]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
bpf: Fix a typo of reuseport map in bpf.h.
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28 #include <linux/page_counter.h>
29 #include <linux/memcontrol.h>
30 #include <linux/cgroup.h>
31 #include <linux/pagewalk.h>
32 #include <linux/sched/mm.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/hugetlb.h>
35 #include <linux/pagemap.h>
36 #include <linux/vm_event_item.h>
37 #include <linux/smp.h>
38 #include <linux/page-flags.h>
39 #include <linux/backing-dev.h>
40 #include <linux/bit_spinlock.h>
41 #include <linux/rcupdate.h>
42 #include <linux/limits.h>
43 #include <linux/export.h>
44 #include <linux/mutex.h>
45 #include <linux/rbtree.h>
46 #include <linux/slab.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/spinlock.h>
50 #include <linux/eventfd.h>
51 #include <linux/poll.h>
52 #include <linux/sort.h>
53 #include <linux/fs.h>
54 #include <linux/seq_file.h>
55 #include <linux/vmpressure.h>
56 #include <linux/mm_inline.h>
57 #include <linux/swap_cgroup.h>
58 #include <linux/cpu.h>
59 #include <linux/oom.h>
60 #include <linux/lockdep.h>
61 #include <linux/file.h>
62 #include <linux/tracehook.h>
63 #include <linux/psi.h>
64 #include <linux/seq_buf.h>
65 #include "internal.h"
66 #include <net/sock.h>
67 #include <net/ip.h>
68 #include "slab.h"
69
70 #include <linux/uaccess.h>
71
72 #include <trace/events/vmscan.h>
73
74 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
75 EXPORT_SYMBOL(memory_cgrp_subsys);
76
77 struct mem_cgroup *root_mem_cgroup __read_mostly;
78
79 /* Active memory cgroup to use from an interrupt context */
80 DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
81
82 /* Socket memory accounting disabled? */
83 static bool cgroup_memory_nosocket;
84
85 /* Kernel memory accounting disabled? */
86 static bool cgroup_memory_nokmem;
87
88 /* Whether the swap controller is active */
89 #ifdef CONFIG_MEMCG_SWAP
90 bool cgroup_memory_noswap __read_mostly;
91 #else
92 #define cgroup_memory_noswap 1
93 #endif
94
95 #ifdef CONFIG_CGROUP_WRITEBACK
96 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97 #endif
98
99 /* Whether legacy memory+swap accounting is active */
100 static bool do_memsw_account(void)
101 {
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
103 }
104
105 #define THRESHOLDS_EVENTS_TARGET 128
106 #define SOFTLIMIT_EVENTS_TARGET 1024
107
108 /*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113 struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117 };
118
119 struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121 };
122
123 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125 /* for OOM */
126 struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129 };
130
131 /*
132 * cgroup_event represents events which userspace want to receive.
133 */
134 struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169 };
170
171 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174 /* Stuffs for move charges at task migration. */
175 /*
176 * Types of charges to be moved.
177 */
178 #define MOVE_ANON 0x1U
179 #define MOVE_FILE 0x2U
180 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182 /* "mc" and its members are protected by cgroup_mutex */
183 static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194 } mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197 };
198
199 /*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206 /* for encoding cft->private value on file */
207 enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _OOM_TYPE,
211 _KMEM,
212 _TCP,
213 };
214
215 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
216 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
217 #define MEMFILE_ATTR(val) ((val) & 0xffff)
218 /* Used for OOM nofiier */
219 #define OOM_CONTROL (0)
220
221 /*
222 * Iteration constructs for visiting all cgroups (under a tree). If
223 * loops are exited prematurely (break), mem_cgroup_iter_break() must
224 * be used for reference counting.
225 */
226 #define for_each_mem_cgroup_tree(iter, root) \
227 for (iter = mem_cgroup_iter(root, NULL, NULL); \
228 iter != NULL; \
229 iter = mem_cgroup_iter(root, iter, NULL))
230
231 #define for_each_mem_cgroup(iter) \
232 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
233 iter != NULL; \
234 iter = mem_cgroup_iter(NULL, iter, NULL))
235
236 static inline bool should_force_charge(void)
237 {
238 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
239 (current->flags & PF_EXITING);
240 }
241
242 /* Some nice accessors for the vmpressure. */
243 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
244 {
245 if (!memcg)
246 memcg = root_mem_cgroup;
247 return &memcg->vmpressure;
248 }
249
250 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
251 {
252 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
253 }
254
255 #ifdef CONFIG_MEMCG_KMEM
256 extern spinlock_t css_set_lock;
257
258 static void obj_cgroup_release(struct percpu_ref *ref)
259 {
260 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
261 struct mem_cgroup *memcg;
262 unsigned int nr_bytes;
263 unsigned int nr_pages;
264 unsigned long flags;
265
266 /*
267 * At this point all allocated objects are freed, and
268 * objcg->nr_charged_bytes can't have an arbitrary byte value.
269 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
270 *
271 * The following sequence can lead to it:
272 * 1) CPU0: objcg == stock->cached_objcg
273 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
274 * PAGE_SIZE bytes are charged
275 * 3) CPU1: a process from another memcg is allocating something,
276 * the stock if flushed,
277 * objcg->nr_charged_bytes = PAGE_SIZE - 92
278 * 5) CPU0: we do release this object,
279 * 92 bytes are added to stock->nr_bytes
280 * 6) CPU0: stock is flushed,
281 * 92 bytes are added to objcg->nr_charged_bytes
282 *
283 * In the result, nr_charged_bytes == PAGE_SIZE.
284 * This page will be uncharged in obj_cgroup_release().
285 */
286 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
287 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
288 nr_pages = nr_bytes >> PAGE_SHIFT;
289
290 spin_lock_irqsave(&css_set_lock, flags);
291 memcg = obj_cgroup_memcg(objcg);
292 if (nr_pages)
293 __memcg_kmem_uncharge(memcg, nr_pages);
294 list_del(&objcg->list);
295 mem_cgroup_put(memcg);
296 spin_unlock_irqrestore(&css_set_lock, flags);
297
298 percpu_ref_exit(ref);
299 kfree_rcu(objcg, rcu);
300 }
301
302 static struct obj_cgroup *obj_cgroup_alloc(void)
303 {
304 struct obj_cgroup *objcg;
305 int ret;
306
307 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
308 if (!objcg)
309 return NULL;
310
311 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
312 GFP_KERNEL);
313 if (ret) {
314 kfree(objcg);
315 return NULL;
316 }
317 INIT_LIST_HEAD(&objcg->list);
318 return objcg;
319 }
320
321 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
322 struct mem_cgroup *parent)
323 {
324 struct obj_cgroup *objcg, *iter;
325
326 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
327
328 spin_lock_irq(&css_set_lock);
329
330 /* Move active objcg to the parent's list */
331 xchg(&objcg->memcg, parent);
332 css_get(&parent->css);
333 list_add(&objcg->list, &parent->objcg_list);
334
335 /* Move already reparented objcgs to the parent's list */
336 list_for_each_entry(iter, &memcg->objcg_list, list) {
337 css_get(&parent->css);
338 xchg(&iter->memcg, parent);
339 css_put(&memcg->css);
340 }
341 list_splice(&memcg->objcg_list, &parent->objcg_list);
342
343 spin_unlock_irq(&css_set_lock);
344
345 percpu_ref_kill(&objcg->refcnt);
346 }
347
348 /*
349 * This will be used as a shrinker list's index.
350 * The main reason for not using cgroup id for this:
351 * this works better in sparse environments, where we have a lot of memcgs,
352 * but only a few kmem-limited. Or also, if we have, for instance, 200
353 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
354 * 200 entry array for that.
355 *
356 * The current size of the caches array is stored in memcg_nr_cache_ids. It
357 * will double each time we have to increase it.
358 */
359 static DEFINE_IDA(memcg_cache_ida);
360 int memcg_nr_cache_ids;
361
362 /* Protects memcg_nr_cache_ids */
363 static DECLARE_RWSEM(memcg_cache_ids_sem);
364
365 void memcg_get_cache_ids(void)
366 {
367 down_read(&memcg_cache_ids_sem);
368 }
369
370 void memcg_put_cache_ids(void)
371 {
372 up_read(&memcg_cache_ids_sem);
373 }
374
375 /*
376 * MIN_SIZE is different than 1, because we would like to avoid going through
377 * the alloc/free process all the time. In a small machine, 4 kmem-limited
378 * cgroups is a reasonable guess. In the future, it could be a parameter or
379 * tunable, but that is strictly not necessary.
380 *
381 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
382 * this constant directly from cgroup, but it is understandable that this is
383 * better kept as an internal representation in cgroup.c. In any case, the
384 * cgrp_id space is not getting any smaller, and we don't have to necessarily
385 * increase ours as well if it increases.
386 */
387 #define MEMCG_CACHES_MIN_SIZE 4
388 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
389
390 /*
391 * A lot of the calls to the cache allocation functions are expected to be
392 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
393 * conditional to this static branch, we'll have to allow modules that does
394 * kmem_cache_alloc and the such to see this symbol as well
395 */
396 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
397 EXPORT_SYMBOL(memcg_kmem_enabled_key);
398 #endif
399
400 static int memcg_shrinker_map_size;
401 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
402
403 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
404 {
405 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
406 }
407
408 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
409 int size, int old_size)
410 {
411 struct memcg_shrinker_map *new, *old;
412 int nid;
413
414 lockdep_assert_held(&memcg_shrinker_map_mutex);
415
416 for_each_node(nid) {
417 old = rcu_dereference_protected(
418 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
419 /* Not yet online memcg */
420 if (!old)
421 return 0;
422
423 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
424 if (!new)
425 return -ENOMEM;
426
427 /* Set all old bits, clear all new bits */
428 memset(new->map, (int)0xff, old_size);
429 memset((void *)new->map + old_size, 0, size - old_size);
430
431 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
432 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
433 }
434
435 return 0;
436 }
437
438 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
439 {
440 struct mem_cgroup_per_node *pn;
441 struct memcg_shrinker_map *map;
442 int nid;
443
444 if (mem_cgroup_is_root(memcg))
445 return;
446
447 for_each_node(nid) {
448 pn = mem_cgroup_nodeinfo(memcg, nid);
449 map = rcu_dereference_protected(pn->shrinker_map, true);
450 if (map)
451 kvfree(map);
452 rcu_assign_pointer(pn->shrinker_map, NULL);
453 }
454 }
455
456 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
457 {
458 struct memcg_shrinker_map *map;
459 int nid, size, ret = 0;
460
461 if (mem_cgroup_is_root(memcg))
462 return 0;
463
464 mutex_lock(&memcg_shrinker_map_mutex);
465 size = memcg_shrinker_map_size;
466 for_each_node(nid) {
467 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
468 if (!map) {
469 memcg_free_shrinker_maps(memcg);
470 ret = -ENOMEM;
471 break;
472 }
473 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
474 }
475 mutex_unlock(&memcg_shrinker_map_mutex);
476
477 return ret;
478 }
479
480 int memcg_expand_shrinker_maps(int new_id)
481 {
482 int size, old_size, ret = 0;
483 struct mem_cgroup *memcg;
484
485 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
486 old_size = memcg_shrinker_map_size;
487 if (size <= old_size)
488 return 0;
489
490 mutex_lock(&memcg_shrinker_map_mutex);
491 if (!root_mem_cgroup)
492 goto unlock;
493
494 for_each_mem_cgroup(memcg) {
495 if (mem_cgroup_is_root(memcg))
496 continue;
497 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
498 if (ret) {
499 mem_cgroup_iter_break(NULL, memcg);
500 goto unlock;
501 }
502 }
503 unlock:
504 if (!ret)
505 memcg_shrinker_map_size = size;
506 mutex_unlock(&memcg_shrinker_map_mutex);
507 return ret;
508 }
509
510 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
511 {
512 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
513 struct memcg_shrinker_map *map;
514
515 rcu_read_lock();
516 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
517 /* Pairs with smp mb in shrink_slab() */
518 smp_mb__before_atomic();
519 set_bit(shrinker_id, map->map);
520 rcu_read_unlock();
521 }
522 }
523
524 /**
525 * mem_cgroup_css_from_page - css of the memcg associated with a page
526 * @page: page of interest
527 *
528 * If memcg is bound to the default hierarchy, css of the memcg associated
529 * with @page is returned. The returned css remains associated with @page
530 * until it is released.
531 *
532 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
533 * is returned.
534 */
535 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
536 {
537 struct mem_cgroup *memcg;
538
539 memcg = page_memcg(page);
540
541 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
542 memcg = root_mem_cgroup;
543
544 return &memcg->css;
545 }
546
547 /**
548 * page_cgroup_ino - return inode number of the memcg a page is charged to
549 * @page: the page
550 *
551 * Look up the closest online ancestor of the memory cgroup @page is charged to
552 * and return its inode number or 0 if @page is not charged to any cgroup. It
553 * is safe to call this function without holding a reference to @page.
554 *
555 * Note, this function is inherently racy, because there is nothing to prevent
556 * the cgroup inode from getting torn down and potentially reallocated a moment
557 * after page_cgroup_ino() returns, so it only should be used by callers that
558 * do not care (such as procfs interfaces).
559 */
560 ino_t page_cgroup_ino(struct page *page)
561 {
562 struct mem_cgroup *memcg;
563 unsigned long ino = 0;
564
565 rcu_read_lock();
566 memcg = page_memcg_check(page);
567
568 while (memcg && !(memcg->css.flags & CSS_ONLINE))
569 memcg = parent_mem_cgroup(memcg);
570 if (memcg)
571 ino = cgroup_ino(memcg->css.cgroup);
572 rcu_read_unlock();
573 return ino;
574 }
575
576 static struct mem_cgroup_per_node *
577 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
578 {
579 int nid = page_to_nid(page);
580
581 return memcg->nodeinfo[nid];
582 }
583
584 static struct mem_cgroup_tree_per_node *
585 soft_limit_tree_node(int nid)
586 {
587 return soft_limit_tree.rb_tree_per_node[nid];
588 }
589
590 static struct mem_cgroup_tree_per_node *
591 soft_limit_tree_from_page(struct page *page)
592 {
593 int nid = page_to_nid(page);
594
595 return soft_limit_tree.rb_tree_per_node[nid];
596 }
597
598 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
599 struct mem_cgroup_tree_per_node *mctz,
600 unsigned long new_usage_in_excess)
601 {
602 struct rb_node **p = &mctz->rb_root.rb_node;
603 struct rb_node *parent = NULL;
604 struct mem_cgroup_per_node *mz_node;
605 bool rightmost = true;
606
607 if (mz->on_tree)
608 return;
609
610 mz->usage_in_excess = new_usage_in_excess;
611 if (!mz->usage_in_excess)
612 return;
613 while (*p) {
614 parent = *p;
615 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
616 tree_node);
617 if (mz->usage_in_excess < mz_node->usage_in_excess) {
618 p = &(*p)->rb_left;
619 rightmost = false;
620 } else {
621 p = &(*p)->rb_right;
622 }
623 }
624
625 if (rightmost)
626 mctz->rb_rightmost = &mz->tree_node;
627
628 rb_link_node(&mz->tree_node, parent, p);
629 rb_insert_color(&mz->tree_node, &mctz->rb_root);
630 mz->on_tree = true;
631 }
632
633 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
634 struct mem_cgroup_tree_per_node *mctz)
635 {
636 if (!mz->on_tree)
637 return;
638
639 if (&mz->tree_node == mctz->rb_rightmost)
640 mctz->rb_rightmost = rb_prev(&mz->tree_node);
641
642 rb_erase(&mz->tree_node, &mctz->rb_root);
643 mz->on_tree = false;
644 }
645
646 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
647 struct mem_cgroup_tree_per_node *mctz)
648 {
649 unsigned long flags;
650
651 spin_lock_irqsave(&mctz->lock, flags);
652 __mem_cgroup_remove_exceeded(mz, mctz);
653 spin_unlock_irqrestore(&mctz->lock, flags);
654 }
655
656 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
657 {
658 unsigned long nr_pages = page_counter_read(&memcg->memory);
659 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
660 unsigned long excess = 0;
661
662 if (nr_pages > soft_limit)
663 excess = nr_pages - soft_limit;
664
665 return excess;
666 }
667
668 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
669 {
670 unsigned long excess;
671 struct mem_cgroup_per_node *mz;
672 struct mem_cgroup_tree_per_node *mctz;
673
674 mctz = soft_limit_tree_from_page(page);
675 if (!mctz)
676 return;
677 /*
678 * Necessary to update all ancestors when hierarchy is used.
679 * because their event counter is not touched.
680 */
681 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
682 mz = mem_cgroup_page_nodeinfo(memcg, page);
683 excess = soft_limit_excess(memcg);
684 /*
685 * We have to update the tree if mz is on RB-tree or
686 * mem is over its softlimit.
687 */
688 if (excess || mz->on_tree) {
689 unsigned long flags;
690
691 spin_lock_irqsave(&mctz->lock, flags);
692 /* if on-tree, remove it */
693 if (mz->on_tree)
694 __mem_cgroup_remove_exceeded(mz, mctz);
695 /*
696 * Insert again. mz->usage_in_excess will be updated.
697 * If excess is 0, no tree ops.
698 */
699 __mem_cgroup_insert_exceeded(mz, mctz, excess);
700 spin_unlock_irqrestore(&mctz->lock, flags);
701 }
702 }
703 }
704
705 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
706 {
707 struct mem_cgroup_tree_per_node *mctz;
708 struct mem_cgroup_per_node *mz;
709 int nid;
710
711 for_each_node(nid) {
712 mz = mem_cgroup_nodeinfo(memcg, nid);
713 mctz = soft_limit_tree_node(nid);
714 if (mctz)
715 mem_cgroup_remove_exceeded(mz, mctz);
716 }
717 }
718
719 static struct mem_cgroup_per_node *
720 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
721 {
722 struct mem_cgroup_per_node *mz;
723
724 retry:
725 mz = NULL;
726 if (!mctz->rb_rightmost)
727 goto done; /* Nothing to reclaim from */
728
729 mz = rb_entry(mctz->rb_rightmost,
730 struct mem_cgroup_per_node, tree_node);
731 /*
732 * Remove the node now but someone else can add it back,
733 * we will to add it back at the end of reclaim to its correct
734 * position in the tree.
735 */
736 __mem_cgroup_remove_exceeded(mz, mctz);
737 if (!soft_limit_excess(mz->memcg) ||
738 !css_tryget(&mz->memcg->css))
739 goto retry;
740 done:
741 return mz;
742 }
743
744 static struct mem_cgroup_per_node *
745 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
746 {
747 struct mem_cgroup_per_node *mz;
748
749 spin_lock_irq(&mctz->lock);
750 mz = __mem_cgroup_largest_soft_limit_node(mctz);
751 spin_unlock_irq(&mctz->lock);
752 return mz;
753 }
754
755 /**
756 * __mod_memcg_state - update cgroup memory statistics
757 * @memcg: the memory cgroup
758 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
759 * @val: delta to add to the counter, can be negative
760 */
761 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
762 {
763 long x, threshold = MEMCG_CHARGE_BATCH;
764
765 if (mem_cgroup_disabled())
766 return;
767
768 if (memcg_stat_item_in_bytes(idx))
769 threshold <<= PAGE_SHIFT;
770
771 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
772 if (unlikely(abs(x) > threshold)) {
773 struct mem_cgroup *mi;
774
775 /*
776 * Batch local counters to keep them in sync with
777 * the hierarchical ones.
778 */
779 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
780 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
781 atomic_long_add(x, &mi->vmstats[idx]);
782 x = 0;
783 }
784 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
785 }
786
787 static struct mem_cgroup_per_node *
788 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
789 {
790 struct mem_cgroup *parent;
791
792 parent = parent_mem_cgroup(pn->memcg);
793 if (!parent)
794 return NULL;
795 return mem_cgroup_nodeinfo(parent, nid);
796 }
797
798 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
799 int val)
800 {
801 struct mem_cgroup_per_node *pn;
802 struct mem_cgroup *memcg;
803 long x, threshold = MEMCG_CHARGE_BATCH;
804
805 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
806 memcg = pn->memcg;
807
808 /* Update memcg */
809 __mod_memcg_state(memcg, idx, val);
810
811 /* Update lruvec */
812 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
813
814 if (vmstat_item_in_bytes(idx))
815 threshold <<= PAGE_SHIFT;
816
817 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
818 if (unlikely(abs(x) > threshold)) {
819 pg_data_t *pgdat = lruvec_pgdat(lruvec);
820 struct mem_cgroup_per_node *pi;
821
822 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
823 atomic_long_add(x, &pi->lruvec_stat[idx]);
824 x = 0;
825 }
826 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
827 }
828
829 /**
830 * __mod_lruvec_state - update lruvec memory statistics
831 * @lruvec: the lruvec
832 * @idx: the stat item
833 * @val: delta to add to the counter, can be negative
834 *
835 * The lruvec is the intersection of the NUMA node and a cgroup. This
836 * function updates the all three counters that are affected by a
837 * change of state at this level: per-node, per-cgroup, per-lruvec.
838 */
839 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
840 int val)
841 {
842 /* Update node */
843 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
844
845 /* Update memcg and lruvec */
846 if (!mem_cgroup_disabled())
847 __mod_memcg_lruvec_state(lruvec, idx, val);
848 }
849
850 void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
851 int val)
852 {
853 struct page *head = compound_head(page); /* rmap on tail pages */
854 struct mem_cgroup *memcg = page_memcg(head);
855 pg_data_t *pgdat = page_pgdat(page);
856 struct lruvec *lruvec;
857
858 /* Untracked pages have no memcg, no lruvec. Update only the node */
859 if (!memcg) {
860 __mod_node_page_state(pgdat, idx, val);
861 return;
862 }
863
864 lruvec = mem_cgroup_lruvec(memcg, pgdat);
865 __mod_lruvec_state(lruvec, idx, val);
866 }
867 EXPORT_SYMBOL(__mod_lruvec_page_state);
868
869 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
870 {
871 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
872 struct mem_cgroup *memcg;
873 struct lruvec *lruvec;
874
875 rcu_read_lock();
876 memcg = mem_cgroup_from_obj(p);
877
878 /*
879 * Untracked pages have no memcg, no lruvec. Update only the
880 * node. If we reparent the slab objects to the root memcg,
881 * when we free the slab object, we need to update the per-memcg
882 * vmstats to keep it correct for the root memcg.
883 */
884 if (!memcg) {
885 __mod_node_page_state(pgdat, idx, val);
886 } else {
887 lruvec = mem_cgroup_lruvec(memcg, pgdat);
888 __mod_lruvec_state(lruvec, idx, val);
889 }
890 rcu_read_unlock();
891 }
892
893 /**
894 * __count_memcg_events - account VM events in a cgroup
895 * @memcg: the memory cgroup
896 * @idx: the event item
897 * @count: the number of events that occured
898 */
899 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
900 unsigned long count)
901 {
902 unsigned long x;
903
904 if (mem_cgroup_disabled())
905 return;
906
907 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
908 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
909 struct mem_cgroup *mi;
910
911 /*
912 * Batch local counters to keep them in sync with
913 * the hierarchical ones.
914 */
915 __this_cpu_add(memcg->vmstats_local->events[idx], x);
916 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
917 atomic_long_add(x, &mi->vmevents[idx]);
918 x = 0;
919 }
920 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
921 }
922
923 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
924 {
925 return atomic_long_read(&memcg->vmevents[event]);
926 }
927
928 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
929 {
930 long x = 0;
931 int cpu;
932
933 for_each_possible_cpu(cpu)
934 x += per_cpu(memcg->vmstats_local->events[event], cpu);
935 return x;
936 }
937
938 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
939 struct page *page,
940 int nr_pages)
941 {
942 /* pagein of a big page is an event. So, ignore page size */
943 if (nr_pages > 0)
944 __count_memcg_events(memcg, PGPGIN, 1);
945 else {
946 __count_memcg_events(memcg, PGPGOUT, 1);
947 nr_pages = -nr_pages; /* for event */
948 }
949
950 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
951 }
952
953 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
954 enum mem_cgroup_events_target target)
955 {
956 unsigned long val, next;
957
958 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
959 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
960 /* from time_after() in jiffies.h */
961 if ((long)(next - val) < 0) {
962 switch (target) {
963 case MEM_CGROUP_TARGET_THRESH:
964 next = val + THRESHOLDS_EVENTS_TARGET;
965 break;
966 case MEM_CGROUP_TARGET_SOFTLIMIT:
967 next = val + SOFTLIMIT_EVENTS_TARGET;
968 break;
969 default:
970 break;
971 }
972 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
973 return true;
974 }
975 return false;
976 }
977
978 /*
979 * Check events in order.
980 *
981 */
982 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
983 {
984 /* threshold event is triggered in finer grain than soft limit */
985 if (unlikely(mem_cgroup_event_ratelimit(memcg,
986 MEM_CGROUP_TARGET_THRESH))) {
987 bool do_softlimit;
988
989 do_softlimit = mem_cgroup_event_ratelimit(memcg,
990 MEM_CGROUP_TARGET_SOFTLIMIT);
991 mem_cgroup_threshold(memcg);
992 if (unlikely(do_softlimit))
993 mem_cgroup_update_tree(memcg, page);
994 }
995 }
996
997 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
998 {
999 /*
1000 * mm_update_next_owner() may clear mm->owner to NULL
1001 * if it races with swapoff, page migration, etc.
1002 * So this can be called with p == NULL.
1003 */
1004 if (unlikely(!p))
1005 return NULL;
1006
1007 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1008 }
1009 EXPORT_SYMBOL(mem_cgroup_from_task);
1010
1011 /**
1012 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1013 * @mm: mm from which memcg should be extracted. It can be NULL.
1014 *
1015 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1016 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1017 * returned.
1018 */
1019 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1020 {
1021 struct mem_cgroup *memcg;
1022
1023 if (mem_cgroup_disabled())
1024 return NULL;
1025
1026 rcu_read_lock();
1027 do {
1028 /*
1029 * Page cache insertions can happen withou an
1030 * actual mm context, e.g. during disk probing
1031 * on boot, loopback IO, acct() writes etc.
1032 */
1033 if (unlikely(!mm))
1034 memcg = root_mem_cgroup;
1035 else {
1036 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1037 if (unlikely(!memcg))
1038 memcg = root_mem_cgroup;
1039 }
1040 } while (!css_tryget(&memcg->css));
1041 rcu_read_unlock();
1042 return memcg;
1043 }
1044 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1045
1046 /**
1047 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1048 * @page: page from which memcg should be extracted.
1049 *
1050 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1051 * root_mem_cgroup is returned.
