]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
Merge branch 'for-next' into for-linus
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 #define MEM_CGROUP_RECLAIM_RETRIES 5
77
78 /* Socket memory accounting disabled? */
79 static bool cgroup_memory_nosocket;
80
81 /* Kernel memory accounting disabled? */
82 static bool cgroup_memory_nokmem;
83
84 /* Whether the swap controller is active */
85 #ifdef CONFIG_MEMCG_SWAP
86 int do_swap_account __read_mostly;
87 #else
88 #define do_swap_account 0
89 #endif
90
91 #ifdef CONFIG_CGROUP_WRITEBACK
92 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
93 #endif
94
95 /* Whether legacy memory+swap accounting is active */
96 static bool do_memsw_account(void)
97 {
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99 }
100
101 #define THRESHOLDS_EVENTS_TARGET 128
102 #define SOFTLIMIT_EVENTS_TARGET 1024
103
104 /*
105 * Cgroups above their limits are maintained in a RB-Tree, independent of
106 * their hierarchy representation
107 */
108
109 struct mem_cgroup_tree_per_node {
110 struct rb_root rb_root;
111 struct rb_node *rb_rightmost;
112 spinlock_t lock;
113 };
114
115 struct mem_cgroup_tree {
116 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
117 };
118
119 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
120
121 /* for OOM */
122 struct mem_cgroup_eventfd_list {
123 struct list_head list;
124 struct eventfd_ctx *eventfd;
125 };
126
127 /*
128 * cgroup_event represents events which userspace want to receive.
129 */
130 struct mem_cgroup_event {
131 /*
132 * memcg which the event belongs to.
133 */
134 struct mem_cgroup *memcg;
135 /*
136 * eventfd to signal userspace about the event.
137 */
138 struct eventfd_ctx *eventfd;
139 /*
140 * Each of these stored in a list by the cgroup.
141 */
142 struct list_head list;
143 /*
144 * register_event() callback will be used to add new userspace
145 * waiter for changes related to this event. Use eventfd_signal()
146 * on eventfd to send notification to userspace.
147 */
148 int (*register_event)(struct mem_cgroup *memcg,
149 struct eventfd_ctx *eventfd, const char *args);
150 /*
151 * unregister_event() callback will be called when userspace closes
152 * the eventfd or on cgroup removing. This callback must be set,
153 * if you want provide notification functionality.
154 */
155 void (*unregister_event)(struct mem_cgroup *memcg,
156 struct eventfd_ctx *eventfd);
157 /*
158 * All fields below needed to unregister event when
159 * userspace closes eventfd.
160 */
161 poll_table pt;
162 wait_queue_head_t *wqh;
163 wait_queue_entry_t wait;
164 struct work_struct remove;
165 };
166
167 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
168 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
169
170 /* Stuffs for move charges at task migration. */
171 /*
172 * Types of charges to be moved.
173 */
174 #define MOVE_ANON 0x1U
175 #define MOVE_FILE 0x2U
176 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
177
178 /* "mc" and its members are protected by cgroup_mutex */
179 static struct move_charge_struct {
180 spinlock_t lock; /* for from, to */
181 struct mm_struct *mm;
182 struct mem_cgroup *from;
183 struct mem_cgroup *to;
184 unsigned long flags;
185 unsigned long precharge;
186 unsigned long moved_charge;
187 unsigned long moved_swap;
188 struct task_struct *moving_task; /* a task moving charges */
189 wait_queue_head_t waitq; /* a waitq for other context */
190 } mc = {
191 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
192 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
193 };
194
195 /*
196 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
197 * limit reclaim to prevent infinite loops, if they ever occur.
198 */
199 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
200 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
201
202 enum charge_type {
203 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
204 MEM_CGROUP_CHARGE_TYPE_ANON,
205 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
206 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
207 NR_CHARGE_TYPE,
208 };
209
210 /* for encoding cft->private value on file */
211 enum res_type {
212 _MEM,
213 _MEMSWAP,
214 _OOM_TYPE,
215 _KMEM,
216 _TCP,
217 };
218
219 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
220 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
221 #define MEMFILE_ATTR(val) ((val) & 0xffff)
222 /* Used for OOM nofiier */
223 #define OOM_CONTROL (0)
224
225 /*
226 * Iteration constructs for visiting all cgroups (under a tree). If
227 * loops are exited prematurely (break), mem_cgroup_iter_break() must
228 * be used for reference counting.
229 */
230 #define for_each_mem_cgroup_tree(iter, root) \
231 for (iter = mem_cgroup_iter(root, NULL, NULL); \
232 iter != NULL; \
233 iter = mem_cgroup_iter(root, iter, NULL))
234
235 #define for_each_mem_cgroup(iter) \
236 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
237 iter != NULL; \
238 iter = mem_cgroup_iter(NULL, iter, NULL))
239
240 static inline bool should_force_charge(void)
241 {
242 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
243 (current->flags & PF_EXITING);
244 }
245
246 /* Some nice accessors for the vmpressure. */
247 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
248 {
249 if (!memcg)
250 memcg = root_mem_cgroup;
251 return &memcg->vmpressure;
252 }
253
254 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
255 {
256 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
257 }
258
259 #ifdef CONFIG_MEMCG_KMEM
260 /*
261 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
262 * The main reason for not using cgroup id for this:
263 * this works better in sparse environments, where we have a lot of memcgs,
264 * but only a few kmem-limited. Or also, if we have, for instance, 200
265 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
266 * 200 entry array for that.
267 *
268 * The current size of the caches array is stored in memcg_nr_cache_ids. It
269 * will double each time we have to increase it.
270 */
271 static DEFINE_IDA(memcg_cache_ida);
272 int memcg_nr_cache_ids;
273
274 /* Protects memcg_nr_cache_ids */
275 static DECLARE_RWSEM(memcg_cache_ids_sem);
276
277 void memcg_get_cache_ids(void)
278 {
279 down_read(&memcg_cache_ids_sem);
280 }
281
282 void memcg_put_cache_ids(void)
283 {
284 up_read(&memcg_cache_ids_sem);
285 }
286
287 /*
288 * MIN_SIZE is different than 1, because we would like to avoid going through
289 * the alloc/free process all the time. In a small machine, 4 kmem-limited
290 * cgroups is a reasonable guess. In the future, it could be a parameter or
291 * tunable, but that is strictly not necessary.
292 *
293 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
294 * this constant directly from cgroup, but it is understandable that this is
295 * better kept as an internal representation in cgroup.c. In any case, the
296 * cgrp_id space is not getting any smaller, and we don't have to necessarily
297 * increase ours as well if it increases.
298 */
299 #define MEMCG_CACHES_MIN_SIZE 4
300 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
301
302 /*
303 * A lot of the calls to the cache allocation functions are expected to be
304 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
305 * conditional to this static branch, we'll have to allow modules that does
306 * kmem_cache_alloc and the such to see this symbol as well
307 */
308 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
309 EXPORT_SYMBOL(memcg_kmem_enabled_key);
310
311 struct workqueue_struct *memcg_kmem_cache_wq;
312 #endif
313
314 static int memcg_shrinker_map_size;
315 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
316
317 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
318 {
319 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
320 }
321
322 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
323 int size, int old_size)
324 {
325 struct memcg_shrinker_map *new, *old;
326 int nid;
327
328 lockdep_assert_held(&memcg_shrinker_map_mutex);
329
330 for_each_node(nid) {
331 old = rcu_dereference_protected(
332 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
333 /* Not yet online memcg */
334 if (!old)
335 return 0;
336
337 new = kvmalloc(sizeof(*new) + size, GFP_KERNEL);
338 if (!new)
339 return -ENOMEM;
340
341 /* Set all old bits, clear all new bits */
342 memset(new->map, (int)0xff, old_size);
343 memset((void *)new->map + old_size, 0, size - old_size);
344
345 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
346 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
347 }
348
349 return 0;
350 }
351
352 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
353 {
354 struct mem_cgroup_per_node *pn;
355 struct memcg_shrinker_map *map;
356 int nid;
357
358 if (mem_cgroup_is_root(memcg))
359 return;
360
361 for_each_node(nid) {
362 pn = mem_cgroup_nodeinfo(memcg, nid);
363 map = rcu_dereference_protected(pn->shrinker_map, true);
364 if (map)
365 kvfree(map);
366 rcu_assign_pointer(pn->shrinker_map, NULL);
367 }
368 }
369
370 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
371 {
372 struct memcg_shrinker_map *map;
373 int nid, size, ret = 0;
374
375 if (mem_cgroup_is_root(memcg))
376 return 0;
377
378 mutex_lock(&memcg_shrinker_map_mutex);
379 size = memcg_shrinker_map_size;
380 for_each_node(nid) {
381 map = kvzalloc(sizeof(*map) + size, GFP_KERNEL);
382 if (!map) {
383 memcg_free_shrinker_maps(memcg);
384 ret = -ENOMEM;
385 break;
386 }
387 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
388 }
389 mutex_unlock(&memcg_shrinker_map_mutex);
390
391 return ret;
392 }
393
394 int memcg_expand_shrinker_maps(int new_id)
395 {
396 int size, old_size, ret = 0;
397 struct mem_cgroup *memcg;
398
399 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
400 old_size = memcg_shrinker_map_size;
401 if (size <= old_size)
402 return 0;
403
404 mutex_lock(&memcg_shrinker_map_mutex);
405 if (!root_mem_cgroup)
406 goto unlock;
407
408 for_each_mem_cgroup(memcg) {
409 if (mem_cgroup_is_root(memcg))
410 continue;
411 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
412 if (ret)
413 goto unlock;
414 }
415 unlock:
416 if (!ret)
417 memcg_shrinker_map_size = size;
418 mutex_unlock(&memcg_shrinker_map_mutex);
419 return ret;
420 }
421
422 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
423 {
424 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
425 struct memcg_shrinker_map *map;
426
427 rcu_read_lock();
428 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
429 /* Pairs with smp mb in shrink_slab() */
430 smp_mb__before_atomic();
431 set_bit(shrinker_id, map->map);
432 rcu_read_unlock();
433 }
434 }
435
436 /**
437 * mem_cgroup_css_from_page - css of the memcg associated with a page
438 * @page: page of interest
439 *
440 * If memcg is bound to the default hierarchy, css of the memcg associated
441 * with @page is returned. The returned css remains associated with @page
442 * until it is released.
443 *
444 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
445 * is returned.
446 */
447 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
448 {
449 struct mem_cgroup *memcg;
450
451 memcg = page->mem_cgroup;
452
453 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
454 memcg = root_mem_cgroup;
455
456 return &memcg->css;
457 }
458
459 /**
460 * page_cgroup_ino - return inode number of the memcg a page is charged to
461 * @page: the page
462 *
463 * Look up the closest online ancestor of the memory cgroup @page is charged to
464 * and return its inode number or 0 if @page is not charged to any cgroup. It
465 * is safe to call this function without holding a reference to @page.
466 *
467 * Note, this function is inherently racy, because there is nothing to prevent
468 * the cgroup inode from getting torn down and potentially reallocated a moment
469 * after page_cgroup_ino() returns, so it only should be used by callers that
470 * do not care (such as procfs interfaces).
471 */
472 ino_t page_cgroup_ino(struct page *page)
473 {
474 struct mem_cgroup *memcg;
475 unsigned long ino = 0;
476
477 rcu_read_lock();
478 if (PageSlab(page) && !PageTail(page))
479 memcg = memcg_from_slab_page(page);
480 else
481 memcg = READ_ONCE(page->mem_cgroup);
482 while (memcg && !(memcg->css.flags & CSS_ONLINE))
483 memcg = parent_mem_cgroup(memcg);
484 if (memcg)
485 ino = cgroup_ino(memcg->css.cgroup);
486 rcu_read_unlock();
487 return ino;
488 }
489
490 static struct mem_cgroup_per_node *
491 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
492 {
493 int nid = page_to_nid(page);
494
495 return memcg->nodeinfo[nid];
496 }
497
498 static struct mem_cgroup_tree_per_node *
499 soft_limit_tree_node(int nid)
500 {
501 return soft_limit_tree.rb_tree_per_node[nid];
502 }
503
504 static struct mem_cgroup_tree_per_node *
505 soft_limit_tree_from_page(struct page *page)
506 {
507 int nid = page_to_nid(page);
508
509 return soft_limit_tree.rb_tree_per_node[nid];
510 }
511
512 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
513 struct mem_cgroup_tree_per_node *mctz,
514 unsigned long new_usage_in_excess)
515 {
516 struct rb_node **p = &mctz->rb_root.rb_node;
517 struct rb_node *parent = NULL;
518 struct mem_cgroup_per_node *mz_node;
519 bool rightmost = true;
520
521 if (mz->on_tree)
522 return;
523
524 mz->usage_in_excess = new_usage_in_excess;
525 if (!mz->usage_in_excess)
526 return;
527 while (*p) {
528 parent = *p;
529 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
530 tree_node);
531 if (mz->usage_in_excess < mz_node->usage_in_excess) {
532 p = &(*p)->rb_left;
533 rightmost = false;
534 }
535
536 /*
537 * We can't avoid mem cgroups that are over their soft
538 * limit by the same amount
539 */
540 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
541 p = &(*p)->rb_right;
542 }
543
544 if (rightmost)
545 mctz->rb_rightmost = &mz->tree_node;
546
547 rb_link_node(&mz->tree_node, parent, p);
548 rb_insert_color(&mz->tree_node, &mctz->rb_root);
549 mz->on_tree = true;
550 }
551
552 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
553 struct mem_cgroup_tree_per_node *mctz)
554 {
555 if (!mz->on_tree)
556 return;
557
558 if (&mz->tree_node == mctz->rb_rightmost)
559 mctz->rb_rightmost = rb_prev(&mz->tree_node);
560
561 rb_erase(&mz->tree_node, &mctz->rb_root);
562 mz->on_tree = false;
563 }
564
565 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
566 struct mem_cgroup_tree_per_node *mctz)
567 {
568 unsigned long flags;
569
570 spin_lock_irqsave(&mctz->lock, flags);
571 __mem_cgroup_remove_exceeded(mz, mctz);
572 spin_unlock_irqrestore(&mctz->lock, flags);
573 }
574
575 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
576 {
577 unsigned long nr_pages = page_counter_read(&memcg->memory);
578 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
579 unsigned long excess = 0;
580
581 if (nr_pages > soft_limit)
582 excess = nr_pages - soft_limit;
583
584 return excess;
585 }
586
587 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
588 {
589 unsigned long excess;
590 struct mem_cgroup_per_node *mz;
591 struct mem_cgroup_tree_per_node *mctz;
592
593 mctz = soft_limit_tree_from_page(page);
594 if (!mctz)
595 return;
596 /*
597 * Necessary to update all ancestors when hierarchy is used.
598 * because their event counter is not touched.
599 */
600 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
601 mz = mem_cgroup_page_nodeinfo(memcg, page);
602 excess = soft_limit_excess(memcg);
603 /*
604 * We have to update the tree if mz is on RB-tree or
605 * mem is over its softlimit.
606 */
607 if (excess || mz->on_tree) {
608 unsigned long flags;
609
610 spin_lock_irqsave(&mctz->lock, flags);
611 /* if on-tree, remove it */
612 if (mz->on_tree)
613 __mem_cgroup_remove_exceeded(mz, mctz);
614 /*
615 * Insert again. mz->usage_in_excess will be updated.
616 * If excess is 0, no tree ops.
617 */
618 __mem_cgroup_insert_exceeded(mz, mctz, excess);
619 spin_unlock_irqrestore(&mctz->lock, flags);
620 }
621 }
622 }
623
624 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
625 {
626 struct mem_cgroup_tree_per_node *mctz;
627 struct mem_cgroup_per_node *mz;
628 int nid;
629
630 for_each_node(nid) {
631 mz = mem_cgroup_nodeinfo(memcg, nid);
632 mctz = soft_limit_tree_node(nid);
633 if (mctz)
634 mem_cgroup_remove_exceeded(mz, mctz);
635 }
636 }
637
638 static struct mem_cgroup_per_node *
639 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
640 {
641 struct mem_cgroup_per_node *mz;
642
643 retry:
644 mz = NULL;
645 if (!mctz->rb_rightmost)
646 goto done; /* Nothing to reclaim from */
647
648 mz = rb_entry(mctz->rb_rightmost,
649 struct mem_cgroup_per_node, tree_node);
650 /*
651 * Remove the node now but someone else can add it back,
652 * we will to add it back at the end of reclaim to its correct
653 * position in the tree.
