]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - mm/memcontrol.c
cgroups: use css id in swap cgroup for saving memory v5
[mirror_ubuntu-artful-kernel.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/limits.h>
31 #include <linux/mutex.h>
32 #include <linux/slab.h>
33 #include <linux/swap.h>
34 #include <linux/spinlock.h>
35 #include <linux/fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/vmalloc.h>
38 #include <linux/mm_inline.h>
39 #include <linux/page_cgroup.h>
40 #include "internal.h"
41
42 #include <asm/uaccess.h>
43
44 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
45 #define MEM_CGROUP_RECLAIM_RETRIES 5
46
47 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
48 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
49 int do_swap_account __read_mostly;
50 static int really_do_swap_account __initdata = 1; /* for remember boot option*/
51 #else
52 #define do_swap_account (0)
53 #endif
54
55 static DEFINE_MUTEX(memcg_tasklist); /* can be hold under cgroup_mutex */
56
57 /*
58 * Statistics for memory cgroup.
59 */
60 enum mem_cgroup_stat_index {
61 /*
62 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
63 */
64 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
65 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
66 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
67 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
68
69 MEM_CGROUP_STAT_NSTATS,
70 };
71
72 struct mem_cgroup_stat_cpu {
73 s64 count[MEM_CGROUP_STAT_NSTATS];
74 } ____cacheline_aligned_in_smp;
75
76 struct mem_cgroup_stat {
77 struct mem_cgroup_stat_cpu cpustat[0];
78 };
79
80 /*
81 * For accounting under irq disable, no need for increment preempt count.
82 */
83 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
84 enum mem_cgroup_stat_index idx, int val)
85 {
86 stat->count[idx] += val;
87 }
88
89 static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
90 enum mem_cgroup_stat_index idx)
91 {
92 int cpu;
93 s64 ret = 0;
94 for_each_possible_cpu(cpu)
95 ret += stat->cpustat[cpu].count[idx];
96 return ret;
97 }
98
99 static s64 mem_cgroup_local_usage(struct mem_cgroup_stat *stat)
100 {
101 s64 ret;
102
103 ret = mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_CACHE);
104 ret += mem_cgroup_read_stat(stat, MEM_CGROUP_STAT_RSS);
105 return ret;
106 }
107
108 /*
109 * per-zone information in memory controller.
110 */
111 struct mem_cgroup_per_zone {
112 /*
113 * spin_lock to protect the per cgroup LRU
114 */
115 struct list_head lists[NR_LRU_LISTS];
116 unsigned long count[NR_LRU_LISTS];
117
118 struct zone_reclaim_stat reclaim_stat;
119 };
120 /* Macro for accessing counter */
121 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
122
123 struct mem_cgroup_per_node {
124 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
125 };
126
127 struct mem_cgroup_lru_info {
128 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
129 };
130
131 /*
132 * The memory controller data structure. The memory controller controls both
133 * page cache and RSS per cgroup. We would eventually like to provide
134 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
135 * to help the administrator determine what knobs to tune.
136 *
137 * TODO: Add a water mark for the memory controller. Reclaim will begin when
138 * we hit the water mark. May be even add a low water mark, such that
139 * no reclaim occurs from a cgroup at it's low water mark, this is
140 * a feature that will be implemented much later in the future.
141 */
142 struct mem_cgroup {
143 struct cgroup_subsys_state css;
144 /*
145 * the counter to account for memory usage
146 */
147 struct res_counter res;
148 /*
149 * the counter to account for mem+swap usage.
150 */
151 struct res_counter memsw;
152 /*
153 * Per cgroup active and inactive list, similar to the
154 * per zone LRU lists.
155 */
156 struct mem_cgroup_lru_info info;
157
158 /*
159 protect against reclaim related member.
160 */
161 spinlock_t reclaim_param_lock;
162
163 int prev_priority; /* for recording reclaim priority */
164
165 /*
166 * While reclaiming in a hiearchy, we cache the last child we
167 * reclaimed from.
168 */
169 int last_scanned_child;
170 /*
171 * Should the accounting and control be hierarchical, per subtree?
172 */
173 bool use_hierarchy;
174 unsigned long last_oom_jiffies;
175 atomic_t refcnt;
176
177 unsigned int swappiness;
178
179 /*
180 * statistics. This must be placed at the end of memcg.
181 */
182 struct mem_cgroup_stat stat;
183 };
184
185 enum charge_type {
186 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
187 MEM_CGROUP_CHARGE_TYPE_MAPPED,
188 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
189 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
190 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
191 NR_CHARGE_TYPE,
192 };
193
194 /* only for here (for easy reading.) */
195 #define PCGF_CACHE (1UL << PCG_CACHE)
196 #define PCGF_USED (1UL << PCG_USED)
197 #define PCGF_LOCK (1UL << PCG_LOCK)
198 static const unsigned long
199 pcg_default_flags[NR_CHARGE_TYPE] = {
200 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
201 PCGF_USED | PCGF_LOCK, /* Anon */
202 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
203 0, /* FORCE */
204 };
205
206 /* for encoding cft->private value on file */
207 #define _MEM (0)
208 #define _MEMSWAP (1)
209 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
210 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
211 #define MEMFILE_ATTR(val) ((val) & 0xffff)
212
213 static void mem_cgroup_get(struct mem_cgroup *mem);
214 static void mem_cgroup_put(struct mem_cgroup *mem);
215 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
216
217 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
218 struct page_cgroup *pc,
219 bool charge)
220 {
221 int val = (charge)? 1 : -1;
222 struct mem_cgroup_stat *stat = &mem->stat;
223 struct mem_cgroup_stat_cpu *cpustat;
224 int cpu = get_cpu();
225
226 cpustat = &stat->cpustat[cpu];
227 if (PageCgroupCache(pc))
228 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
229 else
230 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
231
232 if (charge)
233 __mem_cgroup_stat_add_safe(cpustat,
234 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
235 else
236 __mem_cgroup_stat_add_safe(cpustat,
237 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
238 put_cpu();
239 }
240
241 static struct mem_cgroup_per_zone *
242 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
243 {
244 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
245 }
246
247 static struct mem_cgroup_per_zone *
248 page_cgroup_zoneinfo(struct page_cgroup *pc)
249 {
250 struct mem_cgroup *mem = pc->mem_cgroup;
251 int nid = page_cgroup_nid(pc);
252 int zid = page_cgroup_zid(pc);
253
254 if (!mem)
255 return NULL;
256
257 return mem_cgroup_zoneinfo(mem, nid, zid);
258 }
259
260 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
261 enum lru_list idx)
262 {
263 int nid, zid;
264 struct mem_cgroup_per_zone *mz;
265 u64 total = 0;
266
267 for_each_online_node(nid)
268 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
269 mz = mem_cgroup_zoneinfo(mem, nid, zid);
270 total += MEM_CGROUP_ZSTAT(mz, idx);
271 }
272 return total;
273 }
274
275 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
276 {
277 return container_of(cgroup_subsys_state(cont,
278 mem_cgroup_subsys_id), struct mem_cgroup,
279 css);
280 }
281
282 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
283 {
284 /*
285 * mm_update_next_owner() may clear mm->owner to NULL
286 * if it races with swapoff, page migration, etc.
287 * So this can be called with p == NULL.
288 */
289 if (unlikely(!p))
290 return NULL;
291
292 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
293 struct mem_cgroup, css);
294 }
295
296 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
297 {
298 struct mem_cgroup *mem = NULL;
299
300 if (!mm)
301 return NULL;
302 /*
303 * Because we have no locks, mm->owner's may be being moved to other
304 * cgroup. We use css_tryget() here even if this looks
305 * pessimistic (rather than adding locks here).
306 */
307 rcu_read_lock();
308 do {
309 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
310 if (unlikely(!mem))
311 break;
312 } while (!css_tryget(&mem->css));
313 rcu_read_unlock();
314 return mem;
315 }
316
317 static bool mem_cgroup_is_obsolete(struct mem_cgroup *mem)
318 {
319 if (!mem)
320 return true;
321 return css_is_removed(&mem->css);
322 }
323
324
325 /*
326 * Call callback function against all cgroup under hierarchy tree.
327 */
328 static int mem_cgroup_walk_tree(struct mem_cgroup *root, void *data,
329 int (*func)(struct mem_cgroup *, void *))
330 {
331 int found, ret, nextid;
332 struct cgroup_subsys_state *css;
333 struct mem_cgroup *mem;
334
335 if (!root->use_hierarchy)
336 return (*func)(root, data);
337
338 nextid = 1;
339 do {
340 ret = 0;
341 mem = NULL;
342
343 rcu_read_lock();
344 css = css_get_next(&mem_cgroup_subsys, nextid, &root->css,
345 &found);
346 if (css && css_tryget(css))
347 mem = container_of(css, struct mem_cgroup, css);
348 rcu_read_unlock();
349
350 if (mem) {
351 ret = (*func)(mem, data);
352 css_put(&mem->css);
353 }
354 nextid = found + 1;
355 } while (!ret && css);
356
357 return ret;
358 }
359
360 /*
361 * Following LRU functions are allowed to be used without PCG_LOCK.
362 * Operations are called by routine of global LRU independently from memcg.