1052 */
1053 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1054 {
1055 struct mem_cgroup *memcg = page_memcg(page);
1056
1057 if (mem_cgroup_disabled())
1058 return NULL;
1059
1060 rcu_read_lock();
1061 /* Page should not get uncharged and freed memcg under us. */
1062 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1063 memcg = root_mem_cgroup;
1064 rcu_read_unlock();
1065 return memcg;
1066 }
1067 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1068
1069 static __always_inline struct mem_cgroup *active_memcg(void)
1070 {
1071 if (in_interrupt())
1072 return this_cpu_read(int_active_memcg);
1073 else
1074 return current->active_memcg;
1075 }
1076
1077 static __always_inline struct mem_cgroup *get_active_memcg(void)
1078 {
1079 struct mem_cgroup *memcg;
1080
1081 rcu_read_lock();
1082 memcg = active_memcg();
1083 /* remote memcg must hold a ref. */
1084 if (memcg && WARN_ON_ONCE(!css_tryget(&memcg->css)))
1085 memcg = root_mem_cgroup;
1086 rcu_read_unlock();
1087
1088 return memcg;
1089 }
1090
1091 static __always_inline bool memcg_kmem_bypass(void)
1092 {
1093 /* Allow remote memcg charging from any context. */
1094 if (unlikely(active_memcg()))
1095 return false;
1096
1097 /* Memcg to charge can't be determined. */
1098 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
1099 return true;
1100
1101 return false;
1102 }
1103
1104 /**
1105 * If active memcg is set, do not fallback to current->mm->memcg.
1106 */
1107 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1108 {
1109 if (memcg_kmem_bypass())
1110 return NULL;
1111
1112 if (unlikely(active_memcg()))
1113 return get_active_memcg();
1114
1115 return get_mem_cgroup_from_mm(current->mm);
1116 }
1117
1118 /**
1119 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1120 * @root: hierarchy root
1121 * @prev: previously returned memcg, NULL on first invocation
1122 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1123 *
1124 * Returns references to children of the hierarchy below @root, or
1125 * @root itself, or %NULL after a full round-trip.
1126 *
1127 * Caller must pass the return value in @prev on subsequent
1128 * invocations for reference counting, or use mem_cgroup_iter_break()
1129 * to cancel a hierarchy walk before the round-trip is complete.
1130 *
1131 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1132 * in the hierarchy among all concurrent reclaimers operating on the
1133 * same node.
1134 */
1135 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1136 struct mem_cgroup *prev,
1137 struct mem_cgroup_reclaim_cookie *reclaim)
1138 {
1139 struct mem_cgroup_reclaim_iter *iter;
1140 struct cgroup_subsys_state *css = NULL;
1141 struct mem_cgroup *memcg = NULL;
1142 struct mem_cgroup *pos = NULL;
1143
1144 if (mem_cgroup_disabled())
1145 return NULL;
1146
1147 if (!root)
1148 root = root_mem_cgroup;
1149
1150 if (prev && !reclaim)
1151 pos = prev;
1152
1153 rcu_read_lock();
1154
1155 if (reclaim) {
1156 struct mem_cgroup_per_node *mz;
1157
1158 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1159 iter = &mz->iter;
1160
1161 if (prev && reclaim->generation != iter->generation)
1162 goto out_unlock;
1163
1164 while (1) {
1165 pos = READ_ONCE(iter->position);
1166 if (!pos || css_tryget(&pos->css))
1167 break;
1168 /*
1169 * css reference reached zero, so iter->position will
1170 * be cleared by ->css_released. However, we should not
1171 * rely on this happening soon, because ->css_released
1172 * is called from a work queue, and by busy-waiting we
1173 * might block it. So we clear iter->position right
1174 * away.
1175 */
1176 (void)cmpxchg(&iter->position, pos, NULL);
1177 }
1178 }
1179
1180 if (pos)
1181 css = &pos->css;
1182
1183 for (;;) {
1184 css = css_next_descendant_pre(css, &root->css);
1185 if (!css) {
1186 /*
1187 * Reclaimers share the hierarchy walk, and a
1188 * new one might jump in right at the end of
1189 * the hierarchy - make sure they see at least
1190 * one group and restart from the beginning.
1191 */
1192 if (!prev)
1193 continue;
1194 break;
1195 }
1196
1197 /*
1198 * Verify the css and acquire a reference. The root
1199 * is provided by the caller, so we know it's alive
1200 * and kicking, and don't take an extra reference.
1201 */
1202 memcg = mem_cgroup_from_css(css);
1203
1204 if (css == &root->css)
1205 break;
1206
1207 if (css_tryget(css))
1208 break;
1209
1210 memcg = NULL;
1211 }
1212
1213 if (reclaim) {
1214 /*
1215 * The position could have already been updated by a competing
1216 * thread, so check that the value hasn't changed since we read
1217 * it to avoid reclaiming from the same cgroup twice.
1218 */
1219 (void)cmpxchg(&iter->position, pos, memcg);
1220
1221 if (pos)
1222 css_put(&pos->css);
1223
1224 if (!memcg)
1225 iter->generation++;
1226 else if (!prev)
1227 reclaim->generation = iter->generation;
1228 }
1229
1230 out_unlock:
1231 rcu_read_unlock();
1232 if (prev && prev != root)
1233 css_put(&prev->css);
1234
1235 return memcg;
1236 }
1237
1238 /**
1239 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1240 * @root: hierarchy root
1241 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1242 */
1243 void mem_cgroup_iter_break(struct mem_cgroup *root,
1244 struct mem_cgroup *prev)
1245 {
1246 if (!root)
1247 root = root_mem_cgroup;
1248 if (prev && prev != root)
1249 css_put(&prev->css);
1250 }
1251
1252 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1253 struct mem_cgroup *dead_memcg)
1254 {
1255 struct mem_cgroup_reclaim_iter *iter;
1256 struct mem_cgroup_per_node *mz;
1257 int nid;
1258
1259 for_each_node(nid) {
1260 mz = mem_cgroup_nodeinfo(from, nid);
1261 iter = &mz->iter;
1262 cmpxchg(&iter->position, dead_memcg, NULL);
1263 }
1264 }
1265
1266 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1267 {
1268 struct mem_cgroup *memcg = dead_memcg;
1269 struct mem_cgroup *last;
1270
1271 do {
1272 __invalidate_reclaim_iterators(memcg, dead_memcg);
1273 last = memcg;
1274 } while ((memcg = parent_mem_cgroup(memcg)));
1275
1276 /*
1277 * When cgruop1 non-hierarchy mode is used,
1278 * parent_mem_cgroup() does not walk all the way up to the
1279 * cgroup root (root_mem_cgroup). So we have to handle
1280 * dead_memcg from cgroup root separately.
1281 */
1282 if (last != root_mem_cgroup)
1283 __invalidate_reclaim_iterators(root_mem_cgroup,
1284 dead_memcg);
1285 }
1286
1287 /**
1288 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1289 * @memcg: hierarchy root
1290 * @fn: function to call for each task
1291 * @arg: argument passed to @fn
1292 *
1293 * This function iterates over tasks attached to @memcg or to any of its
1294 * descendants and calls @fn for each task. If @fn returns a non-zero
1295 * value, the function breaks the iteration loop and returns the value.
1296 * Otherwise, it will iterate over all tasks and return 0.
1297 *
1298 * This function must not be called for the root memory cgroup.
1299 */
1300 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1301 int (*fn)(struct task_struct *, void *), void *arg)
1302 {
1303 struct mem_cgroup *iter;
1304 int ret = 0;
1305
1306 BUG_ON(memcg == root_mem_cgroup);
1307
1308 for_each_mem_cgroup_tree(iter, memcg) {
1309 struct css_task_iter it;
1310 struct task_struct *task;
1311
1312 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1313 while (!ret && (task = css_task_iter_next(&it)))
1314 ret = fn(task, arg);
1315 css_task_iter_end(&it);
1316 if (ret) {
1317 mem_cgroup_iter_break(memcg, iter);
1318 break;
1319 }
1320 }
1321 return ret;
1322 }
1323
1324 #ifdef CONFIG_DEBUG_VM
1325 void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1326 {
1327 struct mem_cgroup *memcg;
1328
1329 if (mem_cgroup_disabled())
1330 return;
1331
1332 memcg = page_memcg(page);
1333
1334 if (!memcg)
1335 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != root_mem_cgroup, page);
1336 else
1337 VM_BUG_ON_PAGE(lruvec_memcg(lruvec) != memcg, page);
1338 }
1339 #endif
1340
1341 /**
1342 * lock_page_lruvec - lock and return lruvec for a given page.
1343 * @page: the page
1344 *
1345 * This series functions should be used in either conditions:
1346 * PageLRU is cleared or unset
1347 * or page->_refcount is zero
1348 * or page is locked.
1349 */
1350 struct lruvec *lock_page_lruvec(struct page *page)
1351 {
1352 struct lruvec *lruvec;
1353 struct pglist_data *pgdat = page_pgdat(page);
1354
1355 rcu_read_lock();
1356 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1357 spin_lock(&lruvec->lru_lock);
1358 rcu_read_unlock();
1359
1360 lruvec_memcg_debug(lruvec, page);
1361
1362 return lruvec;
1363 }
1364
1365 struct lruvec *lock_page_lruvec_irq(struct page *page)
1366 {
1367 struct lruvec *lruvec;
1368 struct pglist_data *pgdat = page_pgdat(page);
1369
1370 rcu_read_lock();
1371 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1372 spin_lock_irq(&lruvec->lru_lock);
1373 rcu_read_unlock();
1374
1375 lruvec_memcg_debug(lruvec, page);
1376
1377 return lruvec;
1378 }
1379
1380 struct lruvec *lock_page_lruvec_irqsave(struct page *page, unsigned long *flags)
1381 {
1382 struct lruvec *lruvec;
1383 struct pglist_data *pgdat = page_pgdat(page);
1384
1385 rcu_read_lock();
1386 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1387 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1388 rcu_read_unlock();
1389
1390 lruvec_memcg_debug(lruvec, page);
1391
1392 return lruvec;
1393 }
1394
1395 /**
1396 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1397 * @lruvec: mem_cgroup per zone lru vector
1398 * @lru: index of lru list the page is sitting on
1399 * @zid: zone id of the accounted pages
1400 * @nr_pages: positive when adding or negative when removing
1401 *
1402 * This function must be called under lru_lock, just before a page is added
1403 * to or just after a page is removed from an lru list (that ordering being
1404 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1405 */
1406 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1407 int zid, int nr_pages)
1408 {
1409 struct mem_cgroup_per_node *mz;
1410 unsigned long *lru_size;
1411 long size;
1412
1413 if (mem_cgroup_disabled())
1414 return;
1415
1416 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1417 lru_size = &mz->lru_zone_size[zid][lru];
1418
1419 if (nr_pages < 0)
1420 *lru_size += nr_pages;
1421
1422 size = *lru_size;
1423 if (WARN_ONCE(size < 0,
1424 "%s(%p, %d, %d): lru_size %ld\n",
1425 __func__, lruvec, lru, nr_pages, size)) {
1426 VM_BUG_ON(1);
1427 *lru_size = 0;
1428 }
1429
1430 if (nr_pages > 0)
1431 *lru_size += nr_pages;
1432 }
1433
1434 /**
1435 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1436 * @memcg: the memory cgroup
1437 *
1438 * Returns the maximum amount of memory @mem can be charged with, in
1439 * pages.
1440 */
1441 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1442 {
1443 unsigned long margin = 0;
1444 unsigned long count;
1445 unsigned long limit;
1446
1447 count = page_counter_read(&memcg->memory);
1448 limit = READ_ONCE(memcg->memory.max);
1449 if (count < limit)
1450 margin = limit - count;
1451
1452 if (do_memsw_account()) {
1453 count = page_counter_read(&memcg->memsw);
1454 limit = READ_ONCE(memcg->memsw.max);
1455 if (count < limit)
1456 margin = min(margin, limit - count);
1457 else
1458 margin = 0;
1459 }
1460
1461 return margin;
1462 }
1463
1464 /*
1465 * A routine for checking "mem" is under move_account() or not.
1466 *
1467 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1468 * moving cgroups. This is for waiting at high-memory pressure
1469 * caused by "move".
1470 */
1471 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1472 {
1473 struct mem_cgroup *from;
1474 struct mem_cgroup *to;
1475 bool ret = false;
1476 /*
1477 * Unlike task_move routines, we access mc.to, mc.from not under
1478 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1479 */
1480 spin_lock(&mc.lock);
1481 from = mc.from;
1482 to = mc.to;
1483 if (!from)
1484 goto unlock;
1485
1486 ret = mem_cgroup_is_descendant(from, memcg) ||
1487 mem_cgroup_is_descendant(to, memcg);
1488 unlock:
1489 spin_unlock(&mc.lock);
1490 return ret;
1491 }
1492
1493 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1494 {
1495 if (mc.moving_task && current != mc.moving_task) {
1496 if (mem_cgroup_under_move(memcg)) {
1497 DEFINE_WAIT(wait);
1498 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1499 /* moving charge context might have finished. */
1500 if (mc.moving_task)
1501 schedule();
1502 finish_wait(&mc.waitq, &wait);
1503 return true;
1504 }
1505 }
1506 return false;
1507 }
1508
1509 struct memory_stat {
1510 const char *name;
1511 unsigned int ratio;
1512 unsigned int idx;
1513 };
1514
1515 static struct memory_stat memory_stats[] = {
1516 { "anon", PAGE_SIZE, NR_ANON_MAPPED },
1517 { "file", PAGE_SIZE, NR_FILE_PAGES },
1518 { "kernel_stack", 1024, NR_KERNEL_STACK_KB },
1519 { "pagetables", PAGE_SIZE, NR_PAGETABLE },
1520 { "percpu", 1, MEMCG_PERCPU_B },
1521 { "sock", PAGE_SIZE, MEMCG_SOCK },
1522 { "shmem", PAGE_SIZE, NR_SHMEM },
1523 { "file_mapped", PAGE_SIZE, NR_FILE_MAPPED },
1524 { "file_dirty", PAGE_SIZE, NR_FILE_DIRTY },
1525 { "file_writeback", PAGE_SIZE, NR_WRITEBACK },
1526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1527 /*
1528 * The ratio will be initialized in memory_stats_init(). Because
1529 * on some architectures, the macro of HPAGE_PMD_SIZE is not
1530 * constant(e.g. powerpc).
1531 */
1532 { "anon_thp", 0, NR_ANON_THPS },
1533 { "file_thp", 0, NR_FILE_THPS },
1534 { "shmem_thp", 0, NR_SHMEM_THPS },
1535 #endif
1536 { "inactive_anon", PAGE_SIZE, NR_INACTIVE_ANON },
1537 { "active_anon", PAGE_SIZE, NR_ACTIVE_ANON },
1538 { "inactive_file", PAGE_SIZE, NR_INACTIVE_FILE },
1539 { "active_file", PAGE_SIZE, NR_ACTIVE_FILE },
1540 { "unevictable", PAGE_SIZE, NR_UNEVICTABLE },
1541
1542 /*
1543 * Note: The slab_reclaimable and slab_unreclaimable must be
1544 * together and slab_reclaimable must be in front.
1545 */
1546 { "slab_reclaimable", 1, NR_SLAB_RECLAIMABLE_B },
1547 { "slab_unreclaimable", 1, NR_SLAB_UNRECLAIMABLE_B },
1548
1549 /* The memory events */
1550 { "workingset_refault_anon", 1, WORKINGSET_REFAULT_ANON },
1551 { "workingset_refault_file", 1, WORKINGSET_REFAULT_FILE },
1552 { "workingset_activate_anon", 1, WORKINGSET_ACTIVATE_ANON },
1553 { "workingset_activate_file", 1, WORKINGSET_ACTIVATE_FILE },
1554 { "workingset_restore_anon", 1, WORKINGSET_RESTORE_ANON },
1555 { "workingset_restore_file", 1, WORKINGSET_RESTORE_FILE },
1556 { "workingset_nodereclaim", 1, WORKINGSET_NODERECLAIM },
1557 };
1558
1559 static int __init memory_stats_init(void)
1560 {
1561 int i;
1562
1563 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1564 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1565 if (memory_stats[i].idx == NR_ANON_THPS ||
1566 memory_stats[i].idx == NR_FILE_THPS ||
1567 memory_stats[i].idx == NR_SHMEM_THPS)
1568 memory_stats[i].ratio = HPAGE_PMD_SIZE;
1569 #endif
1570 VM_BUG_ON(!memory_stats[i].ratio);
1571 VM_BUG_ON(memory_stats[i].idx >= MEMCG_NR_STAT);
1572 }
1573
1574 return 0;
1575 }
1576 pure_initcall(memory_stats_init);
1577
1578 static char *memory_stat_format(struct mem_cgroup *memcg)
1579 {
1580 struct seq_buf s;
1581 int i;
1582
1583 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1584 if (!s.buffer)
1585 return NULL;
1586
1587 /*
1588 * Provide statistics on the state of the memory subsystem as
1589 * well as cumulative event counters that show past behavior.
1590 *
1591 * This list is ordered following a combination of these gradients:
1592 * 1) generic big picture -> specifics and details
1593 * 2) reflecting userspace activity -> reflecting kernel heuristics
1594 *
1595 * Current memory state:
1596 */
1597
1598 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1599 u64 size;
1600
1601 size = memcg_page_state(memcg, memory_stats[i].idx);
1602 size *= memory_stats[i].ratio;
1603 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1604
1605 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1606 size = memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1607 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B);
1608 seq_buf_printf(&s, "slab %llu\n", size);
1609 }
1610 }
1611
1612 /* Accumulated memory events */
1613
1614 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1615 memcg_events(memcg, PGFAULT));
1616 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1617 memcg_events(memcg, PGMAJFAULT));
1618 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1619 memcg_events(memcg, PGREFILL));
1620 seq_buf_printf(&s, "pgscan %lu\n",
1621 memcg_events(memcg, PGSCAN_KSWAPD) +
1622 memcg_events(memcg, PGSCAN_DIRECT));
1623 seq_buf_printf(&s, "pgsteal %lu\n",
1624 memcg_events(memcg, PGSTEAL_KSWAPD) +
1625 memcg_events(memcg, PGSTEAL_DIRECT));
1626 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1627 memcg_events(memcg, PGACTIVATE));
1628 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1629 memcg_events(memcg, PGDEACTIVATE));
1630 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1631 memcg_events(memcg, PGLAZYFREE));
1632 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1633 memcg_events(memcg, PGLAZYFREED));
1634
1635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1636 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1637 memcg_events(memcg, THP_FAULT_ALLOC));
1638 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1639 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1640 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1641
1642 /* The above should easily fit into one page */
1643 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1644
1645 return s.buffer;
1646 }
1647
1648 #define K(x) ((x) << (PAGE_SHIFT-10))
1649 /**
1650 * mem_cgroup_print_oom_context: Print OOM information relevant to
1651 * memory controller.
1652 * @memcg: The memory cgroup that went over limit
1653 * @p: Task that is going to be killed
1654 *
1655 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1656 * enabled
1657 */
1658 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1659 {
1660 rcu_read_lock();
1661
1662 if (memcg) {
1663 pr_cont(",oom_memcg=");
1664 pr_cont_cgroup_path(memcg->css.cgroup);
1665 } else
1666 pr_cont(",global_oom");
1667 if (p) {
1668 pr_cont(",task_memcg=");
1669 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1670 }
1671 rcu_read_unlock();
1672 }
1673
1674 /**
1675 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1676 * memory controller.
1677 * @memcg: The memory cgroup that went over limit
1678 */
1679 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1680 {
1681 char *buf;
1682
1683 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1684 K((u64)page_counter_read(&memcg->memory)),
1685 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1686 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1687 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1688 K((u64)page_counter_read(&memcg->swap)),
1689 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1690 else {
1691 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1692 K((u64)page_counter_read(&memcg->memsw)),
1693 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1694 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1695 K((u64)page_counter_read(&memcg->kmem)),
1696 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1697 }
1698
1699 pr_info("Memory cgroup stats for ");
1700 pr_cont_cgroup_path(memcg->css.cgroup);
1701 pr_cont(":");
1702 buf = memory_stat_format(memcg);
1703 if (!buf)
1704 return;
1705 pr_info("%s", buf);
1706 kfree(buf);
1707 }
1708
1709 /*
1710 * Return the memory (and swap, if configured) limit for a memcg.
1711 */
1712 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1713 {
1714 unsigned long max = READ_ONCE(memcg->memory.max);
1715
1716 if (cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
1717 if (mem_cgroup_swappiness(memcg))
1718 max += min(READ_ONCE(memcg->swap.max),
1719 (unsigned long)total_swap_pages);
1720 } else { /* v1 */
1721 if (mem_cgroup_swappiness(memcg)) {
1722 /* Calculate swap excess capacity from memsw limit */
1723 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1724
1725 max += min(swap, (unsigned long)total_swap_pages);
1726 }
1727 }
1728 return max;
1729 }
1730
1731 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1732 {
1733 return page_counter_read(&memcg->memory);
1734 }
1735
1736 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1737 int order)
1738 {
1739 struct oom_control oc = {
1740 .zonelist = NULL,
1741 .nodemask = NULL,
1742 .memcg = memcg,
1743 .gfp_mask = gfp_mask,
1744 .order = order,
1745 };
1746 bool ret = true;
1747
1748 if (mutex_lock_killable(&oom_lock))
1749 return true;
1750
1751 if (mem_cgroup_margin(memcg) >= (1 << order))
1752 goto unlock;
1753
1754 /*
1755 * A few threads which were not waiting at mutex_lock_killable() can
1756 * fail to bail out. Therefore, check again after holding oom_lock.
1757 */
1758 ret = should_force_charge() || out_of_memory(&oc);
1759
1760 unlock:
1761 mutex_unlock(&oom_lock);
1762 return ret;
1763 }
1764
1765 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1766 pg_data_t *pgdat,
1767 gfp_t gfp_mask,
1768 unsigned long *total_scanned)
1769 {
1770 struct mem_cgroup *victim = NULL;
1771 int total = 0;
1772 int loop = 0;
1773 unsigned long excess;
1774 unsigned long nr_scanned;
1775 struct mem_cgroup_reclaim_cookie reclaim = {
1776 .pgdat = pgdat,
1777 };
1778
1779 excess = soft_limit_excess(root_memcg);
1780
1781 while (1) {
1782 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1783 if (!victim) {
1784 loop++;
1785 if (loop >= 2) {
1786 /*
1787 * If we have not been able to reclaim
1788 * anything, it might because there are
1789 * no reclaimable pages under this hierarchy
1790 */
1791 if (!total)
1792 break;
1793 /*
1794 * We want to do more targeted reclaim.
1795 * excess >> 2 is not to excessive so as to
1796 * reclaim too much, nor too less that we keep
1797 * coming back to reclaim from this cgroup
1798 */
1799 if (total >= (excess >> 2) ||
1800 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1801 break;
1802 }
1803 continue;
1804 }
1805 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1806 pgdat, &nr_scanned);
1807 *total_scanned += nr_scanned;
1808 if (!soft_limit_excess(root_memcg))
1809 break;
1810 }
1811 mem_cgroup_iter_break(root_memcg, victim);
1812 return total;
1813 }
1814
1815 #ifdef CONFIG_LOCKDEP
1816 static struct lockdep_map memcg_oom_lock_dep_map = {
1817 .name = "memcg_oom_lock",
1818 };
1819 #endif
1820
1821 static DEFINE_SPINLOCK(memcg_oom_lock);
1822
1823 /*
1824 * Check OOM-Killer is already running under our hierarchy.
1825 * If someone is running, return false.
1826 */
1827 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1828 {
1829 struct mem_cgroup *iter, *failed = NULL;
1830
1831 spin_lock(&memcg_oom_lock);
1832
1833 for_each_mem_cgroup_tree(iter, memcg) {
1834 if (iter->oom_lock) {
1835 /*
1836 * this subtree of our hierarchy is already locked
1837 * so we cannot give a lock.
1838 */
1839 failed = iter;
1840 mem_cgroup_iter_break(memcg, iter);
1841 break;
1842 } else
1843 iter->oom_lock = true;
1844 }
1845
1846 if (failed) {
1847 /*
1848 * OK, we failed to lock the whole subtree so we have
1849 * to clean up what we set up to the failing subtree
1850 */
1851 for_each_mem_cgroup_tree(iter, memcg) {
1852 if (iter == failed) {
1853 mem_cgroup_iter_break(memcg, iter);
1854 break;
1855 }
1856 iter->oom_lock = false;
1857 }
1858 } else
1859 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1860
1861 spin_unlock(&memcg_oom_lock);
1862
1863 return !failed;
1864 }
1865
1866 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1867 {
1868 struct mem_cgroup *iter;
1869
1870 spin_lock(&memcg_oom_lock);
1871 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1872 for_each_mem_cgroup_tree(iter, memcg)
1873 iter->oom_lock = false;
1874 spin_unlock(&memcg_oom_lock);
1875 }
1876
1877 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1878 {
1879 struct mem_cgroup *iter;
1880
1881 spin_lock(&memcg_oom_lock);
1882 for_each_mem_cgroup_tree(iter, memcg)
1883 iter->under_oom++;
1884 spin_unlock(&memcg_oom_lock);
1885 }
1886
1887 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1888 {
1889 struct mem_cgroup *iter;
1890
1891 /*
1892 * Be careful about under_oom underflows becase a child memcg
1893 * could have been added after mem_cgroup_mark_under_oom.
1894 */
1895 spin_lock(&memcg_oom_lock);
1896 for_each_mem_cgroup_tree(iter, memcg)
1897 if (iter->under_oom > 0)
1898 iter->under_oom--;
1899 spin_unlock(&memcg_oom_lock);
1900 }
1901
1902 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1903
1904 struct oom_wait_info {
1905 struct mem_cgroup *memcg;
1906 wait_queue_entry_t wait;
1907 };
1908
1909 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1910 unsigned mode, int sync, void *arg)
1911 {
1912 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1913 struct mem_cgroup *oom_wait_memcg;
1914 struct oom_wait_info *oom_wait_info;
1915
1916 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1917 oom_wait_memcg = oom_wait_info->memcg;
1918
1919 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1920 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1921 return 0;
1922 return autoremove_wake_function(wait, mode, sync, arg);
1923 }
1924
1925 static void memcg_oom_recover(struct mem_cgroup *memcg)
1926 {
1927 /*
1928 * For the following lockless ->under_oom test, the only required
1929 * guarantee is that it must see the state asserted by an OOM when
1930 * this function is called as a result of userland actions
1931 * triggered by the notification of the OOM. This is trivially
1932 * achieved by invoking mem_cgroup_mark_under_oom() before
1933 * triggering notification.
1934 */
1935 if (memcg && memcg->under_oom)
1936 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1937 }
1938
1939 enum oom_status {
1940 OOM_SUCCESS,
1941 OOM_FAILED,
1942 OOM_ASYNC,
1943 OOM_SKIPPED
1944 };
1945
1946 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1947 {
1948 enum oom_status ret;
1949 bool locked;
1950
1951 if (order > PAGE_ALLOC_COSTLY_ORDER)
1952 return OOM_SKIPPED;
1953
1954 memcg_memory_event(memcg, MEMCG_OOM);
1955
1956 /*
1957 * We are in the middle of the charge context here, so we
1958 * don't want to block when potentially sitting on a callstack
1959 * that holds all kinds of filesystem and mm locks.
