]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
mm, vmscan: move LRU lists to node
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include <linux/tracehook.h>
66 #include "internal.h"
67 #include <net/sock.h>
68 #include <net/ip.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 struct mem_cgroup *root_mem_cgroup __read_mostly;
79
80 #define MEM_CGROUP_RECLAIM_RETRIES 5
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 int do_swap_account __read_mostly;
91 #else
92 #define do_swap_account 0
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
104 "rss_huge",
105 "mapped_file",
106 "dirty",
107 "writeback",
108 "swap",
109 };
110
111 static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116 };
117
118 static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124 };
125
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 /*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135 struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138 };
139
140 struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142 };
143
144 struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146 };
147
148 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
150 /* for OOM */
151 struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154 };
155
156 /*
157 * cgroup_event represents events which userspace want to receive.
158 */
159 struct mem_cgroup_event {
160 /*
161 * memcg which the event belongs to.
162 */
163 struct mem_cgroup *memcg;
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
177 int (*register_event)(struct mem_cgroup *memcg,
178 struct eventfd_ctx *eventfd, const char *args);
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
184 void (*unregister_event)(struct mem_cgroup *memcg,
185 struct eventfd_ctx *eventfd);
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194 };
195
196 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
198
199 /* Stuffs for move charges at task migration. */
200 /*
201 * Types of charges to be moved.
202 */
203 #define MOVE_ANON 0x1U
204 #define MOVE_FILE 0x2U
205 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
206
207 /* "mc" and its members are protected by cgroup_mutex */
208 static struct move_charge_struct {
209 spinlock_t lock; /* for from, to */
210 struct mm_struct *mm;
211 struct mem_cgroup *from;
212 struct mem_cgroup *to;
213 unsigned long flags;
214 unsigned long precharge;
215 unsigned long moved_charge;
216 unsigned long moved_swap;
217 struct task_struct *moving_task; /* a task moving charges */
218 wait_queue_head_t waitq; /* a waitq for other context */
219 } mc = {
220 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
221 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
222 };
223
224 /*
225 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
226 * limit reclaim to prevent infinite loops, if they ever occur.
227 */
228 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
229 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
230
231 enum charge_type {
232 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
233 MEM_CGROUP_CHARGE_TYPE_ANON,
234 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
235 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
236 NR_CHARGE_TYPE,
237 };
238
239 /* for encoding cft->private value on file */
240 enum res_type {
241 _MEM,
242 _MEMSWAP,
243 _OOM_TYPE,
244 _KMEM,
245 _TCP,
246 };
247
248 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
249 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
250 #define MEMFILE_ATTR(val) ((val) & 0xffff)
251 /* Used for OOM nofiier */
252 #define OOM_CONTROL (0)
253
254 /* Some nice accessors for the vmpressure. */
255 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
256 {
257 if (!memcg)
258 memcg = root_mem_cgroup;
259 return &memcg->vmpressure;
260 }
261
262 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
263 {
264 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
265 }
266
267 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
268 {
269 return (memcg == root_mem_cgroup);
270 }
271
272 #ifndef CONFIG_SLOB
273 /*
274 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
275 * The main reason for not using cgroup id for this:
276 * this works better in sparse environments, where we have a lot of memcgs,
277 * but only a few kmem-limited. Or also, if we have, for instance, 200
278 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
279 * 200 entry array for that.
280 *
281 * The current size of the caches array is stored in memcg_nr_cache_ids. It
282 * will double each time we have to increase it.
283 */
284 static DEFINE_IDA(memcg_cache_ida);
285 int memcg_nr_cache_ids;
286
287 /* Protects memcg_nr_cache_ids */
288 static DECLARE_RWSEM(memcg_cache_ids_sem);
289
290 void memcg_get_cache_ids(void)
291 {
292 down_read(&memcg_cache_ids_sem);
293 }
294
295 void memcg_put_cache_ids(void)
296 {
297 up_read(&memcg_cache_ids_sem);
298 }
299
300 /*
301 * MIN_SIZE is different than 1, because we would like to avoid going through
302 * the alloc/free process all the time. In a small machine, 4 kmem-limited
303 * cgroups is a reasonable guess. In the future, it could be a parameter or
304 * tunable, but that is strictly not necessary.
305 *
306 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
307 * this constant directly from cgroup, but it is understandable that this is
308 * better kept as an internal representation in cgroup.c. In any case, the
309 * cgrp_id space is not getting any smaller, and we don't have to necessarily
310 * increase ours as well if it increases.
311 */
312 #define MEMCG_CACHES_MIN_SIZE 4
313 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
314
315 /*
316 * A lot of the calls to the cache allocation functions are expected to be
317 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
318 * conditional to this static branch, we'll have to allow modules that does
319 * kmem_cache_alloc and the such to see this symbol as well
320 */
321 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
322 EXPORT_SYMBOL(memcg_kmem_enabled_key);
323
324 #endif /* !CONFIG_SLOB */
325
326 /**
327 * mem_cgroup_css_from_page - css of the memcg associated with a page
328 * @page: page of interest
329 *
330 * If memcg is bound to the default hierarchy, css of the memcg associated
331 * with @page is returned. The returned css remains associated with @page
332 * until it is released.
333 *
334 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
335 * is returned.
336 */
337 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
338 {
339 struct mem_cgroup *memcg;
340
341 memcg = page->mem_cgroup;
342
343 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
344 memcg = root_mem_cgroup;
345
346 return &memcg->css;
347 }
348
349 /**
350 * page_cgroup_ino - return inode number of the memcg a page is charged to
351 * @page: the page
352 *
353 * Look up the closest online ancestor of the memory cgroup @page is charged to
354 * and return its inode number or 0 if @page is not charged to any cgroup. It
355 * is safe to call this function without holding a reference to @page.
356 *
357 * Note, this function is inherently racy, because there is nothing to prevent
358 * the cgroup inode from getting torn down and potentially reallocated a moment
359 * after page_cgroup_ino() returns, so it only should be used by callers that
360 * do not care (such as procfs interfaces).
361 */
362 ino_t page_cgroup_ino(struct page *page)
363 {
364 struct mem_cgroup *memcg;
365 unsigned long ino = 0;
366
367 rcu_read_lock();
368 memcg = READ_ONCE(page->mem_cgroup);
369 while (memcg && !(memcg->css.flags & CSS_ONLINE))
370 memcg = parent_mem_cgroup(memcg);
371 if (memcg)
372 ino = cgroup_ino(memcg->css.cgroup);
373 rcu_read_unlock();
374 return ino;
375 }
376
377 static struct mem_cgroup_per_zone *
378 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
379 {
380 int nid = page_to_nid(page);
381 int zid = page_zonenum(page);
382
383 return &memcg->nodeinfo[nid]->zoneinfo[zid];
384 }
385
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
402 struct mem_cgroup_tree_per_zone *mctz,
403 unsigned long new_usage_in_excess)
404 {
405 struct rb_node **p = &mctz->rb_root.rb_node;
406 struct rb_node *parent = NULL;
407 struct mem_cgroup_per_zone *mz_node;
408
409 if (mz->on_tree)
410 return;
411
412 mz->usage_in_excess = new_usage_in_excess;
413 if (!mz->usage_in_excess)
414 return;
415 while (*p) {
416 parent = *p;
417 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
418 tree_node);
419 if (mz->usage_in_excess < mz_node->usage_in_excess)
420 p = &(*p)->rb_left;
421 /*
422 * We can't avoid mem cgroups that are over their soft
423 * limit by the same amount
424 */
425 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
426 p = &(*p)->rb_right;
427 }
428 rb_link_node(&mz->tree_node, parent, p);
429 rb_insert_color(&mz->tree_node, &mctz->rb_root);
430 mz->on_tree = true;
431 }
432
433 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
434 struct mem_cgroup_tree_per_zone *mctz)
435 {
436 if (!mz->on_tree)
437 return;
438 rb_erase(&mz->tree_node, &mctz->rb_root);
439 mz->on_tree = false;
440 }
441
442 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
443 struct mem_cgroup_tree_per_zone *mctz)
444 {
445 unsigned long flags;
446
447 spin_lock_irqsave(&mctz->lock, flags);
448 __mem_cgroup_remove_exceeded(mz, mctz);
449 spin_unlock_irqrestore(&mctz->lock, flags);
450 }
451
452 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
453 {
454 unsigned long nr_pages = page_counter_read(&memcg->memory);
455 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
456 unsigned long excess = 0;
457
458 if (nr_pages > soft_limit)
459 excess = nr_pages - soft_limit;
460
461 return excess;
462 }
463
464 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
465 {
466 unsigned long excess;
467 struct mem_cgroup_per_zone *mz;
468 struct mem_cgroup_tree_per_zone *mctz;
469
470 mctz = soft_limit_tree_from_page(page);
471 /*
472 * Necessary to update all ancestors when hierarchy is used.
473 * because their event counter is not touched.
474 */
475 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
476 mz = mem_cgroup_page_zoneinfo(memcg, page);
477 excess = soft_limit_excess(memcg);
478 /*
479 * We have to update the tree if mz is on RB-tree or
480 * mem is over its softlimit.
481 */
482 if (excess || mz->on_tree) {
483 unsigned long flags;
484
485 spin_lock_irqsave(&mctz->lock, flags);
486 /* if on-tree, remove it */
487 if (mz->on_tree)
488 __mem_cgroup_remove_exceeded(mz, mctz);
489 /*
490 * Insert again. mz->usage_in_excess will be updated.
491 * If excess is 0, no tree ops.
492 */
493 __mem_cgroup_insert_exceeded(mz, mctz, excess);
494 spin_unlock_irqrestore(&mctz->lock, flags);
495 }
496 }
497 }
498
499 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
500 {
501 struct mem_cgroup_tree_per_zone *mctz;
502 struct mem_cgroup_per_zone *mz;
503 int nid, zid;
504
505 for_each_node(nid) {
506 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
507 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
508 mctz = soft_limit_tree_node_zone(nid, zid);
509 mem_cgroup_remove_exceeded(mz, mctz);
510 }
511 }
512 }
513
514 static struct mem_cgroup_per_zone *
515 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
516 {
517 struct rb_node *rightmost = NULL;
518 struct mem_cgroup_per_zone *mz;
519
520 retry:
521 mz = NULL;
522 rightmost = rb_last(&mctz->rb_root);
523 if (!rightmost)
524 goto done; /* Nothing to reclaim from */
525
526 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
527 /*
528 * Remove the node now but someone else can add it back,
529 * we will to add it back at the end of reclaim to its correct
530 * position in the tree.
531 */
532 __mem_cgroup_remove_exceeded(mz, mctz);
533 if (!soft_limit_excess(mz->memcg) ||
534 !css_tryget_online(&mz->memcg->css))
535 goto retry;
536 done:
537 return mz;
538 }
539
540 static struct mem_cgroup_per_zone *
541 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
542 {
543 struct mem_cgroup_per_zone *mz;
544
545 spin_lock_irq(&mctz->lock);
546 mz = __mem_cgroup_largest_soft_limit_node(mctz);
547 spin_unlock_irq(&mctz->lock);
548 return mz;
549 }
550
551 /*
552 * Return page count for single (non recursive) @memcg.
553 *
554 * Implementation Note: reading percpu statistics for memcg.
555 *
556 * Both of vmstat[] and percpu_counter has threshold and do periodic
557 * synchronization to implement "quick" read. There are trade-off between
558 * reading cost and precision of value. Then, we may have a chance to implement
559 * a periodic synchronization of counter in memcg's counter.
560 *
561 * But this _read() function is used for user interface now. The user accounts
562 * memory usage by memory cgroup and he _always_ requires exact value because
563 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
564 * have to visit all online cpus and make sum. So, for now, unnecessary
565 * synchronization is not implemented. (just implemented for cpu hotplug)
566 *
567 * If there are kernel internal actions which can make use of some not-exact
568 * value, and reading all cpu value can be performance bottleneck in some
569 * common workload, threshold and synchronization as vmstat[] should be
570 * implemented.
571 */
572 static unsigned long
573 mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
574 {
575 long val = 0;
576 int cpu;
577
578 /* Per-cpu values can be negative, use a signed accumulator */
579 for_each_possible_cpu(cpu)
580 val += per_cpu(memcg->stat->count[idx], cpu);
581 /*
582 * Summing races with updates, so val may be negative. Avoid exposing
583 * transient negative values.
584 */
585 if (val < 0)
586 val = 0;
587 return val;
588 }
589
590 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
591 enum mem_cgroup_events_index idx)
592 {
593 unsigned long val = 0;
594 int cpu;
595
596 for_each_possible_cpu(cpu)
597 val += per_cpu(memcg->stat->events[idx], cpu);
598 return val;
599 }
600
601 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
602 struct page *page,
603 bool compound, int nr_pages)
604 {
605 /*
606 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
607 * counted as CACHE even if it's on ANON LRU.
608 */
609 if (PageAnon(page))
610 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
611 nr_pages);
612 else
613 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
614 nr_pages);
615
616 if (compound) {
617 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
619 nr_pages);
620 }
621
622 /* pagein of a big page is an event. So, ignore page size */
623 if (nr_pages > 0)
624 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
625 else {
626 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
627 nr_pages = -nr_pages; /* for event */
628 }
629
630 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
631 }
632
633 unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
634 int nid, unsigned int lru_mask)
635 {
636 unsigned long nr = 0;
637 int zid;
638
639 VM_BUG_ON((unsigned)nid >= nr_node_ids);
640
641 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
642 struct mem_cgroup_per_zone *mz;
643 enum lru_list lru;
644
645 for_each_lru(lru) {
646 if (!(BIT(lru) & lru_mask))
647 continue;
648 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
649 nr += mz->lru_size[lru];
650 }
651 }
652 return nr;
653 }
654
655 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
656 unsigned int lru_mask)
657 {
658 unsigned long nr = 0;
659 int nid;
660
661 for_each_node_state(nid, N_MEMORY)
662 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
663 return nr;
664 }
665
666 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
667 enum mem_cgroup_events_target target)
668 {
669 unsigned long val, next;
670
671 val = __this_cpu_read(memcg->stat->nr_page_events);
672 next = __this_cpu_read(memcg->stat->targets[target]);
673 /* from time_after() in jiffies.h */
674 if ((long)next - (long)val < 0) {
675 switch (target) {
676 case MEM_CGROUP_TARGET_THRESH:
677 next = val + THRESHOLDS_EVENTS_TARGET;
678 break;
679 case MEM_CGROUP_TARGET_SOFTLIMIT:
680 next = val + SOFTLIMIT_EVENTS_TARGET;
681 break;
682 case MEM_CGROUP_TARGET_NUMAINFO:
683 next = val + NUMAINFO_EVENTS_TARGET;
684 break;
685 default:
686 break;
687 }
688 __this_cpu_write(memcg->stat->targets[target], next);
689 return true;
690 }
691 return false;
692 }
693
694 /*
695 * Check events in order.
696 *
697 */
698 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
699 {
700 /* threshold event is triggered in finer grain than soft limit */
701 if (unlikely(mem_cgroup_event_ratelimit(memcg,
702 MEM_CGROUP_TARGET_THRESH))) {
703 bool do_softlimit;
704 bool do_numainfo __maybe_unused;
705
706 do_softlimit = mem_cgroup_event_ratelimit(memcg,
707 MEM_CGROUP_TARGET_SOFTLIMIT);
708 #if MAX_NUMNODES > 1
709 do_numainfo = mem_cgroup_event_ratelimit(memcg,
710 MEM_CGROUP_TARGET_NUMAINFO);
711 #endif
712 mem_cgroup_threshold(memcg);
713 if (unlikely(do_softlimit))
714 mem_cgroup_update_tree(memcg, page);
715 #if MAX_NUMNODES > 1
716 if (unlikely(do_numainfo))
717 atomic_inc(&memcg->numainfo_events);
718 #endif
719 }
720 }
721
722 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
723 {
724 /*
725 * mm_update_next_owner() may clear mm->owner to NULL
726 * if it races with swapoff, page migration, etc.
727 * So this can be called with p == NULL.
728 */
729 if (unlikely(!p))
730 return NULL;
731
732 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
733 }
734 EXPORT_SYMBOL(mem_cgroup_from_task);
735
736 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
737 {
738 struct mem_cgroup *memcg = NULL;
739
740 rcu_read_lock();
741 do {
742 /*
743 * Page cache insertions can happen withou an
744 * actual mm context, e.g. during disk probing
745 * on boot, loopback IO, acct() writes etc.
746 */
747 if (unlikely(!mm))
748 memcg = root_mem_cgroup;
749 else {
750 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
751 if (unlikely(!memcg))
752 memcg = root_mem_cgroup;
753 }
754 } while (!css_tryget_online(&memcg->css));
755 rcu_read_unlock();
756 return memcg;
757 }
758
759 /**
760 * mem_cgroup_iter - iterate over memory cgroup hierarchy
761 * @root: hierarchy root
762 * @prev: previously returned memcg, NULL on first invocation
763 * @reclaim: cookie for shared reclaim walks, NULL for full walks
764 *
765 * Returns references to children of the hierarchy below @root, or
766 * @root itself, or %NULL after a full round-trip.
767 *
768 * Caller must pass the return value in @prev on subsequent
769 * invocations for reference counting, or use mem_cgroup_iter_break()
770 * to cancel a hierarchy walk before the round-trip is complete.
771 *
772 * Reclaimers can specify a zone and a priority level in @reclaim to
773 * divide up the memcgs in the hierarchy among all concurrent
774 * reclaimers operating on the same zone and priority.
775 */
776 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
777 struct mem_cgroup *prev,
778 struct mem_cgroup_reclaim_cookie *reclaim)
779 {
780 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
781 struct cgroup_subsys_state *css = NULL;
782 struct mem_cgroup *memcg = NULL;
783 struct mem_cgroup *pos = NULL;
784
785 if (mem_cgroup_disabled())
786 return NULL;
787
788 if (!root)
789 root = root_mem_cgroup;
790
791 if (prev && !reclaim)
792 pos = prev;
793
794 if (!root->use_hierarchy && root != root_mem_cgroup) {
795 if (prev)
796 goto out;
797 return root;
798 }
799
800 rcu_read_lock();
801
802 if (reclaim) {
803 struct mem_cgroup_per_zone *mz;
804
805 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
806 iter = &mz->iter[reclaim->priority];
807
808 if (prev && reclaim->generation != iter->generation)
809 goto out_unlock;
810
811 while (1) {
812 pos = READ_ONCE(iter->position);
813 if (!pos || css_tryget(&pos->css))
814 break;
815 /*
816 * css reference reached zero, so iter->position will
817 * be cleared by ->css_released. However, we should not
818 * rely on this happening soon, because ->css_released
819 * is called from a work queue, and by busy-waiting we
820 * might block it. So we clear iter->position right
821 * away.
822 */
823 (void)cmpxchg(&iter->position, pos, NULL);
824 }
825 }
826
827 if (pos)
828 css = &pos->css;
829
830 for (;;) {
831 css = css_next_descendant_pre(css, &root->css);
832 if (!css) {
833 /*
834 * Reclaimers share the hierarchy walk, and a
835 * new one might jump in right at the end of
836 * the hierarchy - make sure they see at least
837 * one group and restart from the beginning.
838 */
839 if (!prev)
840 continue;
841 break;
842 }
843
844 /*
845 * Verify the css and acquire a reference. The root
846 * is provided by the caller, so we know it's alive
847 * and kicking, and don't take an extra reference.
848 */
849 memcg = mem_cgroup_from_css(css);
850
851 if (css == &root->css)
852 break;
853
854 if (css_tryget(css))
855 break;
856
857 memcg = NULL;
858 }
859
860 if (reclaim) {
861 /*
862 * The position could have already been updated by a competing
863 * thread, so check that the value hasn't changed since we read
864 * it to avoid reclaiming from the same cgroup twice.
865 */
866 (void)cmpxchg(&iter->position, pos, memcg);
867
868 if (pos)
869 css_put(&pos->css);
870
871 if (!memcg)
872 iter->generation++;
873 else if (!prev)
874 reclaim->generation = iter->generation;
875 }
876
877 out_unlock:
878 rcu_read_unlock();
879 out:
880 if (prev && prev != root)
881 css_put(&prev->css);
882
883 return memcg;
884 }
885
886 /**
887 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
888 * @root: hierarchy root
889 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
890 */
891 void mem_cgroup_iter_break(struct mem_cgroup *root,
892 struct mem_cgroup *prev)
893 {
894 if (!root)
895 root = root_mem_cgroup;
896 if (prev && prev != root)
897 css_put(&prev->css);
898 }
899
900 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
901 {
902 struct mem_cgroup *memcg = dead_memcg;
903 struct mem_cgroup_reclaim_iter *iter;
904 struct mem_cgroup_per_zone *mz;
905 int nid, zid;
906 int i;
907
908 while ((memcg = parent_mem_cgroup(memcg))) {
909 for_each_node(nid) {
910 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
911 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
912 for (i = 0; i <= DEF_PRIORITY; i++) {
913 iter = &mz->iter[i];
914 cmpxchg(&iter->position,
915 dead_memcg, NULL);
916 }
917 }
918 }
919 }
920 }
921
922 /*
923 * Iteration constructs for visiting all cgroups (under a tree). If
924 * loops are exited prematurely (break), mem_cgroup_iter_break() must
925 * be used for reference counting.