363 * What we have to take care of here is validness of pc->mem_cgroup.
364 *
365 * Changes to pc->mem_cgroup happens when
366 * 1. charge
367 * 2. moving account
368 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
369 * It is added to LRU before charge.
370 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
371 * When moving account, the page is not on LRU. It's isolated.
372 */
373
374 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
375 {
376 struct page_cgroup *pc;
377 struct mem_cgroup *mem;
378 struct mem_cgroup_per_zone *mz;
379
380 if (mem_cgroup_disabled())
381 return;
382 pc = lookup_page_cgroup(page);
383 /* can happen while we handle swapcache. */
384 if (list_empty(&pc->lru) || !pc->mem_cgroup)
385 return;
386 /*
387 * We don't check PCG_USED bit. It's cleared when the "page" is finally
388 * removed from global LRU.
389 */
390 mz = page_cgroup_zoneinfo(pc);
391 mem = pc->mem_cgroup;
392 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
393 list_del_init(&pc->lru);
394 return;
395 }
396
397 void mem_cgroup_del_lru(struct page *page)
398 {
399 mem_cgroup_del_lru_list(page, page_lru(page));
400 }
401
402 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
403 {
404 struct mem_cgroup_per_zone *mz;
405 struct page_cgroup *pc;
406
407 if (mem_cgroup_disabled())
408 return;
409
410 pc = lookup_page_cgroup(page);
411 /*
412 * Used bit is set without atomic ops but after smp_wmb().
413 * For making pc->mem_cgroup visible, insert smp_rmb() here.
414 */
415 smp_rmb();
416 /* unused page is not rotated. */
417 if (!PageCgroupUsed(pc))
418 return;
419 mz = page_cgroup_zoneinfo(pc);
420 list_move(&pc->lru, &mz->lists[lru]);
421 }
422
423 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
424 {
425 struct page_cgroup *pc;
426 struct mem_cgroup_per_zone *mz;
427
428 if (mem_cgroup_disabled())
429 return;
430 pc = lookup_page_cgroup(page);
431 /*
432 * Used bit is set without atomic ops but after smp_wmb().
433 * For making pc->mem_cgroup visible, insert smp_rmb() here.
434 */
435 smp_rmb();
436 if (!PageCgroupUsed(pc))
437 return;
438
439 mz = page_cgroup_zoneinfo(pc);
440 MEM_CGROUP_ZSTAT(mz, lru) += 1;
441 list_add(&pc->lru, &mz->lists[lru]);
442 }
443
444 /*
445 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
446 * lru because the page may.be reused after it's fully uncharged (because of
447 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
448 * it again. This function is only used to charge SwapCache. It's done under
449 * lock_page and expected that zone->lru_lock is never held.
450 */
451 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
452 {
453 unsigned long flags;
454 struct zone *zone = page_zone(page);
455 struct page_cgroup *pc = lookup_page_cgroup(page);
456
457 spin_lock_irqsave(&zone->lru_lock, flags);
458 /*
459 * Forget old LRU when this page_cgroup is *not* used. This Used bit
460 * is guarded by lock_page() because the page is SwapCache.
461 */
462 if (!PageCgroupUsed(pc))
463 mem_cgroup_del_lru_list(page, page_lru(page));
464 spin_unlock_irqrestore(&zone->lru_lock, flags);
465 }
466
467 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
468 {
469 unsigned long flags;
470 struct zone *zone = page_zone(page);
471 struct page_cgroup *pc = lookup_page_cgroup(page);
472
473 spin_lock_irqsave(&zone->lru_lock, flags);
474 /* link when the page is linked to LRU but page_cgroup isn't */
475 if (PageLRU(page) && list_empty(&pc->lru))
476 mem_cgroup_add_lru_list(page, page_lru(page));
477 spin_unlock_irqrestore(&zone->lru_lock, flags);
478 }
479
480
481 void mem_cgroup_move_lists(struct page *page,
482 enum lru_list from, enum lru_list to)
483 {
484 if (mem_cgroup_disabled())
485 return;
486 mem_cgroup_del_lru_list(page, from);
487 mem_cgroup_add_lru_list(page, to);
488 }
489
490 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
491 {
492 int ret;
493 struct mem_cgroup *curr = NULL;
494
495 task_lock(task);
496 rcu_read_lock();
497 curr = try_get_mem_cgroup_from_mm(task->mm);
498 rcu_read_unlock();
499 task_unlock(task);
500 if (!curr)
501 return 0;
502 if (curr->use_hierarchy)
503 ret = css_is_ancestor(&curr->css, &mem->css);
504 else
505 ret = (curr == mem);
506 css_put(&curr->css);
507 return ret;
508 }
509
510 /*
511 * prev_priority control...this will be used in memory reclaim path.
512 */
513 int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
514 {
515 int prev_priority;
516
517 spin_lock(&mem->reclaim_param_lock);
518 prev_priority = mem->prev_priority;
519 spin_unlock(&mem->reclaim_param_lock);
520
521 return prev_priority;
522 }
523
524 void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
525 {
526 spin_lock(&mem->reclaim_param_lock);
527 if (priority < mem->prev_priority)
528 mem->prev_priority = priority;
529 spin_unlock(&mem->reclaim_param_lock);
530 }
531
532 void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
533 {
534 spin_lock(&mem->reclaim_param_lock);
535 mem->prev_priority = priority;
536 spin_unlock(&mem->reclaim_param_lock);
537 }
538
539 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
540 {
541 unsigned long active;
542 unsigned long inactive;
543 unsigned long gb;
544 unsigned long inactive_ratio;
545
546 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
547 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
548
549 gb = (inactive + active) >> (30 - PAGE_SHIFT);
550 if (gb)
551 inactive_ratio = int_sqrt(10 * gb);
552 else
553 inactive_ratio = 1;
554
555 if (present_pages) {
556 present_pages[0] = inactive;
557 present_pages[1] = active;
558 }
559
560 return inactive_ratio;
561 }
562
563 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
564 {
565 unsigned long active;
566 unsigned long inactive;
567 unsigned long present_pages[2];
568 unsigned long inactive_ratio;
569
570 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
571
572 inactive = present_pages[0];
573 active = present_pages[1];
574
575 if (inactive * inactive_ratio < active)
576 return 1;
577
578 return 0;
579 }
580
581 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
582 struct zone *zone,
583 enum lru_list lru)
584 {
585 int nid = zone->zone_pgdat->node_id;
586 int zid = zone_idx(zone);
587 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
588
589 return MEM_CGROUP_ZSTAT(mz, lru);
590 }
591
592 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
593 struct zone *zone)
594 {
595 int nid = zone->zone_pgdat->node_id;
596 int zid = zone_idx(zone);
597 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
598
599 return &mz->reclaim_stat;
600 }
601
602 struct zone_reclaim_stat *
603 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
604 {
605 struct page_cgroup *pc;
606 struct mem_cgroup_per_zone *mz;
607
608 if (mem_cgroup_disabled())
609 return NULL;
610
611 pc = lookup_page_cgroup(page);
612 /*
613 * Used bit is set without atomic ops but after smp_wmb().
614 * For making pc->mem_cgroup visible, insert smp_rmb() here.
615 */
616 smp_rmb();
617 if (!PageCgroupUsed(pc))
618 return NULL;
619
620 mz = page_cgroup_zoneinfo(pc);
621 if (!mz)
622 return NULL;
623
624 return &mz->reclaim_stat;
625 }
626
627 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
628 struct list_head *dst,
629 unsigned long *scanned, int order,
630 int mode, struct zone *z,
631 struct mem_cgroup *mem_cont,
632 int active, int file)
633 {
634 unsigned long nr_taken = 0;
635 struct page *page;
636 unsigned long scan;
637 LIST_HEAD(pc_list);
638 struct list_head *src;
639 struct page_cgroup *pc, *tmp;
640 int nid = z->zone_pgdat->node_id;
641 int zid = zone_idx(z);
642 struct mem_cgroup_per_zone *mz;
643 int lru = LRU_FILE * !!file + !!active;
644
645 BUG_ON(!mem_cont);
646 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
647 src = &mz->lists[lru];
648
649 scan = 0;
650 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
651 if (scan >= nr_to_scan)
652 break;
653
654 page = pc->page;
655 if (unlikely(!PageCgroupUsed(pc)))
656 continue;
657 if (unlikely(!PageLRU(page)))
658 continue;
659
660 scan++;
661 if (__isolate_lru_page(page, mode, file) == 0) {
662 list_move(&page->lru, dst);
663 nr_taken++;
664 }
665 }
666
667 *scanned = scan;
668 return nr_taken;
669 }
670
671 #define mem_cgroup_from_res_counter(counter, member) \
672 container_of(counter, struct mem_cgroup, member)
673
674 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
675 {
676 if (do_swap_account) {
677 if (res_counter_check_under_limit(&mem->res) &&
678 res_counter_check_under_limit(&mem->memsw))
679 return true;
680 } else
681 if (res_counter_check_under_limit(&mem->res))
682 return true;
683 return false;
684 }
685
686 static unsigned int get_swappiness(struct mem_cgroup *memcg)
687 {
688 struct cgroup *cgrp = memcg->css.cgroup;
689 unsigned int swappiness;
690
691 /* root ? */
692 if (cgrp->parent == NULL)
693 return vm_swappiness;
694
695 spin_lock(&memcg->reclaim_param_lock);
696 swappiness = memcg->swappiness;
697 spin_unlock(&memcg->reclaim_param_lock);
698
699 return swappiness;
700 }
701
702 static int mem_cgroup_count_children_cb(struct mem_cgroup *mem, void *data)
703 {
704 int *val = data;
705 (*val)++;
706 return 0;
707 }
708
709 /**
710 * mem_cgroup_print_mem_info: Called from OOM with tasklist_lock held in read mode.