654 */
655 __mem_cgroup_remove_exceeded(mz, mctz);
656 if (!soft_limit_excess(mz->memcg) ||
657 !css_tryget_online(&mz->memcg->css))
658 goto retry;
659 done:
660 return mz;
661 }
662
663 static struct mem_cgroup_per_node *
664 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
665 {
666 struct mem_cgroup_per_node *mz;
667
668 spin_lock_irq(&mctz->lock);
669 mz = __mem_cgroup_largest_soft_limit_node(mctz);
670 spin_unlock_irq(&mctz->lock);
671 return mz;
672 }
673
674 /**
675 * __mod_memcg_state - update cgroup memory statistics
676 * @memcg: the memory cgroup
677 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
678 * @val: delta to add to the counter, can be negative
679 */
680 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
681 {
682 long x;
683
684 if (mem_cgroup_disabled())
685 return;
686
687 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
688 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
689 struct mem_cgroup *mi;
690
691 /*
692 * Batch local counters to keep them in sync with
693 * the hierarchical ones.
694 */
695 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
696 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
697 atomic_long_add(x, &mi->vmstats[idx]);
698 x = 0;
699 }
700 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
701 }
702
703 static struct mem_cgroup_per_node *
704 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
705 {
706 struct mem_cgroup *parent;
707
708 parent = parent_mem_cgroup(pn->memcg);
709 if (!parent)
710 return NULL;
711 return mem_cgroup_nodeinfo(parent, nid);
712 }
713
714 /**
715 * __mod_lruvec_state - update lruvec memory statistics
716 * @lruvec: the lruvec
717 * @idx: the stat item
718 * @val: delta to add to the counter, can be negative
719 *
720 * The lruvec is the intersection of the NUMA node and a cgroup. This
721 * function updates the all three counters that are affected by a
722 * change of state at this level: per-node, per-cgroup, per-lruvec.
723 */
724 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
725 int val)
726 {
727 pg_data_t *pgdat = lruvec_pgdat(lruvec);
728 struct mem_cgroup_per_node *pn;
729 struct mem_cgroup *memcg;
730 long x;
731
732 /* Update node */
733 __mod_node_page_state(pgdat, idx, val);
734
735 if (mem_cgroup_disabled())
736 return;
737
738 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
739 memcg = pn->memcg;
740
741 /* Update memcg */
742 __mod_memcg_state(memcg, idx, val);
743
744 /* Update lruvec */
745 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
746
747 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
748 if (unlikely(abs(x) > MEMCG_CHARGE_BATCH)) {
749 struct mem_cgroup_per_node *pi;
750
751 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
752 atomic_long_add(x, &pi->lruvec_stat[idx]);
753 x = 0;
754 }
755 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
756 }
757
758 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
759 {
760 struct page *page = virt_to_head_page(p);
761 pg_data_t *pgdat = page_pgdat(page);
762 struct mem_cgroup *memcg;
763 struct lruvec *lruvec;
764
765 rcu_read_lock();
766 memcg = memcg_from_slab_page(page);
767
768 /* Untracked pages have no memcg, no lruvec. Update only the node */
769 if (!memcg || memcg == root_mem_cgroup) {
770 __mod_node_page_state(pgdat, idx, val);
771 } else {
772 lruvec = mem_cgroup_lruvec(memcg, pgdat);
773 __mod_lruvec_state(lruvec, idx, val);
774 }
775 rcu_read_unlock();
776 }
777
778 /**
779 * __count_memcg_events - account VM events in a cgroup
780 * @memcg: the memory cgroup
781 * @idx: the event item
782 * @count: the number of events that occured
783 */
784 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
785 unsigned long count)
786 {
787 unsigned long x;
788
789 if (mem_cgroup_disabled())
790 return;
791
792 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
793 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
794 struct mem_cgroup *mi;
795
796 /*
797 * Batch local counters to keep them in sync with
798 * the hierarchical ones.
799 */
800 __this_cpu_add(memcg->vmstats_local->events[idx], x);
801 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
802 atomic_long_add(x, &mi->vmevents[idx]);
803 x = 0;
804 }
805 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
806 }
807
808 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
809 {
810 return atomic_long_read(&memcg->vmevents[event]);
811 }
812
813 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
814 {
815 long x = 0;
816 int cpu;
817
818 for_each_possible_cpu(cpu)
819 x += per_cpu(memcg->vmstats_local->events[event], cpu);
820 return x;
821 }
822
823 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
824 struct page *page,
825 bool compound, int nr_pages)
826 {
827 /*
828 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
829 * counted as CACHE even if it's on ANON LRU.
830 */
831 if (PageAnon(page))
832 __mod_memcg_state(memcg, MEMCG_RSS, nr_pages);
833 else {
834 __mod_memcg_state(memcg, MEMCG_CACHE, nr_pages);
835 if (PageSwapBacked(page))
836 __mod_memcg_state(memcg, NR_SHMEM, nr_pages);
837 }
838
839 if (compound) {
840 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
841 __mod_memcg_state(memcg, MEMCG_RSS_HUGE, nr_pages);
842 }
843
844 /* pagein of a big page is an event. So, ignore page size */
845 if (nr_pages > 0)
846 __count_memcg_events(memcg, PGPGIN, 1);
847 else {
848 __count_memcg_events(memcg, PGPGOUT, 1);
849 nr_pages = -nr_pages; /* for event */
850 }
851
852 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
853 }
854
855 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
856 enum mem_cgroup_events_target target)
857 {
858 unsigned long val, next;
859
860 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
861 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
862 /* from time_after() in jiffies.h */
863 if ((long)(next - val) < 0) {
864 switch (target) {
865 case MEM_CGROUP_TARGET_THRESH:
866 next = val + THRESHOLDS_EVENTS_TARGET;
867 break;
868 case MEM_CGROUP_TARGET_SOFTLIMIT:
869 next = val + SOFTLIMIT_EVENTS_TARGET;
870 break;
871 default:
872 break;
873 }
874 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
875 return true;
876 }
877 return false;
878 }
879
880 /*
881 * Check events in order.
882 *
883 */
884 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
885 {
886 /* threshold event is triggered in finer grain than soft limit */
887 if (unlikely(mem_cgroup_event_ratelimit(memcg,
888 MEM_CGROUP_TARGET_THRESH))) {
889 bool do_softlimit;
890
891 do_softlimit = mem_cgroup_event_ratelimit(memcg,
892 MEM_CGROUP_TARGET_SOFTLIMIT);
893 mem_cgroup_threshold(memcg);
894 if (unlikely(do_softlimit))
895 mem_cgroup_update_tree(memcg, page);
896 }
897 }
898
899 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
900 {
901 /*
902 * mm_update_next_owner() may clear mm->owner to NULL
903 * if it races with swapoff, page migration, etc.
904 * So this can be called with p == NULL.
905 */
906 if (unlikely(!p))
907 return NULL;
908
909 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
910 }
911 EXPORT_SYMBOL(mem_cgroup_from_task);
912
913 /**
914 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
915 * @mm: mm from which memcg should be extracted. It can be NULL.
916 *
917 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
918 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
919 * returned.
920 */
921 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
922 {
923 struct mem_cgroup *memcg;
924
925 if (mem_cgroup_disabled())
926 return NULL;
927
928 rcu_read_lock();
929 do {
930 /*
931 * Page cache insertions can happen withou an
932 * actual mm context, e.g. during disk probing
933 * on boot, loopback IO, acct() writes etc.
934 */
935 if (unlikely(!mm))
936 memcg = root_mem_cgroup;
937 else {
938 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
939 if (unlikely(!memcg))
940 memcg = root_mem_cgroup;
941 }
942 } while (!css_tryget(&memcg->css));
943 rcu_read_unlock();
944 return memcg;
945 }
946 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
947
948 /**
949 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
950 * @page: page from which memcg should be extracted.
951 *
952 * Obtain a reference on page->memcg and returns it if successful. Otherwise
953 * root_mem_cgroup is returned.
954 */
955 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
956 {
957 struct mem_cgroup *memcg = page->mem_cgroup;
958
959 if (mem_cgroup_disabled())
960 return NULL;
961
962 rcu_read_lock();
963 if (!memcg || !css_tryget_online(&memcg->css))
964 memcg = root_mem_cgroup;
965 rcu_read_unlock();
966 return memcg;
967 }
968 EXPORT_SYMBOL(get_mem_cgroup_from_page);
969
970 /**
971 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
972 */
973 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
974 {
975 if (unlikely(current->active_memcg)) {
976 struct mem_cgroup *memcg = root_mem_cgroup;
977
978 rcu_read_lock();
979 if (css_tryget_online(&current->active_memcg->css))
980 memcg = current->active_memcg;
981 rcu_read_unlock();
982 return memcg;
983 }
984 return get_mem_cgroup_from_mm(current->mm);
985 }
986
987 /**
988 * mem_cgroup_iter - iterate over memory cgroup hierarchy
989 * @root: hierarchy root
990 * @prev: previously returned memcg, NULL on first invocation
991 * @reclaim: cookie for shared reclaim walks, NULL for full walks
992 *
993 * Returns references to children of the hierarchy below @root, or
994 * @root itself, or %NULL after a full round-trip.
995 *
996 * Caller must pass the return value in @prev on subsequent
997 * invocations for reference counting, or use mem_cgroup_iter_break()
998 * to cancel a hierarchy walk before the round-trip is complete.
999 *
1000 * Reclaimers can specify a node and a priority level in @reclaim to
1001 * divide up the memcgs in the hierarchy among all concurrent
1002 * reclaimers operating on the same node and priority.
1003 */
1004 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1005 struct mem_cgroup *prev,
1006 struct mem_cgroup_reclaim_cookie *reclaim)
1007 {
1008 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1009 struct cgroup_subsys_state *css = NULL;
1010 struct mem_cgroup *memcg = NULL;
1011 struct mem_cgroup *pos = NULL;
1012
1013 if (mem_cgroup_disabled())
1014 return NULL;
1015
1016 if (!root)
1017 root = root_mem_cgroup;
1018
1019 if (prev && !reclaim)
1020 pos = prev;
1021
1022 if (!root->use_hierarchy && root != root_mem_cgroup) {
1023 if (prev)
1024 goto out;
1025 return root;
1026 }
1027
1028 rcu_read_lock();
1029
1030 if (reclaim) {
1031 struct mem_cgroup_per_node *mz;
1032
1033 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1034 iter = &mz->iter;
1035
1036 if (prev && reclaim->generation != iter->generation)
1037 goto out_unlock;
1038
1039 while (1) {
1040 pos = READ_ONCE(iter->position);
1041 if (!pos || css_tryget(&pos->css))
1042 break;
1043 /*
1044 * css reference reached zero, so iter->position will
1045 * be cleared by ->css_released. However, we should not
1046 * rely on this happening soon, because ->css_released
1047 * is called from a work queue, and by busy-waiting we
1048 * might block it. So we clear iter->position right
1049 * away.
1050 */
1051 (void)cmpxchg(&iter->position, pos, NULL);
1052 }
1053 }
1054
1055 if (pos)
1056 css = &pos->css;
1057
1058 for (;;) {
1059 css = css_next_descendant_pre(css, &root->css);
1060 if (!css) {
1061 /*
1062 * Reclaimers share the hierarchy walk, and a
1063 * new one might jump in right at the end of
1064 * the hierarchy - make sure they see at least
1065 * one group and restart from the beginning.
1066 */
1067 if (!prev)
1068 continue;
1069 break;
1070 }
1071
1072 /*
1073 * Verify the css and acquire a reference. The root
1074 * is provided by the caller, so we know it's alive
1075 * and kicking, and don't take an extra reference.
1076 */
1077 memcg = mem_cgroup_from_css(css);
1078
1079 if (css == &root->css)
1080 break;
1081
1082 if (css_tryget(css))
1083 break;
1084
1085 memcg = NULL;
1086 }
1087
1088 if (reclaim) {
1089 /*
1090 * The position could have already been updated by a competing
1091 * thread, so check that the value hasn't changed since we read
1092 * it to avoid reclaiming from the same cgroup twice.
1093 */
1094 (void)cmpxchg(&iter->position, pos, memcg);
1095
1096 if (pos)
1097 css_put(&pos->css);
1098
1099 if (!memcg)
1100 iter->generation++;
1101 else if (!prev)
1102 reclaim->generation = iter->generation;
1103 }
1104
1105 out_unlock:
1106 rcu_read_unlock();
1107 out:
1108 if (prev && prev != root)
1109 css_put(&prev->css);
1110
1111 return memcg;
1112 }
1113
1114 /**
1115 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1116 * @root: hierarchy root
1117 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1118 */
1119 void mem_cgroup_iter_break(struct mem_cgroup *root,
1120 struct mem_cgroup *prev)
1121 {
1122 if (!root)
1123 root = root_mem_cgroup;
1124 if (prev && prev != root)
1125 css_put(&prev->css);
1126 }
1127
1128 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1129 struct mem_cgroup *dead_memcg)
1130 {
1131 struct mem_cgroup_reclaim_iter *iter;
1132 struct mem_cgroup_per_node *mz;
1133 int nid;
1134
1135 for_each_node(nid) {
1136 mz = mem_cgroup_nodeinfo(from, nid);
1137 iter = &mz->iter;
1138 cmpxchg(&iter->position, dead_memcg, NULL);
1139 }
1140 }
1141
1142 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1143 {
1144 struct mem_cgroup *memcg = dead_memcg;
1145 struct mem_cgroup *last;
1146
1147 do {
1148 __invalidate_reclaim_iterators(memcg, dead_memcg);
1149 last = memcg;
1150 } while ((memcg = parent_mem_cgroup(memcg)));
1151
1152 /*
1153 * When cgruop1 non-hierarchy mode is used,
1154 * parent_mem_cgroup() does not walk all the way up to the
1155 * cgroup root (root_mem_cgroup). So we have to handle
1156 * dead_memcg from cgroup root separately.
1157 */
1158 if (last != root_mem_cgroup)
1159 __invalidate_reclaim_iterators(root_mem_cgroup,
1160 dead_memcg);
1161 }
1162
1163 /**
1164 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1165 * @memcg: hierarchy root
1166 * @fn: function to call for each task
1167 * @arg: argument passed to @fn
1168 *
1169 * This function iterates over tasks attached to @memcg or to any of its
1170 * descendants and calls @fn for each task. If @fn returns a non-zero
1171 * value, the function breaks the iteration loop and returns the value.
1172 * Otherwise, it will iterate over all tasks and return 0.
1173 *
1174 * This function must not be called for the root memory cgroup.
1175 */
1176 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1177 int (*fn)(struct task_struct *, void *), void *arg)
1178 {
1179 struct mem_cgroup *iter;
1180 int ret = 0;
1181
1182 BUG_ON(memcg == root_mem_cgroup);
1183
1184 for_each_mem_cgroup_tree(iter, memcg) {
1185 struct css_task_iter it;
1186 struct task_struct *task;
1187
1188 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1189 while (!ret && (task = css_task_iter_next(&it)))
1190 ret = fn(task, arg);
1191 css_task_iter_end(&it);
1192 if (ret) {
1193 mem_cgroup_iter_break(memcg, iter);
1194 break;
1195 }
1196 }
1197 return ret;
1198 }
1199
1200 /**
1201 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1202 * @page: the page
1203 * @pgdat: pgdat of the page
1204 *
1205 * This function is only safe when following the LRU page isolation
1206 * and putback protocol: the LRU lock must be held, and the page must
1207 * either be PageLRU() or the caller must have isolated/allocated it.
1208 */
1209 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1210 {
1211 struct mem_cgroup_per_node *mz;
1212 struct mem_cgroup *memcg;
1213 struct lruvec *lruvec;
1214
1215 if (mem_cgroup_disabled()) {
1216 lruvec = &pgdat->__lruvec;
1217 goto out;
1218 }
1219
1220 memcg = page->mem_cgroup;
1221 /*
1222 * Swapcache readahead pages are added to the LRU - and
1223 * possibly migrated - before they are charged.
1224 */
1225 if (!memcg)
1226 memcg = root_mem_cgroup;
1227
1228 mz = mem_cgroup_page_nodeinfo(memcg, page);
1229 lruvec = &mz->lruvec;
1230 out:
1231 /*
1232 * Since a node can be onlined after the mem_cgroup was created,
1233 * we have to be prepared to initialize lruvec->zone here;
1234 * and if offlined then reonlined, we need to reinitialize it.
