]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
memcg: prevent endless loop when charging huge pages
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 */
23
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/vmscan.h>
56
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
60
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
64
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
71
72 #else
73 #define do_swap_account (0)
74 #endif
75
76 /*
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
80 *
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
82 */
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
85
86 /*
87 * Statistics for memory cgroup.
88 */
89 enum mem_cgroup_stat_index {
90 /*
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
92 */
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
103
104 MEM_CGROUP_STAT_NSTATS,
105 };
106
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
109 };
110
111 /*
112 * per-zone information in memory controller.
113 */
114 struct mem_cgroup_per_zone {
115 /*
116 * spin_lock to protect the per cgroup LRU
117 */
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
120
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
128 };
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
131
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
134 };
135
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
138 };
139
140 /*
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
143 */
144
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
148 };
149
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
152 };
153
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
156 };
157
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
159
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
163 };
164
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
173 };
174
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
178 /*
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
182 */
183 struct mem_cgroup_threshold_ary *spare;
184 };
185
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
190 };
191
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
194
195 /*
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
200 *
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
205 */
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
208 /*
209 * the counter to account for memory usage
210 */
211 struct res_counter res;
212 /*
213 * the counter to account for mem+swap usage.
214 */
215 struct res_counter memsw;
216 /*
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
219 */
220 struct mem_cgroup_lru_info info;
221
222 /*
223 protect against reclaim related member.
224 */
225 spinlock_t reclaim_param_lock;
226
227 /*
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
230 */
231 int last_scanned_child;
232 /*
233 * Should the accounting and control be hierarchical, per subtree?
234 */
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
238
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
242
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
245
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
248
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
251
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
254
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
257
258 /*
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
261 */
262 unsigned long move_charge_at_immigrate;
263 /*
264 * percpu counter.
265 */
266 struct mem_cgroup_stat_cpu *stat;
267 /*
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
270 */
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
273 };
274
275 /* Stuffs for move charges at task migration. */
276 /*
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
279 */
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
284 };
285
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 wait_queue_head_t waitq; /* a waitq for other context */
296 } mc = {
297 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
298 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
299 };
300
301 static bool move_anon(void)
302 {
303 return test_bit(MOVE_CHARGE_TYPE_ANON,
304 &mc.to->move_charge_at_immigrate);
305 }
306
307 static bool move_file(void)
308 {
309 return test_bit(MOVE_CHARGE_TYPE_FILE,
310 &mc.to->move_charge_at_immigrate);
311 }
312
313 /*
314 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
315 * limit reclaim to prevent infinite loops, if they ever occur.
316 */
317 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
318 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
319
320 enum charge_type {
321 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
322 MEM_CGROUP_CHARGE_TYPE_MAPPED,
323 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
324 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
325 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
326 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
327 NR_CHARGE_TYPE,
328 };
329
330 /* only for here (for easy reading.) */
331 #define PCGF_CACHE (1UL << PCG_CACHE)
332 #define PCGF_USED (1UL << PCG_USED)
333 #define PCGF_LOCK (1UL << PCG_LOCK)
334 /* Not used, but added here for completeness */
335 #define PCGF_ACCT (1UL << PCG_ACCT)
336
337 /* for encoding cft->private value on file */
338 #define _MEM (0)
339 #define _MEMSWAP (1)
340 #define _OOM_TYPE (2)
341 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
342 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
343 #define MEMFILE_ATTR(val) ((val) & 0xffff)
344 /* Used for OOM nofiier */
345 #define OOM_CONTROL (0)
346
347 /*
348 * Reclaim flags for mem_cgroup_hierarchical_reclaim
349 */
350 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
351 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
352 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
353 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
354 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
355 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
356
357 static void mem_cgroup_get(struct mem_cgroup *mem);
358 static void mem_cgroup_put(struct mem_cgroup *mem);
359 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
360 static void drain_all_stock_async(void);
361
362 static struct mem_cgroup_per_zone *
363 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
364 {
365 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
366 }
367
368 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
369 {
370 return &mem->css;
371 }
372
373 static struct mem_cgroup_per_zone *
374 page_cgroup_zoneinfo(struct page_cgroup *pc)
375 {
376 struct mem_cgroup *mem = pc->mem_cgroup;
377 int nid = page_cgroup_nid(pc);
378 int zid = page_cgroup_zid(pc);
379
380 if (!mem)
381 return NULL;
382
383 return mem_cgroup_zoneinfo(mem, nid, zid);
384 }
385
386 static struct mem_cgroup_tree_per_zone *
387 soft_limit_tree_node_zone(int nid, int zid)
388 {
389 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
390 }
391
392 static struct mem_cgroup_tree_per_zone *
393 soft_limit_tree_from_page(struct page *page)
394 {
395 int nid = page_to_nid(page);
396 int zid = page_zonenum(page);
397
398 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
399 }
400
401 static void
402 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
403 struct mem_cgroup_per_zone *mz,
404 struct mem_cgroup_tree_per_zone *mctz,
405 unsigned long long new_usage_in_excess)
406 {
407 struct rb_node **p = &mctz->rb_root.rb_node;
408 struct rb_node *parent = NULL;
409 struct mem_cgroup_per_zone *mz_node;
410
411 if (mz->on_tree)
412 return;
413
414 mz->usage_in_excess = new_usage_in_excess;
415 if (!mz->usage_in_excess)
416 return;
417 while (*p) {
418 parent = *p;
419 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
420 tree_node);
421 if (mz->usage_in_excess < mz_node->usage_in_excess)
422 p = &(*p)->rb_left;
423 /*
424 * We can't avoid mem cgroups that are over their soft
425 * limit by the same amount
426 */
427 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
428 p = &(*p)->rb_right;
429 }
430 rb_link_node(&mz->tree_node, parent, p);
431 rb_insert_color(&mz->tree_node, &mctz->rb_root);
432 mz->on_tree = true;
433 }
434
435 static void
436 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
437 struct mem_cgroup_per_zone *mz,
438 struct mem_cgroup_tree_per_zone *mctz)
439 {
440 if (!mz->on_tree)
441 return;
442 rb_erase(&mz->tree_node, &mctz->rb_root);
443 mz->on_tree = false;
444 }
445
446 static void
447 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
448 struct mem_cgroup_per_zone *mz,
449 struct mem_cgroup_tree_per_zone *mctz)
450 {
451 spin_lock(&mctz->lock);
452 __mem_cgroup_remove_exceeded(mem, mz, mctz);
453 spin_unlock(&mctz->lock);
454 }
455
456
457 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
458 {
459 unsigned long long excess;
460 struct mem_cgroup_per_zone *mz;
461 struct mem_cgroup_tree_per_zone *mctz;
462 int nid = page_to_nid(page);
463 int zid = page_zonenum(page);
464 mctz = soft_limit_tree_from_page(page);
465
466 /*
467 * Necessary to update all ancestors when hierarchy is used.
468 * because their event counter is not touched.
469 */
470 for (; mem; mem = parent_mem_cgroup(mem)) {
471 mz = mem_cgroup_zoneinfo(mem, nid, zid);
472 excess = res_counter_soft_limit_excess(&mem->res);
473 /*
474 * We have to update the tree if mz is on RB-tree or
475 * mem is over its softlimit.
476 */
477 if (excess || mz->on_tree) {
478 spin_lock(&mctz->lock);
479 /* if on-tree, remove it */
480 if (mz->on_tree)
481 __mem_cgroup_remove_exceeded(mem, mz, mctz);
482 /*
483 * Insert again. mz->usage_in_excess will be updated.
484 * If excess is 0, no tree ops.
485 */
486 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
487 spin_unlock(&mctz->lock);
488 }
489 }
490 }
491
492 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
493 {
494 int node, zone;
495 struct mem_cgroup_per_zone *mz;
496 struct mem_cgroup_tree_per_zone *mctz;
497
498 for_each_node_state(node, N_POSSIBLE) {
499 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
500 mz = mem_cgroup_zoneinfo(mem, node, zone);
501 mctz = soft_limit_tree_node_zone(node, zone);
502 mem_cgroup_remove_exceeded(mem, mz, mctz);
503 }
504 }
505 }
506
507 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
508 {
509 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
510 }
511
512 static struct mem_cgroup_per_zone *
513 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
514 {
515 struct rb_node *rightmost = NULL;
516 struct mem_cgroup_per_zone *mz;
517
518 retry:
519 mz = NULL;
520 rightmost = rb_last(&mctz->rb_root);
521 if (!rightmost)
522 goto done; /* Nothing to reclaim from */
523
524 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
525 /*
526 * Remove the node now but someone else can add it back,
527 * we will to add it back at the end of reclaim to its correct
528 * position in the tree.
529 */
530 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
531 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
532 !css_tryget(&mz->mem->css))
533 goto retry;
534 done:
535 return mz;
536 }
537
538 static struct mem_cgroup_per_zone *
539 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
540 {
541 struct mem_cgroup_per_zone *mz;
542
543 spin_lock(&mctz->lock);
544 mz = __mem_cgroup_largest_soft_limit_node(mctz);
545 spin_unlock(&mctz->lock);
546 return mz;
547 }
548
549 /*
550 * Implementation Note: reading percpu statistics for memcg.
551 *
552 * Both of vmstat[] and percpu_counter has threshold and do periodic
553 * synchronization to implement "quick" read. There are trade-off between
554 * reading cost and precision of value. Then, we may have a chance to implement
555 * a periodic synchronizion of counter in memcg's counter.
556 *
557 * But this _read() function is used for user interface now. The user accounts
558 * memory usage by memory cgroup and he _always_ requires exact value because
559 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
560 * have to visit all online cpus and make sum. So, for now, unnecessary
561 * synchronization is not implemented. (just implemented for cpu hotplug)
562 *
563 * If there are kernel internal actions which can make use of some not-exact
564 * value, and reading all cpu value can be performance bottleneck in some
565 * common workload, threashold and synchonization as vmstat[] should be
566 * implemented.
567 */
568 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
569 enum mem_cgroup_stat_index idx)
570 {
571 int cpu;
572 s64 val = 0;
573
574 get_online_cpus();
575 for_each_online_cpu(cpu)
576 val += per_cpu(mem->stat->count[idx], cpu);
577 #ifdef CONFIG_HOTPLUG_CPU
578 spin_lock(&mem->pcp_counter_lock);
579 val += mem->nocpu_base.count[idx];
580 spin_unlock(&mem->pcp_counter_lock);
581 #endif
582 put_online_cpus();
583 return val;
584 }
585
586 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
587 {
588 s64 ret;
589
590 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
591 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
592 return ret;
593 }
594
595 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
596 bool charge)
597 {
598 int val = (charge) ? 1 : -1;
599 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
600 }
601
602 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
603 bool file, int nr_pages)
604 {
605 preempt_disable();
606
607 if (file)
608 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], nr_pages);
609 else
610 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], nr_pages);
611
612 /* pagein of a big page is an event. So, ignore page size */
613 if (nr_pages > 0)
614 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
615 else
616 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
617
618 __this_cpu_add(mem->stat->count[MEM_CGROUP_EVENTS], nr_pages);
619
620 preempt_enable();
621 }
622
623 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
624 enum lru_list idx)
625 {
626 int nid, zid;
627 struct mem_cgroup_per_zone *mz;
628 u64 total = 0;
629
630 for_each_online_node(nid)
631 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
632 mz = mem_cgroup_zoneinfo(mem, nid, zid);
633 total += MEM_CGROUP_ZSTAT(mz, idx);
634 }
635 return total;
636 }
637
638 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
639 {
640 s64 val;
641
642 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
643
644 return !(val & ((1 << event_mask_shift) - 1));
645 }
646
647 /*
648 * Check events in order.
649 *
650 */
651 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
652 {
653 /* threshold event is triggered in finer grain than soft limit */
654 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
655 mem_cgroup_threshold(mem);
656 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
657 mem_cgroup_update_tree(mem, page);
658 }
659 }
660
661 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
662 {
663 return container_of(cgroup_subsys_state(cont,
664 mem_cgroup_subsys_id), struct mem_cgroup,
665 css);
666 }
667
668 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
669 {
670 /*
671 * mm_update_next_owner() may clear mm->owner to NULL
672 * if it races with swapoff, page migration, etc.
673 * So this can be called with p == NULL.
674 */
675 if (unlikely(!p))
676 return NULL;
677
678 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
679 struct mem_cgroup, css);
680 }
681
682 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
683 {
684 struct mem_cgroup *mem = NULL;
685
686 if (!mm)
687 return NULL;
688 /*
689 * Because we have no locks, mm->owner's may be being moved to other
690 * cgroup. We use css_tryget() here even if this looks
691 * pessimistic (rather than adding locks here).
692 */
693 rcu_read_lock();
694 do {
695 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
696 if (unlikely(!mem))
697 break;
698 } while (!css_tryget(&mem->css));
699 rcu_read_unlock();
700 return mem;
701 }
702
703 /* The caller has to guarantee "mem" exists before calling this */
704 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
705 {
706 struct cgroup_subsys_state *css;
707 int found;
708
709 if (!mem) /* ROOT cgroup has the smallest ID */
710 return root_mem_cgroup; /*css_put/get against root is ignored*/
711 if (!mem->use_hierarchy) {
712 if (css_tryget(&mem->css))
713 return mem;
714 return NULL;
715 }
716 rcu_read_lock();
717 /*
718 * searching a memory cgroup which has the smallest ID under given
719 * ROOT cgroup. (ID >= 1)
720 */
721 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
722 if (css && css_tryget(css))
723 mem = container_of(css, struct mem_cgroup, css);
724 else
725 mem = NULL;
726 rcu_read_unlock();
727 return mem;
728 }
729
730 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
731 struct mem_cgroup *root,
732 bool cond)
733 {
734 int nextid = css_id(&iter->css) + 1;
735 int found;
736 int hierarchy_used;
737 struct cgroup_subsys_state *css;
738
739 hierarchy_used = iter->use_hierarchy;
740
741 css_put(&iter->css);
742 /* If no ROOT, walk all, ignore hierarchy */
743 if (!cond || (root && !hierarchy_used))
744 return NULL;
745
746 if (!root)
747 root = root_mem_cgroup;
748
749 do {
750 iter = NULL;
751 rcu_read_lock();
752
753 css = css_get_next(&mem_cgroup_subsys, nextid,
754 &root->css, &found);
755 if (css && css_tryget(css))
756 iter = container_of(css, struct mem_cgroup, css);
757 rcu_read_unlock();
758 /* If css is NULL, no more cgroups will be found */
759 nextid = found + 1;
760 } while (css && !iter);
761
762 return iter;
763 }
764 /*
765 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
766 * be careful that "break" loop is not allowed. We have reference count.
767 * Instead of that modify "cond" to be false and "continue" to exit the loop.
768 */
769 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
770 for (iter = mem_cgroup_start_loop(root);\
771 iter != NULL;\
772 iter = mem_cgroup_get_next(iter, root, cond))
773
774 #define for_each_mem_cgroup_tree(iter, root) \
775 for_each_mem_cgroup_tree_cond(iter, root, true)
776
777 #define for_each_mem_cgroup_all(iter) \
778 for_each_mem_cgroup_tree_cond(iter, NULL, true)
779
780
781 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
782 {
783 return (mem == root_mem_cgroup);
784 }
785
786 /*
787 * Following LRU functions are allowed to be used without PCG_LOCK.
788 * Operations are called by routine of global LRU independently from memcg.
789 * What we have to take care of here is validness of pc->mem_cgroup.
790 *
791 * Changes to pc->mem_cgroup happens when
792 * 1. charge
793 * 2. moving account
794 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
795 * It is added to LRU before charge.
796 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
797 * When moving account, the page is not on LRU. It's isolated.
798 */
799
800 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
801 {
802 struct page_cgroup *pc;
803 struct mem_cgroup_per_zone *mz;
804
805 if (mem_cgroup_disabled())
806 return;
807 pc = lookup_page_cgroup(page);
808 /* can happen while we handle swapcache. */
809 if (!TestClearPageCgroupAcctLRU(pc))
810 return;
811 VM_BUG_ON(!pc->mem_cgroup);
812 /*
813 * We don't check PCG_USED bit. It's cleared when the "page" is finally
814 * removed from global LRU.
815 */
816 mz = page_cgroup_zoneinfo(pc);
817 /* huge page split is done under lru_lock. so, we have no races. */
818 MEM_CGROUP_ZSTAT(mz, lru) -= 1 << compound_order(page);
819 if (mem_cgroup_is_root(pc->mem_cgroup))
820 return;
821 VM_BUG_ON(list_empty(&pc->lru));
822 list_del_init(&pc->lru);
823 }
824
825 void mem_cgroup_del_lru(struct page *page)
826 {
827 mem_cgroup_del_lru_list(page, page_lru(page));
828 }
829
830 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
831 {
832 struct mem_cgroup_per_zone *mz;
833 struct page_cgroup *pc;
834
835 if (mem_cgroup_disabled())
836 return;
837
838 pc = lookup_page_cgroup(page);
839 /* unused or root page is not rotated. */
840 if (!PageCgroupUsed(pc))
841 return;
842 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
843 smp_rmb();
844 if (mem_cgroup_is_root(pc->mem_cgroup))
845 return;
846 mz = page_cgroup_zoneinfo(pc);
847 list_move(&pc->lru, &mz->lists[lru]);
848 }
849
850 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
851 {
852 struct page_cgroup *pc;
853 struct mem_cgroup_per_zone *mz;
854
855 if (mem_cgroup_disabled())
856 return;
857 pc = lookup_page_cgroup(page);
858 VM_BUG_ON(PageCgroupAcctLRU(pc));
859 if (!PageCgroupUsed(pc))
860 return;
861 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
862 smp_rmb();
863 mz = page_cgroup_zoneinfo(pc);
864 /* huge page split is done under lru_lock. so, we have no races. */
865 MEM_CGROUP_ZSTAT(mz, lru) += 1 << compound_order(page);
866 SetPageCgroupAcctLRU(pc);
867 if (mem_cgroup_is_root(pc->mem_cgroup))
868 return;
869 list_add(&pc->lru, &mz->lists[lru]);
870 }
871
872 /*
873 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
874 * lru because the page may.be reused after it's fully uncharged (because of
875 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
876 * it again. This function is only used to charge SwapCache. It's done under
877 * lock_page and expected that zone->lru_lock is never held.