1960 *
1961 * cgroup1 allows disabling the OOM killer and waiting for outside
1962 * handling until the charge can succeed; remember the context and put
1963 * the task to sleep at the end of the page fault when all locks are
1964 * released.
1965 *
1966 * On the other hand, in-kernel OOM killer allows for an async victim
1967 * memory reclaim (oom_reaper) and that means that we are not solely
1968 * relying on the oom victim to make a forward progress and we can
1969 * invoke the oom killer here.
1970 *
1971 * Please note that mem_cgroup_out_of_memory might fail to find a
1972 * victim and then we have to bail out from the charge path.
1973 */
1974 if (memcg->oom_kill_disable) {
1975 if (!current->in_user_fault)
1976 return OOM_SKIPPED;
1977 css_get(&memcg->css);
1978 current->memcg_in_oom = memcg;
1979 current->memcg_oom_gfp_mask = mask;
1980 current->memcg_oom_order = order;
1981
1982 return OOM_ASYNC;
1983 }
1984
1985 mem_cgroup_mark_under_oom(memcg);
1986
1987 locked = mem_cgroup_oom_trylock(memcg);
1988
1989 if (locked)
1990 mem_cgroup_oom_notify(memcg);
1991
1992 mem_cgroup_unmark_under_oom(memcg);
1993 if (mem_cgroup_out_of_memory(memcg, mask, order))
1994 ret = OOM_SUCCESS;
1995 else
1996 ret = OOM_FAILED;
1997
1998 if (locked)
1999 mem_cgroup_oom_unlock(memcg);
2000
2001 return ret;
2002 }
2003
2004 /**
2005 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2006 * @handle: actually kill/wait or just clean up the OOM state
2007 *
2008 * This has to be called at the end of a page fault if the memcg OOM
2009 * handler was enabled.
2010 *
2011 * Memcg supports userspace OOM handling where failed allocations must
2012 * sleep on a waitqueue until the userspace task resolves the
2013 * situation. Sleeping directly in the charge context with all kinds
2014 * of locks held is not a good idea, instead we remember an OOM state
2015 * in the task and mem_cgroup_oom_synchronize() has to be called at
2016 * the end of the page fault to complete the OOM handling.
2017 *
2018 * Returns %true if an ongoing memcg OOM situation was detected and
2019 * completed, %false otherwise.
2020 */
2021 bool mem_cgroup_oom_synchronize(bool handle)
2022 {
2023 struct mem_cgroup *memcg = current->memcg_in_oom;
2024 struct oom_wait_info owait;
2025 bool locked;
2026
2027 /* OOM is global, do not handle */
2028 if (!memcg)
2029 return false;
2030
2031 if (!handle)
2032 goto cleanup;
2033
2034 owait.memcg = memcg;
2035 owait.wait.flags = 0;
2036 owait.wait.func = memcg_oom_wake_function;
2037 owait.wait.private = current;
2038 INIT_LIST_HEAD(&owait.wait.entry);
2039
2040 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2041 mem_cgroup_mark_under_oom(memcg);
2042
2043 locked = mem_cgroup_oom_trylock(memcg);
2044
2045 if (locked)
2046 mem_cgroup_oom_notify(memcg);
2047
2048 if (locked && !memcg->oom_kill_disable) {
2049 mem_cgroup_unmark_under_oom(memcg);
2050 finish_wait(&memcg_oom_waitq, &owait.wait);
2051 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2052 current->memcg_oom_order);
2053 } else {
2054 schedule();
2055 mem_cgroup_unmark_under_oom(memcg);
2056 finish_wait(&memcg_oom_waitq, &owait.wait);
2057 }
2058
2059 if (locked) {
2060 mem_cgroup_oom_unlock(memcg);
2061 /*
2062 * There is no guarantee that an OOM-lock contender
2063 * sees the wakeups triggered by the OOM kill
2064 * uncharges. Wake any sleepers explicitely.
2065 */
2066 memcg_oom_recover(memcg);
2067 }
2068 cleanup:
2069 current->memcg_in_oom = NULL;
2070 css_put(&memcg->css);
2071 return true;
2072 }
2073
2074 /**
2075 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2076 * @victim: task to be killed by the OOM killer
2077 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2078 *
2079 * Returns a pointer to a memory cgroup, which has to be cleaned up
2080 * by killing all belonging OOM-killable tasks.
2081 *
2082 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2083 */
2084 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2085 struct mem_cgroup *oom_domain)
2086 {
2087 struct mem_cgroup *oom_group = NULL;
2088 struct mem_cgroup *memcg;
2089
2090 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2091 return NULL;
2092
2093 if (!oom_domain)
2094 oom_domain = root_mem_cgroup;
2095
2096 rcu_read_lock();
2097
2098 memcg = mem_cgroup_from_task(victim);
2099 if (memcg == root_mem_cgroup)
2100 goto out;
2101
2102 /*
2103 * If the victim task has been asynchronously moved to a different
2104 * memory cgroup, we might end up killing tasks outside oom_domain.
2105 * In this case it's better to ignore memory.group.oom.
2106 */
2107 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2108 goto out;
2109
2110 /*
2111 * Traverse the memory cgroup hierarchy from the victim task's
2112 * cgroup up to the OOMing cgroup (or root) to find the
2113 * highest-level memory cgroup with oom.group set.
2114 */
2115 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2116 if (memcg->oom_group)
2117 oom_group = memcg;
2118
2119 if (memcg == oom_domain)
2120 break;
2121 }
2122
2123 if (oom_group)
2124 css_get(&oom_group->css);
2125 out:
2126 rcu_read_unlock();
2127
2128 return oom_group;
2129 }
2130
2131 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2132 {
2133 pr_info("Tasks in ");
2134 pr_cont_cgroup_path(memcg->css.cgroup);
2135 pr_cont(" are going to be killed due to memory.oom.group set\n");
2136 }
2137
2138 /**
2139 * lock_page_memcg - lock a page and memcg binding
2140 * @page: the page
2141 *
2142 * This function protects unlocked LRU pages from being moved to
2143 * another cgroup.
2144 *
2145 * It ensures lifetime of the returned memcg. Caller is responsible
2146 * for the lifetime of the page; __unlock_page_memcg() is available
2147 * when @page might get freed inside the locked section.
2148 */
2149 struct mem_cgroup *lock_page_memcg(struct page *page)
2150 {
2151 struct page *head = compound_head(page); /* rmap on tail pages */
2152 struct mem_cgroup *memcg;
2153 unsigned long flags;
2154
2155 /*
2156 * The RCU lock is held throughout the transaction. The fast
2157 * path can get away without acquiring the memcg->move_lock
2158 * because page moving starts with an RCU grace period.
2159 *
2160 * The RCU lock also protects the memcg from being freed when
2161 * the page state that is going to change is the only thing
2162 * preventing the page itself from being freed. E.g. writeback
2163 * doesn't hold a page reference and relies on PG_writeback to
2164 * keep off truncation, migration and so forth.
2165 */
2166 rcu_read_lock();
2167
2168 if (mem_cgroup_disabled())
2169 return NULL;
2170 again:
2171 memcg = page_memcg(head);
2172 if (unlikely(!memcg))
2173 return NULL;
2174
2175 #ifdef CONFIG_PROVE_LOCKING
2176 local_irq_save(flags);
2177 might_lock(&memcg->move_lock);
2178 local_irq_restore(flags);
2179 #endif
2180
2181 if (atomic_read(&memcg->moving_account) <= 0)
2182 return memcg;
2183
2184 spin_lock_irqsave(&memcg->move_lock, flags);
2185 if (memcg != page_memcg(head)) {
2186 spin_unlock_irqrestore(&memcg->move_lock, flags);
2187 goto again;
2188 }
2189
2190 /*
2191 * When charge migration first begins, we can have locked and
2192 * unlocked page stat updates happening concurrently. Track
2193 * the task who has the lock for unlock_page_memcg().
2194 */
2195 memcg->move_lock_task = current;
2196 memcg->move_lock_flags = flags;
2197
2198 return memcg;
2199 }
2200 EXPORT_SYMBOL(lock_page_memcg);
2201
2202 /**
2203 * __unlock_page_memcg - unlock and unpin a memcg
2204 * @memcg: the memcg
2205 *
2206 * Unlock and unpin a memcg returned by lock_page_memcg().
2207 */
2208 void __unlock_page_memcg(struct mem_cgroup *memcg)
2209 {
2210 if (memcg && memcg->move_lock_task == current) {
2211 unsigned long flags = memcg->move_lock_flags;
2212
2213 memcg->move_lock_task = NULL;
2214 memcg->move_lock_flags = 0;
2215
2216 spin_unlock_irqrestore(&memcg->move_lock, flags);
2217 }
2218
2219 rcu_read_unlock();
2220 }
2221
2222 /**
2223 * unlock_page_memcg - unlock a page and memcg binding
2224 * @page: the page
2225 */
2226 void unlock_page_memcg(struct page *page)
2227 {
2228 struct page *head = compound_head(page);
2229
2230 __unlock_page_memcg(page_memcg(head));
2231 }
2232 EXPORT_SYMBOL(unlock_page_memcg);
2233
2234 struct memcg_stock_pcp {
2235 struct mem_cgroup *cached; /* this never be root cgroup */
2236 unsigned int nr_pages;
2237
2238 #ifdef CONFIG_MEMCG_KMEM
2239 struct obj_cgroup *cached_objcg;
2240 unsigned int nr_bytes;
2241 #endif
2242
2243 struct work_struct work;
2244 unsigned long flags;
2245 #define FLUSHING_CACHED_CHARGE 0
2246 };
2247 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2248 static DEFINE_MUTEX(percpu_charge_mutex);
2249
2250 #ifdef CONFIG_MEMCG_KMEM
2251 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2252 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2253 struct mem_cgroup *root_memcg);
2254
2255 #else
2256 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2257 {
2258 }
2259 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2260 struct mem_cgroup *root_memcg)
2261 {
2262 return false;
2263 }
2264 #endif
2265
2266 /**
2267 * consume_stock: Try to consume stocked charge on this cpu.
2268 * @memcg: memcg to consume from.
2269 * @nr_pages: how many pages to charge.
2270 *
2271 * The charges will only happen if @memcg matches the current cpu's memcg
2272 * stock, and at least @nr_pages are available in that stock. Failure to
2273 * service an allocation will refill the stock.
2274 *
2275 * returns true if successful, false otherwise.
2276 */
2277 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2278 {
2279 struct memcg_stock_pcp *stock;
2280 unsigned long flags;
2281 bool ret = false;
2282
2283 if (nr_pages > MEMCG_CHARGE_BATCH)
2284 return ret;
2285
2286 local_irq_save(flags);
2287
2288 stock = this_cpu_ptr(&memcg_stock);
2289 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2290 stock->nr_pages -= nr_pages;
2291 ret = true;
2292 }
2293
2294 local_irq_restore(flags);
2295
2296 return ret;
2297 }
2298
2299 /*
2300 * Returns stocks cached in percpu and reset cached information.
2301 */
2302 static void drain_stock(struct memcg_stock_pcp *stock)
2303 {
2304 struct mem_cgroup *old = stock->cached;
2305
2306 if (!old)
2307 return;
2308
2309 if (stock->nr_pages) {
2310 page_counter_uncharge(&old->memory, stock->nr_pages);
2311 if (do_memsw_account())
2312 page_counter_uncharge(&old->memsw, stock->nr_pages);
2313 stock->nr_pages = 0;
2314 }
2315
2316 css_put(&old->css);
2317 stock->cached = NULL;
2318 }
2319
2320 static void drain_local_stock(struct work_struct *dummy)
2321 {
2322 struct memcg_stock_pcp *stock;
2323 unsigned long flags;
2324
2325 /*
2326 * The only protection from memory hotplug vs. drain_stock races is
2327 * that we always operate on local CPU stock here with IRQ disabled
2328 */
2329 local_irq_save(flags);
2330
2331 stock = this_cpu_ptr(&memcg_stock);
2332 drain_obj_stock(stock);
2333 drain_stock(stock);
2334 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2335
2336 local_irq_restore(flags);
2337 }
2338
2339 /*
2340 * Cache charges(val) to local per_cpu area.
2341 * This will be consumed by consume_stock() function, later.
2342 */
2343 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2344 {
2345 struct memcg_stock_pcp *stock;
2346 unsigned long flags;
2347
2348 local_irq_save(flags);
2349
2350 stock = this_cpu_ptr(&memcg_stock);
2351 if (stock->cached != memcg) { /* reset if necessary */
2352 drain_stock(stock);
2353 css_get(&memcg->css);
2354 stock->cached = memcg;
2355 }
2356 stock->nr_pages += nr_pages;
2357
2358 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2359 drain_stock(stock);
2360
2361 local_irq_restore(flags);
2362 }
2363
2364 /*
2365 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2366 * of the hierarchy under it.
2367 */
2368 static void drain_all_stock(struct mem_cgroup *root_memcg)
2369 {
2370 int cpu, curcpu;
2371
2372 /* If someone's already draining, avoid adding running more workers. */
2373 if (!mutex_trylock(&percpu_charge_mutex))
2374 return;
2375 /*
2376 * Notify other cpus that system-wide "drain" is running
2377 * We do not care about races with the cpu hotplug because cpu down
2378 * as well as workers from this path always operate on the local
2379 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2380 */
2381 curcpu = get_cpu();
2382 for_each_online_cpu(cpu) {
2383 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2384 struct mem_cgroup *memcg;
2385 bool flush = false;
2386
2387 rcu_read_lock();
2388 memcg = stock->cached;
2389 if (memcg && stock->nr_pages &&
2390 mem_cgroup_is_descendant(memcg, root_memcg))
2391 flush = true;
2392 if (obj_stock_flush_required(stock, root_memcg))
2393 flush = true;
2394 rcu_read_unlock();
2395
2396 if (flush &&
2397 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2398 if (cpu == curcpu)
2399 drain_local_stock(&stock->work);
2400 else
2401 schedule_work_on(cpu, &stock->work);
2402 }
2403 }
2404 put_cpu();
2405 mutex_unlock(&percpu_charge_mutex);
2406 }
2407
2408 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2409 {
2410 struct memcg_stock_pcp *stock;
2411 struct mem_cgroup *memcg, *mi;
2412
2413 stock = &per_cpu(memcg_stock, cpu);
2414 drain_stock(stock);
2415
2416 for_each_mem_cgroup(memcg) {
2417 int i;
2418
2419 for (i = 0; i < MEMCG_NR_STAT; i++) {
2420 int nid;
2421 long x;
2422
2423 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2424 if (x)
2425 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2426 atomic_long_add(x, &memcg->vmstats[i]);
2427
2428 if (i >= NR_VM_NODE_STAT_ITEMS)
2429 continue;
2430
2431 for_each_node(nid) {
2432 struct mem_cgroup_per_node *pn;
2433
2434 pn = mem_cgroup_nodeinfo(memcg, nid);
2435 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2436 if (x)
2437 do {
2438 atomic_long_add(x, &pn->lruvec_stat[i]);
2439 } while ((pn = parent_nodeinfo(pn, nid)));
2440 }
2441 }
2442
2443 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2444 long x;
2445
2446 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2447 if (x)
2448 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2449 atomic_long_add(x, &memcg->vmevents[i]);
2450 }
2451 }
2452
2453 return 0;
2454 }
2455
2456 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2457 unsigned int nr_pages,
2458 gfp_t gfp_mask)
2459 {
2460 unsigned long nr_reclaimed = 0;
2461
2462 do {
2463 unsigned long pflags;
2464
2465 if (page_counter_read(&memcg->memory) <=
2466 READ_ONCE(memcg->memory.high))
2467 continue;
2468
2469 memcg_memory_event(memcg, MEMCG_HIGH);
2470
2471 psi_memstall_enter(&pflags);
2472 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2473 gfp_mask, true);
2474 psi_memstall_leave(&pflags);
2475 } while ((memcg = parent_mem_cgroup(memcg)) &&
2476 !mem_cgroup_is_root(memcg));
2477
2478 return nr_reclaimed;
2479 }
2480
2481 static void high_work_func(struct work_struct *work)
2482 {
2483 struct mem_cgroup *memcg;
2484
2485 memcg = container_of(work, struct mem_cgroup, high_work);
2486 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2487 }
2488
2489 /*
2490 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2491 * enough to still cause a significant slowdown in most cases, while still
2492 * allowing diagnostics and tracing to proceed without becoming stuck.
2493 */
2494 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2495
2496 /*
2497 * When calculating the delay, we use these either side of the exponentiation to
2498 * maintain precision and scale to a reasonable number of jiffies (see the table
2499 * below.
2500 *
2501 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2502 * overage ratio to a delay.
2503 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2504 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2505 * to produce a reasonable delay curve.
2506 *
2507 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2508 * reasonable delay curve compared to precision-adjusted overage, not
2509 * penalising heavily at first, but still making sure that growth beyond the
2510 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2511 * example, with a high of 100 megabytes:
2512 *
2513 * +-------+------------------------+
2514 * | usage | time to allocate in ms |
2515 * +-------+------------------------+
2516 * | 100M | 0 |
2517 * | 101M | 6 |
2518 * | 102M | 25 |
2519 * | 103M | 57 |
2520 * | 104M | 102 |
2521 * | 105M | 159 |
2522 * | 106M | 230 |
2523 * | 107M | 313 |
2524 * | 108M | 409 |
2525 * | 109M | 518 |
2526 * | 110M | 639 |
2527 * | 111M | 774 |
2528 * | 112M | 921 |
2529 * | 113M | 1081 |
2530 * | 114M | 1254 |
2531 * | 115M | 1439 |
2532 * | 116M | 1638 |
2533 * | 117M | 1849 |
2534 * | 118M | 2000 |
2535 * | 119M | 2000 |
2536 * | 120M | 2000 |
2537 * +-------+------------------------+
2538 */
2539 #define MEMCG_DELAY_PRECISION_SHIFT 20
2540 #define MEMCG_DELAY_SCALING_SHIFT 14
2541
2542 static u64 calculate_overage(unsigned long usage, unsigned long high)
2543 {
2544 u64 overage;
2545
2546 if (usage <= high)
2547 return 0;
2548
2549 /*
2550 * Prevent division by 0 in overage calculation by acting as if
2551 * it was a threshold of 1 page
2552 */
2553 high = max(high, 1UL);
2554
2555 overage = usage - high;
2556 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2557 return div64_u64(overage, high);
2558 }
2559
2560 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2561 {
2562 u64 overage, max_overage = 0;
2563
2564 do {
2565 overage = calculate_overage(page_counter_read(&memcg->memory),
2566 READ_ONCE(memcg->memory.high));
2567 max_overage = max(overage, max_overage);
2568 } while ((memcg = parent_mem_cgroup(memcg)) &&
2569 !mem_cgroup_is_root(memcg));
2570
2571 return max_overage;
2572 }
2573
2574 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2575 {
2576 u64 overage, max_overage = 0;
2577
2578 do {
2579 overage = calculate_overage(page_counter_read(&memcg->swap),
2580 READ_ONCE(memcg->swap.high));
2581 if (overage)
2582 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2583 max_overage = max(overage, max_overage);
2584 } while ((memcg = parent_mem_cgroup(memcg)) &&
2585 !mem_cgroup_is_root(memcg));
2586
2587 return max_overage;
2588 }
2589
2590 /*
2591 * Get the number of jiffies that we should penalise a mischievous cgroup which
2592 * is exceeding its memory.high by checking both it and its ancestors.
2593 */
2594 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2595 unsigned int nr_pages,
2596 u64 max_overage)
2597 {
2598 unsigned long penalty_jiffies;
2599
2600 if (!max_overage)
2601 return 0;
2602
2603 /*
2604 * We use overage compared to memory.high to calculate the number of
2605 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2606 * fairly lenient on small overages, and increasingly harsh when the
2607 * memcg in question makes it clear that it has no intention of stopping
2608 * its crazy behaviour, so we exponentially increase the delay based on
2609 * overage amount.
2610 */
2611 penalty_jiffies = max_overage * max_overage * HZ;
2612 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2613 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2614
2615 /*
2616 * Factor in the task's own contribution to the overage, such that four
2617 * N-sized allocations are throttled approximately the same as one
2618 * 4N-sized allocation.
2619 *
2620 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2621 * larger the current charge patch is than that.
2622 */
2623 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2624 }
2625
2626 /*
2627 * Scheduled by try_charge() to be executed from the userland return path
2628 * and reclaims memory over the high limit.
2629 */
2630 void mem_cgroup_handle_over_high(void)
2631 {
2632 unsigned long penalty_jiffies;
2633 unsigned long pflags;
2634 unsigned long nr_reclaimed;
2635 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2636 int nr_retries = MAX_RECLAIM_RETRIES;
2637 struct mem_cgroup *memcg;
2638 bool in_retry = false;
2639
2640 if (likely(!nr_pages))
2641 return;
2642
2643 memcg = get_mem_cgroup_from_mm(current->mm);
2644 current->memcg_nr_pages_over_high = 0;
2645
2646 retry_reclaim:
2647 /*
2648 * The allocating task should reclaim at least the batch size, but for
2649 * subsequent retries we only want to do what's necessary to prevent oom
2650 * or breaching resource isolation.
2651 *
2652 * This is distinct from memory.max or page allocator behaviour because
2653 * memory.high is currently batched, whereas memory.max and the page
2654 * allocator run every time an allocation is made.
2655 */
2656 nr_reclaimed = reclaim_high(memcg,
2657 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2658 GFP_KERNEL);
2659
2660 /*
2661 * memory.high is breached and reclaim is unable to keep up. Throttle
2662 * allocators proactively to slow down excessive growth.
2663 */
2664 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2665 mem_find_max_overage(memcg));
2666
2667 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2668 swap_find_max_overage(memcg));
2669
2670 /*
2671 * Clamp the max delay per usermode return so as to still keep the
2672 * application moving forwards and also permit diagnostics, albeit
2673 * extremely slowly.
2674 */
2675 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2676
2677 /*
2678 * Don't sleep if the amount of jiffies this memcg owes us is so low
2679 * that it's not even worth doing, in an attempt to be nice to those who
2680 * go only a small amount over their memory.high value and maybe haven't
2681 * been aggressively reclaimed enough yet.
2682 */
2683 if (penalty_jiffies <= HZ / 100)
2684 goto out;
2685
2686 /*
2687 * If reclaim is making forward progress but we're still over
2688 * memory.high, we want to encourage that rather than doing allocator
2689 * throttling.
2690 */
2691 if (nr_reclaimed || nr_retries--) {
2692 in_retry = true;
2693 goto retry_reclaim;
2694 }
2695
2696 /*
2697 * If we exit early, we're guaranteed to die (since
2698 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2699 * need to account for any ill-begotten jiffies to pay them off later.
2700 */
2701 psi_memstall_enter(&pflags);
2702 schedule_timeout_killable(penalty_jiffies);
2703 psi_memstall_leave(&pflags);
2704
2705 out:
2706 css_put(&memcg->css);
2707 }
2708
2709 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2710 unsigned int nr_pages)
2711 {
2712 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2713 int nr_retries = MAX_RECLAIM_RETRIES;
2714 struct mem_cgroup *mem_over_limit;
2715 struct page_counter *counter;
2716 enum oom_status oom_status;
2717 unsigned long nr_reclaimed;
2718 bool may_swap = true;
2719 bool drained = false;
2720 unsigned long pflags;
2721
2722 if (mem_cgroup_is_root(memcg))
2723 return 0;
2724 retry:
2725 if (consume_stock(memcg, nr_pages))
2726 return 0;
2727
2728 if (!do_memsw_account() ||
2729 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2730 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2731 goto done_restock;
2732 if (do_memsw_account())
2733 page_counter_uncharge(&memcg->memsw, batch);
2734 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2735 } else {
2736 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2737 may_swap = false;
2738 }
2739
2740 if (batch > nr_pages) {
2741 batch = nr_pages;
2742 goto retry;
2743 }
2744
2745 /*
2746 * Memcg doesn't have a dedicated reserve for atomic
2747 * allocations. But like the global atomic pool, we need to
2748 * put the burden of reclaim on regular allocation requests
2749 * and let these go through as privileged allocations.
2750 */
2751 if (gfp_mask & __GFP_ATOMIC)
2752 goto force;
2753
2754 /*
2755 * Unlike in global OOM situations, memcg is not in a physical
2756 * memory shortage. Allow dying and OOM-killed tasks to
2757 * bypass the last charges so that they can exit quickly and
2758 * free their memory.
2759 */
2760 if (unlikely(should_force_charge()))
2761 goto force;
2762
2763 /*
2764 * Prevent unbounded recursion when reclaim operations need to
2765 * allocate memory. This might exceed the limits temporarily,
2766 * but we prefer facilitating memory reclaim and getting back
2767 * under the limit over triggering OOM kills in these cases.
2768 */
2769 if (unlikely(current->flags & PF_MEMALLOC))
2770 goto force;
2771
2772 if (unlikely(task_in_memcg_oom(current)))
2773 goto nomem;
2774
2775 if (!gfpflags_allow_blocking(gfp_mask))
2776 goto nomem;
2777
2778 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2779
2780 psi_memstall_enter(&pflags);
2781 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2782 gfp_mask, may_swap);
2783 psi_memstall_leave(&pflags);
2784
2785 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2786 goto retry;
2787
2788 if (!drained) {
2789 drain_all_stock(mem_over_limit);
2790 drained = true;
2791 goto retry;
2792 }
2793
2794 if (gfp_mask & __GFP_NORETRY)
2795 goto nomem;
2796 /*
2797 * Even though the limit is exceeded at this point, reclaim
2798 * may have been able to free some pages. Retry the charge
2799 * before killing the task.
2800 *
2801 * Only for regular pages, though: huge pages are rather
2802 * unlikely to succeed so close to the limit, and we fall back
2803 * to regular pages anyway in case of failure.
2804 */
2805 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2806 goto retry;
2807 /*
2808 * At task move, charge accounts can be doubly counted. So, it's
2809 * better to wait until the end of task_move if something is going on.
2810 */
2811 if (mem_cgroup_wait_acct_move(mem_over_limit))
2812 goto retry;
2813
2814 if (nr_retries--)
2815 goto retry;
2816
2817 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2818 goto nomem;
2819
2820 if (gfp_mask & __GFP_NOFAIL)
2821 goto force;
2822
2823 if (fatal_signal_pending(current))
2824 goto force;
2825
2826 /*
2827 * keep retrying as long as the memcg oom killer is able to make
2828 * a forward progress or bypass the charge if the oom killer
2829 * couldn't make any progress.
2830 */
2831 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2832 get_order(nr_pages * PAGE_SIZE));
2833 switch (oom_status) {
2834 case OOM_SUCCESS:
2835 nr_retries = MAX_RECLAIM_RETRIES;
2836 goto retry;
2837 case OOM_FAILED:
2838 goto force;
2839 default:
2840 goto nomem;
2841 }
2842 nomem:
2843 if (!(gfp_mask & __GFP_NOFAIL))
2844 return -ENOMEM;
2845 force:
2846 /*
2847 * The allocation either can't fail or will lead to more memory
2848 * being freed very soon. Allow memory usage go over the limit
2849 * temporarily by force charging it.