1235 */
1236 if (unlikely(lruvec->pgdat != pgdat))
1237 lruvec->pgdat = pgdat;
1238 return lruvec;
1239 }
1240
1241 /**
1242 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1243 * @lruvec: mem_cgroup per zone lru vector
1244 * @lru: index of lru list the page is sitting on
1245 * @zid: zone id of the accounted pages
1246 * @nr_pages: positive when adding or negative when removing
1247 *
1248 * This function must be called under lru_lock, just before a page is added
1249 * to or just after a page is removed from an lru list (that ordering being
1250 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1251 */
1252 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1253 int zid, int nr_pages)
1254 {
1255 struct mem_cgroup_per_node *mz;
1256 unsigned long *lru_size;
1257 long size;
1258
1259 if (mem_cgroup_disabled())
1260 return;
1261
1262 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1263 lru_size = &mz->lru_zone_size[zid][lru];
1264
1265 if (nr_pages < 0)
1266 *lru_size += nr_pages;
1267
1268 size = *lru_size;
1269 if (WARN_ONCE(size < 0,
1270 "%s(%p, %d, %d): lru_size %ld\n",
1271 __func__, lruvec, lru, nr_pages, size)) {
1272 VM_BUG_ON(1);
1273 *lru_size = 0;
1274 }
1275
1276 if (nr_pages > 0)
1277 *lru_size += nr_pages;
1278 }
1279
1280 /**
1281 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1282 * @memcg: the memory cgroup
1283 *
1284 * Returns the maximum amount of memory @mem can be charged with, in
1285 * pages.
1286 */
1287 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1288 {
1289 unsigned long margin = 0;
1290 unsigned long count;
1291 unsigned long limit;
1292
1293 count = page_counter_read(&memcg->memory);
1294 limit = READ_ONCE(memcg->memory.max);
1295 if (count < limit)
1296 margin = limit - count;
1297
1298 if (do_memsw_account()) {
1299 count = page_counter_read(&memcg->memsw);
1300 limit = READ_ONCE(memcg->memsw.max);
1301 if (count <= limit)
1302 margin = min(margin, limit - count);
1303 else
1304 margin = 0;
1305 }
1306
1307 return margin;
1308 }
1309
1310 /*
1311 * A routine for checking "mem" is under move_account() or not.
1312 *
1313 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1314 * moving cgroups. This is for waiting at high-memory pressure
1315 * caused by "move".
1316 */
1317 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1318 {
1319 struct mem_cgroup *from;
1320 struct mem_cgroup *to;
1321 bool ret = false;
1322 /*
1323 * Unlike task_move routines, we access mc.to, mc.from not under
1324 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1325 */
1326 spin_lock(&mc.lock);
1327 from = mc.from;
1328 to = mc.to;
1329 if (!from)
1330 goto unlock;
1331
1332 ret = mem_cgroup_is_descendant(from, memcg) ||
1333 mem_cgroup_is_descendant(to, memcg);
1334 unlock:
1335 spin_unlock(&mc.lock);
1336 return ret;
1337 }
1338
1339 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1340 {
1341 if (mc.moving_task && current != mc.moving_task) {
1342 if (mem_cgroup_under_move(memcg)) {
1343 DEFINE_WAIT(wait);
1344 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1345 /* moving charge context might have finished. */
1346 if (mc.moving_task)
1347 schedule();
1348 finish_wait(&mc.waitq, &wait);
1349 return true;
1350 }
1351 }
1352 return false;
1353 }
1354
1355 static char *memory_stat_format(struct mem_cgroup *memcg)
1356 {
1357 struct seq_buf s;
1358 int i;
1359
1360 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1361 if (!s.buffer)
1362 return NULL;
1363
1364 /*
1365 * Provide statistics on the state of the memory subsystem as
1366 * well as cumulative event counters that show past behavior.
1367 *
1368 * This list is ordered following a combination of these gradients:
1369 * 1) generic big picture -> specifics and details
1370 * 2) reflecting userspace activity -> reflecting kernel heuristics
1371 *
1372 * Current memory state:
1373 */
1374
1375 seq_buf_printf(&s, "anon %llu\n",
1376 (u64)memcg_page_state(memcg, MEMCG_RSS) *
1377 PAGE_SIZE);
1378 seq_buf_printf(&s, "file %llu\n",
1379 (u64)memcg_page_state(memcg, MEMCG_CACHE) *
1380 PAGE_SIZE);
1381 seq_buf_printf(&s, "kernel_stack %llu\n",
1382 (u64)memcg_page_state(memcg, MEMCG_KERNEL_STACK_KB) *
1383 1024);
1384 seq_buf_printf(&s, "slab %llu\n",
1385 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) +
1386 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE)) *
1387 PAGE_SIZE);
1388 seq_buf_printf(&s, "sock %llu\n",
1389 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1390 PAGE_SIZE);
1391
1392 seq_buf_printf(&s, "shmem %llu\n",
1393 (u64)memcg_page_state(memcg, NR_SHMEM) *
1394 PAGE_SIZE);
1395 seq_buf_printf(&s, "file_mapped %llu\n",
1396 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1397 PAGE_SIZE);
1398 seq_buf_printf(&s, "file_dirty %llu\n",
1399 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1400 PAGE_SIZE);
1401 seq_buf_printf(&s, "file_writeback %llu\n",
1402 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1403 PAGE_SIZE);
1404
1405 /*
1406 * TODO: We should eventually replace our own MEMCG_RSS_HUGE counter
1407 * with the NR_ANON_THP vm counter, but right now it's a pain in the
1408 * arse because it requires migrating the work out of rmap to a place
1409 * where the page->mem_cgroup is set up and stable.
1410 */
1411 seq_buf_printf(&s, "anon_thp %llu\n",
1412 (u64)memcg_page_state(memcg, MEMCG_RSS_HUGE) *
1413 PAGE_SIZE);
1414
1415 for (i = 0; i < NR_LRU_LISTS; i++)
1416 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1417 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1418 PAGE_SIZE);
1419
1420 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1421 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE) *
1422 PAGE_SIZE);
1423 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1424 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE) *
1425 PAGE_SIZE);
1426
1427 /* Accumulated memory events */
1428
1429 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1430 memcg_events(memcg, PGFAULT));
1431 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1432 memcg_events(memcg, PGMAJFAULT));
1433
1434 seq_buf_printf(&s, "workingset_refault %lu\n",
1435 memcg_page_state(memcg, WORKINGSET_REFAULT));
1436 seq_buf_printf(&s, "workingset_activate %lu\n",
1437 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1438 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1439 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1440
1441 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1442 memcg_events(memcg, PGREFILL));
1443 seq_buf_printf(&s, "pgscan %lu\n",
1444 memcg_events(memcg, PGSCAN_KSWAPD) +
1445 memcg_events(memcg, PGSCAN_DIRECT));
1446 seq_buf_printf(&s, "pgsteal %lu\n",
1447 memcg_events(memcg, PGSTEAL_KSWAPD) +
1448 memcg_events(memcg, PGSTEAL_DIRECT));
1449 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1450 memcg_events(memcg, PGACTIVATE));
1451 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1452 memcg_events(memcg, PGDEACTIVATE));
1453 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1454 memcg_events(memcg, PGLAZYFREE));
1455 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1456 memcg_events(memcg, PGLAZYFREED));
1457
1458 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1459 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1460 memcg_events(memcg, THP_FAULT_ALLOC));
1461 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1462 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1463 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1464
1465 /* The above should easily fit into one page */
1466 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1467
1468 return s.buffer;
1469 }
1470
1471 #define K(x) ((x) << (PAGE_SHIFT-10))
1472 /**
1473 * mem_cgroup_print_oom_context: Print OOM information relevant to
1474 * memory controller.
1475 * @memcg: The memory cgroup that went over limit
1476 * @p: Task that is going to be killed
1477 *
1478 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1479 * enabled
1480 */
1481 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1482 {
1483 rcu_read_lock();
1484
1485 if (memcg) {
1486 pr_cont(",oom_memcg=");
1487 pr_cont_cgroup_path(memcg->css.cgroup);
1488 } else
1489 pr_cont(",global_oom");
1490 if (p) {
1491 pr_cont(",task_memcg=");
1492 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1493 }
1494 rcu_read_unlock();
1495 }
1496
1497 /**
1498 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1499 * memory controller.
1500 * @memcg: The memory cgroup that went over limit
1501 */
1502 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1503 {
1504 char *buf;
1505
1506 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1507 K((u64)page_counter_read(&memcg->memory)),
1508 K((u64)memcg->memory.max), memcg->memory.failcnt);
1509 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1510 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1511 K((u64)page_counter_read(&memcg->swap)),
1512 K((u64)memcg->swap.max), memcg->swap.failcnt);
1513 else {
1514 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1515 K((u64)page_counter_read(&memcg->memsw)),
1516 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1517 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1518 K((u64)page_counter_read(&memcg->kmem)),
1519 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1520 }
1521
1522 pr_info("Memory cgroup stats for ");
1523 pr_cont_cgroup_path(memcg->css.cgroup);
1524 pr_cont(":");
1525 buf = memory_stat_format(memcg);
1526 if (!buf)
1527 return;
1528 pr_info("%s", buf);
1529 kfree(buf);
1530 }
1531
1532 /*
1533 * Return the memory (and swap, if configured) limit for a memcg.
1534 */
1535 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1536 {
1537 unsigned long max;
1538
1539 max = memcg->memory.max;
1540 if (mem_cgroup_swappiness(memcg)) {
1541 unsigned long memsw_max;
1542 unsigned long swap_max;
1543
1544 memsw_max = memcg->memsw.max;
1545 swap_max = memcg->swap.max;
1546 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1547 max = min(max + swap_max, memsw_max);
1548 }
1549 return max;
1550 }
1551
1552 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1553 {
1554 return page_counter_read(&memcg->memory);
1555 }
1556
1557 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1558 int order)
1559 {
1560 struct oom_control oc = {
1561 .zonelist = NULL,
1562 .nodemask = NULL,
1563 .memcg = memcg,
1564 .gfp_mask = gfp_mask,
1565 .order = order,
1566 };
1567 bool ret;
1568
1569 if (mutex_lock_killable(&oom_lock))
1570 return true;
1571 /*
1572 * A few threads which were not waiting at mutex_lock_killable() can
1573 * fail to bail out. Therefore, check again after holding oom_lock.
1574 */
1575 ret = should_force_charge() || out_of_memory(&oc);
1576 mutex_unlock(&oom_lock);
1577 return ret;
1578 }
1579
1580 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1581 pg_data_t *pgdat,
1582 gfp_t gfp_mask,
1583 unsigned long *total_scanned)
1584 {
1585 struct mem_cgroup *victim = NULL;
1586 int total = 0;
1587 int loop = 0;
1588 unsigned long excess;
1589 unsigned long nr_scanned;
1590 struct mem_cgroup_reclaim_cookie reclaim = {
1591 .pgdat = pgdat,
1592 };
1593
1594 excess = soft_limit_excess(root_memcg);
1595
1596 while (1) {
1597 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1598 if (!victim) {
1599 loop++;
1600 if (loop >= 2) {
1601 /*
1602 * If we have not been able to reclaim
1603 * anything, it might because there are
1604 * no reclaimable pages under this hierarchy
1605 */
1606 if (!total)
1607 break;
1608 /*
1609 * We want to do more targeted reclaim.
1610 * excess >> 2 is not to excessive so as to
1611 * reclaim too much, nor too less that we keep
1612 * coming back to reclaim from this cgroup
1613 */
1614 if (total >= (excess >> 2) ||
1615 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1616 break;
1617 }
1618 continue;
1619 }
1620 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1621 pgdat, &nr_scanned);
1622 *total_scanned += nr_scanned;
1623 if (!soft_limit_excess(root_memcg))
1624 break;
1625 }
1626 mem_cgroup_iter_break(root_memcg, victim);
1627 return total;
1628 }
1629
1630 #ifdef CONFIG_LOCKDEP
1631 static struct lockdep_map memcg_oom_lock_dep_map = {
1632 .name = "memcg_oom_lock",
1633 };
1634 #endif
1635
1636 static DEFINE_SPINLOCK(memcg_oom_lock);
1637
1638 /*
1639 * Check OOM-Killer is already running under our hierarchy.
1640 * If someone is running, return false.
1641 */
1642 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1643 {
1644 struct mem_cgroup *iter, *failed = NULL;
1645
1646 spin_lock(&memcg_oom_lock);
1647
1648 for_each_mem_cgroup_tree(iter, memcg) {
1649 if (iter->oom_lock) {
1650 /*
1651 * this subtree of our hierarchy is already locked
1652 * so we cannot give a lock.
1653 */
1654 failed = iter;
1655 mem_cgroup_iter_break(memcg, iter);
1656 break;
1657 } else
1658 iter->oom_lock = true;
1659 }
1660
1661 if (failed) {
1662 /*
1663 * OK, we failed to lock the whole subtree so we have
1664 * to clean up what we set up to the failing subtree
1665 */
1666 for_each_mem_cgroup_tree(iter, memcg) {
1667 if (iter == failed) {
1668 mem_cgroup_iter_break(memcg, iter);
1669 break;
1670 }
1671 iter->oom_lock = false;
1672 }
1673 } else
1674 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1675
1676 spin_unlock(&memcg_oom_lock);
1677
1678 return !failed;
1679 }
1680
1681 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1682 {
1683 struct mem_cgroup *iter;
1684
1685 spin_lock(&memcg_oom_lock);
1686 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1687 for_each_mem_cgroup_tree(iter, memcg)
1688 iter->oom_lock = false;
1689 spin_unlock(&memcg_oom_lock);
1690 }
1691
1692 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1693 {
1694 struct mem_cgroup *iter;
1695
1696 spin_lock(&memcg_oom_lock);
1697 for_each_mem_cgroup_tree(iter, memcg)
1698 iter->under_oom++;
1699 spin_unlock(&memcg_oom_lock);
1700 }
1701
1702 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1703 {
1704 struct mem_cgroup *iter;
1705
1706 /*
1707 * When a new child is created while the hierarchy is under oom,
1708 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1709 */
1710 spin_lock(&memcg_oom_lock);
1711 for_each_mem_cgroup_tree(iter, memcg)
1712 if (iter->under_oom > 0)
1713 iter->under_oom--;
1714 spin_unlock(&memcg_oom_lock);
1715 }
1716
1717 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1718
1719 struct oom_wait_info {
1720 struct mem_cgroup *memcg;
1721 wait_queue_entry_t wait;
1722 };
1723
1724 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1725 unsigned mode, int sync, void *arg)
1726 {
1727 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1728 struct mem_cgroup *oom_wait_memcg;
1729 struct oom_wait_info *oom_wait_info;
1730
1731 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1732 oom_wait_memcg = oom_wait_info->memcg;
1733
1734 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1735 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1736 return 0;
1737 return autoremove_wake_function(wait, mode, sync, arg);
1738 }
1739
1740 static void memcg_oom_recover(struct mem_cgroup *memcg)
1741 {
1742 /*
1743 * For the following lockless ->under_oom test, the only required
1744 * guarantee is that it must see the state asserted by an OOM when
1745 * this function is called as a result of userland actions
1746 * triggered by the notification of the OOM. This is trivially
1747 * achieved by invoking mem_cgroup_mark_under_oom() before
1748 * triggering notification.
1749 */
1750 if (memcg && memcg->under_oom)
1751 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1752 }
1753
1754 enum oom_status {
1755 OOM_SUCCESS,
1756 OOM_FAILED,
1757 OOM_ASYNC,
1758 OOM_SKIPPED
1759 };
1760
1761 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1762 {
1763 enum oom_status ret;
1764 bool locked;
1765
1766 if (order > PAGE_ALLOC_COSTLY_ORDER)
1767 return OOM_SKIPPED;
1768
1769 memcg_memory_event(memcg, MEMCG_OOM);
1770
1771 /*
1772 * We are in the middle of the charge context here, so we
1773 * don't want to block when potentially sitting on a callstack
1774 * that holds all kinds of filesystem and mm locks.
1775 *
1776 * cgroup1 allows disabling the OOM killer and waiting for outside
1777 * handling until the charge can succeed; remember the context and put
1778 * the task to sleep at the end of the page fault when all locks are
1779 * released.
1780 *
1781 * On the other hand, in-kernel OOM killer allows for an async victim
1782 * memory reclaim (oom_reaper) and that means that we are not solely
1783 * relying on the oom victim to make a forward progress and we can
1784 * invoke the oom killer here.
1785 *
1786 * Please note that mem_cgroup_out_of_memory might fail to find a
1787 * victim and then we have to bail out from the charge path.