878 */
879 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
880 {
881 unsigned long flags;
882 struct zone *zone = page_zone(page);
883 struct page_cgroup *pc = lookup_page_cgroup(page);
884
885 spin_lock_irqsave(&zone->lru_lock, flags);
886 /*
887 * Forget old LRU when this page_cgroup is *not* used. This Used bit
888 * is guarded by lock_page() because the page is SwapCache.
889 */
890 if (!PageCgroupUsed(pc))
891 mem_cgroup_del_lru_list(page, page_lru(page));
892 spin_unlock_irqrestore(&zone->lru_lock, flags);
893 }
894
895 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
896 {
897 unsigned long flags;
898 struct zone *zone = page_zone(page);
899 struct page_cgroup *pc = lookup_page_cgroup(page);
900
901 spin_lock_irqsave(&zone->lru_lock, flags);
902 /* link when the page is linked to LRU but page_cgroup isn't */
903 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
904 mem_cgroup_add_lru_list(page, page_lru(page));
905 spin_unlock_irqrestore(&zone->lru_lock, flags);
906 }
907
908
909 void mem_cgroup_move_lists(struct page *page,
910 enum lru_list from, enum lru_list to)
911 {
912 if (mem_cgroup_disabled())
913 return;
914 mem_cgroup_del_lru_list(page, from);
915 mem_cgroup_add_lru_list(page, to);
916 }
917
918 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
919 {
920 int ret;
921 struct mem_cgroup *curr = NULL;
922 struct task_struct *p;
923
924 p = find_lock_task_mm(task);
925 if (!p)
926 return 0;
927 curr = try_get_mem_cgroup_from_mm(p->mm);
928 task_unlock(p);
929 if (!curr)
930 return 0;
931 /*
932 * We should check use_hierarchy of "mem" not "curr". Because checking
933 * use_hierarchy of "curr" here make this function true if hierarchy is
934 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
935 * hierarchy(even if use_hierarchy is disabled in "mem").
936 */
937 if (mem->use_hierarchy)
938 ret = css_is_ancestor(&curr->css, &mem->css);
939 else
940 ret = (curr == mem);
941 css_put(&curr->css);
942 return ret;
943 }
944
945 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
946 {
947 unsigned long active;
948 unsigned long inactive;
949 unsigned long gb;
950 unsigned long inactive_ratio;
951
952 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
953 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
954
955 gb = (inactive + active) >> (30 - PAGE_SHIFT);
956 if (gb)
957 inactive_ratio = int_sqrt(10 * gb);
958 else
959 inactive_ratio = 1;
960
961 if (present_pages) {
962 present_pages[0] = inactive;
963 present_pages[1] = active;
964 }
965
966 return inactive_ratio;
967 }
968
969 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
970 {
971 unsigned long active;
972 unsigned long inactive;
973 unsigned long present_pages[2];
974 unsigned long inactive_ratio;
975
976 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
977
978 inactive = present_pages[0];
979 active = present_pages[1];
980
981 if (inactive * inactive_ratio < active)
982 return 1;
983
984 return 0;
985 }
986
987 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
988 {
989 unsigned long active;
990 unsigned long inactive;
991
992 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
993 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
994
995 return (active > inactive);
996 }
997
998 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
999 struct zone *zone,
1000 enum lru_list lru)
1001 {
1002 int nid = zone_to_nid(zone);
1003 int zid = zone_idx(zone);
1004 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1005
1006 return MEM_CGROUP_ZSTAT(mz, lru);
1007 }
1008
1009 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1010 struct zone *zone)
1011 {
1012 int nid = zone_to_nid(zone);
1013 int zid = zone_idx(zone);
1014 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1015
1016 return &mz->reclaim_stat;
1017 }
1018
1019 struct zone_reclaim_stat *
1020 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1021 {
1022 struct page_cgroup *pc;
1023 struct mem_cgroup_per_zone *mz;
1024
1025 if (mem_cgroup_disabled())
1026 return NULL;
1027
1028 pc = lookup_page_cgroup(page);
1029 if (!PageCgroupUsed(pc))
1030 return NULL;
1031 /* Ensure pc->mem_cgroup is visible after reading PCG_USED. */
1032 smp_rmb();
1033 mz = page_cgroup_zoneinfo(pc);
1034 if (!mz)
1035 return NULL;
1036
1037 return &mz->reclaim_stat;
1038 }
1039
1040 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1041 struct list_head *dst,
1042 unsigned long *scanned, int order,
1043 int mode, struct zone *z,
1044 struct mem_cgroup *mem_cont,
1045 int active, int file)
1046 {
1047 unsigned long nr_taken = 0;
1048 struct page *page;
1049 unsigned long scan;
1050 LIST_HEAD(pc_list);
1051 struct list_head *src;
1052 struct page_cgroup *pc, *tmp;
1053 int nid = zone_to_nid(z);
1054 int zid = zone_idx(z);
1055 struct mem_cgroup_per_zone *mz;
1056 int lru = LRU_FILE * file + active;
1057 int ret;
1058
1059 BUG_ON(!mem_cont);
1060 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1061 src = &mz->lists[lru];
1062
1063 scan = 0;
1064 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1065 if (scan >= nr_to_scan)
1066 break;
1067
1068 page = pc->page;
1069 if (unlikely(!PageCgroupUsed(pc)))
1070 continue;
1071 if (unlikely(!PageLRU(page)))
1072 continue;
1073
1074 scan++;
1075 ret = __isolate_lru_page(page, mode, file);
1076 switch (ret) {
1077 case 0:
1078 list_move(&page->lru, dst);
1079 mem_cgroup_del_lru(page);
1080 nr_taken += hpage_nr_pages(page);
1081 break;
1082 case -EBUSY:
1083 /* we don't affect global LRU but rotate in our LRU */
1084 mem_cgroup_rotate_lru_list(page, page_lru(page));
1085 break;
1086 default:
1087 break;
1088 }
1089 }
1090
1091 *scanned = scan;
1092
1093 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1094 0, 0, 0, mode);
1095
1096 return nr_taken;
1097 }
1098
1099 #define mem_cgroup_from_res_counter(counter, member) \
1100 container_of(counter, struct mem_cgroup, member)
1101
1102 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1103 {
1104 if (do_swap_account) {
1105 if (res_counter_check_under_limit(&mem->res) &&
1106 res_counter_check_under_limit(&mem->memsw))
1107 return true;
1108 } else
1109 if (res_counter_check_under_limit(&mem->res))
1110 return true;
1111 return false;
1112 }
1113
1114 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1115 {
1116 struct cgroup *cgrp = memcg->css.cgroup;
1117 unsigned int swappiness;
1118
1119 /* root ? */
1120 if (cgrp->parent == NULL)
1121 return vm_swappiness;
1122
1123 spin_lock(&memcg->reclaim_param_lock);
1124 swappiness = memcg->swappiness;
1125 spin_unlock(&memcg->reclaim_param_lock);
1126
1127 return swappiness;
1128 }
1129
1130 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1131 {
1132 int cpu;
1133
1134 get_online_cpus();
1135 spin_lock(&mem->pcp_counter_lock);
1136 for_each_online_cpu(cpu)
1137 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1138 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1139 spin_unlock(&mem->pcp_counter_lock);
1140 put_online_cpus();
1141
1142 synchronize_rcu();
1143 }
1144
1145 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1146 {
1147 int cpu;
1148
1149 if (!mem)
1150 return;
1151 get_online_cpus();
1152 spin_lock(&mem->pcp_counter_lock);
1153 for_each_online_cpu(cpu)
1154 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1155 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1156 spin_unlock(&mem->pcp_counter_lock);
1157 put_online_cpus();
1158 }
1159 /*
1160 * 2 routines for checking "mem" is under move_account() or not.
1161 *
1162 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1163 * for avoiding race in accounting. If true,
1164 * pc->mem_cgroup may be overwritten.
1165 *
1166 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1167 * under hierarchy of moving cgroups. This is for
1168 * waiting at hith-memory prressure caused by "move".
1169 */
1170
1171 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1172 {
1173 VM_BUG_ON(!rcu_read_lock_held());
1174 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1175 }
1176
1177 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1178 {
1179 struct mem_cgroup *from;
1180 struct mem_cgroup *to;
1181 bool ret = false;
1182 /*
1183 * Unlike task_move routines, we access mc.to, mc.from not under
1184 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1185 */
1186 spin_lock(&mc.lock);
1187 from = mc.from;
1188 to = mc.to;
1189 if (!from)
1190 goto unlock;
1191 if (from == mem || to == mem
1192 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1193 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1194 ret = true;
1195 unlock:
1196 spin_unlock(&mc.lock);
1197 return ret;
1198 }
1199
1200 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1201 {
1202 if (mc.moving_task && current != mc.moving_task) {
1203 if (mem_cgroup_under_move(mem)) {
1204 DEFINE_WAIT(wait);
1205 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1206 /* moving charge context might have finished. */
1207 if (mc.moving_task)
1208 schedule();
1209 finish_wait(&mc.waitq, &wait);
1210 return true;
1211 }
1212 }
1213 return false;
1214 }
1215
1216 /**
1217 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1218 * @memcg: The memory cgroup that went over limit
1219 * @p: Task that is going to be killed
1220 *
1221 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1222 * enabled
1223 */
1224 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1225 {
1226 struct cgroup *task_cgrp;
1227 struct cgroup *mem_cgrp;
1228 /*
1229 * Need a buffer in BSS, can't rely on allocations. The code relies
1230 * on the assumption that OOM is serialized for memory controller.
1231 * If this assumption is broken, revisit this code.
1232 */
1233 static char memcg_name[PATH_MAX];
1234 int ret;
1235
1236 if (!memcg || !p)
1237 return;
1238
1239
1240 rcu_read_lock();
1241
1242 mem_cgrp = memcg->css.cgroup;
1243 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1244
1245 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1246 if (ret < 0) {
1247 /*
1248 * Unfortunately, we are unable to convert to a useful name
1249 * But we'll still print out the usage information
1250 */
1251 rcu_read_unlock();
1252 goto done;
1253 }
1254 rcu_read_unlock();
1255
1256 printk(KERN_INFO "Task in %s killed", memcg_name);
1257
1258 rcu_read_lock();
1259 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1260 if (ret < 0) {
1261 rcu_read_unlock();
1262 goto done;
1263 }
1264 rcu_read_unlock();
1265
1266 /*
1267 * Continues from above, so we don't need an KERN_ level
1268 */
1269 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1270 done:
1271
1272 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1273 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1274 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1275 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1276 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1277 "failcnt %llu\n",
1278 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1279 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1280 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1281 }
1282
1283 /*
1284 * This function returns the number of memcg under hierarchy tree. Returns
1285 * 1(self count) if no children.
1286 */
1287 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1288 {
1289 int num = 0;
1290 struct mem_cgroup *iter;
1291
1292 for_each_mem_cgroup_tree(iter, mem)
1293 num++;
1294 return num;
1295 }
1296
1297 /*
1298 * Return the memory (and swap, if configured) limit for a memcg.
1299 */
1300 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1301 {
1302 u64 limit;
1303 u64 memsw;
1304
1305 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1306 limit += total_swap_pages << PAGE_SHIFT;
1307
1308 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1309 /*
1310 * If memsw is finite and limits the amount of swap space available
1311 * to this memcg, return that limit.
1312 */
1313 return min(limit, memsw);
1314 }
1315
1316 /*
1317 * Visit the first child (need not be the first child as per the ordering
1318 * of the cgroup list, since we track last_scanned_child) of @mem and use
1319 * that to reclaim free pages from.
1320 */
1321 static struct mem_cgroup *
1322 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1323 {
1324 struct mem_cgroup *ret = NULL;
1325 struct cgroup_subsys_state *css;
1326 int nextid, found;
1327
1328 if (!root_mem->use_hierarchy) {
1329 css_get(&root_mem->css);
1330 ret = root_mem;
1331 }
1332
1333 while (!ret) {
1334 rcu_read_lock();
1335 nextid = root_mem->last_scanned_child + 1;
1336 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1337 &found);
1338 if (css && css_tryget(css))
1339 ret = container_of(css, struct mem_cgroup, css);
1340
1341 rcu_read_unlock();
1342 /* Updates scanning parameter */
1343 spin_lock(&root_mem->reclaim_param_lock);
1344 if (!css) {
1345 /* this means start scan from ID:1 */
1346 root_mem->last_scanned_child = 0;
1347 } else
1348 root_mem->last_scanned_child = found;
1349 spin_unlock(&root_mem->reclaim_param_lock);
1350 }
1351
1352 return ret;
1353 }
1354
1355 /*
1356 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1357 * we reclaimed from, so that we don't end up penalizing one child extensively
1358 * based on its position in the children list.
1359 *
1360 * root_mem is the original ancestor that we've been reclaim from.
1361 *
1362 * We give up and return to the caller when we visit root_mem twice.
1363 * (other groups can be removed while we're walking....)
1364 *
1365 * If shrink==true, for avoiding to free too much, this returns immedieately.
1366 */
1367 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1368 struct zone *zone,
1369 gfp_t gfp_mask,
1370 unsigned long reclaim_options)
1371 {
1372 struct mem_cgroup *victim;
1373 int ret, total = 0;
1374 int loop = 0;
1375 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1376 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1377 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1378 unsigned long excess = mem_cgroup_get_excess(root_mem);
1379
1380 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1381 if (root_mem->memsw_is_minimum)
1382 noswap = true;
1383
1384 while (1) {
1385 victim = mem_cgroup_select_victim(root_mem);
1386 if (victim == root_mem) {
1387 loop++;
1388 if (loop >= 1)
1389 drain_all_stock_async();
1390 if (loop >= 2) {
1391 /*
1392 * If we have not been able to reclaim
1393 * anything, it might because there are
1394 * no reclaimable pages under this hierarchy
1395 */
1396 if (!check_soft || !total) {
1397 css_put(&victim->css);
1398 break;
1399 }
1400 /*
1401 * We want to do more targetted reclaim.
1402 * excess >> 2 is not to excessive so as to
1403 * reclaim too much, nor too less that we keep
1404 * coming back to reclaim from this cgroup
1405 */
1406 if (total >= (excess >> 2) ||
1407 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1408 css_put(&victim->css);
1409 break;
1410 }
1411 }
1412 }
1413 if (!mem_cgroup_local_usage(victim)) {
1414 /* this cgroup's local usage == 0 */
1415 css_put(&victim->css);
1416 continue;
1417 }
1418 /* we use swappiness of local cgroup */
1419 if (check_soft)
1420 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1421 noswap, get_swappiness(victim), zone);
1422 else
1423 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1424 noswap, get_swappiness(victim));
1425 css_put(&victim->css);
1426 /*
1427 * At shrinking usage, we can't check we should stop here or
1428 * reclaim more. It's depends on callers. last_scanned_child
1429 * will work enough for keeping fairness under tree.
1430 */
1431 if (shrink)
1432 return ret;
1433 total += ret;
1434 if (check_soft) {
1435 if (res_counter_check_under_soft_limit(&root_mem->res))
1436 return total;
1437 } else if (mem_cgroup_check_under_limit(root_mem))
1438 return 1 + total;
1439 }
1440 return total;
1441 }
1442
1443 /*
1444 * Check OOM-Killer is already running under our hierarchy.
1445 * If someone is running, return false.
1446 */
1447 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1448 {
1449 int x, lock_count = 0;
1450 struct mem_cgroup *iter;
1451
1452 for_each_mem_cgroup_tree(iter, mem) {
1453 x = atomic_inc_return(&iter->oom_lock);
1454 lock_count = max(x, lock_count);
1455 }
1456
1457 if (lock_count == 1)
1458 return true;
1459 return false;
1460 }
1461
1462 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1463 {
1464 struct mem_cgroup *iter;
1465
1466 /*
1467 * When a new child is created while the hierarchy is under oom,
1468 * mem_cgroup_oom_lock() may not be called. We have to use
1469 * atomic_add_unless() here.
1470 */
1471 for_each_mem_cgroup_tree(iter, mem)
1472 atomic_add_unless(&iter->oom_lock, -1, 0);
1473 return 0;
1474 }
1475
1476
1477 static DEFINE_MUTEX(memcg_oom_mutex);
1478 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1479
1480 struct oom_wait_info {
1481 struct mem_cgroup *mem;
1482 wait_queue_t wait;
1483 };
1484
1485 static int memcg_oom_wake_function(wait_queue_t *wait,
1486 unsigned mode, int sync, void *arg)
1487 {
1488 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1489 struct oom_wait_info *oom_wait_info;
1490
1491 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1492
1493 if (oom_wait_info->mem == wake_mem)
1494 goto wakeup;
1495 /* if no hierarchy, no match */
1496 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1497 return 0;
1498 /*
1499 * Both of oom_wait_info->mem and wake_mem are stable under us.
1500 * Then we can use css_is_ancestor without taking care of RCU.
