;
151 };
152
153 /*
154 * cgroup_event represents events which userspace want to receive.
155 */
156 struct mem_cgroup_event {
157 /*
158 * memcg which the event belongs to.
159 */
160 struct mem_cgroup *memcg;
161 /*
162 * eventfd to signal userspace about the event.
163 */
164 struct eventfd_ctx *eventfd;
165 /*
166 * Each of these stored in a list by the cgroup.
167 */
168 struct list_head list;
169 /*
170 * register_event() callback will be used to add new userspace
171 * waiter for changes related to this event. Use eventfd_signal()
172 * on eventfd to send notification to userspace.
173 */
174 int (*register_event)(struct mem_cgroup *memcg,
175 struct eventfd_ctx *eventfd, const char *args);
176 /*
177 * unregister_event() callback will be called when userspace closes
178 * the eventfd or on cgroup removing. This callback must be set,
179 * if you want provide notification functionality.
180 */
181 void (*unregister_event)(struct mem_cgroup *memcg,
182 struct eventfd_ctx *eventfd);
183 /*
184 * All fields below needed to unregister event when
185 * userspace closes eventfd.
186 */
187 poll_table pt;
188 wait_queue_head_t *wqh;
189 wait_queue_t wait;
190 struct work_struct remove;
191 };
192
193 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
194 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
195
196 /* Stuffs for move charges at task migration. */
197 /*
198 * Types of charges to be moved.
199 */
200 #define MOVE_ANON 0x1U
201 #define MOVE_FILE 0x2U
202 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
203
204 /* "mc" and its members are protected by cgroup_mutex */
205 static struct move_charge_struct {
206 spinlock_t lock; /* for from, to */
207 struct mm_struct *mm;
208 struct mem_cgroup *from;
209 struct mem_cgroup *to;
210 unsigned long flags;
211 unsigned long precharge;
212 unsigned long moved_charge;
213 unsigned long moved_swap;
214 struct task_struct *moving_task; /* a task moving charges */
215 wait_queue_head_t waitq; /* a waitq for other context */
216 } mc = {
217 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
218 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
219 };
220
221 /*
222 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
223 * limit reclaim to prevent infinite loops, if they ever occur.
224 */
225 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
226 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
227
228 enum charge_type {
229 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
230 MEM_CGROUP_CHARGE_TYPE_ANON,
231 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
232 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
233 NR_CHARGE_TYPE,
234 };
235
236 /* for encoding cft->private value on file */
237 enum res_type {
238 _MEM,
239 _MEMSWAP,
240 _OOM_TYPE,
241 _KMEM,
242 _TCP,
243 };
244
245 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
246 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
247 #define MEMFILE_ATTR(val) ((val) & 0xffff)
248 /* Used for OOM nofiier */
249 #define OOM_CONTROL (0)
250
251 /* Some nice accessors for the vmpressure. */
252 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
253 {
254 if (!memcg)
255 memcg = root_mem_cgroup;
256 return &memcg->vmpressure;
257 }
258
259 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
260 {
261 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
262 }
263
264 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
265 {
266 return (memcg == root_mem_cgroup);
267 }
268
269 #ifndef CONFIG_SLOB
270 /*
271 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
272 * The main reason for not using cgroup id for this:
273 * this works better in sparse environments, where we have a lot of memcgs,
274 * but only a few kmem-limited. Or also, if we have, for instance, 200
275 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
276 * 200 entry array for that.
277 *
278 * The current size of the caches array is stored in memcg_nr_cache_ids. It
279 * will double each time we have to increase it.
280 */
281 static DEFINE_IDA(memcg_cache_ida);
282 int memcg_nr_cache_ids;
283
284 /* Protects memcg_nr_cache_ids */
285 static DECLARE_RWSEM(memcg_cache_ids_sem);
286
287 void memcg_get_cache_ids(void)
288 {
289 down_read(&memcg_cache_ids_sem);
290 }
291
292 void memcg_put_cache_ids(void)
293 {
294 up_read(&memcg_cache_ids_sem);
295 }
296
297 /*
298 * MIN_SIZE is different than 1, because we would like to avoid going through
299 * the alloc/free process all the time. In a small machine, 4 kmem-limited
300 * cgroups is a reasonable guess. In the future, it could be a parameter or
301 * tunable, but that is strictly not necessary.
302 *
303 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
304 * this constant directly from cgroup, but it is understandable that this is
305 * better kept as an internal representation in cgroup.c. In any case, the
306 * cgrp_id space is not getting any smaller, and we don't have to necessarily
307 * increase ours as well if it increases.
308 */
309 #define MEMCG_CACHES_MIN_SIZE 4
310 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
311
312 /*
313 * A lot of the calls to the cache allocation functions are expected to be
314 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
315 * conditional to this static branch, we'll have to allow modules that does
316 * kmem_cache_alloc and the such to see this symbol as well
317 */
318 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
319 EXPORT_SYMBOL(memcg_kmem_enabled_key);
320
321 struct workqueue_struct *memcg_kmem_cache_wq;
322
323 #endif /* !CONFIG_SLOB */
324
325 /**
326 * mem_cgroup_css_from_page - css of the memcg associated with a page
327 * @page: page of interest
328 *
329 * If memcg is bound to the default hierarchy, css of the memcg associated
330 * with @page is returned. The returned css remains associated with @page
331 * until it is released.
332 *
333 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
334 * is returned.
335 */
336 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
337 {
338 struct mem_cgroup *memcg;
339
340 memcg = page->mem_cgroup;
341
342 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
343 memcg = root_mem_cgroup;
344
345 return &memcg->css;
346 }
347
348 /**
349 * page_cgroup_ino - return inode number of the memcg a page is charged to
350 * @page: the page
351 *
352 * Look up the closest online ancestor of the memory cgroup @page is charged to
353 * and return its inode number or 0 if @page is not charged to any cgroup. It
354 * is safe to call this function without holding a reference to @page.
355 *
356 * Note, this function is inherently racy, because there is nothing to prevent
357 * the cgroup inode from getting torn down and potentially reallocated a moment
358 * after page_cgroup_ino() returns, so it only should be used by callers that
359 * do not care (such as procfs interfaces).
360 */
361 ino_t page_cgroup_ino(struct page *page)
362 {
363 struct mem_cgroup *memcg;
364 unsigned long ino = 0;
365
366 rcu_read_lock();
367 memcg = READ_ONCE(page->mem_cgroup);
368 while (memcg && !(memcg->css.flags & CSS_ONLINE))
369 memcg = parent_mem_cgroup(memcg);
370 if (memcg)
371 ino = cgroup_ino(memcg->css.cgroup);
372 rcu_read_unlock();
373 return ino;
374 }
375
376 static struct mem_cgroup_per_node *
377 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
378 {
379 int nid = page_to_nid(page);
380
381 return memcg->nodeinfo[nid];
382 }
383
384 static struct mem_cgroup_tree_per_node *
385 soft_limit_tree_node(int nid)
386 {
387 return soft_limit_tree.rb_tree_per_node[nid];
388 }
389
390 static struct mem_cgroup_tree_per_node *
391 soft_limit_tree_from_page(struct page *page)
392 {
393 int nid = page_to_nid(page);
394
395 return soft_limit_tree.rb_tree_per_node[nid];
396 }
397
398 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
399 struct mem_cgroup_tree_per_node *mctz,
400 unsigned long new_usage_in_excess)
401 {
402 struct rb_node **p = &mctz->rb_root.rb_node;
403 struct rb_node *parent = NULL;
404 struct mem_cgroup_per_node *mz_node;
405
406 if (mz->on_tree)
407 return;
408
409 mz->usage_in_excess = new_usage_in_excess;
410 if (!mz->usage_in_excess)
411 return;
412 while (*p) {
413 parent = *p;
414 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
415 tree_node);
416 if (mz->usage_in_excess < mz_node->usage_in_excess)
417 p = &(*p)->rb_left;
418 /*
419 * We can't avoid mem cgroups that are over their soft
420 * limit by the same amount
421 */
422 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
423 p = &(*p)->rb_right;
424 }
425 rb_link_node(&mz->tree_node, parent, p);
426 rb_insert_color(&mz->tree_node, &mctz->rb_root);
427 mz->on_tree = true;
428 }
429
430 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
431 struct mem_cgroup_tree_per_node *mctz)
432 {
433 if (!mz->on_tree)
434 return;
435 rb_erase(&mz->tree_node, &mctz->rb_root);
436 mz->on_tree = false;
437 }
438
439 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
440 struct mem_cgroup_tree_per_node *mctz)
441 {
442 unsigned long flags;
443
444 spin_lock_irqsave(&mctz->lock, flags);
445 __mem_cgroup_remove_exceeded(mz, mctz);
446 spin_unlock_irqrestore(&mctz->lock, flags);
447 }
448
449 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
450 {
451 unsigned long nr_pages = page_counter_read(&memcg->memory);
452 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
453 unsigned long excess = 0;
454
455 if (nr_pages > soft_limit)
456 excess = nr_pages - soft_limit;
457
458 return excess;
459 }
460
461 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
462 {
463 unsigned long excess;
464 struct mem_cgroup_per_node *mz;
465 struct mem_cgroup_tree_per_node *mctz;
466
467 mctz = soft_limit_tree_from_page(page);
468 /*
469 * Necessary to update all ancestors when hierarchy is used.
470 * because their event counter is not touched.
471 */
472 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
473 mz = mem_cgroup_page_nodeinfo(memcg, page);
474 excess = soft_limit_excess(memcg);
475 /*
476 * We have to update the tree if mz is on RB-tree or
477 * mem is over its softlimit.
478 */
479 if (excess || mz->on_tree) {
480 unsigned long flags;
481
482 spin_lock_irqsave(&mctz->lock, flags);
483 /* if on-tree, remove it */
484 if (mz->on_tree)
485 __mem_cgroup_remove_exceeded(mz, mctz);
486 /*
487 * Insert again. mz->usage_in_excess will be updated.
488 * If excess is 0, no tree ops.
489 */
490 __mem_cgroup_insert_exceeded(mz, mctz, excess);
491 spin_unlock_irqrestore(&mctz->lock, flags);
492 }
493 }
494 }
495
496 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
497 {
498 struct mem_cgroup_tree_per_node *mctz;
499 struct mem_cgroup_per_node *mz;
500 int nid;
501
502 for_each_node(nid) {
503 mz = mem_cgroup_nodeinfo(memcg, nid);
504 mctz = soft_limit_tree_node(nid);
505 mem_cgroup_remove_exceeded(mz, mctz);
506 }
507 }
508
509 static struct mem_cgroup_per_node *
510 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
511 {
512 struct rb_node *rightmost = NULL;
513 struct mem_cgroup_per_node *mz;
514
515 retry:
516 mz = NULL;
517 rightmost = rb_last(&mctz->rb_root);
518 if (!rightmost)
519 goto done; /* Nothing to reclaim from */
520
521 mz = rb_entry(rightmost, struct mem_cgroup_per_node, tree_node);
522 /*
523 * Remove the node now but someone else can add it back,
524 * we will to add it back at the end of reclaim to its correct
525 * position in the tree.
526 */
527 __mem_cgroup_remove_exceeded(mz, mctz);
528 if (!soft_limit_excess(mz->memcg) ||
529 !css_tryget_online(&mz->memcg->css))
530 goto retry;
531 done:
532 return mz;
533 }
534
535 static struct mem_cgroup_per_node *
536 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
537 {
538 struct mem_cgroup_per_node *mz;
539
540 spin_lock_irq(&mctz->lock);
541 mz = __mem_cgroup_largest_soft_limit_node(mctz);
542 spin_unlock_irq(&mctz->lock);
543 return mz;
544 }
545
546 /*
547 * Return page count for single (non recursive) @memcg.
548 *
549 * Implementation Note: reading percpu statistics for memcg.
550 *
551 * Both of vmstat[] and percpu_counter has threshold and do periodic
552 * synchronization to implement "quick" read. There are trade-off between
553 * reading cost and precision of value. Then, we may have a chance to implement
554 * a periodic synchronization of counter in memcg's counter.
555 *
556 * But this _read() function is used for user interface now. The user accounts
557 * memory usage by memory cgroup and he _always_ requires exact value because
558 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
559 * have to visit all online cpus and make sum. So, for now, unnecessary
560 * synchronization is not implemented. (just implemented for cpu hotplug)
561 *
562 * If there are kernel internal actions which can make use of some not-exact
563 * value, and reading all cpu value can be performance bottleneck in some
564 * common workload, threshold and synchronization as vmstat[] should be
565 * implemented.
566 */
567 static unsigned long
568 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
569 {
570 long val = 0;
571 int cpu;
572
573 /* Per-cpu values can be negative, use a signed accumulator */
574 for_each_possible_cpu(cpu)
575 val += per_cpu(memcg->stat->count[idx], cpu);
576 /*
577 * Summing races with updates, so val may be negative. Avoid exposing
578 * transient negative values.
579 */
580 if (val < 0)
581 val = 0;
582 return val;
583 }
584
585 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
586 enum mem_cgroup_events_index idx)
587 {
588 unsigned long val = 0;
589 int cpu;
590
591 for_each_possible_cpu(cpu)
592 val += per_cpu(memcg->stat->events[idx], cpu);
593 return val;
594 }
595
596 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
597 struct page *page,
598 bool compound, int nr_pages)
599 {
600 /*
601 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
602 * counted as CACHE even if it's on ANON LRU.
603 */
604 if (PageAnon(page))
605 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
606 nr_pages);
607 else
608 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
609 nr_pages);
610
611 if (compound) {
612 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
614 nr_pages);
615 }
616
617 /* pagein of a big page is an event. So, ignore page size */
618 if (nr_pages > 0)
619 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
620 else {
621 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
622 nr_pages = -nr_pages; /* for event */
623 }
624
625 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
626 }
627
628 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
629 int nid, unsigned int lru_mask)
630 {
631 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
632 unsigned long nr = 0;
633 enum lru_list lru;
634
635 VM_BUG_ON((unsigned)nid >= nr_node_ids);
636
637 for_each_lru(lru) {
638 if (!(BIT(lru) & lru_mask))
639 continue;
640 nr += mem_cgroup_get_lru_size(lruvec, lru);
641 }
642 return nr;
643 }
644
645 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
646 unsigned int lru_mask)
647 {
648 unsigned long nr = 0;
649 int nid;
650
651 for_each_node_state(nid, N_MEMORY)
652 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
653 return nr;
654 }
655
656 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
657 enum mem_cgroup_events_target target)
658 {
659 unsigned long val, next;
660
661 val = __this_cpu_read(memcg->stat->nr_page_events);
662 next = __this_cpu_read(memcg->stat->targets[target]);
663 /* from time_after() in jiffies.h */
664 if ((long)next - (long)val < 0) {
665 switch (target) {
666 case MEM_CGROUP_TARGET_THRESH:
667 next = val + THRESHOLDS_EVENTS_TARGET;
668 break;
669 case MEM_CGROUP_TARGET_SOFTLIMIT:
670 next = val + SOFTLIMIT_EVENTS_TARGET;
671 break;
672 case MEM_CGROUP_TARGET_NUMAINFO:
673 next = val + NUMAINFO_EVENTS_TARGET;
674 break;
675 default:
676 break;
677 }
678 __this_cpu_write(memcg->stat->targets[target], next);
679 return true;
680 }
681 return false;
682 }
683
684 /*
685 * Check events in order.
686 *
687 */
688 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
689 {
690 /* threshold event is triggered in finer grain than soft limit */
691 if (unlikely(mem_cgroup_event_ratelimit(memcg,
692 MEM_CGROUP_TARGET_THRESH))) {
693 bool do_softlimit;
694 bool do_numainfo __maybe_unused;
695
696 do_softlimit = mem_cgroup_event_ratelimit(memcg,
697 MEM_CGROUP_TARGET_SOFTLIMIT);
698 #if MAX_NUMNODES > 1
699 do_numainfo = mem_cgroup_event_ratelimit(memcg,
700 MEM_CGROUP_TARGET_NUMAINFO);
701 #endif
702 mem_cgroup_threshold(memcg);
703 if (unlikely(do_softlimit))
704 mem_cgroup_update_tree(memcg, page);
705 #if MAX_NUMNODES > 1
706 if (unlikely(do_numainfo))
707 atomic_inc(&memcg->numainfo_events);
708 #endif
709 }
710 }
711
712 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
713 {
714 /*
715 * mm_update_next_owner() may clear mm->owner to NULL
716 * if it races with swapoff, page migration, etc.
717 * So this can be called with p == NULL.
718 */
719 if (unlikely(!p))
720 return NULL;
721
722 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
723 }
724 EXPORT_SYMBOL(mem_cgroup_from_task);
725
726 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
727 {
728 struct mem_cgroup *memcg = NULL;
729
730 rcu_read_lock();
731 do {
732 /*
733 * Page cache insertions can happen withou an
734 * actual mm context, e.g. during disk probing
735 * on boot, loopback IO, acct() writes etc.
736 */
737 if (unlikely(!mm))
738 memcg = root_mem_cgroup;
739 else {
740 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
741 if (unlikely(!memcg))
742 memcg = root_mem_cgroup;
743 }
744 } while (!css_tryget_online(&memcg->css));
745 rcu_read_unlock();
746 return memcg;
747 }
748
749 /**
750 * mem_cgroup_iter - iterate over memory cgroup hierarchy
751 * @root: hierarchy root
752 * @prev: previously returned memcg, NULL on first invocation
753 * @reclaim: cookie for shared reclaim walks, NULL for full walks
754 *
755 * Returns references to children of the hierarchy below @root, or
756 * @root itself, or %NULL after a full round-trip.
757 *
758 * Caller must pass the return value in @prev on subsequent
759 * invocations for reference counting, or use mem_cgroup_iter_break()
760 * to cancel a hierarchy walk before the round-trip is complete.
761 *
762 * Reclaimers can specify a zone and a priority level in @reclaim to
763 * divide up the memcgs in the hierarchy among all concurrent
764 * reclaimers operating on the same zone and priority.
765 */
766 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
767 struct mem_cgroup *prev,
768 struct mem_cgroup_reclaim_cookie *reclaim)
769 {
770 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
771 struct cgroup_subsys_state *css = NULL;
772 struct mem_cgroup *memcg = NULL;
773 struct mem_cgroup *pos = NULL;
774
775 if (mem_cgroup_disabled())
776 return NULL;
777
778 if (!root)
779 root = root_mem_cgroup;
780
781 if (prev && !reclaim)
782 pos = prev;
783
784 if (!root->use_hierarchy && root != root_mem_cgroup) {
785 if (prev)
786 goto out;
787 return root;
788 }
789
790 rcu_read_lock();
791
792 if (reclaim) {
793 struct mem_cgroup_per_node *mz;
794
795 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
796 iter = &mz->iter[reclaim->priority];
797
798 if (prev && reclaim->generation != iter->generation)
799 goto out_unlock;
800
801 while (1) {
802 pos = READ_ONCE(iter->position);
803 if (!pos || css_tryget(&pos->css))
804 break;
805 /*
806 * css reference reached zero, so iter->position will
807 * be cleared by ->css_released. However, we should not
808 * rely on this happening soon, because ->css_released
809 * is called from a work queue, and by busy-waiting we
810 * might block it. So we clear iter->position right
811 * away.
812 */
813 (void)cmpxchg(&iter->position, pos, NULL);
814 }
815 }
816
817 if (pos)
818 css = &pos->css;
819
820 for (;;) {
821 css = css_next_descendant_pre(css, &root->css);
822 if (!css) {
823 /*
824 * Reclaimers share the hierarchy walk, and a
825 * new one might jump in right at the end of
826 * the hierarchy - make sure they see at least
827 * one group and restart from the beginning.
828 */
829 if (!prev)
830 continue;
831 break;
832 }
833
834 /*
835 * Verify the css and acquire a reference. The root
836 * is provided by the caller, so we know it's alive
837 * and kicking, and don't take an extra reference.
838 */
839 memcg = mem_cgroup_from_css(css);
840
841 if (css == &root->css)
842 break;
843
844 if (css_tryget(css))
845 break;
846
847 memcg = NULL;
848 }
849
850 if (reclaim) {
851 /*
852 * The position could have already been updated by a competing
853 * thread, so check that the value hasn't changed since we read
854 * it to avoid reclaiming from the same cgroup twice.
855 */
856 (void)cmpxchg(&iter->position, pos, memcg);
857
858 if (pos)
859 css_put(&pos->css);
860
861 if (!memcg)
862 iter->generation++;
863 else if (!prev)
864 reclaim->generation = iter->generation;
865 }
866
867 out_unlock:
868 rcu_read_unlock();
869 out:
870 if (prev && prev != root)
871 css_put(&prev->css);
872
873 return memcg;
874 }
875
876 /**
877 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
878 * @root: hierarchy root
879 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
880 */
881 void mem_cgroup_iter_break(struct mem_cgroup *root,
882 struct mem_cgroup *prev)
883 {
884 if (!root)
885 root = root_mem_cgroup;
886 if (prev && prev != root)
887 css_put(&prev->css);
888 }
889
890 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
891 {
892 struct mem_cgroup *memcg = dead_memcg;
893 struct mem_cgroup_reclaim_iter *iter;
894 struct mem_cgroup_per_node *mz;
895 int nid;
896 int i;
897
898 while ((memcg = parent_mem_cgroup(memcg))) {
899 for_each_node(nid) {
900 mz = mem_cgroup_nodeinfo(memcg, nid);
901 for (i = 0; i <= DEF_PRIORITY; i++) {
902 iter = &mz->iter[i];
903 cmpxchg(&iter->position,
904 dead_memcg, NULL);
905 }
906 }
907 }
908 }
909
910 /*
911 * Iteration constructs for visiting all cgroups (under a tree). If
912 * loops are exited prematurely (break), mem_cgroup_iter_break() must
913 * be used for reference counting.