926 */
927 #define for_each_mem_cgroup_tree(iter, root) \
928 for (iter = mem_cgroup_iter(root, NULL, NULL); \
929 iter != NULL; \
930 iter = mem_cgroup_iter(root, iter, NULL))
931
932 #define for_each_mem_cgroup(iter) \
933 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
934 iter != NULL; \
935 iter = mem_cgroup_iter(NULL, iter, NULL))
936
937 /**
938 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
939 * @page: the page
940 * @zone: zone of the page
941 *
942 * This function is only safe when following the LRU page isolation
943 * and putback protocol: the LRU lock must be held, and the page must
944 * either be PageLRU() or the caller must have isolated/allocated it.
945 */
946 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
947 {
948 struct mem_cgroup_per_zone *mz;
949 struct mem_cgroup *memcg;
950 struct lruvec *lruvec;
951
952 if (mem_cgroup_disabled()) {
953 lruvec = &pgdat->lruvec;
954 goto out;
955 }
956
957 memcg = page->mem_cgroup;
958 /*
959 * Swapcache readahead pages are added to the LRU - and
960 * possibly migrated - before they are charged.
961 */
962 if (!memcg)
963 memcg = root_mem_cgroup;
964
965 mz = mem_cgroup_page_zoneinfo(memcg, page);
966 lruvec = &mz->lruvec;
967 out:
968 /*
969 * Since a node can be onlined after the mem_cgroup was created,
970 * we have to be prepared to initialize lruvec->zone here;
971 * and if offlined then reonlined, we need to reinitialize it.
972 */
973 if (unlikely(lruvec->pgdat != pgdat))
974 lruvec->pgdat = pgdat;
975 return lruvec;
976 }
977
978 /**
979 * mem_cgroup_update_lru_size - account for adding or removing an lru page
980 * @lruvec: mem_cgroup per zone lru vector
981 * @lru: index of lru list the page is sitting on
982 * @zid: Zone ID of the zone pages have been added to
983 * @nr_pages: positive when adding or negative when removing
984 *
985 * This function must be called under lru_lock, just before a page is added
986 * to or just after a page is removed from an lru list (that ordering being
987 * so as to allow it to check that lru_size 0 is consistent with list_empty).
988 */
989 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
990 enum zone_type zid, int nr_pages)
991 {
992 struct mem_cgroup_per_zone *mz;
993 unsigned long *lru_size;
994 long size;
995 bool empty;
996
997 __update_lru_size(lruvec, lru, zid, nr_pages);
998
999 if (mem_cgroup_disabled())
1000 return;
1001
1002 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1003 lru_size = mz->lru_size + lru;
1004 empty = list_empty(lruvec->lists + lru);
1005
1006 if (nr_pages < 0)
1007 *lru_size += nr_pages;
1008
1009 size = *lru_size;
1010 if (WARN_ONCE(size < 0 || empty != !size,
1011 "%s(%p, %d, %d): lru_size %ld but %sempty\n",
1012 __func__, lruvec, lru, nr_pages, size, empty ? "" : "not ")) {
1013 VM_BUG_ON(1);
1014 *lru_size = 0;
1015 }
1016
1017 if (nr_pages > 0)
1018 *lru_size += nr_pages;
1019 }
1020
1021 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1022 {
1023 struct mem_cgroup *task_memcg;
1024 struct task_struct *p;
1025 bool ret;
1026
1027 p = find_lock_task_mm(task);
1028 if (p) {
1029 task_memcg = get_mem_cgroup_from_mm(p->mm);
1030 task_unlock(p);
1031 } else {
1032 /*
1033 * All threads may have already detached their mm's, but the oom
1034 * killer still needs to detect if they have already been oom
1035 * killed to prevent needlessly killing additional tasks.
1036 */
1037 rcu_read_lock();
1038 task_memcg = mem_cgroup_from_task(task);
1039 css_get(&task_memcg->css);
1040 rcu_read_unlock();
1041 }
1042 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1043 css_put(&task_memcg->css);
1044 return ret;
1045 }
1046
1047 /**
1048 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1049 * @memcg: the memory cgroup
1050 *
1051 * Returns the maximum amount of memory @mem can be charged with, in
1052 * pages.
1053 */
1054 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1055 {
1056 unsigned long margin = 0;
1057 unsigned long count;
1058 unsigned long limit;
1059
1060 count = page_counter_read(&memcg->memory);
1061 limit = READ_ONCE(memcg->memory.limit);
1062 if (count < limit)
1063 margin = limit - count;
1064
1065 if (do_memsw_account()) {
1066 count = page_counter_read(&memcg->memsw);
1067 limit = READ_ONCE(memcg->memsw.limit);
1068 if (count <= limit)
1069 margin = min(margin, limit - count);
1070 else
1071 margin = 0;
1072 }
1073
1074 return margin;
1075 }
1076
1077 /*
1078 * A routine for checking "mem" is under move_account() or not.
1079 *
1080 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1081 * moving cgroups. This is for waiting at high-memory pressure
1082 * caused by "move".
1083 */
1084 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1085 {
1086 struct mem_cgroup *from;
1087 struct mem_cgroup *to;
1088 bool ret = false;
1089 /*
1090 * Unlike task_move routines, we access mc.to, mc.from not under
1091 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1092 */
1093 spin_lock(&mc.lock);
1094 from = mc.from;
1095 to = mc.to;
1096 if (!from)
1097 goto unlock;
1098
1099 ret = mem_cgroup_is_descendant(from, memcg) ||
1100 mem_cgroup_is_descendant(to, memcg);
1101 unlock:
1102 spin_unlock(&mc.lock);
1103 return ret;
1104 }
1105
1106 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1107 {
1108 if (mc.moving_task && current != mc.moving_task) {
1109 if (mem_cgroup_under_move(memcg)) {
1110 DEFINE_WAIT(wait);
1111 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1112 /* moving charge context might have finished. */
1113 if (mc.moving_task)
1114 schedule();
1115 finish_wait(&mc.waitq, &wait);
1116 return true;
1117 }
1118 }
1119 return false;
1120 }
1121
1122 #define K(x) ((x) << (PAGE_SHIFT-10))
1123 /**
1124 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1125 * @memcg: The memory cgroup that went over limit
1126 * @p: Task that is going to be killed
1127 *
1128 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1129 * enabled
1130 */
1131 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1132 {
1133 struct mem_cgroup *iter;
1134 unsigned int i;
1135
1136 rcu_read_lock();
1137
1138 if (p) {
1139 pr_info("Task in ");
1140 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1141 pr_cont(" killed as a result of limit of ");
1142 } else {
1143 pr_info("Memory limit reached of cgroup ");
1144 }
1145
1146 pr_cont_cgroup_path(memcg->css.cgroup);
1147 pr_cont("\n");
1148
1149 rcu_read_unlock();
1150
1151 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1152 K((u64)page_counter_read(&memcg->memory)),
1153 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1154 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1155 K((u64)page_counter_read(&memcg->memsw)),
1156 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1157 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1158 K((u64)page_counter_read(&memcg->kmem)),
1159 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1160
1161 for_each_mem_cgroup_tree(iter, memcg) {
1162 pr_info("Memory cgroup stats for ");
1163 pr_cont_cgroup_path(iter->css.cgroup);
1164 pr_cont(":");
1165
1166 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1167 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1168 continue;
1169 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
1170 K(mem_cgroup_read_stat(iter, i)));
1171 }
1172
1173 for (i = 0; i < NR_LRU_LISTS; i++)
1174 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1175 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1176
1177 pr_cont("\n");
1178 }
1179 }
1180
1181 /*
1182 * This function returns the number of memcg under hierarchy tree. Returns
1183 * 1(self count) if no children.
1184 */
1185 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1186 {
1187 int num = 0;
1188 struct mem_cgroup *iter;
1189
1190 for_each_mem_cgroup_tree(iter, memcg)
1191 num++;
1192 return num;
1193 }
1194
1195 /*
1196 * Return the memory (and swap, if configured) limit for a memcg.
1197 */
1198 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1199 {
1200 unsigned long limit;
1201
1202 limit = memcg->memory.limit;
1203 if (mem_cgroup_swappiness(memcg)) {
1204 unsigned long memsw_limit;
1205 unsigned long swap_limit;
1206
1207 memsw_limit = memcg->memsw.limit;
1208 swap_limit = memcg->swap.limit;
1209 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1210 limit = min(limit + swap_limit, memsw_limit);
1211 }
1212 return limit;
1213 }
1214
1215 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1216 int order)
1217 {
1218 struct oom_control oc = {
1219 .zonelist = NULL,
1220 .nodemask = NULL,
1221 .memcg = memcg,
1222 .gfp_mask = gfp_mask,
1223 .order = order,
1224 };
1225 struct mem_cgroup *iter;
1226 unsigned long chosen_points = 0;
1227 unsigned long totalpages;
1228 unsigned int points = 0;
1229 struct task_struct *chosen = NULL;
1230
1231 mutex_lock(&oom_lock);
1232
1233 /*
1234 * If current has a pending SIGKILL or is exiting, then automatically
1235 * select it. The goal is to allow it to allocate so that it may
1236 * quickly exit and free its memory.
1237 */
1238 if (task_will_free_mem(current)) {
1239 mark_oom_victim(current);
1240 wake_oom_reaper(current);
1241 goto unlock;
1242 }
1243
1244 check_panic_on_oom(&oc, CONSTRAINT_MEMCG);
1245 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1246 for_each_mem_cgroup_tree(iter, memcg) {
1247 struct css_task_iter it;
1248 struct task_struct *task;
1249
1250 css_task_iter_start(&iter->css, &it);
1251 while ((task = css_task_iter_next(&it))) {
1252 switch (oom_scan_process_thread(&oc, task)) {
1253 case OOM_SCAN_SELECT:
1254 if (chosen)
1255 put_task_struct(chosen);
1256 chosen = task;
1257 chosen_points = ULONG_MAX;
1258 get_task_struct(chosen);
1259 /* fall through */
1260 case OOM_SCAN_CONTINUE:
1261 continue;
1262 case OOM_SCAN_ABORT:
1263 css_task_iter_end(&it);
1264 mem_cgroup_iter_break(memcg, iter);
1265 if (chosen)
1266 put_task_struct(chosen);
1267 /* Set a dummy value to return "true". */
1268 chosen = (void *) 1;
1269 goto unlock;
1270 case OOM_SCAN_OK:
1271 break;
1272 };
1273 points = oom_badness(task, memcg, NULL, totalpages);
1274 if (!points || points < chosen_points)
1275 continue;
1276 /* Prefer thread group leaders for display purposes */
1277 if (points == chosen_points &&
1278 thread_group_leader(chosen))
1279 continue;
1280
1281 if (chosen)
1282 put_task_struct(chosen);
1283 chosen = task;
1284 chosen_points = points;
1285 get_task_struct(chosen);
1286 }
1287 css_task_iter_end(&it);
1288 }
1289
1290 if (chosen) {
1291 points = chosen_points * 1000 / totalpages;
1292 oom_kill_process(&oc, chosen, points, totalpages,
1293 "Memory cgroup out of memory");
1294 }
1295 unlock:
1296 mutex_unlock(&oom_lock);
1297 return chosen;
1298 }
1299
1300 #if MAX_NUMNODES > 1
1301
1302 /**
1303 * test_mem_cgroup_node_reclaimable
1304 * @memcg: the target memcg
1305 * @nid: the node ID to be checked.
1306 * @noswap : specify true here if the user wants flle only information.
1307 *
1308 * This function returns whether the specified memcg contains any
1309 * reclaimable pages on a node. Returns true if there are any reclaimable
1310 * pages in the node.
1311 */
1312 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1313 int nid, bool noswap)
1314 {
1315 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1316 return true;
1317 if (noswap || !total_swap_pages)
1318 return false;
1319 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1320 return true;
1321 return false;
1322
1323 }
1324
1325 /*
1326 * Always updating the nodemask is not very good - even if we have an empty
1327 * list or the wrong list here, we can start from some node and traverse all
1328 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1329 *
1330 */
1331 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1332 {
1333 int nid;
1334 /*
1335 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1336 * pagein/pageout changes since the last update.
1337 */
1338 if (!atomic_read(&memcg->numainfo_events))
1339 return;
1340 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1341 return;
1342
1343 /* make a nodemask where this memcg uses memory from */
1344 memcg->scan_nodes = node_states[N_MEMORY];
1345
1346 for_each_node_mask(nid, node_states[N_MEMORY]) {
1347
1348 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1349 node_clear(nid, memcg->scan_nodes);
1350 }
1351
1352 atomic_set(&memcg->numainfo_events, 0);
1353 atomic_set(&memcg->numainfo_updating, 0);
1354 }
1355
1356 /*
1357 * Selecting a node where we start reclaim from. Because what we need is just
1358 * reducing usage counter, start from anywhere is O,K. Considering
1359 * memory reclaim from current node, there are pros. and cons.
1360 *
1361 * Freeing memory from current node means freeing memory from a node which
1362 * we'll use or we've used. So, it may make LRU bad. And if several threads
1363 * hit limits, it will see a contention on a node. But freeing from remote
1364 * node means more costs for memory reclaim because of memory latency.
1365 *
1366 * Now, we use round-robin. Better algorithm is welcomed.
1367 */
1368 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1369 {
1370 int node;
1371
1372 mem_cgroup_may_update_nodemask(memcg);
1373 node = memcg->last_scanned_node;
1374
1375 node = next_node_in(node, memcg->scan_nodes);
1376 /*
1377 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1378 * last time it really checked all the LRUs due to rate limiting.
1379 * Fallback to the current node in that case for simplicity.
1380 */
1381 if (unlikely(node == MAX_NUMNODES))
1382 node = numa_node_id();
1383
1384 memcg->last_scanned_node = node;
1385 return node;
1386 }
1387 #else
1388 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1389 {
1390 return 0;
1391 }
1392 #endif
1393
1394 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1395 struct zone *zone,
1396 gfp_t gfp_mask,
1397 unsigned long *total_scanned)
1398 {
1399 struct mem_cgroup *victim = NULL;
1400 int total = 0;
1401 int loop = 0;
1402 unsigned long excess;
1403 unsigned long nr_scanned;
1404 struct mem_cgroup_reclaim_cookie reclaim = {
1405 .zone = zone,
1406 .priority = 0,
1407 };
1408
1409 excess = soft_limit_excess(root_memcg);
1410
1411 while (1) {
1412 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1413 if (!victim) {
1414 loop++;
1415 if (loop >= 2) {
1416 /*
1417 * If we have not been able to reclaim
1418 * anything, it might because there are
1419 * no reclaimable pages under this hierarchy
1420 */
1421 if (!total)
1422 break;
1423 /*
1424 * We want to do more targeted reclaim.
1425 * excess >> 2 is not to excessive so as to
1426 * reclaim too much, nor too less that we keep
1427 * coming back to reclaim from this cgroup
1428 */
1429 if (total >= (excess >> 2) ||
1430 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1431 break;
1432 }
1433 continue;
1434 }
1435 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1436 zone, &nr_scanned);
1437 *total_scanned += nr_scanned;
1438 if (!soft_limit_excess(root_memcg))
1439 break;
1440 }
1441 mem_cgroup_iter_break(root_memcg, victim);
1442 return total;
1443 }
1444
1445 #ifdef CONFIG_LOCKDEP
1446 static struct lockdep_map memcg_oom_lock_dep_map = {
1447 .name = "memcg_oom_lock",
1448 };
1449 #endif
1450
1451 static DEFINE_SPINLOCK(memcg_oom_lock);
1452
1453 /*
1454 * Check OOM-Killer is already running under our hierarchy.
1455 * If someone is running, return false.
1456 */
1457 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1458 {
1459 struct mem_cgroup *iter, *failed = NULL;
1460
1461 spin_lock(&memcg_oom_lock);
1462
1463 for_each_mem_cgroup_tree(iter, memcg) {
1464 if (iter->oom_lock) {
1465 /*
1466 * this subtree of our hierarchy is already locked
1467 * so we cannot give a lock.
1468 */
1469 failed = iter;
1470 mem_cgroup_iter_break(memcg, iter);
1471 break;
1472 } else
1473 iter->oom_lock = true;
1474 }
1475
1476 if (failed) {
1477 /*
1478 * OK, we failed to lock the whole subtree so we have
1479 * to clean up what we set up to the failing subtree
1480 */
1481 for_each_mem_cgroup_tree(iter, memcg) {
1482 if (iter == failed) {
1483 mem_cgroup_iter_break(memcg, iter);
1484 break;
1485 }
1486 iter->oom_lock = false;
1487 }
1488 } else
1489 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1490
1491 spin_unlock(&memcg_oom_lock);
1492
1493 return !failed;
1494 }
1495
1496 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1497 {
1498 struct mem_cgroup *iter;
1499
1500 spin_lock(&memcg_oom_lock);
1501 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1502 for_each_mem_cgroup_tree(iter, memcg)
1503 iter->oom_lock = false;
1504 spin_unlock(&memcg_oom_lock);
1505 }
1506
1507 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1508 {
1509 struct mem_cgroup *iter;
1510
1511 spin_lock(&memcg_oom_lock);
1512 for_each_mem_cgroup_tree(iter, memcg)
1513 iter->under_oom++;
1514 spin_unlock(&memcg_oom_lock);
1515 }
1516
1517 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1518 {
1519 struct mem_cgroup *iter;
1520
1521 /*
1522 * When a new child is created while the hierarchy is under oom,
1523 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1524 */
1525 spin_lock(&memcg_oom_lock);
1526 for_each_mem_cgroup_tree(iter, memcg)
1527 if (iter->under_oom > 0)
1528 iter->under_oom--;
1529 spin_unlock(&memcg_oom_lock);
1530 }
1531
1532 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1533
1534 struct oom_wait_info {
1535 struct mem_cgroup *memcg;
1536 wait_queue_t wait;
1537 };
1538
1539 static int memcg_oom_wake_function(wait_queue_t *wait,
1540 unsigned mode, int sync, void *arg)
1541 {
1542 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1543 struct mem_cgroup *oom_wait_memcg;
1544 struct oom_wait_info *oom_wait_info;
1545
1546 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1547 oom_wait_memcg = oom_wait_info->memcg;
1548
1549 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1550 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1551 return 0;
1552 return autoremove_wake_function(wait, mode, sync, arg);
1553 }
1554
1555 static void memcg_oom_recover(struct mem_cgroup *memcg)
1556 {
1557 /*
1558 * For the following lockless ->under_oom test, the only required
1559 * guarantee is that it must see the state asserted by an OOM when
1560 * this function is called as a result of userland actions
1561 * triggered by the notification of the OOM. This is trivially
1562 * achieved by invoking mem_cgroup_mark_under_oom() before
1563 * triggering notification.
1564 */
1565 if (memcg && memcg->under_oom)
1566 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1567 }
1568
1569 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1570 {
1571 if (!current->memcg_may_oom)
1572 return;
1573 /*
1574 * We are in the middle of the charge context here, so we
1575 * don't want to block when potentially sitting on a callstack
1576 * that holds all kinds of filesystem and mm locks.
1577 *
1578 * Also, the caller may handle a failed allocation gracefully
1579 * (like optional page cache readahead) and so an OOM killer
1580 * invocation might not even be necessary.
1581 *
1582 * That's why we don't do anything here except remember the
1583 * OOM context and then deal with it at the end of the page
1584 * fault when the stack is unwound, the locks are released,
1585 * and when we know whether the fault was overall successful.
1586 */
1587 css_get(&memcg->css);
1588 current->memcg_in_oom = memcg;
1589 current->memcg_oom_gfp_mask = mask;
1590 current->memcg_oom_order = order;
1591 }
1592
1593 /**
1594 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1595 * @handle: actually kill/wait or just clean up the OOM state
1596 *
1597 * This has to be called at the end of a page fault if the memcg OOM
1598 * handler was enabled.
1599 *
1600 * Memcg supports userspace OOM handling where failed allocations must
1601 * sleep on a waitqueue until the userspace task resolves the
1602 * situation. Sleeping directly in the charge context with all kinds
1603 * of locks held is not a good idea, instead we remember an OOM state
1604 * in the task and mem_cgroup_oom_synchronize() has to be called at
1605 * the end of the page fault to complete the OOM handling.
1606 *
1607 * Returns %true if an ongoing memcg OOM situation was detected and
1608 * completed, %false otherwise.
1609 */
1610 bool mem_cgroup_oom_synchronize(bool handle)
1611 {
1612 struct mem_cgroup *memcg = current->memcg_in_oom;
1613 struct oom_wait_info owait;
1614 bool locked;
1615
1616 /* OOM is global, do not handle */
1617 if (!memcg)
1618 return false;
1619
1620 if (!handle || oom_killer_disabled)
1621 goto cleanup;
1622
1623 owait.memcg = memcg;
1624 owait.wait.flags = 0;
1625 owait.wait.func = memcg_oom_wake_function;
1626 owait.wait.private = current;
1627 INIT_LIST_HEAD(&owait.wait.task_list);
1628
1629 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1630 mem_cgroup_mark_under_oom(memcg);
1631
1632 locked = mem_cgroup_oom_trylock(memcg);
1633
1634 if (locked)
1635 mem_cgroup_oom_notify(memcg);
1636
1637 if (locked && !memcg->oom_kill_disable) {
1638 mem_cgroup_unmark_under_oom(memcg);
1639 finish_wait(&memcg_oom_waitq, &owait.wait);
1640 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1641 current->memcg_oom_order);
1642 } else {
1643 schedule();
1644 mem_cgroup_unmark_under_oom(memcg);
1645 finish_wait(&memcg_oom_waitq, &owait.wait);
1646 }
1647
1648 if (locked) {
1649 mem_cgroup_oom_unlock(memcg);
1650 /*
1651 * There is no guarantee that an OOM-lock contender
1652 * sees the wakeups triggered by the OOM kill
1653 * uncharges. Wake any sleepers explicitely.