2850 */
2851 page_counter_charge(&memcg->memory, nr_pages);
2852 if (do_memsw_account())
2853 page_counter_charge(&memcg->memsw, nr_pages);
2854
2855 return 0;
2856
2857 done_restock:
2858 if (batch > nr_pages)
2859 refill_stock(memcg, batch - nr_pages);
2860
2861 /*
2862 * If the hierarchy is above the normal consumption range, schedule
2863 * reclaim on returning to userland. We can perform reclaim here
2864 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2865 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2866 * not recorded as it most likely matches current's and won't
2867 * change in the meantime. As high limit is checked again before
2868 * reclaim, the cost of mismatch is negligible.
2869 */
2870 do {
2871 bool mem_high, swap_high;
2872
2873 mem_high = page_counter_read(&memcg->memory) >
2874 READ_ONCE(memcg->memory.high);
2875 swap_high = page_counter_read(&memcg->swap) >
2876 READ_ONCE(memcg->swap.high);
2877
2878 /* Don't bother a random interrupted task */
2879 if (in_interrupt()) {
2880 if (mem_high) {
2881 schedule_work(&memcg->high_work);
2882 break;
2883 }
2884 continue;
2885 }
2886
2887 if (mem_high || swap_high) {
2888 /*
2889 * The allocating tasks in this cgroup will need to do
2890 * reclaim or be throttled to prevent further growth
2891 * of the memory or swap footprints.
2892 *
2893 * Target some best-effort fairness between the tasks,
2894 * and distribute reclaim work and delay penalties
2895 * based on how much each task is actually allocating.
2896 */
2897 current->memcg_nr_pages_over_high += batch;
2898 set_notify_resume(current);
2899 break;
2900 }
2901 } while ((memcg = parent_mem_cgroup(memcg)));
2902
2903 return 0;
2904 }
2905
2906 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2907 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2908 {
2909 if (mem_cgroup_is_root(memcg))
2910 return;
2911
2912 page_counter_uncharge(&memcg->memory, nr_pages);
2913 if (do_memsw_account())
2914 page_counter_uncharge(&memcg->memsw, nr_pages);
2915 }
2916 #endif
2917
2918 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2919 {
2920 VM_BUG_ON_PAGE(page_memcg(page), page);
2921 /*
2922 * Any of the following ensures page's memcg stability:
2923 *
2924 * - the page lock
2925 * - LRU isolation
2926 * - lock_page_memcg()
2927 * - exclusive reference
2928 */
2929 page->memcg_data = (unsigned long)memcg;
2930 }
2931
2932 #ifdef CONFIG_MEMCG_KMEM
2933 /*
2934 * The allocated objcg pointers array is not accounted directly.
2935 * Moreover, it should not come from DMA buffer and is not readily
2936 * reclaimable. So those GFP bits should be masked off.
2937 */
2938 #define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2939
2940 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2941 gfp_t gfp)
2942 {
2943 unsigned int objects = objs_per_slab_page(s, page);
2944 void *vec;
2945
2946 gfp &= ~OBJCGS_CLEAR_MASK;
2947 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2948 page_to_nid(page));
2949 if (!vec)
2950 return -ENOMEM;
2951
2952 if (!set_page_objcgs(page, vec))
2953 kfree(vec);
2954 else
2955 kmemleak_not_leak(vec);
2956
2957 return 0;
2958 }
2959
2960 /*
2961 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2962 *
2963 * A passed kernel object can be a slab object or a generic kernel page, so
2964 * different mechanisms for getting the memory cgroup pointer should be used.
2965 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2966 * can not know for sure how the kernel object is implemented.
2967 * mem_cgroup_from_obj() can be safely used in such cases.
2968 *
2969 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2970 * cgroup_mutex, etc.
2971 */
2972 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2973 {
2974 struct page *page;
2975
2976 if (mem_cgroup_disabled())
2977 return NULL;
2978
2979 page = virt_to_head_page(p);
2980
2981 /*
2982 * Slab objects are accounted individually, not per-page.
2983 * Memcg membership data for each individual object is saved in
2984 * the page->obj_cgroups.
2985 */
2986 if (page_objcgs_check(page)) {
2987 struct obj_cgroup *objcg;
2988 unsigned int off;
2989
2990 off = obj_to_index(page->slab_cache, page, p);
2991 objcg = page_objcgs(page)[off];
2992 if (objcg)
2993 return obj_cgroup_memcg(objcg);
2994
2995 return NULL;
2996 }
2997
2998 /*
2999 * page_memcg_check() is used here, because page_has_obj_cgroups()
3000 * check above could fail because the object cgroups vector wasn't set
3001 * at that moment, but it can be set concurrently.
3002 * page_memcg_check(page) will guarantee that a proper memory
3003 * cgroup pointer or NULL will be returned.
3004 */
3005 return page_memcg_check(page);
3006 }
3007
3008 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3009 {
3010 struct obj_cgroup *objcg = NULL;
3011 struct mem_cgroup *memcg;
3012
3013 if (memcg_kmem_bypass())
3014 return NULL;
3015
3016 rcu_read_lock();
3017 if (unlikely(active_memcg()))
3018 memcg = active_memcg();
3019 else
3020 memcg = mem_cgroup_from_task(current);
3021
3022 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
3023 objcg = rcu_dereference(memcg->objcg);
3024 if (objcg && obj_cgroup_tryget(objcg))
3025 break;
3026 objcg = NULL;
3027 }
3028 rcu_read_unlock();
3029
3030 return objcg;
3031 }
3032
3033 static int memcg_alloc_cache_id(void)
3034 {
3035 int id, size;
3036 int err;
3037
3038 id = ida_simple_get(&memcg_cache_ida,
3039 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3040 if (id < 0)
3041 return id;
3042
3043 if (id < memcg_nr_cache_ids)
3044 return id;
3045
3046 /*
3047 * There's no space for the new id in memcg_caches arrays,
3048 * so we have to grow them.
3049 */
3050 down_write(&memcg_cache_ids_sem);
3051
3052 size = 2 * (id + 1);
3053 if (size < MEMCG_CACHES_MIN_SIZE)
3054 size = MEMCG_CACHES_MIN_SIZE;
3055 else if (size > MEMCG_CACHES_MAX_SIZE)
3056 size = MEMCG_CACHES_MAX_SIZE;
3057
3058 err = memcg_update_all_list_lrus(size);
3059 if (!err)
3060 memcg_nr_cache_ids = size;
3061
3062 up_write(&memcg_cache_ids_sem);
3063
3064 if (err) {
3065 ida_simple_remove(&memcg_cache_ida, id);
3066 return err;
3067 }
3068 return id;
3069 }
3070
3071 static void memcg_free_cache_id(int id)
3072 {
3073 ida_simple_remove(&memcg_cache_ida, id);
3074 }
3075
3076 /**
3077 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
3078 * @memcg: memory cgroup to charge
3079 * @gfp: reclaim mode
3080 * @nr_pages: number of pages to charge
3081 *
3082 * Returns 0 on success, an error code on failure.
3083 */
3084 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
3085 unsigned int nr_pages)
3086 {
3087 struct page_counter *counter;
3088 int ret;
3089
3090 ret = try_charge(memcg, gfp, nr_pages);
3091 if (ret)
3092 return ret;
3093
3094 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
3095 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
3096
3097 /*
3098 * Enforce __GFP_NOFAIL allocation because callers are not
3099 * prepared to see failures and likely do not have any failure
3100 * handling code.
3101 */
3102 if (gfp & __GFP_NOFAIL) {
3103 page_counter_charge(&memcg->kmem, nr_pages);
3104 return 0;
3105 }
3106 cancel_charge(memcg, nr_pages);
3107 return -ENOMEM;
3108 }
3109 return 0;
3110 }
3111
3112 /**
3113 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
3114 * @memcg: memcg to uncharge
3115 * @nr_pages: number of pages to uncharge
3116 */
3117 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3118 {
3119 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3120 page_counter_uncharge(&memcg->kmem, nr_pages);
3121
3122 refill_stock(memcg, nr_pages);
3123 }
3124
3125 /**
3126 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3127 * @page: page to charge
3128 * @gfp: reclaim mode
3129 * @order: allocation order
3130 *
3131 * Returns 0 on success, an error code on failure.
3132 */
3133 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3134 {
3135 struct mem_cgroup *memcg;
3136 int ret = 0;
3137
3138 memcg = get_mem_cgroup_from_current();
3139 if (memcg && !mem_cgroup_is_root(memcg)) {
3140 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3141 if (!ret) {
3142 page->memcg_data = (unsigned long)memcg |
3143 MEMCG_DATA_KMEM;
3144 return 0;
3145 }
3146 css_put(&memcg->css);
3147 }
3148 return ret;
3149 }
3150
3151 /**
3152 * __memcg_kmem_uncharge_page: uncharge a kmem page
3153 * @page: page to uncharge
3154 * @order: allocation order
3155 */
3156 void __memcg_kmem_uncharge_page(struct page *page, int order)
3157 {
3158 struct mem_cgroup *memcg = page_memcg(page);
3159 unsigned int nr_pages = 1 << order;
3160
3161 if (!memcg)
3162 return;
3163
3164 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3165 __memcg_kmem_uncharge(memcg, nr_pages);
3166 page->memcg_data = 0;
3167 css_put(&memcg->css);
3168 }
3169
3170 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3171 {
3172 struct memcg_stock_pcp *stock;
3173 unsigned long flags;
3174 bool ret = false;
3175
3176 local_irq_save(flags);
3177
3178 stock = this_cpu_ptr(&memcg_stock);
3179 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3180 stock->nr_bytes -= nr_bytes;
3181 ret = true;
3182 }
3183
3184 local_irq_restore(flags);
3185
3186 return ret;
3187 }
3188
3189 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3190 {
3191 struct obj_cgroup *old = stock->cached_objcg;
3192
3193 if (!old)
3194 return;
3195
3196 if (stock->nr_bytes) {
3197 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3198 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3199
3200 if (nr_pages) {
3201 struct mem_cgroup *memcg;
3202
3203 rcu_read_lock();
3204 retry:
3205 memcg = obj_cgroup_memcg(old);
3206 if (unlikely(!css_tryget(&memcg->css)))
3207 goto retry;
3208 rcu_read_unlock();
3209
3210 __memcg_kmem_uncharge(memcg, nr_pages);
3211 css_put(&memcg->css);
3212 }
3213
3214 /*
3215 * The leftover is flushed to the centralized per-memcg value.
3216 * On the next attempt to refill obj stock it will be moved
3217 * to a per-cpu stock (probably, on an other CPU), see
3218 * refill_obj_stock().
3219 *
3220 * How often it's flushed is a trade-off between the memory
3221 * limit enforcement accuracy and potential CPU contention,
3222 * so it might be changed in the future.
3223 */
3224 atomic_add(nr_bytes, &old->nr_charged_bytes);
3225 stock->nr_bytes = 0;
3226 }
3227
3228 obj_cgroup_put(old);
3229 stock->cached_objcg = NULL;
3230 }
3231
3232 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3233 struct mem_cgroup *root_memcg)
3234 {
3235 struct mem_cgroup *memcg;
3236
3237 if (stock->cached_objcg) {
3238 memcg = obj_cgroup_memcg(stock->cached_objcg);
3239 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3240 return true;
3241 }
3242
3243 return false;
3244 }
3245
3246 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3247 {
3248 struct memcg_stock_pcp *stock;
3249 unsigned long flags;
3250
3251 local_irq_save(flags);
3252
3253 stock = this_cpu_ptr(&memcg_stock);
3254 if (stock->cached_objcg != objcg) { /* reset if necessary */
3255 drain_obj_stock(stock);
3256 obj_cgroup_get(objcg);
3257 stock->cached_objcg = objcg;
3258 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3259 }
3260 stock->nr_bytes += nr_bytes;
3261
3262 if (stock->nr_bytes > PAGE_SIZE)
3263 drain_obj_stock(stock);
3264
3265 local_irq_restore(flags);
3266 }
3267
3268 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3269 {
3270 struct mem_cgroup *memcg;
3271 unsigned int nr_pages, nr_bytes;
3272 int ret;
3273
3274 if (consume_obj_stock(objcg, size))
3275 return 0;
3276
3277 /*
3278 * In theory, memcg->nr_charged_bytes can have enough
3279 * pre-charged bytes to satisfy the allocation. However,
3280 * flushing memcg->nr_charged_bytes requires two atomic
3281 * operations, and memcg->nr_charged_bytes can't be big,
3282 * so it's better to ignore it and try grab some new pages.
3283 * memcg->nr_charged_bytes will be flushed in
3284 * refill_obj_stock(), called from this function or
3285 * independently later.
3286 */
3287 rcu_read_lock();
3288 retry:
3289 memcg = obj_cgroup_memcg(objcg);
3290 if (unlikely(!css_tryget(&memcg->css)))
3291 goto retry;
3292 rcu_read_unlock();
3293
3294 nr_pages = size >> PAGE_SHIFT;
3295 nr_bytes = size & (PAGE_SIZE - 1);
3296
3297 if (nr_bytes)
3298 nr_pages += 1;
3299
3300 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3301 if (!ret && nr_bytes)
3302 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3303
3304 css_put(&memcg->css);
3305 return ret;
3306 }
3307
3308 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3309 {
3310 refill_obj_stock(objcg, size);
3311 }
3312
3313 #endif /* CONFIG_MEMCG_KMEM */
3314
3315 /*
3316 * Because page_memcg(head) is not set on tails, set it now.
3317 */
3318 void split_page_memcg(struct page *head, unsigned int nr)
3319 {
3320 struct mem_cgroup *memcg = page_memcg(head);
3321 int i;
3322
3323 if (mem_cgroup_disabled() || !memcg)
3324 return;
3325
3326 for (i = 1; i < nr; i++)
3327 head[i].memcg_data = head->memcg_data;
3328 css_get_many(&memcg->css, nr - 1);
3329 }
3330
3331 #ifdef CONFIG_MEMCG_SWAP
3332 /**
3333 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3334 * @entry: swap entry to be moved
3335 * @from: mem_cgroup which the entry is moved from
3336 * @to: mem_cgroup which the entry is moved to
3337 *
3338 * It succeeds only when the swap_cgroup's record for this entry is the same
3339 * as the mem_cgroup's id of @from.
3340 *
3341 * Returns 0 on success, -EINVAL on failure.
3342 *
3343 * The caller must have charged to @to, IOW, called page_counter_charge() about
3344 * both res and memsw, and called css_get().
3345 */
3346 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3347 struct mem_cgroup *from, struct mem_cgroup *to)
3348 {
3349 unsigned short old_id, new_id;
3350
3351 old_id = mem_cgroup_id(from);
3352 new_id = mem_cgroup_id(to);
3353
3354 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3355 mod_memcg_state(from, MEMCG_SWAP, -1);
3356 mod_memcg_state(to, MEMCG_SWAP, 1);
3357 return 0;
3358 }
3359 return -EINVAL;
3360 }
3361 #else
3362 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3363 struct mem_cgroup *from, struct mem_cgroup *to)
3364 {
3365 return -EINVAL;
3366 }
3367 #endif
3368
3369 static DEFINE_MUTEX(memcg_max_mutex);
3370
3371 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3372 unsigned long max, bool memsw)
3373 {
3374 bool enlarge = false;
3375 bool drained = false;
3376 int ret;
3377 bool limits_invariant;
3378 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3379
3380 do {
3381 if (signal_pending(current)) {
3382 ret = -EINTR;
3383 break;
3384 }
3385
3386 mutex_lock(&memcg_max_mutex);
3387 /*
3388 * Make sure that the new limit (memsw or memory limit) doesn't
3389 * break our basic invariant rule memory.max <= memsw.max.
3390 */
3391 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3392 max <= memcg->memsw.max;
3393 if (!limits_invariant) {
3394 mutex_unlock(&memcg_max_mutex);
3395 ret = -EINVAL;
3396 break;
3397 }
3398 if (max > counter->max)
3399 enlarge = true;
3400 ret = page_counter_set_max(counter, max);
3401 mutex_unlock(&memcg_max_mutex);
3402
3403 if (!ret)
3404 break;
3405
3406 if (!drained) {
3407 drain_all_stock(memcg);
3408 drained = true;
3409 continue;
3410 }
3411
3412 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3413 GFP_KERNEL, !memsw)) {
3414 ret = -EBUSY;
3415 break;
3416 }
3417 } while (true);
3418
3419 if (!ret && enlarge)
3420 memcg_oom_recover(memcg);
3421
3422 return ret;
3423 }
3424
3425 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3426 gfp_t gfp_mask,
3427 unsigned long *total_scanned)
3428 {
3429 unsigned long nr_reclaimed = 0;
3430 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3431 unsigned long reclaimed;
3432 int loop = 0;
3433 struct mem_cgroup_tree_per_node *mctz;
3434 unsigned long excess;
3435 unsigned long nr_scanned;
3436
3437 if (order > 0)
3438 return 0;
3439
3440 mctz = soft_limit_tree_node(pgdat->node_id);
3441
3442 /*
3443 * Do not even bother to check the largest node if the root
3444 * is empty. Do it lockless to prevent lock bouncing. Races
3445 * are acceptable as soft limit is best effort anyway.
3446 */
3447 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3448 return 0;
3449
3450 /*
3451 * This loop can run a while, specially if mem_cgroup's continuously
3452 * keep exceeding their soft limit and putting the system under
3453 * pressure
3454 */
3455 do {
3456 if (next_mz)
3457 mz = next_mz;
3458 else
3459 mz = mem_cgroup_largest_soft_limit_node(mctz);
3460 if (!mz)
3461 break;
3462
3463 nr_scanned = 0;
3464 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3465 gfp_mask, &nr_scanned);
3466 nr_reclaimed += reclaimed;
3467 *total_scanned += nr_scanned;
3468 spin_lock_irq(&mctz->lock);
3469 __mem_cgroup_remove_exceeded(mz, mctz);
3470
3471 /*
3472 * If we failed to reclaim anything from this memory cgroup
3473 * it is time to move on to the next cgroup
3474 */
3475 next_mz = NULL;
3476 if (!reclaimed)
3477 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3478
3479 excess = soft_limit_excess(mz->memcg);
3480 /*
3481 * One school of thought says that we should not add
3482 * back the node to the tree if reclaim returns 0.
3483 * But our reclaim could return 0, simply because due
3484 * to priority we are exposing a smaller subset of
3485 * memory to reclaim from. Consider this as a longer
3486 * term TODO.
3487 */
3488 /* If excess == 0, no tree ops */
3489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3490 spin_unlock_irq(&mctz->lock);
3491 css_put(&mz->memcg->css);
3492 loop++;
3493 /*
3494 * Could not reclaim anything and there are no more
3495 * mem cgroups to try or we seem to be looping without
3496 * reclaiming anything.
3497 */
3498 if (!nr_reclaimed &&
3499 (next_mz == NULL ||
3500 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3501 break;
3502 } while (!nr_reclaimed);
3503 if (next_mz)
3504 css_put(&next_mz->memcg->css);
3505 return nr_reclaimed;
3506 }
3507
3508 /*
3509 * Reclaims as many pages from the given memcg as possible.
3510 *
3511 * Caller is responsible for holding css reference for memcg.
3512 */
3513 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3514 {
3515 int nr_retries = MAX_RECLAIM_RETRIES;
3516
3517 /* we call try-to-free pages for make this cgroup empty */
3518 lru_add_drain_all();
3519
3520 drain_all_stock(memcg);
3521
3522 /* try to free all pages in this cgroup */
3523 while (nr_retries && page_counter_read(&memcg->memory)) {
3524 int progress;
3525
3526 if (signal_pending(current))
3527 return -EINTR;
3528
3529 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3530 GFP_KERNEL, true);
3531 if (!progress) {
3532 nr_retries--;
3533 /* maybe some writeback is necessary */
3534 congestion_wait(BLK_RW_ASYNC, HZ/10);
3535 }
3536
3537 }
3538
3539 return 0;
3540 }
3541
3542 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3543 char *buf, size_t nbytes,
3544 loff_t off)
3545 {
3546 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3547
3548 if (mem_cgroup_is_root(memcg))
3549 return -EINVAL;
3550 return mem_cgroup_force_empty(memcg) ?: nbytes;
3551 }
3552
3553 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3554 struct cftype *cft)
3555 {
3556 return 1;
3557 }
3558
3559 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3560 struct cftype *cft, u64 val)
3561 {
3562 if (val == 1)
3563 return 0;
3564
3565 pr_warn_once("Non-hierarchical mode is deprecated. "
3566 "Please report your usecase to linux-mm@kvack.org if you "
3567 "depend on this functionality.\n");
3568
3569 return -EINVAL;
3570 }
3571
3572 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3573 {
3574 unsigned long val;
3575
3576 if (mem_cgroup_is_root(memcg)) {
3577 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3578 memcg_page_state(memcg, NR_ANON_MAPPED);
3579 if (swap)
3580 val += memcg_page_state(memcg, MEMCG_SWAP);
3581 } else {
3582 if (!swap)
3583 val = page_counter_read(&memcg->memory);
3584 else
3585 val = page_counter_read(&memcg->memsw);
3586 }
3587 return val;
3588 }
3589
3590 enum {
3591 RES_USAGE,
3592 RES_LIMIT,
3593 RES_MAX_USAGE,
3594 RES_FAILCNT,
3595 RES_SOFT_LIMIT,
3596 };
3597
3598 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3599 struct cftype *cft)
3600 {
3601 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3602 struct page_counter *counter;
3603
3604 switch (MEMFILE_TYPE(cft->private)) {
3605 case _MEM:
3606 counter = &memcg->memory;
3607 break;
3608 case _MEMSWAP:
3609 counter = &memcg->memsw;
3610 break;
3611 case _KMEM:
3612 counter = &memcg->kmem;
3613 break;
3614 case _TCP:
3615 counter = &memcg->tcpmem;
3616 break;
3617 default:
3618 BUG();
3619 }
3620
3621 switch (MEMFILE_ATTR(cft->private)) {
3622 case RES_USAGE:
3623 if (counter == &memcg->memory)
3624 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3625 if (counter == &memcg->memsw)
3626 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3627 return (u64)page_counter_read(counter) * PAGE_SIZE;
3628 case RES_LIMIT:
3629 return (u64)counter->max * PAGE_SIZE;
3630 case RES_MAX_USAGE:
3631 return (u64)counter->watermark * PAGE_SIZE;
3632 case RES_FAILCNT:
3633 return counter->failcnt;
3634 case RES_SOFT_LIMIT:
3635 return (u64)memcg->soft_limit * PAGE_SIZE;
3636 default:
3637 BUG();
3638 }
3639 }
3640
3641 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3642 {
3643 unsigned long stat[MEMCG_NR_STAT] = {0};
3644 struct mem_cgroup *mi;
3645 int node, cpu, i;
3646
3647 for_each_online_cpu(cpu)
3648 for (i = 0; i < MEMCG_NR_STAT; i++)
3649 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3650
3651 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3652 for (i = 0; i < MEMCG_NR_STAT; i++)
3653 atomic_long_add(stat[i], &mi->vmstats[i]);
3654
3655 for_each_node(node) {
3656 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3657 struct mem_cgroup_per_node *pi;
3658
3659 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3660 stat[i] = 0;
3661
3662 for_each_online_cpu(cpu)
3663 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3664 stat[i] += per_cpu(
3665 pn->lruvec_stat_cpu->count[i], cpu);
3666
3667 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3668 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3669 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3670 }
3671 }
3672
3673 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3674 {
3675 unsigned long events[NR_VM_EVENT_ITEMS];
3676 struct mem_cgroup *mi;
3677 int cpu, i;
3678
3679 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3680 events[i] = 0;
3681
3682 for_each_online_cpu(cpu)
3683 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3684 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3685 cpu);
3686
3687 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3688 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3689 atomic_long_add(events[i], &mi->vmevents[i]);
3690 }
3691
3692 #ifdef CONFIG_MEMCG_KMEM
3693 static int memcg_online_kmem(struct mem_cgroup *memcg)
3694 {
3695 struct obj_cgroup *objcg;
3696 int memcg_id;
3697
3698 if (cgroup_memory_nokmem)
3699 return 0;
3700
3701 BUG_ON(memcg->kmemcg_id >= 0);
3702 BUG_ON(memcg->kmem_state);
3703
3704 memcg_id = memcg_alloc_cache_id();
3705 if (memcg_id < 0)
3706 return memcg_id;
3707
3708 objcg = obj_cgroup_alloc();
3709 if (!objcg) {
3710 memcg_free_cache_id(memcg_id);
3711 return -ENOMEM;
3712 }
3713 objcg->memcg = memcg;
3714 rcu_assign_pointer(memcg->objcg, objcg);
3715
3716 static_branch_enable(&memcg_kmem_enabled_key);
3717
3718 memcg->kmemcg_id = memcg_id;
3719 memcg->kmem_state = KMEM_ONLINE;
3720
3721 return 0;
3722 }
3723
3724 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3725 {
3726 struct cgroup_subsys_state *css;
3727 struct mem_cgroup *parent, *child;
3728 int kmemcg_id;
3729
3730 if (memcg->kmem_state != KMEM_ONLINE)
3731 return;
3732
3733 memcg->kmem_state = KMEM_ALLOCATED;
3734
3735 parent = parent_mem_cgroup(memcg);
3736 if (!parent)
3737 parent = root_mem_cgroup;
3738
3739 memcg_reparent_objcgs(memcg, parent);
3740
3741 kmemcg_id = memcg->kmemcg_id;
3742 BUG_ON(kmemcg_id < 0);
3743
3744 /*
3745 * Change kmemcg_id of this cgroup and all its descendants to the
3746 * parent's id, and then move all entries from this cgroup's list_lrus
3747 * to ones of the parent. After we have finished, all list_lrus
3748 * corresponding to this cgroup are guaranteed to remain empty. The
3749 * ordering is imposed by list_lru_node->lock taken by
3750 * memcg_drain_all_list_lrus().