914 */
915 #define for_each_mem_cgroup_tree(iter, root) \
916 for (iter = mem_cgroup_iter(root, NULL, NULL); \
917 iter != NULL; \
918 iter = mem_cgroup_iter(root, iter, NULL))
919
920 #define for_each_mem_cgroup(iter) \
921 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
922 iter != NULL; \
923 iter = mem_cgroup_iter(NULL, iter, NULL))
924
925 /**
926 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
927 * @memcg: hierarchy root
928 * @fn: function to call for each task
929 * @arg: argument passed to @fn
930 *
931 * This function iterates over tasks attached to @memcg or to any of its
932 * descendants and calls @fn for each task. If @fn returns a non-zero
933 * value, the function breaks the iteration loop and returns the value.
934 * Otherwise, it will iterate over all tasks and return 0.
935 *
936 * This function must not be called for the root memory cgroup.
937 */
938 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
939 int (*fn)(struct task_struct *, void *), void *arg)
940 {
941 struct mem_cgroup *iter;
942 int ret = 0;
943
944 BUG_ON(memcg == root_mem_cgroup);
945
946 for_each_mem_cgroup_tree(iter, memcg) {
947 struct css_task_iter it;
948 struct task_struct *task;
949
950 css_task_iter_start(&iter->css, &it);
951 while (!ret && (task = css_task_iter_next(&it)))
952 ret = fn(task, arg);
953 css_task_iter_end(&it);
954 if (ret) {
955 mem_cgroup_iter_break(memcg, iter);
956 break;
957 }
958 }
959 return ret;
960 }
961
962 /**
963 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
964 * @page: the page
965 * @zone: zone of the page
966 *
967 * This function is only safe when following the LRU page isolation
968 * and putback protocol: the LRU lock must be held, and the page must
969 * either be PageLRU() or the caller must have isolated/allocated it.
970 */
971 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
972 {
973 struct mem_cgroup_per_node *mz;
974 struct mem_cgroup *memcg;
975 struct lruvec *lruvec;
976
977 if (mem_cgroup_disabled()) {
978 lruvec = &pgdat->lruvec;
979 goto out;
980 }
981
982 memcg = page->mem_cgroup;
983 /*
984 * Swapcache readahead pages are added to the LRU - and
985 * possibly migrated - before they are charged.
986 */
987 if (!memcg)
988 memcg = root_mem_cgroup;
989
990 mz = mem_cgroup_page_nodeinfo(memcg, page);
991 lruvec = &mz->lruvec;
992 out:
993 /*
994 * Since a node can be onlined after the mem_cgroup was created,
995 * we have to be prepared to initialize lruvec->zone here;
996 * and if offlined then reonlined, we need to reinitialize it.
997 */
998 if (unlikely(lruvec->pgdat != pgdat))
999 lruvec->pgdat = pgdat;
1000 return lruvec;
1001 }
1002
1003 /**
1004 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1005 * @lruvec: mem_cgroup per zone lru vector
1006 * @lru: index of lru list the page is sitting on
1007 * @zid: zone id of the accounted pages
1008 * @nr_pages: positive when adding or negative when removing
1009 *
1010 * This function must be called under lru_lock, just before a page is added
1011 * to or just after a page is removed from an lru list (that ordering being
1012 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1013 */
1014 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1015 int zid, int nr_pages)
1016 {
1017 struct mem_cgroup_per_node *mz;
1018 unsigned long *lru_size;
1019 long size;
1020
1021 if (mem_cgroup_disabled())
1022 return;
1023
1024 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1025 lru_size = &mz->lru_zone_size[zid][lru];
1026
1027 if (nr_pages < 0)
1028 *lru_size += nr_pages;
1029
1030 size = *lru_size;
1031 if (WARN_ONCE(size < 0,
1032 "%s(%p, %d, %d): lru_size %ld\n",
1033 __func__, lruvec, lru, nr_pages, size)) {
1034 VM_BUG_ON(1);
1035 *lru_size = 0;
1036 }
1037
1038 if (nr_pages > 0)
1039 *lru_size += nr_pages;
1040 }
1041
1042 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1043 {
1044 struct mem_cgroup *task_memcg;
1045 struct task_struct *p;
1046 bool ret;
1047
1048 p = find_lock_task_mm(task);
1049 if (p) {
1050 task_memcg = get_mem_cgroup_from_mm(p->mm);
1051 task_unlock(p);
1052 } else {
1053 /*
1054 * All threads may have already detached their mm's, but the oom
1055 * killer still needs to detect if they have already been oom
1056 * killed to prevent needlessly killing additional tasks.
1057 */
1058 rcu_read_lock();
1059 task_memcg = mem_cgroup_from_task(task);
1060 css_get(&task_memcg->css);
1061 rcu_read_unlock();
1062 }
1063 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1064 css_put(&task_memcg->css);
1065 return ret;
1066 }
1067
1068 /**
1069 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1070 * @memcg: the memory cgroup
1071 *
1072 * Returns the maximum amount of memory @mem can be charged with, in
1073 * pages.
1074 */
1075 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1076 {
1077 unsigned long margin = 0;
1078 unsigned long count;
1079 unsigned long limit;
1080
1081 count = page_counter_read(&memcg->memory);
1082 limit = READ_ONCE(memcg->memory.limit);
1083 if (count < limit)
1084 margin = limit - count;
1085
1086 if (do_memsw_account()) {
1087 count = page_counter_read(&memcg->memsw);
1088 limit = READ_ONCE(memcg->memsw.limit);
1089 if (count <= limit)
1090 margin = min(margin, limit - count);
1091 else
1092 margin = 0;
1093 }
1094
1095 return margin;
1096 }
1097
1098 /*
1099 * A routine for checking "mem" is under move_account() or not.
1100 *
1101 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1102 * moving cgroups. This is for waiting at high-memory pressure
1103 * caused by "move".
1104 */
1105 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1106 {
1107 struct mem_cgroup *from;
1108 struct mem_cgroup *to;
1109 bool ret = false;
1110 /*
1111 * Unlike task_move routines, we access mc.to, mc.from not under
1112 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1113 */
1114 spin_lock(&mc.lock);
1115 from = mc.from;
1116 to = mc.to;
1117 if (!from)
1118 goto unlock;
1119
1120 ret = mem_cgroup_is_descendant(from, memcg) ||
1121 mem_cgroup_is_descendant(to, memcg);
1122 unlock:
1123 spin_unlock(&mc.lock);
1124 return ret;
1125 }
1126
1127 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1128 {
1129 if (mc.moving_task && current != mc.moving_task) {
1130 if (mem_cgroup_under_move(memcg)) {
1131 DEFINE_WAIT(wait);
1132 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1133 /* moving charge context might have finished. */
1134 if (mc.moving_task)
1135 schedule();
1136 finish_wait(&mc.waitq, &wait);
1137 return true;
1138 }
1139 }
1140 return false;
1141 }
1142
1143 #define K(x) ((x) << (PAGE_SHIFT-10))
1144 /**
1145 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1146 * @memcg: The memory cgroup that went over limit
1147 * @p: Task that is going to be killed
1148 *
1149 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1150 * enabled
1151 */
1152 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1153 {
1154 struct mem_cgroup *iter;
1155 unsigned int i;
1156
1157 rcu_read_lock();
1158
1159 if (p) {
1160 pr_info("Task in ");
1161 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1162 pr_cont(" killed as a result of limit of ");
1163 } else {
1164 pr_info("Memory limit reached of cgroup ");
1165 }
1166
1167 pr_cont_cgroup_path(memcg->css.cgroup);
1168 pr_cont("\n");
1169
1170 rcu_read_unlock();
1171
1172 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1173 K((u64)page_counter_read(&memcg->memory)),
1174 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1175 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1176 K((u64)page_counter_read(&memcg->memsw)),
1177 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1178 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->kmem)),
1180 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1181
1182 for_each_mem_cgroup_tree(iter, memcg) {
1183 pr_info("Memory cgroup stats for ");
1184 pr_cont_cgroup_path(iter->css.cgroup);
1185 pr_cont(":");
1186
1187 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1188 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1189 continue;
1190 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1191 K(mem_cgroup_read_stat(iter, i)));
1192 }
1193
1194 for (i = 0; i < NR_LRU_LISTS; i++)
1195 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1196 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1197
1198 pr_cont("\n");
1199 }
1200 }
1201
1202 /*
1203 * This function returns the number of memcg under hierarchy tree. Returns
1204 * 1(self count) if no children.
1205 */
1206 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1207 {
1208 int num = 0;
1209 struct mem_cgroup *iter;
1210
1211 for_each_mem_cgroup_tree(iter, memcg)
1212 num++;
1213 return num;
1214 }
1215
1216 /*
1217 * Return the memory (and swap, if configured) limit for a memcg.
1218 */
1219 unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1220 {
1221 unsigned long limit;
1222
1223 limit = memcg->memory.limit;
1224 if (mem_cgroup_swappiness(memcg)) {
1225 unsigned long memsw_limit;
1226 unsigned long swap_limit;
1227
1228 memsw_limit = memcg->memsw.limit;
1229 swap_limit = memcg->swap.limit;
1230 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1231 limit = min(limit + swap_limit, memsw_limit);
1232 }
1233 return limit;
1234 }
1235
1236 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1237 int order)
1238 {
1239 struct oom_control oc = {
1240 .zonelist = NULL,
1241 .nodemask = NULL,
1242 .memcg = memcg,
1243 .gfp_mask = gfp_mask,
1244 .order = order,
1245 };
1246 bool ret;
1247
1248 mutex_lock(&oom_lock);
1249 ret = out_of_memory(&oc);
1250 mutex_unlock(&oom_lock);
1251 return ret;
1252 }
1253
1254 #if MAX_NUMNODES > 1
1255
1256 /**
1257 * test_mem_cgroup_node_reclaimable
1258 * @memcg: the target memcg
1259 * @nid: the node ID to be checked.
1260 * @noswap : specify true here if the user wants flle only information.
1261 *
1262 * This function returns whether the specified memcg contains any
1263 * reclaimable pages on a node. Returns true if there are any reclaimable
1264 * pages in the node.
1265 */
1266 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1267 int nid, bool noswap)
1268 {
1269 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1270 return true;
1271 if (noswap || !total_swap_pages)
1272 return false;
1273 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1274 return true;
1275 return false;
1276
1277 }
1278
1279 /*
1280 * Always updating the nodemask is not very good - even if we have an empty
1281 * list or the wrong list here, we can start from some node and traverse all
1282 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1283 *
1284 */
1285 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1286 {
1287 int nid;
1288 /*
1289 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1290 * pagein/pageout changes since the last update.
1291 */
1292 if (!atomic_read(&memcg->numainfo_events))
1293 return;
1294 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1295 return;
1296
1297 /* make a nodemask where this memcg uses memory from */
1298 memcg->scan_nodes = node_states[N_MEMORY];
1299
1300 for_each_node_mask(nid, node_states[N_MEMORY]) {
1301
1302 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1303 node_clear(nid, memcg->scan_nodes);
1304 }
1305
1306 atomic_set(&memcg->numainfo_events, 0);
1307 atomic_set(&memcg->numainfo_updating, 0);
1308 }
1309
1310 /*
1311 * Selecting a node where we start reclaim from. Because what we need is just
1312 * reducing usage counter, start from anywhere is O,K. Considering
1313 * memory reclaim from current node, there are pros. and cons.
1314 *
1315 * Freeing memory from current node means freeing memory from a node which
1316 * we'll use or we've used. So, it may make LRU bad. And if several threads
1317 * hit limits, it will see a contention on a node. But freeing from remote
1318 * node means more costs for memory reclaim because of memory latency.
1319 *
1320 * Now, we use round-robin. Better algorithm is welcomed.
1321 */
1322 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1323 {
1324 int node;
1325
1326 mem_cgroup_may_update_nodemask(memcg);
1327 node = memcg->last_scanned_node;
1328
1329 node = next_node_in(node, memcg->scan_nodes);
1330 /*
1331 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1332 * last time it really checked all the LRUs due to rate limiting.
1333 * Fallback to the current node in that case for simplicity.
1334 */
1335 if (unlikely(node == MAX_NUMNODES))
1336 node = numa_node_id();
1337
1338 memcg->last_scanned_node = node;
1339 return node;
1340 }
1341 #else
1342 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1343 {
1344 return 0;
1345 }
1346 #endif
1347
1348 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1349 pg_data_t *pgdat,
1350 gfp_t gfp_mask,
1351 unsigned long *total_scanned)
1352 {
1353 struct mem_cgroup *victim = NULL;
1354 int total = 0;
1355 int loop = 0;
1356 unsigned long excess;
1357 unsigned long nr_scanned;
1358 struct mem_cgroup_reclaim_cookie reclaim = {
1359 .pgdat = pgdat,
1360 .priority = 0,
1361 };
1362
1363 excess = soft_limit_excess(root_memcg);
1364
1365 while (1) {
1366 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1367 if (!victim) {
1368 loop++;
1369 if (loop >= 2) {
1370 /*
1371 * If we have not been able to reclaim
1372 * anything, it might because there are
1373 * no reclaimable pages under this hierarchy
1374 */
1375 if (!total)
1376 break;
1377 /*
1378 * We want to do more targeted reclaim.
1379 * excess >> 2 is not to excessive so as to
1380 * reclaim too much, nor too less that we keep
1381 * coming back to reclaim from this cgroup
1382 */
1383 if (total >= (excess >> 2) ||
1384 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1385 break;
1386 }
1387 continue;
1388 }
1389 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1390 pgdat, &nr_scanned);
1391 *total_scanned += nr_scanned;
1392 if (!soft_limit_excess(root_memcg))
1393 break;
1394 }
1395 mem_cgroup_iter_break(root_memcg, victim);
1396 return total;
1397 }
1398
1399 #ifdef CONFIG_LOCKDEP
1400 static struct lockdep_map memcg_oom_lock_dep_map = {
1401 .name = "memcg_oom_lock",
1402 };
1403 #endif
1404
1405 static DEFINE_SPINLOCK(memcg_oom_lock);
1406
1407 /*
1408 * Check OOM-Killer is already running under our hierarchy.
1409 * If someone is running, return false.
1410 */
1411 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1412 {
1413 struct mem_cgroup *iter, *failed = NULL;
1414
1415 spin_lock(&memcg_oom_lock);
1416
1417 for_each_mem_cgroup_tree(iter, memcg) {
1418 if (iter->oom_lock) {
1419 /*
1420 * this subtree of our hierarchy is already locked
1421 * so we cannot give a lock.
1422 */
1423 failed = iter;
1424 mem_cgroup_iter_break(memcg, iter);
1425 break;
1426 } else
1427 iter->oom_lock = true;
1428 }
1429
1430 if (failed) {
1431 /*
1432 * OK, we failed to lock the whole subtree so we have
1433 * to clean up what we set up to the failing subtree
1434 */
1435 for_each_mem_cgroup_tree(iter, memcg) {
1436 if (iter == failed) {
1437 mem_cgroup_iter_break(memcg, iter);
1438 break;
1439 }
1440 iter->oom_lock = false;
1441 }
1442 } else
1443 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1444
1445 spin_unlock(&memcg_oom_lock);
1446
1447 return !failed;
1448 }
1449
1450 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1451 {
1452 struct mem_cgroup *iter;
1453
1454 spin_lock(&memcg_oom_lock);
1455 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1456 for_each_mem_cgroup_tree(iter, memcg)
1457 iter->oom_lock = false;
1458 spin_unlock(&memcg_oom_lock);
1459 }
1460
1461 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1462 {
1463 struct mem_cgroup *iter;
1464
1465 spin_lock(&memcg_oom_lock);
1466 for_each_mem_cgroup_tree(iter, memcg)
1467 iter->under_oom++;
1468 spin_unlock(&memcg_oom_lock);
1469 }
1470
1471 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1472 {
1473 struct mem_cgroup *iter;
1474
1475 /*
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1478 */
1479 spin_lock(&memcg_oom_lock);
1480 for_each_mem_cgroup_tree(iter, memcg)
1481 if (iter->under_oom > 0)
1482 iter->under_oom--;
1483 spin_unlock(&memcg_oom_lock);
1484 }
1485
1486 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1487
1488 struct oom_wait_info {
1489 struct mem_cgroup *memcg;
1490 wait_queue_t wait;
1491 };
1492
1493 static int memcg_oom_wake_function(wait_queue_t *wait,
1494 unsigned mode, int sync, void *arg)
1495 {
1496 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1497 struct mem_cgroup *oom_wait_memcg;
1498 struct oom_wait_info *oom_wait_info;
1499
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1501 oom_wait_memcg = oom_wait_info->memcg;
1502
1503 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1504 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1505 return 0;
1506 return autoremove_wake_function(wait, mode, sync, arg);
1507 }
1508
1509 static void memcg_oom_recover(struct mem_cgroup *memcg)
1510 {
1511 /*
1512 * For the following lockless ->under_oom test, the only required
1513 * guarantee is that it must see the state asserted by an OOM when
1514 * this function is called as a result of userland actions
1515 * triggered by the notification of the OOM. This is trivially
1516 * achieved by invoking mem_cgroup_mark_under_oom() before
1517 * triggering notification.
1518 */
1519 if (memcg && memcg->under_oom)
1520 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1521 }
1522
1523 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1524 {
1525 if (!current->memcg_may_oom)
1526 return;
1527 /*
1528 * We are in the middle of the charge context here, so we
1529 * don't want to block when potentially sitting on a callstack
1530 * that holds all kinds of filesystem and mm locks.
1531 *
1532 * Also, the caller may handle a failed allocation gracefully
1533 * (like optional page cache readahead) and so an OOM killer
1534 * invocation might not even be necessary.
1535 *
1536 * That's why we don't do anything here except remember the
1537 * OOM context and then deal with it at the end of the page
1538 * fault when the stack is unwound, the locks are released,
1539 * and when we know whether the fault was overall successful.
1540 */
1541 css_get(&memcg->css);
1542 current->memcg_in_oom = memcg;
1543 current->memcg_oom_gfp_mask = mask;
1544 current->memcg_oom_order = order;
1545 }
1546
1547 /**
1548 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1549 * @handle: actually kill/wait or just clean up the OOM state
1550 *
1551 * This has to be called at the end of a page fault if the memcg OOM
1552 * handler was enabled.
1553 *
1554 * Memcg supports userspace OOM handling where failed allocations must
1555 * sleep on a waitqueue until the userspace task resolves the
1556 * situation. Sleeping directly in the charge context with all kinds
1557 * of locks held is not a good idea, instead we remember an OOM state
1558 * in the task and mem_cgroup_oom_synchronize() has to be called at
1559 * the end of the page fault to complete the OOM handling.
1560 *
1561 * Returns %true if an ongoing memcg OOM situation was detected and
1562 * completed, %false otherwise.
1563 */
1564 bool mem_cgroup_oom_synchronize(bool handle)
1565 {
1566 struct mem_cgroup *memcg = current->memcg_in_oom;
1567 struct oom_wait_info owait;
1568 bool locked;
1569
1570 /* OOM is global, do not handle */
1571 if (!memcg)
1572 return false;
1573
1574 if (!handle)
1575 goto cleanup;
1576
1577 owait.memcg = memcg;
1578 owait.wait.flags = 0;
1579 owait.wait.func = memcg_oom_wake_function;
1580 owait.wait.private = current;
1581 INIT_LIST_HEAD(&owait.wait.task_list);
1582
1583 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1584 mem_cgroup_mark_under_oom(memcg);
1585
1586 locked = mem_cgroup_oom_trylock(memcg);
1587
1588 if (locked)
1589 mem_cgroup_oom_notify(memcg);
1590
1591 if (locked && !memcg->oom_kill_disable) {
1592 mem_cgroup_unmark_under_oom(memcg);
1593 finish_wait(&memcg_oom_waitq, &owait.wait);
1594 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1595 current->memcg_oom_order);
1596 } else {
1597 schedule();
1598 mem_cgroup_unmark_under_oom(memcg);
1599 finish_wait(&memcg_oom_waitq, &owait.wait);
1600 }
1601
1602 if (locked) {
1603 mem_cgroup_oom_unlock(memcg);
1604 /*
1605 * There is no guarantee that an OOM-lock contender
1606 * sees the wakeups triggered by the OOM kill
1607 * uncharges. Wake any sleepers explicitely.
1608 */
1609 memcg_oom_recover(memcg);
1610 }
1611 cleanup:
1612 current->memcg_in_oom = NULL;
1613 css_put(&memcg->css);
1614 return true;
1615 }
1616
1617 /**
1618 * lock_page_memcg - lock a page->mem_cgroup binding
1619 * @page: the page
1620 *
1621 * This function protects unlocked LRU pages from being moved to
1622 * another cgroup and stabilizes their page->mem_cgroup binding.
1623 */
1624 void lock_page_memcg(struct page *page)
1625 {
1626 struct mem_cgroup *memcg;
1627 unsigned long flags;
1628
1629 /*
1630 * The RCU lock is held throughout the transaction. The fast
1631 * path can get away without acquiring the memcg->move_lock
1632 * because page moving starts with an RCU grace period.