1654 */
1655 memcg_oom_recover(memcg);
1656 }
1657 cleanup:
1658 current->memcg_in_oom = NULL;
1659 css_put(&memcg->css);
1660 return true;
1661 }
1662
1663 /**
1664 * lock_page_memcg - lock a page->mem_cgroup binding
1665 * @page: the page
1666 *
1667 * This function protects unlocked LRU pages from being moved to
1668 * another cgroup and stabilizes their page->mem_cgroup binding.
1669 */
1670 void lock_page_memcg(struct page *page)
1671 {
1672 struct mem_cgroup *memcg;
1673 unsigned long flags;
1674
1675 /*
1676 * The RCU lock is held throughout the transaction. The fast
1677 * path can get away without acquiring the memcg->move_lock
1678 * because page moving starts with an RCU grace period.
1679 */
1680 rcu_read_lock();
1681
1682 if (mem_cgroup_disabled())
1683 return;
1684 again:
1685 memcg = page->mem_cgroup;
1686 if (unlikely(!memcg))
1687 return;
1688
1689 if (atomic_read(&memcg->moving_account) <= 0)
1690 return;
1691
1692 spin_lock_irqsave(&memcg->move_lock, flags);
1693 if (memcg != page->mem_cgroup) {
1694 spin_unlock_irqrestore(&memcg->move_lock, flags);
1695 goto again;
1696 }
1697
1698 /*
1699 * When charge migration first begins, we can have locked and
1700 * unlocked page stat updates happening concurrently. Track
1701 * the task who has the lock for unlock_page_memcg().
1702 */
1703 memcg->move_lock_task = current;
1704 memcg->move_lock_flags = flags;
1705
1706 return;
1707 }
1708 EXPORT_SYMBOL(lock_page_memcg);
1709
1710 /**
1711 * unlock_page_memcg - unlock a page->mem_cgroup binding
1712 * @page: the page
1713 */
1714 void unlock_page_memcg(struct page *page)
1715 {
1716 struct mem_cgroup *memcg = page->mem_cgroup;
1717
1718 if (memcg && memcg->move_lock_task == current) {
1719 unsigned long flags = memcg->move_lock_flags;
1720
1721 memcg->move_lock_task = NULL;
1722 memcg->move_lock_flags = 0;
1723
1724 spin_unlock_irqrestore(&memcg->move_lock, flags);
1725 }
1726
1727 rcu_read_unlock();
1728 }
1729 EXPORT_SYMBOL(unlock_page_memcg);
1730
1731 /*
1732 * size of first charge trial. "32" comes from vmscan.c's magic value.
1733 * TODO: maybe necessary to use big numbers in big irons.
1734 */
1735 #define CHARGE_BATCH 32U
1736 struct memcg_stock_pcp {
1737 struct mem_cgroup *cached; /* this never be root cgroup */
1738 unsigned int nr_pages;
1739 struct work_struct work;
1740 unsigned long flags;
1741 #define FLUSHING_CACHED_CHARGE 0
1742 };
1743 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1744 static DEFINE_MUTEX(percpu_charge_mutex);
1745
1746 /**
1747 * consume_stock: Try to consume stocked charge on this cpu.
1748 * @memcg: memcg to consume from.
1749 * @nr_pages: how many pages to charge.
1750 *
1751 * The charges will only happen if @memcg matches the current cpu's memcg
1752 * stock, and at least @nr_pages are available in that stock. Failure to
1753 * service an allocation will refill the stock.
1754 *
1755 * returns true if successful, false otherwise.
1756 */
1757 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1758 {
1759 struct memcg_stock_pcp *stock;
1760 bool ret = false;
1761
1762 if (nr_pages > CHARGE_BATCH)
1763 return ret;
1764
1765 stock = &get_cpu_var(memcg_stock);
1766 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
1767 stock->nr_pages -= nr_pages;
1768 ret = true;
1769 }
1770 put_cpu_var(memcg_stock);
1771 return ret;
1772 }
1773
1774 /*
1775 * Returns stocks cached in percpu and reset cached information.
1776 */
1777 static void drain_stock(struct memcg_stock_pcp *stock)
1778 {
1779 struct mem_cgroup *old = stock->cached;
1780
1781 if (stock->nr_pages) {
1782 page_counter_uncharge(&old->memory, stock->nr_pages);
1783 if (do_memsw_account())
1784 page_counter_uncharge(&old->memsw, stock->nr_pages);
1785 css_put_many(&old->css, stock->nr_pages);
1786 stock->nr_pages = 0;
1787 }
1788 stock->cached = NULL;
1789 }
1790
1791 /*
1792 * This must be called under preempt disabled or must be called by
1793 * a thread which is pinned to local cpu.
1794 */
1795 static void drain_local_stock(struct work_struct *dummy)
1796 {
1797 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
1798 drain_stock(stock);
1799 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
1800 }
1801
1802 /*
1803 * Cache charges(val) to local per_cpu area.
1804 * This will be consumed by consume_stock() function, later.
1805 */
1806 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
1807 {
1808 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1809
1810 if (stock->cached != memcg) { /* reset if necessary */
1811 drain_stock(stock);
1812 stock->cached = memcg;
1813 }
1814 stock->nr_pages += nr_pages;
1815 put_cpu_var(memcg_stock);
1816 }
1817
1818 /*
1819 * Drains all per-CPU charge caches for given root_memcg resp. subtree
1820 * of the hierarchy under it.
1821 */
1822 static void drain_all_stock(struct mem_cgroup *root_memcg)
1823 {
1824 int cpu, curcpu;
1825
1826 /* If someone's already draining, avoid adding running more workers. */
1827 if (!mutex_trylock(&percpu_charge_mutex))
1828 return;
1829 /* Notify other cpus that system-wide "drain" is running */
1830 get_online_cpus();
1831 curcpu = get_cpu();
1832 for_each_online_cpu(cpu) {
1833 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1834 struct mem_cgroup *memcg;
1835
1836 memcg = stock->cached;
1837 if (!memcg || !stock->nr_pages)
1838 continue;
1839 if (!mem_cgroup_is_descendant(memcg, root_memcg))
1840 continue;
1841 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1842 if (cpu == curcpu)
1843 drain_local_stock(&stock->work);
1844 else
1845 schedule_work_on(cpu, &stock->work);
1846 }
1847 }
1848 put_cpu();
1849 put_online_cpus();
1850 mutex_unlock(&percpu_charge_mutex);
1851 }
1852
1853 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
1854 unsigned long action,
1855 void *hcpu)
1856 {
1857 int cpu = (unsigned long)hcpu;
1858 struct memcg_stock_pcp *stock;
1859
1860 if (action == CPU_ONLINE)
1861 return NOTIFY_OK;
1862
1863 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1864 return NOTIFY_OK;
1865
1866 stock = &per_cpu(memcg_stock, cpu);
1867 drain_stock(stock);
1868 return NOTIFY_OK;
1869 }
1870
1871 static void reclaim_high(struct mem_cgroup *memcg,
1872 unsigned int nr_pages,
1873 gfp_t gfp_mask)
1874 {
1875 do {
1876 if (page_counter_read(&memcg->memory) <= memcg->high)
1877 continue;
1878 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1879 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1880 } while ((memcg = parent_mem_cgroup(memcg)));
1881 }
1882
1883 static void high_work_func(struct work_struct *work)
1884 {
1885 struct mem_cgroup *memcg;
1886
1887 memcg = container_of(work, struct mem_cgroup, high_work);
1888 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1889 }
1890
1891 /*
1892 * Scheduled by try_charge() to be executed from the userland return path
1893 * and reclaims memory over the high limit.
1894 */
1895 void mem_cgroup_handle_over_high(void)
1896 {
1897 unsigned int nr_pages = current->memcg_nr_pages_over_high;
1898 struct mem_cgroup *memcg;
1899
1900 if (likely(!nr_pages))
1901 return;
1902
1903 memcg = get_mem_cgroup_from_mm(current->mm);
1904 reclaim_high(memcg, nr_pages, GFP_KERNEL);
1905 css_put(&memcg->css);
1906 current->memcg_nr_pages_over_high = 0;
1907 }
1908
1909 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1910 unsigned int nr_pages)
1911 {
1912 unsigned int batch = max(CHARGE_BATCH, nr_pages);
1913 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1914 struct mem_cgroup *mem_over_limit;
1915 struct page_counter *counter;
1916 unsigned long nr_reclaimed;
1917 bool may_swap = true;
1918 bool drained = false;
1919
1920 if (mem_cgroup_is_root(memcg))
1921 return 0;
1922 retry:
1923 if (consume_stock(memcg, nr_pages))
1924 return 0;
1925
1926 if (!do_memsw_account() ||
1927 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1928 if (page_counter_try_charge(&memcg->memory, batch, &counter))
1929 goto done_restock;
1930 if (do_memsw_account())
1931 page_counter_uncharge(&memcg->memsw, batch);
1932 mem_over_limit = mem_cgroup_from_counter(counter, memory);
1933 } else {
1934 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
1935 may_swap = false;
1936 }
1937
1938 if (batch > nr_pages) {
1939 batch = nr_pages;
1940 goto retry;
1941 }
1942
1943 /*
1944 * Unlike in global OOM situations, memcg is not in a physical
1945 * memory shortage. Allow dying and OOM-killed tasks to
1946 * bypass the last charges so that they can exit quickly and
1947 * free their memory.
1948 */
1949 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1950 fatal_signal_pending(current) ||
1951 current->flags & PF_EXITING))
1952 goto force;
1953
1954 if (unlikely(task_in_memcg_oom(current)))
1955 goto nomem;
1956
1957 if (!gfpflags_allow_blocking(gfp_mask))
1958 goto nomem;
1959
1960 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1961
1962 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1963 gfp_mask, may_swap);
1964
1965 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
1966 goto retry;
1967
1968 if (!drained) {
1969 drain_all_stock(mem_over_limit);
1970 drained = true;
1971 goto retry;
1972 }
1973
1974 if (gfp_mask & __GFP_NORETRY)
1975 goto nomem;
1976 /*
1977 * Even though the limit is exceeded at this point, reclaim
1978 * may have been able to free some pages. Retry the charge
1979 * before killing the task.
1980 *
1981 * Only for regular pages, though: huge pages are rather
1982 * unlikely to succeed so close to the limit, and we fall back
1983 * to regular pages anyway in case of failure.
1984 */
1985 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
1986 goto retry;
1987 /*
1988 * At task move, charge accounts can be doubly counted. So, it's
1989 * better to wait until the end of task_move if something is going on.
1990 */
1991 if (mem_cgroup_wait_acct_move(mem_over_limit))
1992 goto retry;
1993
1994 if (nr_retries--)
1995 goto retry;
1996
1997 if (gfp_mask & __GFP_NOFAIL)
1998 goto force;
1999
2000 if (fatal_signal_pending(current))
2001 goto force;
2002
2003 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2004
2005 mem_cgroup_oom(mem_over_limit, gfp_mask,
2006 get_order(nr_pages * PAGE_SIZE));
2007 nomem:
2008 if (!(gfp_mask & __GFP_NOFAIL))
2009 return -ENOMEM;
2010 force:
2011 /*
2012 * The allocation either can't fail or will lead to more memory
2013 * being freed very soon. Allow memory usage go over the limit
2014 * temporarily by force charging it.
2015 */
2016 page_counter_charge(&memcg->memory, nr_pages);
2017 if (do_memsw_account())
2018 page_counter_charge(&memcg->memsw, nr_pages);
2019 css_get_many(&memcg->css, nr_pages);
2020
2021 return 0;
2022
2023 done_restock:
2024 css_get_many(&memcg->css, batch);
2025 if (batch > nr_pages)
2026 refill_stock(memcg, batch - nr_pages);
2027
2028 /*
2029 * If the hierarchy is above the normal consumption range, schedule
2030 * reclaim on returning to userland. We can perform reclaim here
2031 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2032 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2033 * not recorded as it most likely matches current's and won't
2034 * change in the meantime. As high limit is checked again before
2035 * reclaim, the cost of mismatch is negligible.
2036 */
2037 do {
2038 if (page_counter_read(&memcg->memory) > memcg->high) {
2039 /* Don't bother a random interrupted task */
2040 if (in_interrupt()) {
2041 schedule_work(&memcg->high_work);
2042 break;
2043 }
2044 current->memcg_nr_pages_over_high += batch;
2045 set_notify_resume(current);
2046 break;
2047 }
2048 } while ((memcg = parent_mem_cgroup(memcg)));
2049
2050 return 0;
2051 }
2052
2053 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2054 {
2055 if (mem_cgroup_is_root(memcg))
2056 return;
2057
2058 page_counter_uncharge(&memcg->memory, nr_pages);
2059 if (do_memsw_account())
2060 page_counter_uncharge(&memcg->memsw, nr_pages);
2061
2062 css_put_many(&memcg->css, nr_pages);
2063 }
2064
2065 static void lock_page_lru(struct page *page, int *isolated)
2066 {
2067 struct zone *zone = page_zone(page);
2068
2069 spin_lock_irq(zone_lru_lock(zone));
2070 if (PageLRU(page)) {
2071 struct lruvec *lruvec;
2072
2073 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2074 ClearPageLRU(page);
2075 del_page_from_lru_list(page, lruvec, page_lru(page));
2076 *isolated = 1;
2077 } else
2078 *isolated = 0;
2079 }
2080
2081 static void unlock_page_lru(struct page *page, int isolated)
2082 {
2083 struct zone *zone = page_zone(page);
2084
2085 if (isolated) {
2086 struct lruvec *lruvec;
2087
2088 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
2089 VM_BUG_ON_PAGE(PageLRU(page), page);
2090 SetPageLRU(page);
2091 add_page_to_lru_list(page, lruvec, page_lru(page));
2092 }
2093 spin_unlock_irq(zone_lru_lock(zone));
2094 }
2095
2096 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2097 bool lrucare)
2098 {
2099 int isolated;
2100
2101 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2102
2103 /*
2104 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2105 * may already be on some other mem_cgroup's LRU. Take care of it.
2106 */
2107 if (lrucare)
2108 lock_page_lru(page, &isolated);
2109
2110 /*
2111 * Nobody should be changing or seriously looking at
2112 * page->mem_cgroup at this point:
2113 *
2114 * - the page is uncharged
2115 *
2116 * - the page is off-LRU
2117 *
2118 * - an anonymous fault has exclusive page access, except for
2119 * a locked page table
2120 *
2121 * - a page cache insertion, a swapin fault, or a migration
2122 * have the page locked
2123 */
2124 page->mem_cgroup = memcg;
2125
2126 if (lrucare)
2127 unlock_page_lru(page, isolated);
2128 }
2129
2130 #ifndef CONFIG_SLOB
2131 static int memcg_alloc_cache_id(void)
2132 {
2133 int id, size;
2134 int err;
2135
2136 id = ida_simple_get(&memcg_cache_ida,
2137 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2138 if (id < 0)
2139 return id;
2140
2141 if (id < memcg_nr_cache_ids)
2142 return id;
2143
2144 /*
2145 * There's no space for the new id in memcg_caches arrays,
2146 * so we have to grow them.
2147 */
2148 down_write(&memcg_cache_ids_sem);
2149
2150 size = 2 * (id + 1);
2151 if (size < MEMCG_CACHES_MIN_SIZE)
2152 size = MEMCG_CACHES_MIN_SIZE;
2153 else if (size > MEMCG_CACHES_MAX_SIZE)
2154 size = MEMCG_CACHES_MAX_SIZE;
2155
2156 err = memcg_update_all_caches(size);
2157 if (!err)
2158 err = memcg_update_all_list_lrus(size);
2159 if (!err)
2160 memcg_nr_cache_ids = size;
2161
2162 up_write(&memcg_cache_ids_sem);
2163
2164 if (err) {
2165 ida_simple_remove(&memcg_cache_ida, id);
2166 return err;
2167 }
2168 return id;
2169 }
2170
2171 static void memcg_free_cache_id(int id)
2172 {
2173 ida_simple_remove(&memcg_cache_ida, id);
2174 }
2175
2176 struct memcg_kmem_cache_create_work {
2177 struct mem_cgroup *memcg;
2178 struct kmem_cache *cachep;
2179 struct work_struct work;
2180 };
2181
2182 static void memcg_kmem_cache_create_func(struct work_struct *w)
2183 {
2184 struct memcg_kmem_cache_create_work *cw =
2185 container_of(w, struct memcg_kmem_cache_create_work, work);
2186 struct mem_cgroup *memcg = cw->memcg;
2187 struct kmem_cache *cachep = cw->cachep;
2188
2189 memcg_create_kmem_cache(memcg, cachep);
2190
2191 css_put(&memcg->css);
2192 kfree(cw);
2193 }
2194
2195 /*
2196 * Enqueue the creation of a per-memcg kmem_cache.
2197 */
2198 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2199 struct kmem_cache *cachep)
2200 {
2201 struct memcg_kmem_cache_create_work *cw;
2202
2203 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2204 if (!cw)
2205 return;
2206
2207 css_get(&memcg->css);
2208
2209 cw->memcg = memcg;
2210 cw->cachep = cachep;
2211 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2212
2213 schedule_work(&cw->work);
2214 }
2215
2216 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2217 struct kmem_cache *cachep)
2218 {
2219 /*
2220 * We need to stop accounting when we kmalloc, because if the
2221 * corresponding kmalloc cache is not yet created, the first allocation
2222 * in __memcg_schedule_kmem_cache_create will recurse.
2223 *
2224 * However, it is better to enclose the whole function. Depending on
2225 * the debugging options enabled, INIT_WORK(), for instance, can
2226 * trigger an allocation. This too, will make us recurse. Because at
2227 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2228 * the safest choice is to do it like this, wrapping the whole function.
2229 */
2230 current->memcg_kmem_skip_account = 1;
2231 __memcg_schedule_kmem_cache_create(memcg, cachep);
2232 current->memcg_kmem_skip_account = 0;
2233 }
2234
2235 static inline bool memcg_kmem_bypass(void)
2236 {
2237 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2238 return true;
2239 return false;
2240 }
2241
2242 /**
2243 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2244 * @cachep: the original global kmem cache
2245 *
2246 * Return the kmem_cache we're supposed to use for a slab allocation.
2247 * We try to use the current memcg's version of the cache.
2248 *
2249 * If the cache does not exist yet, if we are the first user of it, we
2250 * create it asynchronously in a workqueue and let the current allocation
2251 * go through with the original cache.
2252 *
2253 * This function takes a reference to the cache it returns to assure it
2254 * won't get destroyed while we are working with it. Once the caller is
2255 * done with it, memcg_kmem_put_cache() must be called to release the
2256 * reference.
2257 */
2258 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2259 {
2260 struct mem_cgroup *memcg;
2261 struct kmem_cache *memcg_cachep;
2262 int kmemcg_id;
2263
2264 VM_BUG_ON(!is_root_cache(cachep));
2265
2266 if (memcg_kmem_bypass())
2267 return cachep;
2268
2269 if (current->memcg_kmem_skip_account)
2270 return cachep;
2271
2272 memcg = get_mem_cgroup_from_mm(current->mm);
2273 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2274 if (kmemcg_id < 0)
2275 goto out;
2276
2277 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2278 if (likely(memcg_cachep))
2279 return memcg_cachep;
2280
2281 /*
2282 * If we are in a safe context (can wait, and not in interrupt
2283 * context), we could be be predictable and return right away.
2284 * This would guarantee that the allocation being performed
2285 * already belongs in the new cache.
2286 *
2287 * However, there are some clashes that can arrive from locking.
2288 * For instance, because we acquire the slab_mutex while doing
2289 * memcg_create_kmem_cache, this means no further allocation
2290 * could happen with the slab_mutex held. So it's better to
2291 * defer everything.
2292 */
2293 memcg_schedule_kmem_cache_create(memcg, cachep);
2294 out:
2295 css_put(&memcg->css);
2296 return cachep;
2297 }
2298
2299 /**
2300 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2301 * @cachep: the cache returned by memcg_kmem_get_cache
2302 */
2303 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2304 {
2305 if (!is_root_cache(cachep))
2306 css_put(&cachep->memcg_params.memcg->css);
2307 }
2308
2309 /**
2310 * memcg_kmem_charge: charge a kmem page
2311 * @page: page to charge
2312 * @gfp: reclaim mode
2313 * @order: allocation order
2314 * @memcg: memory cgroup to charge
2315 *
2316 * Returns 0 on success, an error code on failure.
2317 */
2318 int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2319 struct mem_cgroup *memcg)
2320 {
2321 unsigned int nr_pages = 1 << order;
2322 struct page_counter *counter;
2323 int ret;
2324
2325 ret = try_charge(memcg, gfp, nr_pages);
2326 if (ret)
2327 return ret;
2328
2329 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2330 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2331 cancel_charge(memcg, nr_pages);
2332 return -ENOMEM;
2333 }
2334
2335 page->mem_cgroup = memcg;
2336
2337 return 0;
2338 }
2339
2340 /**
2341 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2342 * @page: page to charge
2343 * @gfp: reclaim mode
2344 * @order: allocation order
2345 *
2346 * Returns 0 on success, an error code on failure.