1501 */
1502 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1503 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1504 return 0;
1505
1506 wakeup:
1507 return autoremove_wake_function(wait, mode, sync, arg);
1508 }
1509
1510 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1511 {
1512 /* for filtering, pass "mem" as argument. */
1513 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1514 }
1515
1516 static void memcg_oom_recover(struct mem_cgroup *mem)
1517 {
1518 if (mem && atomic_read(&mem->oom_lock))
1519 memcg_wakeup_oom(mem);
1520 }
1521
1522 /*
1523 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1524 */
1525 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1526 {
1527 struct oom_wait_info owait;
1528 bool locked, need_to_kill;
1529
1530 owait.mem = mem;
1531 owait.wait.flags = 0;
1532 owait.wait.func = memcg_oom_wake_function;
1533 owait.wait.private = current;
1534 INIT_LIST_HEAD(&owait.wait.task_list);
1535 need_to_kill = true;
1536 /* At first, try to OOM lock hierarchy under mem.*/
1537 mutex_lock(&memcg_oom_mutex);
1538 locked = mem_cgroup_oom_lock(mem);
1539 /*
1540 * Even if signal_pending(), we can't quit charge() loop without
1541 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1542 * under OOM is always welcomed, use TASK_KILLABLE here.
1543 */
1544 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1545 if (!locked || mem->oom_kill_disable)
1546 need_to_kill = false;
1547 if (locked)
1548 mem_cgroup_oom_notify(mem);
1549 mutex_unlock(&memcg_oom_mutex);
1550
1551 if (need_to_kill) {
1552 finish_wait(&memcg_oom_waitq, &owait.wait);
1553 mem_cgroup_out_of_memory(mem, mask);
1554 } else {
1555 schedule();
1556 finish_wait(&memcg_oom_waitq, &owait.wait);
1557 }
1558 mutex_lock(&memcg_oom_mutex);
1559 mem_cgroup_oom_unlock(mem);
1560 memcg_wakeup_oom(mem);
1561 mutex_unlock(&memcg_oom_mutex);
1562
1563 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1564 return false;
1565 /* Give chance to dying process */
1566 schedule_timeout(1);
1567 return true;
1568 }
1569
1570 /*
1571 * Currently used to update mapped file statistics, but the routine can be
1572 * generalized to update other statistics as well.
1573 *
1574 * Notes: Race condition
1575 *
1576 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1577 * it tends to be costly. But considering some conditions, we doesn't need
1578 * to do so _always_.
1579 *
1580 * Considering "charge", lock_page_cgroup() is not required because all
1581 * file-stat operations happen after a page is attached to radix-tree. There
1582 * are no race with "charge".
1583 *
1584 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1585 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1586 * if there are race with "uncharge". Statistics itself is properly handled
1587 * by flags.
1588 *
1589 * Considering "move", this is an only case we see a race. To make the race
1590 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1591 * possibility of race condition. If there is, we take a lock.
1592 */
1593
1594 void mem_cgroup_update_page_stat(struct page *page,
1595 enum mem_cgroup_page_stat_item idx, int val)
1596 {
1597 struct mem_cgroup *mem;
1598 struct page_cgroup *pc = lookup_page_cgroup(page);
1599 bool need_unlock = false;
1600 unsigned long uninitialized_var(flags);
1601
1602 if (unlikely(!pc))
1603 return;
1604
1605 rcu_read_lock();
1606 mem = pc->mem_cgroup;
1607 if (unlikely(!mem || !PageCgroupUsed(pc)))
1608 goto out;
1609 /* pc->mem_cgroup is unstable ? */
1610 if (unlikely(mem_cgroup_stealed(mem)) || PageTransHuge(page)) {
1611 /* take a lock against to access pc->mem_cgroup */
1612 move_lock_page_cgroup(pc, &flags);
1613 need_unlock = true;
1614 mem = pc->mem_cgroup;
1615 if (!mem || !PageCgroupUsed(pc))
1616 goto out;
1617 }
1618
1619 switch (idx) {
1620 case MEMCG_NR_FILE_MAPPED:
1621 if (val > 0)
1622 SetPageCgroupFileMapped(pc);
1623 else if (!page_mapped(page))
1624 ClearPageCgroupFileMapped(pc);
1625 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1626 break;
1627 default:
1628 BUG();
1629 }
1630
1631 this_cpu_add(mem->stat->count[idx], val);
1632
1633 out:
1634 if (unlikely(need_unlock))
1635 move_unlock_page_cgroup(pc, &flags);
1636 rcu_read_unlock();
1637 return;
1638 }
1639 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1640
1641 /*
1642 * size of first charge trial. "32" comes from vmscan.c's magic value.
1643 * TODO: maybe necessary to use big numbers in big irons.
1644 */
1645 #define CHARGE_SIZE (32 * PAGE_SIZE)
1646 struct memcg_stock_pcp {
1647 struct mem_cgroup *cached; /* this never be root cgroup */
1648 int charge;
1649 struct work_struct work;
1650 };
1651 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1652 static atomic_t memcg_drain_count;
1653
1654 /*
1655 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1656 * from local stock and true is returned. If the stock is 0 or charges from a
1657 * cgroup which is not current target, returns false. This stock will be
1658 * refilled.
1659 */
1660 static bool consume_stock(struct mem_cgroup *mem)
1661 {
1662 struct memcg_stock_pcp *stock;
1663 bool ret = true;
1664
1665 stock = &get_cpu_var(memcg_stock);
1666 if (mem == stock->cached && stock->charge)
1667 stock->charge -= PAGE_SIZE;
1668 else /* need to call res_counter_charge */
1669 ret = false;
1670 put_cpu_var(memcg_stock);
1671 return ret;
1672 }
1673
1674 /*
1675 * Returns stocks cached in percpu to res_counter and reset cached information.
1676 */
1677 static void drain_stock(struct memcg_stock_pcp *stock)
1678 {
1679 struct mem_cgroup *old = stock->cached;
1680
1681 if (stock->charge) {
1682 res_counter_uncharge(&old->res, stock->charge);
1683 if (do_swap_account)
1684 res_counter_uncharge(&old->memsw, stock->charge);
1685 }
1686 stock->cached = NULL;
1687 stock->charge = 0;
1688 }
1689
1690 /*
1691 * This must be called under preempt disabled or must be called by
1692 * a thread which is pinned to local cpu.
1693 */
1694 static void drain_local_stock(struct work_struct *dummy)
1695 {
1696 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1697 drain_stock(stock);
1698 }
1699
1700 /*
1701 * Cache charges(val) which is from res_counter, to local per_cpu area.
1702 * This will be consumed by consume_stock() function, later.
1703 */
1704 static void refill_stock(struct mem_cgroup *mem, int val)
1705 {
1706 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1707
1708 if (stock->cached != mem) { /* reset if necessary */
1709 drain_stock(stock);
1710 stock->cached = mem;
1711 }
1712 stock->charge += val;
1713 put_cpu_var(memcg_stock);
1714 }
1715
1716 /*
1717 * Tries to drain stocked charges in other cpus. This function is asynchronous
1718 * and just put a work per cpu for draining localy on each cpu. Caller can
1719 * expects some charges will be back to res_counter later but cannot wait for
1720 * it.
1721 */
1722 static void drain_all_stock_async(void)
1723 {
1724 int cpu;
1725 /* This function is for scheduling "drain" in asynchronous way.
1726 * The result of "drain" is not directly handled by callers. Then,
1727 * if someone is calling drain, we don't have to call drain more.
1728 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1729 * there is a race. We just do loose check here.
1730 */
1731 if (atomic_read(&memcg_drain_count))
1732 return;
1733 /* Notify other cpus that system-wide "drain" is running */
1734 atomic_inc(&memcg_drain_count);
1735 get_online_cpus();
1736 for_each_online_cpu(cpu) {
1737 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1738 schedule_work_on(cpu, &stock->work);
1739 }
1740 put_online_cpus();
1741 atomic_dec(&memcg_drain_count);
1742 /* We don't wait for flush_work */
1743 }
1744
1745 /* This is a synchronous drain interface. */
1746 static void drain_all_stock_sync(void)
1747 {
1748 /* called when force_empty is called */
1749 atomic_inc(&memcg_drain_count);
1750 schedule_on_each_cpu(drain_local_stock);
1751 atomic_dec(&memcg_drain_count);
1752 }
1753
1754 /*
1755 * This function drains percpu counter value from DEAD cpu and
1756 * move it to local cpu. Note that this function can be preempted.
1757 */
1758 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1759 {
1760 int i;
1761
1762 spin_lock(&mem->pcp_counter_lock);
1763 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1764 s64 x = per_cpu(mem->stat->count[i], cpu);
1765
1766 per_cpu(mem->stat->count[i], cpu) = 0;
1767 mem->nocpu_base.count[i] += x;
1768 }
1769 /* need to clear ON_MOVE value, works as a kind of lock. */
1770 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1771 spin_unlock(&mem->pcp_counter_lock);
1772 }
1773
1774 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1775 {
1776 int idx = MEM_CGROUP_ON_MOVE;
1777
1778 spin_lock(&mem->pcp_counter_lock);
1779 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1780 spin_unlock(&mem->pcp_counter_lock);
1781 }
1782
1783 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1784 unsigned long action,
1785 void *hcpu)
1786 {
1787 int cpu = (unsigned long)hcpu;
1788 struct memcg_stock_pcp *stock;
1789 struct mem_cgroup *iter;
1790
1791 if ((action == CPU_ONLINE)) {
1792 for_each_mem_cgroup_all(iter)
1793 synchronize_mem_cgroup_on_move(iter, cpu);
1794 return NOTIFY_OK;
1795 }
1796
1797 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1798 return NOTIFY_OK;
1799
1800 for_each_mem_cgroup_all(iter)
1801 mem_cgroup_drain_pcp_counter(iter, cpu);
1802
1803 stock = &per_cpu(memcg_stock, cpu);
1804 drain_stock(stock);
1805 return NOTIFY_OK;
1806 }
1807
1808
1809 /* See __mem_cgroup_try_charge() for details */
1810 enum {
1811 CHARGE_OK, /* success */
1812 CHARGE_RETRY, /* need to retry but retry is not bad */
1813 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1814 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1815 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1816 };
1817
1818 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1819 int csize, bool oom_check)
1820 {
1821 struct mem_cgroup *mem_over_limit;
1822 struct res_counter *fail_res;
1823 unsigned long flags = 0;
1824 int ret;
1825
1826 ret = res_counter_charge(&mem->res, csize, &fail_res);
1827
1828 if (likely(!ret)) {
1829 if (!do_swap_account)
1830 return CHARGE_OK;
1831 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1832 if (likely(!ret))
1833 return CHARGE_OK;
1834
1835 res_counter_uncharge(&mem->res, csize);
1836 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1837 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1838 } else
1839 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1840 /*
1841 * csize can be either a huge page (HPAGE_SIZE), a batch of
1842 * regular pages (CHARGE_SIZE), or a single regular page
1843 * (PAGE_SIZE).
1844 *
1845 * Never reclaim on behalf of optional batching, retry with a
1846 * single page instead.
1847 */
1848 if (csize == CHARGE_SIZE)
1849 return CHARGE_RETRY;
1850
1851 if (!(gfp_mask & __GFP_WAIT))
1852 return CHARGE_WOULDBLOCK;
1853
1854 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1855 gfp_mask, flags);
1856 /*
1857 * try_to_free_mem_cgroup_pages() might not give us a full
1858 * picture of reclaim. Some pages are reclaimed and might be
1859 * moved to swap cache or just unmapped from the cgroup.
1860 * Check the limit again to see if the reclaim reduced the
1861 * current usage of the cgroup before giving up
1862 */
1863 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1864 return CHARGE_RETRY;
1865
1866 /*
1867 * At task move, charge accounts can be doubly counted. So, it's
1868 * better to wait until the end of task_move if something is going on.
1869 */
1870 if (mem_cgroup_wait_acct_move(mem_over_limit))
1871 return CHARGE_RETRY;
1872
1873 /* If we don't need to call oom-killer at el, return immediately */
1874 if (!oom_check)
1875 return CHARGE_NOMEM;
1876 /* check OOM */
1877 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1878 return CHARGE_OOM_DIE;
1879
1880 return CHARGE_RETRY;
1881 }
1882
1883 /*
1884 * Unlike exported interface, "oom" parameter is added. if oom==true,
1885 * oom-killer can be invoked.
1886 */
1887 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1888 gfp_t gfp_mask,
1889 struct mem_cgroup **memcg, bool oom,
1890 int page_size)
1891 {
1892 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1893 struct mem_cgroup *mem = NULL;
1894 int ret;
1895 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1896
1897 /*
1898 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899 * in system level. So, allow to go ahead dying process in addition to
1900 * MEMDIE process.
1901 */
1902 if (unlikely(test_thread_flag(TIF_MEMDIE)
1903 || fatal_signal_pending(current)))
1904 goto bypass;
1905
1906 /*
1907 * We always charge the cgroup the mm_struct belongs to.
1908 * The mm_struct's mem_cgroup changes on task migration if the
1909 * thread group leader migrates. It's possible that mm is not
1910 * set, if so charge the init_mm (happens for pagecache usage).
1911 */
1912 if (!*memcg && !mm)
1913 goto bypass;
1914 again:
1915 if (*memcg) { /* css should be a valid one */
1916 mem = *memcg;
1917 VM_BUG_ON(css_is_removed(&mem->css));
1918 if (mem_cgroup_is_root(mem))
1919 goto done;
1920 if (page_size == PAGE_SIZE && consume_stock(mem))
1921 goto done;
1922 css_get(&mem->css);
1923 } else {
1924 struct task_struct *p;
1925
1926 rcu_read_lock();
1927 p = rcu_dereference(mm->owner);
1928 /*
1929 * Because we don't have task_lock(), "p" can exit.
1930 * In that case, "mem" can point to root or p can be NULL with
1931 * race with swapoff. Then, we have small risk of mis-accouning.
1932 * But such kind of mis-account by race always happens because
1933 * we don't have cgroup_mutex(). It's overkill and we allo that
1934 * small race, here.
1935 * (*) swapoff at el will charge against mm-struct not against
1936 * task-struct. So, mm->owner can be NULL.
1937 */
1938 mem = mem_cgroup_from_task(p);
1939 if (!mem || mem_cgroup_is_root(mem)) {
1940 rcu_read_unlock();
1941 goto done;
1942 }
1943 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1944 /*
1945 * It seems dagerous to access memcg without css_get().
1946 * But considering how consume_stok works, it's not
1947 * necessary. If consume_stock success, some charges
1948 * from this memcg are cached on this cpu. So, we
1949 * don't need to call css_get()/css_tryget() before
1950 * calling consume_stock().
1951 */
1952 rcu_read_unlock();
1953 goto done;
1954 }
1955 /* after here, we may be blocked. we need to get refcnt */
1956 if (!css_tryget(&mem->css)) {
1957 rcu_read_unlock();
1958 goto again;
1959 }
1960 rcu_read_unlock();
1961 }
1962
1963 do {
1964 bool oom_check;
1965
1966 /* If killed, bypass charge */
1967 if (fatal_signal_pending(current)) {
1968 css_put(&mem->css);
1969 goto bypass;
1970 }
1971
1972 oom_check = false;
1973 if (oom && !nr_oom_retries) {
1974 oom_check = true;
1975 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1976 }
1977
1978 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1979
1980 switch (ret) {
1981 case CHARGE_OK:
1982 break;
1983 case CHARGE_RETRY: /* not in OOM situation but retry */
1984 csize = page_size;
1985 css_put(&mem->css);
1986 mem = NULL;
1987 goto again;
1988 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1989 css_put(&mem->css);
1990 goto nomem;
1991 case CHARGE_NOMEM: /* OOM routine works */
1992 if (!oom) {
1993 css_put(&mem->css);
1994 goto nomem;
1995 }
1996 /* If oom, we never return -ENOMEM */
1997 nr_oom_retries--;
1998 break;
1999 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2000 css_put(&mem->css);
2001 goto bypass;
2002 }
2003 } while (ret != CHARGE_OK);
2004
2005 if (csize > page_size)
2006 refill_stock(mem, csize - page_size);
2007 css_put(&mem->css);
2008 done:
2009 *memcg = mem;
2010 return 0;
2011 nomem:
2012 *memcg = NULL;
2013 return -ENOMEM;
2014 bypass:
2015 *memcg = NULL;
2016 return 0;
2017 }
2018
2019 /*
2020 * Somemtimes we have to undo a charge we got by try_charge().
2021 * This function is for that and do uncharge, put css's refcnt.
2022 * gotten by try_charge().
2023 */
2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2025 unsigned long count)
2026 {
2027 if (!mem_cgroup_is_root(mem)) {
2028 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2029 if (do_swap_account)
2030 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2031 }
2032 }
2033
2034 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2035 int page_size)
2036 {
2037 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2038 }
2039
2040 /*
2041 * A helper function to get mem_cgroup from ID. must be called under
2042 * rcu_read_lock(). The caller must check css_is_removed() or some if
2043 * it's concern. (dropping refcnt from swap can be called against removed
2044 * memcg.)
2045 */
2046 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2047 {
2048 struct cgroup_subsys_state *css;
2049
2050 /* ID 0 is unused ID */
2051 if (!id)
2052 return NULL;
2053 css = css_lookup(&mem_cgroup_subsys, id);
2054 if (!css)
2055 return NULL;
2056 return container_of(css, struct mem_cgroup, css);
2057 }
2058
2059 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2060 {
2061 struct mem_cgroup *mem = NULL;
2062 struct page_cgroup *pc;
2063 unsigned short id;
2064 swp_entry_t ent;
2065
2066 VM_BUG_ON(!PageLocked(page));
2067
2068 pc = lookup_page_cgroup(page);
2069 lock_page_cgroup(pc);
2070 if (PageCgroupUsed(pc)) {
2071 mem = pc->mem_cgroup;
2072 if (mem && !css_tryget(&mem->css))
2073 mem = NULL;
2074 } else if (PageSwapCache(page)) {
2075 ent.val = page_private(page);
2076 id = lookup_swap_cgroup(ent);
2077 rcu_read_lock();
2078 mem = mem_cgroup_lookup(id);
2079 if (mem && !css_tryget(&mem->css))
2080 mem = NULL;
2081 rcu_read_unlock();
2082 }
2083 unlock_page_cgroup(pc);
2084 return mem;
2085 }
2086
2087 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2088 struct page_cgroup *pc,
2089 enum charge_type ctype,
2090 int page_size)
2091 {
2092 int nr_pages = page_size >> PAGE_SHIFT;
2093
2094 /* try_charge() can return NULL to *memcg, taking care of it. */
2095 if (!mem)
2096 return;
2097
2098 lock_page_cgroup(pc);
2099 if (unlikely(PageCgroupUsed(pc))) {
2100 unlock_page_cgroup(pc);
2101 mem_cgroup_cancel_charge(mem, page_size);
2102 return;
2103 }
2104 /*
2105 * we don't need page_cgroup_lock about tail pages, becase they are not
2106 * accessed by any other context at this point.
