]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - mm/memcontrol.c
memcg: implement mem_cgroup_css_from_page()
[mirror_ubuntu-kernels.git] / mm / memcontrol.c
1 /* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
34 #include <linux/page_counter.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cgroup.h>
37 #include <linux/mm.h>
38 #include <linux/hugetlb.h>
39 #include <linux/pagemap.h>
40 #include <linux/smp.h>
41 #include <linux/page-flags.h>
42 #include <linux/backing-dev.h>
43 #include <linux/bit_spinlock.h>
44 #include <linux/rcupdate.h>
45 #include <linux/limits.h>
46 #include <linux/export.h>
47 #include <linux/mutex.h>
48 #include <linux/rbtree.h>
49 #include <linux/slab.h>
50 #include <linux/swap.h>
51 #include <linux/swapops.h>
52 #include <linux/spinlock.h>
53 #include <linux/eventfd.h>
54 #include <linux/poll.h>
55 #include <linux/sort.h>
56 #include <linux/fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/vmpressure.h>
59 #include <linux/mm_inline.h>
60 #include <linux/swap_cgroup.h>
61 #include <linux/cpu.h>
62 #include <linux/oom.h>
63 #include <linux/lockdep.h>
64 #include <linux/file.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include <net/tcp_memcontrol.h>
69 #include "slab.h"
70
71 #include <asm/uaccess.h>
72
73 #include <trace/events/vmscan.h>
74
75 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76 EXPORT_SYMBOL(memory_cgrp_subsys);
77
78 #define MEM_CGROUP_RECLAIM_RETRIES 5
79 static struct mem_cgroup *root_mem_cgroup __read_mostly;
80 struct cgroup_subsys_state *mem_cgroup_root_css __read_mostly;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 int do_swap_account __read_mostly;
85 #else
86 #define do_swap_account 0
87 #endif
88
89 static const char * const mem_cgroup_stat_names[] = {
90 "cache",
91 "rss",
92 "rss_huge",
93 "mapped_file",
94 "dirty",
95 "writeback",
96 "swap",
97 };
98
99 static const char * const mem_cgroup_events_names[] = {
100 "pgpgin",
101 "pgpgout",
102 "pgfault",
103 "pgmajfault",
104 };
105
106 static const char * const mem_cgroup_lru_names[] = {
107 "inactive_anon",
108 "active_anon",
109 "inactive_file",
110 "active_file",
111 "unevictable",
112 };
113
114 /*
115 * Per memcg event counter is incremented at every pagein/pageout. With THP,
116 * it will be incremated by the number of pages. This counter is used for
117 * for trigger some periodic events. This is straightforward and better
118 * than using jiffies etc. to handle periodic memcg event.
119 */
120 enum mem_cgroup_events_target {
121 MEM_CGROUP_TARGET_THRESH,
122 MEM_CGROUP_TARGET_SOFTLIMIT,
123 MEM_CGROUP_TARGET_NUMAINFO,
124 MEM_CGROUP_NTARGETS,
125 };
126 #define THRESHOLDS_EVENTS_TARGET 128
127 #define SOFTLIMIT_EVENTS_TARGET 1024
128 #define NUMAINFO_EVENTS_TARGET 1024
129
130 struct mem_cgroup_stat_cpu {
131 long count[MEM_CGROUP_STAT_NSTATS];
132 unsigned long events[MEMCG_NR_EVENTS];
133 unsigned long nr_page_events;
134 unsigned long targets[MEM_CGROUP_NTARGETS];
135 };
136
137 struct reclaim_iter {
138 struct mem_cgroup *position;
139 /* scan generation, increased every round-trip */
140 unsigned int generation;
141 };
142
143 /*
144 * per-zone information in memory controller.
145 */
146 struct mem_cgroup_per_zone {
147 struct lruvec lruvec;
148 unsigned long lru_size[NR_LRU_LISTS];
149
150 struct reclaim_iter iter[DEF_PRIORITY + 1];
151
152 struct rb_node tree_node; /* RB tree node */
153 unsigned long usage_in_excess;/* Set to the value by which */
154 /* the soft limit is exceeded*/
155 bool on_tree;
156 struct mem_cgroup *memcg; /* Back pointer, we cannot */
157 /* use container_of */
158 };
159
160 struct mem_cgroup_per_node {
161 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
162 };
163
164 /*
165 * Cgroups above their limits are maintained in a RB-Tree, independent of
166 * their hierarchy representation
167 */
168
169 struct mem_cgroup_tree_per_zone {
170 struct rb_root rb_root;
171 spinlock_t lock;
172 };
173
174 struct mem_cgroup_tree_per_node {
175 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
176 };
177
178 struct mem_cgroup_tree {
179 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
180 };
181
182 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
183
184 struct mem_cgroup_threshold {
185 struct eventfd_ctx *eventfd;
186 unsigned long threshold;
187 };
188
189 /* For threshold */
190 struct mem_cgroup_threshold_ary {
191 /* An array index points to threshold just below or equal to usage. */
192 int current_threshold;
193 /* Size of entries[] */
194 unsigned int size;
195 /* Array of thresholds */
196 struct mem_cgroup_threshold entries[0];
197 };
198
199 struct mem_cgroup_thresholds {
200 /* Primary thresholds array */
201 struct mem_cgroup_threshold_ary *primary;
202 /*
203 * Spare threshold array.
204 * This is needed to make mem_cgroup_unregister_event() "never fail".
205 * It must be able to store at least primary->size - 1 entries.
206 */
207 struct mem_cgroup_threshold_ary *spare;
208 };
209
210 /* for OOM */
211 struct mem_cgroup_eventfd_list {
212 struct list_head list;
213 struct eventfd_ctx *eventfd;
214 };
215
216 /*
217 * cgroup_event represents events which userspace want to receive.
218 */
219 struct mem_cgroup_event {
220 /*
221 * memcg which the event belongs to.
222 */
223 struct mem_cgroup *memcg;
224 /*
225 * eventfd to signal userspace about the event.
226 */
227 struct eventfd_ctx *eventfd;
228 /*
229 * Each of these stored in a list by the cgroup.
230 */
231 struct list_head list;
232 /*
233 * register_event() callback will be used to add new userspace
234 * waiter for changes related to this event. Use eventfd_signal()
235 * on eventfd to send notification to userspace.
236 */
237 int (*register_event)(struct mem_cgroup *memcg,
238 struct eventfd_ctx *eventfd, const char *args);
239 /*
240 * unregister_event() callback will be called when userspace closes
241 * the eventfd or on cgroup removing. This callback must be set,
242 * if you want provide notification functionality.
243 */
244 void (*unregister_event)(struct mem_cgroup *memcg,
245 struct eventfd_ctx *eventfd);
246 /*
247 * All fields below needed to unregister event when
248 * userspace closes eventfd.
249 */
250 poll_table pt;
251 wait_queue_head_t *wqh;
252 wait_queue_t wait;
253 struct work_struct remove;
254 };
255
256 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
257 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
258
259 /*
260 * The memory controller data structure. The memory controller controls both
261 * page cache and RSS per cgroup. We would eventually like to provide
262 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
263 * to help the administrator determine what knobs to tune.
264 */
265 struct mem_cgroup {
266 struct cgroup_subsys_state css;
267
268 /* Accounted resources */
269 struct page_counter memory;
270 struct page_counter memsw;
271 struct page_counter kmem;
272
273 /* Normal memory consumption range */
274 unsigned long low;
275 unsigned long high;
276
277 unsigned long soft_limit;
278
279 /* vmpressure notifications */
280 struct vmpressure vmpressure;
281
282 /* css_online() has been completed */
283 int initialized;
284
285 /*
286 * Should the accounting and control be hierarchical, per subtree?
287 */
288 bool use_hierarchy;
289
290 bool oom_lock;
291 atomic_t under_oom;
292 atomic_t oom_wakeups;
293
294 int swappiness;
295 /* OOM-Killer disable */
296 int oom_kill_disable;
297
298 /* protect arrays of thresholds */
299 struct mutex thresholds_lock;
300
301 /* thresholds for memory usage. RCU-protected */
302 struct mem_cgroup_thresholds thresholds;
303
304 /* thresholds for mem+swap usage. RCU-protected */
305 struct mem_cgroup_thresholds memsw_thresholds;
306
307 /* For oom notifier event fd */
308 struct list_head oom_notify;
309
310 /*
311 * Should we move charges of a task when a task is moved into this
312 * mem_cgroup ? And what type of charges should we move ?
313 */
314 unsigned long move_charge_at_immigrate;
315 /*
316 * set > 0 if pages under this cgroup are moving to other cgroup.
317 */
318 atomic_t moving_account;
319 /* taken only while moving_account > 0 */
320 spinlock_t move_lock;
321 struct task_struct *move_lock_task;
322 unsigned long move_lock_flags;
323 /*
324 * percpu counter.
325 */
326 struct mem_cgroup_stat_cpu __percpu *stat;
327 /*
328 * used when a cpu is offlined or other synchronizations
329 * See mem_cgroup_read_stat().
330 */
331 struct mem_cgroup_stat_cpu nocpu_base;
332 spinlock_t pcp_counter_lock;
333
334 #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
335 struct cg_proto tcp_mem;
336 #endif
337 #if defined(CONFIG_MEMCG_KMEM)
338 /* Index in the kmem_cache->memcg_params.memcg_caches array */
339 int kmemcg_id;
340 bool kmem_acct_activated;
341 bool kmem_acct_active;
342 #endif
343
344 int last_scanned_node;
345 #if MAX_NUMNODES > 1
346 nodemask_t scan_nodes;
347 atomic_t numainfo_events;
348 atomic_t numainfo_updating;
349 #endif
350
351 /* List of events which userspace want to receive */
352 struct list_head event_list;
353 spinlock_t event_list_lock;
354
355 struct mem_cgroup_per_node *nodeinfo[0];
356 /* WARNING: nodeinfo must be the last member here */
357 };
358
359 #ifdef CONFIG_MEMCG_KMEM
360 bool memcg_kmem_is_active(struct mem_cgroup *memcg)
361 {
362 return memcg->kmem_acct_active;
363 }
364 #endif
365
366 /* Stuffs for move charges at task migration. */
367 /*
368 * Types of charges to be moved.
369 */
370 #define MOVE_ANON 0x1U
371 #define MOVE_FILE 0x2U
372 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
373
374 /* "mc" and its members are protected by cgroup_mutex */
375 static struct move_charge_struct {
376 spinlock_t lock; /* for from, to */
377 struct mem_cgroup *from;
378 struct mem_cgroup *to;
379 unsigned long flags;
380 unsigned long precharge;
381 unsigned long moved_charge;
382 unsigned long moved_swap;
383 struct task_struct *moving_task; /* a task moving charges */
384 wait_queue_head_t waitq; /* a waitq for other context */
385 } mc = {
386 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
387 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
388 };
389
390 /*
391 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
392 * limit reclaim to prevent infinite loops, if they ever occur.
393 */
394 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
395 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
396
397 enum charge_type {
398 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
399 MEM_CGROUP_CHARGE_TYPE_ANON,
400 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
401 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
402 NR_CHARGE_TYPE,
403 };
404
405 /* for encoding cft->private value on file */
406 enum res_type {
407 _MEM,
408 _MEMSWAP,
409 _OOM_TYPE,
410 _KMEM,
411 };
412
413 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
414 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
415 #define MEMFILE_ATTR(val) ((val) & 0xffff)
416 /* Used for OOM nofiier */
417 #define OOM_CONTROL (0)
418
419 /*
420 * The memcg_create_mutex will be held whenever a new cgroup is created.
421 * As a consequence, any change that needs to protect against new child cgroups
422 * appearing has to hold it as well.
423 */
424 static DEFINE_MUTEX(memcg_create_mutex);
425
426 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
427 {
428 return s ? container_of(s, struct mem_cgroup, css) : NULL;
429 }
430
431 /* Some nice accessors for the vmpressure. */
432 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
433 {
434 if (!memcg)
435 memcg = root_mem_cgroup;
436 return &memcg->vmpressure;
437 }
438
439 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
440 {
441 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
442 }
443
444 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
445 {
446 return (memcg == root_mem_cgroup);
447 }
448
449 /*
450 * We restrict the id in the range of [1, 65535], so it can fit into
451 * an unsigned short.
452 */
453 #define MEM_CGROUP_ID_MAX USHRT_MAX
454
455 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
456 {
457 return memcg->css.id;
458 }
459
460 /*
461 * A helper function to get mem_cgroup from ID. must be called under
462 * rcu_read_lock(). The caller is responsible for calling
463 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
464 * refcnt from swap can be called against removed memcg.)
465 */
466 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
467 {
468 struct cgroup_subsys_state *css;
469
470 css = css_from_id(id, &memory_cgrp_subsys);
471 return mem_cgroup_from_css(css);
472 }
473
474 /* Writing them here to avoid exposing memcg's inner layout */
475 #if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
476
477 void sock_update_memcg(struct sock *sk)
478 {
479 if (mem_cgroup_sockets_enabled) {
480 struct mem_cgroup *memcg;
481 struct cg_proto *cg_proto;
482
483 BUG_ON(!sk->sk_prot->proto_cgroup);
484
485 /* Socket cloning can throw us here with sk_cgrp already
486 * filled. It won't however, necessarily happen from
487 * process context. So the test for root memcg given
488 * the current task's memcg won't help us in this case.
489 *
490 * Respecting the original socket's memcg is a better
491 * decision in this case.
492 */
493 if (sk->sk_cgrp) {
494 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
495 css_get(&sk->sk_cgrp->memcg->css);
496 return;
497 }
498
499 rcu_read_lock();
500 memcg = mem_cgroup_from_task(current);
501 cg_proto = sk->sk_prot->proto_cgroup(memcg);
502 if (!mem_cgroup_is_root(memcg) &&
503 memcg_proto_active(cg_proto) &&
504 css_tryget_online(&memcg->css)) {
505 sk->sk_cgrp = cg_proto;
506 }
507 rcu_read_unlock();
508 }
509 }
510 EXPORT_SYMBOL(sock_update_memcg);
511
512 void sock_release_memcg(struct sock *sk)
513 {
514 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
515 struct mem_cgroup *memcg;
516 WARN_ON(!sk->sk_cgrp->memcg);
517 memcg = sk->sk_cgrp->memcg;
518 css_put(&sk->sk_cgrp->memcg->css);
519 }
520 }
521
522 struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
523 {
524 if (!memcg || mem_cgroup_is_root(memcg))
525 return NULL;
526
527 return &memcg->tcp_mem;
528 }
529 EXPORT_SYMBOL(tcp_proto_cgroup);
530
531 #endif
532
533 #ifdef CONFIG_MEMCG_KMEM
534 /*
535 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
536 * The main reason for not using cgroup id for this:
537 * this works better in sparse environments, where we have a lot of memcgs,
538 * but only a few kmem-limited. Or also, if we have, for instance, 200
539 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
540 * 200 entry array for that.
541 *
542 * The current size of the caches array is stored in memcg_nr_cache_ids. It
543 * will double each time we have to increase it.
544 */
545 static DEFINE_IDA(memcg_cache_ida);
546 int memcg_nr_cache_ids;
547
548 /* Protects memcg_nr_cache_ids */
549 static DECLARE_RWSEM(memcg_cache_ids_sem);
550
551 void memcg_get_cache_ids(void)
552 {
553 down_read(&memcg_cache_ids_sem);
554 }
555
556 void memcg_put_cache_ids(void)
557 {
558 up_read(&memcg_cache_ids_sem);
559 }
560
561 /*
562 * MIN_SIZE is different than 1, because we would like to avoid going through
563 * the alloc/free process all the time. In a small machine, 4 kmem-limited
564 * cgroups is a reasonable guess. In the future, it could be a parameter or
565 * tunable, but that is strictly not necessary.
566 *
567 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
568 * this constant directly from cgroup, but it is understandable that this is
569 * better kept as an internal representation in cgroup.c. In any case, the
570 * cgrp_id space is not getting any smaller, and we don't have to necessarily
571 * increase ours as well if it increases.
572 */
573 #define MEMCG_CACHES_MIN_SIZE 4
574 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
575
576 /*
577 * A lot of the calls to the cache allocation functions are expected to be
578 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
579 * conditional to this static branch, we'll have to allow modules that does
580 * kmem_cache_alloc and the such to see this symbol as well
581 */
582 struct static_key memcg_kmem_enabled_key;
583 EXPORT_SYMBOL(memcg_kmem_enabled_key);
584
585 #endif /* CONFIG_MEMCG_KMEM */
586
587 static struct mem_cgroup_per_zone *
588 mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
589 {
590 int nid = zone_to_nid(zone);
591 int zid = zone_idx(zone);
592
593 return &memcg->nodeinfo[nid]->zoneinfo[zid];
594 }
595
596 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
597 {
598 return &memcg->css;
599 }
600
601 /**
602 * mem_cgroup_css_from_page - css of the memcg associated with a page
603 * @page: page of interest
604 *
605 * If memcg is bound to the default hierarchy, css of the memcg associated
606 * with @page is returned. The returned css remains associated with @page
607 * until it is released.
608 *
609 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
610 * is returned.
611 *
612 * XXX: The above description of behavior on the default hierarchy isn't
613 * strictly true yet as replace_page_cache_page() can modify the
614 * association before @page is released even on the default hierarchy;
615 * however, the current and planned usages don't mix the the two functions
616 * and replace_page_cache_page() will soon be updated to make the invariant
617 * actually true.
618 */
619 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
620 {
621 struct mem_cgroup *memcg;
622
623 rcu_read_lock();
624
625 memcg = page->mem_cgroup;
626
627 if (!memcg || !cgroup_on_dfl(memcg->css.cgroup))
628 memcg = root_mem_cgroup;
629
630 rcu_read_unlock();
631 return &memcg->css;
632 }
633
634 static struct mem_cgroup_per_zone *
635 mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
636 {
637 int nid = page_to_nid(page);
638 int zid = page_zonenum(page);
639
640 return &memcg->nodeinfo[nid]->zoneinfo[zid];
641 }
642
643 static struct mem_cgroup_tree_per_zone *
644 soft_limit_tree_node_zone(int nid, int zid)
645 {
646 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
647 }
648
649 static struct mem_cgroup_tree_per_zone *
650 soft_limit_tree_from_page(struct page *page)
651 {
652 int nid = page_to_nid(page);
653 int zid = page_zonenum(page);
654
655 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
656 }
657
658 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
659 struct mem_cgroup_tree_per_zone *mctz,
660 unsigned long new_usage_in_excess)
661 {
662 struct rb_node **p = &mctz->rb_root.rb_node;
663 struct rb_node *parent = NULL;
664 struct mem_cgroup_per_zone *mz_node;
665
666 if (mz->on_tree)
667 return;
668
669 mz->usage_in_excess = new_usage_in_excess;
670 if (!mz->usage_in_excess)
671 return;
672 while (*p) {
673 parent = *p;
674 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
675 tree_node);
676 if (mz->usage_in_excess < mz_node->usage_in_excess)
677 p = &(*p)->rb_left;
678 /*
679 * We can't avoid mem cgroups that are over their soft
680 * limit by the same amount
681 */
682 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
683 p = &(*p)->rb_right;
684 }
685 rb_link_node(&mz->tree_node, parent, p);
686 rb_insert_color(&mz->tree_node, &mctz->rb_root);
687 mz->on_tree = true;
688 }
689
690 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
691 struct mem_cgroup_tree_per_zone *mctz)
692 {
693 if (!mz->on_tree)
694 return;
695 rb_erase(&mz->tree_node, &mctz->rb_root);
696 mz->on_tree = false;
697 }
698
699 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
700 struct mem_cgroup_tree_per_zone *mctz)
701 {
702 unsigned long flags;
703
704 spin_lock_irqsave(&mctz->lock, flags);
705 __mem_cgroup_remove_exceeded(mz, mctz);
706 spin_unlock_irqrestore(&mctz->lock, flags);
707 }
708
709 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
710 {
711 unsigned long nr_pages = page_counter_read(&memcg->memory);
712 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
713 unsigned long excess = 0;
714
715 if (nr_pages > soft_limit)
716 excess = nr_pages - soft_limit;
717
718 return excess;
719 }
720
721 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
722 {
723 unsigned long excess;
724 struct mem_cgroup_per_zone *mz;
725 struct mem_cgroup_tree_per_zone *mctz;
726
727 mctz = soft_limit_tree_from_page(page);
728 /*
729 * Necessary to update all ancestors when hierarchy is used.
730 * because their event counter is not touched.
731 */
732 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
733 mz = mem_cgroup_page_zoneinfo(memcg, page);
734 excess = soft_limit_excess(memcg);
735 /*
736 * We have to update the tree if mz is on RB-tree or
737 * mem is over its softlimit.
738 */
739 if (excess || mz->on_tree) {
740 unsigned long flags;
741
742 spin_lock_irqsave(&mctz->lock, flags);
743 /* if on-tree, remove it */
744 if (mz->on_tree)
745 __mem_cgroup_remove_exceeded(mz, mctz);
746 /*
747 * Insert again. mz->usage_in_excess will be updated.
748 * If excess is 0, no tree ops.
749 */
750 __mem_cgroup_insert_exceeded(mz, mctz, excess);
751 spin_unlock_irqrestore(&mctz->lock, flags);
752 }
753 }
754 }
755
756 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
757 {
758 struct mem_cgroup_tree_per_zone *mctz;
759 struct mem_cgroup_per_zone *mz;
760 int nid, zid;
761
762 for_each_node(nid) {
763 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
764 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
765 mctz = soft_limit_tree_node_zone(nid, zid);
766 mem_cgroup_remove_exceeded(mz, mctz);
767 }
768 }
769 }
770
771 static struct mem_cgroup_per_zone *
772 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
773 {
774 struct rb_node *rightmost = NULL;
775 struct mem_cgroup_per_zone *mz;
776
777 retry:
778 mz = NULL;
779 rightmost = rb_last(&mctz->rb_root);
780 if (!rightmost)
781 goto done; /* Nothing to reclaim from */
782
783 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
784 /*
785 * Remove the node now but someone else can add it back,
786 * we will to add it back at the end of reclaim to its correct
787 * position in the tree.