2347 */
2348 int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2349 {
2350 struct mem_cgroup *memcg;
2351 int ret = 0;
2352
2353 if (memcg_kmem_bypass())
2354 return 0;
2355
2356 memcg = get_mem_cgroup_from_mm(current->mm);
2357 if (!mem_cgroup_is_root(memcg))
2358 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
2359 css_put(&memcg->css);
2360 return ret;
2361 }
2362 /**
2363 * memcg_kmem_uncharge: uncharge a kmem page
2364 * @page: page to uncharge
2365 * @order: allocation order
2366 */
2367 void memcg_kmem_uncharge(struct page *page, int order)
2368 {
2369 struct mem_cgroup *memcg = page->mem_cgroup;
2370 unsigned int nr_pages = 1 << order;
2371
2372 if (!memcg)
2373 return;
2374
2375 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2376
2377 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2378 page_counter_uncharge(&memcg->kmem, nr_pages);
2379
2380 page_counter_uncharge(&memcg->memory, nr_pages);
2381 if (do_memsw_account())
2382 page_counter_uncharge(&memcg->memsw, nr_pages);
2383
2384 page->mem_cgroup = NULL;
2385 css_put_many(&memcg->css, nr_pages);
2386 }
2387 #endif /* !CONFIG_SLOB */
2388
2389 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2390
2391 /*
2392 * Because tail pages are not marked as "used", set it. We're under
2393 * zone_lru_lock and migration entries setup in all page mappings.
2394 */
2395 void mem_cgroup_split_huge_fixup(struct page *head)
2396 {
2397 int i;
2398
2399 if (mem_cgroup_disabled())
2400 return;
2401
2402 for (i = 1; i < HPAGE_PMD_NR; i++)
2403 head[i].mem_cgroup = head->mem_cgroup;
2404
2405 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2406 HPAGE_PMD_NR);
2407 }
2408 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2409
2410 #ifdef CONFIG_MEMCG_SWAP
2411 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2412 bool charge)
2413 {
2414 int val = (charge) ? 1 : -1;
2415 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2416 }
2417
2418 /**
2419 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2420 * @entry: swap entry to be moved
2421 * @from: mem_cgroup which the entry is moved from
2422 * @to: mem_cgroup which the entry is moved to
2423 *
2424 * It succeeds only when the swap_cgroup's record for this entry is the same
2425 * as the mem_cgroup's id of @from.
2426 *
2427 * Returns 0 on success, -EINVAL on failure.
2428 *
2429 * The caller must have charged to @to, IOW, called page_counter_charge() about
2430 * both res and memsw, and called css_get().
2431 */
2432 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2433 struct mem_cgroup *from, struct mem_cgroup *to)
2434 {
2435 unsigned short old_id, new_id;
2436
2437 old_id = mem_cgroup_id(from);
2438 new_id = mem_cgroup_id(to);
2439
2440 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2441 mem_cgroup_swap_statistics(from, false);
2442 mem_cgroup_swap_statistics(to, true);
2443 return 0;
2444 }
2445 return -EINVAL;
2446 }
2447 #else
2448 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2449 struct mem_cgroup *from, struct mem_cgroup *to)
2450 {
2451 return -EINVAL;
2452 }
2453 #endif
2454
2455 static DEFINE_MUTEX(memcg_limit_mutex);
2456
2457 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2458 unsigned long limit)
2459 {
2460 unsigned long curusage;
2461 unsigned long oldusage;
2462 bool enlarge = false;
2463 int retry_count;
2464 int ret;
2465
2466 /*
2467 * For keeping hierarchical_reclaim simple, how long we should retry
2468 * is depends on callers. We set our retry-count to be function
2469 * of # of children which we should visit in this loop.
2470 */
2471 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2472 mem_cgroup_count_children(memcg);
2473
2474 oldusage = page_counter_read(&memcg->memory);
2475
2476 do {
2477 if (signal_pending(current)) {
2478 ret = -EINTR;
2479 break;
2480 }
2481
2482 mutex_lock(&memcg_limit_mutex);
2483 if (limit > memcg->memsw.limit) {
2484 mutex_unlock(&memcg_limit_mutex);
2485 ret = -EINVAL;
2486 break;
2487 }
2488 if (limit > memcg->memory.limit)
2489 enlarge = true;
2490 ret = page_counter_limit(&memcg->memory, limit);
2491 mutex_unlock(&memcg_limit_mutex);
2492
2493 if (!ret)
2494 break;
2495
2496 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2497
2498 curusage = page_counter_read(&memcg->memory);
2499 /* Usage is reduced ? */
2500 if (curusage >= oldusage)
2501 retry_count--;
2502 else
2503 oldusage = curusage;
2504 } while (retry_count);
2505
2506 if (!ret && enlarge)
2507 memcg_oom_recover(memcg);
2508
2509 return ret;
2510 }
2511
2512 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2513 unsigned long limit)
2514 {
2515 unsigned long curusage;
2516 unsigned long oldusage;
2517 bool enlarge = false;
2518 int retry_count;
2519 int ret;
2520
2521 /* see mem_cgroup_resize_res_limit */
2522 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2523 mem_cgroup_count_children(memcg);
2524
2525 oldusage = page_counter_read(&memcg->memsw);
2526
2527 do {
2528 if (signal_pending(current)) {
2529 ret = -EINTR;
2530 break;
2531 }
2532
2533 mutex_lock(&memcg_limit_mutex);
2534 if (limit < memcg->memory.limit) {
2535 mutex_unlock(&memcg_limit_mutex);
2536 ret = -EINVAL;
2537 break;
2538 }
2539 if (limit > memcg->memsw.limit)
2540 enlarge = true;
2541 ret = page_counter_limit(&memcg->memsw, limit);
2542 mutex_unlock(&memcg_limit_mutex);
2543
2544 if (!ret)
2545 break;
2546
2547 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2548
2549 curusage = page_counter_read(&memcg->memsw);
2550 /* Usage is reduced ? */
2551 if (curusage >= oldusage)
2552 retry_count--;
2553 else
2554 oldusage = curusage;
2555 } while (retry_count);
2556
2557 if (!ret && enlarge)
2558 memcg_oom_recover(memcg);
2559
2560 return ret;
2561 }
2562
2563 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2564 gfp_t gfp_mask,
2565 unsigned long *total_scanned)
2566 {
2567 unsigned long nr_reclaimed = 0;
2568 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2569 unsigned long reclaimed;
2570 int loop = 0;
2571 struct mem_cgroup_tree_per_zone *mctz;
2572 unsigned long excess;
2573 unsigned long nr_scanned;
2574
2575 if (order > 0)
2576 return 0;
2577
2578 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2579 /*
2580 * This loop can run a while, specially if mem_cgroup's continuously
2581 * keep exceeding their soft limit and putting the system under
2582 * pressure
2583 */
2584 do {
2585 if (next_mz)
2586 mz = next_mz;
2587 else
2588 mz = mem_cgroup_largest_soft_limit_node(mctz);
2589 if (!mz)
2590 break;
2591
2592 nr_scanned = 0;
2593 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2594 gfp_mask, &nr_scanned);
2595 nr_reclaimed += reclaimed;
2596 *total_scanned += nr_scanned;
2597 spin_lock_irq(&mctz->lock);
2598 __mem_cgroup_remove_exceeded(mz, mctz);
2599
2600 /*
2601 * If we failed to reclaim anything from this memory cgroup
2602 * it is time to move on to the next cgroup
2603 */
2604 next_mz = NULL;
2605 if (!reclaimed)
2606 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2607
2608 excess = soft_limit_excess(mz->memcg);
2609 /*
2610 * One school of thought says that we should not add
2611 * back the node to the tree if reclaim returns 0.
2612 * But our reclaim could return 0, simply because due
2613 * to priority we are exposing a smaller subset of
2614 * memory to reclaim from. Consider this as a longer
2615 * term TODO.
2616 */
2617 /* If excess == 0, no tree ops */
2618 __mem_cgroup_insert_exceeded(mz, mctz, excess);
2619 spin_unlock_irq(&mctz->lock);
2620 css_put(&mz->memcg->css);
2621 loop++;
2622 /*
2623 * Could not reclaim anything and there are no more
2624 * mem cgroups to try or we seem to be looping without
2625 * reclaiming anything.
2626 */
2627 if (!nr_reclaimed &&
2628 (next_mz == NULL ||
2629 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2630 break;
2631 } while (!nr_reclaimed);
2632 if (next_mz)
2633 css_put(&next_mz->memcg->css);
2634 return nr_reclaimed;
2635 }
2636
2637 /*
2638 * Test whether @memcg has children, dead or alive. Note that this
2639 * function doesn't care whether @memcg has use_hierarchy enabled and
2640 * returns %true if there are child csses according to the cgroup
2641 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2642 */
2643 static inline bool memcg_has_children(struct mem_cgroup *memcg)
2644 {
2645 bool ret;
2646
2647 rcu_read_lock();
2648 ret = css_next_child(NULL, &memcg->css);
2649 rcu_read_unlock();
2650 return ret;
2651 }
2652
2653 /*
2654 * Reclaims as many pages from the given memcg as possible.
2655 *
2656 * Caller is responsible for holding css reference for memcg.
2657 */
2658 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2659 {
2660 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2661
2662 /* we call try-to-free pages for make this cgroup empty */
2663 lru_add_drain_all();
2664 /* try to free all pages in this cgroup */
2665 while (nr_retries && page_counter_read(&memcg->memory)) {
2666 int progress;
2667
2668 if (signal_pending(current))
2669 return -EINTR;
2670
2671 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2672 GFP_KERNEL, true);
2673 if (!progress) {
2674 nr_retries--;
2675 /* maybe some writeback is necessary */
2676 congestion_wait(BLK_RW_ASYNC, HZ/10);
2677 }
2678
2679 }
2680
2681 return 0;
2682 }
2683
2684 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2685 char *buf, size_t nbytes,
2686 loff_t off)
2687 {
2688 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2689
2690 if (mem_cgroup_is_root(memcg))
2691 return -EINVAL;
2692 return mem_cgroup_force_empty(memcg) ?: nbytes;
2693 }
2694
2695 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2696 struct cftype *cft)
2697 {
2698 return mem_cgroup_from_css(css)->use_hierarchy;
2699 }
2700
2701 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2702 struct cftype *cft, u64 val)
2703 {
2704 int retval = 0;
2705 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2706 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
2707
2708 if (memcg->use_hierarchy == val)
2709 return 0;
2710
2711 /*
2712 * If parent's use_hierarchy is set, we can't make any modifications
2713 * in the child subtrees. If it is unset, then the change can
2714 * occur, provided the current cgroup has no children.
2715 *
2716 * For the root cgroup, parent_mem is NULL, we allow value to be
2717 * set if there are no children.
2718 */
2719 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
2720 (val == 1 || val == 0)) {
2721 if (!memcg_has_children(memcg))
2722 memcg->use_hierarchy = val;
2723 else
2724 retval = -EBUSY;
2725 } else
2726 retval = -EINVAL;
2727
2728 return retval;
2729 }
2730
2731 static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
2732 {
2733 struct mem_cgroup *iter;
2734 int i;
2735
2736 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
2737
2738 for_each_mem_cgroup_tree(iter, memcg) {
2739 for (i = 0; i < MEMCG_NR_STAT; i++)
2740 stat[i] += mem_cgroup_read_stat(iter, i);
2741 }
2742 }
2743
2744 static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
2745 {
2746 struct mem_cgroup *iter;
2747 int i;
2748
2749 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
2750
2751 for_each_mem_cgroup_tree(iter, memcg) {
2752 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2753 events[i] += mem_cgroup_read_events(iter, i);
2754 }
2755 }
2756
2757 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
2758 {
2759 unsigned long val = 0;
2760
2761 if (mem_cgroup_is_root(memcg)) {
2762 struct mem_cgroup *iter;
2763
2764 for_each_mem_cgroup_tree(iter, memcg) {
2765 val += mem_cgroup_read_stat(iter,
2766 MEM_CGROUP_STAT_CACHE);
2767 val += mem_cgroup_read_stat(iter,
2768 MEM_CGROUP_STAT_RSS);
2769 if (swap)
2770 val += mem_cgroup_read_stat(iter,
2771 MEM_CGROUP_STAT_SWAP);
2772 }
2773 } else {
2774 if (!swap)
2775 val = page_counter_read(&memcg->memory);
2776 else
2777 val = page_counter_read(&memcg->memsw);
2778 }
2779 return val;
2780 }
2781
2782 enum {
2783 RES_USAGE,
2784 RES_LIMIT,
2785 RES_MAX_USAGE,
2786 RES_FAILCNT,
2787 RES_SOFT_LIMIT,
2788 };
2789
2790 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
2791 struct cftype *cft)
2792 {
2793 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2794 struct page_counter *counter;
2795
2796 switch (MEMFILE_TYPE(cft->private)) {
2797 case _MEM:
2798 counter = &memcg->memory;
2799 break;
2800 case _MEMSWAP:
2801 counter = &memcg->memsw;
2802 break;
2803 case _KMEM:
2804 counter = &memcg->kmem;
2805 break;
2806 case _TCP:
2807 counter = &memcg->tcpmem;
2808 break;
2809 default:
2810 BUG();
2811 }
2812
2813 switch (MEMFILE_ATTR(cft->private)) {
2814 case RES_USAGE:
2815 if (counter == &memcg->memory)
2816 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
2817 if (counter == &memcg->memsw)
2818 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
2819 return (u64)page_counter_read(counter) * PAGE_SIZE;
2820 case RES_LIMIT:
2821 return (u64)counter->limit * PAGE_SIZE;
2822 case RES_MAX_USAGE:
2823 return (u64)counter->watermark * PAGE_SIZE;
2824 case RES_FAILCNT:
2825 return counter->failcnt;
2826 case RES_SOFT_LIMIT:
2827 return (u64)memcg->soft_limit * PAGE_SIZE;
2828 default:
2829 BUG();
2830 }
2831 }
2832
2833 #ifndef CONFIG_SLOB
2834 static int memcg_online_kmem(struct mem_cgroup *memcg)
2835 {
2836 int memcg_id;
2837
2838 if (cgroup_memory_nokmem)
2839 return 0;
2840
2841 BUG_ON(memcg->kmemcg_id >= 0);
2842 BUG_ON(memcg->kmem_state);
2843
2844 memcg_id = memcg_alloc_cache_id();
2845 if (memcg_id < 0)
2846 return memcg_id;
2847
2848 static_branch_inc(&memcg_kmem_enabled_key);
2849 /*
2850 * A memory cgroup is considered kmem-online as soon as it gets
2851 * kmemcg_id. Setting the id after enabling static branching will
2852 * guarantee no one starts accounting before all call sites are
2853 * patched.
2854 */
2855 memcg->kmemcg_id = memcg_id;
2856 memcg->kmem_state = KMEM_ONLINE;
2857
2858 return 0;
2859 }
2860
2861 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2862 {
2863 struct cgroup_subsys_state *css;
2864 struct mem_cgroup *parent, *child;
2865 int kmemcg_id;
2866
2867 if (memcg->kmem_state != KMEM_ONLINE)
2868 return;
2869 /*
2870 * Clear the online state before clearing memcg_caches array
2871 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2872 * guarantees that no cache will be created for this cgroup
2873 * after we are done (see memcg_create_kmem_cache()).
2874 */
2875 memcg->kmem_state = KMEM_ALLOCATED;
2876
2877 memcg_deactivate_kmem_caches(memcg);
2878
2879 kmemcg_id = memcg->kmemcg_id;
2880 BUG_ON(kmemcg_id < 0);
2881
2882 parent = parent_mem_cgroup(memcg);
2883 if (!parent)
2884 parent = root_mem_cgroup;
2885
2886 /*
2887 * Change kmemcg_id of this cgroup and all its descendants to the
2888 * parent's id, and then move all entries from this cgroup's list_lrus
2889 * to ones of the parent. After we have finished, all list_lrus
2890 * corresponding to this cgroup are guaranteed to remain empty. The
2891 * ordering is imposed by list_lru_node->lock taken by
2892 * memcg_drain_all_list_lrus().
2893 */
2894 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
2895 css_for_each_descendant_pre(css, &memcg->css) {
2896 child = mem_cgroup_from_css(css);
2897 BUG_ON(child->kmemcg_id != kmemcg_id);
2898 child->kmemcg_id = parent->kmemcg_id;
2899 if (!memcg->use_hierarchy)
2900 break;
2901 }
2902 rcu_read_unlock();
2903
2904 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2905
2906 memcg_free_cache_id(kmemcg_id);
2907 }
2908
2909 static void memcg_free_kmem(struct mem_cgroup *memcg)
2910 {
2911 /* css_alloc() failed, offlining didn't happen */
2912 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2913 memcg_offline_kmem(memcg);
2914
2915 if (memcg->kmem_state == KMEM_ALLOCATED) {
2916 memcg_destroy_kmem_caches(memcg);
2917 static_branch_dec(&memcg_kmem_enabled_key);
2918 WARN_ON(page_counter_read(&memcg->kmem));
2919 }
2920 }
2921 #else
2922 static int memcg_online_kmem(struct mem_cgroup *memcg)
2923 {
2924 return 0;
2925 }
2926 static void memcg_offline_kmem(struct mem_cgroup *memcg)
2927 {
2928 }
2929 static void memcg_free_kmem(struct mem_cgroup *memcg)
2930 {
2931 }
2932 #endif /* !CONFIG_SLOB */
2933
2934 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
2935 unsigned long limit)
2936 {
2937 int ret;
2938
2939 mutex_lock(&memcg_limit_mutex);
2940 ret = page_counter_limit(&memcg->kmem, limit);
2941 mutex_unlock(&memcg_limit_mutex);
2942 return ret;
2943 }
2944
2945 static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2946 {
2947 int ret;
2948
2949 mutex_lock(&memcg_limit_mutex);
2950
2951 ret = page_counter_limit(&memcg->tcpmem, limit);
2952 if (ret)
2953 goto out;
2954
2955 if (!memcg->tcpmem_active) {
2956 /*
2957 * The active flag needs to be written after the static_key
2958 * update. This is what guarantees that the socket activation
2959 * function is the last one to run. See sock_update_memcg() for
2960 * details, and note that we don't mark any socket as belonging
2961 * to this memcg until that flag is up.
2962 *
2963 * We need to do this, because static_keys will span multiple
2964 * sites, but we can't control their order. If we mark a socket
2965 * as accounted, but the accounting functions are not patched in
2966 * yet, we'll lose accounting.
2967 *
2968 * We never race with the readers in sock_update_memcg(),
2969 * because when this value change, the code to process it is not
2970 * patched in yet.
2971 */
2972 static_branch_inc(&memcg_sockets_enabled_key);
2973 memcg->tcpmem_active = true;
2974 }
2975 out:
2976 mutex_unlock(&memcg_limit_mutex);
2977 return ret;
2978 }
2979
2980 /*
2981 * The user of this function is...
2982 * RES_LIMIT.
2983 */
2984 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2985 char *buf, size_t nbytes, loff_t off)
2986 {
2987 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
2988 unsigned long nr_pages;
2989 int ret;
2990
2991 buf = strstrip(buf);
2992 ret = page_counter_memparse(buf, "-1", &nr_pages);
2993 if (ret)
2994 return ret;
2995
2996 switch (MEMFILE_ATTR(of_cft(of)->private)) {
2997 case RES_LIMIT:
2998 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2999 ret = -EINVAL;
3000 break;
3001 }
3002 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3003 case _MEM:
3004 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3005 break;
3006 case _MEMSWAP:
3007 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3008 break;
3009 case _KMEM:
3010 ret = memcg_update_kmem_limit(memcg, nr_pages);
3011 break;
3012 case _TCP:
3013 ret = memcg_update_tcp_limit(memcg, nr_pages);
3014 break;
3015 }
3016 break;
3017 case RES_SOFT_LIMIT:
3018 memcg->soft_limit = nr_pages;
3019 ret = 0;
3020 break;
3021 }
3022 return ret ?: nbytes;
3023 }
3024
3025 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3026 size_t nbytes, loff_t off)
3027 {
3028 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3029 struct page_counter *counter;
3030
3031 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3032 case _MEM:
3033 counter = &memcg->memory;
3034 break;
3035 case _MEMSWAP:
3036 counter = &memcg->memsw;
3037 break;
3038 case _KMEM:
3039 counter = &memcg->kmem;
3040 break;
3041 case _TCP:
3042 counter = &memcg->tcpmem;
3043 break;
3044 default:
3045 BUG();
3046 }
3047
3048 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3049 case RES_MAX_USAGE:
3050 page_counter_reset_watermark(counter);
3051 break;
3052 case RES_FAILCNT:
3053 counter->failcnt = 0;
3054 break;
3055 default:
3056 BUG();
3057 }
3058
3059 return nbytes;
3060 }
3061
3062 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3063 struct cftype *cft)
3064 {
3065 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3066 }
3067
3068 #ifdef CONFIG_MMU
3069 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3070 struct cftype *cft, u64 val)
3071 {
3072 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3073
3074 if (val & ~MOVE_MASK)
3075 return -EINVAL;
3076
3077 /*
3078 * No kind of locking is needed in here, because ->can_attach() will
3079 * check this value once in the beginning of the process, and then carry
3080 * on with stale data. This means that changes to this value will only
3081 * affect task migrations starting after the change.