1788 */
1789 if (memcg->oom_kill_disable) {
1790 if (!current->in_user_fault)
1791 return OOM_SKIPPED;
1792 css_get(&memcg->css);
1793 current->memcg_in_oom = memcg;
1794 current->memcg_oom_gfp_mask = mask;
1795 current->memcg_oom_order = order;
1796
1797 return OOM_ASYNC;
1798 }
1799
1800 mem_cgroup_mark_under_oom(memcg);
1801
1802 locked = mem_cgroup_oom_trylock(memcg);
1803
1804 if (locked)
1805 mem_cgroup_oom_notify(memcg);
1806
1807 mem_cgroup_unmark_under_oom(memcg);
1808 if (mem_cgroup_out_of_memory(memcg, mask, order))
1809 ret = OOM_SUCCESS;
1810 else
1811 ret = OOM_FAILED;
1812
1813 if (locked)
1814 mem_cgroup_oom_unlock(memcg);
1815
1816 return ret;
1817 }
1818
1819 /**
1820 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1821 * @handle: actually kill/wait or just clean up the OOM state
1822 *
1823 * This has to be called at the end of a page fault if the memcg OOM
1824 * handler was enabled.
1825 *
1826 * Memcg supports userspace OOM handling where failed allocations must
1827 * sleep on a waitqueue until the userspace task resolves the
1828 * situation. Sleeping directly in the charge context with all kinds
1829 * of locks held is not a good idea, instead we remember an OOM state
1830 * in the task and mem_cgroup_oom_synchronize() has to be called at
1831 * the end of the page fault to complete the OOM handling.
1832 *
1833 * Returns %true if an ongoing memcg OOM situation was detected and
1834 * completed, %false otherwise.
1835 */
1836 bool mem_cgroup_oom_synchronize(bool handle)
1837 {
1838 struct mem_cgroup *memcg = current->memcg_in_oom;
1839 struct oom_wait_info owait;
1840 bool locked;
1841
1842 /* OOM is global, do not handle */
1843 if (!memcg)
1844 return false;
1845
1846 if (!handle)
1847 goto cleanup;
1848
1849 owait.memcg = memcg;
1850 owait.wait.flags = 0;
1851 owait.wait.func = memcg_oom_wake_function;
1852 owait.wait.private = current;
1853 INIT_LIST_HEAD(&owait.wait.entry);
1854
1855 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1856 mem_cgroup_mark_under_oom(memcg);
1857
1858 locked = mem_cgroup_oom_trylock(memcg);
1859
1860 if (locked)
1861 mem_cgroup_oom_notify(memcg);
1862
1863 if (locked && !memcg->oom_kill_disable) {
1864 mem_cgroup_unmark_under_oom(memcg);
1865 finish_wait(&memcg_oom_waitq, &owait.wait);
1866 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1867 current->memcg_oom_order);
1868 } else {
1869 schedule();
1870 mem_cgroup_unmark_under_oom(memcg);
1871 finish_wait(&memcg_oom_waitq, &owait.wait);
1872 }
1873
1874 if (locked) {
1875 mem_cgroup_oom_unlock(memcg);
1876 /*
1877 * There is no guarantee that an OOM-lock contender
1878 * sees the wakeups triggered by the OOM kill
1879 * uncharges. Wake any sleepers explicitely.
1880 */
1881 memcg_oom_recover(memcg);
1882 }
1883 cleanup:
1884 current->memcg_in_oom = NULL;
1885 css_put(&memcg->css);
1886 return true;
1887 }
1888
1889 /**
1890 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1891 * @victim: task to be killed by the OOM killer
1892 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1893 *
1894 * Returns a pointer to a memory cgroup, which has to be cleaned up
1895 * by killing all belonging OOM-killable tasks.
1896 *
1897 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
1898 */
1899 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
1900 struct mem_cgroup *oom_domain)
1901 {
1902 struct mem_cgroup *oom_group = NULL;
1903 struct mem_cgroup *memcg;
1904
1905 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1906 return NULL;
1907
1908 if (!oom_domain)
1909 oom_domain = root_mem_cgroup;
1910
1911 rcu_read_lock();
1912
1913 memcg = mem_cgroup_from_task(victim);
1914 if (memcg == root_mem_cgroup)
1915 goto out;
1916
1917 /*
1918 * Traverse the memory cgroup hierarchy from the victim task's
1919 * cgroup up to the OOMing cgroup (or root) to find the
1920 * highest-level memory cgroup with oom.group set.
1921 */
1922 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
1923 if (memcg->oom_group)
1924 oom_group = memcg;
1925
1926 if (memcg == oom_domain)
1927 break;
1928 }
1929
1930 if (oom_group)
1931 css_get(&oom_group->css);
1932 out:
1933 rcu_read_unlock();
1934
1935 return oom_group;
1936 }
1937
1938 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1939 {
1940 pr_info("Tasks in ");
1941 pr_cont_cgroup_path(memcg->css.cgroup);
1942 pr_cont(" are going to be killed due to memory.oom.group set\n");
1943 }
1944
1945 /**
1946 * lock_page_memcg - lock a page->mem_cgroup binding
1947 * @page: the page
1948 *
1949 * This function protects unlocked LRU pages from being moved to
1950 * another cgroup.
1951 *
1952 * It ensures lifetime of the returned memcg. Caller is responsible
1953 * for the lifetime of the page; __unlock_page_memcg() is available
1954 * when @page might get freed inside the locked section.
1955 */
1956 struct mem_cgroup *lock_page_memcg(struct page *page)
1957 {
1958 struct mem_cgroup *memcg;
1959 unsigned long flags;
1960
1961 /*
1962 * The RCU lock is held throughout the transaction. The fast
1963 * path can get away without acquiring the memcg->move_lock
1964 * because page moving starts with an RCU grace period.
1965 *
1966 * The RCU lock also protects the memcg from being freed when
1967 * the page state that is going to change is the only thing
1968 * preventing the page itself from being freed. E.g. writeback
1969 * doesn't hold a page reference and relies on PG_writeback to
1970 * keep off truncation, migration and so forth.
1971 */
1972 rcu_read_lock();
1973
1974 if (mem_cgroup_disabled())
1975 return NULL;
1976 again:
1977 memcg = page->mem_cgroup;
1978 if (unlikely(!memcg))
1979 return NULL;
1980
1981 if (atomic_read(&memcg->moving_account) <= 0)
1982 return memcg;
1983
1984 spin_lock_irqsave(&memcg->move_lock, flags);
1985 if (memcg != page->mem_cgroup) {
1986 spin_unlock_irqrestore(&memcg->move_lock, flags);
1987 goto again;
1988 }
1989
1990 /*
1991 * When charge migration first begins, we can have locked and
1992 * unlocked page stat updates happening concurrently. Track
1993 * the task who has the lock for unlock_page_memcg().
1994 */
1995 memcg->move_lock_task = current;
1996 memcg->move_lock_flags = flags;
1997
1998 return memcg;
1999 }
2000 EXPORT_SYMBOL(lock_page_memcg);
2001
2002 /**
2003 * __unlock_page_memcg - unlock and unpin a memcg
2004 * @memcg: the memcg
2005 *
2006 * Unlock and unpin a memcg returned by lock_page_memcg().
2007 */
2008 void __unlock_page_memcg(struct mem_cgroup *memcg)
2009 {
2010 if (memcg && memcg->move_lock_task == current) {
2011 unsigned long flags = memcg->move_lock_flags;
2012
2013 memcg->move_lock_task = NULL;
2014 memcg->move_lock_flags = 0;
2015
2016 spin_unlock_irqrestore(&memcg->move_lock, flags);
2017 }
2018
2019 rcu_read_unlock();
2020 }
2021
2022 /**
2023 * unlock_page_memcg - unlock a page->mem_cgroup binding
2024 * @page: the page
2025 */
2026 void unlock_page_memcg(struct page *page)
2027 {
2028 __unlock_page_memcg(page->mem_cgroup);
2029 }
2030 EXPORT_SYMBOL(unlock_page_memcg);
2031
2032 struct memcg_stock_pcp {
2033 struct mem_cgroup *cached; /* this never be root cgroup */
2034 unsigned int nr_pages;
2035 struct work_struct work;
2036 unsigned long flags;
2037 #define FLUSHING_CACHED_CHARGE 0
2038 };
2039 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2040 static DEFINE_MUTEX(percpu_charge_mutex);
2041
2042 /**
2043 * consume_stock: Try to consume stocked charge on this cpu.
2044 * @memcg: memcg to consume from.
2045 * @nr_pages: how many pages to charge.
2046 *
2047 * The charges will only happen if @memcg matches the current cpu's memcg
2048 * stock, and at least @nr_pages are available in that stock. Failure to
2049 * service an allocation will refill the stock.
2050 *
2051 * returns true if successful, false otherwise.
2052 */
2053 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2054 {
2055 struct memcg_stock_pcp *stock;
2056 unsigned long flags;
2057 bool ret = false;
2058
2059 if (nr_pages > MEMCG_CHARGE_BATCH)
2060 return ret;
2061
2062 local_irq_save(flags);
2063
2064 stock = this_cpu_ptr(&memcg_stock);
2065 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2066 stock->nr_pages -= nr_pages;
2067 ret = true;
2068 }
2069
2070 local_irq_restore(flags);
2071
2072 return ret;
2073 }
2074
2075 /*
2076 * Returns stocks cached in percpu and reset cached information.
2077 */
2078 static void drain_stock(struct memcg_stock_pcp *stock)
2079 {
2080 struct mem_cgroup *old = stock->cached;
2081
2082 if (stock->nr_pages) {
2083 page_counter_uncharge(&old->memory, stock->nr_pages);
2084 if (do_memsw_account())
2085 page_counter_uncharge(&old->memsw, stock->nr_pages);
2086 css_put_many(&old->css, stock->nr_pages);
2087 stock->nr_pages = 0;
2088 }
2089 stock->cached = NULL;
2090 }
2091
2092 static void drain_local_stock(struct work_struct *dummy)
2093 {
2094 struct memcg_stock_pcp *stock;
2095 unsigned long flags;
2096
2097 /*
2098 * The only protection from memory hotplug vs. drain_stock races is
2099 * that we always operate on local CPU stock here with IRQ disabled
2100 */
2101 local_irq_save(flags);
2102
2103 stock = this_cpu_ptr(&memcg_stock);
2104 drain_stock(stock);
2105 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2106
2107 local_irq_restore(flags);
2108 }
2109
2110 /*
2111 * Cache charges(val) to local per_cpu area.
2112 * This will be consumed by consume_stock() function, later.
2113 */
2114 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2115 {
2116 struct memcg_stock_pcp *stock;
2117 unsigned long flags;
2118
2119 local_irq_save(flags);
2120
2121 stock = this_cpu_ptr(&memcg_stock);
2122 if (stock->cached != memcg) { /* reset if necessary */
2123 drain_stock(stock);
2124 stock->cached = memcg;
2125 }
2126 stock->nr_pages += nr_pages;
2127
2128 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2129 drain_stock(stock);
2130
2131 local_irq_restore(flags);
2132 }
2133
2134 /*
2135 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2136 * of the hierarchy under it.
2137 */
2138 static void drain_all_stock(struct mem_cgroup *root_memcg)
2139 {
2140 int cpu, curcpu;
2141
2142 /* If someone's already draining, avoid adding running more workers. */
2143 if (!mutex_trylock(&percpu_charge_mutex))
2144 return;
2145 /*
2146 * Notify other cpus that system-wide "drain" is running
2147 * We do not care about races with the cpu hotplug because cpu down
2148 * as well as workers from this path always operate on the local
2149 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2150 */
2151 curcpu = get_cpu();
2152 for_each_online_cpu(cpu) {
2153 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2154 struct mem_cgroup *memcg;
2155 bool flush = false;
2156
2157 rcu_read_lock();
2158 memcg = stock->cached;
2159 if (memcg && stock->nr_pages &&
2160 mem_cgroup_is_descendant(memcg, root_memcg))
2161 flush = true;
2162 rcu_read_unlock();
2163
2164 if (flush &&
2165 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2166 if (cpu == curcpu)
2167 drain_local_stock(&stock->work);
2168 else
2169 schedule_work_on(cpu, &stock->work);
2170 }
2171 }
2172 put_cpu();
2173 mutex_unlock(&percpu_charge_mutex);
2174 }
2175
2176 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2177 {
2178 struct memcg_stock_pcp *stock;
2179 struct mem_cgroup *memcg, *mi;
2180
2181 stock = &per_cpu(memcg_stock, cpu);
2182 drain_stock(stock);
2183
2184 for_each_mem_cgroup(memcg) {
2185 int i;
2186
2187 for (i = 0; i < MEMCG_NR_STAT; i++) {
2188 int nid;
2189 long x;
2190
2191 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2192 if (x)
2193 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2194 atomic_long_add(x, &memcg->vmstats[i]);
2195
2196 if (i >= NR_VM_NODE_STAT_ITEMS)
2197 continue;
2198
2199 for_each_node(nid) {
2200 struct mem_cgroup_per_node *pn;
2201
2202 pn = mem_cgroup_nodeinfo(memcg, nid);
2203 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2204 if (x)
2205 do {
2206 atomic_long_add(x, &pn->lruvec_stat[i]);
2207 } while ((pn = parent_nodeinfo(pn, nid)));
2208 }
2209 }
2210
2211 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2212 long x;
2213
2214 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2215 if (x)
2216 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2217 atomic_long_add(x, &memcg->vmevents[i]);
2218 }
2219 }
2220
2221 return 0;
2222 }
2223
2224 static void reclaim_high(struct mem_cgroup *memcg,
2225 unsigned int nr_pages,
2226 gfp_t gfp_mask)
2227 {
2228 do {
2229 if (page_counter_read(&memcg->memory) <= memcg->high)
2230 continue;
2231 memcg_memory_event(memcg, MEMCG_HIGH);
2232 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2233 } while ((memcg = parent_mem_cgroup(memcg)));
2234 }
2235
2236 static void high_work_func(struct work_struct *work)
2237 {
2238 struct mem_cgroup *memcg;
2239
2240 memcg = container_of(work, struct mem_cgroup, high_work);
2241 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2242 }
2243
2244 /*
2245 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2246 * enough to still cause a significant slowdown in most cases, while still
2247 * allowing diagnostics and tracing to proceed without becoming stuck.
2248 */
2249 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2250
2251 /*
2252 * When calculating the delay, we use these either side of the exponentiation to
2253 * maintain precision and scale to a reasonable number of jiffies (see the table
2254 * below.
2255 *
2256 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2257 * overage ratio to a delay.
2258 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2259 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2260 * to produce a reasonable delay curve.
2261 *
2262 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2263 * reasonable delay curve compared to precision-adjusted overage, not
2264 * penalising heavily at first, but still making sure that growth beyond the
2265 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2266 * example, with a high of 100 megabytes:
2267 *
2268 * +-------+------------------------+
2269 * | usage | time to allocate in ms |
2270 * +-------+------------------------+
2271 * | 100M | 0 |
2272 * | 101M | 6 |
2273 * | 102M | 25 |
2274 * | 103M | 57 |
2275 * | 104M | 102 |
2276 * | 105M | 159 |
2277 * | 106M | 230 |
2278 * | 107M | 313 |
2279 * | 108M | 409 |
2280 * | 109M | 518 |
2281 * | 110M | 639 |
2282 * | 111M | 774 |
2283 * | 112M | 921 |
2284 * | 113M | 1081 |
2285 * | 114M | 1254 |
2286 * | 115M | 1439 |
2287 * | 116M | 1638 |
2288 * | 117M | 1849 |
2289 * | 118M | 2000 |
2290 * | 119M | 2000 |
2291 * | 120M | 2000 |
2292 * +-------+------------------------+
2293 */
2294 #define MEMCG_DELAY_PRECISION_SHIFT 20
2295 #define MEMCG_DELAY_SCALING_SHIFT 14
2296
2297 /*
2298 * Scheduled by try_charge() to be executed from the userland return path
2299 * and reclaims memory over the high limit.
2300 */
2301 void mem_cgroup_handle_over_high(void)
2302 {
2303 unsigned long usage, high, clamped_high;
2304 unsigned long pflags;
2305 unsigned long penalty_jiffies, overage;
2306 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2307 struct mem_cgroup *memcg;
2308
2309 if (likely(!nr_pages))
2310 return;
2311
2312 memcg = get_mem_cgroup_from_mm(current->mm);
2313 reclaim_high(memcg, nr_pages, GFP_KERNEL);
2314 current->memcg_nr_pages_over_high = 0;
2315
2316 /*
2317 * memory.high is breached and reclaim is unable to keep up. Throttle
2318 * allocators proactively to slow down excessive growth.
2319 *
2320 * We use overage compared to memory.high to calculate the number of
2321 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2322 * fairly lenient on small overages, and increasingly harsh when the
2323 * memcg in question makes it clear that it has no intention of stopping
2324 * its crazy behaviour, so we exponentially increase the delay based on
2325 * overage amount.