711 * @memcg: The memory cgroup that went over limit
712 * @p: Task that is going to be killed
713 *
714 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
715 * enabled
716 */
717 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
718 {
719 struct cgroup *task_cgrp;
720 struct cgroup *mem_cgrp;
721 /*
722 * Need a buffer in BSS, can't rely on allocations. The code relies
723 * on the assumption that OOM is serialized for memory controller.
724 * If this assumption is broken, revisit this code.
725 */
726 static char memcg_name[PATH_MAX];
727 int ret;
728
729 if (!memcg)
730 return;
731
732
733 rcu_read_lock();
734
735 mem_cgrp = memcg->css.cgroup;
736 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
737
738 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
739 if (ret < 0) {
740 /*
741 * Unfortunately, we are unable to convert to a useful name
742 * But we'll still print out the usage information
743 */
744 rcu_read_unlock();
745 goto done;
746 }
747 rcu_read_unlock();
748
749 printk(KERN_INFO "Task in %s killed", memcg_name);
750
751 rcu_read_lock();
752 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
753 if (ret < 0) {
754 rcu_read_unlock();
755 goto done;
756 }
757 rcu_read_unlock();
758
759 /*
760 * Continues from above, so we don't need an KERN_ level
761 */
762 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
763 done:
764
765 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
766 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
767 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
768 res_counter_read_u64(&memcg->res, RES_FAILCNT));
769 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
770 "failcnt %llu\n",
771 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
772 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
773 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
774 }
775
776 /*
777 * This function returns the number of memcg under hierarchy tree. Returns
778 * 1(self count) if no children.
779 */
780 static int mem_cgroup_count_children(struct mem_cgroup *mem)
781 {
782 int num = 0;
783 mem_cgroup_walk_tree(mem, &num, mem_cgroup_count_children_cb);
784 return num;
785 }
786
787 /*
788 * Visit the first child (need not be the first child as per the ordering
789 * of the cgroup list, since we track last_scanned_child) of @mem and use
790 * that to reclaim free pages from.
791 */
792 static struct mem_cgroup *
793 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
794 {
795 struct mem_cgroup *ret = NULL;
796 struct cgroup_subsys_state *css;
797 int nextid, found;
798
799 if (!root_mem->use_hierarchy) {
800 css_get(&root_mem->css);
801 ret = root_mem;
802 }
803
804 while (!ret) {
805 rcu_read_lock();
806 nextid = root_mem->last_scanned_child + 1;
807 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
808 &found);
809 if (css && css_tryget(css))
810 ret = container_of(css, struct mem_cgroup, css);
811
812 rcu_read_unlock();
813 /* Updates scanning parameter */
814 spin_lock(&root_mem->reclaim_param_lock);
815 if (!css) {
816 /* this means start scan from ID:1 */
817 root_mem->last_scanned_child = 0;
818 } else
819 root_mem->last_scanned_child = found;
820 spin_unlock(&root_mem->reclaim_param_lock);
821 }
822
823 return ret;
824 }
825
826 /*
827 * Scan the hierarchy if needed to reclaim memory. We remember the last child
828 * we reclaimed from, so that we don't end up penalizing one child extensively
829 * based on its position in the children list.
830 *
831 * root_mem is the original ancestor that we've been reclaim from.
832 *
833 * We give up and return to the caller when we visit root_mem twice.
834 * (other groups can be removed while we're walking....)
835 *
836 * If shrink==true, for avoiding to free too much, this returns immedieately.
837 */
838 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
839 gfp_t gfp_mask, bool noswap, bool shrink)
840 {
841 struct mem_cgroup *victim;
842 int ret, total = 0;
843 int loop = 0;
844
845 while (loop < 2) {
846 victim = mem_cgroup_select_victim(root_mem);
847 if (victim == root_mem)
848 loop++;
849 if (!mem_cgroup_local_usage(&victim->stat)) {
850 /* this cgroup's local usage == 0 */
851 css_put(&victim->css);
852 continue;
853 }
854 /* we use swappiness of local cgroup */
855 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask, noswap,
856 get_swappiness(victim));
857 css_put(&victim->css);
858 /*
859 * At shrinking usage, we can't check we should stop here or
860 * reclaim more. It's depends on callers. last_scanned_child
861 * will work enough for keeping fairness under tree.
862 */
863 if (shrink)
864 return ret;
865 total += ret;
866 if (mem_cgroup_check_under_limit(root_mem))
867 return 1 + total;
868 }
869 return total;
870 }
871
872 bool mem_cgroup_oom_called(struct task_struct *task)
873 {
874 bool ret = false;
875 struct mem_cgroup *mem;
876 struct mm_struct *mm;
877
878 rcu_read_lock();
879 mm = task->mm;
880 if (!mm)
881 mm = &init_mm;
882 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
883 if (mem && time_before(jiffies, mem->last_oom_jiffies + HZ/10))
884 ret = true;
885 rcu_read_unlock();
886 return ret;
887 }
888
889 static int record_last_oom_cb(struct mem_cgroup *mem, void *data)
890 {
891 mem->last_oom_jiffies = jiffies;
892 return 0;
893 }
894
895 static void record_last_oom(struct mem_cgroup *mem)
896 {
897 mem_cgroup_walk_tree(mem, NULL, record_last_oom_cb);
898 }
899
900
901 /*
902 * Unlike exported interface, "oom" parameter is added. if oom==true,
903 * oom-killer can be invoked.
904 */
905 static int __mem_cgroup_try_charge(struct mm_struct *mm,
906 gfp_t gfp_mask, struct mem_cgroup **memcg,
907 bool oom)
908 {
909 struct mem_cgroup *mem, *mem_over_limit;
910 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
911 struct res_counter *fail_res;
912
913 if (unlikely(test_thread_flag(TIF_MEMDIE))) {
914 /* Don't account this! */
915 *memcg = NULL;
916 return 0;
917 }
918
919 /*
920 * We always charge the cgroup the mm_struct belongs to.
921 * The mm_struct's mem_cgroup changes on task migration if the
922 * thread group leader migrates. It's possible that mm is not
923 * set, if so charge the init_mm (happens for pagecache usage).
924 */
925 mem = *memcg;
926 if (likely(!mem)) {
927 mem = try_get_mem_cgroup_from_mm(mm);
928 *memcg = mem;
929 } else {
930 css_get(&mem->css);
931 }
932 if (unlikely(!mem))
933 return 0;
934
935 VM_BUG_ON(mem_cgroup_is_obsolete(mem));
936
937 while (1) {
938 int ret;
939 bool noswap = false;
940
941 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
942 if (likely(!ret)) {
943 if (!do_swap_account)
944 break;
945 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
946 &fail_res);
947 if (likely(!ret))
948 break;
949 /* mem+swap counter fails */
950 res_counter_uncharge(&mem->res, PAGE_SIZE);
951 noswap = true;
952 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
953 memsw);
954 } else
955 /* mem counter fails */
956 mem_over_limit = mem_cgroup_from_res_counter(fail_res,
957 res);
958
959 if (!(gfp_mask & __GFP_WAIT))
960 goto nomem;
961
962 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, gfp_mask,
963 noswap, false);
964 if (ret)
965 continue;
966
967 /*
968 * try_to_free_mem_cgroup_pages() might not give us a full
969 * picture of reclaim. Some pages are reclaimed and might be
970 * moved to swap cache or just unmapped from the cgroup.
971 * Check the limit again to see if the reclaim reduced the
972 * current usage of the cgroup before giving up
973 *
974 */
975 if (mem_cgroup_check_under_limit(mem_over_limit))
976 continue;
977
978 if (!nr_retries--) {
979 if (oom) {
980 mutex_lock(&memcg_tasklist);
981 mem_cgroup_out_of_memory(mem_over_limit, gfp_mask);
982 mutex_unlock(&memcg_tasklist);
983 record_last_oom(mem_over_limit);
984 }
985 goto nomem;
986 }
987 }
988 return 0;
989 nomem:
990 css_put(&mem->css);
991 return -ENOMEM;
992 }
993
994
995 /*
996 * A helper function to get mem_cgroup from ID. must be called under
997 * rcu_read_lock(). The caller must check css_is_removed() or some if
998 * it's concern. (dropping refcnt from swap can be called against removed
999 * memcg.)