788 */
789 __mem_cgroup_remove_exceeded(mz, mctz);
790 if (!soft_limit_excess(mz->memcg) ||
791 !css_tryget_online(&mz->memcg->css))
792 goto retry;
793 done:
794 return mz;
795 }
796
797 static struct mem_cgroup_per_zone *
798 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
799 {
800 struct mem_cgroup_per_zone *mz;
801
802 spin_lock_irq(&mctz->lock);
803 mz = __mem_cgroup_largest_soft_limit_node(mctz);
804 spin_unlock_irq(&mctz->lock);
805 return mz;
806 }
807
808 /*
809 * Implementation Note: reading percpu statistics for memcg.
810 *
811 * Both of vmstat[] and percpu_counter has threshold and do periodic
812 * synchronization to implement "quick" read. There are trade-off between
813 * reading cost and precision of value. Then, we may have a chance to implement
814 * a periodic synchronizion of counter in memcg's counter.
815 *
816 * But this _read() function is used for user interface now. The user accounts
817 * memory usage by memory cgroup and he _always_ requires exact value because
818 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
819 * have to visit all online cpus and make sum. So, for now, unnecessary
820 * synchronization is not implemented. (just implemented for cpu hotplug)
821 *
822 * If there are kernel internal actions which can make use of some not-exact
823 * value, and reading all cpu value can be performance bottleneck in some
824 * common workload, threashold and synchonization as vmstat[] should be
825 * implemented.
826 */
827 static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
828 enum mem_cgroup_stat_index idx)
829 {
830 long val = 0;
831 int cpu;
832
833 get_online_cpus();
834 for_each_online_cpu(cpu)
835 val += per_cpu(memcg->stat->count[idx], cpu);
836 #ifdef CONFIG_HOTPLUG_CPU
837 spin_lock(&memcg->pcp_counter_lock);
838 val += memcg->nocpu_base.count[idx];
839 spin_unlock(&memcg->pcp_counter_lock);
840 #endif
841 put_online_cpus();
842 return val;
843 }
844
845 static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
846 enum mem_cgroup_events_index idx)
847 {
848 unsigned long val = 0;
849 int cpu;
850
851 get_online_cpus();
852 for_each_online_cpu(cpu)
853 val += per_cpu(memcg->stat->events[idx], cpu);
854 #ifdef CONFIG_HOTPLUG_CPU
855 spin_lock(&memcg->pcp_counter_lock);
856 val += memcg->nocpu_base.events[idx];
857 spin_unlock(&memcg->pcp_counter_lock);
858 #endif
859 put_online_cpus();
860 return val;
861 }
862
863 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
864 struct page *page,
865 int nr_pages)
866 {
867 /*
868 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
869 * counted as CACHE even if it's on ANON LRU.
870 */
871 if (PageAnon(page))
872 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
873 nr_pages);
874 else
875 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
876 nr_pages);
877
878 if (PageTransHuge(page))
879 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
880 nr_pages);
881
882 /* pagein of a big page is an event. So, ignore page size */
883 if (nr_pages > 0)
884 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
885 else {
886 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
887 nr_pages = -nr_pages; /* for event */
888 }
889
890 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
891 }
892
893 unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
894 {
895 struct mem_cgroup_per_zone *mz;
896
897 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
898 return mz->lru_size[lru];
899 }
900
901 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
902 int nid,
903 unsigned int lru_mask)
904 {
905 unsigned long nr = 0;
906 int zid;
907
908 VM_BUG_ON((unsigned)nid >= nr_node_ids);
909
910 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
911 struct mem_cgroup_per_zone *mz;
912 enum lru_list lru;
913
914 for_each_lru(lru) {
915 if (!(BIT(lru) & lru_mask))
916 continue;
917 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
918 nr += mz->lru_size[lru];
919 }
920 }
921 return nr;
922 }
923
924 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
925 unsigned int lru_mask)
926 {
927 unsigned long nr = 0;
928 int nid;
929
930 for_each_node_state(nid, N_MEMORY)
931 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
932 return nr;
933 }
934
935 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
936 enum mem_cgroup_events_target target)
937 {
938 unsigned long val, next;
939
940 val = __this_cpu_read(memcg->stat->nr_page_events);
941 next = __this_cpu_read(memcg->stat->targets[target]);
942 /* from time_after() in jiffies.h */
943 if ((long)next - (long)val < 0) {
944 switch (target) {
945 case MEM_CGROUP_TARGET_THRESH:
946 next = val + THRESHOLDS_EVENTS_TARGET;
947 break;
948 case MEM_CGROUP_TARGET_SOFTLIMIT:
949 next = val + SOFTLIMIT_EVENTS_TARGET;
950 break;
951 case MEM_CGROUP_TARGET_NUMAINFO:
952 next = val + NUMAINFO_EVENTS_TARGET;
953 break;
954 default:
955 break;
956 }
957 __this_cpu_write(memcg->stat->targets[target], next);
958 return true;
959 }
960 return false;
961 }
962
963 /*
964 * Check events in order.
965 *
966 */
967 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
968 {
969 /* threshold event is triggered in finer grain than soft limit */
970 if (unlikely(mem_cgroup_event_ratelimit(memcg,
971 MEM_CGROUP_TARGET_THRESH))) {
972 bool do_softlimit;
973 bool do_numainfo __maybe_unused;
974
975 do_softlimit = mem_cgroup_event_ratelimit(memcg,
976 MEM_CGROUP_TARGET_SOFTLIMIT);
977 #if MAX_NUMNODES > 1
978 do_numainfo = mem_cgroup_event_ratelimit(memcg,
979 MEM_CGROUP_TARGET_NUMAINFO);
980 #endif
981 mem_cgroup_threshold(memcg);
982 if (unlikely(do_softlimit))
983 mem_cgroup_update_tree(memcg, page);
984 #if MAX_NUMNODES > 1
985 if (unlikely(do_numainfo))
986 atomic_inc(&memcg->numainfo_events);
987 #endif
988 }
989 }
990
991 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
992 {
993 /*
994 * mm_update_next_owner() may clear mm->owner to NULL
995 * if it races with swapoff, page migration, etc.
996 * So this can be called with p == NULL.
997 */
998 if (unlikely(!p))
999 return NULL;
1000
1001 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1002 }
1003
1004 static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1005 {
1006 struct mem_cgroup *memcg = NULL;
1007
1008 rcu_read_lock();
1009 do {
1010 /*
1011 * Page cache insertions can happen withou an
1012 * actual mm context, e.g. during disk probing
1013 * on boot, loopback IO, acct() writes etc.
1014 */
1015 if (unlikely(!mm))
1016 memcg = root_mem_cgroup;
1017 else {
1018 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1019 if (unlikely(!memcg))
1020 memcg = root_mem_cgroup;
1021 }
1022 } while (!css_tryget_online(&memcg->css));
1023 rcu_read_unlock();
1024 return memcg;
1025 }
1026
1027 /**
1028 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1029 * @root: hierarchy root
1030 * @prev: previously returned memcg, NULL on first invocation
1031 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1032 *
1033 * Returns references to children of the hierarchy below @root, or
1034 * @root itself, or %NULL after a full round-trip.
1035 *
1036 * Caller must pass the return value in @prev on subsequent
1037 * invocations for reference counting, or use mem_cgroup_iter_break()
1038 * to cancel a hierarchy walk before the round-trip is complete.
1039 *
1040 * Reclaimers can specify a zone and a priority level in @reclaim to
1041 * divide up the memcgs in the hierarchy among all concurrent
1042 * reclaimers operating on the same zone and priority.
1043 */
1044 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1045 struct mem_cgroup *prev,
1046 struct mem_cgroup_reclaim_cookie *reclaim)
1047 {
1048 struct reclaim_iter *uninitialized_var(iter);
1049 struct cgroup_subsys_state *css = NULL;
1050 struct mem_cgroup *memcg = NULL;
1051 struct mem_cgroup *pos = NULL;
1052
1053 if (mem_cgroup_disabled())
1054 return NULL;
1055
1056 if (!root)
1057 root = root_mem_cgroup;
1058
1059 if (prev && !reclaim)
1060 pos = prev;
1061
1062 if (!root->use_hierarchy && root != root_mem_cgroup) {
1063 if (prev)
1064 goto out;
1065 return root;
1066 }
1067
1068 rcu_read_lock();
1069
1070 if (reclaim) {
1071 struct mem_cgroup_per_zone *mz;
1072
1073 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1074 iter = &mz->iter[reclaim->priority];
1075
1076 if (prev && reclaim->generation != iter->generation)
1077 goto out_unlock;
1078
1079 do {
1080 pos = READ_ONCE(iter->position);
1081 /*
1082 * A racing update may change the position and
1083 * put the last reference, hence css_tryget(),
1084 * or retry to see the updated position.
1085 */
1086 } while (pos && !css_tryget(&pos->css));
1087 }
1088
1089 if (pos)
1090 css = &pos->css;
1091
1092 for (;;) {
1093 css = css_next_descendant_pre(css, &root->css);
1094 if (!css) {
1095 /*
1096 * Reclaimers share the hierarchy walk, and a
1097 * new one might jump in right at the end of
1098 * the hierarchy - make sure they see at least
1099 * one group and restart from the beginning.
1100 */
1101 if (!prev)
1102 continue;
1103 break;
1104 }
1105
1106 /*
1107 * Verify the css and acquire a reference. The root
1108 * is provided by the caller, so we know it's alive
1109 * and kicking, and don't take an extra reference.
1110 */
1111 memcg = mem_cgroup_from_css(css);
1112
1113 if (css == &root->css)
1114 break;
1115
1116 if (css_tryget(css)) {
1117 /*
1118 * Make sure the memcg is initialized:
1119 * mem_cgroup_css_online() orders the the
1120 * initialization against setting the flag.
1121 */
1122 if (smp_load_acquire(&memcg->initialized))
1123 break;
1124
1125 css_put(css);
1126 }
1127
1128 memcg = NULL;
1129 }
1130
1131 if (reclaim) {
1132 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1133 if (memcg)
1134 css_get(&memcg->css);
1135 if (pos)
1136 css_put(&pos->css);
1137 }
1138
1139 /*
1140 * pairs with css_tryget when dereferencing iter->position
1141 * above.
1142 */
1143 if (pos)
1144 css_put(&pos->css);
1145
1146 if (!memcg)
1147 iter->generation++;
1148 else if (!prev)
1149 reclaim->generation = iter->generation;
1150 }
1151
1152 out_unlock:
1153 rcu_read_unlock();
1154 out:
1155 if (prev && prev != root)
1156 css_put(&prev->css);
1157
1158 return memcg;
1159 }
1160
1161 /**
1162 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1163 * @root: hierarchy root
1164 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1165 */
1166 void mem_cgroup_iter_break(struct mem_cgroup *root,
1167 struct mem_cgroup *prev)
1168 {
1169 if (!root)
1170 root = root_mem_cgroup;
1171 if (prev && prev != root)
1172 css_put(&prev->css);
1173 }
1174
1175 /*
1176 * Iteration constructs for visiting all cgroups (under a tree). If
1177 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1178 * be used for reference counting.
1179 */
1180 #define for_each_mem_cgroup_tree(iter, root) \
1181 for (iter = mem_cgroup_iter(root, NULL, NULL); \
1182 iter != NULL; \
1183 iter = mem_cgroup_iter(root, iter, NULL))
1184
1185 #define for_each_mem_cgroup(iter) \
1186 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
1187 iter != NULL; \
1188 iter = mem_cgroup_iter(NULL, iter, NULL))
1189
1190 void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1191 {
1192 struct mem_cgroup *memcg;
1193
1194 rcu_read_lock();
1195 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1196 if (unlikely(!memcg))
1197 goto out;
1198
1199 switch (idx) {
1200 case PGFAULT:
1201 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1202 break;
1203 case PGMAJFAULT:
1204 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1205 break;
1206 default:
1207 BUG();
1208 }
1209 out:
1210 rcu_read_unlock();
1211 }
1212 EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1213
1214 /**
1215 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1216 * @zone: zone of the wanted lruvec
1217 * @memcg: memcg of the wanted lruvec
1218 *
1219 * Returns the lru list vector holding pages for the given @zone and
1220 * @mem. This can be the global zone lruvec, if the memory controller
1221 * is disabled.
1222 */
1223 struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1224 struct mem_cgroup *memcg)
1225 {
1226 struct mem_cgroup_per_zone *mz;
1227 struct lruvec *lruvec;
1228
1229 if (mem_cgroup_disabled()) {
1230 lruvec = &zone->lruvec;
1231 goto out;
1232 }
1233
1234 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
1235 lruvec = &mz->lruvec;
1236 out:
1237 /*
1238 * Since a node can be onlined after the mem_cgroup was created,
1239 * we have to be prepared to initialize lruvec->zone here;
1240 * and if offlined then reonlined, we need to reinitialize it.
1241 */
1242 if (unlikely(lruvec->zone != zone))
1243 lruvec->zone = zone;
1244 return lruvec;
1245 }
1246
1247 /**
1248 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1249 * @page: the page
1250 * @zone: zone of the page
1251 *
1252 * This function is only safe when following the LRU page isolation
1253 * and putback protocol: the LRU lock must be held, and the page must
1254 * either be PageLRU() or the caller must have isolated/allocated it.
1255 */
1256 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
1257 {
1258 struct mem_cgroup_per_zone *mz;
1259 struct mem_cgroup *memcg;
1260 struct lruvec *lruvec;
1261
1262 if (mem_cgroup_disabled()) {
1263 lruvec = &zone->lruvec;
1264 goto out;
1265 }
1266
1267 memcg = page->mem_cgroup;
1268 /*
1269 * Swapcache readahead pages are added to the LRU - and
1270 * possibly migrated - before they are charged.
1271 */
1272 if (!memcg)
1273 memcg = root_mem_cgroup;
1274
1275 mz = mem_cgroup_page_zoneinfo(memcg, page);
1276 lruvec = &mz->lruvec;
1277 out:
1278 /*
1279 * Since a node can be onlined after the mem_cgroup was created,
1280 * we have to be prepared to initialize lruvec->zone here;
1281 * and if offlined then reonlined, we need to reinitialize it.
1282 */
1283 if (unlikely(lruvec->zone != zone))
1284 lruvec->zone = zone;
1285 return lruvec;
1286 }
1287
1288 /**
1289 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1290 * @lruvec: mem_cgroup per zone lru vector
1291 * @lru: index of lru list the page is sitting on
1292 * @nr_pages: positive when adding or negative when removing
1293 *
1294 * This function must be called when a page is added to or removed from an
1295 * lru list.
1296 */
1297 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1298 int nr_pages)
1299 {
1300 struct mem_cgroup_per_zone *mz;
1301 unsigned long *lru_size;
1302
1303 if (mem_cgroup_disabled())
1304 return;
1305
1306 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1307 lru_size = mz->lru_size + lru;
1308 *lru_size += nr_pages;
1309 VM_BUG_ON((long)(*lru_size) < 0);
1310 }
1311
1312 bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
1313 {
1314 if (root == memcg)
1315 return true;
1316 if (!root->use_hierarchy)
1317 return false;
1318 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
1319 }
1320
1321 bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
1322 {
1323 struct mem_cgroup *task_memcg;
1324 struct task_struct *p;
1325 bool ret;
1326
1327 p = find_lock_task_mm(task);
1328 if (p) {
1329 task_memcg = get_mem_cgroup_from_mm(p->mm);
1330 task_unlock(p);
1331 } else {
1332 /*
1333 * All threads may have already detached their mm's, but the oom
1334 * killer still needs to detect if they have already been oom
1335 * killed to prevent needlessly killing additional tasks.
1336 */
1337 rcu_read_lock();
1338 task_memcg = mem_cgroup_from_task(task);
1339 css_get(&task_memcg->css);
1340 rcu_read_unlock();
1341 }
1342 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1343 css_put(&task_memcg->css);
1344 return ret;
1345 }
1346
1347 int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1348 {
1349 unsigned long inactive_ratio;
1350 unsigned long inactive;
1351 unsigned long active;
1352 unsigned long gb;
1353
1354 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1355 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1356
1357 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1358 if (gb)
1359 inactive_ratio = int_sqrt(10 * gb);
1360 else
1361 inactive_ratio = 1;
1362
1363 return inactive * inactive_ratio < active;
1364 }
1365
1366 bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1367 {
1368 struct mem_cgroup_per_zone *mz;
1369 struct mem_cgroup *memcg;
1370
1371 if (mem_cgroup_disabled())
1372 return true;
1373
1374 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1375 memcg = mz->memcg;
1376
1377 return !!(memcg->css.flags & CSS_ONLINE);
1378 }
1379
1380 #define mem_cgroup_from_counter(counter, member) \
1381 container_of(counter, struct mem_cgroup, member)
1382
1383 /**
1384 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1385 * @memcg: the memory cgroup
1386 *
1387 * Returns the maximum amount of memory @mem can be charged with, in
1388 * pages.
1389 */
1390 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1391 {
1392 unsigned long margin = 0;
1393 unsigned long count;
1394 unsigned long limit;
1395
1396 count = page_counter_read(&memcg->memory);
1397 limit = READ_ONCE(memcg->memory.limit);
1398 if (count < limit)
1399 margin = limit - count;
1400
1401 if (do_swap_account) {
1402 count = page_counter_read(&memcg->memsw);
1403 limit = READ_ONCE(memcg->memsw.limit);
1404 if (count <= limit)
1405 margin = min(margin, limit - count);
1406 }
1407
1408 return margin;
1409 }
1410
1411 int mem_cgroup_swappiness(struct mem_cgroup *memcg)
1412 {
1413 /* root ? */
1414 if (mem_cgroup_disabled() || !memcg->css.parent)
1415 return vm_swappiness;
1416
1417 return memcg->swappiness;
1418 }
1419
1420 /*
1421 * A routine for checking "mem" is under move_account() or not.
1422 *
1423 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1424 * moving cgroups. This is for waiting at high-memory pressure
1425 * caused by "move".
1426 */
1427 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1428 {
1429 struct mem_cgroup *from;
1430 struct mem_cgroup *to;
1431 bool ret = false;
1432 /*
1433 * Unlike task_move routines, we access mc.to, mc.from not under
1434 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1435 */
1436 spin_lock(&mc.lock);
1437 from = mc.from;
1438 to = mc.to;
1439 if (!from)
1440 goto unlock;
1441
1442 ret = mem_cgroup_is_descendant(from, memcg) ||
1443 mem_cgroup_is_descendant(to, memcg);
1444 unlock:
1445 spin_unlock(&mc.lock);
1446 return ret;
1447 }
1448
1449 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1450 {
1451 if (mc.moving_task && current != mc.moving_task) {
1452 if (mem_cgroup_under_move(memcg)) {
1453 DEFINE_WAIT(wait);
1454 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1455 /* moving charge context might have finished. */
1456 if (mc.moving_task)
1457 schedule();
1458 finish_wait(&mc.waitq, &wait);
1459 return true;
1460 }
1461 }
1462 return false;
1463 }
1464
1465 #define K(x) ((x) << (PAGE_SHIFT-10))
1466 /**
1467 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1468 * @memcg: The memory cgroup that went over limit
1469 * @p: Task that is going to be killed
1470 *
1471 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1472 * enabled
1473 */
1474 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1475 {
1476 /* oom_info_lock ensures that parallel ooms do not interleave */
1477 static DEFINE_MUTEX(oom_info_lock);
1478 struct mem_cgroup *iter;
1479 unsigned int i;
1480
1481 mutex_lock(&oom_info_lock);
1482 rcu_read_lock();
1483
1484 if (p) {
1485 pr_info("Task in ");
1486 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1487 pr_cont(" killed as a result of limit of ");
1488 } else {
1489 pr_info("Memory limit reached of cgroup ");
1490 }
1491
1492 pr_cont_cgroup_path(memcg->css.cgroup);
1493 pr_cont("\n");
1494
1495 rcu_read_unlock();
1496
1497 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1498 K((u64)page_counter_read(&memcg->memory)),
1499 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1500 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1501 K((u64)page_counter_read(&memcg->memsw)),
1502 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1503 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1504 K((u64)page_counter_read(&memcg->kmem)),
1505 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
1506
1507 for_each_mem_cgroup_tree(iter, memcg) {
1508 pr_info("Memory cgroup stats for ");
1509 pr_cont_cgroup_path(iter->css.cgroup);
1510 pr_cont(":");
1511
1512 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1513 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1514 continue;
1515 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1516 K(mem_cgroup_read_stat(iter, i)));
1517 }
1518
1519 for (i = 0; i < NR_LRU_LISTS; i++)
1520 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1521 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1522
1523 pr_cont("\n");
1524 }
1525 mutex_unlock(&oom_info_lock);
1526 }
1527
1528 /*
1529 * This function returns the number of memcg under hierarchy tree. Returns
1530 * 1(self count) if no children.
1531 */
1532 static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1533 {
1534 int num = 0;
1535 struct mem_cgroup *iter;
1536
1537 for_each_mem_cgroup_tree(iter, memcg)
1538 num++;
1539 return num;
1540 }
1541
1542 /*
1543 * Return the memory (and swap, if configured) limit for a memcg.
1544 */
1545 static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
1546 {
1547 unsigned long limit;
1548
1549 limit = memcg->memory.limit;
1550 if (mem_cgroup_swappiness(memcg)) {
1551 unsigned long memsw_limit;
1552
1553 memsw_limit = memcg->memsw.limit;
1554 limit = min(limit + total_swap_pages, memsw_limit);
1555 }
1556 return limit;
1557 }
1558
1559 static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1560 int order)
1561 {
1562 struct mem_cgroup *iter;
1563 unsigned long chosen_points = 0;
1564 unsigned long totalpages;
1565 unsigned int points = 0;
1566 struct task_struct *chosen = NULL;
1567
1568 /*
1569 * If current has a pending SIGKILL or is exiting, then automatically
1570 * select it. The goal is to allow it to allocate so that it may
1571 * quickly exit and free its memory.