2326 */
2327
2328 usage = page_counter_read(&memcg->memory);
2329 high = READ_ONCE(memcg->high);
2330
2331 if (usage <= high)
2332 goto out;
2333
2334 /*
2335 * Prevent division by 0 in overage calculation by acting as if it was a
2336 * threshold of 1 page
2337 */
2338 clamped_high = max(high, 1UL);
2339
2340 overage = div_u64((u64)(usage - high) << MEMCG_DELAY_PRECISION_SHIFT,
2341 clamped_high);
2342
2343 penalty_jiffies = ((u64)overage * overage * HZ)
2344 >> (MEMCG_DELAY_PRECISION_SHIFT + MEMCG_DELAY_SCALING_SHIFT);
2345
2346 /*
2347 * Factor in the task's own contribution to the overage, such that four
2348 * N-sized allocations are throttled approximately the same as one
2349 * 4N-sized allocation.
2350 *
2351 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2352 * larger the current charge patch is than that.
2353 */
2354 penalty_jiffies = penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2355
2356 /*
2357 * Clamp the max delay per usermode return so as to still keep the
2358 * application moving forwards and also permit diagnostics, albeit
2359 * extremely slowly.
2360 */
2361 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2362
2363 /*
2364 * Don't sleep if the amount of jiffies this memcg owes us is so low
2365 * that it's not even worth doing, in an attempt to be nice to those who
2366 * go only a small amount over their memory.high value and maybe haven't
2367 * been aggressively reclaimed enough yet.
2368 */
2369 if (penalty_jiffies <= HZ / 100)
2370 goto out;
2371
2372 /*
2373 * If we exit early, we're guaranteed to die (since
2374 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2375 * need to account for any ill-begotten jiffies to pay them off later.
2376 */
2377 psi_memstall_enter(&pflags);
2378 schedule_timeout_killable(penalty_jiffies);
2379 psi_memstall_leave(&pflags);
2380
2381 out:
2382 css_put(&memcg->css);
2383 }
2384
2385 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2386 unsigned int nr_pages)
2387 {
2388 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2389 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2390 struct mem_cgroup *mem_over_limit;
2391 struct page_counter *counter;
2392 unsigned long nr_reclaimed;
2393 bool may_swap = true;
2394 bool drained = false;
2395 enum oom_status oom_status;
2396
2397 if (mem_cgroup_is_root(memcg))
2398 return 0;
2399 retry:
2400 if (consume_stock(memcg, nr_pages))
2401 return 0;
2402
2403 if (!do_memsw_account() ||
2404 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2405 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2406 goto done_restock;
2407 if (do_memsw_account())
2408 page_counter_uncharge(&memcg->memsw, batch);
2409 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2410 } else {
2411 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2412 may_swap = false;
2413 }
2414
2415 if (batch > nr_pages) {
2416 batch = nr_pages;
2417 goto retry;
2418 }
2419
2420 /*
2421 * Memcg doesn't have a dedicated reserve for atomic
2422 * allocations. But like the global atomic pool, we need to
2423 * put the burden of reclaim on regular allocation requests
2424 * and let these go through as privileged allocations.
2425 */
2426 if (gfp_mask & __GFP_ATOMIC)
2427 goto force;
2428
2429 /*
2430 * Unlike in global OOM situations, memcg is not in a physical
2431 * memory shortage. Allow dying and OOM-killed tasks to
2432 * bypass the last charges so that they can exit quickly and
2433 * free their memory.
2434 */
2435 if (unlikely(should_force_charge()))
2436 goto force;
2437
2438 /*
2439 * Prevent unbounded recursion when reclaim operations need to
2440 * allocate memory. This might exceed the limits temporarily,
2441 * but we prefer facilitating memory reclaim and getting back
2442 * under the limit over triggering OOM kills in these cases.
2443 */
2444 if (unlikely(current->flags & PF_MEMALLOC))
2445 goto force;
2446
2447 if (unlikely(task_in_memcg_oom(current)))
2448 goto nomem;
2449
2450 if (!gfpflags_allow_blocking(gfp_mask))
2451 goto nomem;
2452
2453 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2454
2455 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2456 gfp_mask, may_swap);
2457
2458 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2459 goto retry;
2460
2461 if (!drained) {
2462 drain_all_stock(mem_over_limit);
2463 drained = true;
2464 goto retry;
2465 }
2466
2467 if (gfp_mask & __GFP_NORETRY)
2468 goto nomem;
2469 /*
2470 * Even though the limit is exceeded at this point, reclaim
2471 * may have been able to free some pages. Retry the charge
2472 * before killing the task.
2473 *
2474 * Only for regular pages, though: huge pages are rather
2475 * unlikely to succeed so close to the limit, and we fall back
2476 * to regular pages anyway in case of failure.
2477 */
2478 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2479 goto retry;
2480 /*
2481 * At task move, charge accounts can be doubly counted. So, it's
2482 * better to wait until the end of task_move if something is going on.
2483 */
2484 if (mem_cgroup_wait_acct_move(mem_over_limit))
2485 goto retry;
2486
2487 if (nr_retries--)
2488 goto retry;
2489
2490 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2491 goto nomem;
2492
2493 if (gfp_mask & __GFP_NOFAIL)
2494 goto force;
2495
2496 if (fatal_signal_pending(current))
2497 goto force;
2498
2499 /*
2500 * keep retrying as long as the memcg oom killer is able to make
2501 * a forward progress or bypass the charge if the oom killer
2502 * couldn't make any progress.
2503 */
2504 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2505 get_order(nr_pages * PAGE_SIZE));
2506 switch (oom_status) {
2507 case OOM_SUCCESS:
2508 nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
2509 goto retry;
2510 case OOM_FAILED:
2511 goto force;
2512 default:
2513 goto nomem;
2514 }
2515 nomem:
2516 if (!(gfp_mask & __GFP_NOFAIL))
2517 return -ENOMEM;
2518 force:
2519 /*
2520 * The allocation either can't fail or will lead to more memory
2521 * being freed very soon. Allow memory usage go over the limit
2522 * temporarily by force charging it.
2523 */
2524 page_counter_charge(&memcg->memory, nr_pages);
2525 if (do_memsw_account())
2526 page_counter_charge(&memcg->memsw, nr_pages);
2527 css_get_many(&memcg->css, nr_pages);
2528
2529 return 0;
2530
2531 done_restock:
2532 css_get_many(&memcg->css, batch);
2533 if (batch > nr_pages)
2534 refill_stock(memcg, batch - nr_pages);
2535
2536 /*
2537 * If the hierarchy is above the normal consumption range, schedule
2538 * reclaim on returning to userland. We can perform reclaim here
2539 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2540 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2541 * not recorded as it most likely matches current's and won't
2542 * change in the meantime. As high limit is checked again before
2543 * reclaim, the cost of mismatch is negligible.
2544 */
2545 do {
2546 if (page_counter_read(&memcg->memory) > memcg->high) {
2547 /* Don't bother a random interrupted task */
2548 if (in_interrupt()) {
2549 schedule_work(&memcg->high_work);
2550 break;
2551 }
2552 current->memcg_nr_pages_over_high += batch;
2553 set_notify_resume(current);
2554 break;
2555 }
2556 } while ((memcg = parent_mem_cgroup(memcg)));
2557
2558 return 0;
2559 }
2560
2561 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2562 {
2563 if (mem_cgroup_is_root(memcg))
2564 return;
2565
2566 page_counter_uncharge(&memcg->memory, nr_pages);
2567 if (do_memsw_account())
2568 page_counter_uncharge(&memcg->memsw, nr_pages);
2569
2570 css_put_many(&memcg->css, nr_pages);
2571 }
2572
2573 static void lock_page_lru(struct page *page, int *isolated)
2574 {
2575 pg_data_t *pgdat = page_pgdat(page);
2576
2577 spin_lock_irq(&pgdat->lru_lock);
2578 if (PageLRU(page)) {
2579 struct lruvec *lruvec;
2580
2581 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2582 ClearPageLRU(page);
2583 del_page_from_lru_list(page, lruvec, page_lru(page));
2584 *isolated = 1;
2585 } else
2586 *isolated = 0;
2587 }
2588
2589 static void unlock_page_lru(struct page *page, int isolated)
2590 {
2591 pg_data_t *pgdat = page_pgdat(page);
2592
2593 if (isolated) {
2594 struct lruvec *lruvec;
2595
2596 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2597 VM_BUG_ON_PAGE(PageLRU(page), page);
2598 SetPageLRU(page);
2599 add_page_to_lru_list(page, lruvec, page_lru(page));
2600 }
2601 spin_unlock_irq(&pgdat->lru_lock);
2602 }
2603
2604 static void commit_charge(struct page *page, struct mem_cgroup *memcg,
2605 bool lrucare)
2606 {
2607 int isolated;
2608
2609 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2610
2611 /*
2612 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2613 * may already be on some other mem_cgroup's LRU. Take care of it.
2614 */
2615 if (lrucare)
2616 lock_page_lru(page, &isolated);
2617
2618 /*
2619 * Nobody should be changing or seriously looking at
2620 * page->mem_cgroup at this point:
2621 *
2622 * - the page is uncharged
2623 *
2624 * - the page is off-LRU
2625 *
2626 * - an anonymous fault has exclusive page access, except for
2627 * a locked page table
2628 *
2629 * - a page cache insertion, a swapin fault, or a migration
2630 * have the page locked
2631 */
2632 page->mem_cgroup = memcg;
2633
2634 if (lrucare)
2635 unlock_page_lru(page, isolated);
2636 }
2637
2638 #ifdef CONFIG_MEMCG_KMEM
2639 static int memcg_alloc_cache_id(void)
2640 {
2641 int id, size;
2642 int err;
2643
2644 id = ida_simple_get(&memcg_cache_ida,
2645 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2646 if (id < 0)
2647 return id;
2648
2649 if (id < memcg_nr_cache_ids)
2650 return id;
2651
2652 /*
2653 * There's no space for the new id in memcg_caches arrays,
2654 * so we have to grow them.
2655 */
2656 down_write(&memcg_cache_ids_sem);
2657
2658 size = 2 * (id + 1);
2659 if (size < MEMCG_CACHES_MIN_SIZE)
2660 size = MEMCG_CACHES_MIN_SIZE;
2661 else if (size > MEMCG_CACHES_MAX_SIZE)
2662 size = MEMCG_CACHES_MAX_SIZE;
2663
2664 err = memcg_update_all_caches(size);
2665 if (!err)
2666 err = memcg_update_all_list_lrus(size);
2667 if (!err)
2668 memcg_nr_cache_ids = size;
2669
2670 up_write(&memcg_cache_ids_sem);
2671
2672 if (err) {
2673 ida_simple_remove(&memcg_cache_ida, id);
2674 return err;
2675 }
2676 return id;
2677 }
2678
2679 static void memcg_free_cache_id(int id)
2680 {
2681 ida_simple_remove(&memcg_cache_ida, id);
2682 }
2683
2684 struct memcg_kmem_cache_create_work {
2685 struct mem_cgroup *memcg;
2686 struct kmem_cache *cachep;
2687 struct work_struct work;
2688 };
2689
2690 static void memcg_kmem_cache_create_func(struct work_struct *w)
2691 {
2692 struct memcg_kmem_cache_create_work *cw =
2693 container_of(w, struct memcg_kmem_cache_create_work, work);
2694 struct mem_cgroup *memcg = cw->memcg;
2695 struct kmem_cache *cachep = cw->cachep;
2696
2697 memcg_create_kmem_cache(memcg, cachep);
2698
2699 css_put(&memcg->css);
2700 kfree(cw);
2701 }
2702
2703 /*
2704 * Enqueue the creation of a per-memcg kmem_cache.
2705 */
2706 static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2707 struct kmem_cache *cachep)
2708 {
2709 struct memcg_kmem_cache_create_work *cw;
2710
2711 if (!css_tryget_online(&memcg->css))
2712 return;
2713
2714 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
2715 if (!cw)
2716 return;
2717
2718 cw->memcg = memcg;
2719 cw->cachep = cachep;
2720 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
2721
2722 queue_work(memcg_kmem_cache_wq, &cw->work);
2723 }
2724
2725 static inline bool memcg_kmem_bypass(void)
2726 {
2727 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2728 return true;
2729 return false;
2730 }
2731
2732 /**
2733 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2734 * @cachep: the original global kmem cache
2735 *
2736 * Return the kmem_cache we're supposed to use for a slab allocation.
2737 * We try to use the current memcg's version of the cache.
2738 *
2739 * If the cache does not exist yet, if we are the first user of it, we
2740 * create it asynchronously in a workqueue and let the current allocation
2741 * go through with the original cache.
2742 *
2743 * This function takes a reference to the cache it returns to assure it
2744 * won't get destroyed while we are working with it. Once the caller is
2745 * done with it, memcg_kmem_put_cache() must be called to release the
2746 * reference.
2747 */
2748 struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
2749 {
2750 struct mem_cgroup *memcg;
2751 struct kmem_cache *memcg_cachep;
2752 struct memcg_cache_array *arr;
2753 int kmemcg_id;
2754
2755 VM_BUG_ON(!is_root_cache(cachep));
2756
2757 if (memcg_kmem_bypass())
2758 return cachep;
2759
2760 rcu_read_lock();
2761
2762 if (unlikely(current->active_memcg))
2763 memcg = current->active_memcg;
2764 else
2765 memcg = mem_cgroup_from_task(current);
2766
2767 if (!memcg || memcg == root_mem_cgroup)
2768 goto out_unlock;
2769
2770 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2771 if (kmemcg_id < 0)
2772 goto out_unlock;
2773
2774 arr = rcu_dereference(cachep->memcg_params.memcg_caches);
2775
2776 /*
2777 * Make sure we will access the up-to-date value. The code updating
2778 * memcg_caches issues a write barrier to match the data dependency
2779 * barrier inside READ_ONCE() (see memcg_create_kmem_cache()).
2780 */
2781 memcg_cachep = READ_ONCE(arr->entries[kmemcg_id]);
2782
2783 /*
2784 * If we are in a safe context (can wait, and not in interrupt
2785 * context), we could be be predictable and return right away.
2786 * This would guarantee that the allocation being performed
2787 * already belongs in the new cache.
2788 *
2789 * However, there are some clashes that can arrive from locking.
2790 * For instance, because we acquire the slab_mutex while doing
2791 * memcg_create_kmem_cache, this means no further allocation
2792 * could happen with the slab_mutex held. So it's better to
2793 * defer everything.
2794 *
2795 * If the memcg is dying or memcg_cache is about to be released,
2796 * don't bother creating new kmem_caches. Because memcg_cachep
2797 * is ZEROed as the fist step of kmem offlining, we don't need
2798 * percpu_ref_tryget_live() here. css_tryget_online() check in
2799 * memcg_schedule_kmem_cache_create() will prevent us from
2800 * creation of a new kmem_cache.
2801 */
2802 if (unlikely(!memcg_cachep))
2803 memcg_schedule_kmem_cache_create(memcg, cachep);
2804 else if (percpu_ref_tryget(&memcg_cachep->memcg_params.refcnt))
2805 cachep = memcg_cachep;
2806 out_unlock:
2807 rcu_read_unlock();
2808 return cachep;
2809 }
2810
2811 /**
2812 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2813 * @cachep: the cache returned by memcg_kmem_get_cache
2814 */
2815 void memcg_kmem_put_cache(struct kmem_cache *cachep)
2816 {
2817 if (!is_root_cache(cachep))
2818 percpu_ref_put(&cachep->memcg_params.refcnt);
2819 }
2820
2821 /**
2822 * __memcg_kmem_charge_memcg: charge a kmem page
2823 * @page: page to charge
2824 * @gfp: reclaim mode
2825 * @order: allocation order
2826 * @memcg: memory cgroup to charge
2827 *
2828 * Returns 0 on success, an error code on failure.
2829 */
2830 int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2831 struct mem_cgroup *memcg)
2832 {
2833 unsigned int nr_pages = 1 << order;
2834 struct page_counter *counter;
2835 int ret;
2836
2837 ret = try_charge(memcg, gfp, nr_pages);
2838 if (ret)
2839 return ret;
2840
2841 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2842 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2843
2844 /*
2845 * Enforce __GFP_NOFAIL allocation because callers are not
2846 * prepared to see failures and likely do not have any failure
2847 * handling code.
2848 */
2849 if (gfp & __GFP_NOFAIL) {
2850 page_counter_charge(&memcg->kmem, nr_pages);
2851 return 0;
2852 }
2853 cancel_charge(memcg, nr_pages);
2854 return -ENOMEM;
2855 }
2856 return 0;
2857 }
2858
2859 /**
2860 * __memcg_kmem_charge: charge a kmem page to the current memory cgroup
2861 * @page: page to charge
2862 * @gfp: reclaim mode
2863 * @order: allocation order
2864 *
2865 * Returns 0 on success, an error code on failure.