1633 */
1634 rcu_read_lock();
1635
1636 if (mem_cgroup_disabled())
1637 return;
1638 again:
1639 memcg = page->mem_cgroup;
1640 if (unlikely(!memcg))
1641 return;
1642
1643 if (atomic_read(&memcg->moving_account) <= 0)
1644 return;
1645
1646 spin_lock_irqsave(&memcg->move_lock, flags);
1647 if (memcg != page->mem_cgroup) {
1648 spin_unlock_irqrestore(&memcg->move_lock, flags);
1649 goto again;
1650 }
1651
1652 /*
1653 * When charge migration first begins, we can have locked and
1654 * unlocked page stat updates happening concurrently. Track
1655 * the task who has the lock for unlock_page_memcg().
1656 */
1657 memcg->move_lock_task = current;
1658 memcg->move_lock_flags = flags;
1659
1660 return;
1661 }
1662 EXPORT_SYMBOL(lock_page_memcg);
1663
1664 /**
1665 * unlock_page_memcg - unlock a page->mem_cgroup binding
1666 * @page: the page
1667 */
1668 void unlock_page_memcg(struct page *page)
1669 {
1670 struct mem_cgroup *memcg = page->mem_cgroup;
1671
1672 if (memcg && memcg->move_lock_task == current) {
1673 unsigned long flags = memcg->move_lock_flags;
1674
1675 memcg->move_lock_task = NULL;
1676 memcg->move_lock_flags = 0;
1677
1678 spin_unlock_irqrestore(&memcg->move_lock, flags);
1679 }
1680
1681 rcu_read_unlock();
1682 }
1683 EXPORT_SYMBOL(unlock_page_memcg);
1684
1685 /*
1686 * size of first charge trial. "32" comes from vmscan.c's magic value.
1687 * TODO: maybe necessary to use big numbers in big irons.
1688 */
1689 #define CHARGE_BATCH 32U
1690 struct memcg_stock_pcp {
1691 struct mem_cgroup *cached; /* this never be root cgroup */
1692 unsigned int nr_pages;
1693 struct work_struct work;
1694 unsigned long flags;
1695 #define FLUSHING_CACHED_CHARGE 0
1696 };
1697 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1698 static DEFINE_MUTEX(percpu_charge_mutex);
1699
1700 /**
1701 * consume_stock: Try to consume stocked charge on this cpu.
1702 * @memcg: memcg to consume from.
1703 * @nr_pages: how many pages to charge.
1704 *
1705 * The charges will only happen if @memcg matches the current cpu's memcg
1706 * stock, and at least @nr_pages are available in that stock. Failure to
1707 * service an allocation will refill the stock.
1708 *
1709 * returns true if successful, false otherwise.
1710 */
1711 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1712 {
1713 struct memcg_stock_pcp *stock;
1714 unsigned long flags;
1715 bool ret = false;
1716
1717 if (nr_pages > CHARGE_BATCH)
1718 return ret;
1719
1720 local_irq_save(flags);
1721
1722 stock = this_cpu_ptr(&memcg_stock);
1723 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1724 stock->nr_pages -= nr_pages;
1725 ret = true;
1726 }
1727
1728 local_irq_restore(flags);
1729
1730 return ret;
1731 }
1732
1733 /*
1734 * Returns stocks cached in percpu and reset cached information.
1735 */
1736 static void drain_stock(struct memcg_stock_pcp *stock)
1737 {
1738 struct mem_cgroup *old = stock->cached;
1739
1740 if (stock->nr_pages) {
1741 page_counter_uncharge(&old->memory, stock->nr_pages);
1742 if (do_memsw_account())
1743 page_counter_uncharge(&old->memsw, stock->nr_pages);
1744 css_put_many(&old->css, stock->nr_pages);
1745 stock->nr_pages = 0;
1746 }
1747 stock->cached = NULL;
1748 }
1749
1750 static void drain_local_stock(struct work_struct *dummy)
1751 {
1752 struct memcg_stock_pcp *stock;
1753 unsigned long flags;
1754
1755 local_irq_save(flags);
1756
1757 stock = this_cpu_ptr(&memcg_stock);
1758 drain_stock(stock);
1759 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1760
1761 local_irq_restore(flags);
1762 }
1763
1764 /*
1765 * Cache charges(val) to local per_cpu area.
1766 * This will be consumed by consume_stock() function, later.
1767 */
1768 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1769 {
1770 struct memcg_stock_pcp *stock;
1771 unsigned long flags;
1772
1773 local_irq_save(flags);
1774
1775 stock = this_cpu_ptr(&memcg_stock);
1776 if (stock->cached != memcg) { /* reset if necessary */
1777 drain_stock(stock);
1778 stock->cached = memcg;
1779 }
1780 stock->nr_pages += nr_pages;
1781
1782 local_irq_restore(flags);
1783 }
1784
1785 /*
1786 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1787 * of the hierarchy under it.
1788 */
1789 static void drain_all_stock(struct mem_cgroup *root_memcg)
1790 {
1791 int cpu, curcpu;
1792
1793 /* If someone's already draining, avoid adding running more workers. */
1794 if (!mutex_trylock(&percpu_charge_mutex))
1795 return;
1796 /* Notify other cpus that system-wide "drain" is running */
1797 get_online_cpus();
1798 curcpu = get_cpu();
1799 for_each_online_cpu(cpu) {
1800 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1801 struct mem_cgroup *memcg;
1802
1803 memcg = stock->cached;
1804 if (!memcg || !stock->nr_pages)
1805 continue;
1806 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1807 continue;
1808 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1809 if (cpu == curcpu)
1810 drain_local_stock(&stock->work);
1811 else
1812 schedule_work_on(cpu, &stock->work);
1813 }
1814 }
1815 put_cpu();
1816 put_online_cpus();
1817 mutex_unlock(&percpu_charge_mutex);
1818 }
1819
1820 static int memcg_hotplug_cpu_dead(unsigned int cpu)
1821 {
1822 struct memcg_stock_pcp *stock;
1823
1824 stock = &per_cpu(memcg_stock, cpu);
1825 drain_stock(stock);
1826 return 0;
1827 }
1828
1829 static void reclaim_high(struct mem_cgroup *memcg,
1830 unsigned int nr_pages,
1831 gfp_t gfp_mask)
1832 {
1833 do {
1834 if (page_counter_read(&memcg->memory) <= memcg->high)
1835 continue;
1836 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1837 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1838 } while ((memcg = parent_mem_cgroup(memcg)));
1839 }
1840
1841 static void high_work_func(struct work_struct *work)
1842 {
1843 struct mem_cgroup *memcg;
1844
1845 memcg = container_of(work, struct mem_cgroup, high_work);
1846 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1847 }
1848
1849 /*
1850 * Scheduled by try_charge() to be executed from the userland return path
1851 * and reclaims memory over the high limit.
1852 */
1853 void mem_cgroup_handle_over_high(void)
1854 {
1855 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1856 struct mem_cgroup *memcg;
1857
1858 if (likely(!nr_pages))
1859 return;
1860
1861 memcg = get_mem_cgroup_from_mm(current->mm);
1862 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1863 css_put(&memcg->css);
1864 current->memcg_nr_pages_over_high = 0;
1865 }
1866
1867 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1868 unsigned int nr_pages)
1869 {
1870 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1871 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1872 struct mem_cgroup *mem_over_limit;
1873 struct page_counter *counter;
1874 unsigned long nr_reclaimed;
1875 bool may_swap = true;
1876 bool drained = false;
1877
1878 if (mem_cgroup_is_root(memcg))
1879 return 0;
1880 retry:
1881 if (consume_stock(memcg, nr_pages))
1882 return 0;
1883
1884 if (!do_memsw_account() ||
1885 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1886 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1887 goto done_restock;
1888 if (do_memsw_account())
1889 page_counter_uncharge(&memcg->memsw, batch);
1890 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1891 } else {
1892 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1893 may_swap = false;
1894 }
1895
1896 if (batch > nr_pages) {
1897 batch = nr_pages;
1898 goto retry;
1899 }
1900
1901 /*
1902 * Unlike in global OOM situations, memcg is not in a physical
1903 * memory shortage. Allow dying and OOM-killed tasks to
1904 * bypass the last charges so that they can exit quickly and
1905 * free their memory.
1906 */
1907 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1908 fatal_signal_pending(current) ||
1909 current->flags & PF_EXITING))
1910 goto force;
1911
1912 /*
1913 * Prevent unbounded recursion when reclaim operations need to
1914 * allocate memory. This might exceed the limits temporarily,
1915 * but we prefer facilitating memory reclaim and getting back
1916 * under the limit over triggering OOM kills in these cases.
1917 */
1918 if (unlikely(current->flags & PF_MEMALLOC))
1919 goto force;
1920
1921 if (unlikely(task_in_memcg_oom(current)))
1922 goto nomem;
1923
1924 if (!gfpflags_allow_blocking(gfp_mask))
1925 goto nomem;
1926
1927 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1928
1929 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1930 gfp_mask, may_swap);
1931
1932 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1933 goto retry;
1934
1935 if (!drained) {
1936 drain_all_stock(mem_over_limit);
1937 drained = true;
1938 goto retry;
1939 }
1940
1941 if (gfp_mask & __GFP_NORETRY)
1942 goto nomem;
1943 /*
1944 * Even though the limit is exceeded at this point, reclaim
1945 * may have been able to free some pages. Retry the charge
1946 * before killing the task.
1947 *
1948 * Only for regular pages, though: huge pages are rather
1949 * unlikely to succeed so close to the limit, and we fall back
1950 * to regular pages anyway in case of failure.
1951 */
1952 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1953 goto retry;
1954 /*
1955 * At task move, charge accounts can be doubly counted. So, it's
1956 * better to wait until the end of task_move if something is going on.
1957 */
1958 if (mem_cgroup_wait_acct_move(mem_over_limit))
1959 goto retry;
1960
1961 if (nr_retries--)
1962 goto retry;
1963
1964 if (gfp_mask & __GFP_NOFAIL)
1965 goto force;
1966
1967 if (fatal_signal_pending(current))
1968 goto force;
1969
1970 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
1971
1972 mem_cgroup_oom(mem_over_limit, gfp_mask,
1973 get_order(nr_pages * PAGE_SIZE));
1974 nomem:
1975 if (!(gfp_mask & __GFP_NOFAIL))
1976 return -ENOMEM;
1977 force:
1978 /*
1979 * The allocation either can't fail or will lead to more memory
1980 * being freed very soon. Allow memory usage go over the limit
1981 * temporarily by force charging it.
1982 */
1983 page_counter_charge(&memcg->memory, nr_pages);
1984 if (do_memsw_account())
1985 page_counter_charge(&memcg->memsw, nr_pages);
1986 css_get_many(&memcg->css, nr_pages);
1987
1988 return 0;
1989
1990 done_restock:
1991 css_get_many(&memcg->css, batch);
1992 if (batch > nr_pages)
1993 refill_stock(memcg, batch - nr_pages);
1994
1995 /*
1996 * If the hierarchy is above the normal consumption range, schedule
1997 * reclaim on returning to userland. We can perform reclaim here
1998 * if __GFP_RECLAIM but let's always punt for simplicity and so that
1999 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2000 * not recorded as it most likely matches current's and won't
2001 * change in the meantime. As high limit is checked again before
2002 * reclaim, the cost of mismatch is negligible.
2003 */
2004 do {
2005 if (page_counter_read(&memcg->memory) > memcg->high) {
2006 /* Don't bother a random interrupted task */
2007 if (in_interrupt()) {
2008 schedule_work(&memcg->high_work);
2009 break;
2010 }
2011 current->memcg_nr_pages_over_high += batch;
2012 set_notify_resume(current);
2013 break;
2014 }
2015 } while ((memcg = parent_mem_cgroup(memcg)));
2016
2017 return 0;
2018 }
2019
2020 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2021 {
2022 if (mem_cgroup_is_root(memcg))
2023 return;
2024
2025 page_counter_uncharge(&memcg->memory, nr_pages);
2026 if (do_memsw_account())
2027 page_counter_uncharge(&memcg->memsw, nr_pages);
2028
2029 css_put_many(&memcg->css, nr_pages);
2030 }
2031
2032 static void lock_page_lru(struct page *page, int *isolated)
2033 {
2034 struct zone *zone = page_zone(page);
2035
2036 spin_lock_irq(zone_lru_lock(zone));
2037 if (PageLRU(page)) {
2038 struct lruvec *lruvec;
2039
2040 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2041 ClearPageLRU(page);
2042 del_page_from_lru_list(page, lruvec, page_lru(page));
2043 *isolated = 1;
2044 } else
2045 *isolated = 0;
2046 }
2047
2048 static void unlock_page_lru(struct page *page, int isolated)
2049 {
2050 struct zone *zone = page_zone(page);
2051
2052 if (isolated) {
2053 struct lruvec *lruvec;
2054
2055 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2056 VM_BUG_ON_PAGE(PageLRU(page), page);
2057 SetPageLRU(page);
2058 add_page_to_lru_list(page, lruvec, page_lru(page));
2059 }
2060 spin_unlock_irq(zone_lru_lock(zone));
2061 }
2062
2063 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2064 bool lrucare)
2065 {
2066 int isolated;
2067
2068 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2069
2070 /*
2071 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2072 * may already be on some other mem_cgroup's LRU. Take care of it.
2073 */
2074 if (lrucare)
2075 lock_page_lru(page, &isolated);
2076
2077 /*
2078 * Nobody should be changing or seriously looking at
2079 * page->mem_cgroup at this point:
2080 *
2081 * - the page is uncharged
2082 *
2083 * - the page is off-LRU
2084 *
2085 * - an anonymous fault has exclusive page access, except for
2086 * a locked page table
2087 *
2088 * - a page cache insertion, a swapin fault, or a migration
2089 * have the page locked
2090 */
2091 page->mem_cgroup = memcg;
2092
2093 if (lrucare)
2094 unlock_page_lru(page, isolated);
2095 }
2096
2097 #ifndef CONFIG_SLOB
2098 static int memcg_alloc_cache_id(void)
2099 {
2100 int id, size;
2101 int err;
2102
2103 id = ida_simple_get(&memcg_cache_ida,
2104 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2105 if (id < 0)
2106 return id;
2107
2108 if (id < memcg_nr_cache_ids)
2109 return id;
2110
2111 /*
2112 * There's no space for the new id in memcg_caches arrays,
2113 * so we have to grow them.
2114 */
2115 down_write(&memcg_cache_ids_sem);
2116
2117 size = 2 * (id + 1);
2118 if (size < MEMCG_CACHES_MIN_SIZE)
2119 size = MEMCG_CACHES_MIN_SIZE;
2120 else if (size > MEMCG_CACHES_MAX_SIZE)
2121 size = MEMCG_CACHES_MAX_SIZE;
2122
2123 err = memcg_update_all_caches(size);
2124 if (!err)
2125 err = memcg_update_all_list_lrus(size);
2126 if (!err)
2127 memcg_nr_cache_ids = size;
2128
2129 up_write(&memcg_cache_ids_sem);
2130
2131 if (err) {
2132 ida_simple_remove(&memcg_cache_ida, id);
2133 return err;
2134 }
2135 return id;
2136 }
2137
2138 static void memcg_free_cache_id(int id)
2139 {
2140 ida_simple_remove(&memcg_cache_ida, id);
2141 }
2142
2143 struct memcg_kmem_cache_create_work {
2144 struct mem_cgroup *memcg;
2145 struct kmem_cache *cachep;
2146 struct work_struct work;
2147 };
2148
2149 static void memcg_kmem_cache_create_func(struct work_struct *w)
2150 {
2151 struct memcg_kmem_cache_create_work *cw =
2152 container_of(w, struct memcg_kmem_cache_create_work, work);
2153 struct mem_cgroup *memcg = cw->memcg;
2154 struct kmem_cache *cachep = cw->cachep;
2155
2156 memcg_create_kmem_cache(memcg, cachep);
2157
2158 css_put(&memcg->css);
2159 kfree(cw);
2160 }
2161
2162 /*
2163 * Enqueue the creation of a per-memcg kmem_cache.
2164 */
2165 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2166 struct kmem_cache *cachep)
2167 {
2168 struct memcg_kmem_cache_create_work *cw;
2169
2170 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2171 if (!cw)
2172 return;
2173
2174 css_get(&memcg->css);
2175
2176 cw->memcg = memcg;
2177 cw->cachep = cachep;
2178 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2179
2180 queue_work(memcg_kmem_cache_wq, &cw->work);
2181 }
2182
2183 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2184 struct kmem_cache *cachep)
2185 {
2186 /*
2187 * We need to stop accounting when we kmalloc, because if the
2188 * corresponding kmalloc cache is not yet created, the first allocation
2189 * in __memcg_schedule_kmem_cache_create will recurse.
2190 *
2191 * However, it is better to enclose the whole function. Depending on
2192 * the debugging options enabled, INIT_WORK(), for instance, can
2193 * trigger an allocation. This too, will make us recurse. Because at
2194 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2195 * the safest choice is to do it like this, wrapping the whole function.
2196 */
2197 current->memcg_kmem_skip_account = 1;
2198 __memcg_schedule_kmem_cache_create(memcg, cachep);
2199 current->memcg_kmem_skip_account = 0;
2200 }
2201
2202 static inline bool memcg_kmem_bypass(void)
2203 {
2204 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2205 return true;
2206 return false;
2207 }
2208
2209 /**
2210 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2211 * @cachep: the original global kmem cache
2212 *
2213 * Return the kmem_cache we're supposed to use for a slab allocation.
2214 * We try to use the current memcg's version of the cache.
2215 *
2216 * If the cache does not exist yet, if we are the first user of it, we
2217 * create it asynchronously in a workqueue and let the current allocation
2218 * go through with the original cache.
2219 *
2220 * This function takes a reference to the cache it returns to assure it
2221 * won't get destroyed while we are working with it. Once the caller is
2222 * done with it, memcg_kmem_put_cache() must be called to release the
2223 * reference.
2224 */
2225 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2226 {
2227 struct mem_cgroup *memcg;
2228 struct kmem_cache *memcg_cachep;
2229 int kmemcg_id;
2230
2231 VM_BUG_ON(!is_root_cache(cachep));
2232
2233 if (memcg_kmem_bypass())
2234 return cachep;
2235
2236 if (current->memcg_kmem_skip_account)
2237 return cachep;
2238
2239 memcg = get_mem_cgroup_from_mm(current->mm);
2240 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2241 if (kmemcg_id < 0)
2242 goto out;
2243
2244 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2245 if (likely(memcg_cachep))
2246 return memcg_cachep;
2247
2248 /*
2249 * If we are in a safe context (can wait, and not in interrupt
2250 * context), we could be be predictable and return right away.
2251 * This would guarantee that the allocation being performed
2252 * already belongs in the new cache.
2253 *
2254 * However, there are some clashes that can arrive from locking.
2255 * For instance, because we acquire the slab_mutex while doing
2256 * memcg_create_kmem_cache, this means no further allocation
2257 * could happen with the slab_mutex held. So it's better to
2258 * defer everything.
2259 */
2260 memcg_schedule_kmem_cache_create(memcg, cachep);
2261 out:
2262 css_put(&memcg->css);
2263 return cachep;
2264 }
2265
2266 /**
2267 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2268 * @cachep: the cache returned by memcg_kmem_get_cache
2269 */
2270 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2271 {
2272 if (!is_root_cache(cachep))
2273 css_put(&cachep->memcg_params.memcg->css);
2274 }
2275
2276 /**
2277 * memcg_kmem_charge: charge a kmem page
2278 * @page: page to charge
2279 * @gfp: reclaim mode
2280 * @order: allocation order
2281 * @memcg: memory cgroup to charge
2282 *
2283 * Returns 0 on success, an error code on failure.
2284 */
2285 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2286 struct mem_cgroup *memcg)
2287 {
2288 unsigned int nr_pages = 1 << order;
2289 struct page_counter *counter;
2290 int ret;
2291
2292 ret = try_charge(memcg, gfp, nr_pages);
2293 if (ret)
2294 return ret;
2295
2296 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2297 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2298 cancel_charge(memcg, nr_pages);
2299 return -ENOMEM;
2300 }
2301
2302 page->mem_cgroup = memcg;
2303
2304 return 0;
2305 }
2306
2307 /**
2308 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2309 * @page: page to charge
2310 * @gfp: reclaim mode
2311 * @order: allocation order
2312 *
2313 * Returns 0 on success, an error code on failure.
2314 */
2315 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2316 {
2317 struct mem_cgroup *memcg;
2318 int ret = 0;
2319
2320 if (memcg_kmem_bypass())
2321 return 0;
2322
2323 memcg = get_mem_cgroup_from_mm(current->mm);
2324 if (!mem_cgroup_is_root(memcg)) {
2325 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2326 if (!ret)
2327 __SetPageKmemcg(page);
2328 }
2329 css_put(&memcg->css);
2330 return ret;
2331 }
2332 /**
2333 * memcg_kmem_uncharge: uncharge a kmem page
2334 * @page: page to uncharge
2335 * @order: allocation order
2336 */
2337 void memcg_kmem_uncharge(struct page *page, int order)
2338 {
2339 struct mem_cgroup *memcg = page->mem_cgroup;
2340 unsigned int nr_pages = 1 << order;
2341
2342 if (!memcg)
2343 return;
2344
2345 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2346
2347 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2348 page_counter_uncharge(&memcg->kmem, nr_pages);
2349
2350 page_counter_uncharge(&memcg->memory, nr_pages);
2351 if (do_memsw_account())
2352 page_counter_uncharge(&memcg->memsw, nr_pages);
2353
2354 page->mem_cgroup = NULL;
2355
2356 /* slab pages do not have PageKmemcg flag set */
2357 if (PageKmemcg(page))
2358 __ClearPageKmemcg(page);
2359
2360 css_put_many(&memcg->css, nr_pages);
2361 }
2362 #endif /* !CONFIG_SLOB */
2363
2364 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2365
2366 /*
2367 * Because tail pages are not marked as "used", set it. We're under
2368 * zone_lru_lock and migration entries setup in all page mappings.