1572 */
1573 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
1574 mark_tsk_oom_victim(current);
1575 return;
1576 }
1577
1578 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL, memcg);
1579 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
1580 for_each_mem_cgroup_tree(iter, memcg) {
1581 struct css_task_iter it;
1582 struct task_struct *task;
1583
1584 css_task_iter_start(&iter->css, &it);
1585 while ((task = css_task_iter_next(&it))) {
1586 switch (oom_scan_process_thread(task, totalpages, NULL,
1587 false)) {
1588 case OOM_SCAN_SELECT:
1589 if (chosen)
1590 put_task_struct(chosen);
1591 chosen = task;
1592 chosen_points = ULONG_MAX;
1593 get_task_struct(chosen);
1594 /* fall through */
1595 case OOM_SCAN_CONTINUE:
1596 continue;
1597 case OOM_SCAN_ABORT:
1598 css_task_iter_end(&it);
1599 mem_cgroup_iter_break(memcg, iter);
1600 if (chosen)
1601 put_task_struct(chosen);
1602 return;
1603 case OOM_SCAN_OK:
1604 break;
1605 };
1606 points = oom_badness(task, memcg, NULL, totalpages);
1607 if (!points || points < chosen_points)
1608 continue;
1609 /* Prefer thread group leaders for display purposes */
1610 if (points == chosen_points &&
1611 thread_group_leader(chosen))
1612 continue;
1613
1614 if (chosen)
1615 put_task_struct(chosen);
1616 chosen = task;
1617 chosen_points = points;
1618 get_task_struct(chosen);
1619 }
1620 css_task_iter_end(&it);
1621 }
1622
1623 if (!chosen)
1624 return;
1625 points = chosen_points * 1000 / totalpages;
1626 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1627 NULL, "Memory cgroup out of memory");
1628 }
1629
1630 #if MAX_NUMNODES > 1
1631
1632 /**
1633 * test_mem_cgroup_node_reclaimable
1634 * @memcg: the target memcg
1635 * @nid: the node ID to be checked.
1636 * @noswap : specify true here if the user wants flle only information.
1637 *
1638 * This function returns whether the specified memcg contains any
1639 * reclaimable pages on a node. Returns true if there are any reclaimable
1640 * pages in the node.
1641 */
1642 static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1643 int nid, bool noswap)
1644 {
1645 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1646 return true;
1647 if (noswap || !total_swap_pages)
1648 return false;
1649 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1650 return true;
1651 return false;
1652
1653 }
1654
1655 /*
1656 * Always updating the nodemask is not very good - even if we have an empty
1657 * list or the wrong list here, we can start from some node and traverse all
1658 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1659 *
1660 */
1661 static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1662 {
1663 int nid;
1664 /*
1665 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1666 * pagein/pageout changes since the last update.
1667 */
1668 if (!atomic_read(&memcg->numainfo_events))
1669 return;
1670 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1671 return;
1672
1673 /* make a nodemask where this memcg uses memory from */
1674 memcg->scan_nodes = node_states[N_MEMORY];
1675
1676 for_each_node_mask(nid, node_states[N_MEMORY]) {
1677
1678 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1679 node_clear(nid, memcg->scan_nodes);
1680 }
1681
1682 atomic_set(&memcg->numainfo_events, 0);
1683 atomic_set(&memcg->numainfo_updating, 0);
1684 }
1685
1686 /*
1687 * Selecting a node where we start reclaim from. Because what we need is just
1688 * reducing usage counter, start from anywhere is O,K. Considering
1689 * memory reclaim from current node, there are pros. and cons.
1690 *
1691 * Freeing memory from current node means freeing memory from a node which
1692 * we'll use or we've used. So, it may make LRU bad. And if several threads
1693 * hit limits, it will see a contention on a node. But freeing from remote
1694 * node means more costs for memory reclaim because of memory latency.
1695 *
1696 * Now, we use round-robin. Better algorithm is welcomed.
1697 */
1698 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1699 {
1700 int node;
1701
1702 mem_cgroup_may_update_nodemask(memcg);
1703 node = memcg->last_scanned_node;
1704
1705 node = next_node(node, memcg->scan_nodes);
1706 if (node == MAX_NUMNODES)
1707 node = first_node(memcg->scan_nodes);
1708 /*
1709 * We call this when we hit limit, not when pages are added to LRU.
1710 * No LRU may hold pages because all pages are UNEVICTABLE or
1711 * memcg is too small and all pages are not on LRU. In that case,
1712 * we use curret node.
1713 */
1714 if (unlikely(node == MAX_NUMNODES))
1715 node = numa_node_id();
1716
1717 memcg->last_scanned_node = node;
1718 return node;
1719 }
1720 #else
1721 int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1722 {
1723 return 0;
1724 }
1725 #endif
1726
1727 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1728 struct zone *zone,
1729 gfp_t gfp_mask,
1730 unsigned long *total_scanned)
1731 {
1732 struct mem_cgroup *victim = NULL;
1733 int total = 0;
1734 int loop = 0;
1735 unsigned long excess;
1736 unsigned long nr_scanned;
1737 struct mem_cgroup_reclaim_cookie reclaim = {
1738 .zone = zone,
1739 .priority = 0,
1740 };
1741
1742 excess = soft_limit_excess(root_memcg);
1743
1744 while (1) {
1745 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1746 if (!victim) {
1747 loop++;
1748 if (loop >= 2) {
1749 /*
1750 * If we have not been able to reclaim
1751 * anything, it might because there are
1752 * no reclaimable pages under this hierarchy
1753 */
1754 if (!total)
1755 break;
1756 /*
1757 * We want to do more targeted reclaim.
1758 * excess >> 2 is not to excessive so as to
1759 * reclaim too much, nor too less that we keep
1760 * coming back to reclaim from this cgroup
1761 */
1762 if (total >= (excess >> 2) ||
1763 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1764 break;
1765 }
1766 continue;
1767 }
1768 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1769 zone, &nr_scanned);
1770 *total_scanned += nr_scanned;
1771 if (!soft_limit_excess(root_memcg))
1772 break;
1773 }
1774 mem_cgroup_iter_break(root_memcg, victim);
1775 return total;
1776 }
1777
1778 #ifdef CONFIG_LOCKDEP
1779 static struct lockdep_map memcg_oom_lock_dep_map = {
1780 .name = "memcg_oom_lock",
1781 };
1782 #endif
1783
1784 static DEFINE_SPINLOCK(memcg_oom_lock);
1785
1786 /*
1787 * Check OOM-Killer is already running under our hierarchy.
1788 * If someone is running, return false.
1789 */
1790 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1791 {
1792 struct mem_cgroup *iter, *failed = NULL;
1793
1794 spin_lock(&memcg_oom_lock);
1795
1796 for_each_mem_cgroup_tree(iter, memcg) {
1797 if (iter->oom_lock) {
1798 /*
1799 * this subtree of our hierarchy is already locked
1800 * so we cannot give a lock.
1801 */
1802 failed = iter;
1803 mem_cgroup_iter_break(memcg, iter);
1804 break;
1805 } else
1806 iter->oom_lock = true;
1807 }
1808
1809 if (failed) {
1810 /*
1811 * OK, we failed to lock the whole subtree so we have
1812 * to clean up what we set up to the failing subtree
1813 */
1814 for_each_mem_cgroup_tree(iter, memcg) {
1815 if (iter == failed) {
1816 mem_cgroup_iter_break(memcg, iter);
1817 break;
1818 }
1819 iter->oom_lock = false;
1820 }
1821 } else
1822 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1823
1824 spin_unlock(&memcg_oom_lock);
1825
1826 return !failed;
1827 }
1828
1829 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1830 {
1831 struct mem_cgroup *iter;
1832
1833 spin_lock(&memcg_oom_lock);
1834 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
1835 for_each_mem_cgroup_tree(iter, memcg)
1836 iter->oom_lock = false;
1837 spin_unlock(&memcg_oom_lock);
1838 }
1839
1840 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1841 {
1842 struct mem_cgroup *iter;
1843
1844 for_each_mem_cgroup_tree(iter, memcg)
1845 atomic_inc(&iter->under_oom);
1846 }
1847
1848 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1849 {
1850 struct mem_cgroup *iter;
1851
1852 /*
1853 * When a new child is created while the hierarchy is under oom,
1854 * mem_cgroup_oom_lock() may not be called. We have to use
1855 * atomic_add_unless() here.
1856 */
1857 for_each_mem_cgroup_tree(iter, memcg)
1858 atomic_add_unless(&iter->under_oom, -1, 0);
1859 }
1860
1861 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1862
1863 struct oom_wait_info {
1864 struct mem_cgroup *memcg;
1865 wait_queue_t wait;
1866 };
1867
1868 static int memcg_oom_wake_function(wait_queue_t *wait,
1869 unsigned mode, int sync, void *arg)
1870 {
1871 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1872 struct mem_cgroup *oom_wait_memcg;
1873 struct oom_wait_info *oom_wait_info;
1874
1875 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1876 oom_wait_memcg = oom_wait_info->memcg;
1877
1878 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1879 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1880 return 0;
1881 return autoremove_wake_function(wait, mode, sync, arg);
1882 }
1883
1884 static void memcg_wakeup_oom(struct mem_cgroup *memcg)
1885 {
1886 atomic_inc(&memcg->oom_wakeups);
1887 /* for filtering, pass "memcg" as argument. */
1888 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1889 }
1890
1891 static void memcg_oom_recover(struct mem_cgroup *memcg)
1892 {
1893 if (memcg && atomic_read(&memcg->under_oom))
1894 memcg_wakeup_oom(memcg);
1895 }
1896
1897 static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1898 {
1899 if (!current->memcg_oom.may_oom)
1900 return;
1901 /*
1902 * We are in the middle of the charge context here, so we
1903 * don't want to block when potentially sitting on a callstack
1904 * that holds all kinds of filesystem and mm locks.
1905 *
1906 * Also, the caller may handle a failed allocation gracefully
1907 * (like optional page cache readahead) and so an OOM killer
1908 * invocation might not even be necessary.
1909 *
1910 * That's why we don't do anything here except remember the
1911 * OOM context and then deal with it at the end of the page
1912 * fault when the stack is unwound, the locks are released,
1913 * and when we know whether the fault was overall successful.
1914 */
1915 css_get(&memcg->css);
1916 current->memcg_oom.memcg = memcg;
1917 current->memcg_oom.gfp_mask = mask;
1918 current->memcg_oom.order = order;
1919 }
1920
1921 /**
1922 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1923 * @handle: actually kill/wait or just clean up the OOM state
1924 *
1925 * This has to be called at the end of a page fault if the memcg OOM
1926 * handler was enabled.
1927 *
1928 * Memcg supports userspace OOM handling where failed allocations must
1929 * sleep on a waitqueue until the userspace task resolves the
1930 * situation. Sleeping directly in the charge context with all kinds
1931 * of locks held is not a good idea, instead we remember an OOM state
1932 * in the task and mem_cgroup_oom_synchronize() has to be called at
1933 * the end of the page fault to complete the OOM handling.
1934 *
1935 * Returns %true if an ongoing memcg OOM situation was detected and
1936 * completed, %false otherwise.
1937 */
1938 bool mem_cgroup_oom_synchronize(bool handle)
1939 {
1940 struct mem_cgroup *memcg = current->memcg_oom.memcg;
1941 struct oom_wait_info owait;
1942 bool locked;
1943
1944 /* OOM is global, do not handle */
1945 if (!memcg)
1946 return false;
1947
1948 if (!handle || oom_killer_disabled)
1949 goto cleanup;
1950
1951 owait.memcg = memcg;
1952 owait.wait.flags = 0;
1953 owait.wait.func = memcg_oom_wake_function;
1954 owait.wait.private = current;
1955 INIT_LIST_HEAD(&owait.wait.task_list);
1956
1957 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1958 mem_cgroup_mark_under_oom(memcg);
1959
1960 locked = mem_cgroup_oom_trylock(memcg);
1961
1962 if (locked)
1963 mem_cgroup_oom_notify(memcg);
1964
1965 if (locked && !memcg->oom_kill_disable) {
1966 mem_cgroup_unmark_under_oom(memcg);
1967 finish_wait(&memcg_oom_waitq, &owait.wait);
1968 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1969 current->memcg_oom.order);
1970 } else {
1971 schedule();
1972 mem_cgroup_unmark_under_oom(memcg);
1973 finish_wait(&memcg_oom_waitq, &owait.wait);
1974 }
1975
1976 if (locked) {
1977 mem_cgroup_oom_unlock(memcg);
1978 /*
1979 * There is no guarantee that an OOM-lock contender
1980 * sees the wakeups triggered by the OOM kill
1981 * uncharges. Wake any sleepers explicitely.
1982 */
1983 memcg_oom_recover(memcg);
1984 }
1985 cleanup:
1986 current->memcg_oom.memcg = NULL;
1987 css_put(&memcg->css);
1988 return true;
1989 }
1990
1991 /**
1992 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1993 * @page: page that is going to change accounted state
1994 *
1995 * This function must mark the beginning of an accounted page state
1996 * change to prevent double accounting when the page is concurrently
1997 * being moved to another memcg:
1998 *
1999 * memcg = mem_cgroup_begin_page_stat(page);
2000 * if (TestClearPageState(page))
2001 * mem_cgroup_update_page_stat(memcg, state, -1);
2002 * mem_cgroup_end_page_stat(memcg);
2003 */
2004 struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
2005 {
2006 struct mem_cgroup *memcg;
2007 unsigned long flags;
2008
2009 /*
2010 * The RCU lock is held throughout the transaction. The fast
2011 * path can get away without acquiring the memcg->move_lock
2012 * because page moving starts with an RCU grace period.
2013 *
2014 * The RCU lock also protects the memcg from being freed when
2015 * the page state that is going to change is the only thing
2016 * preventing the page from being uncharged.
2017 * E.g. end-writeback clearing PageWriteback(), which allows
2018 * migration to go ahead and uncharge the page before the
2019 * account transaction might be complete.
2020 */
2021 rcu_read_lock();
2022
2023 if (mem_cgroup_disabled())
2024 return NULL;
2025 again:
2026 memcg = page->mem_cgroup;
2027 if (unlikely(!memcg))
2028 return NULL;
2029
2030 if (atomic_read(&memcg->moving_account) <= 0)
2031 return memcg;
2032
2033 spin_lock_irqsave(&memcg->move_lock, flags);
2034 if (memcg != page->mem_cgroup) {
2035 spin_unlock_irqrestore(&memcg->move_lock, flags);
2036 goto again;
2037 }
2038
2039 /*
2040 * When charge migration first begins, we can have locked and
2041 * unlocked page stat updates happening concurrently. Track
2042 * the task who has the lock for mem_cgroup_end_page_stat().
2043 */
2044 memcg->move_lock_task = current;
2045 memcg->move_lock_flags = flags;
2046
2047 return memcg;
2048 }
2049 EXPORT_SYMBOL(mem_cgroup_begin_page_stat);
2050
2051 /**
2052 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2053 * @memcg: the memcg that was accounted against
2054 */
2055 void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
2056 {
2057 if (memcg && memcg->move_lock_task == current) {
2058 unsigned long flags = memcg->move_lock_flags;
2059
2060 memcg->move_lock_task = NULL;
2061 memcg->move_lock_flags = 0;
2062
2063 spin_unlock_irqrestore(&memcg->move_lock, flags);
2064 }
2065
2066 rcu_read_unlock();
2067 }
2068 EXPORT_SYMBOL(mem_cgroup_end_page_stat);
2069
2070 /**
2071 * mem_cgroup_update_page_stat - update page state statistics
2072 * @memcg: memcg to account against
2073 * @idx: page state item to account
2074 * @val: number of pages (positive or negative)
2075 *
2076 * See mem_cgroup_begin_page_stat() for locking requirements.
2077 */
2078 void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
2079 enum mem_cgroup_stat_index idx, int val)
2080 {
2081 VM_BUG_ON(!rcu_read_lock_held());
2082
2083 if (memcg)
2084 this_cpu_add(memcg->stat->count[idx], val);
2085 }
2086
2087 /*
2088 * size of first charge trial. "32" comes from vmscan.c's magic value.
2089 * TODO: maybe necessary to use big numbers in big irons.
2090 */
2091 #define CHARGE_BATCH 32U
2092 struct memcg_stock_pcp {
2093 struct mem_cgroup *cached; /* this never be root cgroup */
2094 unsigned int nr_pages;
2095 struct work_struct work;
2096 unsigned long flags;
2097 #define FLUSHING_CACHED_CHARGE 0
2098 };
2099 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2100 static DEFINE_MUTEX(percpu_charge_mutex);
2101
2102 /**
2103 * consume_stock: Try to consume stocked charge on this cpu.
2104 * @memcg: memcg to consume from.
2105 * @nr_pages: how many pages to charge.
2106 *
2107 * The charges will only happen if @memcg matches the current cpu's memcg
2108 * stock, and at least @nr_pages are available in that stock. Failure to
2109 * service an allocation will refill the stock.
2110 *
2111 * returns true if successful, false otherwise.
2112 */
2113 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2114 {
2115 struct memcg_stock_pcp *stock;
2116 bool ret = false;
2117
2118 if (nr_pages > CHARGE_BATCH)
2119 return ret;
2120
2121 stock = &get_cpu_var(memcg_stock);
2122 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2123 stock->nr_pages -= nr_pages;
2124 ret = true;
2125 }
2126 put_cpu_var(memcg_stock);
2127 return ret;
2128 }
2129
2130 /*
2131 * Returns stocks cached in percpu and reset cached information.
2132 */
2133 static void drain_stock(struct memcg_stock_pcp *stock)
2134 {
2135 struct mem_cgroup *old = stock->cached;
2136
2137 if (stock->nr_pages) {
2138 page_counter_uncharge(&old->memory, stock->nr_pages);
2139 if (do_swap_account)
2140 page_counter_uncharge(&old->memsw, stock->nr_pages);
2141 css_put_many(&old->css, stock->nr_pages);
2142 stock->nr_pages = 0;
2143 }
2144 stock->cached = NULL;
2145 }
2146
2147 /*
2148 * This must be called under preempt disabled or must be called by
2149 * a thread which is pinned to local cpu.
2150 */
2151 static void drain_local_stock(struct work_struct *dummy)
2152 {
2153 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
2154 drain_stock(stock);
2155 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2156 }
2157
2158 /*
2159 * Cache charges(val) to local per_cpu area.
2160 * This will be consumed by consume_stock() function, later.
2161 */
2162 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2163 {
2164 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2165
2166 if (stock->cached != memcg) { /* reset if necessary */
2167 drain_stock(stock);
2168 stock->cached = memcg;
2169 }
2170 stock->nr_pages += nr_pages;
2171 put_cpu_var(memcg_stock);
2172 }
2173
2174 /*
2175 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2176 * of the hierarchy under it.
2177 */
2178 static void drain_all_stock(struct mem_cgroup *root_memcg)
2179 {
2180 int cpu, curcpu;
2181
2182 /* If someone's already draining, avoid adding running more workers. */
2183 if (!mutex_trylock(&percpu_charge_mutex))
2184 return;
2185 /* Notify other cpus that system-wide "drain" is running */
2186 get_online_cpus();
2187 curcpu = get_cpu();
2188 for_each_online_cpu(cpu) {
2189 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2190 struct mem_cgroup *memcg;
2191
2192 memcg = stock->cached;
2193 if (!memcg || !stock->nr_pages)
2194 continue;
2195 if (!mem_cgroup_is_descendant(memcg, root_memcg))
2196 continue;
2197 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2198 if (cpu == curcpu)
2199 drain_local_stock(&stock->work);
2200 else
2201 schedule_work_on(cpu, &stock->work);
2202 }
2203 }
2204 put_cpu();
2205 put_online_cpus();
2206 mutex_unlock(&percpu_charge_mutex);
2207 }
2208
2209 /*
2210 * This function drains percpu counter value from DEAD cpu and
2211 * move it to local cpu. Note that this function can be preempted.
2212 */
2213 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2214 {
2215 int i;
2216
2217 spin_lock(&memcg->pcp_counter_lock);
2218 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2219 long x = per_cpu(memcg->stat->count[i], cpu);
2220
2221 per_cpu(memcg->stat->count[i], cpu) = 0;
2222 memcg->nocpu_base.count[i] += x;
2223 }
2224 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2225 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2226
2227 per_cpu(memcg->stat->events[i], cpu) = 0;
2228 memcg->nocpu_base.events[i] += x;
2229 }
2230 spin_unlock(&memcg->pcp_counter_lock);
2231 }
2232
2233 static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2234 unsigned long action,
2235 void *hcpu)
2236 {
2237 int cpu = (unsigned long)hcpu;
2238 struct memcg_stock_pcp *stock;
2239 struct mem_cgroup *iter;
2240
2241 if (action == CPU_ONLINE)
2242 return NOTIFY_OK;
2243
2244 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2245 return NOTIFY_OK;
2246
2247 for_each_mem_cgroup(iter)
2248 mem_cgroup_drain_pcp_counter(iter, cpu);
2249
2250 stock = &per_cpu(memcg_stock, cpu);
2251 drain_stock(stock);
2252 return NOTIFY_OK;
2253 }
2254
2255 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2256 unsigned int nr_pages)
2257 {
2258 unsigned int batch = max(CHARGE_BATCH, nr_pages);
2259 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2260 struct mem_cgroup *mem_over_limit;
2261 struct page_counter *counter;
2262 unsigned long nr_reclaimed;
2263 bool may_swap = true;
2264 bool drained = false;
2265 int ret = 0;
2266
2267 if (mem_cgroup_is_root(memcg))
2268 goto done;
2269 retry:
2270 if (consume_stock(memcg, nr_pages))
2271 goto done;
2272
2273 if (!do_swap_account ||
2274 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2275 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
2276 goto done_restock;
2277 if (do_swap_account)
2278 page_counter_uncharge(&memcg->memsw, batch);
2279 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2280 } else {
2281 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2282 may_swap = false;
2283 }
2284
2285 if (batch > nr_pages) {
2286 batch = nr_pages;
2287 goto retry;
2288 }
2289
2290 /*
2291 * Unlike in global OOM situations, memcg is not in a physical
2292 * memory shortage. Allow dying and OOM-killed tasks to
2293 * bypass the last charges so that they can exit quickly and
2294 * free their memory.