1000 */
1001 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
1002 {
1003 struct cgroup_subsys_state *css;
1004
1005 /* ID 0 is unused ID */
1006 if (!id)
1007 return NULL;
1008 css = css_lookup(&mem_cgroup_subsys, id);
1009 if (!css)
1010 return NULL;
1011 return container_of(css, struct mem_cgroup, css);
1012 }
1013
1014 static struct mem_cgroup *try_get_mem_cgroup_from_swapcache(struct page *page)
1015 {
1016 struct mem_cgroup *mem;
1017 struct page_cgroup *pc;
1018 unsigned short id;
1019 swp_entry_t ent;
1020
1021 VM_BUG_ON(!PageLocked(page));
1022
1023 if (!PageSwapCache(page))
1024 return NULL;
1025
1026 pc = lookup_page_cgroup(page);
1027 /*
1028 * Used bit of swapcache is solid under page lock.
1029 */
1030 if (PageCgroupUsed(pc)) {
1031 mem = pc->mem_cgroup;
1032 if (mem && !css_tryget(&mem->css))
1033 mem = NULL;
1034 } else {
1035 ent.val = page_private(page);
1036 id = lookup_swap_cgroup(ent);
1037 rcu_read_lock();
1038 mem = mem_cgroup_lookup(id);
1039 if (mem && !css_tryget(&mem->css))
1040 mem = NULL;
1041 rcu_read_unlock();
1042 }
1043 return mem;
1044 }
1045
1046 /*
1047 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
1048 * USED state. If already USED, uncharge and return.
1049 */
1050
1051 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
1052 struct page_cgroup *pc,
1053 enum charge_type ctype)
1054 {
1055 /* try_charge() can return NULL to *memcg, taking care of it. */
1056 if (!mem)
1057 return;
1058
1059 lock_page_cgroup(pc);
1060 if (unlikely(PageCgroupUsed(pc))) {
1061 unlock_page_cgroup(pc);
1062 res_counter_uncharge(&mem->res, PAGE_SIZE);
1063 if (do_swap_account)
1064 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1065 css_put(&mem->css);
1066 return;
1067 }
1068 pc->mem_cgroup = mem;
1069 smp_wmb();
1070 pc->flags = pcg_default_flags[ctype];
1071
1072 mem_cgroup_charge_statistics(mem, pc, true);
1073
1074 unlock_page_cgroup(pc);
1075 }
1076
1077 /**
1078 * mem_cgroup_move_account - move account of the page
1079 * @pc: page_cgroup of the page.
1080 * @from: mem_cgroup which the page is moved from.
1081 * @to: mem_cgroup which the page is moved to. @from != @to.
1082 *
1083 * The caller must confirm following.
1084 * - page is not on LRU (isolate_page() is useful.)
1085 *
1086 * returns 0 at success,
1087 * returns -EBUSY when lock is busy or "pc" is unstable.
1088 *
1089 * This function does "uncharge" from old cgroup but doesn't do "charge" to
1090 * new cgroup. It should be done by a caller.
1091 */
1092
1093 static int mem_cgroup_move_account(struct page_cgroup *pc,
1094 struct mem_cgroup *from, struct mem_cgroup *to)
1095 {
1096 struct mem_cgroup_per_zone *from_mz, *to_mz;
1097 int nid, zid;
1098 int ret = -EBUSY;
1099
1100 VM_BUG_ON(from == to);
1101 VM_BUG_ON(PageLRU(pc->page));
1102
1103 nid = page_cgroup_nid(pc);
1104 zid = page_cgroup_zid(pc);
1105 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
1106 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
1107
1108 if (!trylock_page_cgroup(pc))
1109 return ret;
1110
1111 if (!PageCgroupUsed(pc))
1112 goto out;
1113
1114 if (pc->mem_cgroup != from)
1115 goto out;
1116
1117 res_counter_uncharge(&from->res, PAGE_SIZE);
1118 mem_cgroup_charge_statistics(from, pc, false);
1119 if (do_swap_account)
1120 res_counter_uncharge(&from->memsw, PAGE_SIZE);
1121 css_put(&from->css);
1122
1123 css_get(&to->css);
1124 pc->mem_cgroup = to;
1125 mem_cgroup_charge_statistics(to, pc, true);
1126 ret = 0;
1127 out:
1128 unlock_page_cgroup(pc);
1129 return ret;
1130 }
1131
1132 /*
1133 * move charges to its parent.
1134 */
1135
1136 static int mem_cgroup_move_parent(struct page_cgroup *pc,
1137 struct mem_cgroup *child,
1138 gfp_t gfp_mask)
1139 {
1140 struct page *page = pc->page;
1141 struct cgroup *cg = child->css.cgroup;
1142 struct cgroup *pcg = cg->parent;
1143 struct mem_cgroup *parent;
1144 int ret;
1145
1146 /* Is ROOT ? */
1147 if (!pcg)
1148 return -EINVAL;
1149
1150
1151 parent = mem_cgroup_from_cont(pcg);
1152
1153
1154 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
1155 if (ret || !parent)
1156 return ret;
1157
1158 if (!get_page_unless_zero(page)) {
1159 ret = -EBUSY;
1160 goto uncharge;
1161 }
1162
1163 ret = isolate_lru_page(page);
1164
1165 if (ret)
1166 goto cancel;
1167
1168 ret = mem_cgroup_move_account(pc, child, parent);
1169
1170 putback_lru_page(page);
1171 if (!ret) {
1172 put_page(page);
1173 /* drop extra refcnt by try_charge() */
1174 css_put(&parent->css);
1175 return 0;
1176 }
1177
1178 cancel:
1179 put_page(page);
1180 uncharge:
1181 /* drop extra refcnt by try_charge() */
1182 css_put(&parent->css);
1183 /* uncharge if move fails */
1184 res_counter_uncharge(&parent->res, PAGE_SIZE);
1185 if (do_swap_account)
1186 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
1187 return ret;
1188 }
1189
1190 /*
1191 * Charge the memory controller for page usage.
1192 * Return
1193 * 0 if the charge was successful
1194 * < 0 if the cgroup is over its limit
1195 */
1196 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
1197 gfp_t gfp_mask, enum charge_type ctype,
1198 struct mem_cgroup *memcg)
1199 {
1200 struct mem_cgroup *mem;
1201 struct page_cgroup *pc;
1202 int ret;
1203
1204 pc = lookup_page_cgroup(page);
1205 /* can happen at boot */
1206 if (unlikely(!pc))
1207 return 0;
1208 prefetchw(pc);
1209
1210 mem = memcg;
1211 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
1212 if (ret || !mem)
1213 return ret;
1214
1215 __mem_cgroup_commit_charge(mem, pc, ctype);
1216 return 0;
1217 }
1218
1219 int mem_cgroup_newpage_charge(struct page *page,
1220 struct mm_struct *mm, gfp_t gfp_mask)
1221 {
1222 if (mem_cgroup_disabled())
1223 return 0;
1224 if (PageCompound(page))
1225 return 0;
1226 /*
1227 * If already mapped, we don't have to account.
1228 * If page cache, page->mapping has address_space.
1229 * But page->mapping may have out-of-use anon_vma pointer,
1230 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1231 * is NULL.
1232 */
1233 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
1234 return 0;
1235 if (unlikely(!mm))
1236 mm = &init_mm;
1237 return mem_cgroup_charge_common(page, mm, gfp_mask,
1238 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
1239 }
1240
1241 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
1242 gfp_t gfp_mask)
1243 {
1244 struct mem_cgroup *mem = NULL;
1245 int ret;
1246
1247 if (mem_cgroup_disabled())
1248 return 0;
1249 if (PageCompound(page))
1250 return 0;
1251 /*
1252 * Corner case handling. This is called from add_to_page_cache()
1253 * in usual. But some FS (shmem) precharges this page before calling it
1254 * and call add_to_page_cache() with GFP_NOWAIT.
1255 *
1256 * For GFP_NOWAIT case, the page may be pre-charged before calling
1257 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1258 * charge twice. (It works but has to pay a bit larger cost.)
1259 * And when the page is SwapCache, it should take swap information
1260 * into account. This is under lock_page() now.
1261 */
1262 if (!(gfp_mask & __GFP_WAIT)) {
1263 struct page_cgroup *pc;
1264
1265
1266 pc = lookup_page_cgroup(page);
1267 if (!pc)
1268 return 0;
1269 lock_page_cgroup(pc);
1270 if (PageCgroupUsed(pc)) {
1271 unlock_page_cgroup(pc);
1272 return 0;
1273 }
1274 unlock_page_cgroup(pc);
1275 }
1276
1277 if (do_swap_account && PageSwapCache(page)) {
1278 mem = try_get_mem_cgroup_from_swapcache(page);
1279 if (mem)
1280 mm = NULL;
1281 else
1282 mem = NULL;
1283 /* SwapCache may be still linked to LRU now. */
1284 mem_cgroup_lru_del_before_commit_swapcache(page);
1285 }
1286
1287 if (unlikely(!mm && !mem))
1288 mm = &init_mm;
1289
1290 if (page_is_file_cache(page))
1291 return mem_cgroup_charge_common(page, mm, gfp_mask,
1292 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
1293
1294 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
1295 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
1296 if (mem)
1297 css_put(&mem->css);
1298 if (PageSwapCache(page))
1299 mem_cgroup_lru_add_after_commit_swapcache(page);
1300
1301 if (do_swap_account && !ret && PageSwapCache(page)) {
1302 swp_entry_t ent = {.val = page_private(page)};
1303 unsigned short id;
1304 /* avoid double counting */
1305 id = swap_cgroup_record(ent, 0);
1306 rcu_read_lock();
1307 mem = mem_cgroup_lookup(id);
1308 if (mem) {
1309 /*
1310 * We did swap-in. Then, this entry is doubly counted
1311 * both in mem and memsw. We uncharge it, here.