3082 */
3083 memcg->move_charge_at_immigrate = val;
3084 return 0;
3085 }
3086 #else
3087 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3088 struct cftype *cft, u64 val)
3089 {
3090 return -ENOSYS;
3091 }
3092 #endif
3093
3094 #ifdef CONFIG_NUMA
3095 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3096 {
3097 struct numa_stat {
3098 const char *name;
3099 unsigned int lru_mask;
3100 };
3101
3102 static const struct numa_stat stats[] = {
3103 { "total", LRU_ALL },
3104 { "file", LRU_ALL_FILE },
3105 { "anon", LRU_ALL_ANON },
3106 { "unevictable", BIT(LRU_UNEVICTABLE) },
3107 };
3108 const struct numa_stat *stat;
3109 int nid;
3110 unsigned long nr;
3111 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3112
3113 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3114 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3115 seq_printf(m, "%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3118 stat->lru_mask);
3119 seq_printf(m, " N%d=%lu", nid, nr);
3120 }
3121 seq_putc(m, '\n');
3122 }
3123
3124 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3125 struct mem_cgroup *iter;
3126
3127 nr = 0;
3128 for_each_mem_cgroup_tree(iter, memcg)
3129 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3130 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3131 for_each_node_state(nid, N_MEMORY) {
3132 nr = 0;
3133 for_each_mem_cgroup_tree(iter, memcg)
3134 nr += mem_cgroup_node_nr_lru_pages(
3135 iter, nid, stat->lru_mask);
3136 seq_printf(m, " N%d=%lu", nid, nr);
3137 }
3138 seq_putc(m, '\n');
3139 }
3140
3141 return 0;
3142 }
3143 #endif /* CONFIG_NUMA */
3144
3145 static int memcg_stat_show(struct seq_file *m, void *v)
3146 {
3147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3148 unsigned long memory, memsw;
3149 struct mem_cgroup *mi;
3150 unsigned int i;
3151
3152 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3153 MEM_CGROUP_STAT_NSTATS);
3154 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3155 MEM_CGROUP_EVENTS_NSTATS);
3156 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3157
3158 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3159 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3160 continue;
3161 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
3162 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3163 }
3164
3165 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3166 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3167 mem_cgroup_read_events(memcg, i));
3168
3169 for (i = 0; i < NR_LRU_LISTS; i++)
3170 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3171 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3172
3173 /* Hierarchical information */
3174 memory = memsw = PAGE_COUNTER_MAX;
3175 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3176 memory = min(memory, mi->memory.limit);
3177 memsw = min(memsw, mi->memsw.limit);
3178 }
3179 seq_printf(m, "hierarchical_memory_limit %llu\n",
3180 (u64)memory * PAGE_SIZE);
3181 if (do_memsw_account())
3182 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3183 (u64)memsw * PAGE_SIZE);
3184
3185 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3186 unsigned long long val = 0;
3187
3188 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
3189 continue;
3190 for_each_mem_cgroup_tree(mi, memcg)
3191 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3192 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
3193 }
3194
3195 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3196 unsigned long long val = 0;
3197
3198 for_each_mem_cgroup_tree(mi, memcg)
3199 val += mem_cgroup_read_events(mi, i);
3200 seq_printf(m, "total_%s %llu\n",
3201 mem_cgroup_events_names[i], val);
3202 }
3203
3204 for (i = 0; i < NR_LRU_LISTS; i++) {
3205 unsigned long long val = 0;
3206
3207 for_each_mem_cgroup_tree(mi, memcg)
3208 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3209 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3210 }
3211
3212 #ifdef CONFIG_DEBUG_VM
3213 {
3214 int nid, zid;
3215 struct mem_cgroup_per_zone *mz;
3216 struct zone_reclaim_stat *rstat;
3217 unsigned long recent_rotated[2] = {0, 0};
3218 unsigned long recent_scanned[2] = {0, 0};
3219
3220 for_each_online_node(nid)
3221 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3222 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3223 rstat = &mz->lruvec.reclaim_stat;
3224
3225 recent_rotated[0] += rstat->recent_rotated[0];
3226 recent_rotated[1] += rstat->recent_rotated[1];
3227 recent_scanned[0] += rstat->recent_scanned[0];
3228 recent_scanned[1] += rstat->recent_scanned[1];
3229 }
3230 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3231 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3232 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3233 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3234 }
3235 #endif
3236
3237 return 0;
3238 }
3239
3240 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3241 struct cftype *cft)
3242 {
3243 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3244
3245 return mem_cgroup_swappiness(memcg);
3246 }
3247
3248 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3249 struct cftype *cft, u64 val)
3250 {
3251 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3252
3253 if (val > 100)
3254 return -EINVAL;
3255
3256 if (css->parent)
3257 memcg->swappiness = val;
3258 else
3259 vm_swappiness = val;
3260
3261 return 0;
3262 }
3263
3264 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3265 {
3266 struct mem_cgroup_threshold_ary *t;
3267 unsigned long usage;
3268 int i;
3269
3270 rcu_read_lock();
3271 if (!swap)
3272 t = rcu_dereference(memcg->thresholds.primary);
3273 else
3274 t = rcu_dereference(memcg->memsw_thresholds.primary);
3275
3276 if (!t)
3277 goto unlock;
3278
3279 usage = mem_cgroup_usage(memcg, swap);
3280
3281 /*
3282 * current_threshold points to threshold just below or equal to usage.
3283 * If it's not true, a threshold was crossed after last
3284 * call of __mem_cgroup_threshold().
3285 */
3286 i = t->current_threshold;
3287
3288 /*
3289 * Iterate backward over array of thresholds starting from
3290 * current_threshold and check if a threshold is crossed.
3291 * If none of thresholds below usage is crossed, we read
3292 * only one element of the array here.
3293 */
3294 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3295 eventfd_signal(t->entries[i].eventfd, 1);
3296
3297 /* i = current_threshold + 1 */
3298 i++;
3299
3300 /*
3301 * Iterate forward over array of thresholds starting from
3302 * current_threshold+1 and check if a threshold is crossed.
3303 * If none of thresholds above usage is crossed, we read
3304 * only one element of the array here.
3305 */
3306 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3307 eventfd_signal(t->entries[i].eventfd, 1);
3308
3309 /* Update current_threshold */
3310 t->current_threshold = i - 1;
3311 unlock:
3312 rcu_read_unlock();
3313 }
3314
3315 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3316 {
3317 while (memcg) {
3318 __mem_cgroup_threshold(memcg, false);
3319 if (do_memsw_account())
3320 __mem_cgroup_threshold(memcg, true);
3321
3322 memcg = parent_mem_cgroup(memcg);
3323 }
3324 }
3325
3326 static int compare_thresholds(const void *a, const void *b)
3327 {
3328 const struct mem_cgroup_threshold *_a = a;
3329 const struct mem_cgroup_threshold *_b = b;
3330
3331 if (_a->threshold > _b->threshold)
3332 return 1;
3333
3334 if (_a->threshold < _b->threshold)
3335 return -1;
3336
3337 return 0;
3338 }
3339
3340 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3341 {
3342 struct mem_cgroup_eventfd_list *ev;
3343
3344 spin_lock(&memcg_oom_lock);
3345
3346 list_for_each_entry(ev, &memcg->oom_notify, list)
3347 eventfd_signal(ev->eventfd, 1);
3348
3349 spin_unlock(&memcg_oom_lock);
3350 return 0;
3351 }
3352
3353 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3354 {
3355 struct mem_cgroup *iter;
3356
3357 for_each_mem_cgroup_tree(iter, memcg)
3358 mem_cgroup_oom_notify_cb(iter);
3359 }
3360
3361 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3362 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3363 {
3364 struct mem_cgroup_thresholds *thresholds;
3365 struct mem_cgroup_threshold_ary *new;
3366 unsigned long threshold;
3367 unsigned long usage;
3368 int i, size, ret;
3369
3370 ret = page_counter_memparse(args, "-1", &threshold);
3371 if (ret)
3372 return ret;
3373
3374 mutex_lock(&memcg->thresholds_lock);
3375
3376 if (type == _MEM) {
3377 thresholds = &memcg->thresholds;
3378 usage = mem_cgroup_usage(memcg, false);
3379 } else if (type == _MEMSWAP) {
3380 thresholds = &memcg->memsw_thresholds;
3381 usage = mem_cgroup_usage(memcg, true);
3382 } else
3383 BUG();
3384
3385 /* Check if a threshold crossed before adding a new one */
3386 if (thresholds->primary)
3387 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3388
3389 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3390
3391 /* Allocate memory for new array of thresholds */
3392 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3393 GFP_KERNEL);
3394 if (!new) {
3395 ret = -ENOMEM;
3396 goto unlock;
3397 }
3398 new->size = size;
3399
3400 /* Copy thresholds (if any) to new array */
3401 if (thresholds->primary) {
3402 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3403 sizeof(struct mem_cgroup_threshold));
3404 }
3405
3406 /* Add new threshold */
3407 new->entries[size - 1].eventfd = eventfd;
3408 new->entries[size - 1].threshold = threshold;
3409
3410 /* Sort thresholds. Registering of new threshold isn't time-critical */
3411 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3412 compare_thresholds, NULL);
3413
3414 /* Find current threshold */
3415 new->current_threshold = -1;
3416 for (i = 0; i < size; i++) {
3417 if (new->entries[i].threshold <= usage) {
3418 /*
3419 * new->current_threshold will not be used until
3420 * rcu_assign_pointer(), so it's safe to increment
3421 * it here.
3422 */
3423 ++new->current_threshold;
3424 } else
3425 break;
3426 }
3427
3428 /* Free old spare buffer and save old primary buffer as spare */
3429 kfree(thresholds->spare);
3430 thresholds->spare = thresholds->primary;
3431
3432 rcu_assign_pointer(thresholds->primary, new);
3433
3434 /* To be sure that nobody uses thresholds */
3435 synchronize_rcu();
3436
3437 unlock:
3438 mutex_unlock(&memcg->thresholds_lock);
3439
3440 return ret;
3441 }
3442
3443 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3444 struct eventfd_ctx *eventfd, const char *args)
3445 {
3446 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3447 }
3448
3449 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3450 struct eventfd_ctx *eventfd, const char *args)
3451 {
3452 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3453 }
3454
3455 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3456 struct eventfd_ctx *eventfd, enum res_type type)
3457 {
3458 struct mem_cgroup_thresholds *thresholds;
3459 struct mem_cgroup_threshold_ary *new;
3460 unsigned long usage;
3461 int i, j, size;
3462
3463 mutex_lock(&memcg->thresholds_lock);
3464
3465 if (type == _MEM) {
3466 thresholds = &memcg->thresholds;
3467 usage = mem_cgroup_usage(memcg, false);
3468 } else if (type == _MEMSWAP) {
3469 thresholds = &memcg->memsw_thresholds;
3470 usage = mem_cgroup_usage(memcg, true);
3471 } else
3472 BUG();
3473
3474 if (!thresholds->primary)
3475 goto unlock;
3476
3477 /* Check if a threshold crossed before removing */
3478 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3479
3480 /* Calculate new number of threshold */
3481 size = 0;
3482 for (i = 0; i < thresholds->primary->size; i++) {
3483 if (thresholds->primary->entries[i].eventfd != eventfd)
3484 size++;
3485 }
3486
3487 new = thresholds->spare;
3488
3489 /* Set thresholds array to NULL if we don't have thresholds */
3490 if (!size) {
3491 kfree(new);
3492 new = NULL;
3493 goto swap_buffers;
3494 }
3495
3496 new->size = size;
3497
3498 /* Copy thresholds and find current threshold */
3499 new->current_threshold = -1;
3500 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3501 if (thresholds->primary->entries[i].eventfd == eventfd)
3502 continue;
3503
3504 new->entries[j] = thresholds->primary->entries[i];
3505 if (new->entries[j].threshold <= usage) {
3506 /*
3507 * new->current_threshold will not be used
3508 * until rcu_assign_pointer(), so it's safe to increment
3509 * it here.
3510 */
3511 ++new->current_threshold;
3512 }
3513 j++;
3514 }
3515
3516 swap_buffers:
3517 /* Swap primary and spare array */
3518 thresholds->spare = thresholds->primary;
3519
3520 rcu_assign_pointer(thresholds->primary, new);
3521
3522 /* To be sure that nobody uses thresholds */
3523 synchronize_rcu();
3524
3525 /* If all events are unregistered, free the spare array */
3526 if (!new) {
3527 kfree(thresholds->spare);
3528 thresholds->spare = NULL;
3529 }
3530 unlock:
3531 mutex_unlock(&memcg->thresholds_lock);
3532 }
3533
3534 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3535 struct eventfd_ctx *eventfd)
3536 {
3537 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3538 }
3539
3540 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3541 struct eventfd_ctx *eventfd)
3542 {
3543 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3544 }
3545
3546 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3547 struct eventfd_ctx *eventfd, const char *args)
3548 {
3549 struct mem_cgroup_eventfd_list *event;
3550
3551 event = kmalloc(sizeof(*event), GFP_KERNEL);
3552 if (!event)
3553 return -ENOMEM;
3554
3555 spin_lock(&memcg_oom_lock);
3556
3557 event->eventfd = eventfd;
3558 list_add(&event->list, &memcg->oom_notify);
3559
3560 /* already in OOM ? */
3561 if (memcg->under_oom)
3562 eventfd_signal(eventfd, 1);
3563 spin_unlock(&memcg_oom_lock);
3564
3565 return 0;
3566 }
3567
3568 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3569 struct eventfd_ctx *eventfd)
3570 {
3571 struct mem_cgroup_eventfd_list *ev, *tmp;
3572
3573 spin_lock(&memcg_oom_lock);
3574
3575 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3576 if (ev->eventfd == eventfd) {
3577 list_del(&ev->list);
3578 kfree(ev);
3579 }
3580 }
3581
3582 spin_unlock(&memcg_oom_lock);
3583 }
3584
3585 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3586 {
3587 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3588
3589 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3590 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3591 return 0;
3592 }
3593
3594 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3595 struct cftype *cft, u64 val)
3596 {
3597 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3598
3599 /* cannot set to root cgroup and only 0 and 1 are allowed */
3600 if (!css->parent || !((val == 0) || (val == 1)))
3601 return -EINVAL;
3602
3603 memcg->oom_kill_disable = val;
3604 if (!val)
3605 memcg_oom_recover(memcg);
3606
3607 return 0;
3608 }
3609
3610 #ifdef CONFIG_CGROUP_WRITEBACK
3611
3612 struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3613 {
3614 return &memcg->cgwb_list;
3615 }
3616
3617 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3618 {
3619 return wb_domain_init(&memcg->cgwb_domain, gfp);
3620 }
3621
3622 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3623 {
3624 wb_domain_exit(&memcg->cgwb_domain);
3625 }
3626
3627 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3628 {
3629 wb_domain_size_changed(&memcg->cgwb_domain);
3630 }
3631
3632 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3633 {
3634 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3635
3636 if (!memcg->css.parent)
3637 return NULL;
3638
3639 return &memcg->cgwb_domain;
3640 }
3641
3642 /**
3643 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3644 * @wb: bdi_writeback in question
3645 * @pfilepages: out parameter for number of file pages
3646 * @pheadroom: out parameter for number of allocatable pages according to memcg
3647 * @pdirty: out parameter for number of dirty pages
3648 * @pwriteback: out parameter for number of pages under writeback
3649 *
3650 * Determine the numbers of file, headroom, dirty, and writeback pages in
3651 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3652 * is a bit more involved.
3653 *
3654 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3655 * headroom is calculated as the lowest headroom of itself and the
3656 * ancestors. Note that this doesn't consider the actual amount of
3657 * available memory in the system. The caller should further cap
3658 * *@pheadroom accordingly.
3659 */
3660 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3661 unsigned long *pheadroom, unsigned long *pdirty,
3662 unsigned long *pwriteback)
3663 {
3664 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3665 struct mem_cgroup *parent;
3666
3667 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3668
3669 /* this should eventually include NR_UNSTABLE_NFS */
3670 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3671 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3672 (1 << LRU_ACTIVE_FILE));
3673 *pheadroom = PAGE_COUNTER_MAX;
3674
3675 while ((parent = parent_mem_cgroup(memcg))) {
3676 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3677 unsigned long used = page_counter_read(&memcg->memory);
3678
3679 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
3680 memcg = parent;
3681 }
3682 }
3683
3684 #else /* CONFIG_CGROUP_WRITEBACK */
3685
3686 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3687 {
3688 return 0;
3689 }
3690
3691 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3692 {
3693 }
3694
3695 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3696 {
3697 }
3698
3699 #endif /* CONFIG_CGROUP_WRITEBACK */
3700
3701 /*
3702 * DO NOT USE IN NEW FILES.
3703 *
3704 * "cgroup.event_control" implementation.
3705 *
3706 * This is way over-engineered. It tries to support fully configurable
3707 * events for each user. Such level of flexibility is completely
3708 * unnecessary especially in the light of the planned unified hierarchy.
3709 *
3710 * Please deprecate this and replace with something simpler if at all
3711 * possible.
3712 */
3713
3714 /*
3715 * Unregister event and free resources.
3716 *
3717 * Gets called from workqueue.
3718 */
3719 static void memcg_event_remove(struct work_struct *work)
3720 {
3721 struct mem_cgroup_event *event =
3722 container_of(work, struct mem_cgroup_event, remove);
3723 struct mem_cgroup *memcg = event->memcg;
3724
3725 remove_wait_queue(event->wqh, &event->wait);
3726
3727 event->unregister_event(memcg, event->eventfd);
3728
3729 /* Notify userspace the event is going away. */
3730 eventfd_signal(event->eventfd, 1);
3731
3732 eventfd_ctx_put(event->eventfd);
3733 kfree(event);
3734 css_put(&memcg->css);
3735 }
3736
3737 /*
3738 * Gets called on POLLHUP on eventfd when user closes it.
3739 *
3740 * Called with wqh->lock held and interrupts disabled.
3741 */
3742 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3743 int sync, void *key)
3744 {
3745 struct mem_cgroup_event *event =
3746 container_of(wait, struct mem_cgroup_event, wait);
3747 struct mem_cgroup *memcg = event->memcg;
3748 unsigned long flags = (unsigned long)key;
3749
3750 if (flags & POLLHUP) {
3751 /*
3752 * If the event has been detached at cgroup removal, we
3753 * can simply return knowing the other side will cleanup
3754 * for us.
3755 *
3756 * We can't race against event freeing since the other
3757 * side will require wqh->lock via remove_wait_queue(),
3758 * which we hold.
3759 */
3760 spin_lock(&memcg->event_list_lock);
3761 if (!list_empty(&event->list)) {
3762 list_del_init(&event->list);
3763 /*
3764 * We are in atomic context, but cgroup_event_remove()
3765 * may sleep, so we have to call it in workqueue.
3766 */
3767 schedule_work(&event->remove);
3768 }
3769 spin_unlock(&memcg->event_list_lock);
3770 }
3771
3772 return 0;
3773 }
3774
3775 static void memcg_event_ptable_queue_proc(struct file *file,
3776 wait_queue_head_t *wqh, poll_table *pt)
3777 {
3778 struct mem_cgroup_event *event =
3779 container_of(pt, struct mem_cgroup_event, pt);
3780
3781 event->wqh = wqh;
3782 add_wait_queue(wqh, &event->wait);
3783 }
3784
3785 /*
3786 * DO NOT USE IN NEW FILES.
3787 *
3788 * Parse input and register new cgroup event handler.
3789 *
3790 * Input must be in format '<event_fd> <control_fd> <args>'.
3791 * Interpretation of args is defined by control file implementation.
3792 */
3793 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3794 char *buf, size_t nbytes, loff_t off)
3795 {
3796 struct cgroup_subsys_state *css = of_css(of);
3797 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3798 struct mem_cgroup_event *event;
3799 struct cgroup_subsys_state *cfile_css;
3800 unsigned int efd, cfd;
3801 struct fd efile;
3802 struct fd cfile;
3803 const char *name;
3804 char *endp;
3805 int ret;
3806
3807 buf = strstrip(buf);
3808
3809 efd = simple_strtoul(buf, &endp, 10);
3810 if (*endp != ' ')
3811 return -EINVAL;
3812 buf = endp + 1;
3813
3814 cfd = simple_strtoul(buf, &endp, 10);
3815 if ((*endp != ' ') && (*endp != '\0'))
3816 return -EINVAL;
3817 buf = endp + 1;
3818
3819 event = kzalloc(sizeof(*event), GFP_KERNEL);
3820 if (!event)
3821 return -ENOMEM;
3822
3823 event->memcg = memcg;
3824 INIT_LIST_HEAD(&event->list);
3825 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3826 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3827 INIT_WORK(&event->remove, memcg_event_remove);
3828
3829 efile = fdget(efd);
3830 if (!efile.file) {
3831 ret = -EBADF;
3832 goto out_kfree;
3833 }
3834
3835 event->eventfd = eventfd_ctx_fileget(efile.file);
3836 if (IS_ERR(event->eventfd)) {
3837 ret = PTR_ERR(event->eventfd);
3838 goto out_put_efile;
3839 }
3840
3841 cfile = fdget(cfd);
3842 if (!cfile.file) {
3843 ret = -EBADF;
3844 goto out_put_eventfd;
3845 }
3846
3847 /* the process need read permission on control file */
3848 /* AV: shouldn't we check that it's been opened for read instead? */
3849 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3850 if (ret < 0)
3851 goto out_put_cfile;
3852
3853 /*
3854 * Determine the event callbacks and set them in @event. This used
3855 * to be done via struct cftype but cgroup core no longer knows
3856 * about these events. The following is crude but the whole thing
3857 * is for compatibility anyway.
3858 *
3859 * DO NOT ADD NEW FILES.
3860 */
3861 name = cfile.file->f_path.dentry->d_name.name;
3862
3863 if (!strcmp(name, "memory.usage_in_bytes")) {
3864 event->register_event = mem_cgroup_usage_register_event;
3865 event->unregister_event = mem_cgroup_usage_unregister_event;
3866 } else if (!strcmp(name, "memory.oom_control")) {
3867 event->register_event = mem_cgroup_oom_register_event;
3868 event->unregister_event = mem_cgroup_oom_unregister_event;
3869 } else if (!strcmp(name, "memory.pressure_level")) {
3870 event->register_event = vmpressure_register_event;
3871 event->unregister_event = vmpressure_unregister_event;
3872 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
3873 event->register_event = memsw_cgroup_usage_register_event;
3874 event->unregister_event = memsw_cgroup_usage_unregister_event;
3875 } else {
3876 ret = -EINVAL;
3877 goto out_put_cfile;
3878 }
3879
3880 /*
3881 * Verify @cfile should belong to @css. Also, remaining events are
3882 * automatically removed on cgroup destruction but the removal is
3883 * asynchronous, so take an extra ref on @css.