2295 */
2296 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2297 fatal_signal_pending(current) ||
2298 current->flags & PF_EXITING))
2299 goto bypass;
2300
2301 if (unlikely(task_in_memcg_oom(current)))
2302 goto nomem;
2303
2304 if (!(gfp_mask & __GFP_WAIT))
2305 goto nomem;
2306
2307 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2308
2309 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2310 gfp_mask, may_swap);
2311
2312 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2313 goto retry;
2314
2315 if (!drained) {
2316 drain_all_stock(mem_over_limit);
2317 drained = true;
2318 goto retry;
2319 }
2320
2321 if (gfp_mask & __GFP_NORETRY)
2322 goto nomem;
2323 /*
2324 * Even though the limit is exceeded at this point, reclaim
2325 * may have been able to free some pages. Retry the charge
2326 * before killing the task.
2327 *
2328 * Only for regular pages, though: huge pages are rather
2329 * unlikely to succeed so close to the limit, and we fall back
2330 * to regular pages anyway in case of failure.
2331 */
2332 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2333 goto retry;
2334 /*
2335 * At task move, charge accounts can be doubly counted. So, it's
2336 * better to wait until the end of task_move if something is going on.
2337 */
2338 if (mem_cgroup_wait_acct_move(mem_over_limit))
2339 goto retry;
2340
2341 if (nr_retries--)
2342 goto retry;
2343
2344 if (gfp_mask & __GFP_NOFAIL)
2345 goto bypass;
2346
2347 if (fatal_signal_pending(current))
2348 goto bypass;
2349
2350 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2351
2352 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
2353 nomem:
2354 if (!(gfp_mask & __GFP_NOFAIL))
2355 return -ENOMEM;
2356 bypass:
2357 return -EINTR;
2358
2359 done_restock:
2360 css_get_many(&memcg->css, batch);
2361 if (batch > nr_pages)
2362 refill_stock(memcg, batch - nr_pages);
2363 /*
2364 * If the hierarchy is above the normal consumption range,
2365 * make the charging task trim their excess contribution.
2366 */
2367 do {
2368 if (page_counter_read(&memcg->memory) <= memcg->high)
2369 continue;
2370 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2371 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2372 } while ((memcg = parent_mem_cgroup(memcg)));
2373 done:
2374 return ret;
2375 }
2376
2377 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2378 {
2379 if (mem_cgroup_is_root(memcg))
2380 return;
2381
2382 page_counter_uncharge(&memcg->memory, nr_pages);
2383 if (do_swap_account)
2384 page_counter_uncharge(&memcg->memsw, nr_pages);
2385
2386 css_put_many(&memcg->css, nr_pages);
2387 }
2388
2389 /*
2390 * try_get_mem_cgroup_from_page - look up page's memcg association
2391 * @page: the page
2392 *
2393 * Look up, get a css reference, and return the memcg that owns @page.
2394 *
2395 * The page must be locked to prevent racing with swap-in and page
2396 * cache charges. If coming from an unlocked page table, the caller
2397 * must ensure the page is on the LRU or this can race with charging.
2398 */
2399 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2400 {
2401 struct mem_cgroup *memcg;
2402 unsigned short id;
2403 swp_entry_t ent;
2404
2405 VM_BUG_ON_PAGE(!PageLocked(page), page);
2406
2407 memcg = page->mem_cgroup;
2408 if (memcg) {
2409 if (!css_tryget_online(&memcg->css))
2410 memcg = NULL;
2411 } else if (PageSwapCache(page)) {
2412 ent.val = page_private(page);
2413 id = lookup_swap_cgroup_id(ent);
2414 rcu_read_lock();
2415 memcg = mem_cgroup_from_id(id);
2416 if (memcg && !css_tryget_online(&memcg->css))
2417 memcg = NULL;
2418 rcu_read_unlock();
2419 }
2420 return memcg;
2421 }
2422
2423 static void lock_page_lru(struct page *page, int *isolated)
2424 {
2425 struct zone *zone = page_zone(page);
2426
2427 spin_lock_irq(&zone->lru_lock);
2428 if (PageLRU(page)) {
2429 struct lruvec *lruvec;
2430
2431 lruvec = mem_cgroup_page_lruvec(page, zone);
2432 ClearPageLRU(page);
2433 del_page_from_lru_list(page, lruvec, page_lru(page));
2434 *isolated = 1;
2435 } else
2436 *isolated = 0;
2437 }
2438
2439 static void unlock_page_lru(struct page *page, int isolated)
2440 {
2441 struct zone *zone = page_zone(page);
2442
2443 if (isolated) {
2444 struct lruvec *lruvec;
2445
2446 lruvec = mem_cgroup_page_lruvec(page, zone);
2447 VM_BUG_ON_PAGE(PageLRU(page), page);
2448 SetPageLRU(page);
2449 add_page_to_lru_list(page, lruvec, page_lru(page));
2450 }
2451 spin_unlock_irq(&zone->lru_lock);
2452 }
2453
2454 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2455 bool lrucare)
2456 {
2457 int isolated;
2458
2459 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2460
2461 /*
2462 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2463 * may already be on some other mem_cgroup's LRU. Take care of it.
2464 */
2465 if (lrucare)
2466 lock_page_lru(page, &isolated);
2467
2468 /*
2469 * Nobody should be changing or seriously looking at
2470 * page->mem_cgroup at this point:
2471 *
2472 * - the page is uncharged
2473 *
2474 * - the page is off-LRU
2475 *
2476 * - an anonymous fault has exclusive page access, except for
2477 * a locked page table
2478 *
2479 * - a page cache insertion, a swapin fault, or a migration
2480 * have the page locked
2481 */
2482 page->mem_cgroup = memcg;
2483
2484 if (lrucare)
2485 unlock_page_lru(page, isolated);
2486 }
2487
2488 #ifdef CONFIG_MEMCG_KMEM
2489 int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2490 unsigned long nr_pages)
2491 {
2492 struct page_counter *counter;
2493 int ret = 0;
2494
2495 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2496 if (ret < 0)
2497 return ret;
2498
2499 ret = try_charge(memcg, gfp, nr_pages);
2500 if (ret == -EINTR) {
2501 /*
2502 * try_charge() chose to bypass to root due to OOM kill or
2503 * fatal signal. Since our only options are to either fail
2504 * the allocation or charge it to this cgroup, do it as a
2505 * temporary condition. But we can't fail. From a kmem/slab
2506 * perspective, the cache has already been selected, by
2507 * mem_cgroup_kmem_get_cache(), so it is too late to change
2508 * our minds.
2509 *
2510 * This condition will only trigger if the task entered
2511 * memcg_charge_kmem in a sane state, but was OOM-killed
2512 * during try_charge() above. Tasks that were already dying
2513 * when the allocation triggers should have been already
2514 * directed to the root cgroup in memcontrol.h
2515 */
2516 page_counter_charge(&memcg->memory, nr_pages);
2517 if (do_swap_account)
2518 page_counter_charge(&memcg->memsw, nr_pages);
2519 css_get_many(&memcg->css, nr_pages);
2520 ret = 0;
2521 } else if (ret)
2522 page_counter_uncharge(&memcg->kmem, nr_pages);
2523
2524 return ret;
2525 }
2526
2527 void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
2528 {
2529 page_counter_uncharge(&memcg->memory, nr_pages);
2530 if (do_swap_account)
2531 page_counter_uncharge(&memcg->memsw, nr_pages);
2532
2533 page_counter_uncharge(&memcg->kmem, nr_pages);
2534
2535 css_put_many(&memcg->css, nr_pages);
2536 }
2537
2538 /*
2539 * helper for acessing a memcg's index. It will be used as an index in the
2540 * child cache array in kmem_cache, and also to derive its name. This function
2541 * will return -1 when this is not a kmem-limited memcg.
2542 */
2543 int memcg_cache_id(struct mem_cgroup *memcg)
2544 {
2545 return memcg ? memcg->kmemcg_id : -1;
2546 }
2547
2548 static int memcg_alloc_cache_id(void)
2549 {
2550 int id, size;
2551 int err;
2552
2553 id = ida_simple_get(&memcg_cache_ida,
2554 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2555 if (id < 0)
2556 return id;
2557
2558 if (id < memcg_nr_cache_ids)
2559 return id;
2560
2561 /*
2562 * There's no space for the new id in memcg_caches arrays,
2563 * so we have to grow them.
2564 */
2565 down_write(&memcg_cache_ids_sem);
2566
2567 size = 2 * (id + 1);
2568 if (size < MEMCG_CACHES_MIN_SIZE)
2569 size = MEMCG_CACHES_MIN_SIZE;
2570 else if (size > MEMCG_CACHES_MAX_SIZE)
2571 size = MEMCG_CACHES_MAX_SIZE;
2572
2573 err = memcg_update_all_caches(size);
2574 if (!err)
2575 err = memcg_update_all_list_lrus(size);
2576 if (!err)
2577 memcg_nr_cache_ids = size;
2578
2579 up_write(&memcg_cache_ids_sem);
2580
2581 if (err) {
2582 ida_simple_remove(&memcg_cache_ida, id);
2583 return err;
2584 }
2585 return id;
2586 }
2587
2588 static void memcg_free_cache_id(int id)
2589 {
2590 ida_simple_remove(&memcg_cache_ida, id);
2591 }
2592
2593 struct memcg_kmem_cache_create_work {
2594 struct mem_cgroup *memcg;
2595 struct kmem_cache *cachep;
2596 struct work_struct work;
2597 };
2598
2599 static void memcg_kmem_cache_create_func(struct work_struct *w)
2600 {
2601 struct memcg_kmem_cache_create_work *cw =
2602 container_of(w, struct memcg_kmem_cache_create_work, work);
2603 struct mem_cgroup *memcg = cw->memcg;
2604 struct kmem_cache *cachep = cw->cachep;
2605
2606 memcg_create_kmem_cache(memcg, cachep);
2607
2608 css_put(&memcg->css);
2609 kfree(cw);
2610 }
2611
2612 /*
2613 * Enqueue the creation of a per-memcg kmem_cache.
2614 */
2615 static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2616 struct kmem_cache *cachep)
2617 {
2618 struct memcg_kmem_cache_create_work *cw;
2619
2620 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
2621 if (!cw)
2622 return;
2623
2624 css_get(&memcg->css);
2625
2626 cw->memcg = memcg;
2627 cw->cachep = cachep;
2628 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2629
2630 schedule_work(&cw->work);
2631 }
2632
2633 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2634 struct kmem_cache *cachep)
2635 {
2636 /*
2637 * We need to stop accounting when we kmalloc, because if the
2638 * corresponding kmalloc cache is not yet created, the first allocation
2639 * in __memcg_schedule_kmem_cache_create will recurse.
2640 *
2641 * However, it is better to enclose the whole function. Depending on
2642 * the debugging options enabled, INIT_WORK(), for instance, can
2643 * trigger an allocation. This too, will make us recurse. Because at
2644 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2645 * the safest choice is to do it like this, wrapping the whole function.
2646 */
2647 current->memcg_kmem_skip_account = 1;
2648 __memcg_schedule_kmem_cache_create(memcg, cachep);
2649 current->memcg_kmem_skip_account = 0;
2650 }
2651
2652 /*
2653 * Return the kmem_cache we're supposed to use for a slab allocation.
2654 * We try to use the current memcg's version of the cache.
2655 *
2656 * If the cache does not exist yet, if we are the first user of it,
2657 * we either create it immediately, if possible, or create it asynchronously
2658 * in a workqueue.
2659 * In the latter case, we will let the current allocation go through with
2660 * the original cache.
2661 *
2662 * Can't be called in interrupt context or from kernel threads.
2663 * This function needs to be called with rcu_read_lock() held.
2664 */
2665 struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
2666 {
2667 struct mem_cgroup *memcg;
2668 struct kmem_cache *memcg_cachep;
2669 int kmemcg_id;
2670
2671 VM_BUG_ON(!is_root_cache(cachep));
2672
2673 if (current->memcg_kmem_skip_account)
2674 return cachep;
2675
2676 memcg = get_mem_cgroup_from_mm(current->mm);
2677 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2678 if (kmemcg_id < 0)
2679 goto out;
2680
2681 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
2682 if (likely(memcg_cachep))
2683 return memcg_cachep;
2684
2685 /*
2686 * If we are in a safe context (can wait, and not in interrupt
2687 * context), we could be be predictable and return right away.
2688 * This would guarantee that the allocation being performed
2689 * already belongs in the new cache.
2690 *
2691 * However, there are some clashes that can arrive from locking.
2692 * For instance, because we acquire the slab_mutex while doing
2693 * memcg_create_kmem_cache, this means no further allocation
2694 * could happen with the slab_mutex held. So it's better to
2695 * defer everything.
2696 */
2697 memcg_schedule_kmem_cache_create(memcg, cachep);
2698 out:
2699 css_put(&memcg->css);
2700 return cachep;
2701 }
2702
2703 void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2704 {
2705 if (!is_root_cache(cachep))
2706 css_put(&cachep->memcg_params.memcg->css);
2707 }
2708
2709 /*
2710 * We need to verify if the allocation against current->mm->owner's memcg is
2711 * possible for the given order. But the page is not allocated yet, so we'll
2712 * need a further commit step to do the final arrangements.
2713 *
2714 * It is possible for the task to switch cgroups in this mean time, so at
2715 * commit time, we can't rely on task conversion any longer. We'll then use
2716 * the handle argument to return to the caller which cgroup we should commit
2717 * against. We could also return the memcg directly and avoid the pointer
2718 * passing, but a boolean return value gives better semantics considering
2719 * the compiled-out case as well.
2720 *
2721 * Returning true means the allocation is possible.
2722 */
2723 bool
2724 __memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2725 {
2726 struct mem_cgroup *memcg;
2727 int ret;
2728
2729 *_memcg = NULL;
2730
2731 memcg = get_mem_cgroup_from_mm(current->mm);
2732
2733 if (!memcg_kmem_is_active(memcg)) {
2734 css_put(&memcg->css);
2735 return true;
2736 }
2737
2738 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
2739 if (!ret)
2740 *_memcg = memcg;
2741
2742 css_put(&memcg->css);
2743 return (ret == 0);
2744 }
2745
2746 void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2747 int order)
2748 {
2749 VM_BUG_ON(mem_cgroup_is_root(memcg));
2750
2751 /* The page allocation failed. Revert */
2752 if (!page) {
2753 memcg_uncharge_kmem(memcg, 1 << order);
2754 return;
2755 }
2756 page->mem_cgroup = memcg;
2757 }
2758
2759 void __memcg_kmem_uncharge_pages(struct page *page, int order)
2760 {
2761 struct mem_cgroup *memcg = page->mem_cgroup;
2762
2763 if (!memcg)
2764 return;
2765
2766 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2767
2768 memcg_uncharge_kmem(memcg, 1 << order);
2769 page->mem_cgroup = NULL;
2770 }
2771
2772 struct mem_cgroup *__mem_cgroup_from_kmem(void *ptr)
2773 {
2774 struct mem_cgroup *memcg = NULL;
2775 struct kmem_cache *cachep;
2776 struct page *page;
2777
2778 page = virt_to_head_page(ptr);
2779 if (PageSlab(page)) {
2780 cachep = page->slab_cache;
2781 if (!is_root_cache(cachep))
2782 memcg = cachep->memcg_params.memcg;
2783 } else
2784 /* page allocated by alloc_kmem_pages */
2785 memcg = page->mem_cgroup;
2786
2787 return memcg;
2788 }
2789 #endif /* CONFIG_MEMCG_KMEM */
2790
2791 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2792
2793 /*
2794 * Because tail pages are not marked as "used", set it. We're under
2795 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2796 * charge/uncharge will be never happen and move_account() is done under
2797 * compound_lock(), so we don't have to take care of races.
2798 */
2799 void mem_cgroup_split_huge_fixup(struct page *head)
2800 {
2801 int i;
2802
2803 if (mem_cgroup_disabled())
2804 return;
2805
2806 for (i = 1; i < HPAGE_PMD_NR; i++)
2807 head[i].mem_cgroup = head->mem_cgroup;
2808
2809 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
2810 HPAGE_PMD_NR);
2811 }
2812 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2813
2814 #ifdef CONFIG_MEMCG_SWAP
2815 static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2816 bool charge)
2817 {
2818 int val = (charge) ? 1 : -1;
2819 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
2820 }
2821
2822 /**
2823 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2824 * @entry: swap entry to be moved
2825 * @from: mem_cgroup which the entry is moved from
2826 * @to: mem_cgroup which the entry is moved to
2827 *
2828 * It succeeds only when the swap_cgroup's record for this entry is the same
2829 * as the mem_cgroup's id of @from.
2830 *
2831 * Returns 0 on success, -EINVAL on failure.
2832 *
2833 * The caller must have charged to @to, IOW, called page_counter_charge() about
2834 * both res and memsw, and called css_get().
2835 */
2836 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2837 struct mem_cgroup *from, struct mem_cgroup *to)
2838 {
2839 unsigned short old_id, new_id;
2840
2841 old_id = mem_cgroup_id(from);
2842 new_id = mem_cgroup_id(to);
2843
2844 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2845 mem_cgroup_swap_statistics(from, false);
2846 mem_cgroup_swap_statistics(to, true);
2847 return 0;
2848 }
2849 return -EINVAL;
2850 }
2851 #else
2852 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2853 struct mem_cgroup *from, struct mem_cgroup *to)
2854 {
2855 return -EINVAL;
2856 }
2857 #endif
2858
2859 static DEFINE_MUTEX(memcg_limit_mutex);
2860
2861 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2862 unsigned long limit)
2863 {
2864 unsigned long curusage;
2865 unsigned long oldusage;
2866 bool enlarge = false;
2867 int retry_count;
2868 int ret;
2869
2870 /*
2871 * For keeping hierarchical_reclaim simple, how long we should retry
2872 * is depends on callers. We set our retry-count to be function
2873 * of # of children which we should visit in this loop.
2874 */
2875 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2876 mem_cgroup_count_children(memcg);
2877
2878 oldusage = page_counter_read(&memcg->memory);
2879
2880 do {
2881 if (signal_pending(current)) {
2882 ret = -EINTR;
2883 break;
2884 }
2885
2886 mutex_lock(&memcg_limit_mutex);
2887 if (limit > memcg->memsw.limit) {
2888 mutex_unlock(&memcg_limit_mutex);
2889 ret = -EINVAL;
2890 break;
2891 }
2892 if (limit > memcg->memory.limit)
2893 enlarge = true;
2894 ret = page_counter_limit(&memcg->memory, limit);
2895 mutex_unlock(&memcg_limit_mutex);
2896
2897 if (!ret)
2898 break;
2899
2900 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2901
2902 curusage = page_counter_read(&memcg->memory);
2903 /* Usage is reduced ? */
2904 if (curusage >= oldusage)
2905 retry_count--;
2906 else
2907 oldusage = curusage;
2908 } while (retry_count);
2909
2910 if (!ret && enlarge)
2911 memcg_oom_recover(memcg);
2912
2913 return ret;
2914 }
2915
2916 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
2917 unsigned long limit)
2918 {
2919 unsigned long curusage;
2920 unsigned long oldusage;
2921 bool enlarge = false;
2922 int retry_count;
2923 int ret;
2924
2925 /* see mem_cgroup_resize_res_limit */
2926 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2927 mem_cgroup_count_children(memcg);
2928
2929 oldusage = page_counter_read(&memcg->memsw);
2930
2931 do {
2932 if (signal_pending(current)) {
2933 ret = -EINTR;
2934 break;
2935 }
2936
2937 mutex_lock(&memcg_limit_mutex);
2938 if (limit < memcg->memory.limit) {
2939 mutex_unlock(&memcg_limit_mutex);
2940 ret = -EINVAL;
2941 break;
2942 }
2943 if (limit > memcg->memsw.limit)
2944 enlarge = true;
2945 ret = page_counter_limit(&memcg->memsw, limit);
2946 mutex_unlock(&memcg_limit_mutex);
2947
2948 if (!ret)
2949 break;
2950
2951 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2952
2953 curusage = page_counter_read(&memcg->memsw);
2954 /* Usage is reduced ? */
2955 if (curusage >= oldusage)
2956 retry_count--;
2957 else
2958 oldusage = curusage;
2959 } while (retry_count);
2960
2961 if (!ret && enlarge)
2962 memcg_oom_recover(memcg);
2963
2964 return ret;
2965 }
2966
2967 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2968 gfp_t gfp_mask,
2969 unsigned long *total_scanned)
2970 {
2971 unsigned long nr_reclaimed = 0;
2972 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2973 unsigned long reclaimed;
2974 int loop = 0;
2975 struct mem_cgroup_tree_per_zone *mctz;
2976 unsigned long excess;
2977 unsigned long nr_scanned;
2978
2979 if (order > 0)
2980 return 0;
2981
2982 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2983 /*
2984 * This loop can run a while, specially if mem_cgroup's continuously
2985 * keep exceeding their soft limit and putting the system under
2986 * pressure
2987 */
2988 do {
2989 if (next_mz)
2990 mz = next_mz;
2991 else
2992 mz = mem_cgroup_largest_soft_limit_node(mctz);
2993 if (!mz)
2994 break;
2995
2996 nr_scanned = 0;
2997 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2998 gfp_mask, &nr_scanned);
2999 nr_reclaimed += reclaimed;
3000 *total_scanned += nr_scanned;
3001 spin_lock_irq(&mctz->lock);
3002 __mem_cgroup_remove_exceeded(mz, mctz);
3003
3004 /*
3005 * If we failed to reclaim anything from this memory cgroup
3006 * it is time to move on to the next cgroup
3007 */
3008 next_mz = NULL;
3009 if (!reclaimed)
3010 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3011
3012 excess = soft_limit_excess(mz->memcg);
3013 /*
3014 * One school of thought says that we should not add
3015 * back the node to the tree if reclaim returns 0.