1312 * Recorded ID can be obsolete. We avoid calling
1313 * css_tryget()
1314 */
1315 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1316 mem_cgroup_put(mem);
1317 }
1318 rcu_read_unlock();
1319 }
1320 return ret;
1321 }
1322
1323 /*
1324 * While swap-in, try_charge -> commit or cancel, the page is locked.
1325 * And when try_charge() successfully returns, one refcnt to memcg without
1326 * struct page_cgroup is aquired. This refcnt will be cumsumed by
1327 * "commit()" or removed by "cancel()"
1328 */
1329 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
1330 struct page *page,
1331 gfp_t mask, struct mem_cgroup **ptr)
1332 {
1333 struct mem_cgroup *mem;
1334 int ret;
1335
1336 if (mem_cgroup_disabled())
1337 return 0;
1338
1339 if (!do_swap_account)
1340 goto charge_cur_mm;
1341 /*
1342 * A racing thread's fault, or swapoff, may have already updated
1343 * the pte, and even removed page from swap cache: return success
1344 * to go on to do_swap_page()'s pte_same() test, which should fail.
1345 */
1346 if (!PageSwapCache(page))
1347 return 0;
1348 mem = try_get_mem_cgroup_from_swapcache(page);
1349 if (!mem)
1350 goto charge_cur_mm;
1351 *ptr = mem;
1352 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true);
1353 /* drop extra refcnt from tryget */
1354 css_put(&mem->css);
1355 return ret;
1356 charge_cur_mm:
1357 if (unlikely(!mm))
1358 mm = &init_mm;
1359 return __mem_cgroup_try_charge(mm, mask, ptr, true);
1360 }
1361
1362 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
1363 {
1364 struct page_cgroup *pc;
1365
1366 if (mem_cgroup_disabled())
1367 return;
1368 if (!ptr)
1369 return;
1370 pc = lookup_page_cgroup(page);
1371 mem_cgroup_lru_del_before_commit_swapcache(page);
1372 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1373 mem_cgroup_lru_add_after_commit_swapcache(page);
1374 /*
1375 * Now swap is on-memory. This means this page may be
1376 * counted both as mem and swap....double count.
1377 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
1378 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
1379 * may call delete_from_swap_cache() before reach here.
1380 */
1381 if (do_swap_account && PageSwapCache(page)) {
1382 swp_entry_t ent = {.val = page_private(page)};
1383 unsigned short id;
1384 struct mem_cgroup *memcg;
1385
1386 id = swap_cgroup_record(ent, 0);
1387 rcu_read_lock();
1388 memcg = mem_cgroup_lookup(id);
1389 if (memcg) {
1390 /*
1391 * This recorded memcg can be obsolete one. So, avoid
1392 * calling css_tryget
1393 */
1394 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1395 mem_cgroup_put(memcg);
1396 }
1397 rcu_read_unlock();
1398 }
1399 /* add this page(page_cgroup) to the LRU we want. */
1400
1401 }
1402
1403 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
1404 {
1405 if (mem_cgroup_disabled())
1406 return;
1407 if (!mem)
1408 return;
1409 res_counter_uncharge(&mem->res, PAGE_SIZE);
1410 if (do_swap_account)
1411 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1412 css_put(&mem->css);
1413 }
1414
1415
1416 /*
1417 * uncharge if !page_mapped(page)
1418 */
1419 static struct mem_cgroup *
1420 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
1421 {
1422 struct page_cgroup *pc;
1423 struct mem_cgroup *mem = NULL;
1424 struct mem_cgroup_per_zone *mz;
1425
1426 if (mem_cgroup_disabled())
1427 return NULL;
1428
1429 if (PageSwapCache(page))
1430 return NULL;
1431
1432 /*
1433 * Check if our page_cgroup is valid
1434 */
1435 pc = lookup_page_cgroup(page);
1436 if (unlikely(!pc || !PageCgroupUsed(pc)))
1437 return NULL;
1438
1439 lock_page_cgroup(pc);
1440
1441 mem = pc->mem_cgroup;
1442
1443 if (!PageCgroupUsed(pc))
1444 goto unlock_out;
1445
1446 switch (ctype) {
1447 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
1448 if (page_mapped(page))
1449 goto unlock_out;
1450 break;
1451 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
1452 if (!PageAnon(page)) { /* Shared memory */
1453 if (page->mapping && !page_is_file_cache(page))
1454 goto unlock_out;
1455 } else if (page_mapped(page)) /* Anon */
1456 goto unlock_out;
1457 break;
1458 default:
1459 break;
1460 }
1461
1462 res_counter_uncharge(&mem->res, PAGE_SIZE);
1463 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
1464 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
1465 mem_cgroup_charge_statistics(mem, pc, false);
1466
1467 ClearPageCgroupUsed(pc);
1468 /*
1469 * pc->mem_cgroup is not cleared here. It will be accessed when it's
1470 * freed from LRU. This is safe because uncharged page is expected not
1471 * to be reused (freed soon). Exception is SwapCache, it's handled by
1472 * special functions.
1473 */
1474
1475 mz = page_cgroup_zoneinfo(pc);
1476 unlock_page_cgroup(pc);
1477
1478 /* at swapout, this memcg will be accessed to record to swap */
1479 if (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
1480 css_put(&mem->css);
1481
1482 return mem;
1483
1484 unlock_out:
1485 unlock_page_cgroup(pc);
1486 return NULL;
1487 }
1488
1489 void mem_cgroup_uncharge_page(struct page *page)
1490 {
1491 /* early check. */
1492 if (page_mapped(page))
1493 return;
1494 if (page->mapping && !PageAnon(page))
1495 return;
1496 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
1497 }
1498
1499 void mem_cgroup_uncharge_cache_page(struct page *page)
1500 {
1501 VM_BUG_ON(page_mapped(page));
1502 VM_BUG_ON(page->mapping);
1503 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1504 }
1505
1506 /*
1507 * called from __delete_from_swap_cache() and drop "page" account.
1508 * memcg information is recorded to swap_cgroup of "ent"
1509 */
1510 void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1511 {
1512 struct mem_cgroup *memcg;
1513
1514 memcg = __mem_cgroup_uncharge_common(page,
1515 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1516 /* record memcg information */
1517 if (do_swap_account && memcg) {
1518 swap_cgroup_record(ent, css_id(&memcg->css));
1519 mem_cgroup_get(memcg);
1520 }
1521 if (memcg)
1522 css_put(&memcg->css);
1523 }
1524
1525 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1526 /*
1527 * called from swap_entry_free(). remove record in swap_cgroup and
1528 * uncharge "memsw" account.
1529 */
1530 void mem_cgroup_uncharge_swap(swp_entry_t ent)
1531 {
1532 struct mem_cgroup *memcg;
1533 unsigned short id;
1534
1535 if (!do_swap_account)
1536 return;
1537
1538 id = swap_cgroup_record(ent, 0);
1539 rcu_read_lock();
1540 memcg = mem_cgroup_lookup(id);
1541 if (memcg) {
1542 /*
1543 * We uncharge this because swap is freed.
1544 * This memcg can be obsolete one. We avoid calling css_tryget
1545 */
1546 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1547 mem_cgroup_put(memcg);
1548 }
1549 rcu_read_unlock();
1550 }
1551 #endif
1552
1553 /*
1554 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1555 * page belongs to.
1556 */
1557 int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
1558 {
1559 struct page_cgroup *pc;
1560 struct mem_cgroup *mem = NULL;
1561 int ret = 0;
1562
1563 if (mem_cgroup_disabled())
1564 return 0;
1565
1566 pc = lookup_page_cgroup(page);
1567 lock_page_cgroup(pc);
1568 if (PageCgroupUsed(pc)) {
1569 mem = pc->mem_cgroup;
1570 css_get(&mem->css);
1571 }
1572 unlock_page_cgroup(pc);
1573
1574 if (mem) {
1575 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false);
1576 css_put(&mem->css);
1577 }
1578 *ptr = mem;
1579 return ret;
1580 }
1581
1582 /* remove redundant charge if migration failed*/
1583 void mem_cgroup_end_migration(struct mem_cgroup *mem,
1584 struct page *oldpage, struct page *newpage)
1585 {
1586 struct page *target, *unused;
1587 struct page_cgroup *pc;
1588 enum charge_type ctype;
1589
1590 if (!mem)
1591 return;
1592
1593 /* at migration success, oldpage->mapping is NULL. */
1594 if (oldpage->mapping) {
1595 target = oldpage;
1596 unused = NULL;
1597 } else {
1598 target = newpage;
1599 unused = oldpage;
1600 }
1601
1602 if (PageAnon(target))
1603 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1604 else if (page_is_file_cache(target))
1605 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1606 else
1607 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1608
1609 /* unused page is not on radix-tree now. */
1610 if (unused)
1611 __mem_cgroup_uncharge_common(unused, ctype);
1612
1613 pc = lookup_page_cgroup(target);
1614 /*
1615 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1616 * So, double-counting is effectively avoided.