2369 */
2370 void mem_cgroup_split_huge_fixup(struct page *head)
2371 {
2372 int i;
2373
2374 if (mem_cgroup_disabled())
2375 return;
2376
2377 for (i = 1; i < HPAGE_PMD_NR; i++)
2378 head[i].mem_cgroup = head->mem_cgroup;
2379
2380 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2381 HPAGE_PMD_NR);
2382 }
2383 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2384
2385 #ifdef CONFIG_MEMCG_SWAP
2386 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2387 bool charge)
2388 {
2389 int val = (charge) ? 1 : -1;
2390 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2391 }
2392
2393 /**
2394 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2395 * @entry: swap entry to be moved
2396 * @from: mem_cgroup which the entry is moved from
2397 * @to: mem_cgroup which the entry is moved to
2398 *
2399 * It succeeds only when the swap_cgroup's record for this entry is the same
2400 * as the mem_cgroup's id of @from.
2401 *
2402 * Returns 0 on success, -EINVAL on failure.
2403 *
2404 * The caller must have charged to @to, IOW, called page_counter_charge() about
2405 * both res and memsw, and called css_get().
2406 */
2407 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2408 struct mem_cgroup *from, struct mem_cgroup *to)
2409 {
2410 unsigned short old_id, new_id;
2411
2412 old_id = mem_cgroup_id(from);
2413 new_id = mem_cgroup_id(to);
2414
2415 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2416 mem_cgroup_swap_statistics(from, false);
2417 mem_cgroup_swap_statistics(to, true);
2418 return 0;
2419 }
2420 return -EINVAL;
2421 }
2422 #else
2423 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2424 struct mem_cgroup *from, struct mem_cgroup *to)
2425 {
2426 return -EINVAL;
2427 }
2428 #endif
2429
2430 static DEFINE_MUTEX(memcg_limit_mutex);
2431
2432 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2433 unsigned long limit)
2434 {
2435 unsigned long curusage;
2436 unsigned long oldusage;
2437 bool enlarge = false;
2438 int retry_count;
2439 int ret;
2440
2441 /*
2442 * For keeping hierarchical_reclaim simple, how long we should retry
2443 * is depends on callers. We set our retry-count to be function
2444 * of # of children which we should visit in this loop.
2445 */
2446 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2447 mem_cgroup_count_children(memcg);
2448
2449 oldusage = page_counter_read(&memcg->memory);
2450
2451 do {
2452 if (signal_pending(current)) {
2453 ret = -EINTR;
2454 break;
2455 }
2456
2457 mutex_lock(&memcg_limit_mutex);
2458 if (limit > memcg->memsw.limit) {
2459 mutex_unlock(&memcg_limit_mutex);
2460 ret = -EINVAL;
2461 break;
2462 }
2463 if (limit > memcg->memory.limit)
2464 enlarge = true;
2465 ret = page_counter_limit(&memcg->memory, limit);
2466 mutex_unlock(&memcg_limit_mutex);
2467
2468 if (!ret)
2469 break;
2470
2471 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2472
2473 curusage = page_counter_read(&memcg->memory);
2474 /* Usage is reduced ? */
2475 if (curusage >= oldusage)
2476 retry_count--;
2477 else
2478 oldusage = curusage;
2479 } while (retry_count);
2480
2481 if (!ret && enlarge)
2482 memcg_oom_recover(memcg);
2483
2484 return ret;
2485 }
2486
2487 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2488 unsigned long limit)
2489 {
2490 unsigned long curusage;
2491 unsigned long oldusage;
2492 bool enlarge = false;
2493 int retry_count;
2494 int ret;
2495
2496 /* see mem_cgroup_resize_res_limit */
2497 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2498 mem_cgroup_count_children(memcg);
2499
2500 oldusage = page_counter_read(&memcg->memsw);
2501
2502 do {
2503 if (signal_pending(current)) {
2504 ret = -EINTR;
2505 break;
2506 }
2507
2508 mutex_lock(&memcg_limit_mutex);
2509 if (limit < memcg->memory.limit) {
2510 mutex_unlock(&memcg_limit_mutex);
2511 ret = -EINVAL;
2512 break;
2513 }
2514 if (limit > memcg->memsw.limit)
2515 enlarge = true;
2516 ret = page_counter_limit(&memcg->memsw, limit);
2517 mutex_unlock(&memcg_limit_mutex);
2518
2519 if (!ret)
2520 break;
2521
2522 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2523
2524 curusage = page_counter_read(&memcg->memsw);
2525 /* Usage is reduced ? */
2526 if (curusage >= oldusage)
2527 retry_count--;
2528 else
2529 oldusage = curusage;
2530 } while (retry_count);
2531
2532 if (!ret && enlarge)
2533 memcg_oom_recover(memcg);
2534
2535 return ret;
2536 }
2537
2538 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
2539 gfp_t gfp_mask,
2540 unsigned long *total_scanned)
2541 {
2542 unsigned long nr_reclaimed = 0;
2543 struct mem_cgroup_per_node *mz, *next_mz = NULL;
2544 unsigned long reclaimed;
2545 int loop = 0;
2546 struct mem_cgroup_tree_per_node *mctz;
2547 unsigned long excess;
2548 unsigned long nr_scanned;
2549
2550 if (order > 0)
2551 return 0;
2552
2553 mctz = soft_limit_tree_node(pgdat->node_id);
2554
2555 /*
2556 * Do not even bother to check the largest node if the root
2557 * is empty. Do it lockless to prevent lock bouncing. Races
2558 * are acceptable as soft limit is best effort anyway.
2559 */
2560 if (RB_EMPTY_ROOT(&mctz->rb_root))
2561 return 0;
2562
2563 /*
2564 * This loop can run a while, specially if mem_cgroup's continuously
2565 * keep exceeding their soft limit and putting the system under
2566 * pressure
2567 */
2568 do {
2569 if (next_mz)
2570 mz = next_mz;
2571 else
2572 mz = mem_cgroup_largest_soft_limit_node(mctz);
2573 if (!mz)
2574 break;
2575
2576 nr_scanned = 0;
2577 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
2578 gfp_mask, &nr_scanned);
2579 nr_reclaimed += reclaimed;
2580 *total_scanned += nr_scanned;
2581 spin_lock_irq(&mctz->lock);
2582 __mem_cgroup_remove_exceeded(mz, mctz);
2583
2584 /*
2585 * If we failed to reclaim anything from this memory cgroup
2586 * it is time to move on to the next cgroup
2587 */
2588 next_mz = NULL;
2589 if (!reclaimed)
2590 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2591
2592 excess = soft_limit_excess(mz->memcg);
2593 /*
2594 * One school of thought says that we should not add
2595 * back the node to the tree if reclaim returns 0.
2596 * But our reclaim could return 0, simply because due
2597 * to priority we are exposing a smaller subset of
2598 * memory to reclaim from. Consider this as a longer
2599 * term TODO.
2600 */
2601 /* If excess == 0, no tree ops */
2602 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2603 spin_unlock_irq(&mctz->lock);
2604 css_put(&mz->memcg->css);
2605 loop++;
2606 /*
2607 * Could not reclaim anything and there are no more
2608 * mem cgroups to try or we seem to be looping without
2609 * reclaiming anything.
2610 */
2611 if (!nr_reclaimed &&
2612 (next_mz == NULL ||
2613 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2614 break;
2615 } while (!nr_reclaimed);
2616 if (next_mz)
2617 css_put(&next_mz->memcg->css);
2618 return nr_reclaimed;
2619 }
2620
2621 /*
2622 * Test whether @memcg has children, dead or alive. Note that this
2623 * function doesn't care whether @memcg has use_hierarchy enabled and
2624 * returns %true if there are child csses according to the cgroup
2625 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2626 */
2627 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2628 {
2629 bool ret;
2630
2631 rcu_read_lock();
2632 ret = css_next_child(NULL, &memcg->css);
2633 rcu_read_unlock();
2634 return ret;
2635 }
2636
2637 /*
2638 * Reclaims as many pages from the given memcg as possible.
2639 *
2640 * Caller is responsible for holding css reference for memcg.
2641 */
2642 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2643 {
2644 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2645
2646 /* we call try-to-free pages for make this cgroup empty */
2647 lru_add_drain_all();
2648 /* try to free all pages in this cgroup */
2649 while (nr_retries && page_counter_read(&memcg->memory)) {
2650 int progress;
2651
2652 if (signal_pending(current))
2653 return -EINTR;
2654
2655 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2656 GFP_KERNEL, true);
2657 if (!progress) {
2658 nr_retries--;
2659 /* maybe some writeback is necessary */
2660 congestion_wait(BLK_RW_ASYNC, HZ/10);
2661 }
2662
2663 }
2664
2665 return 0;
2666 }
2667
2668 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2669 char *buf, size_t nbytes,
2670 loff_t off)
2671 {
2672 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2673
2674 if (mem_cgroup_is_root(memcg))
2675 return -EINVAL;
2676 return mem_cgroup_force_empty(memcg) ?: nbytes;
2677 }
2678
2679 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2680 struct cftype *cft)
2681 {
2682 return mem_cgroup_from_css(css)->use_hierarchy;
2683 }
2684
2685 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2686 struct cftype *cft, u64 val)
2687 {
2688 int retval = 0;
2689 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2690 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2691
2692 if (memcg->use_hierarchy == val)
2693 return 0;
2694
2695 /*
2696 * If parent's use_hierarchy is set, we can't make any modifications
2697 * in the child subtrees. If it is unset, then the change can
2698 * occur, provided the current cgroup has no children.
2699 *
2700 * For the root cgroup, parent_mem is NULL, we allow value to be
2701 * set if there are no children.
2702 */
2703 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2704 (val == 1 || val == 0)) {
2705 if (!memcg_has_children(memcg))
2706 memcg->use_hierarchy = val;
2707 else
2708 retval = -EBUSY;
2709 } else
2710 retval = -EINVAL;
2711
2712 return retval;
2713 }
2714
2715 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2716 {
2717 struct mem_cgroup *iter;
2718 int i;
2719
2720 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2721
2722 for_each_mem_cgroup_tree(iter, memcg) {
2723 for (i = 0; i < MEMCG_NR_STAT; i++)
2724 stat[i] += mem_cgroup_read_stat(iter, i);
2725 }
2726 }
2727
2728 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2729 {
2730 struct mem_cgroup *iter;
2731 int i;
2732
2733 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2734
2735 for_each_mem_cgroup_tree(iter, memcg) {
2736 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2737 events[i] += mem_cgroup_read_events(iter, i);
2738 }
2739 }
2740
2741 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2742 {
2743 unsigned long val = 0;
2744
2745 if (mem_cgroup_is_root(memcg)) {
2746 struct mem_cgroup *iter;
2747
2748 for_each_mem_cgroup_tree(iter, memcg) {
2749 val += mem_cgroup_read_stat(iter,
2750 MEM_CGROUP_STAT_CACHE);
2751 val += mem_cgroup_read_stat(iter,
2752 MEM_CGROUP_STAT_RSS);
2753 if (swap)
2754 val += mem_cgroup_read_stat(iter,
2755 MEM_CGROUP_STAT_SWAP);
2756 }
2757 } else {
2758 if (!swap)
2759 val = page_counter_read(&memcg->memory);
2760 else
2761 val = page_counter_read(&memcg->memsw);
2762 }
2763 return val;
2764 }
2765
2766 enum {
2767 RES_USAGE,
2768 RES_LIMIT,
2769 RES_MAX_USAGE,
2770 RES_FAILCNT,
2771 RES_SOFT_LIMIT,
2772 };
2773
2774 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2775 struct cftype *cft)
2776 {
2777 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2778 struct page_counter *counter;
2779
2780 switch (MEMFILE_TYPE(cft->private)) {
2781 case _MEM:
2782 counter = &memcg->memory;
2783 break;
2784 case _MEMSWAP:
2785 counter = &memcg->memsw;
2786 break;
2787 case _KMEM:
2788 counter = &memcg->kmem;
2789 break;
2790 case _TCP:
2791 counter = &memcg->tcpmem;
2792 break;
2793 default:
2794 BUG();
2795 }
2796
2797 switch (MEMFILE_ATTR(cft->private)) {
2798 case RES_USAGE:
2799 if (counter == &memcg->memory)
2800 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2801 if (counter == &memcg->memsw)
2802 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2803 return (u64)page_counter_read(counter) * PAGE_SIZE;
2804 case RES_LIMIT:
2805 return (u64)counter->limit * PAGE_SIZE;
2806 case RES_MAX_USAGE:
2807 return (u64)counter->watermark * PAGE_SIZE;
2808 case RES_FAILCNT:
2809 return counter->failcnt;
2810 case RES_SOFT_LIMIT:
2811 return (u64)memcg->soft_limit * PAGE_SIZE;
2812 default:
2813 BUG();
2814 }
2815 }
2816
2817 #ifndef CONFIG_SLOB
2818 static int memcg_online_kmem(struct mem_cgroup *memcg)
2819 {
2820 int memcg_id;
2821
2822 if (cgroup_memory_nokmem)
2823 return 0;
2824
2825 BUG_ON(memcg->kmemcg_id >= 0);
2826 BUG_ON(memcg->kmem_state);
2827
2828 memcg_id = memcg_alloc_cache_id();
2829 if (memcg_id < 0)
2830 return memcg_id;
2831
2832 static_branch_inc(&memcg_kmem_enabled_key);
2833 /*
2834 * A memory cgroup is considered kmem-online as soon as it gets
2835 * kmemcg_id. Setting the id after enabling static branching will
2836 * guarantee no one starts accounting before all call sites are
2837 * patched.
2838 */
2839 memcg->kmemcg_id = memcg_id;
2840 memcg->kmem_state = KMEM_ONLINE;
2841 INIT_LIST_HEAD(&memcg->kmem_caches);
2842
2843 return 0;
2844 }
2845
2846 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2847 {
2848 struct cgroup_subsys_state *css;
2849 struct mem_cgroup *parent, *child;
2850 int kmemcg_id;
2851
2852 if (memcg->kmem_state != KMEM_ONLINE)
2853 return;
2854 /*
2855 * Clear the online state before clearing memcg_caches array
2856 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2857 * guarantees that no cache will be created for this cgroup
2858 * after we are done (see memcg_create_kmem_cache()).
2859 */
2860 memcg->kmem_state = KMEM_ALLOCATED;
2861
2862 memcg_deactivate_kmem_caches(memcg);
2863
2864 kmemcg_id = memcg->kmemcg_id;
2865 BUG_ON(kmemcg_id < 0);
2866
2867 parent = parent_mem_cgroup(memcg);
2868 if (!parent)
2869 parent = root_mem_cgroup;
2870
2871 /*
2872 * Change kmemcg_id of this cgroup and all its descendants to the
2873 * parent's id, and then move all entries from this cgroup's list_lrus
2874 * to ones of the parent. After we have finished, all list_lrus
2875 * corresponding to this cgroup are guaranteed to remain empty. The
2876 * ordering is imposed by list_lru_node->lock taken by
2877 * memcg_drain_all_list_lrus().
2878 */
2879 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2880 css_for_each_descendant_pre(css, &memcg->css) {
2881 child = mem_cgroup_from_css(css);
2882 BUG_ON(child->kmemcg_id != kmemcg_id);
2883 child->kmemcg_id = parent->kmemcg_id;
2884 if (!memcg->use_hierarchy)
2885 break;
2886 }
2887 rcu_read_unlock();
2888
2889 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2890
2891 memcg_free_cache_id(kmemcg_id);
2892 }
2893
2894 static void memcg_free_kmem(struct mem_cgroup *memcg)
2895 {
2896 /* css_alloc() failed, offlining didn't happen */
2897 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2898 memcg_offline_kmem(memcg);
2899
2900 if (memcg->kmem_state == KMEM_ALLOCATED) {
2901 memcg_destroy_kmem_caches(memcg);
2902 static_branch_dec(&memcg_kmem_enabled_key);
2903 WARN_ON(page_counter_read(&memcg->kmem));
2904 }
2905 }
2906 #else
2907 static int memcg_online_kmem(struct mem_cgroup *memcg)
2908 {
2909 return 0;
2910 }
2911 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2912 {
2913 }
2914 static void memcg_free_kmem(struct mem_cgroup *memcg)
2915 {
2916 }
2917 #endif /* !CONFIG_SLOB */
2918
2919 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2920 unsigned long limit)
2921 {
2922 int ret;
2923
2924 mutex_lock(&memcg_limit_mutex);
2925 ret = page_counter_limit(&memcg->kmem, limit);
2926 mutex_unlock(&memcg_limit_mutex);
2927 return ret;
2928 }
2929
2930 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2931 {
2932 int ret;
2933
2934 mutex_lock(&memcg_limit_mutex);
2935
2936 ret = page_counter_limit(&memcg->tcpmem, limit);
2937 if (ret)
2938 goto out;
2939
2940 if (!memcg->tcpmem_active) {
2941 /*
2942 * The active flag needs to be written after the static_key
2943 * update. This is what guarantees that the socket activation
2944 * function is the last one to run. See mem_cgroup_sk_alloc()
2945 * for details, and note that we don't mark any socket as
2946 * belonging to this memcg until that flag is up.
2947 *
2948 * We need to do this, because static_keys will span multiple
2949 * sites, but we can't control their order. If we mark a socket
2950 * as accounted, but the accounting functions are not patched in
2951 * yet, we'll lose accounting.
2952 *
2953 * We never race with the readers in mem_cgroup_sk_alloc(),
2954 * because when this value change, the code to process it is not
2955 * patched in yet.
2956 */
2957 static_branch_inc(&memcg_sockets_enabled_key);
2958 memcg->tcpmem_active = true;
2959 }
2960 out:
2961 mutex_unlock(&memcg_limit_mutex);
2962 return ret;
2963 }
2964
2965 /*
2966 * The user of this function is...
2967 * RES_LIMIT.
2968 */
2969 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2970 char *buf, size_t nbytes, loff_t off)
2971 {
2972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2973 unsigned long nr_pages;
2974 int ret;
2975
2976 buf = strstrip(buf);
2977 ret = page_counter_memparse(buf, "-1", &nr_pages);
2978 if (ret)
2979 return ret;
2980
2981 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2982 case RES_LIMIT:
2983 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2984 ret = -EINVAL;
2985 break;
2986 }
2987 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2988 case _MEM:
2989 ret = mem_cgroup_resize_limit(memcg, nr_pages);
2990 break;
2991 case _MEMSWAP:
2992 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
2993 break;
2994 case _KMEM:
2995 ret = memcg_update_kmem_limit(memcg, nr_pages);
2996 break;
2997 case _TCP:
2998 ret = memcg_update_tcp_limit(memcg, nr_pages);
2999 break;
3000 }
3001 break;
3002 case RES_SOFT_LIMIT:
3003 memcg->soft_limit = nr_pages;
3004 ret = 0;
3005 break;
3006 }
3007 return ret ?: nbytes;
3008 }
3009
3010 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011 size_t nbytes, loff_t off)
3012 {
3013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3014 struct page_counter *counter;
3015
3016 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 case _MEM:
3018 counter = &memcg->memory;
3019 break;
3020 case _MEMSWAP:
3021 counter = &memcg->memsw;
3022 break;
3023 case _KMEM:
3024 counter = &memcg->kmem;
3025 break;
3026 case _TCP:
3027 counter = &memcg->tcpmem;
3028 break;
3029 default:
3030 BUG();
3031 }
3032
3033 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3034 case RES_MAX_USAGE:
3035 page_counter_reset_watermark(counter);
3036 break;
3037 case RES_FAILCNT:
3038 counter->failcnt = 0;
3039 break;
3040 default:
3041 BUG();
3042 }
3043
3044 return nbytes;
3045 }
3046
3047 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3048 struct cftype *cft)
3049 {
3050 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3051 }
3052
3053 #ifdef CONFIG_MMU
3054 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3055 struct cftype *cft, u64 val)
3056 {
3057 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3058
3059 if (val & ~MOVE_MASK)
3060 return -EINVAL;
3061
3062 /*
3063 * No kind of locking is needed in here, because ->can_attach() will
3064 * check this value once in the beginning of the process, and then carry
3065 * on with stale data. This means that changes to this value will only
3066 * affect task migrations starting after the change.