3016 * But our reclaim could return 0, simply because due
3017 * to priority we are exposing a smaller subset of
3018 * memory to reclaim from. Consider this as a longer
3019 * term TODO.
3020 */
3021 /* If excess == 0, no tree ops */
3022 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3023 spin_unlock_irq(&mctz->lock);
3024 css_put(&mz->memcg->css);
3025 loop++;
3026 /*
3027 * Could not reclaim anything and there are no more
3028 * mem cgroups to try or we seem to be looping without
3029 * reclaiming anything.
3030 */
3031 if (!nr_reclaimed &&
3032 (next_mz == NULL ||
3033 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3034 break;
3035 } while (!nr_reclaimed);
3036 if (next_mz)
3037 css_put(&next_mz->memcg->css);
3038 return nr_reclaimed;
3039 }
3040
3041 /*
3042 * Test whether @memcg has children, dead or alive. Note that this
3043 * function doesn't care whether @memcg has use_hierarchy enabled and
3044 * returns %true if there are child csses according to the cgroup
3045 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3046 */
3047 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3048 {
3049 bool ret;
3050
3051 /*
3052 * The lock does not prevent addition or deletion of children, but
3053 * it prevents a new child from being initialized based on this
3054 * parent in css_online(), so it's enough to decide whether
3055 * hierarchically inherited attributes can still be changed or not.
3056 */
3057 lockdep_assert_held(&memcg_create_mutex);
3058
3059 rcu_read_lock();
3060 ret = css_next_child(NULL, &memcg->css);
3061 rcu_read_unlock();
3062 return ret;
3063 }
3064
3065 /*
3066 * Reclaims as many pages from the given memcg as possible and moves
3067 * the rest to the parent.
3068 *
3069 * Caller is responsible for holding css reference for memcg.
3070 */
3071 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3072 {
3073 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3074
3075 /* we call try-to-free pages for make this cgroup empty */
3076 lru_add_drain_all();
3077 /* try to free all pages in this cgroup */
3078 while (nr_retries && page_counter_read(&memcg->memory)) {
3079 int progress;
3080
3081 if (signal_pending(current))
3082 return -EINTR;
3083
3084 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3085 GFP_KERNEL, true);
3086 if (!progress) {
3087 nr_retries--;
3088 /* maybe some writeback is necessary */
3089 congestion_wait(BLK_RW_ASYNC, HZ/10);
3090 }
3091
3092 }
3093
3094 return 0;
3095 }
3096
3097 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3098 char *buf, size_t nbytes,
3099 loff_t off)
3100 {
3101 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3102
3103 if (mem_cgroup_is_root(memcg))
3104 return -EINVAL;
3105 return mem_cgroup_force_empty(memcg) ?: nbytes;
3106 }
3107
3108 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3109 struct cftype *cft)
3110 {
3111 return mem_cgroup_from_css(css)->use_hierarchy;
3112 }
3113
3114 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3115 struct cftype *cft, u64 val)
3116 {
3117 int retval = 0;
3118 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3119 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3120
3121 mutex_lock(&memcg_create_mutex);
3122
3123 if (memcg->use_hierarchy == val)
3124 goto out;
3125
3126 /*
3127 * If parent's use_hierarchy is set, we can't make any modifications
3128 * in the child subtrees. If it is unset, then the change can
3129 * occur, provided the current cgroup has no children.
3130 *
3131 * For the root cgroup, parent_mem is NULL, we allow value to be
3132 * set if there are no children.
3133 */
3134 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3135 (val == 1 || val == 0)) {
3136 if (!memcg_has_children(memcg))
3137 memcg->use_hierarchy = val;
3138 else
3139 retval = -EBUSY;
3140 } else
3141 retval = -EINVAL;
3142
3143 out:
3144 mutex_unlock(&memcg_create_mutex);
3145
3146 return retval;
3147 }
3148
3149 static unsigned long tree_stat(struct mem_cgroup *memcg,
3150 enum mem_cgroup_stat_index idx)
3151 {
3152 struct mem_cgroup *iter;
3153 long val = 0;
3154
3155 /* Per-cpu values can be negative, use a signed accumulator */
3156 for_each_mem_cgroup_tree(iter, memcg)
3157 val += mem_cgroup_read_stat(iter, idx);
3158
3159 if (val < 0) /* race ? */
3160 val = 0;
3161 return val;
3162 }
3163
3164 static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3165 {
3166 u64 val;
3167
3168 if (mem_cgroup_is_root(memcg)) {
3169 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3170 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3171 if (swap)
3172 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3173 } else {
3174 if (!swap)
3175 val = page_counter_read(&memcg->memory);
3176 else
3177 val = page_counter_read(&memcg->memsw);
3178 }
3179 return val << PAGE_SHIFT;
3180 }
3181
3182 enum {
3183 RES_USAGE,
3184 RES_LIMIT,
3185 RES_MAX_USAGE,
3186 RES_FAILCNT,
3187 RES_SOFT_LIMIT,
3188 };
3189
3190 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3191 struct cftype *cft)
3192 {
3193 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3194 struct page_counter *counter;
3195
3196 switch (MEMFILE_TYPE(cft->private)) {
3197 case _MEM:
3198 counter = &memcg->memory;
3199 break;
3200 case _MEMSWAP:
3201 counter = &memcg->memsw;
3202 break;
3203 case _KMEM:
3204 counter = &memcg->kmem;
3205 break;
3206 default:
3207 BUG();
3208 }
3209
3210 switch (MEMFILE_ATTR(cft->private)) {
3211 case RES_USAGE:
3212 if (counter == &memcg->memory)
3213 return mem_cgroup_usage(memcg, false);
3214 if (counter == &memcg->memsw)
3215 return mem_cgroup_usage(memcg, true);
3216 return (u64)page_counter_read(counter) * PAGE_SIZE;
3217 case RES_LIMIT:
3218 return (u64)counter->limit * PAGE_SIZE;
3219 case RES_MAX_USAGE:
3220 return (u64)counter->watermark * PAGE_SIZE;
3221 case RES_FAILCNT:
3222 return counter->failcnt;
3223 case RES_SOFT_LIMIT:
3224 return (u64)memcg->soft_limit * PAGE_SIZE;
3225 default:
3226 BUG();
3227 }
3228 }
3229
3230 #ifdef CONFIG_MEMCG_KMEM
3231 static int memcg_activate_kmem(struct mem_cgroup *memcg,
3232 unsigned long nr_pages)
3233 {
3234 int err = 0;
3235 int memcg_id;
3236
3237 BUG_ON(memcg->kmemcg_id >= 0);
3238 BUG_ON(memcg->kmem_acct_activated);
3239 BUG_ON(memcg->kmem_acct_active);
3240
3241 /*
3242 * For simplicity, we won't allow this to be disabled. It also can't
3243 * be changed if the cgroup has children already, or if tasks had
3244 * already joined.
3245 *
3246 * If tasks join before we set the limit, a person looking at
3247 * kmem.usage_in_bytes will have no way to determine when it took
3248 * place, which makes the value quite meaningless.
3249 *
3250 * After it first became limited, changes in the value of the limit are
3251 * of course permitted.
3252 */
3253 mutex_lock(&memcg_create_mutex);
3254 if (cgroup_has_tasks(memcg->css.cgroup) ||
3255 (memcg->use_hierarchy && memcg_has_children(memcg)))
3256 err = -EBUSY;
3257 mutex_unlock(&memcg_create_mutex);
3258 if (err)
3259 goto out;
3260
3261 memcg_id = memcg_alloc_cache_id();
3262 if (memcg_id < 0) {
3263 err = memcg_id;
3264 goto out;
3265 }
3266
3267 /*
3268 * We couldn't have accounted to this cgroup, because it hasn't got
3269 * activated yet, so this should succeed.
3270 */
3271 err = page_counter_limit(&memcg->kmem, nr_pages);
3272 VM_BUG_ON(err);
3273
3274 static_key_slow_inc(&memcg_kmem_enabled_key);
3275 /*
3276 * A memory cgroup is considered kmem-active as soon as it gets
3277 * kmemcg_id. Setting the id after enabling static branching will
3278 * guarantee no one starts accounting before all call sites are
3279 * patched.
3280 */
3281 memcg->kmemcg_id = memcg_id;
3282 memcg->kmem_acct_activated = true;
3283 memcg->kmem_acct_active = true;
3284 out:
3285 return err;
3286 }
3287
3288 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3289 unsigned long limit)
3290 {
3291 int ret;
3292
3293 mutex_lock(&memcg_limit_mutex);
3294 if (!memcg_kmem_is_active(memcg))
3295 ret = memcg_activate_kmem(memcg, limit);
3296 else
3297 ret = page_counter_limit(&memcg->kmem, limit);
3298 mutex_unlock(&memcg_limit_mutex);
3299 return ret;
3300 }
3301
3302 static int memcg_propagate_kmem(struct mem_cgroup *memcg)
3303 {
3304 int ret = 0;
3305 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
3306
3307 if (!parent)
3308 return 0;
3309
3310 mutex_lock(&memcg_limit_mutex);
3311 /*
3312 * If the parent cgroup is not kmem-active now, it cannot be activated
3313 * after this point, because it has at least one child already.
3314 */
3315 if (memcg_kmem_is_active(parent))
3316 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3317 mutex_unlock(&memcg_limit_mutex);
3318 return ret;
3319 }
3320 #else
3321 static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3322 unsigned long limit)
3323 {
3324 return -EINVAL;
3325 }
3326 #endif /* CONFIG_MEMCG_KMEM */
3327
3328 /*
3329 * The user of this function is...
3330 * RES_LIMIT.
3331 */
3332 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3333 char *buf, size_t nbytes, loff_t off)
3334 {
3335 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3336 unsigned long nr_pages;
3337 int ret;
3338
3339 buf = strstrip(buf);
3340 ret = page_counter_memparse(buf, "-1", &nr_pages);
3341 if (ret)
3342 return ret;
3343
3344 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3345 case RES_LIMIT:
3346 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3347 ret = -EINVAL;
3348 break;
3349 }
3350 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3351 case _MEM:
3352 ret = mem_cgroup_resize_limit(memcg, nr_pages);
3353 break;
3354 case _MEMSWAP:
3355 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
3356 break;
3357 case _KMEM:
3358 ret = memcg_update_kmem_limit(memcg, nr_pages);
3359 break;
3360 }
3361 break;
3362 case RES_SOFT_LIMIT:
3363 memcg->soft_limit = nr_pages;
3364 ret = 0;
3365 break;
3366 }
3367 return ret ?: nbytes;
3368 }
3369
3370 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3371 size_t nbytes, loff_t off)
3372 {
3373 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3374 struct page_counter *counter;
3375
3376 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3377 case _MEM:
3378 counter = &memcg->memory;
3379 break;
3380 case _MEMSWAP:
3381 counter = &memcg->memsw;
3382 break;
3383 case _KMEM:
3384 counter = &memcg->kmem;
3385 break;
3386 default:
3387 BUG();
3388 }
3389
3390 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3391 case RES_MAX_USAGE:
3392 page_counter_reset_watermark(counter);
3393 break;
3394 case RES_FAILCNT:
3395 counter->failcnt = 0;
3396 break;
3397 default:
3398 BUG();
3399 }
3400
3401 return nbytes;
3402 }
3403
3404 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3405 struct cftype *cft)
3406 {
3407 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3408 }
3409
3410 #ifdef CONFIG_MMU
3411 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3412 struct cftype *cft, u64 val)
3413 {
3414 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3415
3416 if (val & ~MOVE_MASK)
3417 return -EINVAL;
3418
3419 /*
3420 * No kind of locking is needed in here, because ->can_attach() will
3421 * check this value once in the beginning of the process, and then carry
3422 * on with stale data. This means that changes to this value will only
3423 * affect task migrations starting after the change.
3424 */
3425 memcg->move_charge_at_immigrate = val;
3426 return 0;
3427 }
3428 #else
3429 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3430 struct cftype *cft, u64 val)
3431 {
3432 return -ENOSYS;
3433 }
3434 #endif
3435
3436 #ifdef CONFIG_NUMA
3437 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3438 {
3439 struct numa_stat {
3440 const char *name;
3441 unsigned int lru_mask;
3442 };
3443
3444 static const struct numa_stat stats[] = {
3445 { "total", LRU_ALL },
3446 { "file", LRU_ALL_FILE },
3447 { "anon", LRU_ALL_ANON },
3448 { "unevictable", BIT(LRU_UNEVICTABLE) },
3449 };
3450 const struct numa_stat *stat;
3451 int nid;
3452 unsigned long nr;
3453 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3454
3455 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3456 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3457 seq_printf(m, "%s=%lu", stat->name, nr);
3458 for_each_node_state(nid, N_MEMORY) {
3459 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3460 stat->lru_mask);
3461 seq_printf(m, " N%d=%lu", nid, nr);
3462 }
3463 seq_putc(m, '\n');
3464 }
3465
3466 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3467 struct mem_cgroup *iter;
3468
3469 nr = 0;
3470 for_each_mem_cgroup_tree(iter, memcg)
3471 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3472 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3473 for_each_node_state(nid, N_MEMORY) {
3474 nr = 0;
3475 for_each_mem_cgroup_tree(iter, memcg)
3476 nr += mem_cgroup_node_nr_lru_pages(
3477 iter, nid, stat->lru_mask);
3478 seq_printf(m, " N%d=%lu", nid, nr);
3479 }
3480 seq_putc(m, '\n');
3481 }
3482
3483 return 0;
3484 }
3485 #endif /* CONFIG_NUMA */
3486
3487 static int memcg_stat_show(struct seq_file *m, void *v)
3488 {
3489 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3490 unsigned long memory, memsw;
3491 struct mem_cgroup *mi;
3492 unsigned int i;
3493
3494 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3495 MEM_CGROUP_STAT_NSTATS);
3496 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3497 MEM_CGROUP_EVENTS_NSTATS);
3498 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3499
3500 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3501 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3502 continue;
3503 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3504 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
3505 }
3506
3507 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3508 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3509 mem_cgroup_read_events(memcg, i));
3510
3511 for (i = 0; i < NR_LRU_LISTS; i++)
3512 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3513 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3514
3515 /* Hierarchical information */
3516 memory = memsw = PAGE_COUNTER_MAX;
3517 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3518 memory = min(memory, mi->memory.limit);
3519 memsw = min(memsw, mi->memsw.limit);
3520 }
3521 seq_printf(m, "hierarchical_memory_limit %llu\n",
3522 (u64)memory * PAGE_SIZE);
3523 if (do_swap_account)
3524 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3525 (u64)memsw * PAGE_SIZE);
3526
3527 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3528 long long val = 0;
3529
3530 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
3531 continue;
3532 for_each_mem_cgroup_tree(mi, memcg)
3533 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3534 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3535 }
3536
3537 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3538 unsigned long long val = 0;
3539
3540 for_each_mem_cgroup_tree(mi, memcg)
3541 val += mem_cgroup_read_events(mi, i);
3542 seq_printf(m, "total_%s %llu\n",
3543 mem_cgroup_events_names[i], val);
3544 }
3545
3546 for (i = 0; i < NR_LRU_LISTS; i++) {
3547 unsigned long long val = 0;
3548
3549 for_each_mem_cgroup_tree(mi, memcg)
3550 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3551 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
3552 }
3553
3554 #ifdef CONFIG_DEBUG_VM
3555 {
3556 int nid, zid;
3557 struct mem_cgroup_per_zone *mz;
3558 struct zone_reclaim_stat *rstat;
3559 unsigned long recent_rotated[2] = {0, 0};
3560 unsigned long recent_scanned[2] = {0, 0};
3561
3562 for_each_online_node(nid)
3563 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3564 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
3565 rstat = &mz->lruvec.reclaim_stat;
3566
3567 recent_rotated[0] += rstat->recent_rotated[0];
3568 recent_rotated[1] += rstat->recent_rotated[1];
3569 recent_scanned[0] += rstat->recent_scanned[0];
3570 recent_scanned[1] += rstat->recent_scanned[1];
3571 }
3572 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3573 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3574 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3575 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3576 }
3577 #endif
3578
3579 return 0;
3580 }
3581
3582 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3583 struct cftype *cft)
3584 {
3585 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3586
3587 return mem_cgroup_swappiness(memcg);
3588 }
3589
3590 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3591 struct cftype *cft, u64 val)
3592 {
3593 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3594
3595 if (val > 100)
3596 return -EINVAL;
3597
3598 if (css->parent)
3599 memcg->swappiness = val;
3600 else
3601 vm_swappiness = val;
3602
3603 return 0;
3604 }
3605
3606 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3607 {
3608 struct mem_cgroup_threshold_ary *t;
3609 unsigned long usage;
3610 int i;
3611
3612 rcu_read_lock();
3613 if (!swap)
3614 t = rcu_dereference(memcg->thresholds.primary);
3615 else
3616 t = rcu_dereference(memcg->memsw_thresholds.primary);
3617
3618 if (!t)
3619 goto unlock;
3620
3621 usage = mem_cgroup_usage(memcg, swap);
3622
3623 /*
3624 * current_threshold points to threshold just below or equal to usage.
3625 * If it's not true, a threshold was crossed after last
3626 * call of __mem_cgroup_threshold().
3627 */
3628 i = t->current_threshold;
3629
3630 /*
3631 * Iterate backward over array of thresholds starting from
3632 * current_threshold and check if a threshold is crossed.
3633 * If none of thresholds below usage is crossed, we read
3634 * only one element of the array here.
3635 */
3636 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3637 eventfd_signal(t->entries[i].eventfd, 1);
3638
3639 /* i = current_threshold + 1 */
3640 i++;
3641
3642 /*
3643 * Iterate forward over array of thresholds starting from
3644 * current_threshold+1 and check if a threshold is crossed.
3645 * If none of thresholds above usage is crossed, we read
3646 * only one element of the array here.
3647 */
3648 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3649 eventfd_signal(t->entries[i].eventfd, 1);
3650
3651 /* Update current_threshold */
3652 t->current_threshold = i - 1;
3653 unlock:
3654 rcu_read_unlock();
3655 }
3656
3657 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3658 {
3659 while (memcg) {
3660 __mem_cgroup_threshold(memcg, false);
3661 if (do_swap_account)
3662 __mem_cgroup_threshold(memcg, true);
3663
3664 memcg = parent_mem_cgroup(memcg);
3665 }
3666 }
3667
3668 static int compare_thresholds(const void *a, const void *b)
3669 {
3670 const struct mem_cgroup_threshold *_a = a;
3671 const struct mem_cgroup_threshold *_b = b;
3672
3673 if (_a->threshold > _b->threshold)
3674 return 1;
3675
3676 if (_a->threshold < _b->threshold)
3677 return -1;
3678
3679 return 0;
3680 }
3681
3682 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3683 {
3684 struct mem_cgroup_eventfd_list *ev;
3685
3686 spin_lock(&memcg_oom_lock);
3687
3688 list_for_each_entry(ev, &memcg->oom_notify, list)
3689 eventfd_signal(ev->eventfd, 1);
3690
3691 spin_unlock(&memcg_oom_lock);
3692 return 0;
3693 }
3694
3695 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3696 {
3697 struct mem_cgroup *iter;
3698
3699 for_each_mem_cgroup_tree(iter, memcg)
3700 mem_cgroup_oom_notify_cb(iter);
3701 }
3702
3703 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3704 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3705 {
3706 struct mem_cgroup_thresholds *thresholds;
3707 struct mem_cgroup_threshold_ary *new;
3708 unsigned long threshold;
3709 unsigned long usage;
3710 int i, size, ret;
3711
3712 ret = page_counter_memparse(args, "-1", &threshold);
3713 if (ret)
3714 return ret;
3715
3716 mutex_lock(&memcg->thresholds_lock);
3717
3718 if (type == _MEM) {
3719 thresholds = &memcg->thresholds;
3720 usage = mem_cgroup_usage(memcg, false);
3721 } else if (type == _MEMSWAP) {
3722 thresholds = &memcg->memsw_thresholds;
3723 usage = mem_cgroup_usage(memcg, true);
3724 } else
3725 BUG();
3726
3727 /* Check if a threshold crossed before adding a new one */
3728 if (thresholds->primary)
3729 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3730
3731 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3732
3733 /* Allocate memory for new array of thresholds */
3734 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3735 GFP_KERNEL);
3736 if (!new) {
3737 ret = -ENOMEM;
3738 goto unlock;
3739 }
3740 new->size = size;
3741
3742 /* Copy thresholds (if any) to new array */
3743 if (thresholds->primary) {
3744 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3745 sizeof(struct mem_cgroup_threshold));
3746 }
3747
3748 /* Add new threshold */
3749 new->entries[size - 1].eventfd = eventfd;
3750 new->entries[size - 1].threshold = threshold;
3751
3752 /* Sort thresholds. Registering of new threshold isn't time-critical */
3753 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3754 compare_thresholds, NULL);
3755
3756 /* Find current threshold */
3757 new->current_threshold = -1;
3758 for (i = 0; i < size; i++) {
3759 if (new->entries[i].threshold <= usage) {
3760 /*
3761 * new->current_threshold will not be used until
3762 * rcu_assign_pointer(), so it's safe to increment
3763 * it here.