1617 */
1618 __mem_cgroup_commit_charge(mem, pc, ctype);
1619
1620 /*
1621 * Both of oldpage and newpage are still under lock_page().
1622 * Then, we don't have to care about race in radix-tree.
1623 * But we have to be careful that this page is unmapped or not.
1624 *
1625 * There is a case for !page_mapped(). At the start of
1626 * migration, oldpage was mapped. But now, it's zapped.
1627 * But we know *target* page is not freed/reused under us.
1628 * mem_cgroup_uncharge_page() does all necessary checks.
1629 */
1630 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1631 mem_cgroup_uncharge_page(target);
1632 }
1633
1634 /*
1635 * A call to try to shrink memory usage under specified resource controller.
1636 * This is typically used for page reclaiming for shmem for reducing side
1637 * effect of page allocation from shmem, which is used by some mem_cgroup.
1638 */
1639 int mem_cgroup_shrink_usage(struct page *page,
1640 struct mm_struct *mm,
1641 gfp_t gfp_mask)
1642 {
1643 struct mem_cgroup *mem = NULL;
1644 int progress = 0;
1645 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1646
1647 if (mem_cgroup_disabled())
1648 return 0;
1649 if (page)
1650 mem = try_get_mem_cgroup_from_swapcache(page);
1651 if (!mem && mm)
1652 mem = try_get_mem_cgroup_from_mm(mm);
1653 if (unlikely(!mem))
1654 return 0;
1655
1656 do {
1657 progress = mem_cgroup_hierarchical_reclaim(mem,
1658 gfp_mask, true, false);
1659 progress += mem_cgroup_check_under_limit(mem);
1660 } while (!progress && --retry);
1661
1662 css_put(&mem->css);
1663 if (!retry)
1664 return -ENOMEM;
1665 return 0;
1666 }
1667
1668 static DEFINE_MUTEX(set_limit_mutex);
1669
1670 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
1671 unsigned long long val)
1672 {
1673 int retry_count;
1674 int progress;
1675 u64 memswlimit;
1676 int ret = 0;
1677 int children = mem_cgroup_count_children(memcg);
1678 u64 curusage, oldusage;
1679
1680 /*
1681 * For keeping hierarchical_reclaim simple, how long we should retry
1682 * is depends on callers. We set our retry-count to be function
1683 * of # of children which we should visit in this loop.
1684 */
1685 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
1686
1687 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1688
1689 while (retry_count) {
1690 if (signal_pending(current)) {
1691 ret = -EINTR;
1692 break;
1693 }
1694 /*
1695 * Rather than hide all in some function, I do this in
1696 * open coded manner. You see what this really does.
1697 * We have to guarantee mem->res.limit < mem->memsw.limit.
1698 */
1699 mutex_lock(&set_limit_mutex);
1700 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1701 if (memswlimit < val) {
1702 ret = -EINVAL;
1703 mutex_unlock(&set_limit_mutex);
1704 break;
1705 }
1706 ret = res_counter_set_limit(&memcg->res, val);
1707 mutex_unlock(&set_limit_mutex);
1708
1709 if (!ret)
1710 break;
1711
1712 progress = mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL,
1713 false, true);
1714 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
1715 /* Usage is reduced ? */
1716 if (curusage >= oldusage)
1717 retry_count--;
1718 else
1719 oldusage = curusage;
1720 }
1721
1722 return ret;
1723 }
1724
1725 int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1726 unsigned long long val)
1727 {
1728 int retry_count;
1729 u64 memlimit, oldusage, curusage;
1730 int children = mem_cgroup_count_children(memcg);
1731 int ret = -EBUSY;
1732
1733 if (!do_swap_account)
1734 return -EINVAL;
1735 /* see mem_cgroup_resize_res_limit */
1736 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
1737 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1738 while (retry_count) {
1739 if (signal_pending(current)) {
1740 ret = -EINTR;
1741 break;
1742 }
1743 /*
1744 * Rather than hide all in some function, I do this in
1745 * open coded manner. You see what this really does.
1746 * We have to guarantee mem->res.limit < mem->memsw.limit.
1747 */
1748 mutex_lock(&set_limit_mutex);
1749 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1750 if (memlimit > val) {
1751 ret = -EINVAL;
1752 mutex_unlock(&set_limit_mutex);
1753 break;
1754 }
1755 ret = res_counter_set_limit(&memcg->memsw, val);
1756 mutex_unlock(&set_limit_mutex);
1757
1758 if (!ret)
1759 break;
1760
1761 mem_cgroup_hierarchical_reclaim(memcg, GFP_KERNEL, true, true);
1762 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1763 /* Usage is reduced ? */
1764 if (curusage >= oldusage)
1765 retry_count--;
1766 else
1767 oldusage = curusage;
1768 }
1769 return ret;
1770 }
1771
1772 /*
1773 * This routine traverse page_cgroup in given list and drop them all.
1774 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1775 */
1776 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
1777 int node, int zid, enum lru_list lru)
1778 {
1779 struct zone *zone;
1780 struct mem_cgroup_per_zone *mz;
1781 struct page_cgroup *pc, *busy;
1782 unsigned long flags, loop;
1783 struct list_head *list;
1784 int ret = 0;
1785
1786 zone = &NODE_DATA(node)->node_zones[zid];
1787 mz = mem_cgroup_zoneinfo(mem, node, zid);
1788 list = &mz->lists[lru];
1789
1790 loop = MEM_CGROUP_ZSTAT(mz, lru);
1791 /* give some margin against EBUSY etc...*/
1792 loop += 256;
1793 busy = NULL;
1794 while (loop--) {
1795 ret = 0;
1796 spin_lock_irqsave(&zone->lru_lock, flags);
1797 if (list_empty(list)) {
1798 spin_unlock_irqrestore(&zone->lru_lock, flags);
1799 break;
1800 }
1801 pc = list_entry(list->prev, struct page_cgroup, lru);
1802 if (busy == pc) {
1803 list_move(&pc->lru, list);
1804 busy = 0;
1805 spin_unlock_irqrestore(&zone->lru_lock, flags);
1806 continue;
1807 }
1808 spin_unlock_irqrestore(&zone->lru_lock, flags);
1809
1810 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
1811 if (ret == -ENOMEM)
1812 break;
1813
1814 if (ret == -EBUSY || ret == -EINVAL) {
1815 /* found lock contention or "pc" is obsolete. */
1816 busy = pc;
1817 cond_resched();
1818 } else
1819 busy = NULL;
1820 }
1821
1822 if (!ret && !list_empty(list))
1823 return -EBUSY;
1824 return ret;
1825 }
1826
1827 /*
1828 * make mem_cgroup's charge to be 0 if there is no task.
1829 * This enables deleting this mem_cgroup.
1830 */
1831 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
1832 {
1833 int ret;
1834 int node, zid, shrink;
1835 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
1836 struct cgroup *cgrp = mem->css.cgroup;
1837
1838 css_get(&mem->css);
1839
1840 shrink = 0;
1841 /* should free all ? */
1842 if (free_all)
1843 goto try_to_free;
1844 move_account:
1845 while (mem->res.usage > 0) {
1846 ret = -EBUSY;
1847 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1848 goto out;
1849 ret = -EINTR;
1850 if (signal_pending(current))
1851 goto out;
1852 /* This is for making all *used* pages to be on LRU. */
1853 lru_add_drain_all();
1854 ret = 0;
1855 for_each_node_state(node, N_HIGH_MEMORY) {
1856 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
1857 enum lru_list l;
1858 for_each_lru(l) {
1859 ret = mem_cgroup_force_empty_list(mem,
1860 node, zid, l);
1861 if (ret)
1862 break;
1863 }
1864 }
1865 if (ret)
1866 break;
1867 }
1868 /* it seems parent cgroup doesn't have enough mem */
1869 if (ret == -ENOMEM)
1870 goto try_to_free;
1871 cond_resched();
1872 }
1873 ret = 0;
1874 out:
1875 css_put(&mem->css);
1876 return ret;
1877
1878 try_to_free:
1879 /* returns EBUSY if there is a task or if we come here twice. */
1880 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
1881 ret = -EBUSY;
1882 goto out;
1883 }
1884 /* we call try-to-free pages for make this cgroup empty */
1885 lru_add_drain_all();
1886 /* try to free all pages in this cgroup */
1887 shrink = 1;
1888 while (nr_retries && mem->res.usage > 0) {
1889 int progress;
1890
1891 if (signal_pending(current)) {
1892 ret = -EINTR;
1893 goto out;
1894 }
1895 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
1896 false, get_swappiness(mem));
1897 if (!progress) {
1898 nr_retries--;
1899 /* maybe some writeback is necessary */
1900 congestion_wait(WRITE, HZ/10);
1901 }
1902
1903 }
1904 lru_add_drain();
1905 /* try move_account...there may be some *locked* pages. */
1906 if (mem->res.usage)
1907 goto move_account;
1908 ret = 0;
1909 goto out;
1910 }
1911
1912 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1913 {
1914 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1915 }
1916
1917
1918 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
1919 {
1920 return mem_cgroup_from_cont(cont)->use_hierarchy;
1921 }
1922
1923 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
1924 u64 val)
1925 {
1926 int retval = 0;
1927 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1928 struct cgroup *parent = cont->parent;
1929 struct mem_cgroup *parent_mem = NULL;
1930
1931 if (parent)
1932 parent_mem = mem_cgroup_from_cont(parent);
1933
1934 cgroup_lock();
1935 /*
1936 * If parent's use_hiearchy is set, we can't make any modifications
1937 * in the child subtrees. If it is unset, then the change can
1938 * occur, provided the current cgroup has no children.