3067 */
3068 memcg->move_charge_at_immigrate = val;
3069 return 0;
3070 }
3071 #else
3072 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3073 struct cftype *cft, u64 val)
3074 {
3075 return -ENOSYS;
3076 }
3077 #endif
3078
3079 #ifdef CONFIG_NUMA
3080 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3081 {
3082 struct numa_stat {
3083 const char *name;
3084 unsigned int lru_mask;
3085 };
3086
3087 static const struct numa_stat stats[] = {
3088 { "total", LRU_ALL },
3089 { "file", LRU_ALL_FILE },
3090 { "anon", LRU_ALL_ANON },
3091 { "unevictable", BIT(LRU_UNEVICTABLE) },
3092 };
3093 const struct numa_stat *stat;
3094 int nid;
3095 unsigned long nr;
3096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3097
3098 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3100 seq_printf(m, "%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3103 stat->lru_mask);
3104 seq_printf(m, " N%d=%lu", nid, nr);
3105 }
3106 seq_putc(m, '\n');
3107 }
3108
3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 struct mem_cgroup *iter;
3111
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3115 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = 0;
3118 for_each_mem_cgroup_tree(iter, memcg)
3119 nr += mem_cgroup_node_nr_lru_pages(
3120 iter, nid, stat->lru_mask);
3121 seq_printf(m, " N%d=%lu", nid, nr);
3122 }
3123 seq_putc(m, '\n');
3124 }
3125
3126 return 0;
3127 }
3128 #endif /* CONFIG_NUMA */
3129
3130 static int memcg_stat_show(struct seq_file *m, void *v)
3131 {
3132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3133 unsigned long memory, memsw;
3134 struct mem_cgroup *mi;
3135 unsigned int i;
3136
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3138 MEM_CGROUP_STAT_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3140 MEM_CGROUP_EVENTS_NSTATS);
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142
3143 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3144 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3145 continue;
3146 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3147 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3148 }
3149
3150 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3151 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3152 mem_cgroup_read_events(memcg, i));
3153
3154 for (i = 0; i < NR_LRU_LISTS; i++)
3155 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3156 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3157
3158 /* Hierarchical information */
3159 memory = memsw = PAGE_COUNTER_MAX;
3160 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3161 memory = min(memory, mi->memory.limit);
3162 memsw = min(memsw, mi->memsw.limit);
3163 }
3164 seq_printf(m, "hierarchical_memory_limit %llu\n",
3165 (u64)memory * PAGE_SIZE);
3166 if (do_memsw_account())
3167 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3168 (u64)memsw * PAGE_SIZE);
3169
3170 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3171 unsigned long long val = 0;
3172
3173 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3174 continue;
3175 for_each_mem_cgroup_tree(mi, memcg)
3176 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3177 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3178 }
3179
3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3181 unsigned long long val = 0;
3182
3183 for_each_mem_cgroup_tree(mi, memcg)
3184 val += mem_cgroup_read_events(mi, i);
3185 seq_printf(m, "total_%s %llu\n",
3186 mem_cgroup_events_names[i], val);
3187 }
3188
3189 for (i = 0; i < NR_LRU_LISTS; i++) {
3190 unsigned long long val = 0;
3191
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3194 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3195 }
3196
3197 #ifdef CONFIG_DEBUG_VM
3198 {
3199 pg_data_t *pgdat;
3200 struct mem_cgroup_per_node *mz;
3201 struct zone_reclaim_stat *rstat;
3202 unsigned long recent_rotated[2] = {0, 0};
3203 unsigned long recent_scanned[2] = {0, 0};
3204
3205 for_each_online_pgdat(pgdat) {
3206 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3207 rstat = &mz->lruvec.reclaim_stat;
3208
3209 recent_rotated[0] += rstat->recent_rotated[0];
3210 recent_rotated[1] += rstat->recent_rotated[1];
3211 recent_scanned[0] += rstat->recent_scanned[0];
3212 recent_scanned[1] += rstat->recent_scanned[1];
3213 }
3214 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3215 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3216 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3217 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3218 }
3219 #endif
3220
3221 return 0;
3222 }
3223
3224 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3225 struct cftype *cft)
3226 {
3227 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3228
3229 return mem_cgroup_swappiness(memcg);
3230 }
3231
3232 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3233 struct cftype *cft, u64 val)
3234 {
3235 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3236
3237 if (val > 100)
3238 return -EINVAL;
3239
3240 if (css->parent)
3241 memcg->swappiness = val;
3242 else
3243 vm_swappiness = val;
3244
3245 return 0;
3246 }
3247
3248 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3249 {
3250 struct mem_cgroup_threshold_ary *t;
3251 unsigned long usage;
3252 int i;
3253
3254 rcu_read_lock();
3255 if (!swap)
3256 t = rcu_dereference(memcg->thresholds.primary);
3257 else
3258 t = rcu_dereference(memcg->memsw_thresholds.primary);
3259
3260 if (!t)
3261 goto unlock;
3262
3263 usage = mem_cgroup_usage(memcg, swap);
3264
3265 /*
3266 * current_threshold points to threshold just below or equal to usage.
3267 * If it's not true, a threshold was crossed after last
3268 * call of __mem_cgroup_threshold().
3269 */
3270 i = t->current_threshold;
3271
3272 /*
3273 * Iterate backward over array of thresholds starting from
3274 * current_threshold and check if a threshold is crossed.
3275 * If none of thresholds below usage is crossed, we read
3276 * only one element of the array here.
3277 */
3278 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3279 eventfd_signal(t->entries[i].eventfd, 1);
3280
3281 /* i = current_threshold + 1 */
3282 i++;
3283
3284 /*
3285 * Iterate forward over array of thresholds starting from
3286 * current_threshold+1 and check if a threshold is crossed.
3287 * If none of thresholds above usage is crossed, we read
3288 * only one element of the array here.
3289 */
3290 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3291 eventfd_signal(t->entries[i].eventfd, 1);
3292
3293 /* Update current_threshold */
3294 t->current_threshold = i - 1;
3295 unlock:
3296 rcu_read_unlock();
3297 }
3298
3299 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3300 {
3301 while (memcg) {
3302 __mem_cgroup_threshold(memcg, false);
3303 if (do_memsw_account())
3304 __mem_cgroup_threshold(memcg, true);
3305
3306 memcg = parent_mem_cgroup(memcg);
3307 }
3308 }
3309
3310 static int compare_thresholds(const void *a, const void *b)
3311 {
3312 const struct mem_cgroup_threshold *_a = a;
3313 const struct mem_cgroup_threshold *_b = b;
3314
3315 if (_a->threshold > _b->threshold)
3316 return 1;
3317
3318 if (_a->threshold < _b->threshold)
3319 return -1;
3320
3321 return 0;
3322 }
3323
3324 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3325 {
3326 struct mem_cgroup_eventfd_list *ev;
3327
3328 spin_lock(&memcg_oom_lock);
3329
3330 list_for_each_entry(ev, &memcg->oom_notify, list)
3331 eventfd_signal(ev->eventfd, 1);
3332
3333 spin_unlock(&memcg_oom_lock);
3334 return 0;
3335 }
3336
3337 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3338 {
3339 struct mem_cgroup *iter;
3340
3341 for_each_mem_cgroup_tree(iter, memcg)
3342 mem_cgroup_oom_notify_cb(iter);
3343 }
3344
3345 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3346 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3347 {
3348 struct mem_cgroup_thresholds *thresholds;
3349 struct mem_cgroup_threshold_ary *new;
3350 unsigned long threshold;
3351 unsigned long usage;
3352 int i, size, ret;
3353
3354 ret = page_counter_memparse(args, "-1", &threshold);
3355 if (ret)
3356 return ret;
3357
3358 mutex_lock(&memcg->thresholds_lock);
3359
3360 if (type == _MEM) {
3361 thresholds = &memcg->thresholds;
3362 usage = mem_cgroup_usage(memcg, false);
3363 } else if (type == _MEMSWAP) {
3364 thresholds = &memcg->memsw_thresholds;
3365 usage = mem_cgroup_usage(memcg, true);
3366 } else
3367 BUG();
3368
3369 /* Check if a threshold crossed before adding a new one */
3370 if (thresholds->primary)
3371 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3372
3373 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3374
3375 /* Allocate memory for new array of thresholds */
3376 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3377 GFP_KERNEL);
3378 if (!new) {
3379 ret = -ENOMEM;
3380 goto unlock;
3381 }
3382 new->size = size;
3383
3384 /* Copy thresholds (if any) to new array */
3385 if (thresholds->primary) {
3386 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3387 sizeof(struct mem_cgroup_threshold));
3388 }
3389
3390 /* Add new threshold */
3391 new->entries[size - 1].eventfd = eventfd;
3392 new->entries[size - 1].threshold = threshold;
3393
3394 /* Sort thresholds. Registering of new threshold isn't time-critical */
3395 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3396 compare_thresholds, NULL);
3397
3398 /* Find current threshold */
3399 new->current_threshold = -1;
3400 for (i = 0; i < size; i++) {
3401 if (new->entries[i].threshold <= usage) {
3402 /*
3403 * new->current_threshold will not be used until
3404 * rcu_assign_pointer(), so it's safe to increment
3405 * it here.
3406 */
3407 ++new->current_threshold;
3408 } else
3409 break;
3410 }
3411
3412 /* Free old spare buffer and save old primary buffer as spare */
3413 kfree(thresholds->spare);
3414 thresholds->spare = thresholds->primary;
3415
3416 rcu_assign_pointer(thresholds->primary, new);
3417
3418 /* To be sure that nobody uses thresholds */
3419 synchronize_rcu();
3420
3421 unlock:
3422 mutex_unlock(&memcg->thresholds_lock);
3423
3424 return ret;
3425 }
3426
3427 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3428 struct eventfd_ctx *eventfd, const char *args)
3429 {
3430 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3431 }
3432
3433 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3434 struct eventfd_ctx *eventfd, const char *args)
3435 {
3436 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3437 }
3438
3439 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3440 struct eventfd_ctx *eventfd, enum res_type type)
3441 {
3442 struct mem_cgroup_thresholds *thresholds;
3443 struct mem_cgroup_threshold_ary *new;
3444 unsigned long usage;
3445 int i, j, size;
3446
3447 mutex_lock(&memcg->thresholds_lock);
3448
3449 if (type == _MEM) {
3450 thresholds = &memcg->thresholds;
3451 usage = mem_cgroup_usage(memcg, false);
3452 } else if (type == _MEMSWAP) {
3453 thresholds = &memcg->memsw_thresholds;
3454 usage = mem_cgroup_usage(memcg, true);
3455 } else
3456 BUG();
3457
3458 if (!thresholds->primary)
3459 goto unlock;
3460
3461 /* Check if a threshold crossed before removing */
3462 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3463
3464 /* Calculate new number of threshold */
3465 size = 0;
3466 for (i = 0; i < thresholds->primary->size; i++) {
3467 if (thresholds->primary->entries[i].eventfd != eventfd)
3468 size++;
3469 }
3470
3471 new = thresholds->spare;
3472
3473 /* Set thresholds array to NULL if we don't have thresholds */
3474 if (!size) {
3475 kfree(new);
3476 new = NULL;
3477 goto swap_buffers;
3478 }
3479
3480 new->size = size;
3481
3482 /* Copy thresholds and find current threshold */
3483 new->current_threshold = -1;
3484 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3485 if (thresholds->primary->entries[i].eventfd == eventfd)
3486 continue;
3487
3488 new->entries[j] = thresholds->primary->entries[i];
3489 if (new->entries[j].threshold <= usage) {
3490 /*
3491 * new->current_threshold will not be used
3492 * until rcu_assign_pointer(), so it's safe to increment
3493 * it here.
3494 */
3495 ++new->current_threshold;
3496 }
3497 j++;
3498 }
3499
3500 swap_buffers:
3501 /* Swap primary and spare array */
3502 thresholds->spare = thresholds->primary;
3503
3504 rcu_assign_pointer(thresholds->primary, new);
3505
3506 /* To be sure that nobody uses thresholds */
3507 synchronize_rcu();
3508
3509 /* If all events are unregistered, free the spare array */
3510 if (!new) {
3511 kfree(thresholds->spare);
3512 thresholds->spare = NULL;
3513 }
3514 unlock:
3515 mutex_unlock(&memcg->thresholds_lock);
3516 }
3517
3518 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3519 struct eventfd_ctx *eventfd)
3520 {
3521 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3522 }
3523
3524 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3525 struct eventfd_ctx *eventfd)
3526 {
3527 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3528 }
3529
3530 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3531 struct eventfd_ctx *eventfd, const char *args)
3532 {
3533 struct mem_cgroup_eventfd_list *event;
3534
3535 event = kmalloc(sizeof(*event), GFP_KERNEL);
3536 if (!event)
3537 return -ENOMEM;
3538
3539 spin_lock(&memcg_oom_lock);
3540
3541 event->eventfd = eventfd;
3542 list_add(&event->list, &memcg->oom_notify);
3543
3544 /* already in OOM ? */
3545 if (memcg->under_oom)
3546 eventfd_signal(eventfd, 1);
3547 spin_unlock(&memcg_oom_lock);
3548
3549 return 0;
3550 }
3551
3552 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3553 struct eventfd_ctx *eventfd)
3554 {
3555 struct mem_cgroup_eventfd_list *ev, *tmp;
3556
3557 spin_lock(&memcg_oom_lock);
3558
3559 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3560 if (ev->eventfd == eventfd) {
3561 list_del(&ev->list);
3562 kfree(ev);
3563 }
3564 }
3565
3566 spin_unlock(&memcg_oom_lock);
3567 }
3568
3569 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3570 {
3571 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3572
3573 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3574 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3575 return 0;
3576 }
3577
3578 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3579 struct cftype *cft, u64 val)
3580 {
3581 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3582
3583 /* cannot set to root cgroup and only 0 and 1 are allowed */
3584 if (!css->parent || !((val == 0) || (val == 1)))
3585 return -EINVAL;
3586
3587 memcg->oom_kill_disable = val;
3588 if (!val)
3589 memcg_oom_recover(memcg);
3590
3591 return 0;
3592 }
3593
3594 #ifdef CONFIG_CGROUP_WRITEBACK
3595
3596 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3597 {
3598 return &memcg->cgwb_list;
3599 }
3600
3601 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3602 {
3603 return wb_domain_init(&memcg->cgwb_domain, gfp);
3604 }
3605
3606 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3607 {
3608 wb_domain_exit(&memcg->cgwb_domain);
3609 }
3610
3611 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3612 {
3613 wb_domain_size_changed(&memcg->cgwb_domain);
3614 }
3615
3616 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3617 {
3618 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3619
3620 if (!memcg->css.parent)
3621 return NULL;
3622
3623 return &memcg->cgwb_domain;
3624 }
3625
3626 /**
3627 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3628 * @wb: bdi_writeback in question
3629 * @pfilepages: out parameter for number of file pages
3630 * @pheadroom: out parameter for number of allocatable pages according to memcg
3631 * @pdirty: out parameter for number of dirty pages
3632 * @pwriteback: out parameter for number of pages under writeback
3633 *
3634 * Determine the numbers of file, headroom, dirty, and writeback pages in
3635 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3636 * is a bit more involved.
3637 *
3638 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3639 * headroom is calculated as the lowest headroom of itself and the
3640 * ancestors. Note that this doesn't consider the actual amount of
3641 * available memory in the system. The caller should further cap
3642 * *@pheadroom accordingly.
3643 */
3644 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3645 unsigned long *pheadroom, unsigned long *pdirty,
3646 unsigned long *pwriteback)
3647 {
3648 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3649 struct mem_cgroup *parent;
3650
3651 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3652
3653 /* this should eventually include NR_UNSTABLE_NFS */
3654 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3655 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3656 (1 << LRU_ACTIVE_FILE));
3657 *pheadroom = PAGE_COUNTER_MAX;
3658
3659 while ((parent = parent_mem_cgroup(memcg))) {
3660 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3661 unsigned long used = page_counter_read(&memcg->memory);
3662
3663 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3664 memcg = parent;
3665 }
3666 }
3667
3668 #else /* CONFIG_CGROUP_WRITEBACK */
3669
3670 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3671 {
3672 return 0;
3673 }
3674
3675 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3676 {
3677 }
3678
3679 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3680 {
3681 }
3682
3683 #endif /* CONFIG_CGROUP_WRITEBACK */
3684
3685 /*
3686 * DO NOT USE IN NEW FILES.
3687 *
3688 * "cgroup.event_control" implementation.
3689 *
3690 * This is way over-engineered. It tries to support fully configurable
3691 * events for each user. Such level of flexibility is completely
3692 * unnecessary especially in the light of the planned unified hierarchy.
3693 *
3694 * Please deprecate this and replace with something simpler if at all
3695 * possible.
3696 */
3697
3698 /*
3699 * Unregister event and free resources.
3700 *
3701 * Gets called from workqueue.
3702 */
3703 static void memcg_event_remove(struct work_struct *work)
3704 {
3705 struct mem_cgroup_event *event =
3706 container_of(work, struct mem_cgroup_event, remove);
3707 struct mem_cgroup *memcg = event->memcg;
3708
3709 remove_wait_queue(event->wqh, &event->wait);
3710
3711 event->unregister_event(memcg, event->eventfd);
3712
3713 /* Notify userspace the event is going away. */
3714 eventfd_signal(event->eventfd, 1);
3715
3716 eventfd_ctx_put(event->eventfd);
3717 kfree(event);
3718 css_put(&memcg->css);
3719 }
3720
3721 /*
3722 * Gets called on POLLHUP on eventfd when user closes it.
3723 *
3724 * Called with wqh->lock held and interrupts disabled.
3725 */
3726 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3727 int sync, void *key)
3728 {
3729 struct mem_cgroup_event *event =
3730 container_of(wait, struct mem_cgroup_event, wait);
3731 struct mem_cgroup *memcg = event->memcg;
3732 unsigned long flags = (unsigned long)key;
3733
3734 if (flags & POLLHUP) {
3735 /*
3736 * If the event has been detached at cgroup removal, we
3737 * can simply return knowing the other side will cleanup
3738 * for us.
3739 *
3740 * We can't race against event freeing since the other
3741 * side will require wqh->lock via remove_wait_queue(),
3742 * which we hold.
3743 */
3744 spin_lock(&memcg->event_list_lock);
3745 if (!list_empty(&event->list)) {
3746 list_del_init(&event->list);
3747 /*
3748 * We are in atomic context, but cgroup_event_remove()
3749 * may sleep, so we have to call it in workqueue.
3750 */
3751 schedule_work(&event->remove);
3752 }
3753 spin_unlock(&memcg->event_list_lock);
3754 }
3755
3756 return 0;
3757 }
3758
3759 static void memcg_event_ptable_queue_proc(struct file *file,
3760 wait_queue_head_t *wqh, poll_table *pt)
3761 {
3762 struct mem_cgroup_event *event =
3763 container_of(pt, struct mem_cgroup_event, pt);
3764
3765 event->wqh = wqh;
3766 add_wait_queue(wqh, &event->wait);
3767 }
3768
3769 /*
3770 * DO NOT USE IN NEW FILES.
3771 *
3772 * Parse input and register new cgroup event handler.
3773 *
3774 * Input must be in format '<event_fd> <control_fd> <args>'.
3775 * Interpretation of args is defined by control file implementation.
3776 */
3777 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3778 char *buf, size_t nbytes, loff_t off)
3779 {
3780 struct cgroup_subsys_state *css = of_css(of);
3781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3782 struct mem_cgroup_event *event;
3783 struct cgroup_subsys_state *cfile_css;
3784 unsigned int efd, cfd;
3785 struct fd efile;
3786 struct fd cfile;
3787 const char *name;
3788 char *endp;
3789 int ret;
3790
3791 buf = strstrip(buf);
3792
3793 efd = simple_strtoul(buf, &endp, 10);
3794 if (*endp != ' ')
3795 return -EINVAL;
3796 buf = endp + 1;
3797
3798 cfd = simple_strtoul(buf, &endp, 10);
3799 if ((*endp != ' ') && (*endp != '\0'))
3800 return -EINVAL;
3801 buf = endp + 1;
3802
3803 event = kzalloc(sizeof(*event), GFP_KERNEL);
3804 if (!event)
3805 return -ENOMEM;
3806
3807 event->memcg = memcg;
3808 INIT_LIST_HEAD(&event->list);
3809 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3810 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3811 INIT_WORK(&event->remove, memcg_event_remove);
3812
3813 efile = fdget(efd);
3814 if (!efile.file) {
3815 ret = -EBADF;
3816 goto out_kfree;
3817 }
3818
3819 event->eventfd = eventfd_ctx_fileget(efile.file);
3820 if (IS_ERR(event->eventfd)) {
3821 ret = PTR_ERR(event->eventfd);
3822 goto out_put_efile;
3823 }
3824
3825 cfile = fdget(cfd);
3826 if (!cfile.file) {
3827 ret = -EBADF;
3828 goto out_put_eventfd;
3829 }
3830
3831 /* the process need read permission on control file */
3832 /* AV: shouldn't we check that it's been opened for read instead? */
3833 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3834 if (ret < 0)
3835 goto out_put_cfile;
3836
3837 /*
3838 * Determine the event callbacks and set them in @event. This used
3839 * to be done via struct cftype but cgroup core no longer knows
3840 * about these events. The following is crude but the whole thing
3841 * is for compatibility anyway.
3842 *
3843 * DO NOT ADD NEW FILES.
3844 */
3845 name = cfile.file->f_path.dentry->d_name.name;
3846
3847 if (!strcmp(name, "memory.usage_in_bytes")) {
3848 event->register_event = mem_cgroup_usage_register_event;
3849 event->unregister_event = mem_cgroup_usage_unregister_event;
3850 } else if (!strcmp(name, "memory.oom_control")) {
3851 event->register_event = mem_cgroup_oom_register_event;
3852 event->unregister_event = mem_cgroup_oom_unregister_event;
3853 } else if (!strcmp(name, "memory.pressure_level")) {
3854 event->register_event = vmpressure_register_event;
3855 event->unregister_event = vmpressure_unregister_event;
3856 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3857 event->register_event = memsw_cgroup_usage_register_event;
3858 event->unregister_event = memsw_cgroup_usage_unregister_event;
3859 } else {
3860 ret = -EINVAL;
3861 goto out_put_cfile;
3862 }
3863
3864 /*
3865 * Verify @cfile should belong to @css. Also, remaining events are
3866 * automatically removed on cgroup destruction but the removal is
3867 * asynchronous, so take an extra ref on @css.