3764 */
3765 ++new->current_threshold;
3766 } else
3767 break;
3768 }
3769
3770 /* Free old spare buffer and save old primary buffer as spare */
3771 kfree(thresholds->spare);
3772 thresholds->spare = thresholds->primary;
3773
3774 rcu_assign_pointer(thresholds->primary, new);
3775
3776 /* To be sure that nobody uses thresholds */
3777 synchronize_rcu();
3778
3779 unlock:
3780 mutex_unlock(&memcg->thresholds_lock);
3781
3782 return ret;
3783 }
3784
3785 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3786 struct eventfd_ctx *eventfd, const char *args)
3787 {
3788 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
3789 }
3790
3791 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
3792 struct eventfd_ctx *eventfd, const char *args)
3793 {
3794 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
3795 }
3796
3797 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3798 struct eventfd_ctx *eventfd, enum res_type type)
3799 {
3800 struct mem_cgroup_thresholds *thresholds;
3801 struct mem_cgroup_threshold_ary *new;
3802 unsigned long usage;
3803 int i, j, size;
3804
3805 mutex_lock(&memcg->thresholds_lock);
3806
3807 if (type == _MEM) {
3808 thresholds = &memcg->thresholds;
3809 usage = mem_cgroup_usage(memcg, false);
3810 } else if (type == _MEMSWAP) {
3811 thresholds = &memcg->memsw_thresholds;
3812 usage = mem_cgroup_usage(memcg, true);
3813 } else
3814 BUG();
3815
3816 if (!thresholds->primary)
3817 goto unlock;
3818
3819 /* Check if a threshold crossed before removing */
3820 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3821
3822 /* Calculate new number of threshold */
3823 size = 0;
3824 for (i = 0; i < thresholds->primary->size; i++) {
3825 if (thresholds->primary->entries[i].eventfd != eventfd)
3826 size++;
3827 }
3828
3829 new = thresholds->spare;
3830
3831 /* Set thresholds array to NULL if we don't have thresholds */
3832 if (!size) {
3833 kfree(new);
3834 new = NULL;
3835 goto swap_buffers;
3836 }
3837
3838 new->size = size;
3839
3840 /* Copy thresholds and find current threshold */
3841 new->current_threshold = -1;
3842 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3843 if (thresholds->primary->entries[i].eventfd == eventfd)
3844 continue;
3845
3846 new->entries[j] = thresholds->primary->entries[i];
3847 if (new->entries[j].threshold <= usage) {
3848 /*
3849 * new->current_threshold will not be used
3850 * until rcu_assign_pointer(), so it's safe to increment
3851 * it here.
3852 */
3853 ++new->current_threshold;
3854 }
3855 j++;
3856 }
3857
3858 swap_buffers:
3859 /* Swap primary and spare array */
3860 thresholds->spare = thresholds->primary;
3861 /* If all events are unregistered, free the spare array */
3862 if (!new) {
3863 kfree(thresholds->spare);
3864 thresholds->spare = NULL;
3865 }
3866
3867 rcu_assign_pointer(thresholds->primary, new);
3868
3869 /* To be sure that nobody uses thresholds */
3870 synchronize_rcu();
3871 unlock:
3872 mutex_unlock(&memcg->thresholds_lock);
3873 }
3874
3875 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3876 struct eventfd_ctx *eventfd)
3877 {
3878 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
3879 }
3880
3881 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
3882 struct eventfd_ctx *eventfd)
3883 {
3884 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
3885 }
3886
3887 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
3888 struct eventfd_ctx *eventfd, const char *args)
3889 {
3890 struct mem_cgroup_eventfd_list *event;
3891
3892 event = kmalloc(sizeof(*event), GFP_KERNEL);
3893 if (!event)
3894 return -ENOMEM;
3895
3896 spin_lock(&memcg_oom_lock);
3897
3898 event->eventfd = eventfd;
3899 list_add(&event->list, &memcg->oom_notify);
3900
3901 /* already in OOM ? */
3902 if (atomic_read(&memcg->under_oom))
3903 eventfd_signal(eventfd, 1);
3904 spin_unlock(&memcg_oom_lock);
3905
3906 return 0;
3907 }
3908
3909 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
3910 struct eventfd_ctx *eventfd)
3911 {
3912 struct mem_cgroup_eventfd_list *ev, *tmp;
3913
3914 spin_lock(&memcg_oom_lock);
3915
3916 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
3917 if (ev->eventfd == eventfd) {
3918 list_del(&ev->list);
3919 kfree(ev);
3920 }
3921 }
3922
3923 spin_unlock(&memcg_oom_lock);
3924 }
3925
3926 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3927 {
3928 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3929
3930 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
3931 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3932 return 0;
3933 }
3934
3935 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3936 struct cftype *cft, u64 val)
3937 {
3938 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3939
3940 /* cannot set to root cgroup and only 0 and 1 are allowed */
3941 if (!css->parent || !((val == 0) || (val == 1)))
3942 return -EINVAL;
3943
3944 memcg->oom_kill_disable = val;
3945 if (!val)
3946 memcg_oom_recover(memcg);
3947
3948 return 0;
3949 }
3950
3951 #ifdef CONFIG_MEMCG_KMEM
3952 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
3953 {
3954 int ret;
3955
3956 ret = memcg_propagate_kmem(memcg);
3957 if (ret)
3958 return ret;
3959
3960 return mem_cgroup_sockets_init(memcg, ss);
3961 }
3962
3963 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
3964 {
3965 struct cgroup_subsys_state *css;
3966 struct mem_cgroup *parent, *child;
3967 int kmemcg_id;
3968
3969 if (!memcg->kmem_acct_active)
3970 return;
3971
3972 /*
3973 * Clear the 'active' flag before clearing memcg_caches arrays entries.
3974 * Since we take the slab_mutex in memcg_deactivate_kmem_caches(), it
3975 * guarantees no cache will be created for this cgroup after we are
3976 * done (see memcg_create_kmem_cache()).
3977 */
3978 memcg->kmem_acct_active = false;
3979
3980 memcg_deactivate_kmem_caches(memcg);
3981
3982 kmemcg_id = memcg->kmemcg_id;
3983 BUG_ON(kmemcg_id < 0);
3984
3985 parent = parent_mem_cgroup(memcg);
3986 if (!parent)
3987 parent = root_mem_cgroup;
3988
3989 /*
3990 * Change kmemcg_id of this cgroup and all its descendants to the
3991 * parent's id, and then move all entries from this cgroup's list_lrus
3992 * to ones of the parent. After we have finished, all list_lrus
3993 * corresponding to this cgroup are guaranteed to remain empty. The
3994 * ordering is imposed by list_lru_node->lock taken by
3995 * memcg_drain_all_list_lrus().
3996 */
3997 css_for_each_descendant_pre(css, &memcg->css) {
3998 child = mem_cgroup_from_css(css);
3999 BUG_ON(child->kmemcg_id != kmemcg_id);
4000 child->kmemcg_id = parent->kmemcg_id;
4001 if (!memcg->use_hierarchy)
4002 break;
4003 }
4004 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
4005
4006 memcg_free_cache_id(kmemcg_id);
4007 }
4008
4009 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4010 {
4011 if (memcg->kmem_acct_activated) {
4012 memcg_destroy_kmem_caches(memcg);
4013 static_key_slow_dec(&memcg_kmem_enabled_key);
4014 WARN_ON(page_counter_read(&memcg->kmem));
4015 }
4016 mem_cgroup_sockets_destroy(memcg);
4017 }
4018 #else
4019 static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
4020 {
4021 return 0;
4022 }
4023
4024 static void memcg_deactivate_kmem(struct mem_cgroup *memcg)
4025 {
4026 }
4027
4028 static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4029 {
4030 }
4031 #endif
4032
4033 /*
4034 * DO NOT USE IN NEW FILES.
4035 *
4036 * "cgroup.event_control" implementation.
4037 *
4038 * This is way over-engineered. It tries to support fully configurable
4039 * events for each user. Such level of flexibility is completely
4040 * unnecessary especially in the light of the planned unified hierarchy.
4041 *
4042 * Please deprecate this and replace with something simpler if at all
4043 * possible.
4044 */
4045
4046 /*
4047 * Unregister event and free resources.
4048 *
4049 * Gets called from workqueue.
4050 */
4051 static void memcg_event_remove(struct work_struct *work)
4052 {
4053 struct mem_cgroup_event *event =
4054 container_of(work, struct mem_cgroup_event, remove);
4055 struct mem_cgroup *memcg = event->memcg;
4056
4057 remove_wait_queue(event->wqh, &event->wait);
4058
4059 event->unregister_event(memcg, event->eventfd);
4060
4061 /* Notify userspace the event is going away. */
4062 eventfd_signal(event->eventfd, 1);
4063
4064 eventfd_ctx_put(event->eventfd);
4065 kfree(event);
4066 css_put(&memcg->css);
4067 }
4068
4069 /*
4070 * Gets called on POLLHUP on eventfd when user closes it.
4071 *
4072 * Called with wqh->lock held and interrupts disabled.
4073 */
4074 static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4075 int sync, void *key)
4076 {
4077 struct mem_cgroup_event *event =
4078 container_of(wait, struct mem_cgroup_event, wait);
4079 struct mem_cgroup *memcg = event->memcg;
4080 unsigned long flags = (unsigned long)key;
4081
4082 if (flags & POLLHUP) {
4083 /*
4084 * If the event has been detached at cgroup removal, we
4085 * can simply return knowing the other side will cleanup
4086 * for us.
4087 *
4088 * We can't race against event freeing since the other
4089 * side will require wqh->lock via remove_wait_queue(),
4090 * which we hold.
4091 */
4092 spin_lock(&memcg->event_list_lock);
4093 if (!list_empty(&event->list)) {
4094 list_del_init(&event->list);
4095 /*
4096 * We are in atomic context, but cgroup_event_remove()
4097 * may sleep, so we have to call it in workqueue.
4098 */
4099 schedule_work(&event->remove);
4100 }
4101 spin_unlock(&memcg->event_list_lock);
4102 }
4103
4104 return 0;
4105 }
4106
4107 static void memcg_event_ptable_queue_proc(struct file *file,
4108 wait_queue_head_t *wqh, poll_table *pt)
4109 {
4110 struct mem_cgroup_event *event =
4111 container_of(pt, struct mem_cgroup_event, pt);
4112
4113 event->wqh = wqh;
4114 add_wait_queue(wqh, &event->wait);
4115 }
4116
4117 /*
4118 * DO NOT USE IN NEW FILES.
4119 *
4120 * Parse input and register new cgroup event handler.
4121 *
4122 * Input must be in format '<event_fd> <control_fd> <args>'.
4123 * Interpretation of args is defined by control file implementation.
4124 */
4125 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4126 char *buf, size_t nbytes, loff_t off)
4127 {
4128 struct cgroup_subsys_state *css = of_css(of);
4129 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4130 struct mem_cgroup_event *event;
4131 struct cgroup_subsys_state *cfile_css;
4132 unsigned int efd, cfd;
4133 struct fd efile;
4134 struct fd cfile;
4135 const char *name;
4136 char *endp;
4137 int ret;
4138
4139 buf = strstrip(buf);
4140
4141 efd = simple_strtoul(buf, &endp, 10);
4142 if (*endp != ' ')
4143 return -EINVAL;
4144 buf = endp + 1;
4145
4146 cfd = simple_strtoul(buf, &endp, 10);
4147 if ((*endp != ' ') && (*endp != '\0'))
4148 return -EINVAL;
4149 buf = endp + 1;
4150
4151 event = kzalloc(sizeof(*event), GFP_KERNEL);
4152 if (!event)
4153 return -ENOMEM;
4154
4155 event->memcg = memcg;
4156 INIT_LIST_HEAD(&event->list);
4157 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4158 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4159 INIT_WORK(&event->remove, memcg_event_remove);
4160
4161 efile = fdget(efd);
4162 if (!efile.file) {
4163 ret = -EBADF;
4164 goto out_kfree;
4165 }
4166
4167 event->eventfd = eventfd_ctx_fileget(efile.file);
4168 if (IS_ERR(event->eventfd)) {
4169 ret = PTR_ERR(event->eventfd);
4170 goto out_put_efile;
4171 }
4172
4173 cfile = fdget(cfd);
4174 if (!cfile.file) {
4175 ret = -EBADF;
4176 goto out_put_eventfd;
4177 }
4178
4179 /* the process need read permission on control file */
4180 /* AV: shouldn't we check that it's been opened for read instead? */
4181 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4182 if (ret < 0)
4183 goto out_put_cfile;
4184
4185 /*
4186 * Determine the event callbacks and set them in @event. This used
4187 * to be done via struct cftype but cgroup core no longer knows
4188 * about these events. The following is crude but the whole thing
4189 * is for compatibility anyway.
4190 *
4191 * DO NOT ADD NEW FILES.
4192 */
4193 name = cfile.file->f_path.dentry->d_name.name;
4194
4195 if (!strcmp(name, "memory.usage_in_bytes")) {
4196 event->register_event = mem_cgroup_usage_register_event;
4197 event->unregister_event = mem_cgroup_usage_unregister_event;
4198 } else if (!strcmp(name, "memory.oom_control")) {
4199 event->register_event = mem_cgroup_oom_register_event;
4200 event->unregister_event = mem_cgroup_oom_unregister_event;
4201 } else if (!strcmp(name, "memory.pressure_level")) {
4202 event->register_event = vmpressure_register_event;
4203 event->unregister_event = vmpressure_unregister_event;
4204 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4205 event->register_event = memsw_cgroup_usage_register_event;
4206 event->unregister_event = memsw_cgroup_usage_unregister_event;
4207 } else {
4208 ret = -EINVAL;
4209 goto out_put_cfile;
4210 }
4211
4212 /*
4213 * Verify @cfile should belong to @css. Also, remaining events are
4214 * automatically removed on cgroup destruction but the removal is
4215 * asynchronous, so take an extra ref on @css.
4216 */
4217 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4218 &memory_cgrp_subsys);
4219 ret = -EINVAL;
4220 if (IS_ERR(cfile_css))
4221 goto out_put_cfile;
4222 if (cfile_css != css) {
4223 css_put(cfile_css);
4224 goto out_put_cfile;
4225 }
4226
4227 ret = event->register_event(memcg, event->eventfd, buf);
4228 if (ret)
4229 goto out_put_css;
4230
4231 efile.file->f_op->poll(efile.file, &event->pt);
4232
4233 spin_lock(&memcg->event_list_lock);
4234 list_add(&event->list, &memcg->event_list);
4235 spin_unlock(&memcg->event_list_lock);
4236
4237 fdput(cfile);
4238 fdput(efile);
4239
4240 return nbytes;
4241
4242 out_put_css:
4243 css_put(css);
4244 out_put_cfile:
4245 fdput(cfile);
4246 out_put_eventfd:
4247 eventfd_ctx_put(event->eventfd);
4248 out_put_efile:
4249 fdput(efile);
4250 out_kfree:
4251 kfree(event);
4252
4253 return ret;
4254 }
4255
4256 static struct cftype mem_cgroup_legacy_files[] = {
4257 {
4258 .name = "usage_in_bytes",
4259 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4260 .read_u64 = mem_cgroup_read_u64,
4261 },
4262 {
4263 .name = "max_usage_in_bytes",
4264 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4265 .write = mem_cgroup_reset,
4266 .read_u64 = mem_cgroup_read_u64,
4267 },
4268 {
4269 .name = "limit_in_bytes",
4270 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4271 .write = mem_cgroup_write,
4272 .read_u64 = mem_cgroup_read_u64,
4273 },
4274 {
4275 .name = "soft_limit_in_bytes",
4276 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4277 .write = mem_cgroup_write,
4278 .read_u64 = mem_cgroup_read_u64,
4279 },
4280 {
4281 .name = "failcnt",
4282 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4283 .write = mem_cgroup_reset,
4284 .read_u64 = mem_cgroup_read_u64,
4285 },
4286 {
4287 .name = "stat",
4288 .seq_show = memcg_stat_show,
4289 },
4290 {
4291 .name = "force_empty",
4292 .write = mem_cgroup_force_empty_write,
4293 },
4294 {
4295 .name = "use_hierarchy",
4296 .write_u64 = mem_cgroup_hierarchy_write,
4297 .read_u64 = mem_cgroup_hierarchy_read,
4298 },
4299 {
4300 .name = "cgroup.event_control", /* XXX: for compat */
4301 .write = memcg_write_event_control,
4302 .flags = CFTYPE_NO_PREFIX,
4303 .mode = S_IWUGO,
4304 },
4305 {
4306 .name = "swappiness",
4307 .read_u64 = mem_cgroup_swappiness_read,
4308 .write_u64 = mem_cgroup_swappiness_write,
4309 },
4310 {
4311 .name = "move_charge_at_immigrate",
4312 .read_u64 = mem_cgroup_move_charge_read,
4313 .write_u64 = mem_cgroup_move_charge_write,
4314 },
4315 {
4316 .name = "oom_control",
4317 .seq_show = mem_cgroup_oom_control_read,
4318 .write_u64 = mem_cgroup_oom_control_write,
4319 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4320 },
4321 {
4322 .name = "pressure_level",
4323 },
4324 #ifdef CONFIG_NUMA
4325 {
4326 .name = "numa_stat",
4327 .seq_show = memcg_numa_stat_show,
4328 },
4329 #endif
4330 #ifdef CONFIG_MEMCG_KMEM
4331 {
4332 .name = "kmem.limit_in_bytes",
4333 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4334 .write = mem_cgroup_write,
4335 .read_u64 = mem_cgroup_read_u64,
4336 },
4337 {
4338 .name = "kmem.usage_in_bytes",
4339 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4340 .read_u64 = mem_cgroup_read_u64,
4341 },
4342 {
4343 .name = "kmem.failcnt",
4344 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4345 .write = mem_cgroup_reset,
4346 .read_u64 = mem_cgroup_read_u64,
4347 },
4348 {
4349 .name = "kmem.max_usage_in_bytes",
4350 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4351 .write = mem_cgroup_reset,
4352 .read_u64 = mem_cgroup_read_u64,
4353 },
4354 #ifdef CONFIG_SLABINFO
4355 {
4356 .name = "kmem.slabinfo",
4357 .seq_start = slab_start,
4358 .seq_next = slab_next,
4359 .seq_stop = slab_stop,
4360 .seq_show = memcg_slab_show,
4361 },
4362 #endif
4363 #endif
4364 { }, /* terminate */
4365 };
4366
4367 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4368 {
4369 struct mem_cgroup_per_node *pn;
4370 struct mem_cgroup_per_zone *mz;
4371 int zone, tmp = node;
4372 /*
4373 * This routine is called against possible nodes.
4374 * But it's BUG to call kmalloc() against offline node.
4375 *
4376 * TODO: this routine can waste much memory for nodes which will
4377 * never be onlined. It's better to use memory hotplug callback
4378 * function.
4379 */
4380 if (!node_state(node, N_NORMAL_MEMORY))
4381 tmp = -1;
4382 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4383 if (!pn)
4384 return 1;
4385
4386 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4387 mz = &pn->zoneinfo[zone];
4388 lruvec_init(&mz->lruvec);
4389 mz->usage_in_excess = 0;
4390 mz->on_tree = false;
4391 mz->memcg = memcg;
4392 }
4393 memcg->nodeinfo[node] = pn;
4394 return 0;
4395 }
4396
4397 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
4398 {
4399 kfree(memcg->nodeinfo[node]);
4400 }
4401
4402 static struct mem_cgroup *mem_cgroup_alloc(void)
4403 {
4404 struct mem_cgroup *memcg;
4405 size_t size;
4406
4407 size = sizeof(struct mem_cgroup);
4408 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4409
4410 memcg = kzalloc(size, GFP_KERNEL);
4411 if (!memcg)
4412 return NULL;
4413
4414 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4415 if (!memcg->stat)
4416 goto out_free;
4417 spin_lock_init(&memcg->pcp_counter_lock);
4418 return memcg;
4419
4420 out_free:
4421 kfree(memcg);
4422 return NULL;
4423 }
4424
4425 /*
4426 * At destroying mem_cgroup, references from swap_cgroup can remain.
4427 * (scanning all at force_empty is too costly...)
4428 *
4429 * Instead of clearing all references at force_empty, we remember
4430 * the number of reference from swap_cgroup and free mem_cgroup when
4431 * it goes down to 0.
4432 *
4433 * Removal of cgroup itself succeeds regardless of refs from swap.
4434 */
4435
4436 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4437 {
4438 int node;
4439
4440 mem_cgroup_remove_from_trees(memcg);
4441
4442 for_each_node(node)
4443 free_mem_cgroup_per_zone_info(memcg, node);
4444
4445 free_percpu(memcg->stat);
4446 kfree(memcg);
4447 }
4448
4449 /*
4450 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4451 */
4452 struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
4453 {
4454 if (!memcg->memory.parent)
4455 return NULL;
4456 return mem_cgroup_from_counter(memcg->memory.parent, memory);
4457 }
4458 EXPORT_SYMBOL(parent_mem_cgroup);
4459
4460 static struct cgroup_subsys_state * __ref
4461 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4462 {
4463 struct mem_cgroup *memcg;
4464 long error = -ENOMEM;
4465 int node;
4466
4467 memcg = mem_cgroup_alloc();
4468 if (!memcg)
4469 return ERR_PTR(error);
4470
4471 for_each_node(node)
4472 if (alloc_mem_cgroup_per_zone_info(memcg, node))
4473 goto free_out;
4474
4475 /* root ? */
4476 if (parent_css == NULL) {
4477 root_mem_cgroup = memcg;
4478 mem_cgroup_root_css = &memcg->css;
4479 page_counter_init(&memcg->memory, NULL);
4480 memcg->high = PAGE_COUNTER_MAX;
4481 memcg->soft_limit = PAGE_COUNTER_MAX;
4482 page_counter_init(&memcg->memsw, NULL);
4483 page_counter_init(&memcg->kmem, NULL);
4484 }
4485
4486 memcg->last_scanned_node = MAX_NUMNODES;
4487 INIT_LIST_HEAD(&memcg->oom_notify);
4488 memcg->move_charge_at_immigrate = 0;
4489 mutex_init(&memcg->thresholds_lock);
4490 spin_lock_init(&memcg->move_lock);
4491 vmpressure_init(&memcg->vmpressure);
4492 INIT_LIST_HEAD(&memcg->event_list);
4493 spin_lock_init(&memcg->event_list_lock);
4494 #ifdef CONFIG_MEMCG_KMEM
4495 memcg->kmemcg_id = -1;
4496 #endif
4497
4498 return &memcg->css;
4499
4500 free_out:
4501 __mem_cgroup_free(memcg);
4502 return ERR_PTR(error);
4503 }
4504
4505 static int
4506 mem_cgroup_css_online(struct cgroup_subsys_state *css)
4507 {
4508 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4509 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
4510 int ret;
4511
4512 if (css->id > MEM_CGROUP_ID_MAX)
4513 return -ENOSPC;
4514
4515 if (!parent)
4516 return 0;
4517
4518 mutex_lock(&memcg_create_mutex);
4519
4520 memcg->use_hierarchy = parent->use_hierarchy;
4521 memcg->oom_kill_disable = parent->oom_kill_disable;
4522 memcg->swappiness = mem_cgroup_swappiness(parent);
4523
4524 if (parent->use_hierarchy) {
4525 page_counter_init(&memcg->memory, &parent->memory);
4526 memcg->high = PAGE_COUNTER_MAX;
4527 memcg->soft_limit = PAGE_COUNTER_MAX;
4528 page_counter_init(&memcg->memsw, &parent->memsw);
4529 page_counter_init(&memcg->kmem, &parent->kmem);
4530
4531 /*
4532 * No need to take a reference to the parent because cgroup
4533 * core guarantees its existence.