1939 *
1940 * For the root cgroup, parent_mem is NULL, we allow value to be
1941 * set if there are no children.
1942 */
1943 if ((!parent_mem || !parent_mem->use_hierarchy) &&
1944 (val == 1 || val == 0)) {
1945 if (list_empty(&cont->children))
1946 mem->use_hierarchy = val;
1947 else
1948 retval = -EBUSY;
1949 } else
1950 retval = -EINVAL;
1951 cgroup_unlock();
1952
1953 return retval;
1954 }
1955
1956 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
1957 {
1958 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1959 u64 val = 0;
1960 int type, name;
1961
1962 type = MEMFILE_TYPE(cft->private);
1963 name = MEMFILE_ATTR(cft->private);
1964 switch (type) {
1965 case _MEM:
1966 val = res_counter_read_u64(&mem->res, name);
1967 break;
1968 case _MEMSWAP:
1969 if (do_swap_account)
1970 val = res_counter_read_u64(&mem->memsw, name);
1971 break;
1972 default:
1973 BUG();
1974 break;
1975 }
1976 return val;
1977 }
1978 /*
1979 * The user of this function is...
1980 * RES_LIMIT.
1981 */
1982 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1983 const char *buffer)
1984 {
1985 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
1986 int type, name;
1987 unsigned long long val;
1988 int ret;
1989
1990 type = MEMFILE_TYPE(cft->private);
1991 name = MEMFILE_ATTR(cft->private);
1992 switch (name) {
1993 case RES_LIMIT:
1994 /* This function does all necessary parse...reuse it */
1995 ret = res_counter_memparse_write_strategy(buffer, &val);
1996 if (ret)
1997 break;
1998 if (type == _MEM)
1999 ret = mem_cgroup_resize_limit(memcg, val);
2000 else
2001 ret = mem_cgroup_resize_memsw_limit(memcg, val);
2002 break;
2003 default:
2004 ret = -EINVAL; /* should be BUG() ? */
2005 break;
2006 }
2007 return ret;
2008 }
2009
2010 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
2011 unsigned long long *mem_limit, unsigned long long *memsw_limit)
2012 {
2013 struct cgroup *cgroup;
2014 unsigned long long min_limit, min_memsw_limit, tmp;
2015
2016 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
2017 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2018 cgroup = memcg->css.cgroup;
2019 if (!memcg->use_hierarchy)
2020 goto out;
2021
2022 while (cgroup->parent) {
2023 cgroup = cgroup->parent;
2024 memcg = mem_cgroup_from_cont(cgroup);
2025 if (!memcg->use_hierarchy)
2026 break;
2027 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
2028 min_limit = min(min_limit, tmp);
2029 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
2030 min_memsw_limit = min(min_memsw_limit, tmp);
2031 }
2032 out:
2033 *mem_limit = min_limit;
2034 *memsw_limit = min_memsw_limit;
2035 return;
2036 }
2037
2038 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
2039 {
2040 struct mem_cgroup *mem;
2041 int type, name;
2042
2043 mem = mem_cgroup_from_cont(cont);
2044 type = MEMFILE_TYPE(event);
2045 name = MEMFILE_ATTR(event);
2046 switch (name) {
2047 case RES_MAX_USAGE:
2048 if (type == _MEM)
2049 res_counter_reset_max(&mem->res);
2050 else
2051 res_counter_reset_max(&mem->memsw);
2052 break;
2053 case RES_FAILCNT:
2054 if (type == _MEM)
2055 res_counter_reset_failcnt(&mem->res);
2056 else
2057 res_counter_reset_failcnt(&mem->memsw);
2058 break;
2059 }
2060 return 0;
2061 }
2062
2063
2064 /* For read statistics */
2065 enum {
2066 MCS_CACHE,
2067 MCS_RSS,
2068 MCS_PGPGIN,
2069 MCS_PGPGOUT,
2070 MCS_INACTIVE_ANON,
2071 MCS_ACTIVE_ANON,
2072 MCS_INACTIVE_FILE,
2073 MCS_ACTIVE_FILE,
2074 MCS_UNEVICTABLE,
2075 NR_MCS_STAT,
2076 };
2077
2078 struct mcs_total_stat {
2079 s64 stat[NR_MCS_STAT];
2080 };
2081
2082 struct {
2083 char *local_name;
2084 char *total_name;
2085 } memcg_stat_strings[NR_MCS_STAT] = {
2086 {"cache", "total_cache"},
2087 {"rss", "total_rss"},
2088 {"pgpgin", "total_pgpgin"},
2089 {"pgpgout", "total_pgpgout"},
2090 {"inactive_anon", "total_inactive_anon"},
2091 {"active_anon", "total_active_anon"},
2092 {"inactive_file", "total_inactive_file"},
2093 {"active_file", "total_active_file"},
2094 {"unevictable", "total_unevictable"}
2095 };
2096
2097
2098 static int mem_cgroup_get_local_stat(struct mem_cgroup *mem, void *data)
2099 {
2100 struct mcs_total_stat *s = data;
2101 s64 val;
2102
2103 /* per cpu stat */
2104 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_CACHE);
2105 s->stat[MCS_CACHE] += val * PAGE_SIZE;
2106 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
2107 s->stat[MCS_RSS] += val * PAGE_SIZE;
2108 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGIN_COUNT);
2109 s->stat[MCS_PGPGIN] += val;
2110 val = mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_PGPGOUT_COUNT);
2111 s->stat[MCS_PGPGOUT] += val;
2112
2113 /* per zone stat */
2114 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
2115 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
2116 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
2117 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
2118 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
2119 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
2120 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
2121 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
2122 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
2123 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
2124 return 0;
2125 }
2126
2127 static void
2128 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
2129 {
2130 mem_cgroup_walk_tree(mem, s, mem_cgroup_get_local_stat);
2131 }
2132
2133 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
2134 struct cgroup_map_cb *cb)
2135 {
2136 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
2137 struct mcs_total_stat mystat;
2138 int i;
2139
2140 memset(&mystat, 0, sizeof(mystat));
2141 mem_cgroup_get_local_stat(mem_cont, &mystat);
2142
2143 for (i = 0; i < NR_MCS_STAT; i++)
2144 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
2145
2146 /* Hierarchical information */
2147 {
2148 unsigned long long limit, memsw_limit;
2149 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
2150 cb->fill(cb, "hierarchical_memory_limit", limit);
2151 if (do_swap_account)
2152 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
2153 }
2154
2155 memset(&mystat, 0, sizeof(mystat));
2156 mem_cgroup_get_total_stat(mem_cont, &mystat);
2157 for (i = 0; i < NR_MCS_STAT; i++)
2158 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
2159
2160
2161 #ifdef CONFIG_DEBUG_VM
2162 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
2163
2164 {
2165 int nid, zid;
2166 struct mem_cgroup_per_zone *mz;
2167 unsigned long recent_rotated[2] = {0, 0};
2168 unsigned long recent_scanned[2] = {0, 0};
2169
2170 for_each_online_node(nid)
2171 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2172 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
2173
2174 recent_rotated[0] +=
2175 mz->reclaim_stat.recent_rotated[0];
2176 recent_rotated[1] +=
2177 mz->reclaim_stat.recent_rotated[1];
2178 recent_scanned[0] +=
2179 mz->reclaim_stat.recent_scanned[0];
2180 recent_scanned[1] +=
2181 mz->reclaim_stat.recent_scanned[1];
2182 }
2183 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
2184 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
2185 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
2186 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
2187 }
2188 #endif
2189
2190 return 0;
2191 }
2192
2193 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
2194 {
2195 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2196
2197 return get_swappiness(memcg);
2198 }
2199
2200 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
2201 u64 val)
2202 {
2203 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2204 struct mem_cgroup *parent;
2205
2206 if (val > 100)
2207 return -EINVAL;
2208
2209 if (cgrp->parent == NULL)
2210 return -EINVAL;
2211
2212 parent = mem_cgroup_from_cont(cgrp->parent);
2213
2214 cgroup_lock();
2215
2216 /* If under hierarchy, only empty-root can set this value */
2217 if ((parent->use_hierarchy) ||
2218 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
2219 cgroup_unlock();
2220 return -EINVAL;
2221 }
2222
2223 spin_lock(&memcg->reclaim_param_lock);
2224 memcg->swappiness = val;
2225 spin_unlock(&memcg->reclaim_param_lock);
2226
2227 cgroup_unlock();
2228
2229 return 0;
2230 }
2231
2232
2233 static struct cftype mem_cgroup_files[] = {
2234 {
2235 .name = "usage_in_bytes",
2236 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2237 .read_u64 = mem_cgroup_read,
2238 },
2239 {
2240 .name = "max_usage_in_bytes",
2241 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
2242 .trigger = mem_cgroup_reset,
2243 .read_u64 = mem_cgroup_read,
2244 },
2245 {
2246 .name = "limit_in_bytes",
2247 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
2248 .write_string = mem_cgroup_write,
2249 .read_u64 = mem_cgroup_read,
2250 },
2251 {
2252 .name = "failcnt",
2253 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
2254 .trigger = mem_cgroup_reset,
2255 .read_u64 = mem_cgroup_read,
2256 },
2257 {
2258 .name = "stat",
2259 .read_map = mem_control_stat_show,
2260 },
2261 {
2262 .name = "force_empty",
2263 .trigger = mem_cgroup_force_empty_write,
2264 },
2265 {
2266 .name = "use_hierarchy",
2267 .write_u64 = mem_cgroup_hierarchy_write,
2268 .read_u64 = mem_cgroup_hierarchy_read,
2269 },
2270 {
2271 .name = "swappiness",
2272 .read_u64 = mem_cgroup_swappiness_read,
2273 .write_u64 = mem_cgroup_swappiness_write,
2274 },
2275 };
2276
2277 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2278 static struct cftype memsw_cgroup_files[] = {
2279 {
2280 .name = "memsw.usage_in_bytes",
2281 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
2282 .read_u64 = mem_cgroup_read,
2283 },
2284 {
2285 .name = "memsw.max_usage_in_bytes",
2286 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
2287 .trigger = mem_cgroup_reset,
2288 .read_u64 = mem_cgroup_read,
2289 },
2290 {
2291 .name = "memsw.limit_in_bytes",
2292 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
2293 .write_string = mem_cgroup_write,
2294 .read_u64 = mem_cgroup_read,
2295 },
2296 {
2297 .name = "memsw.failcnt",
2298 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
2299 .trigger = mem_cgroup_reset,
2300 .read_u64 = mem_cgroup_read,
2301 },
2302 };
2303
2304 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2305 {
2306 if (!do_swap_account)
2307 return 0;
2308 return cgroup_add_files(cont, ss, memsw_cgroup_files,
2309 ARRAY_SIZE(memsw_cgroup_files));
2310 };
2311 #else
2312 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
2313 {
2314 return 0;
2315 }
2316 #endif
2317
2318 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2319 {
2320 struct mem_cgroup_per_node *pn;
2321 struct mem_cgroup_per_zone *mz;
2322 enum lru_list l;
2323 int zone, tmp = node;
2324 /*
2325 * This routine is called against possible nodes.