2107 */
2108 pc->mem_cgroup = mem;
2109 /*
2110 * We access a page_cgroup asynchronously without lock_page_cgroup().
2111 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2112 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2113 * before USED bit, we need memory barrier here.
2114 * See mem_cgroup_add_lru_list(), etc.
2115 */
2116 smp_wmb();
2117 switch (ctype) {
2118 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2119 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2120 SetPageCgroupCache(pc);
2121 SetPageCgroupUsed(pc);
2122 break;
2123 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2124 ClearPageCgroupCache(pc);
2125 SetPageCgroupUsed(pc);
2126 break;
2127 default:
2128 break;
2129 }
2130
2131 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), nr_pages);
2132 unlock_page_cgroup(pc);
2133 /*
2134 * "charge_statistics" updated event counter. Then, check it.
2135 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2136 * if they exceeds softlimit.
2137 */
2138 memcg_check_events(mem, pc->page);
2139 }
2140
2141 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2142
2143 #define PCGF_NOCOPY_AT_SPLIT ((1 << PCG_LOCK) | (1 << PCG_MOVE_LOCK) |\
2144 (1 << PCG_ACCT_LRU) | (1 << PCG_MIGRATION))
2145 /*
2146 * Because tail pages are not marked as "used", set it. We're under
2147 * zone->lru_lock, 'splitting on pmd' and compund_lock.
2148 */
2149 void mem_cgroup_split_huge_fixup(struct page *head, struct page *tail)
2150 {
2151 struct page_cgroup *head_pc = lookup_page_cgroup(head);
2152 struct page_cgroup *tail_pc = lookup_page_cgroup(tail);
2153 unsigned long flags;
2154
2155 if (mem_cgroup_disabled())
2156 return;
2157 /*
2158 * We have no races with charge/uncharge but will have races with
2159 * page state accounting.
2160 */
2161 move_lock_page_cgroup(head_pc, &flags);
2162
2163 tail_pc->mem_cgroup = head_pc->mem_cgroup;
2164 smp_wmb(); /* see __commit_charge() */
2165 if (PageCgroupAcctLRU(head_pc)) {
2166 enum lru_list lru;
2167 struct mem_cgroup_per_zone *mz;
2168
2169 /*
2170 * LRU flags cannot be copied because we need to add tail
2171 *.page to LRU by generic call and our hook will be called.
2172 * We hold lru_lock, then, reduce counter directly.
2173 */
2174 lru = page_lru(head);
2175 mz = page_cgroup_zoneinfo(head_pc);
2176 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
2177 }
2178 tail_pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
2179 move_unlock_page_cgroup(head_pc, &flags);
2180 }
2181 #endif
2182
2183 /**
2184 * __mem_cgroup_move_account - move account of the page
2185 * @pc: page_cgroup of the page.
2186 * @from: mem_cgroup which the page is moved from.
2187 * @to: mem_cgroup which the page is moved to. @from != @to.
2188 * @uncharge: whether we should call uncharge and css_put against @from.
2189 *
2190 * The caller must confirm following.
2191 * - page is not on LRU (isolate_page() is useful.)
2192 * - the pc is locked, used, and ->mem_cgroup points to @from.
2193 *
2194 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2195 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2196 * true, this function does "uncharge" from old cgroup, but it doesn't if
2197 * @uncharge is false, so a caller should do "uncharge".
2198 */
2199
2200 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2201 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge,
2202 int charge_size)
2203 {
2204 int nr_pages = charge_size >> PAGE_SHIFT;
2205
2206 VM_BUG_ON(from == to);
2207 VM_BUG_ON(PageLRU(pc->page));
2208 VM_BUG_ON(!page_is_cgroup_locked(pc));
2209 VM_BUG_ON(!PageCgroupUsed(pc));
2210 VM_BUG_ON(pc->mem_cgroup != from);
2211
2212 if (PageCgroupFileMapped(pc)) {
2213 /* Update mapped_file data for mem_cgroup */
2214 preempt_disable();
2215 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2216 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2217 preempt_enable();
2218 }
2219 mem_cgroup_charge_statistics(from, PageCgroupCache(pc), -nr_pages);
2220 if (uncharge)
2221 /* This is not "cancel", but cancel_charge does all we need. */
2222 mem_cgroup_cancel_charge(from, charge_size);
2223
2224 /* caller should have done css_get */
2225 pc->mem_cgroup = to;
2226 mem_cgroup_charge_statistics(to, PageCgroupCache(pc), nr_pages);
2227 /*
2228 * We charges against "to" which may not have any tasks. Then, "to"
2229 * can be under rmdir(). But in current implementation, caller of
2230 * this function is just force_empty() and move charge, so it's
2231 * garanteed that "to" is never removed. So, we don't check rmdir
2232 * status here.
2233 */
2234 }
2235
2236 /*
2237 * check whether the @pc is valid for moving account and call
2238 * __mem_cgroup_move_account()
2239 */
2240 static int mem_cgroup_move_account(struct page_cgroup *pc,
2241 struct mem_cgroup *from, struct mem_cgroup *to,
2242 bool uncharge, int charge_size)
2243 {
2244 int ret = -EINVAL;
2245 unsigned long flags;
2246 /*
2247 * The page is isolated from LRU. So, collapse function
2248 * will not handle this page. But page splitting can happen.
2249 * Do this check under compound_page_lock(). The caller should
2250 * hold it.
2251 */
2252 if ((charge_size > PAGE_SIZE) && !PageTransHuge(pc->page))
2253 return -EBUSY;
2254
2255 lock_page_cgroup(pc);
2256 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2257 move_lock_page_cgroup(pc, &flags);
2258 __mem_cgroup_move_account(pc, from, to, uncharge, charge_size);
2259 move_unlock_page_cgroup(pc, &flags);
2260 ret = 0;
2261 }
2262 unlock_page_cgroup(pc);
2263 /*
2264 * check events
2265 */
2266 memcg_check_events(to, pc->page);
2267 memcg_check_events(from, pc->page);
2268 return ret;
2269 }
2270
2271 /*
2272 * move charges to its parent.
2273 */
2274
2275 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2276 struct mem_cgroup *child,
2277 gfp_t gfp_mask)
2278 {
2279 struct page *page = pc->page;
2280 struct cgroup *cg = child->css.cgroup;
2281 struct cgroup *pcg = cg->parent;
2282 struct mem_cgroup *parent;
2283 int page_size = PAGE_SIZE;
2284 unsigned long flags;
2285 int ret;
2286
2287 /* Is ROOT ? */
2288 if (!pcg)
2289 return -EINVAL;
2290
2291 ret = -EBUSY;
2292 if (!get_page_unless_zero(page))
2293 goto out;
2294 if (isolate_lru_page(page))
2295 goto put;
2296
2297 if (PageTransHuge(page))
2298 page_size = HPAGE_SIZE;
2299
2300 parent = mem_cgroup_from_cont(pcg);
2301 ret = __mem_cgroup_try_charge(NULL, gfp_mask,
2302 &parent, false, page_size);
2303 if (ret || !parent)
2304 goto put_back;
2305
2306 if (page_size > PAGE_SIZE)
2307 flags = compound_lock_irqsave(page);
2308
2309 ret = mem_cgroup_move_account(pc, child, parent, true, page_size);
2310 if (ret)
2311 mem_cgroup_cancel_charge(parent, page_size);
2312
2313 if (page_size > PAGE_SIZE)
2314 compound_unlock_irqrestore(page, flags);
2315 put_back:
2316 putback_lru_page(page);
2317 put:
2318 put_page(page);
2319 out:
2320 return ret;
2321 }
2322
2323 /*
2324 * Charge the memory controller for page usage.
2325 * Return
2326 * 0 if the charge was successful
2327 * < 0 if the cgroup is over its limit
2328 */
2329 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2330 gfp_t gfp_mask, enum charge_type ctype)
2331 {
2332 struct mem_cgroup *mem = NULL;
2333 struct page_cgroup *pc;
2334 int ret;
2335 int page_size = PAGE_SIZE;
2336
2337 if (PageTransHuge(page)) {
2338 page_size <<= compound_order(page);
2339 VM_BUG_ON(!PageTransHuge(page));
2340 }
2341
2342 pc = lookup_page_cgroup(page);
2343 /* can happen at boot */
2344 if (unlikely(!pc))
2345 return 0;
2346 prefetchw(pc);
2347
2348 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2349 if (ret || !mem)
2350 return ret;
2351
2352 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2353 return 0;
2354 }
2355
2356 int mem_cgroup_newpage_charge(struct page *page,
2357 struct mm_struct *mm, gfp_t gfp_mask)
2358 {
2359 if (mem_cgroup_disabled())
2360 return 0;
2361 /*
2362 * If already mapped, we don't have to account.
2363 * If page cache, page->mapping has address_space.
2364 * But page->mapping may have out-of-use anon_vma pointer,
2365 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2366 * is NULL.
2367 */
2368 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2369 return 0;
2370 if (unlikely(!mm))
2371 mm = &init_mm;
2372 return mem_cgroup_charge_common(page, mm, gfp_mask,
2373 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2374 }
2375
2376 static void
2377 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2378 enum charge_type ctype);
2379
2380 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2381 gfp_t gfp_mask)
2382 {
2383 int ret;
2384
2385 if (mem_cgroup_disabled())
2386 return 0;
2387 if (PageCompound(page))
2388 return 0;
2389 /*
2390 * Corner case handling. This is called from add_to_page_cache()
2391 * in usual. But some FS (shmem) precharges this page before calling it
2392 * and call add_to_page_cache() with GFP_NOWAIT.
2393 *
2394 * For GFP_NOWAIT case, the page may be pre-charged before calling
2395 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2396 * charge twice. (It works but has to pay a bit larger cost.)
2397 * And when the page is SwapCache, it should take swap information
2398 * into account. This is under lock_page() now.
2399 */
2400 if (!(gfp_mask & __GFP_WAIT)) {
2401 struct page_cgroup *pc;
2402
2403 pc = lookup_page_cgroup(page);
2404 if (!pc)
2405 return 0;
2406 lock_page_cgroup(pc);
2407 if (PageCgroupUsed(pc)) {
2408 unlock_page_cgroup(pc);
2409 return 0;
2410 }
2411 unlock_page_cgroup(pc);
2412 }
2413
2414 if (unlikely(!mm))
2415 mm = &init_mm;
2416
2417 if (page_is_file_cache(page))
2418 return mem_cgroup_charge_common(page, mm, gfp_mask,
2419 MEM_CGROUP_CHARGE_TYPE_CACHE);
2420
2421 /* shmem */
2422 if (PageSwapCache(page)) {
2423 struct mem_cgroup *mem = NULL;
2424
2425 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2426 if (!ret)
2427 __mem_cgroup_commit_charge_swapin(page, mem,
2428 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2429 } else
2430 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2431 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2432
2433 return ret;
2434 }
2435
2436 /*
2437 * While swap-in, try_charge -> commit or cancel, the page is locked.
2438 * And when try_charge() successfully returns, one refcnt to memcg without
2439 * struct page_cgroup is acquired. This refcnt will be consumed by
2440 * "commit()" or removed by "cancel()"
2441 */
2442 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2443 struct page *page,
2444 gfp_t mask, struct mem_cgroup **ptr)
2445 {
2446 struct mem_cgroup *mem;
2447 int ret;
2448
2449 if (mem_cgroup_disabled())
2450 return 0;
2451
2452 if (!do_swap_account)
2453 goto charge_cur_mm;
2454 /*
2455 * A racing thread's fault, or swapoff, may have already updated
2456 * the pte, and even removed page from swap cache: in those cases
2457 * do_swap_page()'s pte_same() test will fail; but there's also a
2458 * KSM case which does need to charge the page.
2459 */
2460 if (!PageSwapCache(page))
2461 goto charge_cur_mm;
2462 mem = try_get_mem_cgroup_from_page(page);
2463 if (!mem)
2464 goto charge_cur_mm;
2465 *ptr = mem;
2466 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2467 css_put(&mem->css);
2468 return ret;
2469 charge_cur_mm:
2470 if (unlikely(!mm))
2471 mm = &init_mm;
2472 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2473 }
2474
2475 static void
2476 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2477 enum charge_type ctype)
2478 {
2479 struct page_cgroup *pc;
2480
2481 if (mem_cgroup_disabled())
2482 return;
2483 if (!ptr)
2484 return;
2485 cgroup_exclude_rmdir(&ptr->css);
2486 pc = lookup_page_cgroup(page);
2487 mem_cgroup_lru_del_before_commit_swapcache(page);
2488 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2489 mem_cgroup_lru_add_after_commit_swapcache(page);
2490 /*
2491 * Now swap is on-memory. This means this page may be
2492 * counted both as mem and swap....double count.
2493 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2494 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2495 * may call delete_from_swap_cache() before reach here.
2496 */
2497 if (do_swap_account && PageSwapCache(page)) {
2498 swp_entry_t ent = {.val = page_private(page)};
2499 unsigned short id;
2500 struct mem_cgroup *memcg;
2501
2502 id = swap_cgroup_record(ent, 0);
2503 rcu_read_lock();
2504 memcg = mem_cgroup_lookup(id);
2505 if (memcg) {
2506 /*
2507 * This recorded memcg can be obsolete one. So, avoid
2508 * calling css_tryget
2509 */
2510 if (!mem_cgroup_is_root(memcg))
2511 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2512 mem_cgroup_swap_statistics(memcg, false);
2513 mem_cgroup_put(memcg);
2514 }
2515 rcu_read_unlock();
2516 }
2517 /*
2518 * At swapin, we may charge account against cgroup which has no tasks.
2519 * So, rmdir()->pre_destroy() can be called while we do this charge.
2520 * In that case, we need to call pre_destroy() again. check it here.
2521 */
2522 cgroup_release_and_wakeup_rmdir(&ptr->css);
2523 }
2524
2525 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2526 {
2527 __mem_cgroup_commit_charge_swapin(page, ptr,
2528 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2529 }
2530
2531 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2532 {
2533 if (mem_cgroup_disabled())
2534 return;
2535 if (!mem)
2536 return;
2537 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2538 }
2539
2540 static void
2541 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2542 int page_size)
2543 {
2544 struct memcg_batch_info *batch = NULL;
2545 bool uncharge_memsw = true;
2546 /* If swapout, usage of swap doesn't decrease */
2547 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2548 uncharge_memsw = false;
2549
2550 batch = &current->memcg_batch;
2551 /*
2552 * In usual, we do css_get() when we remember memcg pointer.
2553 * But in this case, we keep res->usage until end of a series of
2554 * uncharges. Then, it's ok to ignore memcg's refcnt.
2555 */
2556 if (!batch->memcg)
2557 batch->memcg = mem;
2558 /*
2559 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2560 * In those cases, all pages freed continously can be expected to be in
2561 * the same cgroup and we have chance to coalesce uncharges.
2562 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2563 * because we want to do uncharge as soon as possible.
2564 */
2565
2566 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2567 goto direct_uncharge;
2568
2569 if (page_size != PAGE_SIZE)
2570 goto direct_uncharge;
2571
2572 /*
2573 * In typical case, batch->memcg == mem. This means we can
2574 * merge a series of uncharges to an uncharge of res_counter.
2575 * If not, we uncharge res_counter ony by one.
2576 */
2577 if (batch->memcg != mem)
2578 goto direct_uncharge;
2579 /* remember freed charge and uncharge it later */
2580 batch->bytes += PAGE_SIZE;
2581 if (uncharge_memsw)
2582 batch->memsw_bytes += PAGE_SIZE;
2583 return;
2584 direct_uncharge:
2585 res_counter_uncharge(&mem->res, page_size);
2586 if (uncharge_memsw)
2587 res_counter_uncharge(&mem->memsw, page_size);
2588 if (unlikely(batch->memcg != mem))
2589 memcg_oom_recover(mem);
2590 return;
2591 }
2592
2593 /*
2594 * uncharge if !page_mapped(page)
2595 */
2596 static struct mem_cgroup *
2597 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2598 {
2599 int count;
2600 struct page_cgroup *pc;
2601 struct mem_cgroup *mem = NULL;
2602 int page_size = PAGE_SIZE;
2603
2604 if (mem_cgroup_disabled())
2605 return NULL;
2606
2607 if (PageSwapCache(page))
2608 return NULL;
2609
2610 if (PageTransHuge(page)) {
2611 page_size <<= compound_order(page);
2612 VM_BUG_ON(!PageTransHuge(page));
2613 }
2614
2615 count = page_size >> PAGE_SHIFT;
2616 /*
2617 * Check if our page_cgroup is valid
2618 */
2619 pc = lookup_page_cgroup(page);
2620 if (unlikely(!pc || !PageCgroupUsed(pc)))
2621 return NULL;
2622
2623 lock_page_cgroup(pc);
2624
2625 mem = pc->mem_cgroup;
2626
2627 if (!PageCgroupUsed(pc))
2628 goto unlock_out;
2629
2630 switch (ctype) {
2631 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2632 case MEM_CGROUP_CHARGE_TYPE_DROP:
2633 /* See mem_cgroup_prepare_migration() */
2634 if (page_mapped(page) || PageCgroupMigration(pc))
2635 goto unlock_out;
2636 break;
2637 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2638 if (!PageAnon(page)) { /* Shared memory */
2639 if (page->mapping && !page_is_file_cache(page))
2640 goto unlock_out;
2641 } else if (page_mapped(page)) /* Anon */
2642 goto unlock_out;
2643 break;
2644 default:
2645 break;
2646 }
2647
2648 mem_cgroup_charge_statistics(mem, PageCgroupCache(pc), -count);
2649
2650 ClearPageCgroupUsed(pc);
2651 /*
2652 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2653 * freed from LRU. This is safe because uncharged page is expected not
2654 * to be reused (freed soon). Exception is SwapCache, it's handled by
2655 * special functions.