3868 */
3869 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3870 &memory_cgrp_subsys);
3871 ret = -EINVAL;
3872 if (IS_ERR(cfile_css))
3873 goto out_put_cfile;
3874 if (cfile_css != css) {
3875 css_put(cfile_css);
3876 goto out_put_cfile;
3877 }
3878
3879 ret = event->register_event(memcg, event->eventfd, buf);
3880 if (ret)
3881 goto out_put_css;
3882
3883 efile.file->f_op->poll(efile.file, &event->pt);
3884
3885 spin_lock(&memcg->event_list_lock);
3886 list_add(&event->list, &memcg->event_list);
3887 spin_unlock(&memcg->event_list_lock);
3888
3889 fdput(cfile);
3890 fdput(efile);
3891
3892 return nbytes;
3893
3894 out_put_css:
3895 css_put(css);
3896 out_put_cfile:
3897 fdput(cfile);
3898 out_put_eventfd:
3899 eventfd_ctx_put(event->eventfd);
3900 out_put_efile:
3901 fdput(efile);
3902 out_kfree:
3903 kfree(event);
3904
3905 return ret;
3906 }
3907
3908 static struct cftype mem_cgroup_legacy_files[] = {
3909 {
3910 .name = "usage_in_bytes",
3911 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3912 .read_u64 = mem_cgroup_read_u64,
3913 },
3914 {
3915 .name = "max_usage_in_bytes",
3916 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3917 .write = mem_cgroup_reset,
3918 .read_u64 = mem_cgroup_read_u64,
3919 },
3920 {
3921 .name = "limit_in_bytes",
3922 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3923 .write = mem_cgroup_write,
3924 .read_u64 = mem_cgroup_read_u64,
3925 },
3926 {
3927 .name = "soft_limit_in_bytes",
3928 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3929 .write = mem_cgroup_write,
3930 .read_u64 = mem_cgroup_read_u64,
3931 },
3932 {
3933 .name = "failcnt",
3934 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3935 .write = mem_cgroup_reset,
3936 .read_u64 = mem_cgroup_read_u64,
3937 },
3938 {
3939 .name = "stat",
3940 .seq_show = memcg_stat_show,
3941 },
3942 {
3943 .name = "force_empty",
3944 .write = mem_cgroup_force_empty_write,
3945 },
3946 {
3947 .name = "use_hierarchy",
3948 .write_u64 = mem_cgroup_hierarchy_write,
3949 .read_u64 = mem_cgroup_hierarchy_read,
3950 },
3951 {
3952 .name = "cgroup.event_control", /* XXX: for compat */
3953 .write = memcg_write_event_control,
3954 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3955 },
3956 {
3957 .name = "swappiness",
3958 .read_u64 = mem_cgroup_swappiness_read,
3959 .write_u64 = mem_cgroup_swappiness_write,
3960 },
3961 {
3962 .name = "move_charge_at_immigrate",
3963 .read_u64 = mem_cgroup_move_charge_read,
3964 .write_u64 = mem_cgroup_move_charge_write,
3965 },
3966 {
3967 .name = "oom_control",
3968 .seq_show = mem_cgroup_oom_control_read,
3969 .write_u64 = mem_cgroup_oom_control_write,
3970 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3971 },
3972 {
3973 .name = "pressure_level",
3974 },
3975 #ifdef CONFIG_NUMA
3976 {
3977 .name = "numa_stat",
3978 .seq_show = memcg_numa_stat_show,
3979 },
3980 #endif
3981 {
3982 .name = "kmem.limit_in_bytes",
3983 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
3984 .write = mem_cgroup_write,
3985 .read_u64 = mem_cgroup_read_u64,
3986 },
3987 {
3988 .name = "kmem.usage_in_bytes",
3989 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
3990 .read_u64 = mem_cgroup_read_u64,
3991 },
3992 {
3993 .name = "kmem.failcnt",
3994 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
3995 .write = mem_cgroup_reset,
3996 .read_u64 = mem_cgroup_read_u64,
3997 },
3998 {
3999 .name = "kmem.max_usage_in_bytes",
4000 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4001 .write = mem_cgroup_reset,
4002 .read_u64 = mem_cgroup_read_u64,
4003 },
4004 #ifdef CONFIG_SLABINFO
4005 {
4006 .name = "kmem.slabinfo",
4007 .seq_start = memcg_slab_start,
4008 .seq_next = memcg_slab_next,
4009 .seq_stop = memcg_slab_stop,
4010 .seq_show = memcg_slab_show,
4011 },
4012 #endif
4013 {
4014 .name = "kmem.tcp.limit_in_bytes",
4015 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4016 .write = mem_cgroup_write,
4017 .read_u64 = mem_cgroup_read_u64,
4018 },
4019 {
4020 .name = "kmem.tcp.usage_in_bytes",
4021 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4022 .read_u64 = mem_cgroup_read_u64,
4023 },
4024 {
4025 .name = "kmem.tcp.failcnt",
4026 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4027 .write = mem_cgroup_reset,
4028 .read_u64 = mem_cgroup_read_u64,
4029 },
4030 {
4031 .name = "kmem.tcp.max_usage_in_bytes",
4032 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4033 .write = mem_cgroup_reset,
4034 .read_u64 = mem_cgroup_read_u64,
4035 },
4036 { }, /* terminate */
4037 };
4038
4039 /*
4040 * Private memory cgroup IDR
4041 *
4042 * Swap-out records and page cache shadow entries need to store memcg
4043 * references in constrained space, so we maintain an ID space that is
4044 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4045 * memory-controlled cgroups to 64k.
4046 *
4047 * However, there usually are many references to the oflline CSS after
4048 * the cgroup has been destroyed, such as page cache or reclaimable
4049 * slab objects, that don't need to hang on to the ID. We want to keep
4050 * those dead CSS from occupying IDs, or we might quickly exhaust the
4051 * relatively small ID space and prevent the creation of new cgroups
4052 * even when there are much fewer than 64k cgroups - possibly none.
4053 *
4054 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4055 * be freed and recycled when it's no longer needed, which is usually
4056 * when the CSS is offlined.
4057 *
4058 * The only exception to that are records of swapped out tmpfs/shmem
4059 * pages that need to be attributed to live ancestors on swapin. But
4060 * those references are manageable from userspace.
4061 */
4062
4063 static DEFINE_IDR(mem_cgroup_idr);
4064
4065 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4066 {
4067 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
4068 atomic_add(n, &memcg->id.ref);
4069 }
4070
4071 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4072 {
4073 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
4074 if (atomic_sub_and_test(n, &memcg->id.ref)) {
4075 idr_remove(&mem_cgroup_idr, memcg->id.id);
4076 memcg->id.id = 0;
4077
4078 /* Memcg ID pins CSS */
4079 css_put(&memcg->css);
4080 }
4081 }
4082
4083 static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4084 {
4085 mem_cgroup_id_get_many(memcg, 1);
4086 }
4087
4088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4089 {
4090 mem_cgroup_id_put_many(memcg, 1);
4091 }
4092
4093 /**
4094 * mem_cgroup_from_id - look up a memcg from a memcg id
4095 * @id: the memcg id to look up
4096 *
4097 * Caller must hold rcu_read_lock().
4098 */
4099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4100 {
4101 WARN_ON_ONCE(!rcu_read_lock_held());
4102 return idr_find(&mem_cgroup_idr, id);
4103 }
4104
4105 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4106 {
4107 struct mem_cgroup_per_node *pn;
4108 int tmp = node;
4109 /*
4110 * This routine is called against possible nodes.
4111 * But it's BUG to call kmalloc() against offline node.
4112 *
4113 * TODO: this routine can waste much memory for nodes which will
4114 * never be onlined. It's better to use memory hotplug callback
4115 * function.
4116 */
4117 if (!node_state(node, N_NORMAL_MEMORY))
4118 tmp = -1;
4119 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4120 if (!pn)
4121 return 1;
4122
4123 lruvec_init(&pn->lruvec);
4124 pn->usage_in_excess = 0;
4125 pn->on_tree = false;
4126 pn->memcg = memcg;
4127
4128 memcg->nodeinfo[node] = pn;
4129 return 0;
4130 }
4131
4132 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4133 {
4134 kfree(memcg->nodeinfo[node]);
4135 }
4136
4137 static void mem_cgroup_free(struct mem_cgroup *memcg)
4138 {
4139 int node;
4140
4141 memcg_wb_domain_exit(memcg);
4142 for_each_node(node)
4143 free_mem_cgroup_per_node_info(memcg, node);
4144 free_percpu(memcg->stat);
4145 kfree(memcg);
4146 }
4147
4148 static struct mem_cgroup *mem_cgroup_alloc(void)
4149 {
4150 struct mem_cgroup *memcg;
4151 size_t size;
4152 int node;
4153
4154 size = sizeof(struct mem_cgroup);
4155 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4156
4157 memcg = kzalloc(size, GFP_KERNEL);
4158 if (!memcg)
4159 return NULL;
4160
4161 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4162 1, MEM_CGROUP_ID_MAX,
4163 GFP_KERNEL);
4164 if (memcg->id.id < 0)
4165 goto fail;
4166
4167 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4168 if (!memcg->stat)
4169 goto fail;
4170
4171 for_each_node(node)
4172 if (alloc_mem_cgroup_per_node_info(memcg, node))
4173 goto fail;
4174
4175 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4176 goto fail;
4177
4178 INIT_WORK(&memcg->high_work, high_work_func);
4179 memcg->last_scanned_node = MAX_NUMNODES;
4180 INIT_LIST_HEAD(&memcg->oom_notify);
4181 mutex_init(&memcg->thresholds_lock);
4182 spin_lock_init(&memcg->move_lock);
4183 vmpressure_init(&memcg->vmpressure);
4184 INIT_LIST_HEAD(&memcg->event_list);
4185 spin_lock_init(&memcg->event_list_lock);
4186 memcg->socket_pressure = jiffies;
4187 #ifndef CONFIG_SLOB
4188 memcg->kmemcg_id = -1;
4189 #endif
4190 #ifdef CONFIG_CGROUP_WRITEBACK
4191 INIT_LIST_HEAD(&memcg->cgwb_list);
4192 #endif
4193 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4194 return memcg;
4195 fail:
4196 if (memcg->id.id > 0)
4197 idr_remove(&mem_cgroup_idr, memcg->id.id);
4198 mem_cgroup_free(memcg);
4199 return NULL;
4200 }
4201
4202 static struct cgroup_subsys_state * __ref
4203 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4204 {
4205 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4206 struct mem_cgroup *memcg;
4207 long error = -ENOMEM;
4208
4209 memcg = mem_cgroup_alloc();
4210 if (!memcg)
4211 return ERR_PTR(error);
4212
4213 memcg->high = PAGE_COUNTER_MAX;
4214 memcg->soft_limit = PAGE_COUNTER_MAX;
4215 if (parent) {
4216 memcg->swappiness = mem_cgroup_swappiness(parent);
4217 memcg->oom_kill_disable = parent->oom_kill_disable;
4218 }
4219 if (parent && parent->use_hierarchy) {
4220 memcg->use_hierarchy = true;
4221 page_counter_init(&memcg->memory, &parent->memory);
4222 page_counter_init(&memcg->swap, &parent->swap);
4223 page_counter_init(&memcg->memsw, &parent->memsw);
4224 page_counter_init(&memcg->kmem, &parent->kmem);
4225 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4226 } else {
4227 page_counter_init(&memcg->memory, NULL);
4228 page_counter_init(&memcg->swap, NULL);
4229 page_counter_init(&memcg->memsw, NULL);
4230 page_counter_init(&memcg->kmem, NULL);
4231 page_counter_init(&memcg->tcpmem, NULL);
4232 /*
4233 * Deeper hierachy with use_hierarchy == false doesn't make
4234 * much sense so let cgroup subsystem know about this
4235 * unfortunate state in our controller.
4236 */
4237 if (parent != root_mem_cgroup)
4238 memory_cgrp_subsys.broken_hierarchy = true;
4239 }
4240
4241 /* The following stuff does not apply to the root */
4242 if (!parent) {
4243 root_mem_cgroup = memcg;
4244 return &memcg->css;
4245 }
4246
4247 error = memcg_online_kmem(memcg);
4248 if (error)
4249 goto fail;
4250
4251 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4252 static_branch_inc(&memcg_sockets_enabled_key);
4253
4254 return &memcg->css;
4255 fail:
4256 mem_cgroup_free(memcg);
4257 return ERR_PTR(-ENOMEM);
4258 }
4259
4260 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4261 {
4262 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4263
4264 /* Online state pins memcg ID, memcg ID pins CSS */
4265 atomic_set(&memcg->id.ref, 1);
4266 css_get(css);
4267 return 0;
4268 }
4269
4270 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4271 {
4272 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4273 struct mem_cgroup_event *event, *tmp;
4274
4275 /*
4276 * Unregister events and notify userspace.
4277 * Notify userspace about cgroup removing only after rmdir of cgroup
4278 * directory to avoid race between userspace and kernelspace.
4279 */
4280 spin_lock(&memcg->event_list_lock);
4281 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4282 list_del_init(&event->list);
4283 schedule_work(&event->remove);
4284 }
4285 spin_unlock(&memcg->event_list_lock);
4286
4287 memcg_offline_kmem(memcg);
4288 wb_memcg_offline(memcg);
4289
4290 mem_cgroup_id_put(memcg);
4291 }
4292
4293 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4294 {
4295 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4296
4297 invalidate_reclaim_iterators(memcg);
4298 }
4299
4300 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4301 {
4302 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4303
4304 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4305 static_branch_dec(&memcg_sockets_enabled_key);
4306
4307 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4308 static_branch_dec(&memcg_sockets_enabled_key);
4309
4310 vmpressure_cleanup(&memcg->vmpressure);
4311 cancel_work_sync(&memcg->high_work);
4312 mem_cgroup_remove_from_trees(memcg);
4313 memcg_free_kmem(memcg);
4314 mem_cgroup_free(memcg);
4315 }
4316
4317 /**
4318 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4319 * @css: the target css
4320 *
4321 * Reset the states of the mem_cgroup associated with @css. This is
4322 * invoked when the userland requests disabling on the default hierarchy
4323 * but the memcg is pinned through dependency. The memcg should stop
4324 * applying policies and should revert to the vanilla state as it may be
4325 * made visible again.
4326 *
4327 * The current implementation only resets the essential configurations.
4328 * This needs to be expanded to cover all the visible parts.
4329 */
4330 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4331 {
4332 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4333
4334 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4335 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4336 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4337 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4338 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4339 memcg->low = 0;
4340 memcg->high = PAGE_COUNTER_MAX;
4341 memcg->soft_limit = PAGE_COUNTER_MAX;
4342 memcg_wb_domain_size_changed(memcg);
4343 }
4344
4345 #ifdef CONFIG_MMU
4346 /* Handlers for move charge at task migration. */
4347 static int mem_cgroup_do_precharge(unsigned long count)
4348 {
4349 int ret;
4350
4351 /* Try a single bulk charge without reclaim first, kswapd may wake */
4352 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4353 if (!ret) {
4354 mc.precharge += count;
4355 return ret;
4356 }
4357
4358 /* Try charges one by one with reclaim, but do not retry */
4359 while (count--) {
4360 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
4361 if (ret)
4362 return ret;
4363 mc.precharge++;
4364 cond_resched();
4365 }
4366 return 0;
4367 }
4368
4369 union mc_target {
4370 struct page *page;
4371 swp_entry_t ent;
4372 };
4373
4374 enum mc_target_type {
4375 MC_TARGET_NONE = 0,
4376 MC_TARGET_PAGE,
4377 MC_TARGET_SWAP,
4378 };
4379
4380 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4381 unsigned long addr, pte_t ptent)
4382 {
4383 struct page *page = vm_normal_page(vma, addr, ptent);
4384
4385 if (!page || !page_mapped(page))
4386 return NULL;
4387 if (PageAnon(page)) {
4388 if (!(mc.flags & MOVE_ANON))
4389 return NULL;
4390 } else {
4391 if (!(mc.flags & MOVE_FILE))
4392 return NULL;
4393 }
4394 if (!get_page_unless_zero(page))
4395 return NULL;
4396
4397 return page;
4398 }
4399
4400 #ifdef CONFIG_SWAP
4401 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4402 pte_t ptent, swp_entry_t *entry)
4403 {
4404 struct page *page = NULL;
4405 swp_entry_t ent = pte_to_swp_entry(ptent);
4406
4407 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4408 return NULL;
4409 /*
4410 * Because lookup_swap_cache() updates some statistics counter,
4411 * we call find_get_page() with swapper_space directly.
4412 */
4413 page = find_get_page(swap_address_space(ent), swp_offset(ent));
4414 if (do_memsw_account())
4415 entry->val = ent.val;
4416
4417 return page;
4418 }
4419 #else
4420 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4421 pte_t ptent, swp_entry_t *entry)
4422 {
4423 return NULL;
4424 }
4425 #endif
4426
4427 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4428 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4429 {
4430 struct page *page = NULL;
4431 struct address_space *mapping;
4432 pgoff_t pgoff;
4433
4434 if (!vma->vm_file) /* anonymous vma */
4435 return NULL;
4436 if (!(mc.flags & MOVE_FILE))
4437 return NULL;
4438
4439 mapping = vma->vm_file->f_mapping;
4440 pgoff = linear_page_index(vma, addr);
4441
4442 /* page is moved even if it's not RSS of this task(page-faulted). */
4443 #ifdef CONFIG_SWAP
4444 /* shmem/tmpfs may report page out on swap: account for that too. */
4445 if (shmem_mapping(mapping)) {
4446 page = find_get_entry(mapping, pgoff);
4447 if (radix_tree_exceptional_entry(page)) {
4448 swp_entry_t swp = radix_to_swp_entry(page);
4449 if (do_memsw_account())
4450 *entry = swp;
4451 page = find_get_page(swap_address_space(swp),
4452 swp_offset(swp));
4453 }
4454 } else
4455 page = find_get_page(mapping, pgoff);
4456 #else
4457 page = find_get_page(mapping, pgoff);
4458 #endif
4459 return page;
4460 }
4461
4462 /**
4463 * mem_cgroup_move_account - move account of the page
4464 * @page: the page
4465 * @compound: charge the page as compound or small page
4466 * @from: mem_cgroup which the page is moved from.
4467 * @to: mem_cgroup which the page is moved to. @from != @to.
4468 *
4469 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4470 *
4471 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4472 * from old cgroup.
4473 */
4474 static int mem_cgroup_move_account(struct page *page,
4475 bool compound,
4476 struct mem_cgroup *from,
4477 struct mem_cgroup *to)
4478 {
4479 unsigned long flags;
4480 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4481 int ret;
4482 bool anon;
4483
4484 VM_BUG_ON(from == to);
4485 VM_BUG_ON_PAGE(PageLRU(page), page);
4486 VM_BUG_ON(compound && !PageTransHuge(page));
4487
4488 /*
4489 * Prevent mem_cgroup_migrate() from looking at
4490 * page->mem_cgroup of its source page while we change it.
4491 */
4492 ret = -EBUSY;
4493 if (!trylock_page(page))
4494 goto out;
4495
4496 ret = -EINVAL;
4497 if (page->mem_cgroup != from)
4498 goto out_unlock;
4499
4500 anon = PageAnon(page);
4501
4502 spin_lock_irqsave(&from->move_lock, flags);
4503
4504 if (!anon && page_mapped(page)) {
4505 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4506 nr_pages);
4507 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4508 nr_pages);
4509 }
4510
4511 /*
4512 * move_lock grabbed above and caller set from->moving_account, so
4513 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4514 * So mapping should be stable for dirty pages.
4515 */
4516 if (!anon && PageDirty(page)) {
4517 struct address_space *mapping = page_mapping(page);
4518
4519 if (mapping_cap_account_dirty(mapping)) {
4520 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4521 nr_pages);
4522 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4523 nr_pages);
4524 }
4525 }
4526
4527 if (PageWriteback(page)) {
4528 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4529 nr_pages);
4530 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4531 nr_pages);
4532 }
4533
4534 /*
4535 * It is safe to change page->mem_cgroup here because the page
4536 * is referenced, charged, and isolated - we can't race with
4537 * uncharging, charging, migration, or LRU putback.
4538 */
4539
4540 /* caller should have done css_get */
4541 page->mem_cgroup = to;
4542 spin_unlock_irqrestore(&from->move_lock, flags);
4543
4544 ret = 0;
4545
4546 local_irq_disable();
4547 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4548 memcg_check_events(to, page);
4549 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4550 memcg_check_events(from, page);
4551 local_irq_enable();
4552 out_unlock:
4553 unlock_page(page);
4554 out:
4555 return ret;
4556 }
4557
4558 /**
4559 * get_mctgt_type - get target type of moving charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 * move charge. if @target is not NULL, the page is stored in target->page
4569 * with extra refcnt got(Callers should handle it).
4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 * target for charge migration. if @target is not NULL, the entry is stored
4572 * in target->ent.
4573 *
4574 * Called with pte lock held.
4575 */
4576
4577 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4578 unsigned long addr, pte_t ptent, union mc_target *target)
4579 {
4580 struct page *page = NULL;
4581 enum mc_target_type ret = MC_TARGET_NONE;
4582 swp_entry_t ent = { .val = 0 };
4583
4584 if (pte_present(ptent))
4585 page = mc_handle_present_pte(vma, addr, ptent);
4586 else if (is_swap_pte(ptent))
4587 page = mc_handle_swap_pte(vma, ptent, &ent);
4588 else if (pte_none(ptent))
4589 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4590
4591 if (!page && !ent.val)
4592 return ret;
4593 if (page) {
4594 /*
4595 * Do only loose check w/o serialization.
4596 * mem_cgroup_move_account() checks the page is valid or
4597 * not under LRU exclusion.