2326 * But it's BUG to call kmalloc() against offline node.
2327 *
2328 * TODO: this routine can waste much memory for nodes which will
2329 * never be onlined. It's better to use memory hotplug callback
2330 * function.
2331 */
2332 if (!node_state(node, N_NORMAL_MEMORY))
2333 tmp = -1;
2334 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
2335 if (!pn)
2336 return 1;
2337
2338 mem->info.nodeinfo[node] = pn;
2339 memset(pn, 0, sizeof(*pn));
2340
2341 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
2342 mz = &pn->zoneinfo[zone];
2343 for_each_lru(l)
2344 INIT_LIST_HEAD(&mz->lists[l]);
2345 }
2346 return 0;
2347 }
2348
2349 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
2350 {
2351 kfree(mem->info.nodeinfo[node]);
2352 }
2353
2354 static int mem_cgroup_size(void)
2355 {
2356 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
2357 return sizeof(struct mem_cgroup) + cpustat_size;
2358 }
2359
2360 static struct mem_cgroup *mem_cgroup_alloc(void)
2361 {
2362 struct mem_cgroup *mem;
2363 int size = mem_cgroup_size();
2364
2365 if (size < PAGE_SIZE)
2366 mem = kmalloc(size, GFP_KERNEL);
2367 else
2368 mem = vmalloc(size);
2369
2370 if (mem)
2371 memset(mem, 0, size);
2372 return mem;
2373 }
2374
2375 /*
2376 * At destroying mem_cgroup, references from swap_cgroup can remain.
2377 * (scanning all at force_empty is too costly...)
2378 *
2379 * Instead of clearing all references at force_empty, we remember
2380 * the number of reference from swap_cgroup and free mem_cgroup when
2381 * it goes down to 0.
2382 *
2383 * Removal of cgroup itself succeeds regardless of refs from swap.
2384 */
2385
2386 static void __mem_cgroup_free(struct mem_cgroup *mem)
2387 {
2388 int node;
2389
2390 free_css_id(&mem_cgroup_subsys, &mem->css);
2391
2392 for_each_node_state(node, N_POSSIBLE)
2393 free_mem_cgroup_per_zone_info(mem, node);
2394
2395 if (mem_cgroup_size() < PAGE_SIZE)
2396 kfree(mem);
2397 else
2398 vfree(mem);
2399 }
2400
2401 static void mem_cgroup_get(struct mem_cgroup *mem)
2402 {
2403 atomic_inc(&mem->refcnt);
2404 }
2405
2406 static void mem_cgroup_put(struct mem_cgroup *mem)
2407 {
2408 if (atomic_dec_and_test(&mem->refcnt)) {
2409 struct mem_cgroup *parent = parent_mem_cgroup(mem);
2410 __mem_cgroup_free(mem);
2411 if (parent)
2412 mem_cgroup_put(parent);
2413 }
2414 }
2415
2416 /*
2417 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
2418 */
2419 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
2420 {
2421 if (!mem->res.parent)
2422 return NULL;
2423 return mem_cgroup_from_res_counter(mem->res.parent, res);
2424 }
2425
2426 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2427 static void __init enable_swap_cgroup(void)
2428 {
2429 if (!mem_cgroup_disabled() && really_do_swap_account)
2430 do_swap_account = 1;
2431 }
2432 #else
2433 static void __init enable_swap_cgroup(void)
2434 {
2435 }
2436 #endif
2437
2438 static struct cgroup_subsys_state * __ref
2439 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
2440 {
2441 struct mem_cgroup *mem, *parent;
2442 long error = -ENOMEM;
2443 int node;
2444
2445 mem = mem_cgroup_alloc();
2446 if (!mem)
2447 return ERR_PTR(error);
2448
2449 for_each_node_state(node, N_POSSIBLE)
2450 if (alloc_mem_cgroup_per_zone_info(mem, node))
2451 goto free_out;
2452 /* root ? */
2453 if (cont->parent == NULL) {
2454 enable_swap_cgroup();
2455 parent = NULL;
2456 } else {
2457 parent = mem_cgroup_from_cont(cont->parent);
2458 mem->use_hierarchy = parent->use_hierarchy;
2459 }
2460
2461 if (parent && parent->use_hierarchy) {
2462 res_counter_init(&mem->res, &parent->res);
2463 res_counter_init(&mem->memsw, &parent->memsw);
2464 /*
2465 * We increment refcnt of the parent to ensure that we can
2466 * safely access it on res_counter_charge/uncharge.
2467 * This refcnt will be decremented when freeing this
2468 * mem_cgroup(see mem_cgroup_put).
2469 */
2470 mem_cgroup_get(parent);
2471 } else {
2472 res_counter_init(&mem->res, NULL);
2473 res_counter_init(&mem->memsw, NULL);
2474 }
2475 mem->last_scanned_child = 0;
2476 spin_lock_init(&mem->reclaim_param_lock);
2477
2478 if (parent)
2479 mem->swappiness = get_swappiness(parent);
2480 atomic_set(&mem->refcnt, 1);
2481 return &mem->css;
2482 free_out:
2483 __mem_cgroup_free(mem);
2484 return ERR_PTR(error);
2485 }
2486
2487 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
2488 struct cgroup *cont)
2489 {
2490 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2491
2492 return mem_cgroup_force_empty(mem, false);
2493 }
2494
2495 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
2496 struct cgroup *cont)
2497 {
2498 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
2499
2500 mem_cgroup_put(mem);
2501 }
2502
2503 static int mem_cgroup_populate(struct cgroup_subsys *ss,
2504 struct cgroup *cont)
2505 {
2506 int ret;
2507
2508 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
2509 ARRAY_SIZE(mem_cgroup_files));
2510
2511 if (!ret)
2512 ret = register_memsw_files(cont, ss);
2513 return ret;
2514 }
2515
2516 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
2517 struct cgroup *cont,
2518 struct cgroup *old_cont,
2519 struct task_struct *p)
2520 {
2521 mutex_lock(&memcg_tasklist);
2522 /*
2523 * FIXME: It's better to move charges of this process from old
2524 * memcg to new memcg. But it's just on TODO-List now.
2525 */
2526 mutex_unlock(&memcg_tasklist);
2527 }
2528
2529 struct cgroup_subsys mem_cgroup_subsys = {
2530 .name = "memory",
2531 .subsys_id = mem_cgroup_subsys_id,
2532 .create = mem_cgroup_create,
2533 .pre_destroy = mem_cgroup_pre_destroy,
2534 .destroy = mem_cgroup_destroy,
2535 .populate = mem_cgroup_populate,
2536 .attach = mem_cgroup_move_task,
2537 .early_init = 0,
2538 .use_id = 1,
2539 };
2540
2541 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2542
2543 static int __init disable_swap_account(char *s)
2544 {
2545 really_do_swap_account = 0;
2546 return 1;
2547 }
2548 __setup("noswapaccount", disable_swap_account);
2549 #endif