2656 */
2657
2658 unlock_page_cgroup(pc);
2659 /*
2660 * even after unlock, we have mem->res.usage here and this memcg
2661 * will never be freed.
2662 */
2663 memcg_check_events(mem, page);
2664 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2665 mem_cgroup_swap_statistics(mem, true);
2666 mem_cgroup_get(mem);
2667 }
2668 if (!mem_cgroup_is_root(mem))
2669 __do_uncharge(mem, ctype, page_size);
2670
2671 return mem;
2672
2673 unlock_out:
2674 unlock_page_cgroup(pc);
2675 return NULL;
2676 }
2677
2678 void mem_cgroup_uncharge_page(struct page *page)
2679 {
2680 /* early check. */
2681 if (page_mapped(page))
2682 return;
2683 if (page->mapping && !PageAnon(page))
2684 return;
2685 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2686 }
2687
2688 void mem_cgroup_uncharge_cache_page(struct page *page)
2689 {
2690 VM_BUG_ON(page_mapped(page));
2691 VM_BUG_ON(page->mapping);
2692 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2693 }
2694
2695 /*
2696 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2697 * In that cases, pages are freed continuously and we can expect pages
2698 * are in the same memcg. All these calls itself limits the number of
2699 * pages freed at once, then uncharge_start/end() is called properly.
2700 * This may be called prural(2) times in a context,
2701 */
2702
2703 void mem_cgroup_uncharge_start(void)
2704 {
2705 current->memcg_batch.do_batch++;
2706 /* We can do nest. */
2707 if (current->memcg_batch.do_batch == 1) {
2708 current->memcg_batch.memcg = NULL;
2709 current->memcg_batch.bytes = 0;
2710 current->memcg_batch.memsw_bytes = 0;
2711 }
2712 }
2713
2714 void mem_cgroup_uncharge_end(void)
2715 {
2716 struct memcg_batch_info *batch = &current->memcg_batch;
2717
2718 if (!batch->do_batch)
2719 return;
2720
2721 batch->do_batch--;
2722 if (batch->do_batch) /* If stacked, do nothing. */
2723 return;
2724
2725 if (!batch->memcg)
2726 return;
2727 /*
2728 * This "batch->memcg" is valid without any css_get/put etc...
2729 * bacause we hide charges behind us.
2730 */
2731 if (batch->bytes)
2732 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2733 if (batch->memsw_bytes)
2734 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2735 memcg_oom_recover(batch->memcg);
2736 /* forget this pointer (for sanity check) */
2737 batch->memcg = NULL;
2738 }
2739
2740 #ifdef CONFIG_SWAP
2741 /*
2742 * called after __delete_from_swap_cache() and drop "page" account.
2743 * memcg information is recorded to swap_cgroup of "ent"
2744 */
2745 void
2746 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2747 {
2748 struct mem_cgroup *memcg;
2749 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2750
2751 if (!swapout) /* this was a swap cache but the swap is unused ! */
2752 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2753
2754 memcg = __mem_cgroup_uncharge_common(page, ctype);
2755
2756 /*
2757 * record memcg information, if swapout && memcg != NULL,
2758 * mem_cgroup_get() was called in uncharge().
2759 */
2760 if (do_swap_account && swapout && memcg)
2761 swap_cgroup_record(ent, css_id(&memcg->css));
2762 }
2763 #endif
2764
2765 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2766 /*
2767 * called from swap_entry_free(). remove record in swap_cgroup and
2768 * uncharge "memsw" account.
2769 */
2770 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2771 {
2772 struct mem_cgroup *memcg;
2773 unsigned short id;
2774
2775 if (!do_swap_account)
2776 return;
2777
2778 id = swap_cgroup_record(ent, 0);
2779 rcu_read_lock();
2780 memcg = mem_cgroup_lookup(id);
2781 if (memcg) {
2782 /*
2783 * We uncharge this because swap is freed.
2784 * This memcg can be obsolete one. We avoid calling css_tryget
2785 */
2786 if (!mem_cgroup_is_root(memcg))
2787 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2788 mem_cgroup_swap_statistics(memcg, false);
2789 mem_cgroup_put(memcg);
2790 }
2791 rcu_read_unlock();
2792 }
2793
2794 /**
2795 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2796 * @entry: swap entry to be moved
2797 * @from: mem_cgroup which the entry is moved from
2798 * @to: mem_cgroup which the entry is moved to
2799 * @need_fixup: whether we should fixup res_counters and refcounts.
2800 *
2801 * It succeeds only when the swap_cgroup's record for this entry is the same
2802 * as the mem_cgroup's id of @from.
2803 *
2804 * Returns 0 on success, -EINVAL on failure.
2805 *
2806 * The caller must have charged to @to, IOW, called res_counter_charge() about
2807 * both res and memsw, and called css_get().
2808 */
2809 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2810 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2811 {
2812 unsigned short old_id, new_id;
2813
2814 old_id = css_id(&from->css);
2815 new_id = css_id(&to->css);
2816
2817 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2818 mem_cgroup_swap_statistics(from, false);
2819 mem_cgroup_swap_statistics(to, true);
2820 /*
2821 * This function is only called from task migration context now.
2822 * It postpones res_counter and refcount handling till the end
2823 * of task migration(mem_cgroup_clear_mc()) for performance
2824 * improvement. But we cannot postpone mem_cgroup_get(to)
2825 * because if the process that has been moved to @to does
2826 * swap-in, the refcount of @to might be decreased to 0.
2827 */
2828 mem_cgroup_get(to);
2829 if (need_fixup) {
2830 if (!mem_cgroup_is_root(from))
2831 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2832 mem_cgroup_put(from);
2833 /*
2834 * we charged both to->res and to->memsw, so we should
2835 * uncharge to->res.
2836 */
2837 if (!mem_cgroup_is_root(to))
2838 res_counter_uncharge(&to->res, PAGE_SIZE);
2839 }
2840 return 0;
2841 }
2842 return -EINVAL;
2843 }
2844 #else
2845 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2846 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2847 {
2848 return -EINVAL;
2849 }
2850 #endif
2851
2852 /*
2853 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2854 * page belongs to.
2855 */
2856 int mem_cgroup_prepare_migration(struct page *page,
2857 struct page *newpage, struct mem_cgroup **ptr)
2858 {
2859 struct page_cgroup *pc;
2860 struct mem_cgroup *mem = NULL;
2861 enum charge_type ctype;
2862 int ret = 0;
2863
2864 VM_BUG_ON(PageTransHuge(page));
2865 if (mem_cgroup_disabled())
2866 return 0;
2867
2868 pc = lookup_page_cgroup(page);
2869 lock_page_cgroup(pc);
2870 if (PageCgroupUsed(pc)) {
2871 mem = pc->mem_cgroup;
2872 css_get(&mem->css);
2873 /*
2874 * At migrating an anonymous page, its mapcount goes down
2875 * to 0 and uncharge() will be called. But, even if it's fully
2876 * unmapped, migration may fail and this page has to be
2877 * charged again. We set MIGRATION flag here and delay uncharge
2878 * until end_migration() is called
2879 *
2880 * Corner Case Thinking
2881 * A)
2882 * When the old page was mapped as Anon and it's unmap-and-freed
2883 * while migration was ongoing.
2884 * If unmap finds the old page, uncharge() of it will be delayed
2885 * until end_migration(). If unmap finds a new page, it's
2886 * uncharged when it make mapcount to be 1->0. If unmap code
2887 * finds swap_migration_entry, the new page will not be mapped
2888 * and end_migration() will find it(mapcount==0).
2889 *
2890 * B)
2891 * When the old page was mapped but migraion fails, the kernel
2892 * remaps it. A charge for it is kept by MIGRATION flag even
2893 * if mapcount goes down to 0. We can do remap successfully
2894 * without charging it again.
2895 *
2896 * C)
2897 * The "old" page is under lock_page() until the end of
2898 * migration, so, the old page itself will not be swapped-out.
2899 * If the new page is swapped out before end_migraton, our
2900 * hook to usual swap-out path will catch the event.
2901 */
2902 if (PageAnon(page))
2903 SetPageCgroupMigration(pc);
2904 }
2905 unlock_page_cgroup(pc);
2906 /*
2907 * If the page is not charged at this point,
2908 * we return here.
2909 */
2910 if (!mem)
2911 return 0;
2912
2913 *ptr = mem;
2914 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2915 css_put(&mem->css);/* drop extra refcnt */
2916 if (ret || *ptr == NULL) {
2917 if (PageAnon(page)) {
2918 lock_page_cgroup(pc);
2919 ClearPageCgroupMigration(pc);
2920 unlock_page_cgroup(pc);
2921 /*
2922 * The old page may be fully unmapped while we kept it.
2923 */
2924 mem_cgroup_uncharge_page(page);
2925 }
2926 return -ENOMEM;
2927 }
2928 /*
2929 * We charge new page before it's used/mapped. So, even if unlock_page()
2930 * is called before end_migration, we can catch all events on this new
2931 * page. In the case new page is migrated but not remapped, new page's
2932 * mapcount will be finally 0 and we call uncharge in end_migration().
2933 */
2934 pc = lookup_page_cgroup(newpage);
2935 if (PageAnon(page))
2936 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2937 else if (page_is_file_cache(page))
2938 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2939 else
2940 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2941 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2942 return ret;
2943 }
2944
2945 /* remove redundant charge if migration failed*/
2946 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2947 struct page *oldpage, struct page *newpage, bool migration_ok)
2948 {
2949 struct page *used, *unused;
2950 struct page_cgroup *pc;
2951
2952 if (!mem)
2953 return;
2954 /* blocks rmdir() */
2955 cgroup_exclude_rmdir(&mem->css);
2956 if (!migration_ok) {
2957 used = oldpage;
2958 unused = newpage;
2959 } else {
2960 used = newpage;
2961 unused = oldpage;
2962 }
2963 /*
2964 * We disallowed uncharge of pages under migration because mapcount
2965 * of the page goes down to zero, temporarly.
2966 * Clear the flag and check the page should be charged.
2967 */
2968 pc = lookup_page_cgroup(oldpage);
2969 lock_page_cgroup(pc);
2970 ClearPageCgroupMigration(pc);
2971 unlock_page_cgroup(pc);
2972
2973 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2974
2975 /*
2976 * If a page is a file cache, radix-tree replacement is very atomic
2977 * and we can skip this check. When it was an Anon page, its mapcount
2978 * goes down to 0. But because we added MIGRATION flage, it's not
2979 * uncharged yet. There are several case but page->mapcount check
2980 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2981 * check. (see prepare_charge() also)
2982 */
2983 if (PageAnon(used))
2984 mem_cgroup_uncharge_page(used);
2985 /*
2986 * At migration, we may charge account against cgroup which has no
2987 * tasks.
2988 * So, rmdir()->pre_destroy() can be called while we do this charge.
2989 * In that case, we need to call pre_destroy() again. check it here.
2990 */
2991 cgroup_release_and_wakeup_rmdir(&mem->css);
2992 }
2993
2994 /*
2995 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2996 * Calling hierarchical_reclaim is not enough because we should update
2997 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2998 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2999 * not from the memcg which this page would be charged to.
3000 * try_charge_swapin does all of these works properly.
3001 */
3002 int mem_cgroup_shmem_charge_fallback(struct page *page,
3003 struct mm_struct *mm,
3004 gfp_t gfp_mask)
3005 {
3006 struct mem_cgroup *mem = NULL;
3007 int ret;
3008
3009 if (mem_cgroup_disabled())
3010 return 0;
3011
3012 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
3013 if (!ret)
3014 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
3015
3016 return ret;
3017 }
3018
3019 static DEFINE_MUTEX(set_limit_mutex);
3020
3021 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3022 unsigned long long val)
3023 {
3024 int retry_count;
3025 u64 memswlimit, memlimit;
3026 int ret = 0;
3027 int children = mem_cgroup_count_children(memcg);
3028 u64 curusage, oldusage;
3029 int enlarge;
3030
3031 /*
3032 * For keeping hierarchical_reclaim simple, how long we should retry
3033 * is depends on callers. We set our retry-count to be function
3034 * of # of children which we should visit in this loop.
3035 */
3036 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
3037
3038 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3039
3040 enlarge = 0;
3041 while (retry_count) {
3042 if (signal_pending(current)) {
3043 ret = -EINTR;
3044 break;
3045 }
3046 /*
3047 * Rather than hide all in some function, I do this in
3048 * open coded manner. You see what this really does.
3049 * We have to guarantee mem->res.limit < mem->memsw.limit.
3050 */
3051 mutex_lock(&set_limit_mutex);
3052 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3053 if (memswlimit < val) {
3054 ret = -EINVAL;
3055 mutex_unlock(&set_limit_mutex);
3056 break;
3057 }
3058
3059 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3060 if (memlimit < val)
3061 enlarge = 1;
3062
3063 ret = res_counter_set_limit(&memcg->res, val);
3064 if (!ret) {
3065 if (memswlimit == val)
3066 memcg->memsw_is_minimum = true;
3067 else
3068 memcg->memsw_is_minimum = false;
3069 }
3070 mutex_unlock(&set_limit_mutex);
3071
3072 if (!ret)
3073 break;
3074
3075 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3076 MEM_CGROUP_RECLAIM_SHRINK);
3077 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3078 /* Usage is reduced ? */
3079 if (curusage >= oldusage)
3080 retry_count--;
3081 else
3082 oldusage = curusage;
3083 }
3084 if (!ret && enlarge)
3085 memcg_oom_recover(memcg);
3086
3087 return ret;
3088 }
3089
3090 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3091 unsigned long long val)
3092 {
3093 int retry_count;
3094 u64 memlimit, memswlimit, oldusage, curusage;
3095 int children = mem_cgroup_count_children(memcg);
3096 int ret = -EBUSY;
3097 int enlarge = 0;
3098
3099 /* see mem_cgroup_resize_res_limit */
3100 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3101 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3102 while (retry_count) {
3103 if (signal_pending(current)) {
3104 ret = -EINTR;
3105 break;
3106 }
3107 /*
3108 * Rather than hide all in some function, I do this in
3109 * open coded manner. You see what this really does.
3110 * We have to guarantee mem->res.limit < mem->memsw.limit.
3111 */
3112 mutex_lock(&set_limit_mutex);
3113 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3114 if (memlimit > val) {
3115 ret = -EINVAL;
3116 mutex_unlock(&set_limit_mutex);
3117 break;
3118 }
3119 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3120 if (memswlimit < val)
3121 enlarge = 1;
3122 ret = res_counter_set_limit(&memcg->memsw, val);
3123 if (!ret) {
3124 if (memlimit == val)
3125 memcg->memsw_is_minimum = true;
3126 else
3127 memcg->memsw_is_minimum = false;
3128 }
3129 mutex_unlock(&set_limit_mutex);
3130
3131 if (!ret)
3132 break;
3133
3134 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3135 MEM_CGROUP_RECLAIM_NOSWAP |
3136 MEM_CGROUP_RECLAIM_SHRINK);
3137 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3138 /* Usage is reduced ? */
3139 if (curusage >= oldusage)
3140 retry_count--;
3141 else
3142 oldusage = curusage;
3143 }
3144 if (!ret && enlarge)
3145 memcg_oom_recover(memcg);
3146 return ret;
3147 }
3148
3149 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3150 gfp_t gfp_mask)
3151 {
3152 unsigned long nr_reclaimed = 0;
3153 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3154 unsigned long reclaimed;
3155 int loop = 0;
3156 struct mem_cgroup_tree_per_zone *mctz;
3157 unsigned long long excess;
3158
3159 if (order > 0)
3160 return 0;
3161
3162 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3163 /*
3164 * This loop can run a while, specially if mem_cgroup's continuously
3165 * keep exceeding their soft limit and putting the system under
3166 * pressure
3167 */
3168 do {
3169 if (next_mz)
3170 mz = next_mz;
3171 else
3172 mz = mem_cgroup_largest_soft_limit_node(mctz);
3173 if (!mz)
3174 break;
3175
3176 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3177 gfp_mask,
3178 MEM_CGROUP_RECLAIM_SOFT);
3179 nr_reclaimed += reclaimed;
3180 spin_lock(&mctz->lock);
3181
3182 /*
3183 * If we failed to reclaim anything from this memory cgroup
3184 * it is time to move on to the next cgroup
3185 */
3186 next_mz = NULL;
3187 if (!reclaimed) {
3188 do {
3189 /*
3190 * Loop until we find yet another one.
3191 *
3192 * By the time we get the soft_limit lock
3193 * again, someone might have aded the
3194 * group back on the RB tree. Iterate to
3195 * make sure we get a different mem.
3196 * mem_cgroup_largest_soft_limit_node returns
3197 * NULL if no other cgroup is present on
3198 * the tree
3199 */
3200 next_mz =
3201 __mem_cgroup_largest_soft_limit_node(mctz);
3202 if (next_mz == mz) {
3203 css_put(&next_mz->mem->css);
3204 next_mz = NULL;
3205 } else /* next_mz == NULL or other memcg */
3206 break;
3207 } while (1);
3208 }
3209 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3210 excess = res_counter_soft_limit_excess(&mz->mem->res);
3211 /*
3212 * One school of thought says that we should not add
3213 * back the node to the tree if reclaim returns 0.