4598 */
4599 if (page->mem_cgroup == mc.from) {
4600 ret = MC_TARGET_PAGE;
4601 if (target)
4602 target->page = page;
4603 }
4604 if (!ret || !target)
4605 put_page(page);
4606 }
4607 /* There is a swap entry and a page doesn't exist or isn't charged */
4608 if (ent.val && !ret &&
4609 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4610 ret = MC_TARGET_SWAP;
4611 if (target)
4612 target->ent = ent;
4613 }
4614 return ret;
4615 }
4616
4617 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4618 /*
4619 * We don't consider swapping or file mapped pages because THP does not
4620 * support them for now.
4621 * Caller should make sure that pmd_trans_huge(pmd) is true.
4622 */
4623 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4624 unsigned long addr, pmd_t pmd, union mc_target *target)
4625 {
4626 struct page *page = NULL;
4627 enum mc_target_type ret = MC_TARGET_NONE;
4628
4629 page = pmd_page(pmd);
4630 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4631 if (!(mc.flags & MOVE_ANON))
4632 return ret;
4633 if (page->mem_cgroup == mc.from) {
4634 ret = MC_TARGET_PAGE;
4635 if (target) {
4636 get_page(page);
4637 target->page = page;
4638 }
4639 }
4640 return ret;
4641 }
4642 #else
4643 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4644 unsigned long addr, pmd_t pmd, union mc_target *target)
4645 {
4646 return MC_TARGET_NONE;
4647 }
4648 #endif
4649
4650 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4651 unsigned long addr, unsigned long end,
4652 struct mm_walk *walk)
4653 {
4654 struct vm_area_struct *vma = walk->vma;
4655 pte_t *pte;
4656 spinlock_t *ptl;
4657
4658 ptl = pmd_trans_huge_lock(pmd, vma);
4659 if (ptl) {
4660 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4661 mc.precharge += HPAGE_PMD_NR;
4662 spin_unlock(ptl);
4663 return 0;
4664 }
4665
4666 if (pmd_trans_unstable(pmd))
4667 return 0;
4668 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4669 for (; addr != end; pte++, addr += PAGE_SIZE)
4670 if (get_mctgt_type(vma, addr, *pte, NULL))
4671 mc.precharge++; /* increment precharge temporarily */
4672 pte_unmap_unlock(pte - 1, ptl);
4673 cond_resched();
4674
4675 return 0;
4676 }
4677
4678 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4679 {
4680 unsigned long precharge;
4681
4682 struct mm_walk mem_cgroup_count_precharge_walk = {
4683 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4684 .mm = mm,
4685 };
4686 down_read(&mm->mmap_sem);
4687 walk_page_range(0, mm->highest_vm_end,
4688 &mem_cgroup_count_precharge_walk);
4689 up_read(&mm->mmap_sem);
4690
4691 precharge = mc.precharge;
4692 mc.precharge = 0;
4693
4694 return precharge;
4695 }
4696
4697 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4698 {
4699 unsigned long precharge = mem_cgroup_count_precharge(mm);
4700
4701 VM_BUG_ON(mc.moving_task);
4702 mc.moving_task = current;
4703 return mem_cgroup_do_precharge(precharge);
4704 }
4705
4706 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4707 static void __mem_cgroup_clear_mc(void)
4708 {
4709 struct mem_cgroup *from = mc.from;
4710 struct mem_cgroup *to = mc.to;
4711
4712 /* we must uncharge all the leftover precharges from mc.to */
4713 if (mc.precharge) {
4714 cancel_charge(mc.to, mc.precharge);
4715 mc.precharge = 0;
4716 }
4717 /*
4718 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4719 * we must uncharge here.
4720 */
4721 if (mc.moved_charge) {
4722 cancel_charge(mc.from, mc.moved_charge);
4723 mc.moved_charge = 0;
4724 }
4725 /* we must fixup refcnts and charges */
4726 if (mc.moved_swap) {
4727 /* uncharge swap account from the old cgroup */
4728 if (!mem_cgroup_is_root(mc.from))
4729 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4730
4731 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4732
4733 /*
4734 * we charged both to->memory and to->memsw, so we
4735 * should uncharge to->memory.
4736 */
4737 if (!mem_cgroup_is_root(mc.to))
4738 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4739
4740 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4741 css_put_many(&mc.to->css, mc.moved_swap);
4742
4743 mc.moved_swap = 0;
4744 }
4745 memcg_oom_recover(from);
4746 memcg_oom_recover(to);
4747 wake_up_all(&mc.waitq);
4748 }
4749
4750 static void mem_cgroup_clear_mc(void)
4751 {
4752 struct mm_struct *mm = mc.mm;
4753
4754 /*
4755 * we must clear moving_task before waking up waiters at the end of
4756 * task migration.
4757 */
4758 mc.moving_task = NULL;
4759 __mem_cgroup_clear_mc();
4760 spin_lock(&mc.lock);
4761 mc.from = NULL;
4762 mc.to = NULL;
4763 mc.mm = NULL;
4764 spin_unlock(&mc.lock);
4765
4766 mmput(mm);
4767 }
4768
4769 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4770 {
4771 struct cgroup_subsys_state *css;
4772 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4773 struct mem_cgroup *from;
4774 struct task_struct *leader, *p;
4775 struct mm_struct *mm;
4776 unsigned long move_flags;
4777 int ret = 0;
4778
4779 /* charge immigration isn't supported on the default hierarchy */
4780 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4781 return 0;
4782
4783 /*
4784 * Multi-process migrations only happen on the default hierarchy
4785 * where charge immigration is not used. Perform charge
4786 * immigration if @tset contains a leader and whine if there are
4787 * multiple.
4788 */
4789 p = NULL;
4790 cgroup_taskset_for_each_leader(leader, css, tset) {
4791 WARN_ON_ONCE(p);
4792 p = leader;
4793 memcg = mem_cgroup_from_css(css);
4794 }
4795 if (!p)
4796 return 0;
4797
4798 /*
4799 * We are now commited to this value whatever it is. Changes in this
4800 * tunable will only affect upcoming migrations, not the current one.
4801 * So we need to save it, and keep it going.
4802 */
4803 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4804 if (!move_flags)
4805 return 0;
4806
4807 from = mem_cgroup_from_task(p);
4808
4809 VM_BUG_ON(from == memcg);
4810
4811 mm = get_task_mm(p);
4812 if (!mm)
4813 return 0;
4814 /* We move charges only when we move a owner of the mm */
4815 if (mm->owner == p) {
4816 VM_BUG_ON(mc.from);
4817 VM_BUG_ON(mc.to);
4818 VM_BUG_ON(mc.precharge);
4819 VM_BUG_ON(mc.moved_charge);
4820 VM_BUG_ON(mc.moved_swap);
4821
4822 spin_lock(&mc.lock);
4823 mc.mm = mm;
4824 mc.from = from;
4825 mc.to = memcg;
4826 mc.flags = move_flags;
4827 spin_unlock(&mc.lock);
4828 /* We set mc.moving_task later */
4829
4830 ret = mem_cgroup_precharge_mc(mm);
4831 if (ret)
4832 mem_cgroup_clear_mc();
4833 } else {
4834 mmput(mm);
4835 }
4836 return ret;
4837 }
4838
4839 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4840 {
4841 if (mc.to)
4842 mem_cgroup_clear_mc();
4843 }
4844
4845 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4846 unsigned long addr, unsigned long end,
4847 struct mm_walk *walk)
4848 {
4849 int ret = 0;
4850 struct vm_area_struct *vma = walk->vma;
4851 pte_t *pte;
4852 spinlock_t *ptl;
4853 enum mc_target_type target_type;
4854 union mc_target target;
4855 struct page *page;
4856
4857 ptl = pmd_trans_huge_lock(pmd, vma);
4858 if (ptl) {
4859 if (mc.precharge < HPAGE_PMD_NR) {
4860 spin_unlock(ptl);
4861 return 0;
4862 }
4863 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4864 if (target_type == MC_TARGET_PAGE) {
4865 page = target.page;
4866 if (!isolate_lru_page(page)) {
4867 if (!mem_cgroup_move_account(page, true,
4868 mc.from, mc.to)) {
4869 mc.precharge -= HPAGE_PMD_NR;
4870 mc.moved_charge += HPAGE_PMD_NR;
4871 }
4872 putback_lru_page(page);
4873 }
4874 put_page(page);
4875 }
4876 spin_unlock(ptl);
4877 return 0;
4878 }
4879
4880 if (pmd_trans_unstable(pmd))
4881 return 0;
4882 retry:
4883 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4884 for (; addr != end; addr += PAGE_SIZE) {
4885 pte_t ptent = *(pte++);
4886 swp_entry_t ent;
4887
4888 if (!mc.precharge)
4889 break;
4890
4891 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4892 case MC_TARGET_PAGE:
4893 page = target.page;
4894 /*
4895 * We can have a part of the split pmd here. Moving it
4896 * can be done but it would be too convoluted so simply
4897 * ignore such a partial THP and keep it in original
4898 * memcg. There should be somebody mapping the head.
4899 */
4900 if (PageTransCompound(page))
4901 goto put;
4902 if (isolate_lru_page(page))
4903 goto put;
4904 if (!mem_cgroup_move_account(page, false,
4905 mc.from, mc.to)) {
4906 mc.precharge--;
4907 /* we uncharge from mc.from later. */
4908 mc.moved_charge++;
4909 }
4910 putback_lru_page(page);
4911 put: /* get_mctgt_type() gets the page */
4912 put_page(page);
4913 break;
4914 case MC_TARGET_SWAP:
4915 ent = target.ent;
4916 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4917 mc.precharge--;
4918 /* we fixup refcnts and charges later. */
4919 mc.moved_swap++;
4920 }
4921 break;
4922 default:
4923 break;
4924 }
4925 }
4926 pte_unmap_unlock(pte - 1, ptl);
4927 cond_resched();
4928
4929 if (addr != end) {
4930 /*
4931 * We have consumed all precharges we got in can_attach().
4932 * We try charge one by one, but don't do any additional
4933 * charges to mc.to if we have failed in charge once in attach()
4934 * phase.
4935 */
4936 ret = mem_cgroup_do_precharge(1);
4937 if (!ret)
4938 goto retry;
4939 }
4940
4941 return ret;
4942 }
4943
4944 static void mem_cgroup_move_charge(void)
4945 {
4946 struct mm_walk mem_cgroup_move_charge_walk = {
4947 .pmd_entry = mem_cgroup_move_charge_pte_range,
4948 .mm = mc.mm,
4949 };
4950
4951 lru_add_drain_all();
4952 /*
4953 * Signal lock_page_memcg() to take the memcg's move_lock
4954 * while we're moving its pages to another memcg. Then wait
4955 * for already started RCU-only updates to finish.
4956 */
4957 atomic_inc(&mc.from->moving_account);
4958 synchronize_rcu();
4959 retry:
4960 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4961 /*
4962 * Someone who are holding the mmap_sem might be waiting in
4963 * waitq. So we cancel all extra charges, wake up all waiters,
4964 * and retry. Because we cancel precharges, we might not be able
4965 * to move enough charges, but moving charge is a best-effort
4966 * feature anyway, so it wouldn't be a big problem.
4967 */
4968 __mem_cgroup_clear_mc();
4969 cond_resched();
4970 goto retry;
4971 }
4972 /*
4973 * When we have consumed all precharges and failed in doing
4974 * additional charge, the page walk just aborts.
4975 */
4976 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
4977
4978 up_read(&mc.mm->mmap_sem);
4979 atomic_dec(&mc.from->moving_account);
4980 }
4981
4982 static void mem_cgroup_move_task(void)
4983 {
4984 if (mc.to) {
4985 mem_cgroup_move_charge();
4986 mem_cgroup_clear_mc();
4987 }
4988 }
4989 #else /* !CONFIG_MMU */
4990 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4991 {
4992 return 0;
4993 }
4994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4995 {
4996 }
4997 static void mem_cgroup_move_task(void)
4998 {
4999 }
5000 #endif
5001
5002 /*
5003 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004 * to verify whether we're attached to the default hierarchy on each mount
5005 * attempt.
5006 */
5007 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5008 {
5009 /*
5010 * use_hierarchy is forced on the default hierarchy. cgroup core
5011 * guarantees that @root doesn't have any children, so turning it
5012 * on for the root memcg is enough.
5013 */
5014 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 root_mem_cgroup->use_hierarchy = true;
5016 else
5017 root_mem_cgroup->use_hierarchy = false;
5018 }
5019
5020 static u64 memory_current_read(struct cgroup_subsys_state *css,
5021 struct cftype *cft)
5022 {
5023 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024
5025 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5026 }
5027
5028 static int memory_low_show(struct seq_file *m, void *v)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031 unsigned long low = READ_ONCE(memcg->low);
5032
5033 if (low == PAGE_COUNTER_MAX)
5034 seq_puts(m, "max\n");
5035 else
5036 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5037
5038 return 0;
5039 }
5040
5041 static ssize_t memory_low_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5043 {
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 unsigned long low;
5046 int err;
5047
5048 buf = strstrip(buf);
5049 err = page_counter_memparse(buf, "max", &low);
5050 if (err)
5051 return err;
5052
5053 memcg->low = low;
5054
5055 return nbytes;
5056 }
5057
5058 static int memory_high_show(struct seq_file *m, void *v)
5059 {
5060 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061 unsigned long high = READ_ONCE(memcg->high);
5062
5063 if (high == PAGE_COUNTER_MAX)
5064 seq_puts(m, "max\n");
5065 else
5066 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5067
5068 return 0;
5069 }
5070
5071 static ssize_t memory_high_write(struct kernfs_open_file *of,
5072 char *buf, size_t nbytes, loff_t off)
5073 {
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075 unsigned long nr_pages;
5076 unsigned long high;
5077 int err;
5078
5079 buf = strstrip(buf);
5080 err = page_counter_memparse(buf, "max", &high);
5081 if (err)
5082 return err;
5083
5084 memcg->high = high;
5085
5086 nr_pages = page_counter_read(&memcg->memory);
5087 if (nr_pages > high)
5088 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5089 GFP_KERNEL, true);
5090
5091 memcg_wb_domain_size_changed(memcg);
5092 return nbytes;
5093 }
5094
5095 static int memory_max_show(struct seq_file *m, void *v)
5096 {
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098 unsigned long max = READ_ONCE(memcg->memory.limit);
5099
5100 if (max == PAGE_COUNTER_MAX)
5101 seq_puts(m, "max\n");
5102 else
5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5104
5105 return 0;
5106 }
5107
5108 static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 char *buf, size_t nbytes, loff_t off)
5110 {
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5113 bool drained = false;
5114 unsigned long max;
5115 int err;
5116
5117 buf = strstrip(buf);
5118 err = page_counter_memparse(buf, "max", &max);
5119 if (err)
5120 return err;
5121
5122 xchg(&memcg->memory.limit, max);
5123
5124 for (;;) {
5125 unsigned long nr_pages = page_counter_read(&memcg->memory);
5126
5127 if (nr_pages <= max)
5128 break;
5129
5130 if (signal_pending(current)) {
5131 err = -EINTR;
5132 break;
5133 }
5134
5135 if (!drained) {
5136 drain_all_stock(memcg);
5137 drained = true;
5138 continue;
5139 }
5140
5141 if (nr_reclaims) {
5142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5143 GFP_KERNEL, true))
5144 nr_reclaims--;
5145 continue;
5146 }
5147
5148 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5150 break;
5151 }
5152
5153 memcg_wb_domain_size_changed(memcg);
5154 return nbytes;
5155 }
5156
5157 static int memory_events_show(struct seq_file *m, void *v)
5158 {
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5160
5161 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5162 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5163 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5164 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5165
5166 return 0;
5167 }
5168
5169 static int memory_stat_show(struct seq_file *m, void *v)
5170 {
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 unsigned long stat[MEMCG_NR_STAT];
5173 unsigned long events[MEMCG_NR_EVENTS];
5174 int i;
5175
5176 /*
5177 * Provide statistics on the state of the memory subsystem as
5178 * well as cumulative event counters that show past behavior.
5179 *
5180 * This list is ordered following a combination of these gradients:
5181 * 1) generic big picture -> specifics and details
5182 * 2) reflecting userspace activity -> reflecting kernel heuristics
5183 *
5184 * Current memory state:
5185 */
5186
5187 tree_stat(memcg, stat);
5188 tree_events(memcg, events);
5189
5190 seq_printf(m, "anon %llu\n",
5191 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192 seq_printf(m, "file %llu\n",
5193 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194 seq_printf(m, "kernel_stack %llu\n",
5195 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
5196 seq_printf(m, "slab %llu\n",
5197 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5198 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199 seq_printf(m, "sock %llu\n",
5200 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5201
5202 seq_printf(m, "file_mapped %llu\n",
5203 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204 seq_printf(m, "file_dirty %llu\n",
5205 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206 seq_printf(m, "file_writeback %llu\n",
5207 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5208
5209 for (i = 0; i < NR_LRU_LISTS; i++) {
5210 struct mem_cgroup *mi;
5211 unsigned long val = 0;
5212
5213 for_each_mem_cgroup_tree(mi, memcg)
5214 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5215 seq_printf(m, "%s %llu\n",
5216 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5217 }
5218
5219 seq_printf(m, "slab_reclaimable %llu\n",
5220 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5221 seq_printf(m, "slab_unreclaimable %llu\n",
5222 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5223
5224 /* Accumulated memory events */
5225
5226 seq_printf(m, "pgfault %lu\n",
5227 events[MEM_CGROUP_EVENTS_PGFAULT]);
5228 seq_printf(m, "pgmajfault %lu\n",
5229 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5230
5231 return 0;
5232 }
5233
5234 static struct cftype memory_files[] = {
5235 {
5236 .name = "current",
5237 .flags = CFTYPE_NOT_ON_ROOT,
5238 .read_u64 = memory_current_read,
5239 },
5240 {
5241 .name = "low",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_low_show,
5244 .write = memory_low_write,
5245 },
5246 {
5247 .name = "high",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_high_show,
5250 .write = memory_high_write,
5251 },
5252 {
5253 .name = "max",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_max_show,
5256 .write = memory_max_write,
5257 },
5258 {
5259 .name = "events",
5260 .flags = CFTYPE_NOT_ON_ROOT,
5261 .file_offset = offsetof(struct mem_cgroup, events_file),
5262 .seq_show = memory_events_show,
5263 },
5264 {
5265 .name = "stat",
5266 .flags = CFTYPE_NOT_ON_ROOT,
5267 .seq_show = memory_stat_show,
5268 },
5269 { } /* terminate */
5270 };
5271
5272 struct cgroup_subsys memory_cgrp_subsys = {
5273 .css_alloc = mem_cgroup_css_alloc,
5274 .css_online = mem_cgroup_css_online,
5275 .css_offline = mem_cgroup_css_offline,
5276 .css_released = mem_cgroup_css_released,
5277 .css_free = mem_cgroup_css_free,
5278 .css_reset = mem_cgroup_css_reset,
5279 .can_attach = mem_cgroup_can_attach,
5280 .cancel_attach = mem_cgroup_cancel_attach,
5281 .post_attach = mem_cgroup_move_task,
5282 .bind = mem_cgroup_bind,
5283 .dfl_cftypes = memory_files,
5284 .legacy_cftypes = mem_cgroup_legacy_files,
5285 .early_init = 0,
5286 };
5287
5288 /**
5289 * mem_cgroup_low - check if memory consumption is below the normal range
5290 * @root: the highest ancestor to consider
5291 * @memcg: the memory cgroup to check
5292 *
5293 * Returns %true if memory consumption of @memcg, and that of all
5294 * configurable ancestors up to @root, is below the normal range.
5295 */
5296 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5297 {
5298 if (mem_cgroup_disabled())
5299 return false;
5300
5301 /*
5302 * The toplevel group doesn't have a configurable range, so
5303 * it's never low when looked at directly, and it is not
5304 * considered an ancestor when assessing the hierarchy.
5305 */
5306
5307 if (memcg == root_mem_cgroup)
5308 return false;
5309
5310 if (page_counter_read(&memcg->memory) >= memcg->low)
5311 return false;
5312
5313 while (memcg != root) {
5314 memcg = parent_mem_cgroup(memcg);
5315
5316 if (memcg == root_mem_cgroup)
5317 break;
5318
5319 if (page_counter_read(&memcg->memory) >= memcg->low)
5320 return false;
5321 }
5322 return true;
5323 }
5324
5325 /**
5326 * mem_cgroup_try_charge - try charging a page
5327 * @page: page to charge
5328 * @mm: mm context of the victim
5329 * @gfp_mask: reclaim mode
5330 * @memcgp: charged memcg return
5331 * @compound: charge the page as compound or small page
5332 *
5333 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5334 * pages according to @gfp_mask if necessary.
5335 *
5336 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5337 * Otherwise, an error code is returned.
5338 *
5339 * After page->mapping has been set up, the caller must finalize the
5340 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5341 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5342 */
5343 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5345 bool compound)
5346 {
5347 struct mem_cgroup *memcg = NULL;
5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349 int ret = 0;
5350
5351 if (mem_cgroup_disabled())
5352 goto out;
5353
5354 if (PageSwapCache(page)) {
5355 /*
5356 * Every swap fault against a single page tries to charge the
5357 * page, bail as early as possible. shmem_unuse() encounters
5358 * already charged pages, too. The USED bit is protected by
5359 * the page lock, which serializes swap cache removal, which
5360 * in turn serializes uncharging.