3751 */
3752 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3753 css_for_each_descendant_pre(css, &memcg->css) {
3754 child = mem_cgroup_from_css(css);
3755 BUG_ON(child->kmemcg_id != kmemcg_id);
3756 child->kmemcg_id = parent->kmemcg_id;
3757 }
3758 rcu_read_unlock();
3759
3760 memcg_drain_all_list_lrus(kmemcg_id, parent);
3761
3762 memcg_free_cache_id(kmemcg_id);
3763 }
3764
3765 static void memcg_free_kmem(struct mem_cgroup *memcg)
3766 {
3767 /* css_alloc() failed, offlining didn't happen */
3768 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3769 memcg_offline_kmem(memcg);
3770 }
3771 #else
3772 static int memcg_online_kmem(struct mem_cgroup *memcg)
3773 {
3774 return 0;
3775 }
3776 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3777 {
3778 }
3779 static void memcg_free_kmem(struct mem_cgroup *memcg)
3780 {
3781 }
3782 #endif /* CONFIG_MEMCG_KMEM */
3783
3784 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3785 unsigned long max)
3786 {
3787 int ret;
3788
3789 mutex_lock(&memcg_max_mutex);
3790 ret = page_counter_set_max(&memcg->kmem, max);
3791 mutex_unlock(&memcg_max_mutex);
3792 return ret;
3793 }
3794
3795 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3796 {
3797 int ret;
3798
3799 mutex_lock(&memcg_max_mutex);
3800
3801 ret = page_counter_set_max(&memcg->tcpmem, max);
3802 if (ret)
3803 goto out;
3804
3805 if (!memcg->tcpmem_active) {
3806 /*
3807 * The active flag needs to be written after the static_key
3808 * update. This is what guarantees that the socket activation
3809 * function is the last one to run. See mem_cgroup_sk_alloc()
3810 * for details, and note that we don't mark any socket as
3811 * belonging to this memcg until that flag is up.
3812 *
3813 * We need to do this, because static_keys will span multiple
3814 * sites, but we can't control their order. If we mark a socket
3815 * as accounted, but the accounting functions are not patched in
3816 * yet, we'll lose accounting.
3817 *
3818 * We never race with the readers in mem_cgroup_sk_alloc(),
3819 * because when this value change, the code to process it is not
3820 * patched in yet.
3821 */
3822 static_branch_inc(&memcg_sockets_enabled_key);
3823 memcg->tcpmem_active = true;
3824 }
3825 out:
3826 mutex_unlock(&memcg_max_mutex);
3827 return ret;
3828 }
3829
3830 /*
3831 * The user of this function is...
3832 * RES_LIMIT.
3833 */
3834 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3835 char *buf, size_t nbytes, loff_t off)
3836 {
3837 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3838 unsigned long nr_pages;
3839 int ret;
3840
3841 buf = strstrip(buf);
3842 ret = page_counter_memparse(buf, "-1", &nr_pages);
3843 if (ret)
3844 return ret;
3845
3846 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3847 case RES_LIMIT:
3848 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3849 ret = -EINVAL;
3850 break;
3851 }
3852 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3853 case _MEM:
3854 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3855 break;
3856 case _MEMSWAP:
3857 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3858 break;
3859 case _KMEM:
3860 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3861 "Please report your usecase to linux-mm@kvack.org if you "
3862 "depend on this functionality.\n");
3863 ret = memcg_update_kmem_max(memcg, nr_pages);
3864 break;
3865 case _TCP:
3866 ret = memcg_update_tcp_max(memcg, nr_pages);
3867 break;
3868 }
3869 break;
3870 case RES_SOFT_LIMIT:
3871 memcg->soft_limit = nr_pages;
3872 ret = 0;
3873 break;
3874 }
3875 return ret ?: nbytes;
3876 }
3877
3878 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3879 size_t nbytes, loff_t off)
3880 {
3881 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3882 struct page_counter *counter;
3883
3884 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3885 case _MEM:
3886 counter = &memcg->memory;
3887 break;
3888 case _MEMSWAP:
3889 counter = &memcg->memsw;
3890 break;
3891 case _KMEM:
3892 counter = &memcg->kmem;
3893 break;
3894 case _TCP:
3895 counter = &memcg->tcpmem;
3896 break;
3897 default:
3898 BUG();
3899 }
3900
3901 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3902 case RES_MAX_USAGE:
3903 page_counter_reset_watermark(counter);
3904 break;
3905 case RES_FAILCNT:
3906 counter->failcnt = 0;
3907 break;
3908 default:
3909 BUG();
3910 }
3911
3912 return nbytes;
3913 }
3914
3915 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3916 struct cftype *cft)
3917 {
3918 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3919 }
3920
3921 #ifdef CONFIG_MMU
3922 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3923 struct cftype *cft, u64 val)
3924 {
3925 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3926
3927 if (val & ~MOVE_MASK)
3928 return -EINVAL;
3929
3930 /*
3931 * No kind of locking is needed in here, because ->can_attach() will
3932 * check this value once in the beginning of the process, and then carry
3933 * on with stale data. This means that changes to this value will only
3934 * affect task migrations starting after the change.
3935 */
3936 memcg->move_charge_at_immigrate = val;
3937 return 0;
3938 }
3939 #else
3940 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3941 struct cftype *cft, u64 val)
3942 {
3943 return -ENOSYS;
3944 }
3945 #endif
3946
3947 #ifdef CONFIG_NUMA
3948
3949 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3950 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3951 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3952
3953 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3954 int nid, unsigned int lru_mask, bool tree)
3955 {
3956 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3957 unsigned long nr = 0;
3958 enum lru_list lru;
3959
3960 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3961
3962 for_each_lru(lru) {
3963 if (!(BIT(lru) & lru_mask))
3964 continue;
3965 if (tree)
3966 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3967 else
3968 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3969 }
3970 return nr;
3971 }
3972
3973 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3974 unsigned int lru_mask,
3975 bool tree)
3976 {
3977 unsigned long nr = 0;
3978 enum lru_list lru;
3979
3980 for_each_lru(lru) {
3981 if (!(BIT(lru) & lru_mask))
3982 continue;
3983 if (tree)
3984 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3985 else
3986 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3987 }
3988 return nr;
3989 }
3990
3991 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3992 {
3993 struct numa_stat {
3994 const char *name;
3995 unsigned int lru_mask;
3996 };
3997
3998 static const struct numa_stat stats[] = {
3999 { "total", LRU_ALL },
4000 { "file", LRU_ALL_FILE },
4001 { "anon", LRU_ALL_ANON },
4002 { "unevictable", BIT(LRU_UNEVICTABLE) },
4003 };
4004 const struct numa_stat *stat;
4005 int nid;
4006 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4007
4008 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4009 seq_printf(m, "%s=%lu", stat->name,
4010 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4011 false));
4012 for_each_node_state(nid, N_MEMORY)
4013 seq_printf(m, " N%d=%lu", nid,
4014 mem_cgroup_node_nr_lru_pages(memcg, nid,
4015 stat->lru_mask, false));
4016 seq_putc(m, '\n');
4017 }
4018
4019 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4020
4021 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4022 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4023 true));
4024 for_each_node_state(nid, N_MEMORY)
4025 seq_printf(m, " N%d=%lu", nid,
4026 mem_cgroup_node_nr_lru_pages(memcg, nid,
4027 stat->lru_mask, true));
4028 seq_putc(m, '\n');
4029 }
4030
4031 return 0;
4032 }
4033 #endif /* CONFIG_NUMA */
4034
4035 static const unsigned int memcg1_stats[] = {
4036 NR_FILE_PAGES,
4037 NR_ANON_MAPPED,
4038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4039 NR_ANON_THPS,
4040 #endif
4041 NR_SHMEM,
4042 NR_FILE_MAPPED,
4043 NR_FILE_DIRTY,
4044 NR_WRITEBACK,
4045 MEMCG_SWAP,
4046 };
4047
4048 static const char *const memcg1_stat_names[] = {
4049 "cache",
4050 "rss",
4051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4052 "rss_huge",
4053 #endif
4054 "shmem",
4055 "mapped_file",
4056 "dirty",
4057 "writeback",
4058 "swap",
4059 };
4060
4061 /* Universal VM events cgroup1 shows, original sort order */
4062 static const unsigned int memcg1_events[] = {
4063 PGPGIN,
4064 PGPGOUT,
4065 PGFAULT,
4066 PGMAJFAULT,
4067 };
4068
4069 static int memcg_stat_show(struct seq_file *m, void *v)
4070 {
4071 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4072 unsigned long memory, memsw;
4073 struct mem_cgroup *mi;
4074 unsigned int i;
4075
4076 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4077
4078 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4079 unsigned long nr;
4080
4081 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4082 continue;
4083 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4084 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4085 if (memcg1_stats[i] == NR_ANON_THPS)
4086 nr *= HPAGE_PMD_NR;
4087 #endif
4088 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4089 }
4090
4091 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4092 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4093 memcg_events_local(memcg, memcg1_events[i]));
4094
4095 for (i = 0; i < NR_LRU_LISTS; i++)
4096 seq_printf(m, "%s %lu\n", lru_list_name(i),
4097 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4098 PAGE_SIZE);
4099
4100 /* Hierarchical information */
4101 memory = memsw = PAGE_COUNTER_MAX;
4102 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4103 memory = min(memory, READ_ONCE(mi->memory.max));
4104 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4105 }
4106 seq_printf(m, "hierarchical_memory_limit %llu\n",
4107 (u64)memory * PAGE_SIZE);
4108 if (do_memsw_account())
4109 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4110 (u64)memsw * PAGE_SIZE);
4111
4112 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4113 unsigned long nr;
4114
4115 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4116 continue;
4117 nr = memcg_page_state(memcg, memcg1_stats[i]);
4118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4119 if (memcg1_stats[i] == NR_ANON_THPS)
4120 nr *= HPAGE_PMD_NR;
4121 #endif
4122 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4123 (u64)nr * PAGE_SIZE);
4124 }
4125
4126 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4127 seq_printf(m, "total_%s %llu\n",
4128 vm_event_name(memcg1_events[i]),
4129 (u64)memcg_events(memcg, memcg1_events[i]));
4130
4131 for (i = 0; i < NR_LRU_LISTS; i++)
4132 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4133 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4134 PAGE_SIZE);
4135
4136 #ifdef CONFIG_DEBUG_VM
4137 {
4138 pg_data_t *pgdat;
4139 struct mem_cgroup_per_node *mz;
4140 unsigned long anon_cost = 0;
4141 unsigned long file_cost = 0;
4142
4143 for_each_online_pgdat(pgdat) {
4144 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4145
4146 anon_cost += mz->lruvec.anon_cost;
4147 file_cost += mz->lruvec.file_cost;
4148 }
4149 seq_printf(m, "anon_cost %lu\n", anon_cost);
4150 seq_printf(m, "file_cost %lu\n", file_cost);
4151 }
4152 #endif
4153
4154 return 0;
4155 }
4156
4157 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4158 struct cftype *cft)
4159 {
4160 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4161
4162 return mem_cgroup_swappiness(memcg);
4163 }
4164
4165 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4166 struct cftype *cft, u64 val)
4167 {
4168 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4169
4170 if (val > 100)
4171 return -EINVAL;
4172
4173 if (css->parent)
4174 memcg->swappiness = val;
4175 else
4176 vm_swappiness = val;
4177
4178 return 0;
4179 }
4180
4181 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4182 {
4183 struct mem_cgroup_threshold_ary *t;
4184 unsigned long usage;
4185 int i;
4186
4187 rcu_read_lock();
4188 if (!swap)
4189 t = rcu_dereference(memcg->thresholds.primary);
4190 else
4191 t = rcu_dereference(memcg->memsw_thresholds.primary);
4192
4193 if (!t)
4194 goto unlock;
4195
4196 usage = mem_cgroup_usage(memcg, swap);
4197
4198 /*
4199 * current_threshold points to threshold just below or equal to usage.
4200 * If it's not true, a threshold was crossed after last
4201 * call of __mem_cgroup_threshold().
4202 */
4203 i = t->current_threshold;
4204
4205 /*
4206 * Iterate backward over array of thresholds starting from
4207 * current_threshold and check if a threshold is crossed.
4208 * If none of thresholds below usage is crossed, we read
4209 * only one element of the array here.
4210 */
4211 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4212 eventfd_signal(t->entries[i].eventfd, 1);
4213
4214 /* i = current_threshold + 1 */
4215 i++;
4216
4217 /*
4218 * Iterate forward over array of thresholds starting from
4219 * current_threshold+1 and check if a threshold is crossed.
4220 * If none of thresholds above usage is crossed, we read
4221 * only one element of the array here.
4222 */
4223 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4224 eventfd_signal(t->entries[i].eventfd, 1);
4225
4226 /* Update current_threshold */
4227 t->current_threshold = i - 1;
4228 unlock:
4229 rcu_read_unlock();
4230 }
4231
4232 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4233 {
4234 while (memcg) {
4235 __mem_cgroup_threshold(memcg, false);
4236 if (do_memsw_account())
4237 __mem_cgroup_threshold(memcg, true);
4238
4239 memcg = parent_mem_cgroup(memcg);
4240 }
4241 }
4242
4243 static int compare_thresholds(const void *a, const void *b)
4244 {
4245 const struct mem_cgroup_threshold *_a = a;
4246 const struct mem_cgroup_threshold *_b = b;
4247
4248 if (_a->threshold > _b->threshold)
4249 return 1;
4250
4251 if (_a->threshold < _b->threshold)
4252 return -1;
4253
4254 return 0;
4255 }
4256
4257 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4258 {
4259 struct mem_cgroup_eventfd_list *ev;
4260
4261 spin_lock(&memcg_oom_lock);
4262
4263 list_for_each_entry(ev, &memcg->oom_notify, list)
4264 eventfd_signal(ev->eventfd, 1);
4265
4266 spin_unlock(&memcg_oom_lock);
4267 return 0;
4268 }
4269
4270 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4271 {
4272 struct mem_cgroup *iter;
4273
4274 for_each_mem_cgroup_tree(iter, memcg)
4275 mem_cgroup_oom_notify_cb(iter);
4276 }
4277
4278 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4279 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4280 {
4281 struct mem_cgroup_thresholds *thresholds;
4282 struct mem_cgroup_threshold_ary *new;
4283 unsigned long threshold;
4284 unsigned long usage;
4285 int i, size, ret;
4286
4287 ret = page_counter_memparse(args, "-1", &threshold);
4288 if (ret)
4289 return ret;
4290
4291 mutex_lock(&memcg->thresholds_lock);
4292
4293 if (type == _MEM) {
4294 thresholds = &memcg->thresholds;
4295 usage = mem_cgroup_usage(memcg, false);
4296 } else if (type == _MEMSWAP) {
4297 thresholds = &memcg->memsw_thresholds;
4298 usage = mem_cgroup_usage(memcg, true);
4299 } else
4300 BUG();
4301
4302 /* Check if a threshold crossed before adding a new one */
4303 if (thresholds->primary)
4304 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4305
4306 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4307
4308 /* Allocate memory for new array of thresholds */
4309 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4310 if (!new) {
4311 ret = -ENOMEM;
4312 goto unlock;
4313 }
4314 new->size = size;
4315
4316 /* Copy thresholds (if any) to new array */
4317 if (thresholds->primary)
4318 memcpy(new->entries, thresholds->primary->entries,
4319 flex_array_size(new, entries, size - 1));
4320
4321 /* Add new threshold */
4322 new->entries[size - 1].eventfd = eventfd;
4323 new->entries[size - 1].threshold = threshold;
4324
4325 /* Sort thresholds. Registering of new threshold isn't time-critical */
4326 sort(new->entries, size, sizeof(*new->entries),
4327 compare_thresholds, NULL);
4328
4329 /* Find current threshold */
4330 new->current_threshold = -1;
4331 for (i = 0; i < size; i++) {
4332 if (new->entries[i].threshold <= usage) {
4333 /*
4334 * new->current_threshold will not be used until
4335 * rcu_assign_pointer(), so it's safe to increment
4336 * it here.
4337 */
4338 ++new->current_threshold;
4339 } else
4340 break;
4341 }
4342
4343 /* Free old spare buffer and save old primary buffer as spare */
4344 kfree(thresholds->spare);
4345 thresholds->spare = thresholds->primary;
4346
4347 rcu_assign_pointer(thresholds->primary, new);
4348
4349 /* To be sure that nobody uses thresholds */
4350 synchronize_rcu();
4351
4352 unlock:
4353 mutex_unlock(&memcg->thresholds_lock);
4354
4355 return ret;
4356 }
4357
4358 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4359 struct eventfd_ctx *eventfd, const char *args)
4360 {
4361 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4362 }
4363
4364 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4365 struct eventfd_ctx *eventfd, const char *args)
4366 {
4367 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4368 }
4369
4370 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4371 struct eventfd_ctx *eventfd, enum res_type type)
4372 {
4373 struct mem_cgroup_thresholds *thresholds;
4374 struct mem_cgroup_threshold_ary *new;
4375 unsigned long usage;
4376 int i, j, size, entries;
4377
4378 mutex_lock(&memcg->thresholds_lock);
4379
4380 if (type == _MEM) {
4381 thresholds = &memcg->thresholds;
4382 usage = mem_cgroup_usage(memcg, false);
4383 } else if (type == _MEMSWAP) {
4384 thresholds = &memcg->memsw_thresholds;
4385 usage = mem_cgroup_usage(memcg, true);
4386 } else
4387 BUG();
4388
4389 if (!thresholds->primary)
4390 goto unlock;
4391
4392 /* Check if a threshold crossed before removing */
4393 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4394
4395 /* Calculate new number of threshold */
4396 size = entries = 0;
4397 for (i = 0; i < thresholds->primary->size; i++) {
4398 if (thresholds->primary->entries[i].eventfd != eventfd)
4399 size++;
4400 else
4401 entries++;
4402 }
4403
4404 new = thresholds->spare;
4405
4406 /* If no items related to eventfd have been cleared, nothing to do */
4407 if (!entries)
4408 goto unlock;
4409
4410 /* Set thresholds array to NULL if we don't have thresholds */
4411 if (!size) {
4412 kfree(new);
4413 new = NULL;
4414 goto swap_buffers;
4415 }
4416
4417 new->size = size;
4418
4419 /* Copy thresholds and find current threshold */
4420 new->current_threshold = -1;
4421 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4422 if (thresholds->primary->entries[i].eventfd == eventfd)
4423 continue;
4424
4425 new->entries[j] = thresholds->primary->entries[i];
4426 if (new->entries[j].threshold <= usage) {
4427 /*
4428 * new->current_threshold will not be used
4429 * until rcu_assign_pointer(), so it's safe to increment
4430 * it here.
4431 */
4432 ++new->current_threshold;
4433 }
4434 j++;
4435 }
4436
4437 swap_buffers:
4438 /* Swap primary and spare array */
4439 thresholds->spare = thresholds->primary;
4440
4441 rcu_assign_pointer(thresholds->primary, new);
4442
4443 /* To be sure that nobody uses thresholds */
4444 synchronize_rcu();
4445
4446 /* If all events are unregistered, free the spare array */
4447 if (!new) {
4448 kfree(thresholds->spare);
4449 thresholds->spare = NULL;
4450 }
4451 unlock:
4452 mutex_unlock(&memcg->thresholds_lock);
4453 }
4454
4455 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4456 struct eventfd_ctx *eventfd)
4457 {
4458 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4459 }
4460
4461 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4462 struct eventfd_ctx *eventfd)
4463 {
4464 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4465 }
4466
4467 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4468 struct eventfd_ctx *eventfd, const char *args)
4469 {
4470 struct mem_cgroup_eventfd_list *event;
4471
4472 event = kmalloc(sizeof(*event), GFP_KERNEL);
4473 if (!event)
4474 return -ENOMEM;
4475
4476 spin_lock(&memcg_oom_lock);
4477
4478 event->eventfd = eventfd;
4479 list_add(&event->list, &memcg->oom_notify);
4480
4481 /* already in OOM ? */
4482 if (memcg->under_oom)
4483 eventfd_signal(eventfd, 1);
4484 spin_unlock(&memcg_oom_lock);
4485
4486 return 0;
4487 }
4488
4489 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4490 struct eventfd_ctx *eventfd)
4491 {
4492 struct mem_cgroup_eventfd_list *ev, *tmp;
4493
4494 spin_lock(&memcg_oom_lock);
4495
4496 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4497 if (ev->eventfd == eventfd) {
4498 list_del(&ev->list);
4499 kfree(ev);
4500 }
4501 }
4502
4503 spin_unlock(&memcg_oom_lock);
4504 }
4505
4506 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4507 {
4508 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4509
4510 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4511 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4512 seq_printf(sf, "oom_kill %lu\n",
4513 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4514 return 0;
4515 }
4516
4517 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4518 struct cftype *cft, u64 val)
4519 {
4520 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4521
4522 /* cannot set to root cgroup and only 0 and 1 are allowed */
4523 if (!css->parent || !((val == 0) || (val == 1)))
4524 return -EINVAL;
4525
4526 memcg->oom_kill_disable = val;
4527 if (!val)
4528 memcg_oom_recover(memcg);
4529
4530 return 0;
4531 }
4532
4533 #ifdef CONFIG_CGROUP_WRITEBACK
4534
4535 #include <trace/events/writeback.h>
4536
4537 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4538 {
4539 return wb_domain_init(&memcg->cgwb_domain, gfp);
4540 }
4541
4542 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4543 {
4544 wb_domain_exit(&memcg->cgwb_domain);
4545 }
4546
4547 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4548 {
4549 wb_domain_size_changed(&memcg->cgwb_domain);
4550 }
4551
4552 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4553 {
4554 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4555
4556 if (!memcg->css.parent)
4557 return NULL;
4558
4559 return &memcg->cgwb_domain;
4560 }
4561
4562 /*
4563 * idx can be of type enum memcg_stat_item or node_stat_item.
4564 * Keep in sync with memcg_exact_page().
4565 */
4566 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4567 {
4568 long x = atomic_long_read(&memcg->vmstats[idx]);
4569 int cpu;
4570
4571 for_each_online_cpu(cpu)
4572 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4573 if (x < 0)
4574 x = 0;
4575 return x;
4576 }
4577
4578 /**
4579 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4580 * @wb: bdi_writeback in question
4581 * @pfilepages: out parameter for number of file pages
4582 * @pheadroom: out parameter for number of allocatable pages according to memcg
4583 * @pdirty: out parameter for number of dirty pages
4584 * @pwriteback: out parameter for number of pages under writeback
4585 *
4586 * Determine the numbers of file, headroom, dirty, and writeback pages in
4587 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4588 * is a bit more involved.
4589 *
4590 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4591 * headroom is calculated as the lowest headroom of itself and the
4592 * ancestors. Note that this doesn't consider the actual amount of
4593 * available memory in the system. The caller should further cap
4594 * *@pheadroom accordingly.
4595 */
4596 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4597 unsigned long *pheadroom, unsigned long *pdirty,
4598 unsigned long *pwriteback)
4599 {
4600 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4601 struct mem_cgroup *parent;
4602
4603 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4604
4605 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4606 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4607 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4608 *pheadroom = PAGE_COUNTER_MAX;
4609
4610 while ((parent = parent_mem_cgroup(memcg))) {
4611 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4612 READ_ONCE(memcg->memory.high));
4613 unsigned long used = page_counter_read(&memcg->memory);
4614
4615 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4616 memcg = parent;
4617 }
4618 }
4619
4620 /*
4621 * Foreign dirty flushing
4622 *
4623 * There's an inherent mismatch between memcg and writeback. The former
4624 * trackes ownership per-page while the latter per-inode. This was a
4625 * deliberate design decision because honoring per-page ownership in the
4626 * writeback path is complicated, may lead to higher CPU and IO overheads
4627 * and deemed unnecessary given that write-sharing an inode across
4628 * different cgroups isn't a common use-case.
4629 *
4630 * Combined with inode majority-writer ownership switching, this works well
4631 * enough in most cases but there are some pathological cases. For
4632 * example, let's say there are two cgroups A and B which keep writing to
4633 * different but confined parts of the same inode. B owns the inode and
4634 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4635 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4636 * triggering background writeback. A will be slowed down without a way to
4637 * make writeback of the dirty pages happen.
4638 *
4639 * Conditions like the above can lead to a cgroup getting repatedly and
4640 * severely throttled after making some progress after each
4641 * dirty_expire_interval while the underyling IO device is almost
4642 * completely idle.
4643 *
4644 * Solving this problem completely requires matching the ownership tracking
4645 * granularities between memcg and writeback in either direction. However,
4646 * the more egregious behaviors can be avoided by simply remembering the
4647 * most recent foreign dirtying events and initiating remote flushes on
4648 * them when local writeback isn't enough to keep the memory clean enough.
4649 *
4650 * The following two functions implement such mechanism. When a foreign
4651 * page - a page whose memcg and writeback ownerships don't match - is
4652 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4653 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4654 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4655 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4656 * foreign bdi_writebacks which haven't expired. Both the numbers of
4657 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4658 * limited to MEMCG_CGWB_FRN_CNT.
4659 *
4660 * The mechanism only remembers IDs and doesn't hold any object references.
4661 * As being wrong occasionally doesn't matter, updates and accesses to the
4662 * records are lockless and racy.
4663 */
4664 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4665 struct bdi_writeback *wb)
4666 {
4667 struct mem_cgroup *memcg = page_memcg(page);
4668 struct memcg_cgwb_frn *frn;
4669 u64 now = get_jiffies_64();
4670 u64 oldest_at = now;
4671 int oldest = -1;
4672 int i;
4673
4674 trace_track_foreign_dirty(page, wb);
4675
4676 /*
4677 * Pick the slot to use. If there is already a slot for @wb, keep
4678 * using it. If not replace the oldest one which isn't being
4679 * written out.
4680 */
4681 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4682 frn = &memcg->cgwb_frn[i];
4683 if (frn->bdi_id == wb->bdi->id &&
4684 frn->memcg_id == wb->memcg_css->id)
4685 break;
4686 if (time_before64(frn->at, oldest_at) &&
4687 atomic_read(&frn->done.cnt) == 1) {
4688 oldest = i;
4689 oldest_at = frn->at;
4690 }
4691 }
4692
4693 if (i < MEMCG_CGWB_FRN_CNT) {
4694 /*
4695 * Re-using an existing one. Update timestamp lazily to
4696 * avoid making the cacheline hot. We want them to be
4697 * reasonably up-to-date and significantly shorter than
4698 * dirty_expire_interval as that's what expires the record.
4699 * Use the shorter of 1s and dirty_expire_interval / 8.
4700 */
4701 unsigned long update_intv =
4702 min_t(unsigned long, HZ,
4703 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4704
4705 if (time_before64(frn->at, now - update_intv))
4706 frn->at = now;
4707 } else if (oldest >= 0) {
4708 /* replace the oldest free one */
4709 frn = &memcg->cgwb_frn[oldest];
4710 frn->bdi_id = wb->bdi->id;
4711 frn->memcg_id = wb->memcg_css->id;
4712 frn->at = now;
4713 }
4714 }
4715
4716 /* issue foreign writeback flushes for recorded foreign dirtying events */
4717 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4718 {
4719 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4720 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4721 u64 now = jiffies_64;
4722 int i;
4723
4724 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4725 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4726
4727 /*
4728 * If the record is older than dirty_expire_interval,
4729 * writeback on it has already started. No need to kick it
4730 * off again. Also, don't start a new one if there's
4731 * already one in flight.