3214 * But our reclaim could return 0, simply because due
3215 * to priority we are exposing a smaller subset of
3216 * memory to reclaim from. Consider this as a longer
3217 * term TODO.
3218 */
3219 /* If excess == 0, no tree ops */
3220 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3221 spin_unlock(&mctz->lock);
3222 css_put(&mz->mem->css);
3223 loop++;
3224 /*
3225 * Could not reclaim anything and there are no more
3226 * mem cgroups to try or we seem to be looping without
3227 * reclaiming anything.
3228 */
3229 if (!nr_reclaimed &&
3230 (next_mz == NULL ||
3231 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3232 break;
3233 } while (!nr_reclaimed);
3234 if (next_mz)
3235 css_put(&next_mz->mem->css);
3236 return nr_reclaimed;
3237 }
3238
3239 /*
3240 * This routine traverse page_cgroup in given list and drop them all.
3241 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3242 */
3243 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3244 int node, int zid, enum lru_list lru)
3245 {
3246 struct zone *zone;
3247 struct mem_cgroup_per_zone *mz;
3248 struct page_cgroup *pc, *busy;
3249 unsigned long flags, loop;
3250 struct list_head *list;
3251 int ret = 0;
3252
3253 zone = &NODE_DATA(node)->node_zones[zid];
3254 mz = mem_cgroup_zoneinfo(mem, node, zid);
3255 list = &mz->lists[lru];
3256
3257 loop = MEM_CGROUP_ZSTAT(mz, lru);
3258 /* give some margin against EBUSY etc...*/
3259 loop += 256;
3260 busy = NULL;
3261 while (loop--) {
3262 ret = 0;
3263 spin_lock_irqsave(&zone->lru_lock, flags);
3264 if (list_empty(list)) {
3265 spin_unlock_irqrestore(&zone->lru_lock, flags);
3266 break;
3267 }
3268 pc = list_entry(list->prev, struct page_cgroup, lru);
3269 if (busy == pc) {
3270 list_move(&pc->lru, list);
3271 busy = NULL;
3272 spin_unlock_irqrestore(&zone->lru_lock, flags);
3273 continue;
3274 }
3275 spin_unlock_irqrestore(&zone->lru_lock, flags);
3276
3277 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3278 if (ret == -ENOMEM)
3279 break;
3280
3281 if (ret == -EBUSY || ret == -EINVAL) {
3282 /* found lock contention or "pc" is obsolete. */
3283 busy = pc;
3284 cond_resched();
3285 } else
3286 busy = NULL;
3287 }
3288
3289 if (!ret && !list_empty(list))
3290 return -EBUSY;
3291 return ret;
3292 }
3293
3294 /*
3295 * make mem_cgroup's charge to be 0 if there is no task.
3296 * This enables deleting this mem_cgroup.
3297 */
3298 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3299 {
3300 int ret;
3301 int node, zid, shrink;
3302 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3303 struct cgroup *cgrp = mem->css.cgroup;
3304
3305 css_get(&mem->css);
3306
3307 shrink = 0;
3308 /* should free all ? */
3309 if (free_all)
3310 goto try_to_free;
3311 move_account:
3312 do {
3313 ret = -EBUSY;
3314 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3315 goto out;
3316 ret = -EINTR;
3317 if (signal_pending(current))
3318 goto out;
3319 /* This is for making all *used* pages to be on LRU. */
3320 lru_add_drain_all();
3321 drain_all_stock_sync();
3322 ret = 0;
3323 mem_cgroup_start_move(mem);
3324 for_each_node_state(node, N_HIGH_MEMORY) {
3325 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3326 enum lru_list l;
3327 for_each_lru(l) {
3328 ret = mem_cgroup_force_empty_list(mem,
3329 node, zid, l);
3330 if (ret)
3331 break;
3332 }
3333 }
3334 if (ret)
3335 break;
3336 }
3337 mem_cgroup_end_move(mem);
3338 memcg_oom_recover(mem);
3339 /* it seems parent cgroup doesn't have enough mem */
3340 if (ret == -ENOMEM)
3341 goto try_to_free;
3342 cond_resched();
3343 /* "ret" should also be checked to ensure all lists are empty. */
3344 } while (mem->res.usage > 0 || ret);
3345 out:
3346 css_put(&mem->css);
3347 return ret;
3348
3349 try_to_free:
3350 /* returns EBUSY if there is a task or if we come here twice. */
3351 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3352 ret = -EBUSY;
3353 goto out;
3354 }
3355 /* we call try-to-free pages for make this cgroup empty */
3356 lru_add_drain_all();
3357 /* try to free all pages in this cgroup */
3358 shrink = 1;
3359 while (nr_retries && mem->res.usage > 0) {
3360 int progress;
3361
3362 if (signal_pending(current)) {
3363 ret = -EINTR;
3364 goto out;
3365 }
3366 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3367 false, get_swappiness(mem));
3368 if (!progress) {
3369 nr_retries--;
3370 /* maybe some writeback is necessary */
3371 congestion_wait(BLK_RW_ASYNC, HZ/10);
3372 }
3373
3374 }
3375 lru_add_drain();
3376 /* try move_account...there may be some *locked* pages. */
3377 goto move_account;
3378 }
3379
3380 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3381 {
3382 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3383 }
3384
3385
3386 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3387 {
3388 return mem_cgroup_from_cont(cont)->use_hierarchy;
3389 }
3390
3391 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3392 u64 val)
3393 {
3394 int retval = 0;
3395 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3396 struct cgroup *parent = cont->parent;
3397 struct mem_cgroup *parent_mem = NULL;
3398
3399 if (parent)
3400 parent_mem = mem_cgroup_from_cont(parent);
3401
3402 cgroup_lock();
3403 /*
3404 * If parent's use_hierarchy is set, we can't make any modifications
3405 * in the child subtrees. If it is unset, then the change can
3406 * occur, provided the current cgroup has no children.
3407 *
3408 * For the root cgroup, parent_mem is NULL, we allow value to be
3409 * set if there are no children.
3410 */
3411 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3412 (val == 1 || val == 0)) {
3413 if (list_empty(&cont->children))
3414 mem->use_hierarchy = val;
3415 else
3416 retval = -EBUSY;
3417 } else
3418 retval = -EINVAL;
3419 cgroup_unlock();
3420
3421 return retval;
3422 }
3423
3424
3425 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3426 enum mem_cgroup_stat_index idx)
3427 {
3428 struct mem_cgroup *iter;
3429 s64 val = 0;
3430
3431 /* each per cpu's value can be minus.Then, use s64 */
3432 for_each_mem_cgroup_tree(iter, mem)
3433 val += mem_cgroup_read_stat(iter, idx);
3434
3435 if (val < 0) /* race ? */
3436 val = 0;
3437 return val;
3438 }
3439
3440 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3441 {
3442 u64 val;
3443
3444 if (!mem_cgroup_is_root(mem)) {
3445 if (!swap)
3446 return res_counter_read_u64(&mem->res, RES_USAGE);
3447 else
3448 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3449 }
3450
3451 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3452 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3453
3454 if (swap)
3455 val += mem_cgroup_get_recursive_idx_stat(mem,
3456 MEM_CGROUP_STAT_SWAPOUT);
3457
3458 return val << PAGE_SHIFT;
3459 }
3460
3461 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3462 {
3463 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3464 u64 val;
3465 int type, name;
3466
3467 type = MEMFILE_TYPE(cft->private);
3468 name = MEMFILE_ATTR(cft->private);
3469 switch (type) {
3470 case _MEM:
3471 if (name == RES_USAGE)
3472 val = mem_cgroup_usage(mem, false);
3473 else
3474 val = res_counter_read_u64(&mem->res, name);
3475 break;
3476 case _MEMSWAP:
3477 if (name == RES_USAGE)
3478 val = mem_cgroup_usage(mem, true);
3479 else
3480 val = res_counter_read_u64(&mem->memsw, name);
3481 break;
3482 default:
3483 BUG();
3484 break;
3485 }
3486 return val;
3487 }
3488 /*
3489 * The user of this function is...
3490 * RES_LIMIT.
3491 */
3492 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3493 const char *buffer)
3494 {
3495 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3496 int type, name;
3497 unsigned long long val;
3498 int ret;
3499
3500 type = MEMFILE_TYPE(cft->private);
3501 name = MEMFILE_ATTR(cft->private);
3502 switch (name) {
3503 case RES_LIMIT:
3504 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3505 ret = -EINVAL;
3506 break;
3507 }
3508 /* This function does all necessary parse...reuse it */
3509 ret = res_counter_memparse_write_strategy(buffer, &val);
3510 if (ret)
3511 break;
3512 if (type == _MEM)
3513 ret = mem_cgroup_resize_limit(memcg, val);
3514 else
3515 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3516 break;
3517 case RES_SOFT_LIMIT:
3518 ret = res_counter_memparse_write_strategy(buffer, &val);
3519 if (ret)
3520 break;
3521 /*
3522 * For memsw, soft limits are hard to implement in terms
3523 * of semantics, for now, we support soft limits for
3524 * control without swap
3525 */
3526 if (type == _MEM)
3527 ret = res_counter_set_soft_limit(&memcg->res, val);
3528 else
3529 ret = -EINVAL;
3530 break;
3531 default:
3532 ret = -EINVAL; /* should be BUG() ? */
3533 break;
3534 }
3535 return ret;
3536 }
3537
3538 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3539 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3540 {
3541 struct cgroup *cgroup;
3542 unsigned long long min_limit, min_memsw_limit, tmp;
3543
3544 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3545 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3546 cgroup = memcg->css.cgroup;
3547 if (!memcg->use_hierarchy)
3548 goto out;
3549
3550 while (cgroup->parent) {
3551 cgroup = cgroup->parent;
3552 memcg = mem_cgroup_from_cont(cgroup);
3553 if (!memcg->use_hierarchy)
3554 break;
3555 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3556 min_limit = min(min_limit, tmp);
3557 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3558 min_memsw_limit = min(min_memsw_limit, tmp);
3559 }
3560 out:
3561 *mem_limit = min_limit;
3562 *memsw_limit = min_memsw_limit;
3563 return;
3564 }
3565
3566 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3567 {
3568 struct mem_cgroup *mem;
3569 int type, name;
3570
3571 mem = mem_cgroup_from_cont(cont);
3572 type = MEMFILE_TYPE(event);
3573 name = MEMFILE_ATTR(event);
3574 switch (name) {
3575 case RES_MAX_USAGE:
3576 if (type == _MEM)
3577 res_counter_reset_max(&mem->res);
3578 else
3579 res_counter_reset_max(&mem->memsw);
3580 break;
3581 case RES_FAILCNT:
3582 if (type == _MEM)
3583 res_counter_reset_failcnt(&mem->res);
3584 else
3585 res_counter_reset_failcnt(&mem->memsw);
3586 break;
3587 }
3588
3589 return 0;
3590 }
3591
3592 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3593 struct cftype *cft)
3594 {
3595 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3596 }
3597
3598 #ifdef CONFIG_MMU
3599 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3600 struct cftype *cft, u64 val)
3601 {
3602 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3603
3604 if (val >= (1 << NR_MOVE_TYPE))
3605 return -EINVAL;
3606 /*
3607 * We check this value several times in both in can_attach() and
3608 * attach(), so we need cgroup lock to prevent this value from being
3609 * inconsistent.
3610 */
3611 cgroup_lock();
3612 mem->move_charge_at_immigrate = val;
3613 cgroup_unlock();
3614
3615 return 0;
3616 }
3617 #else
3618 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3619 struct cftype *cft, u64 val)
3620 {
3621 return -ENOSYS;
3622 }
3623 #endif
3624
3625
3626 /* For read statistics */
3627 enum {
3628 MCS_CACHE,
3629 MCS_RSS,
3630 MCS_FILE_MAPPED,
3631 MCS_PGPGIN,
3632 MCS_PGPGOUT,
3633 MCS_SWAP,
3634 MCS_INACTIVE_ANON,
3635 MCS_ACTIVE_ANON,
3636 MCS_INACTIVE_FILE,
3637 MCS_ACTIVE_FILE,
3638 MCS_UNEVICTABLE,
3639 NR_MCS_STAT,
3640 };
3641
3642 struct mcs_total_stat {
3643 s64 stat[NR_MCS_STAT];
3644 };
3645
3646 struct {
3647 char *local_name;
3648 char *total_name;
3649 } memcg_stat_strings[NR_MCS_STAT] = {
3650 {"cache", "total_cache"},
3651 {"rss", "total_rss"},
3652 {"mapped_file", "total_mapped_file"},
3653 {"pgpgin", "total_pgpgin"},
3654 {"pgpgout", "total_pgpgout"},
3655 {"swap", "total_swap"},
3656 {"inactive_anon", "total_inactive_anon"},
3657 {"active_anon", "total_active_anon"},
3658 {"inactive_file", "total_inactive_file"},
3659 {"active_file", "total_active_file"},
3660 {"unevictable", "total_unevictable"}
3661 };
3662
3663
3664 static void
3665 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3666 {
3667 s64 val;
3668
3669 /* per cpu stat */
3670 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3671 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3672 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3673 s->stat[MCS_RSS] += val * PAGE_SIZE;
3674 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3675 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3676 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3677 s->stat[MCS_PGPGIN] += val;
3678 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3679 s->stat[MCS_PGPGOUT] += val;
3680 if (do_swap_account) {
3681 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3682 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3683 }
3684
3685 /* per zone stat */
3686 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3687 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3688 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3689 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3690 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3691 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3692 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3693 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3694 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3695 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3696 }
3697
3698 static void
3699 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3700 {
3701 struct mem_cgroup *iter;
3702
3703 for_each_mem_cgroup_tree(iter, mem)
3704 mem_cgroup_get_local_stat(iter, s);
3705 }
3706
3707 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3708 struct cgroup_map_cb *cb)
3709 {
3710 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3711 struct mcs_total_stat mystat;
3712 int i;
3713
3714 memset(&mystat, 0, sizeof(mystat));
3715 mem_cgroup_get_local_stat(mem_cont, &mystat);
3716
3717 for (i = 0; i < NR_MCS_STAT; i++) {
3718 if (i == MCS_SWAP && !do_swap_account)
3719 continue;
3720 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3721 }
3722
3723 /* Hierarchical information */
3724 {
3725 unsigned long long limit, memsw_limit;
3726 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3727 cb->fill(cb, "hierarchical_memory_limit", limit);
3728 if (do_swap_account)
3729 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3730 }
3731
3732 memset(&mystat, 0, sizeof(mystat));
3733 mem_cgroup_get_total_stat(mem_cont, &mystat);
3734 for (i = 0; i < NR_MCS_STAT; i++) {
3735 if (i == MCS_SWAP && !do_swap_account)
3736 continue;
3737 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3738 }
3739
3740 #ifdef CONFIG_DEBUG_VM
3741 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3742
3743 {
3744 int nid, zid;
3745 struct mem_cgroup_per_zone *mz;
3746 unsigned long recent_rotated[2] = {0, 0};
3747 unsigned long recent_scanned[2] = {0, 0};
3748
3749 for_each_online_node(nid)
3750 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3751 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3752
3753 recent_rotated[0] +=
3754 mz->reclaim_stat.recent_rotated[0];
3755 recent_rotated[1] +=
3756 mz->reclaim_stat.recent_rotated[1];
3757 recent_scanned[0] +=
3758 mz->reclaim_stat.recent_scanned[0];
3759 recent_scanned[1] +=
3760 mz->reclaim_stat.recent_scanned[1];
3761 }
3762 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3763 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3764 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3765 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3766 }
3767 #endif
3768
3769 return 0;
3770 }
3771
3772 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3773 {
3774 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3775
3776 return get_swappiness(memcg);
3777 }
3778
3779 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3780 u64 val)
3781 {
3782 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3783 struct mem_cgroup *parent;
3784
3785 if (val > 100)
3786 return -EINVAL;
3787
3788 if (cgrp->parent == NULL)
3789 return -EINVAL;
3790
3791 parent = mem_cgroup_from_cont(cgrp->parent);
3792
3793 cgroup_lock();
3794
3795 /* If under hierarchy, only empty-root can set this value */
3796 if ((parent->use_hierarchy) ||
3797 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3798 cgroup_unlock();
3799 return -EINVAL;
3800 }
3801
3802 spin_lock(&memcg->reclaim_param_lock);
3803 memcg->swappiness = val;
3804 spin_unlock(&memcg->reclaim_param_lock);
3805
3806 cgroup_unlock();
3807
3808 return 0;
3809 }
3810
3811 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3812 {
3813 struct mem_cgroup_threshold_ary *t;
3814 u64 usage;
3815 int i;
3816
3817 rcu_read_lock();
3818 if (!swap)
3819 t = rcu_dereference(memcg->thresholds.primary);
3820 else
3821 t = rcu_dereference(memcg->memsw_thresholds.primary);
3822
3823 if (!t)
3824 goto unlock;
3825
3826 usage = mem_cgroup_usage(memcg, swap);
3827
3828 /*
3829 * current_threshold points to threshold just below usage.
3830 * If it's not true, a threshold was crossed after last
3831 * call of __mem_cgroup_threshold().
3832 */
3833 i = t->current_threshold;
3834
3835 /*
3836 * Iterate backward over array of thresholds starting from
3837 * current_threshold and check if a threshold is crossed.
3838 * If none of thresholds below usage is crossed, we read
3839 * only one element of the array here.
3840 */
3841 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3842 eventfd_signal(t->entries[i].eventfd, 1);
3843
3844 /* i = current_threshold + 1 */
3845 i++;
3846
3847 /*
3848 * Iterate forward over array of thresholds starting from
3849 * current_threshold+1 and check if a threshold is crossed.
3850 * If none of thresholds above usage is crossed, we read
3851 * only one element of the array here.