4534 */
4535 } else {
4536 page_counter_init(&memcg->memory, NULL);
4537 memcg->high = PAGE_COUNTER_MAX;
4538 memcg->soft_limit = PAGE_COUNTER_MAX;
4539 page_counter_init(&memcg->memsw, NULL);
4540 page_counter_init(&memcg->kmem, NULL);
4541 /*
4542 * Deeper hierachy with use_hierarchy == false doesn't make
4543 * much sense so let cgroup subsystem know about this
4544 * unfortunate state in our controller.
4545 */
4546 if (parent != root_mem_cgroup)
4547 memory_cgrp_subsys.broken_hierarchy = true;
4548 }
4549 mutex_unlock(&memcg_create_mutex);
4550
4551 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4552 if (ret)
4553 return ret;
4554
4555 /*
4556 * Make sure the memcg is initialized: mem_cgroup_iter()
4557 * orders reading memcg->initialized against its callers
4558 * reading the memcg members.
4559 */
4560 smp_store_release(&memcg->initialized, 1);
4561
4562 return 0;
4563 }
4564
4565 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
4566 {
4567 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4568 struct mem_cgroup_event *event, *tmp;
4569
4570 /*
4571 * Unregister events and notify userspace.
4572 * Notify userspace about cgroup removing only after rmdir of cgroup
4573 * directory to avoid race between userspace and kernelspace.
4574 */
4575 spin_lock(&memcg->event_list_lock);
4576 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
4577 list_del_init(&event->list);
4578 schedule_work(&event->remove);
4579 }
4580 spin_unlock(&memcg->event_list_lock);
4581
4582 vmpressure_cleanup(&memcg->vmpressure);
4583
4584 memcg_deactivate_kmem(memcg);
4585 }
4586
4587 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
4588 {
4589 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4590
4591 memcg_destroy_kmem(memcg);
4592 __mem_cgroup_free(memcg);
4593 }
4594
4595 /**
4596 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4597 * @css: the target css
4598 *
4599 * Reset the states of the mem_cgroup associated with @css. This is
4600 * invoked when the userland requests disabling on the default hierarchy
4601 * but the memcg is pinned through dependency. The memcg should stop
4602 * applying policies and should revert to the vanilla state as it may be
4603 * made visible again.
4604 *
4605 * The current implementation only resets the essential configurations.
4606 * This needs to be expanded to cover all the visible parts.
4607 */
4608 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4609 {
4610 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4611
4612 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4613 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4614 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
4615 memcg->low = 0;
4616 memcg->high = PAGE_COUNTER_MAX;
4617 memcg->soft_limit = PAGE_COUNTER_MAX;
4618 }
4619
4620 #ifdef CONFIG_MMU
4621 /* Handlers for move charge at task migration. */
4622 static int mem_cgroup_do_precharge(unsigned long count)
4623 {
4624 int ret;
4625
4626 /* Try a single bulk charge without reclaim first */
4627 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
4628 if (!ret) {
4629 mc.precharge += count;
4630 return ret;
4631 }
4632 if (ret == -EINTR) {
4633 cancel_charge(root_mem_cgroup, count);
4634 return ret;
4635 }
4636
4637 /* Try charges one by one with reclaim */
4638 while (count--) {
4639 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
4640 /*
4641 * In case of failure, any residual charges against
4642 * mc.to will be dropped by mem_cgroup_clear_mc()
4643 * later on. However, cancel any charges that are
4644 * bypassed to root right away or they'll be lost.
4645 */
4646 if (ret == -EINTR)
4647 cancel_charge(root_mem_cgroup, 1);
4648 if (ret)
4649 return ret;
4650 mc.precharge++;
4651 cond_resched();
4652 }
4653 return 0;
4654 }
4655
4656 /**
4657 * get_mctgt_type - get target type of moving charge
4658 * @vma: the vma the pte to be checked belongs
4659 * @addr: the address corresponding to the pte to be checked
4660 * @ptent: the pte to be checked
4661 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4662 *
4663 * Returns
4664 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4665 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4666 * move charge. if @target is not NULL, the page is stored in target->page
4667 * with extra refcnt got(Callers should handle it).
4668 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4669 * target for charge migration. if @target is not NULL, the entry is stored
4670 * in target->ent.
4671 *
4672 * Called with pte lock held.
4673 */
4674 union mc_target {
4675 struct page *page;
4676 swp_entry_t ent;
4677 };
4678
4679 enum mc_target_type {
4680 MC_TARGET_NONE = 0,
4681 MC_TARGET_PAGE,
4682 MC_TARGET_SWAP,
4683 };
4684
4685 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4686 unsigned long addr, pte_t ptent)
4687 {
4688 struct page *page = vm_normal_page(vma, addr, ptent);
4689
4690 if (!page || !page_mapped(page))
4691 return NULL;
4692 if (PageAnon(page)) {
4693 if (!(mc.flags & MOVE_ANON))
4694 return NULL;
4695 } else {
4696 if (!(mc.flags & MOVE_FILE))
4697 return NULL;
4698 }
4699 if (!get_page_unless_zero(page))
4700 return NULL;
4701
4702 return page;
4703 }
4704
4705 #ifdef CONFIG_SWAP
4706 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4707 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4708 {
4709 struct page *page = NULL;
4710 swp_entry_t ent = pte_to_swp_entry(ptent);
4711
4712 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
4713 return NULL;
4714 /*
4715 * Because lookup_swap_cache() updates some statistics counter,
4716 * we call find_get_page() with swapper_space directly.
4717 */
4718 page = find_get_page(swap_address_space(ent), ent.val);
4719 if (do_swap_account)
4720 entry->val = ent.val;
4721
4722 return page;
4723 }
4724 #else
4725 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4726 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4727 {
4728 return NULL;
4729 }
4730 #endif
4731
4732 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4733 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4734 {
4735 struct page *page = NULL;
4736 struct address_space *mapping;
4737 pgoff_t pgoff;
4738
4739 if (!vma->vm_file) /* anonymous vma */
4740 return NULL;
4741 if (!(mc.flags & MOVE_FILE))
4742 return NULL;
4743
4744 mapping = vma->vm_file->f_mapping;
4745 pgoff = linear_page_index(vma, addr);
4746
4747 /* page is moved even if it's not RSS of this task(page-faulted). */
4748 #ifdef CONFIG_SWAP
4749 /* shmem/tmpfs may report page out on swap: account for that too. */
4750 if (shmem_mapping(mapping)) {
4751 page = find_get_entry(mapping, pgoff);
4752 if (radix_tree_exceptional_entry(page)) {
4753 swp_entry_t swp = radix_to_swp_entry(page);
4754 if (do_swap_account)
4755 *entry = swp;
4756 page = find_get_page(swap_address_space(swp), swp.val);
4757 }
4758 } else
4759 page = find_get_page(mapping, pgoff);
4760 #else
4761 page = find_get_page(mapping, pgoff);
4762 #endif
4763 return page;
4764 }
4765
4766 /**
4767 * mem_cgroup_move_account - move account of the page
4768 * @page: the page
4769 * @nr_pages: number of regular pages (>1 for huge pages)
4770 * @from: mem_cgroup which the page is moved from.
4771 * @to: mem_cgroup which the page is moved to. @from != @to.
4772 *
4773 * The caller must confirm following.
4774 * - page is not on LRU (isolate_page() is useful.)
4775 * - compound_lock is held when nr_pages > 1
4776 *
4777 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4778 * from old cgroup.
4779 */
4780 static int mem_cgroup_move_account(struct page *page,
4781 unsigned int nr_pages,
4782 struct mem_cgroup *from,
4783 struct mem_cgroup *to)
4784 {
4785 unsigned long flags;
4786 int ret;
4787 bool anon;
4788
4789 VM_BUG_ON(from == to);
4790 VM_BUG_ON_PAGE(PageLRU(page), page);
4791 /*
4792 * The page is isolated from LRU. So, collapse function
4793 * will not handle this page. But page splitting can happen.
4794 * Do this check under compound_page_lock(). The caller should
4795 * hold it.
4796 */
4797 ret = -EBUSY;
4798 if (nr_pages > 1 && !PageTransHuge(page))
4799 goto out;
4800
4801 /*
4802 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
4803 * of its source page while we change it: page migration takes
4804 * both pages off the LRU, but page cache replacement doesn't.
4805 */
4806 if (!trylock_page(page))
4807 goto out;
4808
4809 ret = -EINVAL;
4810 if (page->mem_cgroup != from)
4811 goto out_unlock;
4812
4813 anon = PageAnon(page);
4814
4815 spin_lock_irqsave(&from->move_lock, flags);
4816
4817 if (!anon && page_mapped(page)) {
4818 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4819 nr_pages);
4820 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4821 nr_pages);
4822 }
4823
4824 /*
4825 * move_lock grabbed above and caller set from->moving_account, so
4826 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4827 * So mapping should be stable for dirty pages.
4828 */
4829 if (!anon && PageDirty(page)) {
4830 struct address_space *mapping = page_mapping(page);
4831
4832 if (mapping_cap_account_dirty(mapping)) {
4833 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4834 nr_pages);
4835 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4836 nr_pages);
4837 }
4838 }
4839
4840 if (PageWriteback(page)) {
4841 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4842 nr_pages);
4843 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4844 nr_pages);
4845 }
4846
4847 /*
4848 * It is safe to change page->mem_cgroup here because the page
4849 * is referenced, charged, and isolated - we can't race with
4850 * uncharging, charging, migration, or LRU putback.
4851 */
4852
4853 /* caller should have done css_get */
4854 page->mem_cgroup = to;
4855 spin_unlock_irqrestore(&from->move_lock, flags);
4856
4857 ret = 0;
4858
4859 local_irq_disable();
4860 mem_cgroup_charge_statistics(to, page, nr_pages);
4861 memcg_check_events(to, page);
4862 mem_cgroup_charge_statistics(from, page, -nr_pages);
4863 memcg_check_events(from, page);
4864 local_irq_enable();
4865 out_unlock:
4866 unlock_page(page);
4867 out:
4868 return ret;
4869 }
4870
4871 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
4872 unsigned long addr, pte_t ptent, union mc_target *target)
4873 {
4874 struct page *page = NULL;
4875 enum mc_target_type ret = MC_TARGET_NONE;
4876 swp_entry_t ent = { .val = 0 };
4877
4878 if (pte_present(ptent))
4879 page = mc_handle_present_pte(vma, addr, ptent);
4880 else if (is_swap_pte(ptent))
4881 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4882 else if (pte_none(ptent))
4883 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4884
4885 if (!page && !ent.val)
4886 return ret;
4887 if (page) {
4888 /*
4889 * Do only loose check w/o serialization.
4890 * mem_cgroup_move_account() checks the page is valid or
4891 * not under LRU exclusion.
4892 */
4893 if (page->mem_cgroup == mc.from) {
4894 ret = MC_TARGET_PAGE;
4895 if (target)
4896 target->page = page;
4897 }
4898 if (!ret || !target)
4899 put_page(page);
4900 }
4901 /* There is a swap entry and a page doesn't exist or isn't charged */
4902 if (ent.val && !ret &&
4903 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
4904 ret = MC_TARGET_SWAP;
4905 if (target)
4906 target->ent = ent;
4907 }
4908 return ret;
4909 }
4910
4911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4912 /*
4913 * We don't consider swapping or file mapped pages because THP does not
4914 * support them for now.
4915 * Caller should make sure that pmd_trans_huge(pmd) is true.
4916 */
4917 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4918 unsigned long addr, pmd_t pmd, union mc_target *target)
4919 {
4920 struct page *page = NULL;
4921 enum mc_target_type ret = MC_TARGET_NONE;
4922
4923 page = pmd_page(pmd);
4924 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
4925 if (!(mc.flags & MOVE_ANON))
4926 return ret;
4927 if (page->mem_cgroup == mc.from) {
4928 ret = MC_TARGET_PAGE;
4929 if (target) {
4930 get_page(page);
4931 target->page = page;
4932 }
4933 }
4934 return ret;
4935 }
4936 #else
4937 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4938 unsigned long addr, pmd_t pmd, union mc_target *target)
4939 {
4940 return MC_TARGET_NONE;
4941 }
4942 #endif
4943
4944 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4945 unsigned long addr, unsigned long end,
4946 struct mm_walk *walk)
4947 {
4948 struct vm_area_struct *vma = walk->vma;
4949 pte_t *pte;
4950 spinlock_t *ptl;
4951
4952 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
4953 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4954 mc.precharge += HPAGE_PMD_NR;
4955 spin_unlock(ptl);
4956 return 0;
4957 }
4958
4959 if (pmd_trans_unstable(pmd))
4960 return 0;
4961 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4962 for (; addr != end; pte++, addr += PAGE_SIZE)
4963 if (get_mctgt_type(vma, addr, *pte, NULL))
4964 mc.precharge++; /* increment precharge temporarily */
4965 pte_unmap_unlock(pte - 1, ptl);
4966 cond_resched();
4967
4968 return 0;
4969 }
4970
4971 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4972 {
4973 unsigned long precharge;
4974
4975 struct mm_walk mem_cgroup_count_precharge_walk = {
4976 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4977 .mm = mm,
4978 };
4979 down_read(&mm->mmap_sem);
4980 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
4981 up_read(&mm->mmap_sem);
4982
4983 precharge = mc.precharge;
4984 mc.precharge = 0;
4985
4986 return precharge;
4987 }
4988
4989 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4990 {
4991 unsigned long precharge = mem_cgroup_count_precharge(mm);
4992
4993 VM_BUG_ON(mc.moving_task);
4994 mc.moving_task = current;
4995 return mem_cgroup_do_precharge(precharge);
4996 }
4997
4998 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4999 static void __mem_cgroup_clear_mc(void)
5000 {
5001 struct mem_cgroup *from = mc.from;
5002 struct mem_cgroup *to = mc.to;
5003
5004 /* we must uncharge all the leftover precharges from mc.to */
5005 if (mc.precharge) {
5006 cancel_charge(mc.to, mc.precharge);
5007 mc.precharge = 0;
5008 }
5009 /*
5010 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5011 * we must uncharge here.
5012 */
5013 if (mc.moved_charge) {
5014 cancel_charge(mc.from, mc.moved_charge);
5015 mc.moved_charge = 0;
5016 }
5017 /* we must fixup refcnts and charges */
5018 if (mc.moved_swap) {
5019 /* uncharge swap account from the old cgroup */
5020 if (!mem_cgroup_is_root(mc.from))
5021 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5022
5023 /*
5024 * we charged both to->memory and to->memsw, so we
5025 * should uncharge to->memory.
5026 */
5027 if (!mem_cgroup_is_root(mc.to))
5028 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5029
5030 css_put_many(&mc.from->css, mc.moved_swap);
5031
5032 /* we've already done css_get(mc.to) */
5033 mc.moved_swap = 0;
5034 }
5035 memcg_oom_recover(from);
5036 memcg_oom_recover(to);
5037 wake_up_all(&mc.waitq);
5038 }
5039
5040 static void mem_cgroup_clear_mc(void)
5041 {
5042 /*
5043 * we must clear moving_task before waking up waiters at the end of
5044 * task migration.
5045 */
5046 mc.moving_task = NULL;
5047 __mem_cgroup_clear_mc();
5048 spin_lock(&mc.lock);
5049 mc.from = NULL;
5050 mc.to = NULL;
5051 spin_unlock(&mc.lock);
5052 }
5053
5054 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5055 struct cgroup_taskset *tset)
5056 {
5057 struct task_struct *p = cgroup_taskset_first(tset);
5058 int ret = 0;
5059 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5060 unsigned long move_flags;
5061
5062 /*
5063 * We are now commited to this value whatever it is. Changes in this
5064 * tunable will only affect upcoming migrations, not the current one.
5065 * So we need to save it, and keep it going.
5066 */
5067 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5068 if (move_flags) {
5069 struct mm_struct *mm;
5070 struct mem_cgroup *from = mem_cgroup_from_task(p);
5071
5072 VM_BUG_ON(from == memcg);
5073
5074 mm = get_task_mm(p);
5075 if (!mm)
5076 return 0;
5077 /* We move charges only when we move a owner of the mm */
5078 if (mm->owner == p) {
5079 VM_BUG_ON(mc.from);
5080 VM_BUG_ON(mc.to);
5081 VM_BUG_ON(mc.precharge);
5082 VM_BUG_ON(mc.moved_charge);
5083 VM_BUG_ON(mc.moved_swap);
5084
5085 spin_lock(&mc.lock);
5086 mc.from = from;
5087 mc.to = memcg;
5088 mc.flags = move_flags;
5089 spin_unlock(&mc.lock);
5090 /* We set mc.moving_task later */
5091
5092 ret = mem_cgroup_precharge_mc(mm);
5093 if (ret)
5094 mem_cgroup_clear_mc();
5095 }
5096 mmput(mm);
5097 }
5098 return ret;
5099 }
5100
5101 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5102 struct cgroup_taskset *tset)
5103 {
5104 if (mc.to)
5105 mem_cgroup_clear_mc();
5106 }
5107
5108 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5109 unsigned long addr, unsigned long end,
5110 struct mm_walk *walk)
5111 {
5112 int ret = 0;
5113 struct vm_area_struct *vma = walk->vma;
5114 pte_t *pte;
5115 spinlock_t *ptl;
5116 enum mc_target_type target_type;
5117 union mc_target target;
5118 struct page *page;
5119
5120 /*
5121 * We don't take compound_lock() here but no race with splitting thp
5122 * happens because:
5123 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5124 * under splitting, which means there's no concurrent thp split,
5125 * - if another thread runs into split_huge_page() just after we
5126 * entered this if-block, the thread must wait for page table lock
5127 * to be unlocked in __split_huge_page_splitting(), where the main
5128 * part of thp split is not executed yet.
5129 */
5130 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
5131 if (mc.precharge < HPAGE_PMD_NR) {
5132 spin_unlock(ptl);
5133 return 0;
5134 }
5135 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5136 if (target_type == MC_TARGET_PAGE) {
5137 page = target.page;
5138 if (!isolate_lru_page(page)) {
5139 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
5140 mc.from, mc.to)) {
5141 mc.precharge -= HPAGE_PMD_NR;
5142 mc.moved_charge += HPAGE_PMD_NR;
5143 }
5144 putback_lru_page(page);
5145 }
5146 put_page(page);
5147 }
5148 spin_unlock(ptl);
5149 return 0;
5150 }
5151
5152 if (pmd_trans_unstable(pmd))
5153 return 0;
5154 retry:
5155 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5156 for (; addr != end; addr += PAGE_SIZE) {
5157 pte_t ptent = *(pte++);
5158 swp_entry_t ent;
5159
5160 if (!mc.precharge)
5161 break;
5162
5163 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5164 case MC_TARGET_PAGE:
5165 page = target.page;
5166 if (isolate_lru_page(page))
5167 goto put;
5168 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
5169 mc.precharge--;
5170 /* we uncharge from mc.from later. */
5171 mc.moved_charge++;
5172 }
5173 putback_lru_page(page);
5174 put: /* get_mctgt_type() gets the page */
5175 put_page(page);
5176 break;
5177 case MC_TARGET_SWAP:
5178 ent = target.ent;
5179 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5180 mc.precharge--;
5181 /* we fixup refcnts and charges later. */
5182 mc.moved_swap++;
5183 }
5184 break;
5185 default:
5186 break;
5187 }
5188 }
5189 pte_unmap_unlock(pte - 1, ptl);
5190 cond_resched();
5191
5192 if (addr != end) {
5193 /*
5194 * We have consumed all precharges we got in can_attach().
5195 * We try charge one by one, but don't do any additional
5196 * charges to mc.to if we have failed in charge once in attach()
5197 * phase.
5198 */
5199 ret = mem_cgroup_do_precharge(1);
5200 if (!ret)
5201 goto retry;
5202 }
5203
5204 return ret;
5205 }
5206
5207 static void mem_cgroup_move_charge(struct mm_struct *mm)
5208 {
5209 struct mm_walk mem_cgroup_move_charge_walk = {
5210 .pmd_entry = mem_cgroup_move_charge_pte_range,
5211 .mm = mm,
5212 };
5213
5214 lru_add_drain_all();
5215 /*
5216 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5217 * move_lock while we're moving its pages to another memcg.
5218 * Then wait for already started RCU-only updates to finish.
5219 */
5220 atomic_inc(&mc.from->moving_account);
5221 synchronize_rcu();
5222 retry:
5223 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5224 /*
5225 * Someone who are holding the mmap_sem might be waiting in
5226 * waitq. So we cancel all extra charges, wake up all waiters,
5227 * and retry. Because we cancel precharges, we might not be able
5228 * to move enough charges, but moving charge is a best-effort
5229 * feature anyway, so it wouldn't be a big problem.