3884 */
3885 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
3886 &memory_cgrp_subsys);
3887 ret = -EINVAL;
3888 if (IS_ERR(cfile_css))
3889 goto out_put_cfile;
3890 if (cfile_css != css) {
3891 css_put(cfile_css);
3892 goto out_put_cfile;
3893 }
3894
3895 ret = event->register_event(memcg, event->eventfd, buf);
3896 if (ret)
3897 goto out_put_css;
3898
3899 efile.file->f_op->poll(efile.file, &event->pt);
3900
3901 spin_lock(&memcg->event_list_lock);
3902 list_add(&event->list, &memcg->event_list);
3903 spin_unlock(&memcg->event_list_lock);
3904
3905 fdput(cfile);
3906 fdput(efile);
3907
3908 return nbytes;
3909
3910 out_put_css:
3911 css_put(css);
3912 out_put_cfile:
3913 fdput(cfile);
3914 out_put_eventfd:
3915 eventfd_ctx_put(event->eventfd);
3916 out_put_efile:
3917 fdput(efile);
3918 out_kfree:
3919 kfree(event);
3920
3921 return ret;
3922 }
3923
3924 static struct cftype mem_cgroup_legacy_files[] = {
3925 {
3926 .name = "usage_in_bytes",
3927 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
3928 .read_u64 = mem_cgroup_read_u64,
3929 },
3930 {
3931 .name = "max_usage_in_bytes",
3932 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
3933 .write = mem_cgroup_reset,
3934 .read_u64 = mem_cgroup_read_u64,
3935 },
3936 {
3937 .name = "limit_in_bytes",
3938 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
3939 .write = mem_cgroup_write,
3940 .read_u64 = mem_cgroup_read_u64,
3941 },
3942 {
3943 .name = "soft_limit_in_bytes",
3944 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
3945 .write = mem_cgroup_write,
3946 .read_u64 = mem_cgroup_read_u64,
3947 },
3948 {
3949 .name = "failcnt",
3950 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
3951 .write = mem_cgroup_reset,
3952 .read_u64 = mem_cgroup_read_u64,
3953 },
3954 {
3955 .name = "stat",
3956 .seq_show = memcg_stat_show,
3957 },
3958 {
3959 .name = "force_empty",
3960 .write = mem_cgroup_force_empty_write,
3961 },
3962 {
3963 .name = "use_hierarchy",
3964 .write_u64 = mem_cgroup_hierarchy_write,
3965 .read_u64 = mem_cgroup_hierarchy_read,
3966 },
3967 {
3968 .name = "cgroup.event_control", /* XXX: for compat */
3969 .write = memcg_write_event_control,
3970 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
3971 },
3972 {
3973 .name = "swappiness",
3974 .read_u64 = mem_cgroup_swappiness_read,
3975 .write_u64 = mem_cgroup_swappiness_write,
3976 },
3977 {
3978 .name = "move_charge_at_immigrate",
3979 .read_u64 = mem_cgroup_move_charge_read,
3980 .write_u64 = mem_cgroup_move_charge_write,
3981 },
3982 {
3983 .name = "oom_control",
3984 .seq_show = mem_cgroup_oom_control_read,
3985 .write_u64 = mem_cgroup_oom_control_write,
3986 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3987 },
3988 {
3989 .name = "pressure_level",
3990 },
3991 #ifdef CONFIG_NUMA
3992 {
3993 .name = "numa_stat",
3994 .seq_show = memcg_numa_stat_show,
3995 },
3996 #endif
3997 {
3998 .name = "kmem.limit_in_bytes",
3999 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4000 .write = mem_cgroup_write,
4001 .read_u64 = mem_cgroup_read_u64,
4002 },
4003 {
4004 .name = "kmem.usage_in_bytes",
4005 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4006 .read_u64 = mem_cgroup_read_u64,
4007 },
4008 {
4009 .name = "kmem.failcnt",
4010 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4011 .write = mem_cgroup_reset,
4012 .read_u64 = mem_cgroup_read_u64,
4013 },
4014 {
4015 .name = "kmem.max_usage_in_bytes",
4016 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4017 .write = mem_cgroup_reset,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 #ifdef CONFIG_SLABINFO
4021 {
4022 .name = "kmem.slabinfo",
4023 .seq_start = slab_start,
4024 .seq_next = slab_next,
4025 .seq_stop = slab_stop,
4026 .seq_show = memcg_slab_show,
4027 },
4028 #endif
4029 {
4030 .name = "kmem.tcp.limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4032 .write = mem_cgroup_write,
4033 .read_u64 = mem_cgroup_read_u64,
4034 },
4035 {
4036 .name = "kmem.tcp.usage_in_bytes",
4037 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4038 .read_u64 = mem_cgroup_read_u64,
4039 },
4040 {
4041 .name = "kmem.tcp.failcnt",
4042 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4043 .write = mem_cgroup_reset,
4044 .read_u64 = mem_cgroup_read_u64,
4045 },
4046 {
4047 .name = "kmem.tcp.max_usage_in_bytes",
4048 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4049 .write = mem_cgroup_reset,
4050 .read_u64 = mem_cgroup_read_u64,
4051 },
4052 { }, /* terminate */
4053 };
4054
4055 /*
4056 * Private memory cgroup IDR
4057 *
4058 * Swap-out records and page cache shadow entries need to store memcg
4059 * references in constrained space, so we maintain an ID space that is
4060 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4061 * memory-controlled cgroups to 64k.
4062 *
4063 * However, there usually are many references to the oflline CSS after
4064 * the cgroup has been destroyed, such as page cache or reclaimable
4065 * slab objects, that don't need to hang on to the ID. We want to keep
4066 * those dead CSS from occupying IDs, or we might quickly exhaust the
4067 * relatively small ID space and prevent the creation of new cgroups
4068 * even when there are much fewer than 64k cgroups - possibly none.
4069 *
4070 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4071 * be freed and recycled when it's no longer needed, which is usually
4072 * when the CSS is offlined.
4073 *
4074 * The only exception to that are records of swapped out tmpfs/shmem
4075 * pages that need to be attributed to live ancestors on swapin. But
4076 * those references are manageable from userspace.
4077 */
4078
4079 static DEFINE_IDR(mem_cgroup_idr);
4080
4081 static void mem_cgroup_id_get(struct mem_cgroup *memcg)
4082 {
4083 atomic_inc(&memcg->id.ref);
4084 }
4085
4086 static void mem_cgroup_id_put(struct mem_cgroup *memcg)
4087 {
4088 if (atomic_dec_and_test(&memcg->id.ref)) {
4089 idr_remove(&mem_cgroup_idr, memcg->id.id);
4090 memcg->id.id = 0;
4091
4092 /* Memcg ID pins CSS */
4093 css_put(&memcg->css);
4094 }
4095 }
4096
4097 /**
4098 * mem_cgroup_from_id - look up a memcg from a memcg id
4099 * @id: the memcg id to look up
4100 *
4101 * Caller must hold rcu_read_lock().
4102 */
4103 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4104 {
4105 WARN_ON_ONCE(!rcu_read_lock_held());
4106 return idr_find(&mem_cgroup_idr, id);
4107 }
4108
4109 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4110 {
4111 struct mem_cgroup_per_node *pn;
4112 struct mem_cgroup_per_zone *mz;
4113 int zone, tmp = node;
4114 /*
4115 * This routine is called against possible nodes.
4116 * But it's BUG to call kmalloc() against offline node.
4117 *
4118 * TODO: this routine can waste much memory for nodes which will
4119 * never be onlined. It's better to use memory hotplug callback
4120 * function.
4121 */
4122 if (!node_state(node, N_NORMAL_MEMORY))
4123 tmp = -1;
4124 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4125 if (!pn)
4126 return 1;
4127
4128 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4129 mz = &pn->zoneinfo[zone];
4130 lruvec_init(&mz->lruvec);
4131 mz->usage_in_excess = 0;
4132 mz->on_tree = false;
4133 mz->memcg = memcg;
4134 }
4135 memcg->nodeinfo[node] = pn;
4136 return 0;
4137 }
4138
4139 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4140 {
4141 kfree(memcg->nodeinfo[node]);
4142 }
4143
4144 static void mem_cgroup_free(struct mem_cgroup *memcg)
4145 {
4146 int node;
4147
4148 memcg_wb_domain_exit(memcg);
4149 for_each_node(node)
4150 free_mem_cgroup_per_zone_info(memcg, node);
4151 free_percpu(memcg->stat);
4152 kfree(memcg);
4153 }
4154
4155 static struct mem_cgroup *mem_cgroup_alloc(void)
4156 {
4157 struct mem_cgroup *memcg;
4158 size_t size;
4159 int node;
4160
4161 size = sizeof(struct mem_cgroup);
4162 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4163
4164 memcg = kzalloc(size, GFP_KERNEL);
4165 if (!memcg)
4166 return NULL;
4167
4168 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4169 1, MEM_CGROUP_ID_MAX,
4170 GFP_KERNEL);
4171 if (memcg->id.id < 0)
4172 goto fail;
4173
4174 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4175 if (!memcg->stat)
4176 goto fail;
4177
4178 for_each_node(node)
4179 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4180 goto fail;
4181
4182 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4183 goto fail;
4184
4185 INIT_WORK(&memcg->high_work, high_work_func);
4186 memcg->last_scanned_node = MAX_NUMNODES;
4187 INIT_LIST_HEAD(&memcg->oom_notify);
4188 mutex_init(&memcg->thresholds_lock);
4189 spin_lock_init(&memcg->move_lock);
4190 vmpressure_init(&memcg->vmpressure);
4191 INIT_LIST_HEAD(&memcg->event_list);
4192 spin_lock_init(&memcg->event_list_lock);
4193 memcg->socket_pressure = jiffies;
4194 #ifndef CONFIG_SLOB
4195 memcg->kmemcg_id = -1;
4196 #endif
4197 #ifdef CONFIG_CGROUP_WRITEBACK
4198 INIT_LIST_HEAD(&memcg->cgwb_list);
4199 #endif
4200 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4201 return memcg;
4202 fail:
4203 if (memcg->id.id > 0)
4204 idr_remove(&mem_cgroup_idr, memcg->id.id);
4205 mem_cgroup_free(memcg);
4206 return NULL;
4207 }
4208
4209 static struct cgroup_subsys_state * __ref
4210 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4211 {
4212 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4213 struct mem_cgroup *memcg;
4214 long error = -ENOMEM;
4215
4216 memcg = mem_cgroup_alloc();
4217 if (!memcg)
4218 return ERR_PTR(error);
4219
4220 memcg->high = PAGE_COUNTER_MAX;
4221 memcg->soft_limit = PAGE_COUNTER_MAX;
4222 if (parent) {
4223 memcg->swappiness = mem_cgroup_swappiness(parent);
4224 memcg->oom_kill_disable = parent->oom_kill_disable;
4225 }
4226 if (parent && parent->use_hierarchy) {
4227 memcg->use_hierarchy = true;
4228 page_counter_init(&memcg->memory, &parent->memory);
4229 page_counter_init(&memcg->swap, &parent->swap);
4230 page_counter_init(&memcg->memsw, &parent->memsw);
4231 page_counter_init(&memcg->kmem, &parent->kmem);
4232 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4233 } else {
4234 page_counter_init(&memcg->memory, NULL);
4235 page_counter_init(&memcg->swap, NULL);
4236 page_counter_init(&memcg->memsw, NULL);
4237 page_counter_init(&memcg->kmem, NULL);
4238 page_counter_init(&memcg->tcpmem, NULL);
4239 /*
4240 * Deeper hierachy with use_hierarchy == false doesn't make
4241 * much sense so let cgroup subsystem know about this
4242 * unfortunate state in our controller.
4243 */
4244 if (parent != root_mem_cgroup)
4245 memory_cgrp_subsys.broken_hierarchy = true;
4246 }
4247
4248 /* The following stuff does not apply to the root */
4249 if (!parent) {
4250 root_mem_cgroup = memcg;
4251 return &memcg->css;
4252 }
4253
4254 error = memcg_online_kmem(memcg);
4255 if (error)
4256 goto fail;
4257
4258 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4259 static_branch_inc(&memcg_sockets_enabled_key);
4260
4261 return &memcg->css;
4262 fail:
4263 mem_cgroup_free(memcg);
4264 return ERR_PTR(-ENOMEM);
4265 }
4266
4267 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
4268 {
4269 /* Online state pins memcg ID, memcg ID pins CSS */
4270 mem_cgroup_id_get(mem_cgroup_from_css(css));
4271 css_get(css);
4272 return 0;
4273 }
4274
4275 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4276 {
4277 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4278 struct mem_cgroup_event *event, *tmp;
4279
4280 /*
4281 * Unregister events and notify userspace.
4282 * Notify userspace about cgroup removing only after rmdir of cgroup
4283 * directory to avoid race between userspace and kernelspace.
4284 */
4285 spin_lock(&memcg->event_list_lock);
4286 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4287 list_del_init(&event->list);
4288 schedule_work(&event->remove);
4289 }
4290 spin_unlock(&memcg->event_list_lock);
4291
4292 memcg_offline_kmem(memcg);
4293 wb_memcg_offline(memcg);
4294
4295 mem_cgroup_id_put(memcg);
4296 }
4297
4298 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4299 {
4300 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4301
4302 invalidate_reclaim_iterators(memcg);
4303 }
4304
4305 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4306 {
4307 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4308
4309 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
4310 static_branch_dec(&memcg_sockets_enabled_key);
4311
4312 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
4313 static_branch_dec(&memcg_sockets_enabled_key);
4314
4315 vmpressure_cleanup(&memcg->vmpressure);
4316 cancel_work_sync(&memcg->high_work);
4317 mem_cgroup_remove_from_trees(memcg);
4318 memcg_free_kmem(memcg);
4319 mem_cgroup_free(memcg);
4320 }
4321
4322 /**
4323 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4324 * @css: the target css
4325 *
4326 * Reset the states of the mem_cgroup associated with @css. This is
4327 * invoked when the userland requests disabling on the default hierarchy
4328 * but the memcg is pinned through dependency. The memcg should stop
4329 * applying policies and should revert to the vanilla state as it may be
4330 * made visible again.
4331 *
4332 * The current implementation only resets the essential configurations.
4333 * This needs to be expanded to cover all the visible parts.
4334 */
4335 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4336 {
4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4338
4339 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4340 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4341 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4342 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4343 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
4344 memcg->low = 0;
4345 memcg->high = PAGE_COUNTER_MAX;
4346 memcg->soft_limit = PAGE_COUNTER_MAX;
4347 memcg_wb_domain_size_changed(memcg);
4348 }
4349
4350 #ifdef CONFIG_MMU
4351 /* Handlers for move charge at task migration. */
4352 static int mem_cgroup_do_precharge(unsigned long count)
4353 {
4354 int ret;
4355
4356 /* Try a single bulk charge without reclaim first, kswapd may wake */
4357 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
4358 if (!ret) {
4359 mc.precharge += count;
4360 return ret;
4361 }
4362
4363 /* Try charges one by one with reclaim */
4364 while (count--) {
4365 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4366 if (ret)
4367 return ret;
4368 mc.precharge++;
4369 cond_resched();
4370 }
4371 return 0;
4372 }
4373
4374 union mc_target {
4375 struct page *page;
4376 swp_entry_t ent;
4377 };
4378
4379 enum mc_target_type {
4380 MC_TARGET_NONE = 0,
4381 MC_TARGET_PAGE,
4382 MC_TARGET_SWAP,
4383 };
4384
4385 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4386 unsigned long addr, pte_t ptent)
4387 {
4388 struct page *page = vm_normal_page(vma, addr, ptent);
4389
4390 if (!page || !page_mapped(page))
4391 return NULL;
4392 if (PageAnon(page)) {
4393 if (!(mc.flags & MOVE_ANON))
4394 return NULL;
4395 } else {
4396 if (!(mc.flags & MOVE_FILE))
4397 return NULL;
4398 }
4399 if (!get_page_unless_zero(page))
4400 return NULL;
4401
4402 return page;
4403 }
4404
4405 #ifdef CONFIG_SWAP
4406 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4407 pte_t ptent, swp_entry_t *entry)
4408 {
4409 struct page *page = NULL;
4410 swp_entry_t ent = pte_to_swp_entry(ptent);
4411
4412 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4413 return NULL;
4414 /*
4415 * Because lookup_swap_cache() updates some statistics counter,
4416 * we call find_get_page() with swapper_space directly.
4417 */
4418 page = find_get_page(swap_address_space(ent), ent.val);
4419 if (do_memsw_account())
4420 entry->val = ent.val;
4421
4422 return page;
4423 }
4424 #else
4425 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4426 pte_t ptent, swp_entry_t *entry)
4427 {
4428 return NULL;
4429 }
4430 #endif
4431
4432 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4433 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4434 {
4435 struct page *page = NULL;
4436 struct address_space *mapping;
4437 pgoff_t pgoff;
4438
4439 if (!vma->vm_file) /* anonymous vma */
4440 return NULL;
4441 if (!(mc.flags & MOVE_FILE))
4442 return NULL;
4443
4444 mapping = vma->vm_file->f_mapping;
4445 pgoff = linear_page_index(vma, addr);
4446
4447 /* page is moved even if it's not RSS of this task(page-faulted). */
4448 #ifdef CONFIG_SWAP
4449 /* shmem/tmpfs may report page out on swap: account for that too. */
4450 if (shmem_mapping(mapping)) {
4451 page = find_get_entry(mapping, pgoff);
4452 if (radix_tree_exceptional_entry(page)) {
4453 swp_entry_t swp = radix_to_swp_entry(page);
4454 if (do_memsw_account())
4455 *entry = swp;
4456 page = find_get_page(swap_address_space(swp), swp.val);
4457 }
4458 } else
4459 page = find_get_page(mapping, pgoff);
4460 #else
4461 page = find_get_page(mapping, pgoff);
4462 #endif
4463 return page;
4464 }
4465
4466 /**
4467 * mem_cgroup_move_account - move account of the page
4468 * @page: the page
4469 * @compound: charge the page as compound or small page
4470 * @from: mem_cgroup which the page is moved from.
4471 * @to: mem_cgroup which the page is moved to. @from != @to.
4472 *
4473 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
4474 *
4475 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4476 * from old cgroup.
4477 */
4478 static int mem_cgroup_move_account(struct page *page,
4479 bool compound,
4480 struct mem_cgroup *from,
4481 struct mem_cgroup *to)
4482 {
4483 unsigned long flags;
4484 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
4485 int ret;
4486 bool anon;
4487
4488 VM_BUG_ON(from == to);
4489 VM_BUG_ON_PAGE(PageLRU(page), page);
4490 VM_BUG_ON(compound && !PageTransHuge(page));
4491
4492 /*
4493 * Prevent mem_cgroup_migrate() from looking at
4494 * page->mem_cgroup of its source page while we change it.
4495 */
4496 ret = -EBUSY;
4497 if (!trylock_page(page))
4498 goto out;
4499
4500 ret = -EINVAL;
4501 if (page->mem_cgroup != from)
4502 goto out_unlock;
4503
4504 anon = PageAnon(page);
4505
4506 spin_lock_irqsave(&from->move_lock, flags);
4507
4508 if (!anon && page_mapped(page)) {
4509 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4510 nr_pages);
4511 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4512 nr_pages);
4513 }
4514
4515 /*
4516 * move_lock grabbed above and caller set from->moving_account, so
4517 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4518 * So mapping should be stable for dirty pages.
4519 */
4520 if (!anon && PageDirty(page)) {
4521 struct address_space *mapping = page_mapping(page);
4522
4523 if (mapping_cap_account_dirty(mapping)) {
4524 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4525 nr_pages);
4526 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4527 nr_pages);
4528 }
4529 }
4530
4531 if (PageWriteback(page)) {
4532 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4533 nr_pages);
4534 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4535 nr_pages);
4536 }
4537
4538 /*
4539 * It is safe to change page->mem_cgroup here because the page
4540 * is referenced, charged, and isolated - we can't race with
4541 * uncharging, charging, migration, or LRU putback.
4542 */
4543
4544 /* caller should have done css_get */
4545 page->mem_cgroup = to;
4546 spin_unlock_irqrestore(&from->move_lock, flags);
4547
4548 ret = 0;
4549
4550 local_irq_disable();
4551 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
4552 memcg_check_events(to, page);
4553 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
4554 memcg_check_events(from, page);
4555 local_irq_enable();
4556 out_unlock:
4557 unlock_page(page);
4558 out:
4559 return ret;
4560 }
4561
4562 /**
4563 * get_mctgt_type - get target type of moving charge
4564 * @vma: the vma the pte to be checked belongs
4565 * @addr: the address corresponding to the pte to be checked
4566 * @ptent: the pte to be checked
4567 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4568 *
4569 * Returns
4570 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4571 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4572 * move charge. if @target is not NULL, the page is stored in target->page
4573 * with extra refcnt got(Callers should handle it).
4574 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4575 * target for charge migration. if @target is not NULL, the entry is stored
4576 * in target->ent.
4577 *
4578 * Called with pte lock held.