3852 */
3853 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3854 eventfd_signal(t->entries[i].eventfd, 1);
3855
3856 /* Update current_threshold */
3857 t->current_threshold = i - 1;
3858 unlock:
3859 rcu_read_unlock();
3860 }
3861
3862 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3863 {
3864 while (memcg) {
3865 __mem_cgroup_threshold(memcg, false);
3866 if (do_swap_account)
3867 __mem_cgroup_threshold(memcg, true);
3868
3869 memcg = parent_mem_cgroup(memcg);
3870 }
3871 }
3872
3873 static int compare_thresholds(const void *a, const void *b)
3874 {
3875 const struct mem_cgroup_threshold *_a = a;
3876 const struct mem_cgroup_threshold *_b = b;
3877
3878 return _a->threshold - _b->threshold;
3879 }
3880
3881 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3882 {
3883 struct mem_cgroup_eventfd_list *ev;
3884
3885 list_for_each_entry(ev, &mem->oom_notify, list)
3886 eventfd_signal(ev->eventfd, 1);
3887 return 0;
3888 }
3889
3890 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3891 {
3892 struct mem_cgroup *iter;
3893
3894 for_each_mem_cgroup_tree(iter, mem)
3895 mem_cgroup_oom_notify_cb(iter);
3896 }
3897
3898 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3899 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3900 {
3901 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3902 struct mem_cgroup_thresholds *thresholds;
3903 struct mem_cgroup_threshold_ary *new;
3904 int type = MEMFILE_TYPE(cft->private);
3905 u64 threshold, usage;
3906 int i, size, ret;
3907
3908 ret = res_counter_memparse_write_strategy(args, &threshold);
3909 if (ret)
3910 return ret;
3911
3912 mutex_lock(&memcg->thresholds_lock);
3913
3914 if (type == _MEM)
3915 thresholds = &memcg->thresholds;
3916 else if (type == _MEMSWAP)
3917 thresholds = &memcg->memsw_thresholds;
3918 else
3919 BUG();
3920
3921 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3922
3923 /* Check if a threshold crossed before adding a new one */
3924 if (thresholds->primary)
3925 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3926
3927 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3928
3929 /* Allocate memory for new array of thresholds */
3930 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3931 GFP_KERNEL);
3932 if (!new) {
3933 ret = -ENOMEM;
3934 goto unlock;
3935 }
3936 new->size = size;
3937
3938 /* Copy thresholds (if any) to new array */
3939 if (thresholds->primary) {
3940 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3941 sizeof(struct mem_cgroup_threshold));
3942 }
3943
3944 /* Add new threshold */
3945 new->entries[size - 1].eventfd = eventfd;
3946 new->entries[size - 1].threshold = threshold;
3947
3948 /* Sort thresholds. Registering of new threshold isn't time-critical */
3949 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3950 compare_thresholds, NULL);
3951
3952 /* Find current threshold */
3953 new->current_threshold = -1;
3954 for (i = 0; i < size; i++) {
3955 if (new->entries[i].threshold < usage) {
3956 /*
3957 * new->current_threshold will not be used until
3958 * rcu_assign_pointer(), so it's safe to increment
3959 * it here.
3960 */
3961 ++new->current_threshold;
3962 }
3963 }
3964
3965 /* Free old spare buffer and save old primary buffer as spare */
3966 kfree(thresholds->spare);
3967 thresholds->spare = thresholds->primary;
3968
3969 rcu_assign_pointer(thresholds->primary, new);
3970
3971 /* To be sure that nobody uses thresholds */
3972 synchronize_rcu();
3973
3974 unlock:
3975 mutex_unlock(&memcg->thresholds_lock);
3976
3977 return ret;
3978 }
3979
3980 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3981 struct cftype *cft, struct eventfd_ctx *eventfd)
3982 {
3983 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3984 struct mem_cgroup_thresholds *thresholds;
3985 struct mem_cgroup_threshold_ary *new;
3986 int type = MEMFILE_TYPE(cft->private);
3987 u64 usage;
3988 int i, j, size;
3989
3990 mutex_lock(&memcg->thresholds_lock);
3991 if (type == _MEM)
3992 thresholds = &memcg->thresholds;
3993 else if (type == _MEMSWAP)
3994 thresholds = &memcg->memsw_thresholds;
3995 else
3996 BUG();
3997
3998 /*
3999 * Something went wrong if we trying to unregister a threshold
4000 * if we don't have thresholds
4001 */
4002 BUG_ON(!thresholds);
4003
4004 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
4005
4006 /* Check if a threshold crossed before removing */
4007 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4008
4009 /* Calculate new number of threshold */
4010 size = 0;
4011 for (i = 0; i < thresholds->primary->size; i++) {
4012 if (thresholds->primary->entries[i].eventfd != eventfd)
4013 size++;
4014 }
4015
4016 new = thresholds->spare;
4017
4018 /* Set thresholds array to NULL if we don't have thresholds */
4019 if (!size) {
4020 kfree(new);
4021 new = NULL;
4022 goto swap_buffers;
4023 }
4024
4025 new->size = size;
4026
4027 /* Copy thresholds and find current threshold */
4028 new->current_threshold = -1;
4029 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4030 if (thresholds->primary->entries[i].eventfd == eventfd)
4031 continue;
4032
4033 new->entries[j] = thresholds->primary->entries[i];
4034 if (new->entries[j].threshold < usage) {
4035 /*
4036 * new->current_threshold will not be used
4037 * until rcu_assign_pointer(), so it's safe to increment
4038 * it here.
4039 */
4040 ++new->current_threshold;
4041 }
4042 j++;
4043 }
4044
4045 swap_buffers:
4046 /* Swap primary and spare array */
4047 thresholds->spare = thresholds->primary;
4048 rcu_assign_pointer(thresholds->primary, new);
4049
4050 /* To be sure that nobody uses thresholds */
4051 synchronize_rcu();
4052
4053 mutex_unlock(&memcg->thresholds_lock);
4054 }
4055
4056 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4057 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4058 {
4059 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4060 struct mem_cgroup_eventfd_list *event;
4061 int type = MEMFILE_TYPE(cft->private);
4062
4063 BUG_ON(type != _OOM_TYPE);
4064 event = kmalloc(sizeof(*event), GFP_KERNEL);
4065 if (!event)
4066 return -ENOMEM;
4067
4068 mutex_lock(&memcg_oom_mutex);
4069
4070 event->eventfd = eventfd;
4071 list_add(&event->list, &memcg->oom_notify);
4072
4073 /* already in OOM ? */
4074 if (atomic_read(&memcg->oom_lock))
4075 eventfd_signal(eventfd, 1);
4076 mutex_unlock(&memcg_oom_mutex);
4077
4078 return 0;
4079 }
4080
4081 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4082 struct cftype *cft, struct eventfd_ctx *eventfd)
4083 {
4084 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4085 struct mem_cgroup_eventfd_list *ev, *tmp;
4086 int type = MEMFILE_TYPE(cft->private);
4087
4088 BUG_ON(type != _OOM_TYPE);
4089
4090 mutex_lock(&memcg_oom_mutex);
4091
4092 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4093 if (ev->eventfd == eventfd) {
4094 list_del(&ev->list);
4095 kfree(ev);
4096 }
4097 }
4098
4099 mutex_unlock(&memcg_oom_mutex);
4100 }
4101
4102 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4103 struct cftype *cft, struct cgroup_map_cb *cb)
4104 {
4105 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4106
4107 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4108
4109 if (atomic_read(&mem->oom_lock))
4110 cb->fill(cb, "under_oom", 1);
4111 else
4112 cb->fill(cb, "under_oom", 0);
4113 return 0;
4114 }
4115
4116 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4117 struct cftype *cft, u64 val)
4118 {
4119 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4120 struct mem_cgroup *parent;
4121
4122 /* cannot set to root cgroup and only 0 and 1 are allowed */
4123 if (!cgrp->parent || !((val == 0) || (val == 1)))
4124 return -EINVAL;
4125
4126 parent = mem_cgroup_from_cont(cgrp->parent);
4127
4128 cgroup_lock();
4129 /* oom-kill-disable is a flag for subhierarchy. */
4130 if ((parent->use_hierarchy) ||
4131 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4132 cgroup_unlock();
4133 return -EINVAL;
4134 }
4135 mem->oom_kill_disable = val;
4136 if (!val)
4137 memcg_oom_recover(mem);
4138 cgroup_unlock();
4139 return 0;
4140 }
4141
4142 static struct cftype mem_cgroup_files[] = {
4143 {
4144 .name = "usage_in_bytes",
4145 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4146 .read_u64 = mem_cgroup_read,
4147 .register_event = mem_cgroup_usage_register_event,
4148 .unregister_event = mem_cgroup_usage_unregister_event,
4149 },
4150 {
4151 .name = "max_usage_in_bytes",
4152 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4153 .trigger = mem_cgroup_reset,
4154 .read_u64 = mem_cgroup_read,
4155 },
4156 {
4157 .name = "limit_in_bytes",
4158 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4159 .write_string = mem_cgroup_write,
4160 .read_u64 = mem_cgroup_read,
4161 },
4162 {
4163 .name = "soft_limit_in_bytes",
4164 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4165 .write_string = mem_cgroup_write,
4166 .read_u64 = mem_cgroup_read,
4167 },
4168 {
4169 .name = "failcnt",
4170 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4171 .trigger = mem_cgroup_reset,
4172 .read_u64 = mem_cgroup_read,
4173 },
4174 {
4175 .name = "stat",
4176 .read_map = mem_control_stat_show,
4177 },
4178 {
4179 .name = "force_empty",
4180 .trigger = mem_cgroup_force_empty_write,
4181 },
4182 {
4183 .name = "use_hierarchy",
4184 .write_u64 = mem_cgroup_hierarchy_write,
4185 .read_u64 = mem_cgroup_hierarchy_read,
4186 },
4187 {
4188 .name = "swappiness",
4189 .read_u64 = mem_cgroup_swappiness_read,
4190 .write_u64 = mem_cgroup_swappiness_write,
4191 },
4192 {
4193 .name = "move_charge_at_immigrate",
4194 .read_u64 = mem_cgroup_move_charge_read,
4195 .write_u64 = mem_cgroup_move_charge_write,
4196 },
4197 {
4198 .name = "oom_control",
4199 .read_map = mem_cgroup_oom_control_read,
4200 .write_u64 = mem_cgroup_oom_control_write,
4201 .register_event = mem_cgroup_oom_register_event,
4202 .unregister_event = mem_cgroup_oom_unregister_event,
4203 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4204 },
4205 };
4206
4207 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4208 static struct cftype memsw_cgroup_files[] = {
4209 {
4210 .name = "memsw.usage_in_bytes",
4211 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4212 .read_u64 = mem_cgroup_read,
4213 .register_event = mem_cgroup_usage_register_event,
4214 .unregister_event = mem_cgroup_usage_unregister_event,
4215 },
4216 {
4217 .name = "memsw.max_usage_in_bytes",
4218 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4219 .trigger = mem_cgroup_reset,
4220 .read_u64 = mem_cgroup_read,
4221 },
4222 {
4223 .name = "memsw.limit_in_bytes",
4224 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4225 .write_string = mem_cgroup_write,
4226 .read_u64 = mem_cgroup_read,
4227 },
4228 {
4229 .name = "memsw.failcnt",
4230 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4231 .trigger = mem_cgroup_reset,
4232 .read_u64 = mem_cgroup_read,
4233 },
4234 };
4235
4236 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4237 {
4238 if (!do_swap_account)
4239 return 0;
4240 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4241 ARRAY_SIZE(memsw_cgroup_files));
4242 };
4243 #else
4244 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4245 {
4246 return 0;
4247 }
4248 #endif
4249
4250 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4251 {
4252 struct mem_cgroup_per_node *pn;
4253 struct mem_cgroup_per_zone *mz;
4254 enum lru_list l;
4255 int zone, tmp = node;
4256 /*
4257 * This routine is called against possible nodes.
4258 * But it's BUG to call kmalloc() against offline node.
4259 *
4260 * TODO: this routine can waste much memory for nodes which will
4261 * never be onlined. It's better to use memory hotplug callback
4262 * function.
4263 */
4264 if (!node_state(node, N_NORMAL_MEMORY))
4265 tmp = -1;
4266 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4267 if (!pn)
4268 return 1;
4269
4270 mem->info.nodeinfo[node] = pn;
4271 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4272 mz = &pn->zoneinfo[zone];
4273 for_each_lru(l)
4274 INIT_LIST_HEAD(&mz->lists[l]);
4275 mz->usage_in_excess = 0;
4276 mz->on_tree = false;
4277 mz->mem = mem;
4278 }
4279 return 0;
4280 }
4281
4282 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4283 {
4284 kfree(mem->info.nodeinfo[node]);
4285 }
4286
4287 static struct mem_cgroup *mem_cgroup_alloc(void)
4288 {
4289 struct mem_cgroup *mem;
4290 int size = sizeof(struct mem_cgroup);
4291
4292 /* Can be very big if MAX_NUMNODES is very big */
4293 if (size < PAGE_SIZE)
4294 mem = kzalloc(size, GFP_KERNEL);
4295 else
4296 mem = vzalloc(size);
4297
4298 if (!mem)
4299 return NULL;
4300
4301 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4302 if (!mem->stat)
4303 goto out_free;
4304 spin_lock_init(&mem->pcp_counter_lock);
4305 return mem;
4306
4307 out_free:
4308 if (size < PAGE_SIZE)
4309 kfree(mem);
4310 else
4311 vfree(mem);
4312 return NULL;
4313 }
4314
4315 /*
4316 * At destroying mem_cgroup, references from swap_cgroup can remain.
4317 * (scanning all at force_empty is too costly...)
4318 *
4319 * Instead of clearing all references at force_empty, we remember
4320 * the number of reference from swap_cgroup and free mem_cgroup when
4321 * it goes down to 0.
4322 *
4323 * Removal of cgroup itself succeeds regardless of refs from swap.
4324 */
4325
4326 static void __mem_cgroup_free(struct mem_cgroup *mem)
4327 {
4328 int node;
4329
4330 mem_cgroup_remove_from_trees(mem);
4331 free_css_id(&mem_cgroup_subsys, &mem->css);
4332
4333 for_each_node_state(node, N_POSSIBLE)
4334 free_mem_cgroup_per_zone_info(mem, node);
4335
4336 free_percpu(mem->stat);
4337 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4338 kfree(mem);
4339 else
4340 vfree(mem);
4341 }
4342
4343 static void mem_cgroup_get(struct mem_cgroup *mem)
4344 {
4345 atomic_inc(&mem->refcnt);
4346 }
4347
4348 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4349 {
4350 if (atomic_sub_and_test(count, &mem->refcnt)) {
4351 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4352 __mem_cgroup_free(mem);
4353 if (parent)
4354 mem_cgroup_put(parent);
4355 }
4356 }
4357
4358 static void mem_cgroup_put(struct mem_cgroup *mem)
4359 {
4360 __mem_cgroup_put(mem, 1);
4361 }
4362
4363 /*
4364 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4365 */
4366 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4367 {
4368 if (!mem->res.parent)
4369 return NULL;
4370 return mem_cgroup_from_res_counter(mem->res.parent, res);
4371 }
4372
4373 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4374 static void __init enable_swap_cgroup(void)
4375 {
4376 if (!mem_cgroup_disabled() && really_do_swap_account)
4377 do_swap_account = 1;
4378 }
4379 #else
4380 static void __init enable_swap_cgroup(void)
4381 {
4382 }
4383 #endif
4384
4385 static int mem_cgroup_soft_limit_tree_init(void)
4386 {
4387 struct mem_cgroup_tree_per_node *rtpn;
4388 struct mem_cgroup_tree_per_zone *rtpz;
4389 int tmp, node, zone;
4390
4391 for_each_node_state(node, N_POSSIBLE) {
4392 tmp = node;
4393 if (!node_state(node, N_NORMAL_MEMORY))
4394 tmp = -1;
4395 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4396 if (!rtpn)
4397 return 1;
4398
4399 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4400
4401 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4402 rtpz = &rtpn->rb_tree_per_zone[zone];
4403 rtpz->rb_root = RB_ROOT;
4404 spin_lock_init(&rtpz->lock);
4405 }
4406 }
4407 return 0;
4408 }
4409
4410 static struct cgroup_subsys_state * __ref
4411 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4412 {
4413 struct mem_cgroup *mem, *parent;
4414 long error = -ENOMEM;
4415 int node;
4416
4417 mem = mem_cgroup_alloc();
4418 if (!mem)
4419 return ERR_PTR(error);
4420
4421 for_each_node_state(node, N_POSSIBLE)
4422 if (alloc_mem_cgroup_per_zone_info(mem, node))
4423 goto free_out;
4424
4425 /* root ? */
4426 if (cont->parent == NULL) {
4427 int cpu;
4428 enable_swap_cgroup();
4429 parent = NULL;
4430 root_mem_cgroup = mem;
4431 if (mem_cgroup_soft_limit_tree_init())
4432 goto free_out;
4433 for_each_possible_cpu(cpu) {
4434 struct memcg_stock_pcp *stock =
4435 &per_cpu(memcg_stock, cpu);
4436 INIT_WORK(&stock->work, drain_local_stock);
4437 }
4438 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4439 } else {
4440 parent = mem_cgroup_from_cont(cont->parent);
4441 mem->use_hierarchy = parent->use_hierarchy;
4442 mem->oom_kill_disable = parent->oom_kill_disable;
4443 }
4444
4445 if (parent && parent->use_hierarchy) {
4446 res_counter_init(&mem->res, &parent->res);
4447 res_counter_init(&mem->memsw, &parent->memsw);
4448 /*
4449 * We increment refcnt of the parent to ensure that we can
4450 * safely access it on res_counter_charge/uncharge.
4451 * This refcnt will be decremented when freeing this
4452 * mem_cgroup(see mem_cgroup_put).