4732 */
4733 if (time_after64(frn->at, now - intv) &&
4734 atomic_read(&frn->done.cnt) == 1) {
4735 frn->at = 0;
4736 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4737 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4738 WB_REASON_FOREIGN_FLUSH,
4739 &frn->done);
4740 }
4741 }
4742 }
4743
4744 #else /* CONFIG_CGROUP_WRITEBACK */
4745
4746 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4747 {
4748 return 0;
4749 }
4750
4751 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4752 {
4753 }
4754
4755 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4756 {
4757 }
4758
4759 #endif /* CONFIG_CGROUP_WRITEBACK */
4760
4761 /*
4762 * DO NOT USE IN NEW FILES.
4763 *
4764 * "cgroup.event_control" implementation.
4765 *
4766 * This is way over-engineered. It tries to support fully configurable
4767 * events for each user. Such level of flexibility is completely
4768 * unnecessary especially in the light of the planned unified hierarchy.
4769 *
4770 * Please deprecate this and replace with something simpler if at all
4771 * possible.
4772 */
4773
4774 /*
4775 * Unregister event and free resources.
4776 *
4777 * Gets called from workqueue.
4778 */
4779 static void memcg_event_remove(struct work_struct *work)
4780 {
4781 struct mem_cgroup_event *event =
4782 container_of(work, struct mem_cgroup_event, remove);
4783 struct mem_cgroup *memcg = event->memcg;
4784
4785 remove_wait_queue(event->wqh, &event->wait);
4786
4787 event->unregister_event(memcg, event->eventfd);
4788
4789 /* Notify userspace the event is going away. */
4790 eventfd_signal(event->eventfd, 1);
4791
4792 eventfd_ctx_put(event->eventfd);
4793 kfree(event);
4794 css_put(&memcg->css);
4795 }
4796
4797 /*
4798 * Gets called on EPOLLHUP on eventfd when user closes it.
4799 *
4800 * Called with wqh->lock held and interrupts disabled.
4801 */
4802 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4803 int sync, void *key)
4804 {
4805 struct mem_cgroup_event *event =
4806 container_of(wait, struct mem_cgroup_event, wait);
4807 struct mem_cgroup *memcg = event->memcg;
4808 __poll_t flags = key_to_poll(key);
4809
4810 if (flags & EPOLLHUP) {
4811 /*
4812 * If the event has been detached at cgroup removal, we
4813 * can simply return knowing the other side will cleanup
4814 * for us.
4815 *
4816 * We can't race against event freeing since the other
4817 * side will require wqh->lock via remove_wait_queue(),
4818 * which we hold.
4819 */
4820 spin_lock(&memcg->event_list_lock);
4821 if (!list_empty(&event->list)) {
4822 list_del_init(&event->list);
4823 /*
4824 * We are in atomic context, but cgroup_event_remove()
4825 * may sleep, so we have to call it in workqueue.
4826 */
4827 schedule_work(&event->remove);
4828 }
4829 spin_unlock(&memcg->event_list_lock);
4830 }
4831
4832 return 0;
4833 }
4834
4835 static void memcg_event_ptable_queue_proc(struct file *file,
4836 wait_queue_head_t *wqh, poll_table *pt)
4837 {
4838 struct mem_cgroup_event *event =
4839 container_of(pt, struct mem_cgroup_event, pt);
4840
4841 event->wqh = wqh;
4842 add_wait_queue(wqh, &event->wait);
4843 }
4844
4845 /*
4846 * DO NOT USE IN NEW FILES.
4847 *
4848 * Parse input and register new cgroup event handler.
4849 *
4850 * Input must be in format '<event_fd> <control_fd> <args>'.
4851 * Interpretation of args is defined by control file implementation.
4852 */
4853 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4854 char *buf, size_t nbytes, loff_t off)
4855 {
4856 struct cgroup_subsys_state *css = of_css(of);
4857 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4858 struct mem_cgroup_event *event;
4859 struct cgroup_subsys_state *cfile_css;
4860 unsigned int efd, cfd;
4861 struct fd efile;
4862 struct fd cfile;
4863 const char *name;
4864 char *endp;
4865 int ret;
4866
4867 buf = strstrip(buf);
4868
4869 efd = simple_strtoul(buf, &endp, 10);
4870 if (*endp != ' ')
4871 return -EINVAL;
4872 buf = endp + 1;
4873
4874 cfd = simple_strtoul(buf, &endp, 10);
4875 if ((*endp != ' ') && (*endp != '\0'))
4876 return -EINVAL;
4877 buf = endp + 1;
4878
4879 event = kzalloc(sizeof(*event), GFP_KERNEL);
4880 if (!event)
4881 return -ENOMEM;
4882
4883 event->memcg = memcg;
4884 INIT_LIST_HEAD(&event->list);
4885 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4886 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4887 INIT_WORK(&event->remove, memcg_event_remove);
4888
4889 efile = fdget(efd);
4890 if (!efile.file) {
4891 ret = -EBADF;
4892 goto out_kfree;
4893 }
4894
4895 event->eventfd = eventfd_ctx_fileget(efile.file);
4896 if (IS_ERR(event->eventfd)) {
4897 ret = PTR_ERR(event->eventfd);
4898 goto out_put_efile;
4899 }
4900
4901 cfile = fdget(cfd);
4902 if (!cfile.file) {
4903 ret = -EBADF;
4904 goto out_put_eventfd;
4905 }
4906
4907 /* the process need read permission on control file */
4908 /* AV: shouldn't we check that it's been opened for read instead? */
4909 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4910 if (ret < 0)
4911 goto out_put_cfile;
4912
4913 /*
4914 * Determine the event callbacks and set them in @event. This used
4915 * to be done via struct cftype but cgroup core no longer knows
4916 * about these events. The following is crude but the whole thing
4917 * is for compatibility anyway.
4918 *
4919 * DO NOT ADD NEW FILES.
4920 */
4921 name = cfile.file->f_path.dentry->d_name.name;
4922
4923 if (!strcmp(name, "memory.usage_in_bytes")) {
4924 event->register_event = mem_cgroup_usage_register_event;
4925 event->unregister_event = mem_cgroup_usage_unregister_event;
4926 } else if (!strcmp(name, "memory.oom_control")) {
4927 event->register_event = mem_cgroup_oom_register_event;
4928 event->unregister_event = mem_cgroup_oom_unregister_event;
4929 } else if (!strcmp(name, "memory.pressure_level")) {
4930 event->register_event = vmpressure_register_event;
4931 event->unregister_event = vmpressure_unregister_event;
4932 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4933 event->register_event = memsw_cgroup_usage_register_event;
4934 event->unregister_event = memsw_cgroup_usage_unregister_event;
4935 } else {
4936 ret = -EINVAL;
4937 goto out_put_cfile;
4938 }
4939
4940 /*
4941 * Verify @cfile should belong to @css. Also, remaining events are
4942 * automatically removed on cgroup destruction but the removal is
4943 * asynchronous, so take an extra ref on @css.
4944 */
4945 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4946 &memory_cgrp_subsys);
4947 ret = -EINVAL;
4948 if (IS_ERR(cfile_css))
4949 goto out_put_cfile;
4950 if (cfile_css != css) {
4951 css_put(cfile_css);
4952 goto out_put_cfile;
4953 }
4954
4955 ret = event->register_event(memcg, event->eventfd, buf);
4956 if (ret)
4957 goto out_put_css;
4958
4959 vfs_poll(efile.file, &event->pt);
4960
4961 spin_lock(&memcg->event_list_lock);
4962 list_add(&event->list, &memcg->event_list);
4963 spin_unlock(&memcg->event_list_lock);
4964
4965 fdput(cfile);
4966 fdput(efile);
4967
4968 return nbytes;
4969
4970 out_put_css:
4971 css_put(css);
4972 out_put_cfile:
4973 fdput(cfile);
4974 out_put_eventfd:
4975 eventfd_ctx_put(event->eventfd);
4976 out_put_efile:
4977 fdput(efile);
4978 out_kfree:
4979 kfree(event);
4980
4981 return ret;
4982 }
4983
4984 static struct cftype mem_cgroup_legacy_files[] = {
4985 {
4986 .name = "usage_in_bytes",
4987 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4988 .read_u64 = mem_cgroup_read_u64,
4989 },
4990 {
4991 .name = "max_usage_in_bytes",
4992 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4993 .write = mem_cgroup_reset,
4994 .read_u64 = mem_cgroup_read_u64,
4995 },
4996 {
4997 .name = "limit_in_bytes",
4998 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4999 .write = mem_cgroup_write,
5000 .read_u64 = mem_cgroup_read_u64,
5001 },
5002 {
5003 .name = "soft_limit_in_bytes",
5004 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5005 .write = mem_cgroup_write,
5006 .read_u64 = mem_cgroup_read_u64,
5007 },
5008 {
5009 .name = "failcnt",
5010 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5011 .write = mem_cgroup_reset,
5012 .read_u64 = mem_cgroup_read_u64,
5013 },
5014 {
5015 .name = "stat",
5016 .seq_show = memcg_stat_show,
5017 },
5018 {
5019 .name = "force_empty",
5020 .write = mem_cgroup_force_empty_write,
5021 },
5022 {
5023 .name = "use_hierarchy",
5024 .write_u64 = mem_cgroup_hierarchy_write,
5025 .read_u64 = mem_cgroup_hierarchy_read,
5026 },
5027 {
5028 .name = "cgroup.event_control", /* XXX: for compat */
5029 .write = memcg_write_event_control,
5030 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5031 },
5032 {
5033 .name = "swappiness",
5034 .read_u64 = mem_cgroup_swappiness_read,
5035 .write_u64 = mem_cgroup_swappiness_write,
5036 },
5037 {
5038 .name = "move_charge_at_immigrate",
5039 .read_u64 = mem_cgroup_move_charge_read,
5040 .write_u64 = mem_cgroup_move_charge_write,
5041 },
5042 {
5043 .name = "oom_control",
5044 .seq_show = mem_cgroup_oom_control_read,
5045 .write_u64 = mem_cgroup_oom_control_write,
5046 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5047 },
5048 {
5049 .name = "pressure_level",
5050 },
5051 #ifdef CONFIG_NUMA
5052 {
5053 .name = "numa_stat",
5054 .seq_show = memcg_numa_stat_show,
5055 },
5056 #endif
5057 {
5058 .name = "kmem.limit_in_bytes",
5059 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5060 .write = mem_cgroup_write,
5061 .read_u64 = mem_cgroup_read_u64,
5062 },
5063 {
5064 .name = "kmem.usage_in_bytes",
5065 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5066 .read_u64 = mem_cgroup_read_u64,
5067 },
5068 {
5069 .name = "kmem.failcnt",
5070 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5071 .write = mem_cgroup_reset,
5072 .read_u64 = mem_cgroup_read_u64,
5073 },
5074 {
5075 .name = "kmem.max_usage_in_bytes",
5076 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5077 .write = mem_cgroup_reset,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080 #if defined(CONFIG_MEMCG_KMEM) && \
5081 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5082 {
5083 .name = "kmem.slabinfo",
5084 .seq_show = memcg_slab_show,
5085 },
5086 #endif
5087 {
5088 .name = "kmem.tcp.limit_in_bytes",
5089 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5090 .write = mem_cgroup_write,
5091 .read_u64 = mem_cgroup_read_u64,
5092 },
5093 {
5094 .name = "kmem.tcp.usage_in_bytes",
5095 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5096 .read_u64 = mem_cgroup_read_u64,
5097 },
5098 {
5099 .name = "kmem.tcp.failcnt",
5100 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5101 .write = mem_cgroup_reset,
5102 .read_u64 = mem_cgroup_read_u64,
5103 },
5104 {
5105 .name = "kmem.tcp.max_usage_in_bytes",
5106 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5107 .write = mem_cgroup_reset,
5108 .read_u64 = mem_cgroup_read_u64,
5109 },
5110 { }, /* terminate */
5111 };
5112
5113 /*
5114 * Private memory cgroup IDR
5115 *
5116 * Swap-out records and page cache shadow entries need to store memcg
5117 * references in constrained space, so we maintain an ID space that is
5118 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5119 * memory-controlled cgroups to 64k.
5120 *
5121 * However, there usually are many references to the offline CSS after
5122 * the cgroup has been destroyed, such as page cache or reclaimable
5123 * slab objects, that don't need to hang on to the ID. We want to keep
5124 * those dead CSS from occupying IDs, or we might quickly exhaust the
5125 * relatively small ID space and prevent the creation of new cgroups
5126 * even when there are much fewer than 64k cgroups - possibly none.
5127 *
5128 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5129 * be freed and recycled when it's no longer needed, which is usually
5130 * when the CSS is offlined.
5131 *
5132 * The only exception to that are records of swapped out tmpfs/shmem
5133 * pages that need to be attributed to live ancestors on swapin. But
5134 * those references are manageable from userspace.
5135 */
5136
5137 static DEFINE_IDR(mem_cgroup_idr);
5138
5139 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5140 {
5141 if (memcg->id.id > 0) {
5142 idr_remove(&mem_cgroup_idr, memcg->id.id);
5143 memcg->id.id = 0;
5144 }
5145 }
5146
5147 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5148 unsigned int n)
5149 {
5150 refcount_add(n, &memcg->id.ref);
5151 }
5152
5153 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5154 {
5155 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5156 mem_cgroup_id_remove(memcg);
5157
5158 /* Memcg ID pins CSS */
5159 css_put(&memcg->css);
5160 }
5161 }
5162
5163 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5164 {
5165 mem_cgroup_id_put_many(memcg, 1);
5166 }
5167
5168 /**
5169 * mem_cgroup_from_id - look up a memcg from a memcg id
5170 * @id: the memcg id to look up
5171 *
5172 * Caller must hold rcu_read_lock().
5173 */
5174 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5175 {
5176 WARN_ON_ONCE(!rcu_read_lock_held());
5177 return idr_find(&mem_cgroup_idr, id);
5178 }
5179
5180 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5181 {
5182 struct mem_cgroup_per_node *pn;
5183 int tmp = node;
5184 /*
5185 * This routine is called against possible nodes.
5186 * But it's BUG to call kmalloc() against offline node.
5187 *
5188 * TODO: this routine can waste much memory for nodes which will
5189 * never be onlined. It's better to use memory hotplug callback
5190 * function.
5191 */
5192 if (!node_state(node, N_NORMAL_MEMORY))
5193 tmp = -1;
5194 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5195 if (!pn)
5196 return 1;
5197
5198 pn->lruvec_stat_local = alloc_percpu_gfp(struct lruvec_stat,
5199 GFP_KERNEL_ACCOUNT);
5200 if (!pn->lruvec_stat_local) {
5201 kfree(pn);
5202 return 1;
5203 }
5204
5205 pn->lruvec_stat_cpu = alloc_percpu_gfp(struct lruvec_stat,
5206 GFP_KERNEL_ACCOUNT);
5207 if (!pn->lruvec_stat_cpu) {
5208 free_percpu(pn->lruvec_stat_local);
5209 kfree(pn);
5210 return 1;
5211 }
5212
5213 lruvec_init(&pn->lruvec);
5214 pn->usage_in_excess = 0;
5215 pn->on_tree = false;
5216 pn->memcg = memcg;
5217
5218 memcg->nodeinfo[node] = pn;
5219 return 0;
5220 }
5221
5222 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5223 {
5224 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5225
5226 if (!pn)
5227 return;
5228
5229 free_percpu(pn->lruvec_stat_cpu);
5230 free_percpu(pn->lruvec_stat_local);
5231 kfree(pn);
5232 }
5233
5234 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5235 {
5236 int node;
5237
5238 for_each_node(node)
5239 free_mem_cgroup_per_node_info(memcg, node);
5240 free_percpu(memcg->vmstats_percpu);
5241 free_percpu(memcg->vmstats_local);
5242 kfree(memcg);
5243 }
5244
5245 static void mem_cgroup_free(struct mem_cgroup *memcg)
5246 {
5247 memcg_wb_domain_exit(memcg);
5248 /*
5249 * Flush percpu vmstats and vmevents to guarantee the value correctness
5250 * on parent's and all ancestor levels.
5251 */
5252 memcg_flush_percpu_vmstats(memcg);
5253 memcg_flush_percpu_vmevents(memcg);
5254 __mem_cgroup_free(memcg);
5255 }
5256
5257 static struct mem_cgroup *mem_cgroup_alloc(void)
5258 {
5259 struct mem_cgroup *memcg;
5260 unsigned int size;
5261 int node;
5262 int __maybe_unused i;
5263 long error = -ENOMEM;
5264
5265 size = sizeof(struct mem_cgroup);
5266 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5267
5268 memcg = kzalloc(size, GFP_KERNEL);
5269 if (!memcg)
5270 return ERR_PTR(error);
5271
5272 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5273 1, MEM_CGROUP_ID_MAX,
5274 GFP_KERNEL);
5275 if (memcg->id.id < 0) {
5276 error = memcg->id.id;
5277 goto fail;
5278 }
5279
5280 memcg->vmstats_local = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5281 GFP_KERNEL_ACCOUNT);
5282 if (!memcg->vmstats_local)
5283 goto fail;
5284
5285 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5286 GFP_KERNEL_ACCOUNT);
5287 if (!memcg->vmstats_percpu)
5288 goto fail;
5289
5290 for_each_node(node)
5291 if (alloc_mem_cgroup_per_node_info(memcg, node))
5292 goto fail;
5293
5294 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5295 goto fail;
5296
5297 INIT_WORK(&memcg->high_work, high_work_func);
5298 INIT_LIST_HEAD(&memcg->oom_notify);
5299 mutex_init(&memcg->thresholds_lock);
5300 spin_lock_init(&memcg->move_lock);
5301 vmpressure_init(&memcg->vmpressure);
5302 INIT_LIST_HEAD(&memcg->event_list);
5303 spin_lock_init(&memcg->event_list_lock);
5304 memcg->socket_pressure = jiffies;
5305 #ifdef CONFIG_MEMCG_KMEM
5306 memcg->kmemcg_id = -1;
5307 INIT_LIST_HEAD(&memcg->objcg_list);
5308 #endif
5309 #ifdef CONFIG_CGROUP_WRITEBACK
5310 INIT_LIST_HEAD(&memcg->cgwb_list);
5311 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5312 memcg->cgwb_frn[i].done =
5313 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5314 #endif
5315 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5316 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5317 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5318 memcg->deferred_split_queue.split_queue_len = 0;
5319 #endif
5320 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5321 return memcg;
5322 fail:
5323 mem_cgroup_id_remove(memcg);
5324 __mem_cgroup_free(memcg);
5325 return ERR_PTR(error);
5326 }
5327
5328 static struct cgroup_subsys_state * __ref
5329 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5330 {
5331 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5332 struct mem_cgroup *memcg, *old_memcg;
5333 long error = -ENOMEM;
5334
5335 old_memcg = set_active_memcg(parent);
5336 memcg = mem_cgroup_alloc();
5337 set_active_memcg(old_memcg);
5338 if (IS_ERR(memcg))
5339 return ERR_CAST(memcg);
5340
5341 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5342 memcg->soft_limit = PAGE_COUNTER_MAX;
5343 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5344 if (parent) {
5345 memcg->swappiness = mem_cgroup_swappiness(parent);
5346 memcg->oom_kill_disable = parent->oom_kill_disable;
5347
5348 page_counter_init(&memcg->memory, &parent->memory);
5349 page_counter_init(&memcg->swap, &parent->swap);
5350 page_counter_init(&memcg->kmem, &parent->kmem);
5351 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5352 } else {
5353 page_counter_init(&memcg->memory, NULL);
5354 page_counter_init(&memcg->swap, NULL);
5355 page_counter_init(&memcg->kmem, NULL);
5356 page_counter_init(&memcg->tcpmem, NULL);
5357
5358 root_mem_cgroup = memcg;
5359 return &memcg->css;
5360 }
5361
5362 /* The following stuff does not apply to the root */
5363 error = memcg_online_kmem(memcg);
5364 if (error)
5365 goto fail;
5366
5367 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5368 static_branch_inc(&memcg_sockets_enabled_key);
5369
5370 return &memcg->css;
5371 fail:
5372 mem_cgroup_id_remove(memcg);
5373 mem_cgroup_free(memcg);
5374 return ERR_PTR(error);
5375 }
5376
5377 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5378 {
5379 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5380
5381 /*
5382 * A memcg must be visible for memcg_expand_shrinker_maps()
5383 * by the time the maps are allocated. So, we allocate maps
5384 * here, when for_each_mem_cgroup() can't skip it.
5385 */
5386 if (memcg_alloc_shrinker_maps(memcg)) {
5387 mem_cgroup_id_remove(memcg);
5388 return -ENOMEM;
5389 }
5390
5391 /* Online state pins memcg ID, memcg ID pins CSS */
5392 refcount_set(&memcg->id.ref, 1);
5393 css_get(css);
5394 return 0;
5395 }
5396
5397 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5398 {
5399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5400 struct mem_cgroup_event *event, *tmp;
5401
5402 /*
5403 * Unregister events and notify userspace.
5404 * Notify userspace about cgroup removing only after rmdir of cgroup
5405 * directory to avoid race between userspace and kernelspace.
5406 */
5407 spin_lock(&memcg->event_list_lock);
5408 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5409 list_del_init(&event->list);
5410 schedule_work(&event->remove);
5411 }
5412 spin_unlock(&memcg->event_list_lock);
5413
5414 page_counter_set_min(&memcg->memory, 0);
5415 page_counter_set_low(&memcg->memory, 0);
5416
5417 memcg_offline_kmem(memcg);
5418 wb_memcg_offline(memcg);
5419
5420 drain_all_stock(memcg);
5421
5422 mem_cgroup_id_put(memcg);
5423 }
5424
5425 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5426 {
5427 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5428
5429 invalidate_reclaim_iterators(memcg);
5430 }
5431
5432 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5433 {
5434 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5435 int __maybe_unused i;
5436
5437 #ifdef CONFIG_CGROUP_WRITEBACK
5438 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5439 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5440 #endif
5441 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5442 static_branch_dec(&memcg_sockets_enabled_key);
5443
5444 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5445 static_branch_dec(&memcg_sockets_enabled_key);
5446
5447 vmpressure_cleanup(&memcg->vmpressure);
5448 cancel_work_sync(&memcg->high_work);
5449 mem_cgroup_remove_from_trees(memcg);
5450 memcg_free_shrinker_maps(memcg);
5451 memcg_free_kmem(memcg);
5452 mem_cgroup_free(memcg);
5453 }
5454
5455 /**
5456 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5457 * @css: the target css
5458 *
5459 * Reset the states of the mem_cgroup associated with @css. This is
5460 * invoked when the userland requests disabling on the default hierarchy
5461 * but the memcg is pinned through dependency. The memcg should stop
5462 * applying policies and should revert to the vanilla state as it may be
5463 * made visible again.
5464 *
5465 * The current implementation only resets the essential configurations.
5466 * This needs to be expanded to cover all the visible parts.
5467 */
5468 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5469 {
5470 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5471
5472 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5473 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5474 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5475 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5476 page_counter_set_min(&memcg->memory, 0);
5477 page_counter_set_low(&memcg->memory, 0);
5478 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5479 memcg->soft_limit = PAGE_COUNTER_MAX;
5480 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5481 memcg_wb_domain_size_changed(memcg);
5482 }
5483
5484 #ifdef CONFIG_MMU
5485 /* Handlers for move charge at task migration. */
5486 static int mem_cgroup_do_precharge(unsigned long count)
5487 {
5488 int ret;
5489
5490 /* Try a single bulk charge without reclaim first, kswapd may wake */
5491 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5492 if (!ret) {
5493 mc.precharge += count;
5494 return ret;
5495 }
5496
5497 /* Try charges one by one with reclaim, but do not retry */
5498 while (count--) {
5499 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5500 if (ret)
5501 return ret;
5502 mc.precharge++;
5503 cond_resched();
5504 }
5505 return 0;
5506 }
5507
5508 union mc_target {
5509 struct page *page;
5510 swp_entry_t ent;
5511 };
5512
5513 enum mc_target_type {
5514 MC_TARGET_NONE = 0,
5515 MC_TARGET_PAGE,
5516 MC_TARGET_SWAP,
5517 MC_TARGET_DEVICE,
5518 };
5519
5520 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5521 unsigned long addr, pte_t ptent)
5522 {
5523 struct page *page = vm_normal_page(vma, addr, ptent);
5524
5525 if (!page || !page_mapped(page))
5526 return NULL;
5527 if (PageAnon(page)) {
5528 if (!(mc.flags & MOVE_ANON))
5529 return NULL;
5530 } else {
5531 if (!(mc.flags & MOVE_FILE))
5532 return NULL;
5533 }
5534 if (!get_page_unless_zero(page))
5535 return NULL;
5536
5537 return page;
5538 }
5539
5540 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5541 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5542 pte_t ptent, swp_entry_t *entry)
5543 {
5544 struct page *page = NULL;
5545 swp_entry_t ent = pte_to_swp_entry(ptent);
5546
5547 if (!(mc.flags & MOVE_ANON))
5548 return NULL;
5549
5550 /*
5551 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5552 * a device and because they are not accessible by CPU they are store
5553 * as special swap entry in the CPU page table.
5554 */
5555 if (is_device_private_entry(ent)) {
5556 page = device_private_entry_to_page(ent);
5557 /*
5558 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5559 * a refcount of 1 when free (unlike normal page)
5560 */
5561 if (!page_ref_add_unless(page, 1, 1))
5562 return NULL;
5563 return page;
5564 }
5565
5566 if (non_swap_entry(ent))
5567 return NULL;
5568
5569 /*
5570 * Because lookup_swap_cache() updates some statistics counter,
5571 * we call find_get_page() with swapper_space directly.
5572 */
5573 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5574 entry->val = ent.val;
5575
5576 return page;
5577 }
5578 #else
5579 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5580 pte_t ptent, swp_entry_t *entry)
5581 {
5582 return NULL;
5583 }
5584 #endif
5585
5586 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5587 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5588 {
5589 if (!vma->vm_file) /* anonymous vma */
5590 return NULL;
5591 if (!(mc.flags & MOVE_FILE))
5592 return NULL;
5593
5594 /* page is moved even if it's not RSS of this task(page-faulted). */
5595 /* shmem/tmpfs may report page out on swap: account for that too. */
5596 return find_get_incore_page(vma->vm_file->f_mapping,
5597 linear_page_index(vma, addr));
5598 }
5599
5600 /**
5601 * mem_cgroup_move_account - move account of the page
5602 * @page: the page
5603 * @compound: charge the page as compound or small page
5604 * @from: mem_cgroup which the page is moved from.
5605 * @to: mem_cgroup which the page is moved to. @from != @to.
5606 *
5607 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5608 *
5609 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5610 * from old cgroup.
5611 */
5612 static int mem_cgroup_move_account(struct page *page,
5613 bool compound,
5614 struct mem_cgroup *from,
5615 struct mem_cgroup *to)
5616 {
5617 struct lruvec *from_vec, *to_vec;
5618 struct pglist_data *pgdat;
5619 unsigned int nr_pages = compound ? thp_nr_pages(page) : 1;
5620 int ret;
5621
5622 VM_BUG_ON(from == to);
5623 VM_BUG_ON_PAGE(PageLRU(page), page);
5624 VM_BUG_ON(compound && !PageTransHuge(page));
5625
5626 /*
5627 * Prevent mem_cgroup_migrate() from looking at
5628 * page's memory cgroup of its source page while we change it.