2866 */
2867 int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
2868 {
2869 struct mem_cgroup *memcg;
2870 int ret = 0;
2871
2872 if (memcg_kmem_bypass())
2873 return 0;
2874
2875 memcg = get_mem_cgroup_from_current();
2876 if (!mem_cgroup_is_root(memcg)) {
2877 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
2878 if (!ret) {
2879 page->mem_cgroup = memcg;
2880 __SetPageKmemcg(page);
2881 }
2882 }
2883 css_put(&memcg->css);
2884 return ret;
2885 }
2886
2887 /**
2888 * __memcg_kmem_uncharge_memcg: uncharge a kmem page
2889 * @memcg: memcg to uncharge
2890 * @nr_pages: number of pages to uncharge
2891 */
2892 void __memcg_kmem_uncharge_memcg(struct mem_cgroup *memcg,
2893 unsigned int nr_pages)
2894 {
2895 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2896 page_counter_uncharge(&memcg->kmem, nr_pages);
2897
2898 page_counter_uncharge(&memcg->memory, nr_pages);
2899 if (do_memsw_account())
2900 page_counter_uncharge(&memcg->memsw, nr_pages);
2901 }
2902 /**
2903 * __memcg_kmem_uncharge: uncharge a kmem page
2904 * @page: page to uncharge
2905 * @order: allocation order
2906 */
2907 void __memcg_kmem_uncharge(struct page *page, int order)
2908 {
2909 struct mem_cgroup *memcg = page->mem_cgroup;
2910 unsigned int nr_pages = 1 << order;
2911
2912 if (!memcg)
2913 return;
2914
2915 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
2916 __memcg_kmem_uncharge_memcg(memcg, nr_pages);
2917 page->mem_cgroup = NULL;
2918
2919 /* slab pages do not have PageKmemcg flag set */
2920 if (PageKmemcg(page))
2921 __ClearPageKmemcg(page);
2922
2923 css_put_many(&memcg->css, nr_pages);
2924 }
2925 #endif /* CONFIG_MEMCG_KMEM */
2926
2927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2928
2929 /*
2930 * Because tail pages are not marked as "used", set it. We're under
2931 * pgdat->lru_lock and migration entries setup in all page mappings.
2932 */
2933 void mem_cgroup_split_huge_fixup(struct page *head)
2934 {
2935 int i;
2936
2937 if (mem_cgroup_disabled())
2938 return;
2939
2940 for (i = 1; i < HPAGE_PMD_NR; i++)
2941 head[i].mem_cgroup = head->mem_cgroup;
2942
2943 __mod_memcg_state(head->mem_cgroup, MEMCG_RSS_HUGE, -HPAGE_PMD_NR);
2944 }
2945 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2946
2947 #ifdef CONFIG_MEMCG_SWAP
2948 /**
2949 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2950 * @entry: swap entry to be moved
2951 * @from: mem_cgroup which the entry is moved from
2952 * @to: mem_cgroup which the entry is moved to
2953 *
2954 * It succeeds only when the swap_cgroup's record for this entry is the same
2955 * as the mem_cgroup's id of @from.
2956 *
2957 * Returns 0 on success, -EINVAL on failure.
2958 *
2959 * The caller must have charged to @to, IOW, called page_counter_charge() about
2960 * both res and memsw, and called css_get().
2961 */
2962 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2963 struct mem_cgroup *from, struct mem_cgroup *to)
2964 {
2965 unsigned short old_id, new_id;
2966
2967 old_id = mem_cgroup_id(from);
2968 new_id = mem_cgroup_id(to);
2969
2970 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2971 mod_memcg_state(from, MEMCG_SWAP, -1);
2972 mod_memcg_state(to, MEMCG_SWAP, 1);
2973 return 0;
2974 }
2975 return -EINVAL;
2976 }
2977 #else
2978 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2979 struct mem_cgroup *from, struct mem_cgroup *to)
2980 {
2981 return -EINVAL;
2982 }
2983 #endif
2984
2985 static DEFINE_MUTEX(memcg_max_mutex);
2986
2987 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
2988 unsigned long max, bool memsw)
2989 {
2990 bool enlarge = false;
2991 bool drained = false;
2992 int ret;
2993 bool limits_invariant;
2994 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
2995
2996 do {
2997 if (signal_pending(current)) {
2998 ret = -EINTR;
2999 break;
3000 }
3001
3002 mutex_lock(&memcg_max_mutex);
3003 /*
3004 * Make sure that the new limit (memsw or memory limit) doesn't
3005 * break our basic invariant rule memory.max <= memsw.max.
3006 */
3007 limits_invariant = memsw ? max >= memcg->memory.max :
3008 max <= memcg->memsw.max;
3009 if (!limits_invariant) {
3010 mutex_unlock(&memcg_max_mutex);
3011 ret = -EINVAL;
3012 break;
3013 }
3014 if (max > counter->max)
3015 enlarge = true;
3016 ret = page_counter_set_max(counter, max);
3017 mutex_unlock(&memcg_max_mutex);
3018
3019 if (!ret)
3020 break;
3021
3022 if (!drained) {
3023 drain_all_stock(memcg);
3024 drained = true;
3025 continue;
3026 }
3027
3028 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3029 GFP_KERNEL, !memsw)) {
3030 ret = -EBUSY;
3031 break;
3032 }
3033 } while (true);
3034
3035 if (!ret && enlarge)
3036 memcg_oom_recover(memcg);
3037
3038 return ret;
3039 }
3040
3041 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3042 gfp_t gfp_mask,
3043 unsigned long *total_scanned)
3044 {
3045 unsigned long nr_reclaimed = 0;
3046 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3047 unsigned long reclaimed;
3048 int loop = 0;
3049 struct mem_cgroup_tree_per_node *mctz;
3050 unsigned long excess;
3051 unsigned long nr_scanned;
3052
3053 if (order > 0)
3054 return 0;
3055
3056 mctz = soft_limit_tree_node(pgdat->node_id);
3057
3058 /*
3059 * Do not even bother to check the largest node if the root
3060 * is empty. Do it lockless to prevent lock bouncing. Races
3061 * are acceptable as soft limit is best effort anyway.
3062 */
3063 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3064 return 0;
3065
3066 /*
3067 * This loop can run a while, specially if mem_cgroup's continuously
3068 * keep exceeding their soft limit and putting the system under
3069 * pressure
3070 */
3071 do {
3072 if (next_mz)
3073 mz = next_mz;
3074 else
3075 mz = mem_cgroup_largest_soft_limit_node(mctz);
3076 if (!mz)
3077 break;
3078
3079 nr_scanned = 0;
3080 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3081 gfp_mask, &nr_scanned);
3082 nr_reclaimed += reclaimed;
3083 *total_scanned += nr_scanned;
3084 spin_lock_irq(&mctz->lock);
3085 __mem_cgroup_remove_exceeded(mz, mctz);
3086
3087 /*
3088 * If we failed to reclaim anything from this memory cgroup
3089 * it is time to move on to the next cgroup
3090 */
3091 next_mz = NULL;
3092 if (!reclaimed)
3093 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3094
3095 excess = soft_limit_excess(mz->memcg);
3096 /*
3097 * One school of thought says that we should not add
3098 * back the node to the tree if reclaim returns 0.
3099 * But our reclaim could return 0, simply because due
3100 * to priority we are exposing a smaller subset of
3101 * memory to reclaim from. Consider this as a longer
3102 * term TODO.
3103 */
3104 /* If excess == 0, no tree ops */
3105 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3106 spin_unlock_irq(&mctz->lock);
3107 css_put(&mz->memcg->css);
3108 loop++;
3109 /*
3110 * Could not reclaim anything and there are no more
3111 * mem cgroups to try or we seem to be looping without
3112 * reclaiming anything.
3113 */
3114 if (!nr_reclaimed &&
3115 (next_mz == NULL ||
3116 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3117 break;
3118 } while (!nr_reclaimed);
3119 if (next_mz)
3120 css_put(&next_mz->memcg->css);
3121 return nr_reclaimed;
3122 }
3123
3124 /*
3125 * Test whether @memcg has children, dead or alive. Note that this
3126 * function doesn't care whether @memcg has use_hierarchy enabled and
3127 * returns %true if there are child csses according to the cgroup
3128 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3129 */
3130 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3131 {
3132 bool ret;
3133
3134 rcu_read_lock();
3135 ret = css_next_child(NULL, &memcg->css);
3136 rcu_read_unlock();
3137 return ret;
3138 }
3139
3140 /*
3141 * Reclaims as many pages from the given memcg as possible.
3142 *
3143 * Caller is responsible for holding css reference for memcg.
3144 */
3145 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3146 {
3147 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3148
3149 /* we call try-to-free pages for make this cgroup empty */
3150 lru_add_drain_all();
3151
3152 drain_all_stock(memcg);
3153
3154 /* try to free all pages in this cgroup */
3155 while (nr_retries && page_counter_read(&memcg->memory)) {
3156 int progress;
3157
3158 if (signal_pending(current))
3159 return -EINTR;
3160
3161 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3162 GFP_KERNEL, true);
3163 if (!progress) {
3164 nr_retries--;
3165 /* maybe some writeback is necessary */
3166 congestion_wait(BLK_RW_ASYNC, HZ/10);
3167 }
3168
3169 }
3170
3171 return 0;
3172 }
3173
3174 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3175 char *buf, size_t nbytes,
3176 loff_t off)
3177 {
3178 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3179
3180 if (mem_cgroup_is_root(memcg))
3181 return -EINVAL;
3182 return mem_cgroup_force_empty(memcg) ?: nbytes;
3183 }
3184
3185 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3186 struct cftype *cft)
3187 {
3188 return mem_cgroup_from_css(css)->use_hierarchy;
3189 }
3190
3191 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3192 struct cftype *cft, u64 val)
3193 {
3194 int retval = 0;
3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3196 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3197
3198 if (memcg->use_hierarchy == val)
3199 return 0;
3200
3201 /*
3202 * If parent's use_hierarchy is set, we can't make any modifications
3203 * in the child subtrees. If it is unset, then the change can
3204 * occur, provided the current cgroup has no children.
3205 *
3206 * For the root cgroup, parent_mem is NULL, we allow value to be
3207 * set if there are no children.
3208 */
3209 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3210 (val == 1 || val == 0)) {
3211 if (!memcg_has_children(memcg))
3212 memcg->use_hierarchy = val;
3213 else
3214 retval = -EBUSY;
3215 } else
3216 retval = -EINVAL;
3217
3218 return retval;
3219 }
3220
3221 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3222 {
3223 unsigned long val;
3224
3225 if (mem_cgroup_is_root(memcg)) {
3226 val = memcg_page_state(memcg, MEMCG_CACHE) +
3227 memcg_page_state(memcg, MEMCG_RSS);
3228 if (swap)
3229 val += memcg_page_state(memcg, MEMCG_SWAP);
3230 } else {
3231 if (!swap)
3232 val = page_counter_read(&memcg->memory);
3233 else
3234 val = page_counter_read(&memcg->memsw);
3235 }
3236 return val;
3237 }
3238
3239 enum {
3240 RES_USAGE,
3241 RES_LIMIT,
3242 RES_MAX_USAGE,
3243 RES_FAILCNT,
3244 RES_SOFT_LIMIT,
3245 };
3246
3247 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3248 struct cftype *cft)
3249 {
3250 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3251 struct page_counter *counter;
3252
3253 switch (MEMFILE_TYPE(cft->private)) {
3254 case _MEM:
3255 counter = &memcg->memory;
3256 break;
3257 case _MEMSWAP:
3258 counter = &memcg->memsw;
3259 break;
3260 case _KMEM:
3261 counter = &memcg->kmem;
3262 break;
3263 case _TCP:
3264 counter = &memcg->tcpmem;
3265 break;
3266 default:
3267 BUG();
3268 }
3269
3270 switch (MEMFILE_ATTR(cft->private)) {
3271 case RES_USAGE:
3272 if (counter == &memcg->memory)
3273 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3274 if (counter == &memcg->memsw)
3275 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3276 return (u64)page_counter_read(counter) * PAGE_SIZE;
3277 case RES_LIMIT:
3278 return (u64)counter->max * PAGE_SIZE;
3279 case RES_MAX_USAGE:
3280 return (u64)counter->watermark * PAGE_SIZE;
3281 case RES_FAILCNT:
3282 return counter->failcnt;
3283 case RES_SOFT_LIMIT:
3284 return (u64)memcg->soft_limit * PAGE_SIZE;
3285 default:
3286 BUG();
3287 }
3288 }
3289
3290 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3291 {
3292 unsigned long stat[MEMCG_NR_STAT] = {0};
3293 struct mem_cgroup *mi;
3294 int node, cpu, i;
3295
3296 for_each_online_cpu(cpu)
3297 for (i = 0; i < MEMCG_NR_STAT; i++)
3298 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3299
3300 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3301 for (i = 0; i < MEMCG_NR_STAT; i++)
3302 atomic_long_add(stat[i], &mi->vmstats[i]);
3303
3304 for_each_node(node) {
3305 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3306 struct mem_cgroup_per_node *pi;
3307
3308 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3309 stat[i] = 0;
3310
3311 for_each_online_cpu(cpu)
3312 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3313 stat[i] += per_cpu(
3314 pn->lruvec_stat_cpu->count[i], cpu);
3315
3316 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3317 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3318 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3319 }
3320 }
3321
3322 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3323 {
3324 unsigned long events[NR_VM_EVENT_ITEMS];
3325 struct mem_cgroup *mi;
3326 int cpu, i;
3327
3328 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3329 events[i] = 0;
3330
3331 for_each_online_cpu(cpu)
3332 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3333 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3334 cpu);
3335
3336 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3337 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3338 atomic_long_add(events[i], &mi->vmevents[i]);
3339 }
3340
3341 #ifdef CONFIG_MEMCG_KMEM
3342 static int memcg_online_kmem(struct mem_cgroup *memcg)
3343 {
3344 int memcg_id;
3345
3346 if (cgroup_memory_nokmem)
3347 return 0;
3348
3349 BUG_ON(memcg->kmemcg_id >= 0);
3350 BUG_ON(memcg->kmem_state);
3351
3352 memcg_id = memcg_alloc_cache_id();
3353 if (memcg_id < 0)
3354 return memcg_id;
3355
3356 static_branch_inc(&memcg_kmem_enabled_key);
3357 /*
3358 * A memory cgroup is considered kmem-online as soon as it gets
3359 * kmemcg_id. Setting the id after enabling static branching will
3360 * guarantee no one starts accounting before all call sites are
3361 * patched.
3362 */
3363 memcg->kmemcg_id = memcg_id;
3364 memcg->kmem_state = KMEM_ONLINE;
3365 INIT_LIST_HEAD(&memcg->kmem_caches);
3366
3367 return 0;
3368 }
3369
3370 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3371 {
3372 struct cgroup_subsys_state *css;
3373 struct mem_cgroup *parent, *child;
3374 int kmemcg_id;
3375
3376 if (memcg->kmem_state != KMEM_ONLINE)
3377 return;
3378 /*
3379 * Clear the online state before clearing memcg_caches array
3380 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
3381 * guarantees that no cache will be created for this cgroup
3382 * after we are done (see memcg_create_kmem_cache()).
3383 */
3384 memcg->kmem_state = KMEM_ALLOCATED;
3385
3386 parent = parent_mem_cgroup(memcg);
3387 if (!parent)
3388 parent = root_mem_cgroup;
3389
3390 /*
3391 * Deactivate and reparent kmem_caches.
3392 */
3393 memcg_deactivate_kmem_caches(memcg, parent);
3394
3395 kmemcg_id = memcg->kmemcg_id;
3396 BUG_ON(kmemcg_id < 0);
3397
3398 /*
3399 * Change kmemcg_id of this cgroup and all its descendants to the
3400 * parent's id, and then move all entries from this cgroup's list_lrus
3401 * to ones of the parent. After we have finished, all list_lrus
3402 * corresponding to this cgroup are guaranteed to remain empty. The
3403 * ordering is imposed by list_lru_node->lock taken by
3404 * memcg_drain_all_list_lrus().