5361 */
5362 VM_BUG_ON_PAGE(!PageLocked(page), page);
5363 if (page->mem_cgroup)
5364 goto out;
5365
5366 if (do_swap_account) {
5367 swp_entry_t ent = { .val = page_private(page), };
5368 unsigned short id = lookup_swap_cgroup_id(ent);
5369
5370 rcu_read_lock();
5371 memcg = mem_cgroup_from_id(id);
5372 if (memcg && !css_tryget_online(&memcg->css))
5373 memcg = NULL;
5374 rcu_read_unlock();
5375 }
5376 }
5377
5378 if (!memcg)
5379 memcg = get_mem_cgroup_from_mm(mm);
5380
5381 ret = try_charge(memcg, gfp_mask, nr_pages);
5382
5383 css_put(&memcg->css);
5384 out:
5385 *memcgp = memcg;
5386 return ret;
5387 }
5388
5389 /**
5390 * mem_cgroup_commit_charge - commit a page charge
5391 * @page: page to charge
5392 * @memcg: memcg to charge the page to
5393 * @lrucare: page might be on LRU already
5394 * @compound: charge the page as compound or small page
5395 *
5396 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5397 * after page->mapping has been set up. This must happen atomically
5398 * as part of the page instantiation, i.e. under the page table lock
5399 * for anonymous pages, under the page lock for page and swap cache.
5400 *
5401 * In addition, the page must not be on the LRU during the commit, to
5402 * prevent racing with task migration. If it might be, use @lrucare.
5403 *
5404 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5405 */
5406 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407 bool lrucare, bool compound)
5408 {
5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410
5411 VM_BUG_ON_PAGE(!page->mapping, page);
5412 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5413
5414 if (mem_cgroup_disabled())
5415 return;
5416 /*
5417 * Swap faults will attempt to charge the same page multiple
5418 * times. But reuse_swap_page() might have removed the page
5419 * from swapcache already, so we can't check PageSwapCache().
5420 */
5421 if (!memcg)
5422 return;
5423
5424 commit_charge(page, memcg, lrucare);
5425
5426 local_irq_disable();
5427 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 memcg_check_events(memcg, page);
5429 local_irq_enable();
5430
5431 if (do_memsw_account() && PageSwapCache(page)) {
5432 swp_entry_t entry = { .val = page_private(page) };
5433 /*
5434 * The swap entry might not get freed for a long time,
5435 * let's not wait for it. The page already received a
5436 * memory+swap charge, drop the swap entry duplicate.
5437 */
5438 mem_cgroup_uncharge_swap(entry);
5439 }
5440 }
5441
5442 /**
5443 * mem_cgroup_cancel_charge - cancel a page charge
5444 * @page: page to charge
5445 * @memcg: memcg to charge the page to
5446 * @compound: charge the page as compound or small page
5447 *
5448 * Cancel a charge transaction started by mem_cgroup_try_charge().
5449 */
5450 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5451 bool compound)
5452 {
5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454
5455 if (mem_cgroup_disabled())
5456 return;
5457 /*
5458 * Swap faults will attempt to charge the same page multiple
5459 * times. But reuse_swap_page() might have removed the page
5460 * from swapcache already, so we can't check PageSwapCache().
5461 */
5462 if (!memcg)
5463 return;
5464
5465 cancel_charge(memcg, nr_pages);
5466 }
5467
5468 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5469 unsigned long nr_anon, unsigned long nr_file,
5470 unsigned long nr_huge, unsigned long nr_kmem,
5471 struct page *dummy_page)
5472 {
5473 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 unsigned long flags;
5475
5476 if (!mem_cgroup_is_root(memcg)) {
5477 page_counter_uncharge(&memcg->memory, nr_pages);
5478 if (do_memsw_account())
5479 page_counter_uncharge(&memcg->memsw, nr_pages);
5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5481 page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 memcg_oom_recover(memcg);
5483 }
5484
5485 local_irq_save(flags);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 memcg_check_events(memcg, dummy_page);
5492 local_irq_restore(flags);
5493
5494 if (!mem_cgroup_is_root(memcg))
5495 css_put_many(&memcg->css, nr_pages);
5496 }
5497
5498 static void uncharge_list(struct list_head *page_list)
5499 {
5500 struct mem_cgroup *memcg = NULL;
5501 unsigned long nr_anon = 0;
5502 unsigned long nr_file = 0;
5503 unsigned long nr_huge = 0;
5504 unsigned long nr_kmem = 0;
5505 unsigned long pgpgout = 0;
5506 struct list_head *next;
5507 struct page *page;
5508
5509 /*
5510 * Note that the list can be a single page->lru; hence the
5511 * do-while loop instead of a simple list_for_each_entry().
5512 */
5513 next = page_list->next;
5514 do {
5515 page = list_entry(next, struct page, lru);
5516 next = page->lru.next;
5517
5518 VM_BUG_ON_PAGE(PageLRU(page), page);
5519 VM_BUG_ON_PAGE(page_count(page), page);
5520
5521 if (!page->mem_cgroup)
5522 continue;
5523
5524 /*
5525 * Nobody should be changing or seriously looking at
5526 * page->mem_cgroup at this point, we have fully
5527 * exclusive access to the page.
5528 */
5529
5530 if (memcg != page->mem_cgroup) {
5531 if (memcg) {
5532 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 nr_huge, nr_kmem, page);
5534 pgpgout = nr_anon = nr_file =
5535 nr_huge = nr_kmem = 0;
5536 }
5537 memcg = page->mem_cgroup;
5538 }
5539
5540 if (!PageKmemcg(page)) {
5541 unsigned int nr_pages = 1;
5542
5543 if (PageTransHuge(page)) {
5544 nr_pages <<= compound_order(page);
5545 nr_huge += nr_pages;
5546 }
5547 if (PageAnon(page))
5548 nr_anon += nr_pages;
5549 else
5550 nr_file += nr_pages;
5551 pgpgout++;
5552 } else {
5553 nr_kmem += 1 << compound_order(page);
5554 __ClearPageKmemcg(page);
5555 }
5556
5557 page->mem_cgroup = NULL;
5558 } while (next != page_list);
5559
5560 if (memcg)
5561 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5562 nr_huge, nr_kmem, page);
5563 }
5564
5565 /**
5566 * mem_cgroup_uncharge - uncharge a page
5567 * @page: page to uncharge
5568 *
5569 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5570 * mem_cgroup_commit_charge().
5571 */
5572 void mem_cgroup_uncharge(struct page *page)
5573 {
5574 if (mem_cgroup_disabled())
5575 return;
5576
5577 /* Don't touch page->lru of any random page, pre-check: */
5578 if (!page->mem_cgroup)
5579 return;
5580
5581 INIT_LIST_HEAD(&page->lru);
5582 uncharge_list(&page->lru);
5583 }
5584
5585 /**
5586 * mem_cgroup_uncharge_list - uncharge a list of page
5587 * @page_list: list of pages to uncharge
5588 *
5589 * Uncharge a list of pages previously charged with
5590 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5591 */
5592 void mem_cgroup_uncharge_list(struct list_head *page_list)
5593 {
5594 if (mem_cgroup_disabled())
5595 return;
5596
5597 if (!list_empty(page_list))
5598 uncharge_list(page_list);
5599 }
5600
5601 /**
5602 * mem_cgroup_migrate - charge a page's replacement
5603 * @oldpage: currently circulating page
5604 * @newpage: replacement page
5605 *
5606 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5607 * be uncharged upon free.
5608 *
5609 * Both pages must be locked, @newpage->mapping must be set up.
5610 */
5611 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5612 {
5613 struct mem_cgroup *memcg;
5614 unsigned int nr_pages;
5615 bool compound;
5616 unsigned long flags;
5617
5618 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5619 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5620 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5621 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5622 newpage);
5623
5624 if (mem_cgroup_disabled())
5625 return;
5626
5627 /* Page cache replacement: new page already charged? */
5628 if (newpage->mem_cgroup)
5629 return;
5630
5631 /* Swapcache readahead pages can get replaced before being charged */
5632 memcg = oldpage->mem_cgroup;
5633 if (!memcg)
5634 return;
5635
5636 /* Force-charge the new page. The old one will be freed soon */
5637 compound = PageTransHuge(newpage);
5638 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5639
5640 page_counter_charge(&memcg->memory, nr_pages);
5641 if (do_memsw_account())
5642 page_counter_charge(&memcg->memsw, nr_pages);
5643 css_get_many(&memcg->css, nr_pages);
5644
5645 commit_charge(newpage, memcg, false);
5646
5647 local_irq_save(flags);
5648 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5649 memcg_check_events(memcg, newpage);
5650 local_irq_restore(flags);
5651 }
5652
5653 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5654 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5655
5656 void mem_cgroup_sk_alloc(struct sock *sk)
5657 {
5658 struct mem_cgroup *memcg;
5659
5660 if (!mem_cgroup_sockets_enabled)
5661 return;
5662
5663 /*
5664 * Socket cloning can throw us here with sk_memcg already
5665 * filled. It won't however, necessarily happen from
5666 * process context. So the test for root memcg given
5667 * the current task's memcg won't help us in this case.
5668 *
5669 * Respecting the original socket's memcg is a better
5670 * decision in this case.
5671 */
5672 if (sk->sk_memcg) {
5673 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5674 css_get(&sk->sk_memcg->css);
5675 return;
5676 }
5677
5678 rcu_read_lock();
5679 memcg = mem_cgroup_from_task(current);
5680 if (memcg == root_mem_cgroup)
5681 goto out;
5682 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5683 goto out;
5684 if (css_tryget_online(&memcg->css))
5685 sk->sk_memcg = memcg;
5686 out:
5687 rcu_read_unlock();
5688 }
5689
5690 void mem_cgroup_sk_free(struct sock *sk)
5691 {
5692 if (sk->sk_memcg)
5693 css_put(&sk->sk_memcg->css);
5694 }
5695
5696 /**
5697 * mem_cgroup_charge_skmem - charge socket memory
5698 * @memcg: memcg to charge
5699 * @nr_pages: number of pages to charge
5700 *
5701 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5702 * @memcg's configured limit, %false if the charge had to be forced.
5703 */
5704 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5705 {
5706 gfp_t gfp_mask = GFP_KERNEL;
5707
5708 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5709 struct page_counter *fail;
5710
5711 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5712 memcg->tcpmem_pressure = 0;
5713 return true;
5714 }
5715 page_counter_charge(&memcg->tcpmem, nr_pages);
5716 memcg->tcpmem_pressure = 1;
5717 return false;
5718 }
5719
5720 /* Don't block in the packet receive path */
5721 if (in_softirq())
5722 gfp_mask = GFP_NOWAIT;
5723
5724 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5725
5726 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5727 return true;
5728
5729 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5730 return false;
5731 }
5732
5733 /**
5734 * mem_cgroup_uncharge_skmem - uncharge socket memory
5735 * @memcg - memcg to uncharge
5736 * @nr_pages - number of pages to uncharge
5737 */
5738 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5739 {
5740 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5741 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5742 return;
5743 }
5744
5745 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5746
5747 page_counter_uncharge(&memcg->memory, nr_pages);
5748 css_put_many(&memcg->css, nr_pages);
5749 }
5750
5751 static int __init cgroup_memory(char *s)
5752 {
5753 char *token;
5754
5755 while ((token = strsep(&s, ",")) != NULL) {
5756 if (!*token)
5757 continue;
5758 if (!strcmp(token, "nosocket"))
5759 cgroup_memory_nosocket = true;
5760 if (!strcmp(token, "nokmem"))
5761 cgroup_memory_nokmem = true;
5762 }
5763 return 0;
5764 }
5765 __setup("cgroup.memory=", cgroup_memory);
5766
5767 /*
5768 * subsys_initcall() for memory controller.
5769 *
5770 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5771 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5772 * basically everything that doesn't depend on a specific mem_cgroup structure
5773 * should be initialized from here.
5774 */
5775 static int __init mem_cgroup_init(void)
5776 {
5777 int cpu, node;
5778
5779 #ifndef CONFIG_SLOB
5780 /*
5781 * Kmem cache creation is mostly done with the slab_mutex held,
5782 * so use a workqueue with limited concurrency to avoid stalling
5783 * all worker threads in case lots of cgroups are created and
5784 * destroyed simultaneously.
5785 */
5786 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5787 BUG_ON(!memcg_kmem_cache_wq);
5788 #endif
5789
5790 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5791 memcg_hotplug_cpu_dead);
5792
5793 for_each_possible_cpu(cpu)
5794 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5795 drain_local_stock);
5796
5797 for_each_node(node) {
5798 struct mem_cgroup_tree_per_node *rtpn;
5799
5800 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5801 node_online(node) ? node : NUMA_NO_NODE);
5802
5803 rtpn->rb_root = RB_ROOT;
5804 spin_lock_init(&rtpn->lock);
5805 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5806 }
5807
5808 return 0;
5809 }
5810 subsys_initcall(mem_cgroup_init);
5811
5812 #ifdef CONFIG_MEMCG_SWAP
5813 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5814 {
5815 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5816 /*
5817 * The root cgroup cannot be destroyed, so it's refcount must
5818 * always be >= 1.
5819 */
5820 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5821 VM_BUG_ON(1);
5822 break;
5823 }
5824 memcg = parent_mem_cgroup(memcg);
5825 if (!memcg)
5826 memcg = root_mem_cgroup;
5827 }
5828 return memcg;
5829 }
5830
5831 /**
5832 * mem_cgroup_swapout - transfer a memsw charge to swap
5833 * @page: page whose memsw charge to transfer
5834 * @entry: swap entry to move the charge to
5835 *
5836 * Transfer the memsw charge of @page to @entry.
5837 */
5838 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5839 {
5840 struct mem_cgroup *memcg, *swap_memcg;
5841 unsigned short oldid;
5842
5843 VM_BUG_ON_PAGE(PageLRU(page), page);
5844 VM_BUG_ON_PAGE(page_count(page), page);
5845
5846 if (!do_memsw_account())
5847 return;
5848
5849 memcg = page->mem_cgroup;
5850
5851 /* Readahead page, never charged */
5852 if (!memcg)
5853 return;
5854
5855 /*
5856 * In case the memcg owning these pages has been offlined and doesn't
5857 * have an ID allocated to it anymore, charge the closest online
5858 * ancestor for the swap instead and transfer the memory+swap charge.
5859 */
5860 swap_memcg = mem_cgroup_id_get_online(memcg);
5861 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg));
5862 VM_BUG_ON_PAGE(oldid, page);
5863 mem_cgroup_swap_statistics(swap_memcg, true);
5864
5865 page->mem_cgroup = NULL;
5866
5867 if (!mem_cgroup_is_root(memcg))
5868 page_counter_uncharge(&memcg->memory, 1);
5869
5870 if (memcg != swap_memcg) {
5871 if (!mem_cgroup_is_root(swap_memcg))
5872 page_counter_charge(&swap_memcg->memsw, 1);
5873 page_counter_uncharge(&memcg->memsw, 1);
5874 }
5875
5876 /*
5877 * Interrupts should be disabled here because the caller holds the
5878 * mapping->tree_lock lock which is taken with interrupts-off. It is
5879 * important here to have the interrupts disabled because it is the
5880 * only synchronisation we have for udpating the per-CPU variables.
5881 */
5882 VM_BUG_ON(!irqs_disabled());
5883 mem_cgroup_charge_statistics(memcg, page, false, -1);
5884 memcg_check_events(memcg, page);
5885
5886 if (!mem_cgroup_is_root(memcg))
5887 css_put(&memcg->css);
5888 }
5889
5890 /*
5891 * mem_cgroup_try_charge_swap - try charging a swap entry
5892 * @page: page being added to swap
5893 * @entry: swap entry to charge
5894 *
5895 * Try to charge @entry to the memcg that @page belongs to.
5896 *
5897 * Returns 0 on success, -ENOMEM on failure.
5898 */
5899 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5900 {
5901 struct mem_cgroup *memcg;
5902 struct page_counter *counter;
5903 unsigned short oldid;
5904
5905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5906 return 0;
5907
5908 memcg = page->mem_cgroup;
5909
5910 /* Readahead page, never charged */
5911 if (!memcg)
5912 return 0;
5913
5914 memcg = mem_cgroup_id_get_online(memcg);
5915
5916 if (!mem_cgroup_is_root(memcg) &&
5917 !page_counter_try_charge(&memcg->swap, 1, &counter)) {
5918 mem_cgroup_id_put(memcg);
5919 return -ENOMEM;
5920 }
5921
5922 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5923 VM_BUG_ON_PAGE(oldid, page);
5924 mem_cgroup_swap_statistics(memcg, true);
5925
5926 return 0;
5927 }
5928
5929 /**
5930 * mem_cgroup_uncharge_swap - uncharge a swap entry
5931 * @entry: swap entry to uncharge
5932 *
5933 * Drop the swap charge associated with @entry.
5934 */
5935 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5936 {
5937 struct mem_cgroup *memcg;
5938 unsigned short id;
5939
5940 if (!do_swap_account)
5941 return;
5942
5943 id = swap_cgroup_record(entry, 0);
5944 rcu_read_lock();
5945 memcg = mem_cgroup_from_id(id);
5946 if (memcg) {
5947 if (!mem_cgroup_is_root(memcg)) {
5948 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5949 page_counter_uncharge(&memcg->swap, 1);
5950 else
5951 page_counter_uncharge(&memcg->memsw, 1);
5952 }
5953 mem_cgroup_swap_statistics(memcg, false);
5954 mem_cgroup_id_put(memcg);
5955 }
5956 rcu_read_unlock();
5957 }
5958
5959 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5960 {
5961 long nr_swap_pages = get_nr_swap_pages();
5962
5963 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5964 return nr_swap_pages;
5965 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5966 nr_swap_pages = min_t(long, nr_swap_pages,
5967 READ_ONCE(memcg->swap.limit) -
5968 page_counter_read(&memcg->swap));
5969 return nr_swap_pages;
5970 }
5971
5972 bool mem_cgroup_swap_full(struct page *page)
5973 {
5974 struct mem_cgroup *memcg;
5975
5976 VM_BUG_ON_PAGE(!PageLocked(page), page);
5977
5978 if (vm_swap_full())
5979 return true;
5980 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5981 return false;
5982
5983 memcg = page->mem_cgroup;
5984 if (!memcg)
5985 return false;
5986
5987 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5988 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5989 return true;
5990
5991 return false;
5992 }
5993
5994 /* for remember boot option*/
5995 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5996 static int really_do_swap_account __initdata = 1;
5997 #else
5998 static int really_do_swap_account __initdata;
5999 #endif
6000
6001 static int __init enable_swap_account(char *s)
6002 {
6003 if (!strcmp(s, "1"))
6004 really_do_swap_account = 1;
6005 else if (!strcmp(s, "0"))
6006 really_do_swap_account = 0;
6007 return 1;
6008 }
6009 __setup("swapaccount=", enable_swap_account);
6010
6011 static u64 swap_current_read(struct cgroup_subsys_state *css,
6012 struct cftype *cft)
6013 {
6014 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6015
6016 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6017 }
6018
6019 static int swap_max_show(struct seq_file *m, void *v)
6020 {
6021 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6022 unsigned long max = READ_ONCE(memcg->swap.limit);
6023
6024 if (max == PAGE_COUNTER_MAX)
6025 seq_puts(m, "max\n");
6026 else
6027 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6028
6029 return 0;
6030 }
6031
6032 static ssize_t swap_max_write(struct kernfs_open_file *of,
6033 char *buf, size_t nbytes, loff_t off)
6034 {
6035 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6036 unsigned long max;
6037 int err;
6038
6039 buf = strstrip(buf);
6040 err = page_counter_memparse(buf, "max", &max);
6041 if (err)
6042 return err;
6043
6044 mutex_lock(&memcg_limit_mutex);
6045 err = page_counter_limit(&memcg->swap, max);
6046 mutex_unlock(&memcg_limit_mutex);
6047 if (err)
6048 return err;
6049
6050 return nbytes;
6051 }
6052
6053 static struct cftype swap_files[] = {
6054 {
6055 .name = "swap.current",
6056 .flags = CFTYPE_NOT_ON_ROOT,
6057 .read_u64 = swap_current_read,
6058 },
6059 {
6060 .name = "swap.max",
6061 .flags = CFTYPE_NOT_ON_ROOT,
6062 .seq_show = swap_max_show,
6063 .write = swap_max_write,
6064 },
6065 { } /* terminate */
6066 };
6067
6068 static struct cftype memsw_cgroup_files[] = {
6069 {
6070 .name = "memsw.usage_in_bytes",
6071 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6072 .read_u64 = mem_cgroup_read_u64,
6073 },
6074 {
6075 .name = "memsw.max_usage_in_bytes",
6076 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6077 .write = mem_cgroup_reset,
6078 .read_u64 = mem_cgroup_read_u64,
6079 },
6080 {
6081 .name = "memsw.limit_in_bytes",
6082 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6083 .write = mem_cgroup_write,
6084 .read_u64 = mem_cgroup_read_u64,
6085 },
6086 {
6087 .name = "memsw.failcnt",
6088 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6089 .write = mem_cgroup_reset,
6090 .read_u64 = mem_cgroup_read_u64,
6091 },
6092 { }, /* terminate */
6093 };
6094
6095 static int __init mem_cgroup_swap_init(void)
6096 {
6097 if (!mem_cgroup_disabled() && really_do_swap_account) {
6098 do_swap_account = 1;
6099 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6100 swap_files));
6101 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6102 memsw_cgroup_files));
6103 }
6104 return 0;
6105 }
6106 subsys_initcall(mem_cgroup_swap_init);
6107
6108 #endif /* CONFIG_MEMCG_SWAP */