5629 */
5630 ret = -EBUSY;
5631 if (!trylock_page(page))
5632 goto out;
5633
5634 ret = -EINVAL;
5635 if (page_memcg(page) != from)
5636 goto out_unlock;
5637
5638 pgdat = page_pgdat(page);
5639 from_vec = mem_cgroup_lruvec(from, pgdat);
5640 to_vec = mem_cgroup_lruvec(to, pgdat);
5641
5642 lock_page_memcg(page);
5643
5644 if (PageAnon(page)) {
5645 if (page_mapped(page)) {
5646 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5647 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5648 if (PageTransHuge(page)) {
5649 __dec_lruvec_state(from_vec, NR_ANON_THPS);
5650 __inc_lruvec_state(to_vec, NR_ANON_THPS);
5651 }
5652
5653 }
5654 } else {
5655 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5656 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5657
5658 if (PageSwapBacked(page)) {
5659 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5660 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5661 }
5662
5663 if (page_mapped(page)) {
5664 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5665 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5666 }
5667
5668 if (PageDirty(page)) {
5669 struct address_space *mapping = page_mapping(page);
5670
5671 if (mapping_can_writeback(mapping)) {
5672 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5673 -nr_pages);
5674 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5675 nr_pages);
5676 }
5677 }
5678 }
5679
5680 if (PageWriteback(page)) {
5681 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5682 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5683 }
5684
5685 /*
5686 * All state has been migrated, let's switch to the new memcg.
5687 *
5688 * It is safe to change page's memcg here because the page
5689 * is referenced, charged, isolated, and locked: we can't race
5690 * with (un)charging, migration, LRU putback, or anything else
5691 * that would rely on a stable page's memory cgroup.
5692 *
5693 * Note that lock_page_memcg is a memcg lock, not a page lock,
5694 * to save space. As soon as we switch page's memory cgroup to a
5695 * new memcg that isn't locked, the above state can change
5696 * concurrently again. Make sure we're truly done with it.
5697 */
5698 smp_mb();
5699
5700 css_get(&to->css);
5701 css_put(&from->css);
5702
5703 page->memcg_data = (unsigned long)to;
5704
5705 __unlock_page_memcg(from);
5706
5707 ret = 0;
5708
5709 local_irq_disable();
5710 mem_cgroup_charge_statistics(to, page, nr_pages);
5711 memcg_check_events(to, page);
5712 mem_cgroup_charge_statistics(from, page, -nr_pages);
5713 memcg_check_events(from, page);
5714 local_irq_enable();
5715 out_unlock:
5716 unlock_page(page);
5717 out:
5718 return ret;
5719 }
5720
5721 /**
5722 * get_mctgt_type - get target type of moving charge
5723 * @vma: the vma the pte to be checked belongs
5724 * @addr: the address corresponding to the pte to be checked
5725 * @ptent: the pte to be checked
5726 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5727 *
5728 * Returns
5729 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5730 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5731 * move charge. if @target is not NULL, the page is stored in target->page
5732 * with extra refcnt got(Callers should handle it).
5733 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5734 * target for charge migration. if @target is not NULL, the entry is stored
5735 * in target->ent.
5736 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5737 * (so ZONE_DEVICE page and thus not on the lru).
5738 * For now we such page is charge like a regular page would be as for all
5739 * intent and purposes it is just special memory taking the place of a
5740 * regular page.
5741 *
5742 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5743 *
5744 * Called with pte lock held.
5745 */
5746
5747 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5748 unsigned long addr, pte_t ptent, union mc_target *target)
5749 {
5750 struct page *page = NULL;
5751 enum mc_target_type ret = MC_TARGET_NONE;
5752 swp_entry_t ent = { .val = 0 };
5753
5754 if (pte_present(ptent))
5755 page = mc_handle_present_pte(vma, addr, ptent);
5756 else if (is_swap_pte(ptent))
5757 page = mc_handle_swap_pte(vma, ptent, &ent);
5758 else if (pte_none(ptent))
5759 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5760
5761 if (!page && !ent.val)
5762 return ret;
5763 if (page) {
5764 /*
5765 * Do only loose check w/o serialization.
5766 * mem_cgroup_move_account() checks the page is valid or
5767 * not under LRU exclusion.
5768 */
5769 if (page_memcg(page) == mc.from) {
5770 ret = MC_TARGET_PAGE;
5771 if (is_device_private_page(page))
5772 ret = MC_TARGET_DEVICE;
5773 if (target)
5774 target->page = page;
5775 }
5776 if (!ret || !target)
5777 put_page(page);
5778 }
5779 /*
5780 * There is a swap entry and a page doesn't exist or isn't charged.
5781 * But we cannot move a tail-page in a THP.
5782 */
5783 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5784 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5785 ret = MC_TARGET_SWAP;
5786 if (target)
5787 target->ent = ent;
5788 }
5789 return ret;
5790 }
5791
5792 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5793 /*
5794 * We don't consider PMD mapped swapping or file mapped pages because THP does
5795 * not support them for now.
5796 * Caller should make sure that pmd_trans_huge(pmd) is true.
5797 */
5798 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5799 unsigned long addr, pmd_t pmd, union mc_target *target)
5800 {
5801 struct page *page = NULL;
5802 enum mc_target_type ret = MC_TARGET_NONE;
5803
5804 if (unlikely(is_swap_pmd(pmd))) {
5805 VM_BUG_ON(thp_migration_supported() &&
5806 !is_pmd_migration_entry(pmd));
5807 return ret;
5808 }
5809 page = pmd_page(pmd);
5810 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5811 if (!(mc.flags & MOVE_ANON))
5812 return ret;
5813 if (page_memcg(page) == mc.from) {
5814 ret = MC_TARGET_PAGE;
5815 if (target) {
5816 get_page(page);
5817 target->page = page;
5818 }
5819 }
5820 return ret;
5821 }
5822 #else
5823 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5824 unsigned long addr, pmd_t pmd, union mc_target *target)
5825 {
5826 return MC_TARGET_NONE;
5827 }
5828 #endif
5829
5830 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5831 unsigned long addr, unsigned long end,
5832 struct mm_walk *walk)
5833 {
5834 struct vm_area_struct *vma = walk->vma;
5835 pte_t *pte;
5836 spinlock_t *ptl;
5837
5838 ptl = pmd_trans_huge_lock(pmd, vma);
5839 if (ptl) {
5840 /*
5841 * Note their can not be MC_TARGET_DEVICE for now as we do not
5842 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5843 * this might change.
5844 */
5845 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5846 mc.precharge += HPAGE_PMD_NR;
5847 spin_unlock(ptl);
5848 return 0;
5849 }
5850
5851 if (pmd_trans_unstable(pmd))
5852 return 0;
5853 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5854 for (; addr != end; pte++, addr += PAGE_SIZE)
5855 if (get_mctgt_type(vma, addr, *pte, NULL))
5856 mc.precharge++; /* increment precharge temporarily */
5857 pte_unmap_unlock(pte - 1, ptl);
5858 cond_resched();
5859
5860 return 0;
5861 }
5862
5863 static const struct mm_walk_ops precharge_walk_ops = {
5864 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5865 };
5866
5867 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5868 {
5869 unsigned long precharge;
5870
5871 mmap_read_lock(mm);
5872 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5873 mmap_read_unlock(mm);
5874
5875 precharge = mc.precharge;
5876 mc.precharge = 0;
5877
5878 return precharge;
5879 }
5880
5881 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5882 {
5883 unsigned long precharge = mem_cgroup_count_precharge(mm);
5884
5885 VM_BUG_ON(mc.moving_task);
5886 mc.moving_task = current;
5887 return mem_cgroup_do_precharge(precharge);
5888 }
5889
5890 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5891 static void __mem_cgroup_clear_mc(void)
5892 {
5893 struct mem_cgroup *from = mc.from;
5894 struct mem_cgroup *to = mc.to;
5895
5896 /* we must uncharge all the leftover precharges from mc.to */
5897 if (mc.precharge) {
5898 cancel_charge(mc.to, mc.precharge);
5899 mc.precharge = 0;
5900 }
5901 /*
5902 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5903 * we must uncharge here.
5904 */
5905 if (mc.moved_charge) {
5906 cancel_charge(mc.from, mc.moved_charge);
5907 mc.moved_charge = 0;
5908 }
5909 /* we must fixup refcnts and charges */
5910 if (mc.moved_swap) {
5911 /* uncharge swap account from the old cgroup */
5912 if (!mem_cgroup_is_root(mc.from))
5913 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5914
5915 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5916
5917 /*
5918 * we charged both to->memory and to->memsw, so we
5919 * should uncharge to->memory.
5920 */
5921 if (!mem_cgroup_is_root(mc.to))
5922 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5923
5924 mc.moved_swap = 0;
5925 }
5926 memcg_oom_recover(from);
5927 memcg_oom_recover(to);
5928 wake_up_all(&mc.waitq);
5929 }
5930
5931 static void mem_cgroup_clear_mc(void)
5932 {
5933 struct mm_struct *mm = mc.mm;
5934
5935 /*
5936 * we must clear moving_task before waking up waiters at the end of
5937 * task migration.
5938 */
5939 mc.moving_task = NULL;
5940 __mem_cgroup_clear_mc();
5941 spin_lock(&mc.lock);
5942 mc.from = NULL;
5943 mc.to = NULL;
5944 mc.mm = NULL;
5945 spin_unlock(&mc.lock);
5946
5947 mmput(mm);
5948 }
5949
5950 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5951 {
5952 struct cgroup_subsys_state *css;
5953 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5954 struct mem_cgroup *from;
5955 struct task_struct *leader, *p;
5956 struct mm_struct *mm;
5957 unsigned long move_flags;
5958 int ret = 0;
5959
5960 /* charge immigration isn't supported on the default hierarchy */
5961 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5962 return 0;
5963
5964 /*
5965 * Multi-process migrations only happen on the default hierarchy
5966 * where charge immigration is not used. Perform charge
5967 * immigration if @tset contains a leader and whine if there are
5968 * multiple.
5969 */
5970 p = NULL;
5971 cgroup_taskset_for_each_leader(leader, css, tset) {
5972 WARN_ON_ONCE(p);
5973 p = leader;
5974 memcg = mem_cgroup_from_css(css);
5975 }
5976 if (!p)
5977 return 0;
5978
5979 /*
5980 * We are now commited to this value whatever it is. Changes in this
5981 * tunable will only affect upcoming migrations, not the current one.
5982 * So we need to save it, and keep it going.
5983 */
5984 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5985 if (!move_flags)
5986 return 0;
5987
5988 from = mem_cgroup_from_task(p);
5989
5990 VM_BUG_ON(from == memcg);
5991
5992 mm = get_task_mm(p);
5993 if (!mm)
5994 return 0;
5995 /* We move charges only when we move a owner of the mm */
5996 if (mm->owner == p) {
5997 VM_BUG_ON(mc.from);
5998 VM_BUG_ON(mc.to);
5999 VM_BUG_ON(mc.precharge);
6000 VM_BUG_ON(mc.moved_charge);
6001 VM_BUG_ON(mc.moved_swap);
6002
6003 spin_lock(&mc.lock);
6004 mc.mm = mm;
6005 mc.from = from;
6006 mc.to = memcg;
6007 mc.flags = move_flags;
6008 spin_unlock(&mc.lock);
6009 /* We set mc.moving_task later */
6010
6011 ret = mem_cgroup_precharge_mc(mm);
6012 if (ret)
6013 mem_cgroup_clear_mc();
6014 } else {
6015 mmput(mm);
6016 }
6017 return ret;
6018 }
6019
6020 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6021 {
6022 if (mc.to)
6023 mem_cgroup_clear_mc();
6024 }
6025
6026 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6027 unsigned long addr, unsigned long end,
6028 struct mm_walk *walk)
6029 {
6030 int ret = 0;
6031 struct vm_area_struct *vma = walk->vma;
6032 pte_t *pte;
6033 spinlock_t *ptl;
6034 enum mc_target_type target_type;
6035 union mc_target target;
6036 struct page *page;
6037
6038 ptl = pmd_trans_huge_lock(pmd, vma);
6039 if (ptl) {
6040 if (mc.precharge < HPAGE_PMD_NR) {
6041 spin_unlock(ptl);
6042 return 0;
6043 }
6044 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6045 if (target_type == MC_TARGET_PAGE) {
6046 page = target.page;
6047 if (!isolate_lru_page(page)) {
6048 if (!mem_cgroup_move_account(page, true,
6049 mc.from, mc.to)) {
6050 mc.precharge -= HPAGE_PMD_NR;
6051 mc.moved_charge += HPAGE_PMD_NR;
6052 }
6053 putback_lru_page(page);
6054 }
6055 put_page(page);
6056 } else if (target_type == MC_TARGET_DEVICE) {
6057 page = target.page;
6058 if (!mem_cgroup_move_account(page, true,
6059 mc.from, mc.to)) {
6060 mc.precharge -= HPAGE_PMD_NR;
6061 mc.moved_charge += HPAGE_PMD_NR;
6062 }
6063 put_page(page);
6064 }
6065 spin_unlock(ptl);
6066 return 0;
6067 }
6068
6069 if (pmd_trans_unstable(pmd))
6070 return 0;
6071 retry:
6072 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6073 for (; addr != end; addr += PAGE_SIZE) {
6074 pte_t ptent = *(pte++);
6075 bool device = false;
6076 swp_entry_t ent;
6077
6078 if (!mc.precharge)
6079 break;
6080
6081 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6082 case MC_TARGET_DEVICE:
6083 device = true;
6084 fallthrough;
6085 case MC_TARGET_PAGE:
6086 page = target.page;
6087 /*
6088 * We can have a part of the split pmd here. Moving it
6089 * can be done but it would be too convoluted so simply
6090 * ignore such a partial THP and keep it in original
6091 * memcg. There should be somebody mapping the head.
6092 */
6093 if (PageTransCompound(page))
6094 goto put;
6095 if (!device && isolate_lru_page(page))
6096 goto put;
6097 if (!mem_cgroup_move_account(page, false,
6098 mc.from, mc.to)) {
6099 mc.precharge--;
6100 /* we uncharge from mc.from later. */
6101 mc.moved_charge++;
6102 }
6103 if (!device)
6104 putback_lru_page(page);
6105 put: /* get_mctgt_type() gets the page */
6106 put_page(page);
6107 break;
6108 case MC_TARGET_SWAP:
6109 ent = target.ent;
6110 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6111 mc.precharge--;
6112 mem_cgroup_id_get_many(mc.to, 1);
6113 /* we fixup other refcnts and charges later. */
6114 mc.moved_swap++;
6115 }
6116 break;
6117 default:
6118 break;
6119 }
6120 }
6121 pte_unmap_unlock(pte - 1, ptl);
6122 cond_resched();
6123
6124 if (addr != end) {
6125 /*
6126 * We have consumed all precharges we got in can_attach().
6127 * We try charge one by one, but don't do any additional
6128 * charges to mc.to if we have failed in charge once in attach()
6129 * phase.
6130 */
6131 ret = mem_cgroup_do_precharge(1);
6132 if (!ret)
6133 goto retry;
6134 }
6135
6136 return ret;
6137 }
6138
6139 static const struct mm_walk_ops charge_walk_ops = {
6140 .pmd_entry = mem_cgroup_move_charge_pte_range,
6141 };
6142
6143 static void mem_cgroup_move_charge(void)
6144 {
6145 lru_add_drain_all();
6146 /*
6147 * Signal lock_page_memcg() to take the memcg's move_lock
6148 * while we're moving its pages to another memcg. Then wait
6149 * for already started RCU-only updates to finish.
6150 */
6151 atomic_inc(&mc.from->moving_account);
6152 synchronize_rcu();
6153 retry:
6154 if (unlikely(!mmap_read_trylock(mc.mm))) {
6155 /*
6156 * Someone who are holding the mmap_lock might be waiting in
6157 * waitq. So we cancel all extra charges, wake up all waiters,
6158 * and retry. Because we cancel precharges, we might not be able
6159 * to move enough charges, but moving charge is a best-effort
6160 * feature anyway, so it wouldn't be a big problem.
6161 */
6162 __mem_cgroup_clear_mc();
6163 cond_resched();
6164 goto retry;
6165 }
6166 /*
6167 * When we have consumed all precharges and failed in doing
6168 * additional charge, the page walk just aborts.
6169 */
6170 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6171 NULL);
6172
6173 mmap_read_unlock(mc.mm);
6174 atomic_dec(&mc.from->moving_account);
6175 }
6176
6177 static void mem_cgroup_move_task(void)
6178 {
6179 if (mc.to) {
6180 mem_cgroup_move_charge();
6181 mem_cgroup_clear_mc();
6182 }
6183 }
6184 #else /* !CONFIG_MMU */
6185 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6186 {
6187 return 0;
6188 }
6189 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6190 {
6191 }
6192 static void mem_cgroup_move_task(void)
6193 {
6194 }
6195 #endif
6196
6197 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6198 {
6199 if (value == PAGE_COUNTER_MAX)
6200 seq_puts(m, "max\n");
6201 else
6202 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6203
6204 return 0;
6205 }
6206
6207 static u64 memory_current_read(struct cgroup_subsys_state *css,
6208 struct cftype *cft)
6209 {
6210 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6211
6212 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6213 }
6214
6215 static int memory_min_show(struct seq_file *m, void *v)
6216 {
6217 return seq_puts_memcg_tunable(m,
6218 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6219 }
6220
6221 static ssize_t memory_min_write(struct kernfs_open_file *of,
6222 char *buf, size_t nbytes, loff_t off)
6223 {
6224 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6225 unsigned long min;
6226 int err;
6227
6228 buf = strstrip(buf);
6229 err = page_counter_memparse(buf, "max", &min);
6230 if (err)
6231 return err;
6232
6233 page_counter_set_min(&memcg->memory, min);
6234
6235 return nbytes;
6236 }
6237
6238 static int memory_low_show(struct seq_file *m, void *v)
6239 {
6240 return seq_puts_memcg_tunable(m,
6241 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6242 }
6243
6244 static ssize_t memory_low_write(struct kernfs_open_file *of,
6245 char *buf, size_t nbytes, loff_t off)
6246 {
6247 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6248 unsigned long low;
6249 int err;
6250
6251 buf = strstrip(buf);
6252 err = page_counter_memparse(buf, "max", &low);
6253 if (err)
6254 return err;
6255
6256 page_counter_set_low(&memcg->memory, low);
6257
6258 return nbytes;
6259 }
6260
6261 static int memory_high_show(struct seq_file *m, void *v)
6262 {
6263 return seq_puts_memcg_tunable(m,
6264 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6265 }
6266
6267 static ssize_t memory_high_write(struct kernfs_open_file *of,
6268 char *buf, size_t nbytes, loff_t off)
6269 {
6270 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6271 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6272 bool drained = false;
6273 unsigned long high;
6274 int err;
6275
6276 buf = strstrip(buf);
6277 err = page_counter_memparse(buf, "max", &high);
6278 if (err)
6279 return err;
6280
6281 page_counter_set_high(&memcg->memory, high);
6282
6283 for (;;) {
6284 unsigned long nr_pages = page_counter_read(&memcg->memory);
6285 unsigned long reclaimed;
6286
6287 if (nr_pages <= high)
6288 break;
6289
6290 if (signal_pending(current))
6291 break;
6292
6293 if (!drained) {
6294 drain_all_stock(memcg);
6295 drained = true;
6296 continue;
6297 }
6298
6299 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6300 GFP_KERNEL, true);
6301
6302 if (!reclaimed && !nr_retries--)
6303 break;
6304 }
6305
6306 memcg_wb_domain_size_changed(memcg);
6307 return nbytes;
6308 }
6309
6310 static int memory_max_show(struct seq_file *m, void *v)
6311 {
6312 return seq_puts_memcg_tunable(m,
6313 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6314 }
6315
6316 static ssize_t memory_max_write(struct kernfs_open_file *of,
6317 char *buf, size_t nbytes, loff_t off)
6318 {
6319 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6320 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6321 bool drained = false;
6322 unsigned long max;
6323 int err;
6324
6325 buf = strstrip(buf);
6326 err = page_counter_memparse(buf, "max", &max);
6327 if (err)
6328 return err;
6329
6330 xchg(&memcg->memory.max, max);
6331
6332 for (;;) {
6333 unsigned long nr_pages = page_counter_read(&memcg->memory);
6334
6335 if (nr_pages <= max)
6336 break;
6337
6338 if (signal_pending(current))
6339 break;
6340
6341 if (!drained) {
6342 drain_all_stock(memcg);
6343 drained = true;
6344 continue;
6345 }
6346
6347 if (nr_reclaims) {
6348 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6349 GFP_KERNEL, true))
6350 nr_reclaims--;
6351 continue;
6352 }
6353
6354 memcg_memory_event(memcg, MEMCG_OOM);
6355 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6356 break;
6357 }
6358
6359 memcg_wb_domain_size_changed(memcg);
6360 return nbytes;
6361 }
6362
6363 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6364 {
6365 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6366 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6367 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6368 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6369 seq_printf(m, "oom_kill %lu\n",
6370 atomic_long_read(&events[MEMCG_OOM_KILL]));
6371 }
6372
6373 static int memory_events_show(struct seq_file *m, void *v)
6374 {
6375 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6376
6377 __memory_events_show(m, memcg->memory_events);
6378 return 0;
6379 }
6380
6381 static int memory_events_local_show(struct seq_file *m, void *v)
6382 {
6383 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6384
6385 __memory_events_show(m, memcg->memory_events_local);
6386 return 0;
6387 }
6388
6389 static int memory_stat_show(struct seq_file *m, void *v)
6390 {
6391 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6392 char *buf;
6393
6394 buf = memory_stat_format(memcg);
6395 if (!buf)
6396 return -ENOMEM;
6397 seq_puts(m, buf);
6398 kfree(buf);
6399 return 0;
6400 }
6401
6402 #ifdef CONFIG_NUMA
6403 static int memory_numa_stat_show(struct seq_file *m, void *v)
6404 {
6405 int i;
6406 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6407
6408 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6409 int nid;
6410
6411 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6412 continue;
6413
6414 seq_printf(m, "%s", memory_stats[i].name);
6415 for_each_node_state(nid, N_MEMORY) {
6416 u64 size;
6417 struct lruvec *lruvec;
6418
6419 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6420 size = lruvec_page_state(lruvec, memory_stats[i].idx);
6421 size *= memory_stats[i].ratio;
6422 seq_printf(m, " N%d=%llu", nid, size);
6423 }
6424 seq_putc(m, '\n');
6425 }
6426
6427 return 0;
6428 }
6429 #endif
6430
6431 static int memory_oom_group_show(struct seq_file *m, void *v)
6432 {
6433 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6434
6435 seq_printf(m, "%d\n", memcg->oom_group);
6436
6437 return 0;
6438 }
6439
6440 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6441 char *buf, size_t nbytes, loff_t off)
6442 {
6443 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6444 int ret, oom_group;
6445
6446 buf = strstrip(buf);
6447 if (!buf)
6448 return -EINVAL;
6449
6450 ret = kstrtoint(buf, 0, &oom_group);
6451 if (ret)
6452 return ret;
6453
6454 if (oom_group != 0 && oom_group != 1)
6455 return -EINVAL;
6456
6457 memcg->oom_group = oom_group;
6458
6459 return nbytes;
6460 }
6461
6462 static struct cftype memory_files[] = {
6463 {
6464 .name = "current",
6465 .flags = CFTYPE_NOT_ON_ROOT,
6466 .read_u64 = memory_current_read,
6467 },
6468 {
6469 .name = "min",
6470 .flags = CFTYPE_NOT_ON_ROOT,
6471 .seq_show = memory_min_show,
6472 .write = memory_min_write,
6473 },
6474 {
6475 .name = "low",
6476 .flags = CFTYPE_NOT_ON_ROOT,
6477 .seq_show = memory_low_show,
6478 .write = memory_low_write,
6479 },
6480 {
6481 .name = "high",
6482 .flags = CFTYPE_NOT_ON_ROOT,
6483 .seq_show = memory_high_show,
6484 .write = memory_high_write,
6485 },
6486 {
6487 .name = "max",
6488 .flags = CFTYPE_NOT_ON_ROOT,
6489 .seq_show = memory_max_show,
6490 .write = memory_max_write,
6491 },
6492 {
6493 .name = "events",
6494 .flags = CFTYPE_NOT_ON_ROOT,
6495 .file_offset = offsetof(struct mem_cgroup, events_file),
6496 .seq_show = memory_events_show,
6497 },
6498 {
6499 .name = "events.local",
6500 .flags = CFTYPE_NOT_ON_ROOT,
6501 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6502 .seq_show = memory_events_local_show,
6503 },
6504 {
6505 .name = "stat",
6506 .seq_show = memory_stat_show,
6507 },
6508 #ifdef CONFIG_NUMA
6509 {
6510 .name = "numa_stat",
6511 .seq_show = memory_numa_stat_show,
6512 },
6513 #endif
6514 {
6515 .name = "oom.group",
6516 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6517 .seq_show = memory_oom_group_show,
6518 .write = memory_oom_group_write,
6519 },
6520 { } /* terminate */
6521 };
6522
6523 struct cgroup_subsys memory_cgrp_subsys = {
6524 .css_alloc = mem_cgroup_css_alloc,
6525 .css_online = mem_cgroup_css_online,
6526 .css_offline = mem_cgroup_css_offline,
6527 .css_released = mem_cgroup_css_released,
6528 .css_free = mem_cgroup_css_free,
6529 .css_reset = mem_cgroup_css_reset,
6530 .can_attach = mem_cgroup_can_attach,
6531 .cancel_attach = mem_cgroup_cancel_attach,
6532 .post_attach = mem_cgroup_move_task,
6533 .dfl_cftypes = memory_files,
6534 .legacy_cftypes = mem_cgroup_legacy_files,
6535 .early_init = 0,
6536 };
6537
6538 /*
6539 * This function calculates an individual cgroup's effective
6540 * protection which is derived from its own memory.min/low, its
6541 * parent's and siblings' settings, as well as the actual memory
6542 * distribution in the tree.
6543 *
6544 * The following rules apply to the effective protection values:
6545 *
6546 * 1. At the first level of reclaim, effective protection is equal to
6547 * the declared protection in memory.min and memory.low.
6548 *
6549 * 2. To enable safe delegation of the protection configuration, at
6550 * subsequent levels the effective protection is capped to the
6551 * parent's effective protection.
6552 *
6553 * 3. To make complex and dynamic subtrees easier to configure, the
6554 * user is allowed to overcommit the declared protection at a given
6555 * level. If that is the case, the parent's effective protection is
6556 * distributed to the children in proportion to how much protection
6557 * they have declared and how much of it they are utilizing.