3405 */
3406 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3407 css_for_each_descendant_pre(css, &memcg->css) {
3408 child = mem_cgroup_from_css(css);
3409 BUG_ON(child->kmemcg_id != kmemcg_id);
3410 child->kmemcg_id = parent->kmemcg_id;
3411 if (!memcg->use_hierarchy)
3412 break;
3413 }
3414 rcu_read_unlock();
3415
3416 memcg_drain_all_list_lrus(kmemcg_id, parent);
3417
3418 memcg_free_cache_id(kmemcg_id);
3419 }
3420
3421 static void memcg_free_kmem(struct mem_cgroup *memcg)
3422 {
3423 /* css_alloc() failed, offlining didn't happen */
3424 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3425 memcg_offline_kmem(memcg);
3426
3427 if (memcg->kmem_state == KMEM_ALLOCATED) {
3428 WARN_ON(!list_empty(&memcg->kmem_caches));
3429 static_branch_dec(&memcg_kmem_enabled_key);
3430 }
3431 }
3432 #else
3433 static int memcg_online_kmem(struct mem_cgroup *memcg)
3434 {
3435 return 0;
3436 }
3437 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3438 {
3439 }
3440 static void memcg_free_kmem(struct mem_cgroup *memcg)
3441 {
3442 }
3443 #endif /* CONFIG_MEMCG_KMEM */
3444
3445 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3446 unsigned long max)
3447 {
3448 int ret;
3449
3450 mutex_lock(&memcg_max_mutex);
3451 ret = page_counter_set_max(&memcg->kmem, max);
3452 mutex_unlock(&memcg_max_mutex);
3453 return ret;
3454 }
3455
3456 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3457 {
3458 int ret;
3459
3460 mutex_lock(&memcg_max_mutex);
3461
3462 ret = page_counter_set_max(&memcg->tcpmem, max);
3463 if (ret)
3464 goto out;
3465
3466 if (!memcg->tcpmem_active) {
3467 /*
3468 * The active flag needs to be written after the static_key
3469 * update. This is what guarantees that the socket activation
3470 * function is the last one to run. See mem_cgroup_sk_alloc()
3471 * for details, and note that we don't mark any socket as
3472 * belonging to this memcg until that flag is up.
3473 *
3474 * We need to do this, because static_keys will span multiple
3475 * sites, but we can't control their order. If we mark a socket
3476 * as accounted, but the accounting functions are not patched in
3477 * yet, we'll lose accounting.
3478 *
3479 * We never race with the readers in mem_cgroup_sk_alloc(),
3480 * because when this value change, the code to process it is not
3481 * patched in yet.
3482 */
3483 static_branch_inc(&memcg_sockets_enabled_key);
3484 memcg->tcpmem_active = true;
3485 }
3486 out:
3487 mutex_unlock(&memcg_max_mutex);
3488 return ret;
3489 }
3490
3491 /*
3492 * The user of this function is...
3493 * RES_LIMIT.
3494 */
3495 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3496 char *buf, size_t nbytes, loff_t off)
3497 {
3498 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3499 unsigned long nr_pages;
3500 int ret;
3501
3502 buf = strstrip(buf);
3503 ret = page_counter_memparse(buf, "-1", &nr_pages);
3504 if (ret)
3505 return ret;
3506
3507 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3508 case RES_LIMIT:
3509 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3510 ret = -EINVAL;
3511 break;
3512 }
3513 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3514 case _MEM:
3515 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3516 break;
3517 case _MEMSWAP:
3518 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3519 break;
3520 case _KMEM:
3521 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3522 "Please report your usecase to linux-mm@kvack.org if you "
3523 "depend on this functionality.\n");
3524 ret = memcg_update_kmem_max(memcg, nr_pages);
3525 break;
3526 case _TCP:
3527 ret = memcg_update_tcp_max(memcg, nr_pages);
3528 break;
3529 }
3530 break;
3531 case RES_SOFT_LIMIT:
3532 memcg->soft_limit = nr_pages;
3533 ret = 0;
3534 break;
3535 }
3536 return ret ?: nbytes;
3537 }
3538
3539 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3540 size_t nbytes, loff_t off)
3541 {
3542 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3543 struct page_counter *counter;
3544
3545 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3546 case _MEM:
3547 counter = &memcg->memory;
3548 break;
3549 case _MEMSWAP:
3550 counter = &memcg->memsw;
3551 break;
3552 case _KMEM:
3553 counter = &memcg->kmem;
3554 break;
3555 case _TCP:
3556 counter = &memcg->tcpmem;
3557 break;
3558 default:
3559 BUG();
3560 }
3561
3562 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3563 case RES_MAX_USAGE:
3564 page_counter_reset_watermark(counter);
3565 break;
3566 case RES_FAILCNT:
3567 counter->failcnt = 0;
3568 break;
3569 default:
3570 BUG();
3571 }
3572
3573 return nbytes;
3574 }
3575
3576 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3577 struct cftype *cft)
3578 {
3579 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3580 }
3581
3582 #ifdef CONFIG_MMU
3583 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3584 struct cftype *cft, u64 val)
3585 {
3586 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3587
3588 if (val & ~MOVE_MASK)
3589 return -EINVAL;
3590
3591 /*
3592 * No kind of locking is needed in here, because ->can_attach() will
3593 * check this value once in the beginning of the process, and then carry
3594 * on with stale data. This means that changes to this value will only
3595 * affect task migrations starting after the change.
3596 */
3597 memcg->move_charge_at_immigrate = val;
3598 return 0;
3599 }
3600 #else
3601 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3602 struct cftype *cft, u64 val)
3603 {
3604 return -ENOSYS;
3605 }
3606 #endif
3607
3608 #ifdef CONFIG_NUMA
3609
3610 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3611 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3612 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3613
3614 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3615 int nid, unsigned int lru_mask)
3616 {
3617 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3618 unsigned long nr = 0;
3619 enum lru_list lru;
3620
3621 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3622
3623 for_each_lru(lru) {
3624 if (!(BIT(lru) & lru_mask))
3625 continue;
3626 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3627 }
3628 return nr;
3629 }
3630
3631 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3632 unsigned int lru_mask)
3633 {
3634 unsigned long nr = 0;
3635 enum lru_list lru;
3636
3637 for_each_lru(lru) {
3638 if (!(BIT(lru) & lru_mask))
3639 continue;
3640 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3641 }
3642 return nr;
3643 }
3644
3645 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3646 {
3647 struct numa_stat {
3648 const char *name;
3649 unsigned int lru_mask;
3650 };
3651
3652 static const struct numa_stat stats[] = {
3653 { "total", LRU_ALL },
3654 { "file", LRU_ALL_FILE },
3655 { "anon", LRU_ALL_ANON },
3656 { "unevictable", BIT(LRU_UNEVICTABLE) },
3657 };
3658 const struct numa_stat *stat;
3659 int nid;
3660 unsigned long nr;
3661 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3662
3663 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3664 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3665 seq_printf(m, "%s=%lu", stat->name, nr);
3666 for_each_node_state(nid, N_MEMORY) {
3667 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3668 stat->lru_mask);
3669 seq_printf(m, " N%d=%lu", nid, nr);
3670 }
3671 seq_putc(m, '\n');
3672 }
3673
3674 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3675 struct mem_cgroup *iter;
3676
3677 nr = 0;
3678 for_each_mem_cgroup_tree(iter, memcg)
3679 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3680 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3681 for_each_node_state(nid, N_MEMORY) {
3682 nr = 0;
3683 for_each_mem_cgroup_tree(iter, memcg)
3684 nr += mem_cgroup_node_nr_lru_pages(
3685 iter, nid, stat->lru_mask);
3686 seq_printf(m, " N%d=%lu", nid, nr);
3687 }
3688 seq_putc(m, '\n');
3689 }
3690
3691 return 0;
3692 }
3693 #endif /* CONFIG_NUMA */
3694
3695 static const unsigned int memcg1_stats[] = {
3696 MEMCG_CACHE,
3697 MEMCG_RSS,
3698 MEMCG_RSS_HUGE,
3699 NR_SHMEM,
3700 NR_FILE_MAPPED,
3701 NR_FILE_DIRTY,
3702 NR_WRITEBACK,
3703 MEMCG_SWAP,
3704 };
3705
3706 static const char *const memcg1_stat_names[] = {
3707 "cache",
3708 "rss",
3709 "rss_huge",
3710 "shmem",
3711 "mapped_file",
3712 "dirty",
3713 "writeback",
3714 "swap",
3715 };
3716
3717 /* Universal VM events cgroup1 shows, original sort order */
3718 static const unsigned int memcg1_events[] = {
3719 PGPGIN,
3720 PGPGOUT,
3721 PGFAULT,
3722 PGMAJFAULT,
3723 };
3724
3725 static int memcg_stat_show(struct seq_file *m, void *v)
3726 {
3727 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3728 unsigned long memory, memsw;
3729 struct mem_cgroup *mi;
3730 unsigned int i;
3731
3732 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
3733
3734 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3735 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3736 continue;
3737 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
3738 memcg_page_state_local(memcg, memcg1_stats[i]) *
3739 PAGE_SIZE);
3740 }
3741
3742 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3743 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
3744 memcg_events_local(memcg, memcg1_events[i]));
3745
3746 for (i = 0; i < NR_LRU_LISTS; i++)
3747 seq_printf(m, "%s %lu\n", lru_list_name(i),
3748 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
3749 PAGE_SIZE);
3750
3751 /* Hierarchical information */
3752 memory = memsw = PAGE_COUNTER_MAX;
3753 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3754 memory = min(memory, mi->memory.max);
3755 memsw = min(memsw, mi->memsw.max);
3756 }
3757 seq_printf(m, "hierarchical_memory_limit %llu\n",
3758 (u64)memory * PAGE_SIZE);
3759 if (do_memsw_account())
3760 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3761 (u64)memsw * PAGE_SIZE);
3762
3763 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3764 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
3765 continue;
3766 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
3767 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
3768 PAGE_SIZE);
3769 }
3770
3771 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3772 seq_printf(m, "total_%s %llu\n",
3773 vm_event_name(memcg1_events[i]),
3774 (u64)memcg_events(memcg, memcg1_events[i]));
3775
3776 for (i = 0; i < NR_LRU_LISTS; i++)
3777 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
3778 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
3779 PAGE_SIZE);
3780
3781 #ifdef CONFIG_DEBUG_VM
3782 {
3783 pg_data_t *pgdat;
3784 struct mem_cgroup_per_node *mz;
3785 struct zone_reclaim_stat *rstat;
3786 unsigned long recent_rotated[2] = {0, 0};
3787 unsigned long recent_scanned[2] = {0, 0};
3788
3789 for_each_online_pgdat(pgdat) {
3790 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3791 rstat = &mz->lruvec.reclaim_stat;
3792
3793 recent_rotated[0] += rstat->recent_rotated[0];
3794 recent_rotated[1] += rstat->recent_rotated[1];
3795 recent_scanned[0] += rstat->recent_scanned[0];
3796 recent_scanned[1] += rstat->recent_scanned[1];
3797 }
3798 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3799 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3800 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3801 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
3802 }
3803 #endif
3804
3805 return 0;
3806 }
3807
3808 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3809 struct cftype *cft)
3810 {
3811 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3812
3813 return mem_cgroup_swappiness(memcg);
3814 }
3815
3816 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3817 struct cftype *cft, u64 val)
3818 {
3819 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3820
3821 if (val > 100)
3822 return -EINVAL;
3823
3824 if (css->parent)
3825 memcg->swappiness = val;
3826 else
3827 vm_swappiness = val;
3828
3829 return 0;
3830 }
3831
3832 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3833 {
3834 struct mem_cgroup_threshold_ary *t;
3835 unsigned long usage;
3836 int i;
3837
3838 rcu_read_lock();
3839 if (!swap)
3840 t = rcu_dereference(memcg->thresholds.primary);
3841 else
3842 t = rcu_dereference(memcg->memsw_thresholds.primary);
3843
3844 if (!t)
3845 goto unlock;
3846
3847 usage = mem_cgroup_usage(memcg, swap);
3848
3849 /*
3850 * current_threshold points to threshold just below or equal to usage.
3851 * If it's not true, a threshold was crossed after last
3852 * call of __mem_cgroup_threshold().
3853 */
3854 i = t->current_threshold;
3855
3856 /*
3857 * Iterate backward over array of thresholds starting from
3858 * current_threshold and check if a threshold is crossed.
3859 * If none of thresholds below usage is crossed, we read
3860 * only one element of the array here.
3861 */
3862 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3863 eventfd_signal(t->entries[i].eventfd, 1);
3864
3865 /* i = current_threshold + 1 */
3866 i++;
3867
3868 /*
3869 * Iterate forward over array of thresholds starting from
3870 * current_threshold+1 and check if a threshold is crossed.
3871 * If none of thresholds above usage is crossed, we read
3872 * only one element of the array here.
3873 */
3874 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3875 eventfd_signal(t->entries[i].eventfd, 1);
3876
3877 /* Update current_threshold */
3878 t->current_threshold = i - 1;
3879 unlock:
3880 rcu_read_unlock();
3881 }
3882
3883 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3884 {
3885 while (memcg) {
3886 __mem_cgroup_threshold(memcg, false);
3887 if (do_memsw_account())
3888 __mem_cgroup_threshold(memcg, true);
3889
3890 memcg = parent_mem_cgroup(memcg);
3891 }
3892 }
3893
3894 static int compare_thresholds(const void *a, const void *b)
3895 {
3896 const struct mem_cgroup_threshold *_a = a;
3897 const struct mem_cgroup_threshold *_b = b;
3898
3899 if (_a->threshold > _b->threshold)
3900 return 1;
3901
3902 if (_a->threshold < _b->threshold)
3903 return -1;
3904
3905 return 0;
3906 }
3907
3908 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
3909 {
3910 struct mem_cgroup_eventfd_list *ev;
3911
3912 spin_lock(&memcg_oom_lock);
3913
3914 list_for_each_entry(ev, &memcg->oom_notify, list)
3915 eventfd_signal(ev->eventfd, 1);
3916
3917 spin_unlock(&memcg_oom_lock);
3918 return 0;
3919 }
3920
3921 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
3922 {
3923 struct mem_cgroup *iter;
3924
3925 for_each_mem_cgroup_tree(iter, memcg)
3926 mem_cgroup_oom_notify_cb(iter);
3927 }
3928
3929 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
3930 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
3931 {
3932 struct mem_cgroup_thresholds *thresholds;
3933 struct mem_cgroup_threshold_ary *new;
3934 unsigned long threshold;
3935 unsigned long usage;
3936 int i, size, ret;
3937
3938 ret = page_counter_memparse(args, "-1", &threshold);
3939 if (ret)
3940 return ret;
3941
3942 mutex_lock(&memcg->thresholds_lock);
3943
3944 if (type == _MEM) {
3945 thresholds = &memcg->thresholds;
3946 usage = mem_cgroup_usage(memcg, false);
3947 } else if (type == _MEMSWAP) {
3948 thresholds = &memcg->memsw_thresholds;
3949 usage = mem_cgroup_usage(memcg, true);
3950 } else
3951 BUG();
3952
3953 /* Check if a threshold crossed before adding a new one */
3954 if (thresholds->primary)
3955 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3956
3957 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3958
3959 /* Allocate memory for new array of thresholds */
3960 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
3961 if (!new) {
3962 ret = -ENOMEM;
3963 goto unlock;
3964 }
3965 new->size = size;
3966
3967 /* Copy thresholds (if any) to new array */
3968 if (thresholds->primary) {
3969 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3970 sizeof(struct mem_cgroup_threshold));
3971 }
3972
3973 /* Add new threshold */
3974 new->entries[size - 1].eventfd = eventfd;
3975 new->entries[size - 1].threshold = threshold;
3976
3977 /* Sort thresholds. Registering of new threshold isn't time-critical */
3978 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3979 compare_thresholds, NULL);
3980
3981 /* Find current threshold */
3982 new->current_threshold = -1;
3983 for (i = 0; i < size; i++) {
3984 if (new->entries[i].threshold <= usage) {
3985 /*
3986 * new->current_threshold will not be used until
3987 * rcu_assign_pointer(), so it's safe to increment
3988 * it here.