4453 */
4454 mem_cgroup_get(parent);
4455 } else {
4456 res_counter_init(&mem->res, NULL);
4457 res_counter_init(&mem->memsw, NULL);
4458 }
4459 mem->last_scanned_child = 0;
4460 spin_lock_init(&mem->reclaim_param_lock);
4461 INIT_LIST_HEAD(&mem->oom_notify);
4462
4463 if (parent)
4464 mem->swappiness = get_swappiness(parent);
4465 atomic_set(&mem->refcnt, 1);
4466 mem->move_charge_at_immigrate = 0;
4467 mutex_init(&mem->thresholds_lock);
4468 return &mem->css;
4469 free_out:
4470 __mem_cgroup_free(mem);
4471 root_mem_cgroup = NULL;
4472 return ERR_PTR(error);
4473 }
4474
4475 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4476 struct cgroup *cont)
4477 {
4478 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4479
4480 return mem_cgroup_force_empty(mem, false);
4481 }
4482
4483 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4484 struct cgroup *cont)
4485 {
4486 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4487
4488 mem_cgroup_put(mem);
4489 }
4490
4491 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4492 struct cgroup *cont)
4493 {
4494 int ret;
4495
4496 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4497 ARRAY_SIZE(mem_cgroup_files));
4498
4499 if (!ret)
4500 ret = register_memsw_files(cont, ss);
4501 return ret;
4502 }
4503
4504 #ifdef CONFIG_MMU
4505 /* Handlers for move charge at task migration. */
4506 #define PRECHARGE_COUNT_AT_ONCE 256
4507 static int mem_cgroup_do_precharge(unsigned long count)
4508 {
4509 int ret = 0;
4510 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4511 struct mem_cgroup *mem = mc.to;
4512
4513 if (mem_cgroup_is_root(mem)) {
4514 mc.precharge += count;
4515 /* we don't need css_get for root */
4516 return ret;
4517 }
4518 /* try to charge at once */
4519 if (count > 1) {
4520 struct res_counter *dummy;
4521 /*
4522 * "mem" cannot be under rmdir() because we've already checked
4523 * by cgroup_lock_live_cgroup() that it is not removed and we
4524 * are still under the same cgroup_mutex. So we can postpone
4525 * css_get().
4526 */
4527 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4528 goto one_by_one;
4529 if (do_swap_account && res_counter_charge(&mem->memsw,
4530 PAGE_SIZE * count, &dummy)) {
4531 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4532 goto one_by_one;
4533 }
4534 mc.precharge += count;
4535 return ret;
4536 }
4537 one_by_one:
4538 /* fall back to one by one charge */
4539 while (count--) {
4540 if (signal_pending(current)) {
4541 ret = -EINTR;
4542 break;
4543 }
4544 if (!batch_count--) {
4545 batch_count = PRECHARGE_COUNT_AT_ONCE;
4546 cond_resched();
4547 }
4548 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4549 PAGE_SIZE);
4550 if (ret || !mem)
4551 /* mem_cgroup_clear_mc() will do uncharge later */
4552 return -ENOMEM;
4553 mc.precharge++;
4554 }
4555 return ret;
4556 }
4557
4558 /**
4559 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4560 * @vma: the vma the pte to be checked belongs
4561 * @addr: the address corresponding to the pte to be checked
4562 * @ptent: the pte to be checked
4563 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4564 *
4565 * Returns
4566 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4567 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4568 * move charge. if @target is not NULL, the page is stored in target->page
4569 * with extra refcnt got(Callers should handle it).
4570 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4571 * target for charge migration. if @target is not NULL, the entry is stored
4572 * in target->ent.
4573 *
4574 * Called with pte lock held.
4575 */
4576 union mc_target {
4577 struct page *page;
4578 swp_entry_t ent;
4579 };
4580
4581 enum mc_target_type {
4582 MC_TARGET_NONE, /* not used */
4583 MC_TARGET_PAGE,
4584 MC_TARGET_SWAP,
4585 };
4586
4587 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4588 unsigned long addr, pte_t ptent)
4589 {
4590 struct page *page = vm_normal_page(vma, addr, ptent);
4591
4592 if (!page || !page_mapped(page))
4593 return NULL;
4594 if (PageAnon(page)) {
4595 /* we don't move shared anon */
4596 if (!move_anon() || page_mapcount(page) > 2)
4597 return NULL;
4598 } else if (!move_file())
4599 /* we ignore mapcount for file pages */
4600 return NULL;
4601 if (!get_page_unless_zero(page))
4602 return NULL;
4603
4604 return page;
4605 }
4606
4607 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4608 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4609 {
4610 int usage_count;
4611 struct page *page = NULL;
4612 swp_entry_t ent = pte_to_swp_entry(ptent);
4613
4614 if (!move_anon() || non_swap_entry(ent))
4615 return NULL;
4616 usage_count = mem_cgroup_count_swap_user(ent, &page);
4617 if (usage_count > 1) { /* we don't move shared anon */
4618 if (page)
4619 put_page(page);
4620 return NULL;
4621 }
4622 if (do_swap_account)
4623 entry->val = ent.val;
4624
4625 return page;
4626 }
4627
4628 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4629 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4630 {
4631 struct page *page = NULL;
4632 struct inode *inode;
4633 struct address_space *mapping;
4634 pgoff_t pgoff;
4635
4636 if (!vma->vm_file) /* anonymous vma */
4637 return NULL;
4638 if (!move_file())
4639 return NULL;
4640
4641 inode = vma->vm_file->f_path.dentry->d_inode;
4642 mapping = vma->vm_file->f_mapping;
4643 if (pte_none(ptent))
4644 pgoff = linear_page_index(vma, addr);
4645 else /* pte_file(ptent) is true */
4646 pgoff = pte_to_pgoff(ptent);
4647
4648 /* page is moved even if it's not RSS of this task(page-faulted). */
4649 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4650 page = find_get_page(mapping, pgoff);
4651 } else { /* shmem/tmpfs file. we should take account of swap too. */
4652 swp_entry_t ent;
4653 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4654 if (do_swap_account)
4655 entry->val = ent.val;
4656 }
4657
4658 return page;
4659 }
4660
4661 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4662 unsigned long addr, pte_t ptent, union mc_target *target)
4663 {
4664 struct page *page = NULL;
4665 struct page_cgroup *pc;
4666 int ret = 0;
4667 swp_entry_t ent = { .val = 0 };
4668
4669 if (pte_present(ptent))
4670 page = mc_handle_present_pte(vma, addr, ptent);
4671 else if (is_swap_pte(ptent))
4672 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4673 else if (pte_none(ptent) || pte_file(ptent))
4674 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4675
4676 if (!page && !ent.val)
4677 return 0;
4678 if (page) {
4679 pc = lookup_page_cgroup(page);
4680 /*
4681 * Do only loose check w/o page_cgroup lock.
4682 * mem_cgroup_move_account() checks the pc is valid or not under
4683 * the lock.
4684 */
4685 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4686 ret = MC_TARGET_PAGE;
4687 if (target)
4688 target->page = page;
4689 }
4690 if (!ret || !target)
4691 put_page(page);
4692 }
4693 /* There is a swap entry and a page doesn't exist or isn't charged */
4694 if (ent.val && !ret &&
4695 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4696 ret = MC_TARGET_SWAP;
4697 if (target)
4698 target->ent = ent;
4699 }
4700 return ret;
4701 }
4702
4703 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4704 unsigned long addr, unsigned long end,
4705 struct mm_walk *walk)
4706 {
4707 struct vm_area_struct *vma = walk->private;
4708 pte_t *pte;
4709 spinlock_t *ptl;
4710
4711 VM_BUG_ON(pmd_trans_huge(*pmd));
4712 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4713 for (; addr != end; pte++, addr += PAGE_SIZE)
4714 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4715 mc.precharge++; /* increment precharge temporarily */
4716 pte_unmap_unlock(pte - 1, ptl);
4717 cond_resched();
4718
4719 return 0;
4720 }
4721
4722 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4723 {
4724 unsigned long precharge;
4725 struct vm_area_struct *vma;
4726
4727 down_read(&mm->mmap_sem);
4728 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4729 struct mm_walk mem_cgroup_count_precharge_walk = {
4730 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4731 .mm = mm,
4732 .private = vma,
4733 };
4734 if (is_vm_hugetlb_page(vma))
4735 continue;
4736 walk_page_range(vma->vm_start, vma->vm_end,
4737 &mem_cgroup_count_precharge_walk);
4738 }
4739 up_read(&mm->mmap_sem);
4740
4741 precharge = mc.precharge;
4742 mc.precharge = 0;
4743
4744 return precharge;
4745 }
4746
4747 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4748 {
4749 unsigned long precharge = mem_cgroup_count_precharge(mm);
4750
4751 VM_BUG_ON(mc.moving_task);
4752 mc.moving_task = current;
4753 return mem_cgroup_do_precharge(precharge);
4754 }
4755
4756 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4757 static void __mem_cgroup_clear_mc(void)
4758 {
4759 struct mem_cgroup *from = mc.from;
4760 struct mem_cgroup *to = mc.to;
4761
4762 /* we must uncharge all the leftover precharges from mc.to */
4763 if (mc.precharge) {
4764 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4765 mc.precharge = 0;
4766 }
4767 /*
4768 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4769 * we must uncharge here.
4770 */
4771 if (mc.moved_charge) {
4772 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4773 mc.moved_charge = 0;
4774 }
4775 /* we must fixup refcnts and charges */
4776 if (mc.moved_swap) {
4777 /* uncharge swap account from the old cgroup */
4778 if (!mem_cgroup_is_root(mc.from))
4779 res_counter_uncharge(&mc.from->memsw,
4780 PAGE_SIZE * mc.moved_swap);
4781 __mem_cgroup_put(mc.from, mc.moved_swap);
4782
4783 if (!mem_cgroup_is_root(mc.to)) {
4784 /*
4785 * we charged both to->res and to->memsw, so we should
4786 * uncharge to->res.
4787 */
4788 res_counter_uncharge(&mc.to->res,
4789 PAGE_SIZE * mc.moved_swap);
4790 }
4791 /* we've already done mem_cgroup_get(mc.to) */
4792 mc.moved_swap = 0;
4793 }
4794 memcg_oom_recover(from);
4795 memcg_oom_recover(to);
4796 wake_up_all(&mc.waitq);
4797 }
4798
4799 static void mem_cgroup_clear_mc(void)
4800 {
4801 struct mem_cgroup *from = mc.from;
4802
4803 /*
4804 * we must clear moving_task before waking up waiters at the end of
4805 * task migration.
4806 */
4807 mc.moving_task = NULL;
4808 __mem_cgroup_clear_mc();
4809 spin_lock(&mc.lock);
4810 mc.from = NULL;
4811 mc.to = NULL;
4812 spin_unlock(&mc.lock);
4813 mem_cgroup_end_move(from);
4814 }
4815
4816 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4817 struct cgroup *cgroup,
4818 struct task_struct *p,
4819 bool threadgroup)
4820 {
4821 int ret = 0;
4822 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4823
4824 if (mem->move_charge_at_immigrate) {
4825 struct mm_struct *mm;
4826 struct mem_cgroup *from = mem_cgroup_from_task(p);
4827
4828 VM_BUG_ON(from == mem);
4829
4830 mm = get_task_mm(p);
4831 if (!mm)
4832 return 0;
4833 /* We move charges only when we move a owner of the mm */
4834 if (mm->owner == p) {
4835 VM_BUG_ON(mc.from);
4836 VM_BUG_ON(mc.to);
4837 VM_BUG_ON(mc.precharge);
4838 VM_BUG_ON(mc.moved_charge);
4839 VM_BUG_ON(mc.moved_swap);
4840 mem_cgroup_start_move(from);
4841 spin_lock(&mc.lock);
4842 mc.from = from;
4843 mc.to = mem;
4844 spin_unlock(&mc.lock);
4845 /* We set mc.moving_task later */
4846
4847 ret = mem_cgroup_precharge_mc(mm);
4848 if (ret)
4849 mem_cgroup_clear_mc();
4850 }
4851 mmput(mm);
4852 }
4853 return ret;
4854 }
4855
4856 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4857 struct cgroup *cgroup,
4858 struct task_struct *p,
4859 bool threadgroup)
4860 {
4861 mem_cgroup_clear_mc();
4862 }
4863
4864 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4865 unsigned long addr, unsigned long end,
4866 struct mm_walk *walk)
4867 {
4868 int ret = 0;
4869 struct vm_area_struct *vma = walk->private;
4870 pte_t *pte;
4871 spinlock_t *ptl;
4872
4873 retry:
4874 VM_BUG_ON(pmd_trans_huge(*pmd));
4875 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4876 for (; addr != end; addr += PAGE_SIZE) {
4877 pte_t ptent = *(pte++);
4878 union mc_target target;
4879 int type;
4880 struct page *page;
4881 struct page_cgroup *pc;
4882 swp_entry_t ent;
4883
4884 if (!mc.precharge)
4885 break;
4886
4887 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4888 switch (type) {
4889 case MC_TARGET_PAGE:
4890 page = target.page;
4891 if (isolate_lru_page(page))
4892 goto put;
4893 pc = lookup_page_cgroup(page);
4894 if (!mem_cgroup_move_account(pc,
4895 mc.from, mc.to, false, PAGE_SIZE)) {
4896 mc.precharge--;
4897 /* we uncharge from mc.from later. */
4898 mc.moved_charge++;
4899 }
4900 putback_lru_page(page);
4901 put: /* is_target_pte_for_mc() gets the page */
4902 put_page(page);
4903 break;
4904 case MC_TARGET_SWAP:
4905 ent = target.ent;
4906 if (!mem_cgroup_move_swap_account(ent,
4907 mc.from, mc.to, false)) {
4908 mc.precharge--;
4909 /* we fixup refcnts and charges later. */
4910 mc.moved_swap++;
4911 }
4912 break;
4913 default:
4914 break;
4915 }
4916 }
4917 pte_unmap_unlock(pte - 1, ptl);
4918 cond_resched();
4919
4920 if (addr != end) {
4921 /*
4922 * We have consumed all precharges we got in can_attach().
4923 * We try charge one by one, but don't do any additional
4924 * charges to mc.to if we have failed in charge once in attach()
4925 * phase.
4926 */
4927 ret = mem_cgroup_do_precharge(1);
4928 if (!ret)
4929 goto retry;
4930 }
4931
4932 return ret;
4933 }
4934
4935 static void mem_cgroup_move_charge(struct mm_struct *mm)
4936 {
4937 struct vm_area_struct *vma;
4938
4939 lru_add_drain_all();
4940 retry:
4941 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4942 /*
4943 * Someone who are holding the mmap_sem might be waiting in
4944 * waitq. So we cancel all extra charges, wake up all waiters,
4945 * and retry. Because we cancel precharges, we might not be able
4946 * to move enough charges, but moving charge is a best-effort
4947 * feature anyway, so it wouldn't be a big problem.
4948 */
4949 __mem_cgroup_clear_mc();
4950 cond_resched();
4951 goto retry;
4952 }
4953 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4954 int ret;
4955 struct mm_walk mem_cgroup_move_charge_walk = {
4956 .pmd_entry = mem_cgroup_move_charge_pte_range,
4957 .mm = mm,
4958 .private = vma,
4959 };
4960 if (is_vm_hugetlb_page(vma))
4961 continue;
4962 ret = walk_page_range(vma->vm_start, vma->vm_end,
4963 &mem_cgroup_move_charge_walk);
4964 if (ret)
4965 /*
4966 * means we have consumed all precharges and failed in
4967 * doing additional charge. Just abandon here.
4968 */
4969 break;
4970 }
4971 up_read(&mm->mmap_sem);
4972 }
4973
4974 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4975 struct cgroup *cont,
4976 struct cgroup *old_cont,
4977 struct task_struct *p,
4978 bool threadgroup)
4979 {
4980 struct mm_struct *mm;
4981
4982 if (!mc.to)
4983 /* no need to move charge */
4984 return;
4985
4986 mm = get_task_mm(p);
4987 if (mm) {
4988 mem_cgroup_move_charge(mm);
4989 mmput(mm);
4990 }
4991 mem_cgroup_clear_mc();
4992 }
4993 #else /* !CONFIG_MMU */
4994 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4995 struct cgroup *cgroup,
4996 struct task_struct *p,
4997 bool threadgroup)
4998 {
4999 return 0;
5000 }
5001 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
5002 struct cgroup *cgroup,
5003 struct task_struct *p,
5004 bool threadgroup)
5005 {
5006 }
5007 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
5008 struct cgroup *cont,
5009 struct cgroup *old_cont,
5010 struct task_struct *p,
5011 bool threadgroup)
5012 {
5013 }
5014 #endif
5015
5016 struct cgroup_subsys mem_cgroup_subsys = {
5017 .name = "memory",
5018 .subsys_id = mem_cgroup_subsys_id,
5019 .create = mem_cgroup_create,
5020 .pre_destroy = mem_cgroup_pre_destroy,
5021 .destroy = mem_cgroup_destroy,
5022 .populate = mem_cgroup_populate,
5023 .can_attach = mem_cgroup_can_attach,
5024 .cancel_attach = mem_cgroup_cancel_attach,
5025 .attach = mem_cgroup_move_task,
5026 .early_init = 0,
5027 .use_id = 1,
5028 };
5029
5030 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
5031 static int __init enable_swap_account(char *s)
5032 {
5033 /* consider enabled if no parameter or 1 is given */
5034 if (!(*s) || !strcmp(s, "=1"))
5035 really_do_swap_account = 1;
5036 else if (!strcmp(s, "=0"))
5037 really_do_swap_account = 0;
5038 return 1;
5039 }
5040 __setup("swapaccount", enable_swap_account);
5041
5042 static int __init disable_swap_account(char *s)
5043 {
5044 printk_once("noswapaccount is deprecated and will be removed in 2.6.40. Use swapaccount=0 instead\n");
5045 enable_swap_account("=0");
5046 return 1;
5047 }
5048 __setup("noswapaccount", disable_swap_account);
5049 #endif