5230 */
5231 __mem_cgroup_clear_mc();
5232 cond_resched();
5233 goto retry;
5234 }
5235 /*
5236 * When we have consumed all precharges and failed in doing
5237 * additional charge, the page walk just aborts.
5238 */
5239 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
5240 up_read(&mm->mmap_sem);
5241 atomic_dec(&mc.from->moving_account);
5242 }
5243
5244 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5245 struct cgroup_taskset *tset)
5246 {
5247 struct task_struct *p = cgroup_taskset_first(tset);
5248 struct mm_struct *mm = get_task_mm(p);
5249
5250 if (mm) {
5251 if (mc.to)
5252 mem_cgroup_move_charge(mm);
5253 mmput(mm);
5254 }
5255 if (mc.to)
5256 mem_cgroup_clear_mc();
5257 }
5258 #else /* !CONFIG_MMU */
5259 static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
5260 struct cgroup_taskset *tset)
5261 {
5262 return 0;
5263 }
5264 static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
5265 struct cgroup_taskset *tset)
5266 {
5267 }
5268 static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
5269 struct cgroup_taskset *tset)
5270 {
5271 }
5272 #endif
5273
5274 /*
5275 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5276 * to verify whether we're attached to the default hierarchy on each mount
5277 * attempt.
5278 */
5279 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5280 {
5281 /*
5282 * use_hierarchy is forced on the default hierarchy. cgroup core
5283 * guarantees that @root doesn't have any children, so turning it
5284 * on for the root memcg is enough.
5285 */
5286 if (cgroup_on_dfl(root_css->cgroup))
5287 root_mem_cgroup->use_hierarchy = true;
5288 else
5289 root_mem_cgroup->use_hierarchy = false;
5290 }
5291
5292 static u64 memory_current_read(struct cgroup_subsys_state *css,
5293 struct cftype *cft)
5294 {
5295 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5296 }
5297
5298 static int memory_low_show(struct seq_file *m, void *v)
5299 {
5300 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5301 unsigned long low = READ_ONCE(memcg->low);
5302
5303 if (low == PAGE_COUNTER_MAX)
5304 seq_puts(m, "max\n");
5305 else
5306 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5307
5308 return 0;
5309 }
5310
5311 static ssize_t memory_low_write(struct kernfs_open_file *of,
5312 char *buf, size_t nbytes, loff_t off)
5313 {
5314 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5315 unsigned long low;
5316 int err;
5317
5318 buf = strstrip(buf);
5319 err = page_counter_memparse(buf, "max", &low);
5320 if (err)
5321 return err;
5322
5323 memcg->low = low;
5324
5325 return nbytes;
5326 }
5327
5328 static int memory_high_show(struct seq_file *m, void *v)
5329 {
5330 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5331 unsigned long high = READ_ONCE(memcg->high);
5332
5333 if (high == PAGE_COUNTER_MAX)
5334 seq_puts(m, "max\n");
5335 else
5336 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5337
5338 return 0;
5339 }
5340
5341 static ssize_t memory_high_write(struct kernfs_open_file *of,
5342 char *buf, size_t nbytes, loff_t off)
5343 {
5344 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5345 unsigned long high;
5346 int err;
5347
5348 buf = strstrip(buf);
5349 err = page_counter_memparse(buf, "max", &high);
5350 if (err)
5351 return err;
5352
5353 memcg->high = high;
5354
5355 return nbytes;
5356 }
5357
5358 static int memory_max_show(struct seq_file *m, void *v)
5359 {
5360 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5361 unsigned long max = READ_ONCE(memcg->memory.limit);
5362
5363 if (max == PAGE_COUNTER_MAX)
5364 seq_puts(m, "max\n");
5365 else
5366 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5367
5368 return 0;
5369 }
5370
5371 static ssize_t memory_max_write(struct kernfs_open_file *of,
5372 char *buf, size_t nbytes, loff_t off)
5373 {
5374 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5375 unsigned long max;
5376 int err;
5377
5378 buf = strstrip(buf);
5379 err = page_counter_memparse(buf, "max", &max);
5380 if (err)
5381 return err;
5382
5383 err = mem_cgroup_resize_limit(memcg, max);
5384 if (err)
5385 return err;
5386
5387 return nbytes;
5388 }
5389
5390 static int memory_events_show(struct seq_file *m, void *v)
5391 {
5392 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5393
5394 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5395 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5396 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5397 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5398
5399 return 0;
5400 }
5401
5402 static struct cftype memory_files[] = {
5403 {
5404 .name = "current",
5405 .read_u64 = memory_current_read,
5406 },
5407 {
5408 .name = "low",
5409 .flags = CFTYPE_NOT_ON_ROOT,
5410 .seq_show = memory_low_show,
5411 .write = memory_low_write,
5412 },
5413 {
5414 .name = "high",
5415 .flags = CFTYPE_NOT_ON_ROOT,
5416 .seq_show = memory_high_show,
5417 .write = memory_high_write,
5418 },
5419 {
5420 .name = "max",
5421 .flags = CFTYPE_NOT_ON_ROOT,
5422 .seq_show = memory_max_show,
5423 .write = memory_max_write,
5424 },
5425 {
5426 .name = "events",
5427 .flags = CFTYPE_NOT_ON_ROOT,
5428 .seq_show = memory_events_show,
5429 },
5430 { } /* terminate */
5431 };
5432
5433 struct cgroup_subsys memory_cgrp_subsys = {
5434 .css_alloc = mem_cgroup_css_alloc,
5435 .css_online = mem_cgroup_css_online,
5436 .css_offline = mem_cgroup_css_offline,
5437 .css_free = mem_cgroup_css_free,
5438 .css_reset = mem_cgroup_css_reset,
5439 .can_attach = mem_cgroup_can_attach,
5440 .cancel_attach = mem_cgroup_cancel_attach,
5441 .attach = mem_cgroup_move_task,
5442 .bind = mem_cgroup_bind,
5443 .dfl_cftypes = memory_files,
5444 .legacy_cftypes = mem_cgroup_legacy_files,
5445 .early_init = 0,
5446 };
5447
5448 /**
5449 * mem_cgroup_events - count memory events against a cgroup
5450 * @memcg: the memory cgroup
5451 * @idx: the event index
5452 * @nr: the number of events to account for
5453 */
5454 void mem_cgroup_events(struct mem_cgroup *memcg,
5455 enum mem_cgroup_events_index idx,
5456 unsigned int nr)
5457 {
5458 this_cpu_add(memcg->stat->events[idx], nr);
5459 }
5460
5461 /**
5462 * mem_cgroup_low - check if memory consumption is below the normal range
5463 * @root: the highest ancestor to consider
5464 * @memcg: the memory cgroup to check
5465 *
5466 * Returns %true if memory consumption of @memcg, and that of all
5467 * configurable ancestors up to @root, is below the normal range.
5468 */
5469 bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5470 {
5471 if (mem_cgroup_disabled())
5472 return false;
5473
5474 /*
5475 * The toplevel group doesn't have a configurable range, so
5476 * it's never low when looked at directly, and it is not
5477 * considered an ancestor when assessing the hierarchy.
5478 */
5479
5480 if (memcg == root_mem_cgroup)
5481 return false;
5482
5483 if (page_counter_read(&memcg->memory) >= memcg->low)
5484 return false;
5485
5486 while (memcg != root) {
5487 memcg = parent_mem_cgroup(memcg);
5488
5489 if (memcg == root_mem_cgroup)
5490 break;
5491
5492 if (page_counter_read(&memcg->memory) >= memcg->low)
5493 return false;
5494 }
5495 return true;
5496 }
5497
5498 /**
5499 * mem_cgroup_try_charge - try charging a page
5500 * @page: page to charge
5501 * @mm: mm context of the victim
5502 * @gfp_mask: reclaim mode
5503 * @memcgp: charged memcg return
5504 *
5505 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5506 * pages according to @gfp_mask if necessary.
5507 *
5508 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5509 * Otherwise, an error code is returned.
5510 *
5511 * After page->mapping has been set up, the caller must finalize the
5512 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5513 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5514 */
5515 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5516 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5517 {
5518 struct mem_cgroup *memcg = NULL;
5519 unsigned int nr_pages = 1;
5520 int ret = 0;
5521
5522 if (mem_cgroup_disabled())
5523 goto out;
5524
5525 if (PageSwapCache(page)) {
5526 /*
5527 * Every swap fault against a single page tries to charge the
5528 * page, bail as early as possible. shmem_unuse() encounters
5529 * already charged pages, too. The USED bit is protected by
5530 * the page lock, which serializes swap cache removal, which
5531 * in turn serializes uncharging.
5532 */
5533 if (page->mem_cgroup)
5534 goto out;
5535 }
5536
5537 if (PageTransHuge(page)) {
5538 nr_pages <<= compound_order(page);
5539 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5540 }
5541
5542 if (do_swap_account && PageSwapCache(page))
5543 memcg = try_get_mem_cgroup_from_page(page);
5544 if (!memcg)
5545 memcg = get_mem_cgroup_from_mm(mm);
5546
5547 ret = try_charge(memcg, gfp_mask, nr_pages);
5548
5549 css_put(&memcg->css);
5550
5551 if (ret == -EINTR) {
5552 memcg = root_mem_cgroup;
5553 ret = 0;
5554 }
5555 out:
5556 *memcgp = memcg;
5557 return ret;
5558 }
5559
5560 /**
5561 * mem_cgroup_commit_charge - commit a page charge
5562 * @page: page to charge
5563 * @memcg: memcg to charge the page to
5564 * @lrucare: page might be on LRU already
5565 *
5566 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5567 * after page->mapping has been set up. This must happen atomically
5568 * as part of the page instantiation, i.e. under the page table lock
5569 * for anonymous pages, under the page lock for page and swap cache.
5570 *
5571 * In addition, the page must not be on the LRU during the commit, to
5572 * prevent racing with task migration. If it might be, use @lrucare.
5573 *
5574 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5575 */
5576 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5577 bool lrucare)
5578 {
5579 unsigned int nr_pages = 1;
5580
5581 VM_BUG_ON_PAGE(!page->mapping, page);
5582 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5583
5584 if (mem_cgroup_disabled())
5585 return;
5586 /*
5587 * Swap faults will attempt to charge the same page multiple
5588 * times. But reuse_swap_page() might have removed the page
5589 * from swapcache already, so we can't check PageSwapCache().
5590 */
5591 if (!memcg)
5592 return;
5593
5594 commit_charge(page, memcg, lrucare);
5595
5596 if (PageTransHuge(page)) {
5597 nr_pages <<= compound_order(page);
5598 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5599 }
5600
5601 local_irq_disable();
5602 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5603 memcg_check_events(memcg, page);
5604 local_irq_enable();
5605
5606 if (do_swap_account && PageSwapCache(page)) {
5607 swp_entry_t entry = { .val = page_private(page) };
5608 /*
5609 * The swap entry might not get freed for a long time,
5610 * let's not wait for it. The page already received a
5611 * memory+swap charge, drop the swap entry duplicate.
5612 */
5613 mem_cgroup_uncharge_swap(entry);
5614 }
5615 }
5616
5617 /**
5618 * mem_cgroup_cancel_charge - cancel a page charge
5619 * @page: page to charge
5620 * @memcg: memcg to charge the page to
5621 *
5622 * Cancel a charge transaction started by mem_cgroup_try_charge().
5623 */
5624 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5625 {
5626 unsigned int nr_pages = 1;
5627
5628 if (mem_cgroup_disabled())
5629 return;
5630 /*
5631 * Swap faults will attempt to charge the same page multiple
5632 * times. But reuse_swap_page() might have removed the page
5633 * from swapcache already, so we can't check PageSwapCache().
5634 */
5635 if (!memcg)
5636 return;
5637
5638 if (PageTransHuge(page)) {
5639 nr_pages <<= compound_order(page);
5640 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5641 }
5642
5643 cancel_charge(memcg, nr_pages);
5644 }
5645
5646 static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
5647 unsigned long nr_anon, unsigned long nr_file,
5648 unsigned long nr_huge, struct page *dummy_page)
5649 {
5650 unsigned long nr_pages = nr_anon + nr_file;
5651 unsigned long flags;
5652
5653 if (!mem_cgroup_is_root(memcg)) {
5654 page_counter_uncharge(&memcg->memory, nr_pages);
5655 if (do_swap_account)
5656 page_counter_uncharge(&memcg->memsw, nr_pages);
5657 memcg_oom_recover(memcg);
5658 }
5659
5660 local_irq_save(flags);
5661 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5662 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5663 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5664 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
5665 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
5666 memcg_check_events(memcg, dummy_page);
5667 local_irq_restore(flags);
5668
5669 if (!mem_cgroup_is_root(memcg))
5670 css_put_many(&memcg->css, nr_pages);
5671 }
5672
5673 static void uncharge_list(struct list_head *page_list)
5674 {
5675 struct mem_cgroup *memcg = NULL;
5676 unsigned long nr_anon = 0;
5677 unsigned long nr_file = 0;
5678 unsigned long nr_huge = 0;
5679 unsigned long pgpgout = 0;
5680 struct list_head *next;
5681 struct page *page;
5682
5683 next = page_list->next;
5684 do {
5685 unsigned int nr_pages = 1;
5686
5687 page = list_entry(next, struct page, lru);
5688 next = page->lru.next;
5689
5690 VM_BUG_ON_PAGE(PageLRU(page), page);
5691 VM_BUG_ON_PAGE(page_count(page), page);
5692
5693 if (!page->mem_cgroup)
5694 continue;
5695
5696 /*
5697 * Nobody should be changing or seriously looking at
5698 * page->mem_cgroup at this point, we have fully
5699 * exclusive access to the page.
5700 */
5701
5702 if (memcg != page->mem_cgroup) {
5703 if (memcg) {
5704 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5705 nr_huge, page);
5706 pgpgout = nr_anon = nr_file = nr_huge = 0;
5707 }
5708 memcg = page->mem_cgroup;
5709 }
5710
5711 if (PageTransHuge(page)) {
5712 nr_pages <<= compound_order(page);
5713 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5714 nr_huge += nr_pages;
5715 }
5716
5717 if (PageAnon(page))
5718 nr_anon += nr_pages;
5719 else
5720 nr_file += nr_pages;
5721
5722 page->mem_cgroup = NULL;
5723
5724 pgpgout++;
5725 } while (next != page_list);
5726
5727 if (memcg)
5728 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5729 nr_huge, page);
5730 }
5731
5732 /**
5733 * mem_cgroup_uncharge - uncharge a page
5734 * @page: page to uncharge
5735 *
5736 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5737 * mem_cgroup_commit_charge().
5738 */
5739 void mem_cgroup_uncharge(struct page *page)
5740 {
5741 if (mem_cgroup_disabled())
5742 return;
5743
5744 /* Don't touch page->lru of any random page, pre-check: */
5745 if (!page->mem_cgroup)
5746 return;
5747
5748 INIT_LIST_HEAD(&page->lru);
5749 uncharge_list(&page->lru);
5750 }
5751
5752 /**
5753 * mem_cgroup_uncharge_list - uncharge a list of page
5754 * @page_list: list of pages to uncharge
5755 *
5756 * Uncharge a list of pages previously charged with
5757 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5758 */
5759 void mem_cgroup_uncharge_list(struct list_head *page_list)
5760 {
5761 if (mem_cgroup_disabled())
5762 return;
5763
5764 if (!list_empty(page_list))
5765 uncharge_list(page_list);
5766 }
5767
5768 /**
5769 * mem_cgroup_migrate - migrate a charge to another page
5770 * @oldpage: currently charged page
5771 * @newpage: page to transfer the charge to
5772 * @lrucare: either or both pages might be on the LRU already
5773 *
5774 * Migrate the charge from @oldpage to @newpage.
5775 *
5776 * Both pages must be locked, @newpage->mapping must be set up.
5777 */
5778 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5779 bool lrucare)
5780 {
5781 struct mem_cgroup *memcg;
5782 int isolated;
5783
5784 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5785 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5786 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5787 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5788 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
5789 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5790 newpage);
5791
5792 if (mem_cgroup_disabled())
5793 return;
5794
5795 /* Page cache replacement: new page already charged? */
5796 if (newpage->mem_cgroup)
5797 return;
5798
5799 /*
5800 * Swapcache readahead pages can get migrated before being
5801 * charged, and migration from compaction can happen to an
5802 * uncharged page when the PFN walker finds a page that
5803 * reclaim just put back on the LRU but has not released yet.
5804 */
5805 memcg = oldpage->mem_cgroup;
5806 if (!memcg)
5807 return;
5808
5809 if (lrucare)
5810 lock_page_lru(oldpage, &isolated);
5811
5812 oldpage->mem_cgroup = NULL;
5813
5814 if (lrucare)
5815 unlock_page_lru(oldpage, isolated);
5816
5817 commit_charge(newpage, memcg, lrucare);
5818 }
5819
5820 /*
5821 * subsys_initcall() for memory controller.
5822 *
5823 * Some parts like hotcpu_notifier() have to be initialized from this context
5824 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5825 * everything that doesn't depend on a specific mem_cgroup structure should
5826 * be initialized from here.
5827 */
5828 static int __init mem_cgroup_init(void)
5829 {
5830 int cpu, node;
5831
5832 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
5833
5834 for_each_possible_cpu(cpu)
5835 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5836 drain_local_stock);
5837
5838 for_each_node(node) {
5839 struct mem_cgroup_tree_per_node *rtpn;
5840 int zone;
5841
5842 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5843 node_online(node) ? node : NUMA_NO_NODE);
5844
5845 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5846 struct mem_cgroup_tree_per_zone *rtpz;
5847
5848 rtpz = &rtpn->rb_tree_per_zone[zone];
5849 rtpz->rb_root = RB_ROOT;
5850 spin_lock_init(&rtpz->lock);
5851 }
5852 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5853 }
5854
5855 return 0;
5856 }
5857 subsys_initcall(mem_cgroup_init);
5858
5859 #ifdef CONFIG_MEMCG_SWAP
5860 /**
5861 * mem_cgroup_swapout - transfer a memsw charge to swap
5862 * @page: page whose memsw charge to transfer
5863 * @entry: swap entry to move the charge to
5864 *
5865 * Transfer the memsw charge of @page to @entry.
5866 */
5867 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5868 {
5869 struct mem_cgroup *memcg;
5870 unsigned short oldid;
5871
5872 VM_BUG_ON_PAGE(PageLRU(page), page);
5873 VM_BUG_ON_PAGE(page_count(page), page);
5874
5875 if (!do_swap_account)
5876 return;
5877
5878 memcg = page->mem_cgroup;
5879
5880 /* Readahead page, never charged */
5881 if (!memcg)
5882 return;
5883
5884 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5885 VM_BUG_ON_PAGE(oldid, page);
5886 mem_cgroup_swap_statistics(memcg, true);
5887
5888 page->mem_cgroup = NULL;
5889
5890 if (!mem_cgroup_is_root(memcg))
5891 page_counter_uncharge(&memcg->memory, 1);
5892
5893 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5894 VM_BUG_ON(!irqs_disabled());
5895
5896 mem_cgroup_charge_statistics(memcg, page, -1);
5897 memcg_check_events(memcg, page);
5898 }
5899
5900 /**
5901 * mem_cgroup_uncharge_swap - uncharge a swap entry
5902 * @entry: swap entry to uncharge
5903 *
5904 * Drop the memsw charge associated with @entry.
5905 */
5906 void mem_cgroup_uncharge_swap(swp_entry_t entry)
5907 {
5908 struct mem_cgroup *memcg;
5909 unsigned short id;
5910
5911 if (!do_swap_account)
5912 return;
5913
5914 id = swap_cgroup_record(entry, 0);
5915 rcu_read_lock();
5916 memcg = mem_cgroup_from_id(id);
5917 if (memcg) {
5918 if (!mem_cgroup_is_root(memcg))
5919 page_counter_uncharge(&memcg->memsw, 1);
5920 mem_cgroup_swap_statistics(memcg, false);
5921 css_put(&memcg->css);
5922 }
5923 rcu_read_unlock();
5924 }
5925
5926 /* for remember boot option*/
5927 #ifdef CONFIG_MEMCG_SWAP_ENABLED
5928 static int really_do_swap_account __initdata = 1;
5929 #else
5930 static int really_do_swap_account __initdata;
5931 #endif
5932
5933 static int __init enable_swap_account(char *s)
5934 {
5935 if (!strcmp(s, "1"))
5936 really_do_swap_account = 1;
5937 else if (!strcmp(s, "0"))
5938 really_do_swap_account = 0;
5939 return 1;
5940 }
5941 __setup("swapaccount=", enable_swap_account);
5942
5943 static struct cftype memsw_cgroup_files[] = {
5944 {
5945 .name = "memsw.usage_in_bytes",
5946 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5947 .read_u64 = mem_cgroup_read_u64,
5948 },
5949 {
5950 .name = "memsw.max_usage_in_bytes",
5951 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5952 .write = mem_cgroup_reset,
5953 .read_u64 = mem_cgroup_read_u64,
5954 },
5955 {
5956 .name = "memsw.limit_in_bytes",
5957 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5958 .write = mem_cgroup_write,
5959 .read_u64 = mem_cgroup_read_u64,
5960 },
5961 {
5962 .name = "memsw.failcnt",
5963 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5964 .write = mem_cgroup_reset,
5965 .read_u64 = mem_cgroup_read_u64,
5966 },
5967 { }, /* terminate */
5968 };
5969
5970 static int __init mem_cgroup_swap_init(void)
5971 {
5972 if (!mem_cgroup_disabled() && really_do_swap_account) {
5973 do_swap_account = 1;
5974 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5975 memsw_cgroup_files));
5976 }
5977 return 0;
5978 }
5979 subsys_initcall(mem_cgroup_swap_init);
5980
5981 #endif /* CONFIG_MEMCG_SWAP */