4579 */
4580
4581 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4582 unsigned long addr, pte_t ptent, union mc_target *target)
4583 {
4584 struct page *page = NULL;
4585 enum mc_target_type ret = MC_TARGET_NONE;
4586 swp_entry_t ent = { .val = 0 };
4587
4588 if (pte_present(ptent))
4589 page = mc_handle_present_pte(vma, addr, ptent);
4590 else if (is_swap_pte(ptent))
4591 page = mc_handle_swap_pte(vma, ptent, &ent);
4592 else if (pte_none(ptent))
4593 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4594
4595 if (!page && !ent.val)
4596 return ret;
4597 if (page) {
4598 /*
4599 * Do only loose check w/o serialization.
4600 * mem_cgroup_move_account() checks the page is valid or
4601 * not under LRU exclusion.
4602 */
4603 if (page->mem_cgroup == mc.from) {
4604 ret = MC_TARGET_PAGE;
4605 if (target)
4606 target->page = page;
4607 }
4608 if (!ret || !target)
4609 put_page(page);
4610 }
4611 /* There is a swap entry and a page doesn't exist or isn't charged */
4612 if (ent.val && !ret &&
4613 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4614 ret = MC_TARGET_SWAP;
4615 if (target)
4616 target->ent = ent;
4617 }
4618 return ret;
4619 }
4620
4621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4622 /*
4623 * We don't consider swapping or file mapped pages because THP does not
4624 * support them for now.
4625 * Caller should make sure that pmd_trans_huge(pmd) is true.
4626 */
4627 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4628 unsigned long addr, pmd_t pmd, union mc_target *target)
4629 {
4630 struct page *page = NULL;
4631 enum mc_target_type ret = MC_TARGET_NONE;
4632
4633 page = pmd_page(pmd);
4634 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4635 if (!(mc.flags & MOVE_ANON))
4636 return ret;
4637 if (page->mem_cgroup == mc.from) {
4638 ret = MC_TARGET_PAGE;
4639 if (target) {
4640 get_page(page);
4641 target->page = page;
4642 }
4643 }
4644 return ret;
4645 }
4646 #else
4647 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4648 unsigned long addr, pmd_t pmd, union mc_target *target)
4649 {
4650 return MC_TARGET_NONE;
4651 }
4652 #endif
4653
4654 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4655 unsigned long addr, unsigned long end,
4656 struct mm_walk *walk)
4657 {
4658 struct vm_area_struct *vma = walk->vma;
4659 pte_t *pte;
4660 spinlock_t *ptl;
4661
4662 ptl = pmd_trans_huge_lock(pmd, vma);
4663 if (ptl) {
4664 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4665 mc.precharge += HPAGE_PMD_NR;
4666 spin_unlock(ptl);
4667 return 0;
4668 }
4669
4670 if (pmd_trans_unstable(pmd))
4671 return 0;
4672 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4673 for (; addr != end; pte++, addr += PAGE_SIZE)
4674 if (get_mctgt_type(vma, addr, *pte, NULL))
4675 mc.precharge++; /* increment precharge temporarily */
4676 pte_unmap_unlock(pte - 1, ptl);
4677 cond_resched();
4678
4679 return 0;
4680 }
4681
4682 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4683 {
4684 unsigned long precharge;
4685
4686 struct mm_walk mem_cgroup_count_precharge_walk = {
4687 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4688 .mm = mm,
4689 };
4690 down_read(&mm->mmap_sem);
4691 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4692 up_read(&mm->mmap_sem);
4693
4694 precharge = mc.precharge;
4695 mc.precharge = 0;
4696
4697 return precharge;
4698 }
4699
4700 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4701 {
4702 unsigned long precharge = mem_cgroup_count_precharge(mm);
4703
4704 VM_BUG_ON(mc.moving_task);
4705 mc.moving_task = current;
4706 return mem_cgroup_do_precharge(precharge);
4707 }
4708
4709 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4710 static void __mem_cgroup_clear_mc(void)
4711 {
4712 struct mem_cgroup *from = mc.from;
4713 struct mem_cgroup *to = mc.to;
4714
4715 /* we must uncharge all the leftover precharges from mc.to */
4716 if (mc.precharge) {
4717 cancel_charge(mc.to, mc.precharge);
4718 mc.precharge = 0;
4719 }
4720 /*
4721 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4722 * we must uncharge here.
4723 */
4724 if (mc.moved_charge) {
4725 cancel_charge(mc.from, mc.moved_charge);
4726 mc.moved_charge = 0;
4727 }
4728 /* we must fixup refcnts and charges */
4729 if (mc.moved_swap) {
4730 /* uncharge swap account from the old cgroup */
4731 if (!mem_cgroup_is_root(mc.from))
4732 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
4733
4734 /*
4735 * we charged both to->memory and to->memsw, so we
4736 * should uncharge to->memory.
4737 */
4738 if (!mem_cgroup_is_root(mc.to))
4739 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4740
4741 css_put_many(&mc.from->css, mc.moved_swap);
4742
4743 /* we've already done css_get(mc.to) */
4744 mc.moved_swap = 0;
4745 }
4746 memcg_oom_recover(from);
4747 memcg_oom_recover(to);
4748 wake_up_all(&mc.waitq);
4749 }
4750
4751 static void mem_cgroup_clear_mc(void)
4752 {
4753 struct mm_struct *mm = mc.mm;
4754
4755 /*
4756 * we must clear moving_task before waking up waiters at the end of
4757 * task migration.
4758 */
4759 mc.moving_task = NULL;
4760 __mem_cgroup_clear_mc();
4761 spin_lock(&mc.lock);
4762 mc.from = NULL;
4763 mc.to = NULL;
4764 mc.mm = NULL;
4765 spin_unlock(&mc.lock);
4766
4767 mmput(mm);
4768 }
4769
4770 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4771 {
4772 struct cgroup_subsys_state *css;
4773 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
4774 struct mem_cgroup *from;
4775 struct task_struct *leader, *p;
4776 struct mm_struct *mm;
4777 unsigned long move_flags;
4778 int ret = 0;
4779
4780 /* charge immigration isn't supported on the default hierarchy */
4781 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
4782 return 0;
4783
4784 /*
4785 * Multi-process migrations only happen on the default hierarchy
4786 * where charge immigration is not used. Perform charge
4787 * immigration if @tset contains a leader and whine if there are
4788 * multiple.
4789 */
4790 p = NULL;
4791 cgroup_taskset_for_each_leader(leader, css, tset) {
4792 WARN_ON_ONCE(p);
4793 p = leader;
4794 memcg = mem_cgroup_from_css(css);
4795 }
4796 if (!p)
4797 return 0;
4798
4799 /*
4800 * We are now commited to this value whatever it is. Changes in this
4801 * tunable will only affect upcoming migrations, not the current one.
4802 * So we need to save it, and keep it going.
4803 */
4804 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4805 if (!move_flags)
4806 return 0;
4807
4808 from = mem_cgroup_from_task(p);
4809
4810 VM_BUG_ON(from == memcg);
4811
4812 mm = get_task_mm(p);
4813 if (!mm)
4814 return 0;
4815 /* We move charges only when we move a owner of the mm */
4816 if (mm->owner == p) {
4817 VM_BUG_ON(mc.from);
4818 VM_BUG_ON(mc.to);
4819 VM_BUG_ON(mc.precharge);
4820 VM_BUG_ON(mc.moved_charge);
4821 VM_BUG_ON(mc.moved_swap);
4822
4823 spin_lock(&mc.lock);
4824 mc.mm = mm;
4825 mc.from = from;
4826 mc.to = memcg;
4827 mc.flags = move_flags;
4828 spin_unlock(&mc.lock);
4829 /* We set mc.moving_task later */
4830
4831 ret = mem_cgroup_precharge_mc(mm);
4832 if (ret)
4833 mem_cgroup_clear_mc();
4834 } else {
4835 mmput(mm);
4836 }
4837 return ret;
4838 }
4839
4840 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4841 {
4842 if (mc.to)
4843 mem_cgroup_clear_mc();
4844 }
4845
4846 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4847 unsigned long addr, unsigned long end,
4848 struct mm_walk *walk)
4849 {
4850 int ret = 0;
4851 struct vm_area_struct *vma = walk->vma;
4852 pte_t *pte;
4853 spinlock_t *ptl;
4854 enum mc_target_type target_type;
4855 union mc_target target;
4856 struct page *page;
4857
4858 ptl = pmd_trans_huge_lock(pmd, vma);
4859 if (ptl) {
4860 if (mc.precharge < HPAGE_PMD_NR) {
4861 spin_unlock(ptl);
4862 return 0;
4863 }
4864 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4865 if (target_type == MC_TARGET_PAGE) {
4866 page = target.page;
4867 if (!isolate_lru_page(page)) {
4868 if (!mem_cgroup_move_account(page, true,
4869 mc.from, mc.to)) {
4870 mc.precharge -= HPAGE_PMD_NR;
4871 mc.moved_charge += HPAGE_PMD_NR;
4872 }
4873 putback_lru_page(page);
4874 }
4875 put_page(page);
4876 }
4877 spin_unlock(ptl);
4878 return 0;
4879 }
4880
4881 if (pmd_trans_unstable(pmd))
4882 return 0;
4883 retry:
4884 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4885 for (; addr != end; addr += PAGE_SIZE) {
4886 pte_t ptent = *(pte++);
4887 swp_entry_t ent;
4888
4889 if (!mc.precharge)
4890 break;
4891
4892 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4893 case MC_TARGET_PAGE:
4894 page = target.page;
4895 /*
4896 * We can have a part of the split pmd here. Moving it
4897 * can be done but it would be too convoluted so simply
4898 * ignore such a partial THP and keep it in original
4899 * memcg. There should be somebody mapping the head.
4900 */
4901 if (PageTransCompound(page))
4902 goto put;
4903 if (isolate_lru_page(page))
4904 goto put;
4905 if (!mem_cgroup_move_account(page, false,
4906 mc.from, mc.to)) {
4907 mc.precharge--;
4908 /* we uncharge from mc.from later. */
4909 mc.moved_charge++;
4910 }
4911 putback_lru_page(page);
4912 put: /* get_mctgt_type() gets the page */
4913 put_page(page);
4914 break;
4915 case MC_TARGET_SWAP:
4916 ent = target.ent;
4917 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
4918 mc.precharge--;
4919 /* we fixup refcnts and charges later. */
4920 mc.moved_swap++;
4921 }
4922 break;
4923 default:
4924 break;
4925 }
4926 }
4927 pte_unmap_unlock(pte - 1, ptl);
4928 cond_resched();
4929
4930 if (addr != end) {
4931 /*
4932 * We have consumed all precharges we got in can_attach().
4933 * We try charge one by one, but don't do any additional
4934 * charges to mc.to if we have failed in charge once in attach()
4935 * phase.
4936 */
4937 ret = mem_cgroup_do_precharge(1);
4938 if (!ret)
4939 goto retry;
4940 }
4941
4942 return ret;
4943 }
4944
4945 static void mem_cgroup_move_charge(void)
4946 {
4947 struct mm_walk mem_cgroup_move_charge_walk = {
4948 .pmd_entry = mem_cgroup_move_charge_pte_range,
4949 .mm = mc.mm,
4950 };
4951
4952 lru_add_drain_all();
4953 /*
4954 * Signal lock_page_memcg() to take the memcg's move_lock
4955 * while we're moving its pages to another memcg. Then wait
4956 * for already started RCU-only updates to finish.
4957 */
4958 atomic_inc(&mc.from->moving_account);
4959 synchronize_rcu();
4960 retry:
4961 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
4962 /*
4963 * Someone who are holding the mmap_sem might be waiting in
4964 * waitq. So we cancel all extra charges, wake up all waiters,
4965 * and retry. Because we cancel precharges, we might not be able
4966 * to move enough charges, but moving charge is a best-effort
4967 * feature anyway, so it wouldn't be a big problem.
4968 */
4969 __mem_cgroup_clear_mc();
4970 cond_resched();
4971 goto retry;
4972 }
4973 /*
4974 * When we have consumed all precharges and failed in doing
4975 * additional charge, the page walk just aborts.
4976 */
4977 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
4978 up_read(&mc.mm->mmap_sem);
4979 atomic_dec(&mc.from->moving_account);
4980 }
4981
4982 static void mem_cgroup_move_task(void)
4983 {
4984 if (mc.to) {
4985 mem_cgroup_move_charge();
4986 mem_cgroup_clear_mc();
4987 }
4988 }
4989 #else /* !CONFIG_MMU */
4990 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
4991 {
4992 return 0;
4993 }
4994 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
4995 {
4996 }
4997 static void mem_cgroup_move_task(void)
4998 {
4999 }
5000 #endif
5001
5002 /*
5003 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5004 * to verify whether we're attached to the default hierarchy on each mount
5005 * attempt.
5006 */
5007 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5008 {
5009 /*
5010 * use_hierarchy is forced on the default hierarchy. cgroup core
5011 * guarantees that @root doesn't have any children, so turning it
5012 * on for the root memcg is enough.
5013 */
5014 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5015 root_mem_cgroup->use_hierarchy = true;
5016 else
5017 root_mem_cgroup->use_hierarchy = false;
5018 }
5019
5020 static u64 memory_current_read(struct cgroup_subsys_state *css,
5021 struct cftype *cft)
5022 {
5023 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5024
5025 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5026 }
5027
5028 static int memory_low_show(struct seq_file *m, void *v)
5029 {
5030 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5031 unsigned long low = READ_ONCE(memcg->low);
5032
5033 if (low == PAGE_COUNTER_MAX)
5034 seq_puts(m, "max\n");
5035 else
5036 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5037
5038 return 0;
5039 }
5040
5041 static ssize_t memory_low_write(struct kernfs_open_file *of,
5042 char *buf, size_t nbytes, loff_t off)
5043 {
5044 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5045 unsigned long low;
5046 int err;
5047
5048 buf = strstrip(buf);
5049 err = page_counter_memparse(buf, "max", &low);
5050 if (err)
5051 return err;
5052
5053 memcg->low = low;
5054
5055 return nbytes;
5056 }
5057
5058 static int memory_high_show(struct seq_file *m, void *v)
5059 {
5060 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5061 unsigned long high = READ_ONCE(memcg->high);
5062
5063 if (high == PAGE_COUNTER_MAX)
5064 seq_puts(m, "max\n");
5065 else
5066 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5067
5068 return 0;
5069 }
5070
5071 static ssize_t memory_high_write(struct kernfs_open_file *of,
5072 char *buf, size_t nbytes, loff_t off)
5073 {
5074 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5075 unsigned long nr_pages;
5076 unsigned long high;
5077 int err;
5078
5079 buf = strstrip(buf);
5080 err = page_counter_memparse(buf, "max", &high);
5081 if (err)
5082 return err;
5083
5084 memcg->high = high;
5085
5086 nr_pages = page_counter_read(&memcg->memory);
5087 if (nr_pages > high)
5088 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5089 GFP_KERNEL, true);
5090
5091 memcg_wb_domain_size_changed(memcg);
5092 return nbytes;
5093 }
5094
5095 static int memory_max_show(struct seq_file *m, void *v)
5096 {
5097 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5098 unsigned long max = READ_ONCE(memcg->memory.limit);
5099
5100 if (max == PAGE_COUNTER_MAX)
5101 seq_puts(m, "max\n");
5102 else
5103 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5104
5105 return 0;
5106 }
5107
5108 static ssize_t memory_max_write(struct kernfs_open_file *of,
5109 char *buf, size_t nbytes, loff_t off)
5110 {
5111 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5112 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5113 bool drained = false;
5114 unsigned long max;
5115 int err;
5116
5117 buf = strstrip(buf);
5118 err = page_counter_memparse(buf, "max", &max);
5119 if (err)
5120 return err;
5121
5122 xchg(&memcg->memory.limit, max);
5123
5124 for (;;) {
5125 unsigned long nr_pages = page_counter_read(&memcg->memory);
5126
5127 if (nr_pages <= max)
5128 break;
5129
5130 if (signal_pending(current)) {
5131 err = -EINTR;
5132 break;
5133 }
5134
5135 if (!drained) {
5136 drain_all_stock(memcg);
5137 drained = true;
5138 continue;
5139 }
5140
5141 if (nr_reclaims) {
5142 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5143 GFP_KERNEL, true))
5144 nr_reclaims--;
5145 continue;
5146 }
5147
5148 mem_cgroup_events(memcg, MEMCG_OOM, 1);
5149 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5150 break;
5151 }
5152
5153 memcg_wb_domain_size_changed(memcg);
5154 return nbytes;
5155 }
5156
5157 static int memory_events_show(struct seq_file *m, void *v)
5158 {
5159 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5160
5161 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5162 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5163 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5164 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5165
5166 return 0;
5167 }
5168
5169 static int memory_stat_show(struct seq_file *m, void *v)
5170 {
5171 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5172 unsigned long stat[MEMCG_NR_STAT];
5173 unsigned long events[MEMCG_NR_EVENTS];
5174 int i;
5175
5176 /*
5177 * Provide statistics on the state of the memory subsystem as
5178 * well as cumulative event counters that show past behavior.
5179 *
5180 * This list is ordered following a combination of these gradients:
5181 * 1) generic big picture -> specifics and details
5182 * 2) reflecting userspace activity -> reflecting kernel heuristics
5183 *
5184 * Current memory state:
5185 */
5186
5187 tree_stat(memcg, stat);
5188 tree_events(memcg, events);
5189
5190 seq_printf(m, "anon %llu\n",
5191 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
5192 seq_printf(m, "file %llu\n",
5193 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
5194 seq_printf(m, "kernel_stack %llu\n",
5195 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
5196 seq_printf(m, "slab %llu\n",
5197 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5198 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
5199 seq_printf(m, "sock %llu\n",
5200 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
5201
5202 seq_printf(m, "file_mapped %llu\n",
5203 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
5204 seq_printf(m, "file_dirty %llu\n",
5205 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
5206 seq_printf(m, "file_writeback %llu\n",
5207 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
5208
5209 for (i = 0; i < NR_LRU_LISTS; i++) {
5210 struct mem_cgroup *mi;
5211 unsigned long val = 0;
5212
5213 for_each_mem_cgroup_tree(mi, memcg)
5214 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5215 seq_printf(m, "%s %llu\n",
5216 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5217 }
5218
5219 seq_printf(m, "slab_reclaimable %llu\n",
5220 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5221 seq_printf(m, "slab_unreclaimable %llu\n",
5222 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5223
5224 /* Accumulated memory events */
5225
5226 seq_printf(m, "pgfault %lu\n",
5227 events[MEM_CGROUP_EVENTS_PGFAULT]);
5228 seq_printf(m, "pgmajfault %lu\n",
5229 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
5230
5231 return 0;
5232 }
5233
5234 static struct cftype memory_files[] = {
5235 {
5236 .name = "current",
5237 .flags = CFTYPE_NOT_ON_ROOT,
5238 .read_u64 = memory_current_read,
5239 },
5240 {
5241 .name = "low",
5242 .flags = CFTYPE_NOT_ON_ROOT,
5243 .seq_show = memory_low_show,
5244 .write = memory_low_write,
5245 },
5246 {
5247 .name = "high",
5248 .flags = CFTYPE_NOT_ON_ROOT,
5249 .seq_show = memory_high_show,
5250 .write = memory_high_write,
5251 },
5252 {
5253 .name = "max",
5254 .flags = CFTYPE_NOT_ON_ROOT,
5255 .seq_show = memory_max_show,
5256 .write = memory_max_write,
5257 },
5258 {
5259 .name = "events",
5260 .flags = CFTYPE_NOT_ON_ROOT,
5261 .file_offset = offsetof(struct mem_cgroup, events_file),
5262 .seq_show = memory_events_show,
5263 },
5264 {
5265 .name = "stat",
5266 .flags = CFTYPE_NOT_ON_ROOT,
5267 .seq_show = memory_stat_show,
5268 },
5269 { } /* terminate */
5270 };
5271
5272 struct cgroup_subsys memory_cgrp_subsys = {
5273 .css_alloc = mem_cgroup_css_alloc,
5274 .css_online = mem_cgroup_css_online,
5275 .css_offline = mem_cgroup_css_offline,
5276 .css_released = mem_cgroup_css_released,
5277 .css_free = mem_cgroup_css_free,
5278 .css_reset = mem_cgroup_css_reset,
5279 .can_attach = mem_cgroup_can_attach,
5280 .cancel_attach = mem_cgroup_cancel_attach,
5281 .post_attach = mem_cgroup_move_task,
5282 .bind = mem_cgroup_bind,
5283 .dfl_cftypes = memory_files,
5284 .legacy_cftypes = mem_cgroup_legacy_files,
5285 .early_init = 0,
5286 };
5287
5288 /**
5289 * mem_cgroup_low - check if memory consumption is below the normal range
5290 * @root: the highest ancestor to consider
5291 * @memcg: the memory cgroup to check
5292 *
5293 * Returns %true if memory consumption of @memcg, and that of all
5294 * configurable ancestors up to @root, is below the normal range.
5295 */
5296 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5297 {
5298 if (mem_cgroup_disabled())
5299 return false;
5300
5301 /*
5302 * The toplevel group doesn't have a configurable range, so
5303 * it's never low when looked at directly, and it is not
5304 * considered an ancestor when assessing the hierarchy.
5305 */
5306
5307 if (memcg == root_mem_cgroup)
5308 return false;
5309
5310 if (page_counter_read(&memcg->memory) >= memcg->low)
5311 return false;
5312
5313 while (memcg != root) {
5314 memcg = parent_mem_cgroup(memcg);
5315
5316 if (memcg == root_mem_cgroup)
5317 break;
5318
5319 if (page_counter_read(&memcg->memory) >= memcg->low)
5320 return false;
5321 }
5322 return true;
5323 }
5324
5325 /**
5326 * mem_cgroup_try_charge - try charging a page
5327 * @page: page to charge
5328 * @mm: mm context of the victim
5329 * @gfp_mask: reclaim mode
5330 * @memcgp: charged memcg return
5331 * @compound: charge the page as compound or small page
5332 *
5333 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5334 * pages according to @gfp_mask if necessary.