6558 *
6559 * This makes distribution proportional, but also work-conserving:
6560 * if one cgroup claims much more protection than it uses memory,
6561 * the unused remainder is available to its siblings.
6562 *
6563 * 4. Conversely, when the declared protection is undercommitted at a
6564 * given level, the distribution of the larger parental protection
6565 * budget is NOT proportional. A cgroup's protection from a sibling
6566 * is capped to its own memory.min/low setting.
6567 *
6568 * 5. However, to allow protecting recursive subtrees from each other
6569 * without having to declare each individual cgroup's fixed share
6570 * of the ancestor's claim to protection, any unutilized -
6571 * "floating" - protection from up the tree is distributed in
6572 * proportion to each cgroup's *usage*. This makes the protection
6573 * neutral wrt sibling cgroups and lets them compete freely over
6574 * the shared parental protection budget, but it protects the
6575 * subtree as a whole from neighboring subtrees.
6576 *
6577 * Note that 4. and 5. are not in conflict: 4. is about protecting
6578 * against immediate siblings whereas 5. is about protecting against
6579 * neighboring subtrees.
6580 */
6581 static unsigned long effective_protection(unsigned long usage,
6582 unsigned long parent_usage,
6583 unsigned long setting,
6584 unsigned long parent_effective,
6585 unsigned long siblings_protected)
6586 {
6587 unsigned long protected;
6588 unsigned long ep;
6589
6590 protected = min(usage, setting);
6591 /*
6592 * If all cgroups at this level combined claim and use more
6593 * protection then what the parent affords them, distribute
6594 * shares in proportion to utilization.
6595 *
6596 * We are using actual utilization rather than the statically
6597 * claimed protection in order to be work-conserving: claimed
6598 * but unused protection is available to siblings that would
6599 * otherwise get a smaller chunk than what they claimed.
6600 */
6601 if (siblings_protected > parent_effective)
6602 return protected * parent_effective / siblings_protected;
6603
6604 /*
6605 * Ok, utilized protection of all children is within what the
6606 * parent affords them, so we know whatever this child claims
6607 * and utilizes is effectively protected.
6608 *
6609 * If there is unprotected usage beyond this value, reclaim
6610 * will apply pressure in proportion to that amount.
6611 *
6612 * If there is unutilized protection, the cgroup will be fully
6613 * shielded from reclaim, but we do return a smaller value for
6614 * protection than what the group could enjoy in theory. This
6615 * is okay. With the overcommit distribution above, effective
6616 * protection is always dependent on how memory is actually
6617 * consumed among the siblings anyway.
6618 */
6619 ep = protected;
6620
6621 /*
6622 * If the children aren't claiming (all of) the protection
6623 * afforded to them by the parent, distribute the remainder in
6624 * proportion to the (unprotected) memory of each cgroup. That
6625 * way, cgroups that aren't explicitly prioritized wrt each
6626 * other compete freely over the allowance, but they are
6627 * collectively protected from neighboring trees.
6628 *
6629 * We're using unprotected memory for the weight so that if
6630 * some cgroups DO claim explicit protection, we don't protect
6631 * the same bytes twice.
6632 *
6633 * Check both usage and parent_usage against the respective
6634 * protected values. One should imply the other, but they
6635 * aren't read atomically - make sure the division is sane.
6636 */
6637 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6638 return ep;
6639 if (parent_effective > siblings_protected &&
6640 parent_usage > siblings_protected &&
6641 usage > protected) {
6642 unsigned long unclaimed;
6643
6644 unclaimed = parent_effective - siblings_protected;
6645 unclaimed *= usage - protected;
6646 unclaimed /= parent_usage - siblings_protected;
6647
6648 ep += unclaimed;
6649 }
6650
6651 return ep;
6652 }
6653
6654 /**
6655 * mem_cgroup_protected - check if memory consumption is in the normal range
6656 * @root: the top ancestor of the sub-tree being checked
6657 * @memcg: the memory cgroup to check
6658 *
6659 * WARNING: This function is not stateless! It can only be used as part
6660 * of a top-down tree iteration, not for isolated queries.
6661 */
6662 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6663 struct mem_cgroup *memcg)
6664 {
6665 unsigned long usage, parent_usage;
6666 struct mem_cgroup *parent;
6667
6668 if (mem_cgroup_disabled())
6669 return;
6670
6671 if (!root)
6672 root = root_mem_cgroup;
6673
6674 /*
6675 * Effective values of the reclaim targets are ignored so they
6676 * can be stale. Have a look at mem_cgroup_protection for more
6677 * details.
6678 * TODO: calculation should be more robust so that we do not need
6679 * that special casing.
6680 */
6681 if (memcg == root)
6682 return;
6683
6684 usage = page_counter_read(&memcg->memory);
6685 if (!usage)
6686 return;
6687
6688 parent = parent_mem_cgroup(memcg);
6689 /* No parent means a non-hierarchical mode on v1 memcg */
6690 if (!parent)
6691 return;
6692
6693 if (parent == root) {
6694 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6695 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6696 return;
6697 }
6698
6699 parent_usage = page_counter_read(&parent->memory);
6700
6701 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6702 READ_ONCE(memcg->memory.min),
6703 READ_ONCE(parent->memory.emin),
6704 atomic_long_read(&parent->memory.children_min_usage)));
6705
6706 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6707 READ_ONCE(memcg->memory.low),
6708 READ_ONCE(parent->memory.elow),
6709 atomic_long_read(&parent->memory.children_low_usage)));
6710 }
6711
6712 /**
6713 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6714 * @page: page to charge
6715 * @mm: mm context of the victim
6716 * @gfp_mask: reclaim mode
6717 *
6718 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6719 * pages according to @gfp_mask if necessary.
6720 *
6721 * Returns 0 on success. Otherwise, an error code is returned.
6722 */
6723 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6724 {
6725 unsigned int nr_pages = thp_nr_pages(page);
6726 struct mem_cgroup *memcg = NULL;
6727 int ret = 0;
6728
6729 if (mem_cgroup_disabled())
6730 goto out;
6731
6732 if (PageSwapCache(page)) {
6733 swp_entry_t ent = { .val = page_private(page), };
6734 unsigned short id;
6735
6736 /*
6737 * Every swap fault against a single page tries to charge the
6738 * page, bail as early as possible. shmem_unuse() encounters
6739 * already charged pages, too. page and memcg binding is
6740 * protected by the page lock, which serializes swap cache
6741 * removal, which in turn serializes uncharging.
6742 */
6743 VM_BUG_ON_PAGE(!PageLocked(page), page);
6744 if (page_memcg(compound_head(page)))
6745 goto out;
6746
6747 id = lookup_swap_cgroup_id(ent);
6748 rcu_read_lock();
6749 memcg = mem_cgroup_from_id(id);
6750 if (memcg && !css_tryget_online(&memcg->css))
6751 memcg = NULL;
6752 rcu_read_unlock();
6753 }
6754
6755 if (!memcg)
6756 memcg = get_mem_cgroup_from_mm(mm);
6757
6758 ret = try_charge(memcg, gfp_mask, nr_pages);
6759 if (ret)
6760 goto out_put;
6761
6762 css_get(&memcg->css);
6763 commit_charge(page, memcg);
6764
6765 local_irq_disable();
6766 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6767 memcg_check_events(memcg, page);
6768 local_irq_enable();
6769
6770 /*
6771 * Cgroup1's unified memory+swap counter has been charged with the
6772 * new swapcache page, finish the transfer by uncharging the swap
6773 * slot. The swap slot would also get uncharged when it dies, but
6774 * it can stick around indefinitely and we'd count the page twice
6775 * the entire time.
6776 *
6777 * Cgroup2 has separate resource counters for memory and swap,
6778 * so this is a non-issue here. Memory and swap charge lifetimes
6779 * correspond 1:1 to page and swap slot lifetimes: we charge the
6780 * page to memory here, and uncharge swap when the slot is freed.
6781 */
6782 if (do_memsw_account() && PageSwapCache(page)) {
6783 swp_entry_t entry = { .val = page_private(page) };
6784 /*
6785 * The swap entry might not get freed for a long time,
6786 * let's not wait for it. The page already received a
6787 * memory+swap charge, drop the swap entry duplicate.
6788 */
6789 mem_cgroup_uncharge_swap(entry, nr_pages);
6790 }
6791
6792 out_put:
6793 css_put(&memcg->css);
6794 out:
6795 return ret;
6796 }
6797
6798 struct uncharge_gather {
6799 struct mem_cgroup *memcg;
6800 unsigned long nr_pages;
6801 unsigned long pgpgout;
6802 unsigned long nr_kmem;
6803 struct page *dummy_page;
6804 };
6805
6806 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6807 {
6808 memset(ug, 0, sizeof(*ug));
6809 }
6810
6811 static void uncharge_batch(const struct uncharge_gather *ug)
6812 {
6813 unsigned long flags;
6814
6815 if (!mem_cgroup_is_root(ug->memcg)) {
6816 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6817 if (do_memsw_account())
6818 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6819 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6820 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6821 memcg_oom_recover(ug->memcg);
6822 }
6823
6824 local_irq_save(flags);
6825 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6826 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6827 memcg_check_events(ug->memcg, ug->dummy_page);
6828 local_irq_restore(flags);
6829
6830 /* drop reference from uncharge_page */
6831 css_put(&ug->memcg->css);
6832 }
6833
6834 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6835 {
6836 unsigned long nr_pages;
6837
6838 VM_BUG_ON_PAGE(PageLRU(page), page);
6839
6840 if (!page_memcg(page))
6841 return;
6842
6843 /*
6844 * Nobody should be changing or seriously looking at
6845 * page_memcg(page) at this point, we have fully
6846 * exclusive access to the page.
6847 */
6848
6849 if (ug->memcg != page_memcg(page)) {
6850 if (ug->memcg) {
6851 uncharge_batch(ug);
6852 uncharge_gather_clear(ug);
6853 }
6854 ug->memcg = page_memcg(page);
6855
6856 /* pairs with css_put in uncharge_batch */
6857 css_get(&ug->memcg->css);
6858 }
6859
6860 nr_pages = compound_nr(page);
6861 ug->nr_pages += nr_pages;
6862
6863 if (PageMemcgKmem(page))
6864 ug->nr_kmem += nr_pages;
6865 else
6866 ug->pgpgout++;
6867
6868 ug->dummy_page = page;
6869 page->memcg_data = 0;
6870 css_put(&ug->memcg->css);
6871 }
6872
6873 static void uncharge_list(struct list_head *page_list)
6874 {
6875 struct uncharge_gather ug;
6876 struct list_head *next;
6877
6878 uncharge_gather_clear(&ug);
6879
6880 /*
6881 * Note that the list can be a single page->lru; hence the
6882 * do-while loop instead of a simple list_for_each_entry().
6883 */
6884 next = page_list->next;
6885 do {
6886 struct page *page;
6887
6888 page = list_entry(next, struct page, lru);
6889 next = page->lru.next;
6890
6891 uncharge_page(page, &ug);
6892 } while (next != page_list);
6893
6894 if (ug.memcg)
6895 uncharge_batch(&ug);
6896 }
6897
6898 /**
6899 * mem_cgroup_uncharge - uncharge a page
6900 * @page: page to uncharge
6901 *
6902 * Uncharge a page previously charged with mem_cgroup_charge().
6903 */
6904 void mem_cgroup_uncharge(struct page *page)
6905 {
6906 struct uncharge_gather ug;
6907
6908 if (mem_cgroup_disabled())
6909 return;
6910
6911 /* Don't touch page->lru of any random page, pre-check: */
6912 if (!page_memcg(page))
6913 return;
6914
6915 uncharge_gather_clear(&ug);
6916 uncharge_page(page, &ug);
6917 uncharge_batch(&ug);
6918 }
6919
6920 /**
6921 * mem_cgroup_uncharge_list - uncharge a list of page
6922 * @page_list: list of pages to uncharge
6923 *
6924 * Uncharge a list of pages previously charged with
6925 * mem_cgroup_charge().
6926 */
6927 void mem_cgroup_uncharge_list(struct list_head *page_list)
6928 {
6929 if (mem_cgroup_disabled())
6930 return;
6931
6932 if (!list_empty(page_list))
6933 uncharge_list(page_list);
6934 }
6935
6936 /**
6937 * mem_cgroup_migrate - charge a page's replacement
6938 * @oldpage: currently circulating page
6939 * @newpage: replacement page
6940 *
6941 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6942 * be uncharged upon free.
6943 *
6944 * Both pages must be locked, @newpage->mapping must be set up.
6945 */
6946 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6947 {
6948 struct mem_cgroup *memcg;
6949 unsigned int nr_pages;
6950 unsigned long flags;
6951
6952 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6953 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6954 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6955 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6956 newpage);
6957
6958 if (mem_cgroup_disabled())
6959 return;
6960
6961 /* Page cache replacement: new page already charged? */
6962 if (page_memcg(newpage))
6963 return;
6964
6965 memcg = page_memcg(oldpage);
6966 VM_WARN_ON_ONCE_PAGE(!memcg, oldpage);
6967 if (!memcg)
6968 return;
6969
6970 /* Force-charge the new page. The old one will be freed soon */
6971 nr_pages = thp_nr_pages(newpage);
6972
6973 page_counter_charge(&memcg->memory, nr_pages);
6974 if (do_memsw_account())
6975 page_counter_charge(&memcg->memsw, nr_pages);
6976
6977 css_get(&memcg->css);
6978 commit_charge(newpage, memcg);
6979
6980 local_irq_save(flags);
6981 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6982 memcg_check_events(memcg, newpage);
6983 local_irq_restore(flags);
6984 }
6985
6986 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6987 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6988
6989 void mem_cgroup_sk_alloc(struct sock *sk)
6990 {
6991 struct mem_cgroup *memcg;
6992
6993 if (!mem_cgroup_sockets_enabled)
6994 return;
6995
6996 /* Do not associate the sock with unrelated interrupted task's memcg. */
6997 if (in_interrupt())
6998 return;
6999
7000 rcu_read_lock();
7001 memcg = mem_cgroup_from_task(current);
7002 if (memcg == root_mem_cgroup)
7003 goto out;
7004 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7005 goto out;
7006 if (css_tryget(&memcg->css))
7007 sk->sk_memcg = memcg;
7008 out:
7009 rcu_read_unlock();
7010 }
7011
7012 void mem_cgroup_sk_free(struct sock *sk)
7013 {
7014 if (sk->sk_memcg)
7015 css_put(&sk->sk_memcg->css);
7016 }
7017
7018 /**
7019 * mem_cgroup_charge_skmem - charge socket memory
7020 * @memcg: memcg to charge
7021 * @nr_pages: number of pages to charge
7022 *
7023 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7024 * @memcg's configured limit, %false if the charge had to be forced.
7025 */
7026 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7027 {
7028 gfp_t gfp_mask = GFP_KERNEL;
7029
7030 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7031 struct page_counter *fail;
7032
7033 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7034 memcg->tcpmem_pressure = 0;
7035 return true;
7036 }
7037 page_counter_charge(&memcg->tcpmem, nr_pages);
7038 memcg->tcpmem_pressure = 1;
7039 return false;
7040 }
7041
7042 /* Don't block in the packet receive path */
7043 if (in_softirq())
7044 gfp_mask = GFP_NOWAIT;
7045
7046 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7047
7048 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
7049 return true;
7050
7051 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
7052 return false;
7053 }
7054
7055 /**
7056 * mem_cgroup_uncharge_skmem - uncharge socket memory
7057 * @memcg: memcg to uncharge
7058 * @nr_pages: number of pages to uncharge
7059 */
7060 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7061 {
7062 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7063 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7064 return;
7065 }
7066
7067 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7068
7069 refill_stock(memcg, nr_pages);
7070 }
7071
7072 static int __init cgroup_memory(char *s)
7073 {
7074 char *token;
7075
7076 while ((token = strsep(&s, ",")) != NULL) {
7077 if (!*token)
7078 continue;
7079 if (!strcmp(token, "nosocket"))
7080 cgroup_memory_nosocket = true;
7081 if (!strcmp(token, "nokmem"))
7082 cgroup_memory_nokmem = true;
7083 }
7084 return 0;
7085 }
7086 __setup("cgroup.memory=", cgroup_memory);
7087
7088 /*
7089 * subsys_initcall() for memory controller.
7090 *
7091 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7092 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7093 * basically everything that doesn't depend on a specific mem_cgroup structure
7094 * should be initialized from here.
7095 */
7096 static int __init mem_cgroup_init(void)
7097 {
7098 int cpu, node;
7099
7100 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7101 memcg_hotplug_cpu_dead);
7102
7103 for_each_possible_cpu(cpu)
7104 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7105 drain_local_stock);
7106
7107 for_each_node(node) {
7108 struct mem_cgroup_tree_per_node *rtpn;
7109
7110 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7111 node_online(node) ? node : NUMA_NO_NODE);
7112
7113 rtpn->rb_root = RB_ROOT;
7114 rtpn->rb_rightmost = NULL;
7115 spin_lock_init(&rtpn->lock);
7116 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7117 }
7118
7119 return 0;
7120 }
7121 subsys_initcall(mem_cgroup_init);
7122
7123 #ifdef CONFIG_MEMCG_SWAP
7124 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7125 {
7126 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7127 /*
7128 * The root cgroup cannot be destroyed, so it's refcount must
7129 * always be >= 1.
7130 */
7131 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7132 VM_BUG_ON(1);
7133 break;
7134 }
7135 memcg = parent_mem_cgroup(memcg);
7136 if (!memcg)
7137 memcg = root_mem_cgroup;
7138 }
7139 return memcg;
7140 }
7141
7142 /**
7143 * mem_cgroup_swapout - transfer a memsw charge to swap
7144 * @page: page whose memsw charge to transfer
7145 * @entry: swap entry to move the charge to
7146 *
7147 * Transfer the memsw charge of @page to @entry.
7148 */
7149 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7150 {
7151 struct mem_cgroup *memcg, *swap_memcg;
7152 unsigned int nr_entries;
7153 unsigned short oldid;
7154
7155 VM_BUG_ON_PAGE(PageLRU(page), page);
7156 VM_BUG_ON_PAGE(page_count(page), page);
7157
7158 if (mem_cgroup_disabled())
7159 return;
7160
7161 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7162 return;
7163
7164 memcg = page_memcg(page);
7165
7166 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7167 if (!memcg)
7168 return;
7169
7170 /*
7171 * In case the memcg owning these pages has been offlined and doesn't
7172 * have an ID allocated to it anymore, charge the closest online
7173 * ancestor for the swap instead and transfer the memory+swap charge.
7174 */
7175 swap_memcg = mem_cgroup_id_get_online(memcg);
7176 nr_entries = thp_nr_pages(page);
7177 /* Get references for the tail pages, too */
7178 if (nr_entries > 1)
7179 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7180 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7181 nr_entries);
7182 VM_BUG_ON_PAGE(oldid, page);
7183 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7184
7185 page->memcg_data = 0;
7186
7187 if (!mem_cgroup_is_root(memcg))
7188 page_counter_uncharge(&memcg->memory, nr_entries);
7189
7190 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7191 if (!mem_cgroup_is_root(swap_memcg))
7192 page_counter_charge(&swap_memcg->memsw, nr_entries);
7193 page_counter_uncharge(&memcg->memsw, nr_entries);
7194 }
7195
7196 /*
7197 * Interrupts should be disabled here because the caller holds the
7198 * i_pages lock which is taken with interrupts-off. It is
7199 * important here to have the interrupts disabled because it is the
7200 * only synchronisation we have for updating the per-CPU variables.
7201 */
7202 VM_BUG_ON(!irqs_disabled());
7203 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7204 memcg_check_events(memcg, page);
7205
7206 css_put(&memcg->css);
7207 }
7208
7209 /**
7210 * mem_cgroup_try_charge_swap - try charging swap space for a page
7211 * @page: page being added to swap
7212 * @entry: swap entry to charge
7213 *
7214 * Try to charge @page's memcg for the swap space at @entry.
7215 *
7216 * Returns 0 on success, -ENOMEM on failure.
7217 */
7218 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7219 {
7220 unsigned int nr_pages = thp_nr_pages(page);
7221 struct page_counter *counter;
7222 struct mem_cgroup *memcg;
7223 unsigned short oldid;
7224
7225 if (mem_cgroup_disabled())
7226 return 0;
7227
7228 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7229 return 0;
7230
7231 memcg = page_memcg(page);
7232
7233 VM_WARN_ON_ONCE_PAGE(!memcg, page);
7234 if (!memcg)
7235 return 0;
7236
7237 if (!entry.val) {
7238 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7239 return 0;
7240 }
7241
7242 memcg = mem_cgroup_id_get_online(memcg);
7243
7244 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7245 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7246 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7247 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7248 mem_cgroup_id_put(memcg);
7249 return -ENOMEM;
7250 }
7251
7252 /* Get references for the tail pages, too */
7253 if (nr_pages > 1)
7254 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7255 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7256 VM_BUG_ON_PAGE(oldid, page);
7257 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7258
7259 return 0;
7260 }
7261
7262 /**
7263 * mem_cgroup_uncharge_swap - uncharge swap space
7264 * @entry: swap entry to uncharge
7265 * @nr_pages: the amount of swap space to uncharge
7266 */
7267 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7268 {
7269 struct mem_cgroup *memcg;
7270 unsigned short id;
7271
7272 id = swap_cgroup_record(entry, 0, nr_pages);
7273 rcu_read_lock();
7274 memcg = mem_cgroup_from_id(id);
7275 if (memcg) {
7276 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7277 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7278 page_counter_uncharge(&memcg->swap, nr_pages);
7279 else
7280 page_counter_uncharge(&memcg->memsw, nr_pages);
7281 }
7282 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7283 mem_cgroup_id_put_many(memcg, nr_pages);
7284 }
7285 rcu_read_unlock();
7286 }
7287
7288 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7289 {
7290 long nr_swap_pages = get_nr_swap_pages();
7291
7292 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7293 return nr_swap_pages;
7294 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7295 nr_swap_pages = min_t(long, nr_swap_pages,
7296 READ_ONCE(memcg->swap.max) -
7297 page_counter_read(&memcg->swap));
7298 return nr_swap_pages;
7299 }
7300
7301 bool mem_cgroup_swap_full(struct page *page)
7302 {
7303 struct mem_cgroup *memcg;
7304
7305 VM_BUG_ON_PAGE(!PageLocked(page), page);
7306
7307 if (vm_swap_full())
7308 return true;
7309 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7310 return false;
7311
7312 memcg = page_memcg(page);
7313 if (!memcg)
7314 return false;
7315
7316 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7317 unsigned long usage = page_counter_read(&memcg->swap);
7318
7319 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7320 usage * 2 >= READ_ONCE(memcg->swap.max))
7321 return true;
7322 }
7323
7324 return false;
7325 }
7326
7327 static int __init setup_swap_account(char *s)
7328 {
7329 if (!strcmp(s, "1"))
7330 cgroup_memory_noswap = false;
7331 else if (!strcmp(s, "0"))
7332 cgroup_memory_noswap = true;
7333 return 1;
7334 }
7335 __setup("swapaccount=", setup_swap_account);
7336
7337 static u64 swap_current_read(struct cgroup_subsys_state *css,
7338 struct cftype *cft)
7339 {
7340 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7341
7342 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7343 }
7344
7345 static int swap_high_show(struct seq_file *m, void *v)
7346 {
7347 return seq_puts_memcg_tunable(m,
7348 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7349 }
7350
7351 static ssize_t swap_high_write(struct kernfs_open_file *of,
7352 char *buf, size_t nbytes, loff_t off)
7353 {
7354 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7355 unsigned long high;
7356 int err;
7357
7358 buf = strstrip(buf);
7359 err = page_counter_memparse(buf, "max", &high);
7360 if (err)
7361 return err;
7362
7363 page_counter_set_high(&memcg->swap, high);
7364
7365 return nbytes;
7366 }
7367
7368 static int swap_max_show(struct seq_file *m, void *v)
7369 {
7370 return seq_puts_memcg_tunable(m,
7371 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7372 }
7373
7374 static ssize_t swap_max_write(struct kernfs_open_file *of,
7375 char *buf, size_t nbytes, loff_t off)
7376 {
7377 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7378 unsigned long max;
7379 int err;
7380
7381 buf = strstrip(buf);
7382 err = page_counter_memparse(buf, "max", &max);
7383 if (err)
7384 return err;
7385
7386 xchg(&memcg->swap.max, max);
7387
7388 return nbytes;
7389 }
7390
7391 static int swap_events_show(struct seq_file *m, void *v)
7392 {
7393 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7394
7395 seq_printf(m, "high %lu\n",
7396 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7397 seq_printf(m, "max %lu\n",
7398 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7399 seq_printf(m, "fail %lu\n",
7400 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7401
7402 return 0;
7403 }
7404
7405 static struct cftype swap_files[] = {
7406 {
7407 .name = "swap.current",
7408 .flags = CFTYPE_NOT_ON_ROOT,
7409 .read_u64 = swap_current_read,
7410 },
7411 {
7412 .name = "swap.high",
7413 .flags = CFTYPE_NOT_ON_ROOT,
7414 .seq_show = swap_high_show,
7415 .write = swap_high_write,
7416 },
7417 {
7418 .name = "swap.max",
7419 .flags = CFTYPE_NOT_ON_ROOT,
7420 .seq_show = swap_max_show,
7421 .write = swap_max_write,
7422 },
7423 {
7424 .name = "swap.events",
7425 .flags = CFTYPE_NOT_ON_ROOT,
7426 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7427 .seq_show = swap_events_show,
7428 },
7429 { } /* terminate */
7430 };
7431
7432 static struct cftype memsw_files[] = {
7433 {
7434 .name = "memsw.usage_in_bytes",
7435 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7436 .read_u64 = mem_cgroup_read_u64,
7437 },
7438 {
7439 .name = "memsw.max_usage_in_bytes",
7440 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7441 .write = mem_cgroup_reset,
7442 .read_u64 = mem_cgroup_read_u64,
7443 },
7444 {
7445 .name = "memsw.limit_in_bytes",
7446 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7447 .write = mem_cgroup_write,
7448 .read_u64 = mem_cgroup_read_u64,
7449 },
7450 {
7451 .name = "memsw.failcnt",
7452 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7453 .write = mem_cgroup_reset,
7454 .read_u64 = mem_cgroup_read_u64,
7455 },
7456 { }, /* terminate */
7457 };
7458
7459 /*
7460 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7461 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7462 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7463 * boot parameter. This may result in premature OOPS inside
7464 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7465 */
7466 static int __init mem_cgroup_swap_init(void)
7467 {
7468 /* No memory control -> no swap control */
7469 if (mem_cgroup_disabled())
7470 cgroup_memory_noswap = true;
7471
7472 if (cgroup_memory_noswap)
7473 return 0;
7474
7475 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7476 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7477
7478 return 0;
7479 }
7480 core_initcall(mem_cgroup_swap_init);
7481
7482 #endif /* CONFIG_MEMCG_SWAP */