5335 *
5336 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5337 * Otherwise, an error code is returned.
5338 *
5339 * After page->mapping has been set up, the caller must finalize the
5340 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5341 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5342 */
5343 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5344 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5345 bool compound)
5346 {
5347 struct mem_cgroup *memcg = NULL;
5348 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5349 int ret = 0;
5350
5351 if (mem_cgroup_disabled())
5352 goto out;
5353
5354 if (PageSwapCache(page)) {
5355 /*
5356 * Every swap fault against a single page tries to charge the
5357 * page, bail as early as possible. shmem_unuse() encounters
5358 * already charged pages, too. The USED bit is protected by
5359 * the page lock, which serializes swap cache removal, which
5360 * in turn serializes uncharging.
5361 */
5362 VM_BUG_ON_PAGE(!PageLocked(page), page);
5363 if (page->mem_cgroup)
5364 goto out;
5365
5366 if (do_swap_account) {
5367 swp_entry_t ent = { .val = page_private(page), };
5368 unsigned short id = lookup_swap_cgroup_id(ent);
5369
5370 rcu_read_lock();
5371 memcg = mem_cgroup_from_id(id);
5372 if (memcg && !css_tryget_online(&memcg->css))
5373 memcg = NULL;
5374 rcu_read_unlock();
5375 }
5376 }
5377
5378 if (!memcg)
5379 memcg = get_mem_cgroup_from_mm(mm);
5380
5381 ret = try_charge(memcg, gfp_mask, nr_pages);
5382
5383 css_put(&memcg->css);
5384 out:
5385 *memcgp = memcg;
5386 return ret;
5387 }
5388
5389 /**
5390 * mem_cgroup_commit_charge - commit a page charge
5391 * @page: page to charge
5392 * @memcg: memcg to charge the page to
5393 * @lrucare: page might be on LRU already
5394 * @compound: charge the page as compound or small page
5395 *
5396 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5397 * after page->mapping has been set up. This must happen atomically
5398 * as part of the page instantiation, i.e. under the page table lock
5399 * for anonymous pages, under the page lock for page and swap cache.
5400 *
5401 * In addition, the page must not be on the LRU during the commit, to
5402 * prevent racing with task migration. If it might be, use @lrucare.
5403 *
5404 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5405 */
5406 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5407 bool lrucare, bool compound)
5408 {
5409 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5410
5411 VM_BUG_ON_PAGE(!page->mapping, page);
5412 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5413
5414 if (mem_cgroup_disabled())
5415 return;
5416 /*
5417 * Swap faults will attempt to charge the same page multiple
5418 * times. But reuse_swap_page() might have removed the page
5419 * from swapcache already, so we can't check PageSwapCache().
5420 */
5421 if (!memcg)
5422 return;
5423
5424 commit_charge(page, memcg, lrucare);
5425
5426 local_irq_disable();
5427 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
5428 memcg_check_events(memcg, page);
5429 local_irq_enable();
5430
5431 if (do_memsw_account() && PageSwapCache(page)) {
5432 swp_entry_t entry = { .val = page_private(page) };
5433 /*
5434 * The swap entry might not get freed for a long time,
5435 * let's not wait for it. The page already received a
5436 * memory+swap charge, drop the swap entry duplicate.
5437 */
5438 mem_cgroup_uncharge_swap(entry);
5439 }
5440 }
5441
5442 /**
5443 * mem_cgroup_cancel_charge - cancel a page charge
5444 * @page: page to charge
5445 * @memcg: memcg to charge the page to
5446 * @compound: charge the page as compound or small page
5447 *
5448 * Cancel a charge transaction started by mem_cgroup_try_charge().
5449 */
5450 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5451 bool compound)
5452 {
5453 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5454
5455 if (mem_cgroup_disabled())
5456 return;
5457 /*
5458 * Swap faults will attempt to charge the same page multiple
5459 * times. But reuse_swap_page() might have removed the page
5460 * from swapcache already, so we can't check PageSwapCache().
5461 */
5462 if (!memcg)
5463 return;
5464
5465 cancel_charge(memcg, nr_pages);
5466 }
5467
5468 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5469 unsigned long nr_anon, unsigned long nr_file,
5470 unsigned long nr_huge, unsigned long nr_kmem,
5471 struct page *dummy_page)
5472 {
5473 unsigned long nr_pages = nr_anon + nr_file + nr_kmem;
5474 unsigned long flags;
5475
5476 if (!mem_cgroup_is_root(memcg)) {
5477 page_counter_uncharge(&memcg->memory, nr_pages);
5478 if (do_memsw_account())
5479 page_counter_uncharge(&memcg->memsw, nr_pages);
5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && nr_kmem)
5481 page_counter_uncharge(&memcg->kmem, nr_kmem);
5482 memcg_oom_recover(memcg);
5483 }
5484
5485 local_irq_save(flags);
5486 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5487 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5488 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5489 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5490 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5491 memcg_check_events(memcg, dummy_page);
5492 local_irq_restore(flags);
5493
5494 if (!mem_cgroup_is_root(memcg))
5495 css_put_many(&memcg->css, nr_pages);
5496 }
5497
5498 static void uncharge_list(struct list_head *page_list)
5499 {
5500 struct mem_cgroup *memcg = NULL;
5501 unsigned long nr_anon = 0;
5502 unsigned long nr_file = 0;
5503 unsigned long nr_huge = 0;
5504 unsigned long nr_kmem = 0;
5505 unsigned long pgpgout = 0;
5506 struct list_head *next;
5507 struct page *page;
5508
5509 /*
5510 * Note that the list can be a single page->lru; hence the
5511 * do-while loop instead of a simple list_for_each_entry().
5512 */
5513 next = page_list->next;
5514 do {
5515 page = list_entry(next, struct page, lru);
5516 next = page->lru.next;
5517
5518 VM_BUG_ON_PAGE(PageLRU(page), page);
5519 VM_BUG_ON_PAGE(page_count(page), page);
5520
5521 if (!page->mem_cgroup)
5522 continue;
5523
5524 /*
5525 * Nobody should be changing or seriously looking at
5526 * page->mem_cgroup at this point, we have fully
5527 * exclusive access to the page.
5528 */
5529
5530 if (memcg != page->mem_cgroup) {
5531 if (memcg) {
5532 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5533 nr_huge, nr_kmem, page);
5534 pgpgout = nr_anon = nr_file =
5535 nr_huge = nr_kmem = 0;
5536 }
5537 memcg = page->mem_cgroup;
5538 }
5539
5540 if (!PageKmemcg(page)) {
5541 unsigned int nr_pages = 1;
5542
5543 if (PageTransHuge(page)) {
5544 nr_pages <<= compound_order(page);
5545 nr_huge += nr_pages;
5546 }
5547 if (PageAnon(page))
5548 nr_anon += nr_pages;
5549 else
5550 nr_file += nr_pages;
5551 pgpgout++;
5552 } else
5553 nr_kmem += 1 << compound_order(page);
5554
5555 page->mem_cgroup = NULL;
5556 } while (next != page_list);
5557
5558 if (memcg)
5559 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5560 nr_huge, nr_kmem, page);
5561 }
5562
5563 /**
5564 * mem_cgroup_uncharge - uncharge a page
5565 * @page: page to uncharge
5566 *
5567 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5568 * mem_cgroup_commit_charge().
5569 */
5570 void mem_cgroup_uncharge(struct page *page)
5571 {
5572 if (mem_cgroup_disabled())
5573 return;
5574
5575 /* Don't touch page->lru of any random page, pre-check: */
5576 if (!page->mem_cgroup)
5577 return;
5578
5579 INIT_LIST_HEAD(&page->lru);
5580 uncharge_list(&page->lru);
5581 }
5582
5583 /**
5584 * mem_cgroup_uncharge_list - uncharge a list of page
5585 * @page_list: list of pages to uncharge
5586 *
5587 * Uncharge a list of pages previously charged with
5588 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5589 */
5590 void mem_cgroup_uncharge_list(struct list_head *page_list)
5591 {
5592 if (mem_cgroup_disabled())
5593 return;
5594
5595 if (!list_empty(page_list))
5596 uncharge_list(page_list);
5597 }
5598
5599 /**
5600 * mem_cgroup_migrate - charge a page's replacement
5601 * @oldpage: currently circulating page
5602 * @newpage: replacement page
5603 *
5604 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5605 * be uncharged upon free.
5606 *
5607 * Both pages must be locked, @newpage->mapping must be set up.
5608 */
5609 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
5610 {
5611 struct mem_cgroup *memcg;
5612 unsigned int nr_pages;
5613 bool compound;
5614 unsigned long flags;
5615
5616 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5617 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5618 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5619 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5620 newpage);
5621
5622 if (mem_cgroup_disabled())
5623 return;
5624
5625 /* Page cache replacement: new page already charged? */
5626 if (newpage->mem_cgroup)
5627 return;
5628
5629 /* Swapcache readahead pages can get replaced before being charged */
5630 memcg = oldpage->mem_cgroup;
5631 if (!memcg)
5632 return;
5633
5634 /* Force-charge the new page. The old one will be freed soon */
5635 compound = PageTransHuge(newpage);
5636 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5637
5638 page_counter_charge(&memcg->memory, nr_pages);
5639 if (do_memsw_account())
5640 page_counter_charge(&memcg->memsw, nr_pages);
5641 css_get_many(&memcg->css, nr_pages);
5642
5643 commit_charge(newpage, memcg, false);
5644
5645 local_irq_save(flags);
5646 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5647 memcg_check_events(memcg, newpage);
5648 local_irq_restore(flags);
5649 }
5650
5651 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
5652 EXPORT_SYMBOL(memcg_sockets_enabled_key);
5653
5654 void sock_update_memcg(struct sock *sk)
5655 {
5656 struct mem_cgroup *memcg;
5657
5658 /* Socket cloning can throw us here with sk_cgrp already
5659 * filled. It won't however, necessarily happen from
5660 * process context. So the test for root memcg given
5661 * the current task's memcg won't help us in this case.
5662 *
5663 * Respecting the original socket's memcg is a better
5664 * decision in this case.
5665 */
5666 if (sk->sk_memcg) {
5667 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5668 css_get(&sk->sk_memcg->css);
5669 return;
5670 }
5671
5672 rcu_read_lock();
5673 memcg = mem_cgroup_from_task(current);
5674 if (memcg == root_mem_cgroup)
5675 goto out;
5676 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
5677 goto out;
5678 if (css_tryget_online(&memcg->css))
5679 sk->sk_memcg = memcg;
5680 out:
5681 rcu_read_unlock();
5682 }
5683 EXPORT_SYMBOL(sock_update_memcg);
5684
5685 void sock_release_memcg(struct sock *sk)
5686 {
5687 WARN_ON(!sk->sk_memcg);
5688 css_put(&sk->sk_memcg->css);
5689 }
5690
5691 /**
5692 * mem_cgroup_charge_skmem - charge socket memory
5693 * @memcg: memcg to charge
5694 * @nr_pages: number of pages to charge
5695 *
5696 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5697 * @memcg's configured limit, %false if the charge had to be forced.
5698 */
5699 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5700 {
5701 gfp_t gfp_mask = GFP_KERNEL;
5702
5703 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5704 struct page_counter *fail;
5705
5706 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5707 memcg->tcpmem_pressure = 0;
5708 return true;
5709 }
5710 page_counter_charge(&memcg->tcpmem, nr_pages);
5711 memcg->tcpmem_pressure = 1;
5712 return false;
5713 }
5714
5715 /* Don't block in the packet receive path */
5716 if (in_softirq())
5717 gfp_mask = GFP_NOWAIT;
5718
5719 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5720
5721 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5722 return true;
5723
5724 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
5725 return false;
5726 }
5727
5728 /**
5729 * mem_cgroup_uncharge_skmem - uncharge socket memory
5730 * @memcg - memcg to uncharge
5731 * @nr_pages - number of pages to uncharge
5732 */
5733 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5734 {
5735 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
5736 page_counter_uncharge(&memcg->tcpmem, nr_pages);
5737 return;
5738 }
5739
5740 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5741
5742 page_counter_uncharge(&memcg->memory, nr_pages);
5743 css_put_many(&memcg->css, nr_pages);
5744 }
5745
5746 static int __init cgroup_memory(char *s)
5747 {
5748 char *token;
5749
5750 while ((token = strsep(&s, ",")) != NULL) {
5751 if (!*token)
5752 continue;
5753 if (!strcmp(token, "nosocket"))
5754 cgroup_memory_nosocket = true;
5755 if (!strcmp(token, "nokmem"))
5756 cgroup_memory_nokmem = true;
5757 }
5758 return 0;
5759 }
5760 __setup("cgroup.memory=", cgroup_memory);
5761
5762 /*
5763 * subsys_initcall() for memory controller.
5764 *
5765 * Some parts like hotcpu_notifier() have to be initialized from this context
5766 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5767 * everything that doesn't depend on a specific mem_cgroup structure should
5768 * be initialized from here.
5769 */
5770 static int __init mem_cgroup_init(void)
5771 {
5772 int cpu, node;
5773
5774 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5775
5776 for_each_possible_cpu(cpu)
5777 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5778 drain_local_stock);
5779
5780 for_each_node(node) {
5781 struct mem_cgroup_tree_per_node *rtpn;
5782 int zone;
5783
5784 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5785 node_online(node) ? node : NUMA_NO_NODE);
5786
5787 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5788 struct mem_cgroup_tree_per_zone *rtpz;
5789
5790 rtpz = &rtpn->rb_tree_per_zone[zone];
5791 rtpz->rb_root = RB_ROOT;
5792 spin_lock_init(&rtpz->lock);
5793 }
5794 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5795 }
5796
5797 return 0;
5798 }
5799 subsys_initcall(mem_cgroup_init);
5800
5801 #ifdef CONFIG_MEMCG_SWAP
5802 /**
5803 * mem_cgroup_swapout - transfer a memsw charge to swap
5804 * @page: page whose memsw charge to transfer
5805 * @entry: swap entry to move the charge to
5806 *
5807 * Transfer the memsw charge of @page to @entry.
5808 */
5809 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5810 {
5811 struct mem_cgroup *memcg;
5812 unsigned short oldid;
5813
5814 VM_BUG_ON_PAGE(PageLRU(page), page);
5815 VM_BUG_ON_PAGE(page_count(page), page);
5816
5817 if (!do_memsw_account())
5818 return;
5819
5820 memcg = page->mem_cgroup;
5821
5822 /* Readahead page, never charged */
5823 if (!memcg)
5824 return;
5825
5826 mem_cgroup_id_get(memcg);
5827 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5828 VM_BUG_ON_PAGE(oldid, page);
5829 mem_cgroup_swap_statistics(memcg, true);
5830
5831 page->mem_cgroup = NULL;
5832
5833 if (!mem_cgroup_is_root(memcg))
5834 page_counter_uncharge(&memcg->memory, 1);
5835
5836 /*
5837 * Interrupts should be disabled here because the caller holds the
5838 * mapping->tree_lock lock which is taken with interrupts-off. It is
5839 * important here to have the interrupts disabled because it is the
5840 * only synchronisation we have for udpating the per-CPU variables.
5841 */
5842 VM_BUG_ON(!irqs_disabled());
5843 mem_cgroup_charge_statistics(memcg, page, false, -1);
5844 memcg_check_events(memcg, page);
5845
5846 if (!mem_cgroup_is_root(memcg))
5847 css_put(&memcg->css);
5848 }
5849
5850 /*
5851 * mem_cgroup_try_charge_swap - try charging a swap entry
5852 * @page: page being added to swap
5853 * @entry: swap entry to charge
5854 *
5855 * Try to charge @entry to the memcg that @page belongs to.
5856 *
5857 * Returns 0 on success, -ENOMEM on failure.
5858 */
5859 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5860 {
5861 struct mem_cgroup *memcg;
5862 struct page_counter *counter;
5863 unsigned short oldid;
5864
5865 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5866 return 0;
5867
5868 memcg = page->mem_cgroup;
5869
5870 /* Readahead page, never charged */
5871 if (!memcg)
5872 return 0;
5873
5874 if (!mem_cgroup_is_root(memcg) &&
5875 !page_counter_try_charge(&memcg->swap, 1, &counter))
5876 return -ENOMEM;
5877
5878 mem_cgroup_id_get(memcg);
5879 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5880 VM_BUG_ON_PAGE(oldid, page);
5881 mem_cgroup_swap_statistics(memcg, true);
5882
5883 return 0;
5884 }
5885
5886 /**
5887 * mem_cgroup_uncharge_swap - uncharge a swap entry
5888 * @entry: swap entry to uncharge
5889 *
5890 * Drop the swap charge associated with @entry.
5891 */
5892 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5893 {
5894 struct mem_cgroup *memcg;
5895 unsigned short id;
5896
5897 if (!do_swap_account)
5898 return;
5899
5900 id = swap_cgroup_record(entry, 0);
5901 rcu_read_lock();
5902 memcg = mem_cgroup_from_id(id);
5903 if (memcg) {
5904 if (!mem_cgroup_is_root(memcg)) {
5905 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5906 page_counter_uncharge(&memcg->swap, 1);
5907 else
5908 page_counter_uncharge(&memcg->memsw, 1);
5909 }
5910 mem_cgroup_swap_statistics(memcg, false);
5911 mem_cgroup_id_put(memcg);
5912 }
5913 rcu_read_unlock();
5914 }
5915
5916 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5917 {
5918 long nr_swap_pages = get_nr_swap_pages();
5919
5920 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5921 return nr_swap_pages;
5922 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5923 nr_swap_pages = min_t(long, nr_swap_pages,
5924 READ_ONCE(memcg->swap.limit) -
5925 page_counter_read(&memcg->swap));
5926 return nr_swap_pages;
5927 }
5928
5929 bool mem_cgroup_swap_full(struct page *page)
5930 {
5931 struct mem_cgroup *memcg;
5932
5933 VM_BUG_ON_PAGE(!PageLocked(page), page);
5934
5935 if (vm_swap_full())
5936 return true;
5937 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5938 return false;
5939
5940 memcg = page->mem_cgroup;
5941 if (!memcg)
5942 return false;
5943
5944 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5945 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5946 return true;
5947
5948 return false;
5949 }
5950
5951 /* for remember boot option*/
5952 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5953 static int really_do_swap_account __initdata = 1;
5954 #else
5955 static int really_do_swap_account __initdata;
5956 #endif
5957
5958 static int __init enable_swap_account(char *s)
5959 {
5960 if (!strcmp(s, "1"))
5961 really_do_swap_account = 1;
5962 else if (!strcmp(s, "0"))
5963 really_do_swap_account = 0;
5964 return 1;
5965 }
5966 __setup("swapaccount=", enable_swap_account);
5967
5968 static u64 swap_current_read(struct cgroup_subsys_state *css,
5969 struct cftype *cft)
5970 {
5971 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5972
5973 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5974 }
5975
5976 static int swap_max_show(struct seq_file *m, void *v)
5977 {
5978 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5979 unsigned long max = READ_ONCE(memcg->swap.limit);
5980
5981 if (max == PAGE_COUNTER_MAX)
5982 seq_puts(m, "max\n");
5983 else
5984 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5985
5986 return 0;
5987 }
5988
5989 static ssize_t swap_max_write(struct kernfs_open_file *of,
5990 char *buf, size_t nbytes, loff_t off)
5991 {
5992 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5993 unsigned long max;
5994 int err;
5995
5996 buf = strstrip(buf);
5997 err = page_counter_memparse(buf, "max", &max);
5998 if (err)
5999 return err;
6000
6001 mutex_lock(&memcg_limit_mutex);
6002 err = page_counter_limit(&memcg->swap, max);
6003 mutex_unlock(&memcg_limit_mutex);
6004 if (err)
6005 return err;
6006
6007 return nbytes;
6008 }
6009
6010 static struct cftype swap_files[] = {
6011 {
6012 .name = "swap.current",
6013 .flags = CFTYPE_NOT_ON_ROOT,
6014 .read_u64 = swap_current_read,
6015 },
6016 {
6017 .name = "swap.max",
6018 .flags = CFTYPE_NOT_ON_ROOT,
6019 .seq_show = swap_max_show,
6020 .write = swap_max_write,
6021 },
6022 { } /* terminate */
6023 };
6024
6025 static struct cftype memsw_cgroup_files[] = {
6026 {
6027 .name = "memsw.usage_in_bytes",
6028 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6029 .read_u64 = mem_cgroup_read_u64,
6030 },
6031 {
6032 .name = "memsw.max_usage_in_bytes",
6033 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6034 .write = mem_cgroup_reset,
6035 .read_u64 = mem_cgroup_read_u64,
6036 },
6037 {
6038 .name = "memsw.limit_in_bytes",
6039 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6040 .write = mem_cgroup_write,
6041 .read_u64 = mem_cgroup_read_u64,
6042 },
6043 {
6044 .name = "memsw.failcnt",
6045 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6046 .write = mem_cgroup_reset,
6047 .read_u64 = mem_cgroup_read_u64,
6048 },
6049 { }, /* terminate */
6050 };
6051
6052 static int __init mem_cgroup_swap_init(void)
6053 {
6054 if (!mem_cgroup_disabled() && really_do_swap_account) {
6055 do_swap_account = 1;
6056 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6057 swap_files));
6058 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6059 memsw_cgroup_files));
6060 }
6061 return 0;
6062 }
6063 subsys_initcall(mem_cgroup_swap_init);
6064
6065 #endif /* CONFIG_MEMCG_SWAP */