3989 */
3990 ++new->current_threshold;
3991 } else
3992 break;
3993 }
3994
3995 /* Free old spare buffer and save old primary buffer as spare */
3996 kfree(thresholds->spare);
3997 thresholds->spare = thresholds->primary;
3998
3999 rcu_assign_pointer(thresholds->primary, new);
4000
4001 /* To be sure that nobody uses thresholds */
4002 synchronize_rcu();
4003
4004 unlock:
4005 mutex_unlock(&memcg->thresholds_lock);
4006
4007 return ret;
4008 }
4009
4010 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4011 struct eventfd_ctx *eventfd, const char *args)
4012 {
4013 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4014 }
4015
4016 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4017 struct eventfd_ctx *eventfd, const char *args)
4018 {
4019 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4020 }
4021
4022 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4023 struct eventfd_ctx *eventfd, enum res_type type)
4024 {
4025 struct mem_cgroup_thresholds *thresholds;
4026 struct mem_cgroup_threshold_ary *new;
4027 unsigned long usage;
4028 int i, j, size;
4029
4030 mutex_lock(&memcg->thresholds_lock);
4031
4032 if (type == _MEM) {
4033 thresholds = &memcg->thresholds;
4034 usage = mem_cgroup_usage(memcg, false);
4035 } else if (type == _MEMSWAP) {
4036 thresholds = &memcg->memsw_thresholds;
4037 usage = mem_cgroup_usage(memcg, true);
4038 } else
4039 BUG();
4040
4041 if (!thresholds->primary)
4042 goto unlock;
4043
4044 /* Check if a threshold crossed before removing */
4045 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4046
4047 /* Calculate new number of threshold */
4048 size = 0;
4049 for (i = 0; i < thresholds->primary->size; i++) {
4050 if (thresholds->primary->entries[i].eventfd != eventfd)
4051 size++;
4052 }
4053
4054 new = thresholds->spare;
4055
4056 /* Set thresholds array to NULL if we don't have thresholds */
4057 if (!size) {
4058 kfree(new);
4059 new = NULL;
4060 goto swap_buffers;
4061 }
4062
4063 new->size = size;
4064
4065 /* Copy thresholds and find current threshold */
4066 new->current_threshold = -1;
4067 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4068 if (thresholds->primary->entries[i].eventfd == eventfd)
4069 continue;
4070
4071 new->entries[j] = thresholds->primary->entries[i];
4072 if (new->entries[j].threshold <= usage) {
4073 /*
4074 * new->current_threshold will not be used
4075 * until rcu_assign_pointer(), so it's safe to increment
4076 * it here.
4077 */
4078 ++new->current_threshold;
4079 }
4080 j++;
4081 }
4082
4083 swap_buffers:
4084 /* Swap primary and spare array */
4085 thresholds->spare = thresholds->primary;
4086
4087 rcu_assign_pointer(thresholds->primary, new);
4088
4089 /* To be sure that nobody uses thresholds */
4090 synchronize_rcu();
4091
4092 /* If all events are unregistered, free the spare array */
4093 if (!new) {
4094 kfree(thresholds->spare);
4095 thresholds->spare = NULL;
4096 }
4097 unlock:
4098 mutex_unlock(&memcg->thresholds_lock);
4099 }
4100
4101 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4102 struct eventfd_ctx *eventfd)
4103 {
4104 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4105 }
4106
4107 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4108 struct eventfd_ctx *eventfd)
4109 {
4110 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4111 }
4112
4113 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4114 struct eventfd_ctx *eventfd, const char *args)
4115 {
4116 struct mem_cgroup_eventfd_list *event;
4117
4118 event = kmalloc(sizeof(*event), GFP_KERNEL);
4119 if (!event)
4120 return -ENOMEM;
4121
4122 spin_lock(&memcg_oom_lock);
4123
4124 event->eventfd = eventfd;
4125 list_add(&event->list, &memcg->oom_notify);
4126
4127 /* already in OOM ? */
4128 if (memcg->under_oom)
4129 eventfd_signal(eventfd, 1);
4130 spin_unlock(&memcg_oom_lock);
4131
4132 return 0;
4133 }
4134
4135 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4136 struct eventfd_ctx *eventfd)
4137 {
4138 struct mem_cgroup_eventfd_list *ev, *tmp;
4139
4140 spin_lock(&memcg_oom_lock);
4141
4142 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4143 if (ev->eventfd == eventfd) {
4144 list_del(&ev->list);
4145 kfree(ev);
4146 }
4147 }
4148
4149 spin_unlock(&memcg_oom_lock);
4150 }
4151
4152 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4153 {
4154 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4155
4156 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4157 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4158 seq_printf(sf, "oom_kill %lu\n",
4159 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4160 return 0;
4161 }
4162
4163 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4164 struct cftype *cft, u64 val)
4165 {
4166 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4167
4168 /* cannot set to root cgroup and only 0 and 1 are allowed */
4169 if (!css->parent || !((val == 0) || (val == 1)))
4170 return -EINVAL;
4171
4172 memcg->oom_kill_disable = val;
4173 if (!val)
4174 memcg_oom_recover(memcg);
4175
4176 return 0;
4177 }
4178
4179 #ifdef CONFIG_CGROUP_WRITEBACK
4180
4181 #include <trace/events/writeback.h>
4182
4183 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4184 {
4185 return wb_domain_init(&memcg->cgwb_domain, gfp);
4186 }
4187
4188 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4189 {
4190 wb_domain_exit(&memcg->cgwb_domain);
4191 }
4192
4193 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4194 {
4195 wb_domain_size_changed(&memcg->cgwb_domain);
4196 }
4197
4198 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4199 {
4200 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4201
4202 if (!memcg->css.parent)
4203 return NULL;
4204
4205 return &memcg->cgwb_domain;
4206 }
4207
4208 /*
4209 * idx can be of type enum memcg_stat_item or node_stat_item.
4210 * Keep in sync with memcg_exact_page().
4211 */
4212 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4213 {
4214 long x = atomic_long_read(&memcg->vmstats[idx]);
4215 int cpu;
4216
4217 for_each_online_cpu(cpu)
4218 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4219 if (x < 0)
4220 x = 0;
4221 return x;
4222 }
4223
4224 /**
4225 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4226 * @wb: bdi_writeback in question
4227 * @pfilepages: out parameter for number of file pages
4228 * @pheadroom: out parameter for number of allocatable pages according to memcg
4229 * @pdirty: out parameter for number of dirty pages
4230 * @pwriteback: out parameter for number of pages under writeback
4231 *
4232 * Determine the numbers of file, headroom, dirty, and writeback pages in
4233 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4234 * is a bit more involved.
4235 *
4236 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4237 * headroom is calculated as the lowest headroom of itself and the
4238 * ancestors. Note that this doesn't consider the actual amount of
4239 * available memory in the system. The caller should further cap
4240 * *@pheadroom accordingly.
4241 */
4242 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4243 unsigned long *pheadroom, unsigned long *pdirty,
4244 unsigned long *pwriteback)
4245 {
4246 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4247 struct mem_cgroup *parent;
4248
4249 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4250
4251 /* this should eventually include NR_UNSTABLE_NFS */
4252 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4253 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4254 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4255 *pheadroom = PAGE_COUNTER_MAX;
4256
4257 while ((parent = parent_mem_cgroup(memcg))) {
4258 unsigned long ceiling = min(memcg->memory.max, memcg->high);
4259 unsigned long used = page_counter_read(&memcg->memory);
4260
4261 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4262 memcg = parent;
4263 }
4264 }
4265
4266 /*
4267 * Foreign dirty flushing
4268 *
4269 * There's an inherent mismatch between memcg and writeback. The former
4270 * trackes ownership per-page while the latter per-inode. This was a
4271 * deliberate design decision because honoring per-page ownership in the
4272 * writeback path is complicated, may lead to higher CPU and IO overheads
4273 * and deemed unnecessary given that write-sharing an inode across
4274 * different cgroups isn't a common use-case.
4275 *
4276 * Combined with inode majority-writer ownership switching, this works well
4277 * enough in most cases but there are some pathological cases. For
4278 * example, let's say there are two cgroups A and B which keep writing to
4279 * different but confined parts of the same inode. B owns the inode and
4280 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4281 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4282 * triggering background writeback. A will be slowed down without a way to
4283 * make writeback of the dirty pages happen.
4284 *
4285 * Conditions like the above can lead to a cgroup getting repatedly and
4286 * severely throttled after making some progress after each
4287 * dirty_expire_interval while the underyling IO device is almost
4288 * completely idle.
4289 *
4290 * Solving this problem completely requires matching the ownership tracking
4291 * granularities between memcg and writeback in either direction. However,
4292 * the more egregious behaviors can be avoided by simply remembering the
4293 * most recent foreign dirtying events and initiating remote flushes on
4294 * them when local writeback isn't enough to keep the memory clean enough.
4295 *
4296 * The following two functions implement such mechanism. When a foreign
4297 * page - a page whose memcg and writeback ownerships don't match - is
4298 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4299 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4300 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4301 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4302 * foreign bdi_writebacks which haven't expired. Both the numbers of
4303 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4304 * limited to MEMCG_CGWB_FRN_CNT.
4305 *
4306 * The mechanism only remembers IDs and doesn't hold any object references.
4307 * As being wrong occasionally doesn't matter, updates and accesses to the
4308 * records are lockless and racy.
4309 */
4310 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4311 struct bdi_writeback *wb)
4312 {
4313 struct mem_cgroup *memcg = page->mem_cgroup;
4314 struct memcg_cgwb_frn *frn;
4315 u64 now = get_jiffies_64();
4316 u64 oldest_at = now;
4317 int oldest = -1;
4318 int i;
4319
4320 trace_track_foreign_dirty(page, wb);
4321
4322 /*
4323 * Pick the slot to use. If there is already a slot for @wb, keep
4324 * using it. If not replace the oldest one which isn't being
4325 * written out.
4326 */
4327 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4328 frn = &memcg->cgwb_frn[i];
4329 if (frn->bdi_id == wb->bdi->id &&
4330 frn->memcg_id == wb->memcg_css->id)
4331 break;
4332 if (time_before64(frn->at, oldest_at) &&
4333 atomic_read(&frn->done.cnt) == 1) {
4334 oldest = i;
4335 oldest_at = frn->at;
4336 }
4337 }
4338
4339 if (i < MEMCG_CGWB_FRN_CNT) {
4340 /*
4341 * Re-using an existing one. Update timestamp lazily to
4342 * avoid making the cacheline hot. We want them to be
4343 * reasonably up-to-date and significantly shorter than
4344 * dirty_expire_interval as that's what expires the record.
4345 * Use the shorter of 1s and dirty_expire_interval / 8.
4346 */
4347 unsigned long update_intv =
4348 min_t(unsigned long, HZ,
4349 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4350
4351 if (time_before64(frn->at, now - update_intv))
4352 frn->at = now;
4353 } else if (oldest >= 0) {
4354 /* replace the oldest free one */
4355 frn = &memcg->cgwb_frn[oldest];
4356 frn->bdi_id = wb->bdi->id;
4357 frn->memcg_id = wb->memcg_css->id;
4358 frn->at = now;
4359 }
4360 }
4361
4362 /* issue foreign writeback flushes for recorded foreign dirtying events */
4363 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4364 {
4365 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4366 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4367 u64 now = jiffies_64;
4368 int i;
4369
4370 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4371 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4372
4373 /*
4374 * If the record is older than dirty_expire_interval,
4375 * writeback on it has already started. No need to kick it
4376 * off again. Also, don't start a new one if there's
4377 * already one in flight.
4378 */
4379 if (time_after64(frn->at, now - intv) &&
4380 atomic_read(&frn->done.cnt) == 1) {
4381 frn->at = 0;
4382 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4383 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4384 WB_REASON_FOREIGN_FLUSH,
4385 &frn->done);
4386 }
4387 }
4388 }
4389
4390 #else /* CONFIG_CGROUP_WRITEBACK */
4391
4392 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4393 {
4394 return 0;
4395 }
4396
4397 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4398 {
4399 }
4400
4401 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4402 {
4403 }
4404
4405 #endif /* CONFIG_CGROUP_WRITEBACK */
4406
4407 /*
4408 * DO NOT USE IN NEW FILES.
4409 *
4410 * "cgroup.event_control" implementation.
4411 *
4412 * This is way over-engineered. It tries to support fully configurable
4413 * events for each user. Such level of flexibility is completely
4414 * unnecessary especially in the light of the planned unified hierarchy.
4415 *
4416 * Please deprecate this and replace with something simpler if at all
4417 * possible.
4418 */
4419
4420 /*
4421 * Unregister event and free resources.
4422 *
4423 * Gets called from workqueue.
4424 */
4425 static void memcg_event_remove(struct work_struct *work)
4426 {
4427 struct mem_cgroup_event *event =
4428 container_of(work, struct mem_cgroup_event, remove);
4429 struct mem_cgroup *memcg = event->memcg;
4430
4431 remove_wait_queue(event->wqh, &event->wait);
4432
4433 event->unregister_event(memcg, event->eventfd);
4434
4435 /* Notify userspace the event is going away. */
4436 eventfd_signal(event->eventfd, 1);
4437
4438 eventfd_ctx_put(event->eventfd);
4439 kfree(event);
4440 css_put(&memcg->css);
4441 }
4442
4443 /*
4444 * Gets called on EPOLLHUP on eventfd when user closes it.
4445 *
4446 * Called with wqh->lock held and interrupts disabled.
4447 */
4448 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4449 int sync, void *key)
4450 {
4451 struct mem_cgroup_event *event =
4452 container_of(wait, struct mem_cgroup_event, wait);
4453 struct mem_cgroup *memcg = event->memcg;
4454 __poll_t flags = key_to_poll(key);
4455
4456 if (flags & EPOLLHUP) {
4457 /*
4458 * If the event has been detached at cgroup removal, we
4459 * can simply return knowing the other side will cleanup
4460 * for us.
4461 *
4462 * We can't race against event freeing since the other
4463 * side will require wqh->lock via remove_wait_queue(),
4464 * which we hold.
4465 */
4466 spin_lock(&memcg->event_list_lock);
4467 if (!list_empty(&event->list)) {
4468 list_del_init(&event->list);
4469 /*
4470 * We are in atomic context, but cgroup_event_remove()
4471 * may sleep, so we have to call it in workqueue.
4472 */
4473 schedule_work(&event->remove);
4474 }
4475 spin_unlock(&memcg->event_list_lock);
4476 }
4477
4478 return 0;
4479 }
4480
4481 static void memcg_event_ptable_queue_proc(struct file *file,
4482 wait_queue_head_t *wqh, poll_table *pt)
4483 {
4484 struct mem_cgroup_event *event =
4485 container_of(pt, struct mem_cgroup_event, pt);
4486
4487 event->wqh = wqh;
4488 add_wait_queue(wqh, &event->wait);
4489 }
4490
4491 /*
4492 * DO NOT USE IN NEW FILES.
4493 *
4494 * Parse input and register new cgroup event handler.
4495 *
4496 * Input must be in format '<event_fd> <control_fd> <args>'.
4497 * Interpretation of args is defined by control file implementation.
4498 */
4499 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4500 char *buf, size_t nbytes, loff_t off)
4501 {
4502 struct cgroup_subsys_state *css = of_css(of);
4503 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4504 struct mem_cgroup_event *event;
4505 struct cgroup_subsys_state *cfile_css;
4506 unsigned int efd, cfd;
4507 struct fd efile;
4508 struct fd cfile;
4509 const char *name;
4510 char *endp;
4511 int ret;
4512
4513 buf = strstrip(buf);
4514
4515 efd = simple_strtoul(buf, &endp, 10);
4516 if (*endp != ' ')
4517 return -EINVAL;
4518 buf = endp + 1;
4519
4520 cfd = simple_strtoul(buf, &endp, 10);
4521 if ((*endp != ' ') && (*endp != '\0'))
4522 return -EINVAL;
4523 buf = endp + 1;
4524
4525 event = kzalloc(sizeof(*event), GFP_KERNEL);
4526 if (!event)
4527 return -ENOMEM;
4528
4529 event->memcg = memcg;
4530 INIT_LIST_HEAD(&event->list);
4531 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4532 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4533 INIT_WORK(&event->remove, memcg_event_remove);
4534
4535 efile = fdget(efd);
4536 if (!efile.file) {
4537 ret = -EBADF;
4538 goto out_kfree;
4539 }
4540
4541 event->eventfd = eventfd_ctx_fileget(efile.file);
4542 if (IS_ERR(event->eventfd)) {
4543 ret = PTR_ERR(event->eventfd);
4544 goto out_put_efile;
4545 }
4546
4547 cfile = fdget(cfd);
4548 if (!cfile.file) {
4549 ret = -EBADF;
4550 goto out_put_eventfd;
4551 }
4552
4553 /* the process need read permission on control file */
4554 /* AV: shouldn't we check that it's been opened for read instead? */
4555 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4556 if (ret < 0)
4557 goto out_put_cfile;
4558
4559 /*
4560 * Determine the event callbacks and set them in @event. This used
4561 * to be done via struct cftype but cgroup core no longer knows
4562 * about these events. The following is crude but the whole thing
4563 * is for compatibility anyway.
4564 *
4565 * DO NOT ADD NEW FILES.
4566 */
4567 name = cfile.file->f_path.dentry->d_name.name;
4568
4569 if (!strcmp(name, "memory.usage_in_bytes")) {
4570 event->register_event = mem_cgroup_usage_register_event;
4571 event->unregister_event = mem_cgroup_usage_unregister_event;
4572 } else if (!strcmp(name, "memory.oom_control")) {
4573 event->register_event = mem_cgroup_oom_register_event;
4574 event->unregister_event = mem_cgroup_oom_unregister_event;
4575 } else if (!strcmp(name, "memory.pressure_level")) {
4576 event->register_event = vmpressure_register_event;
4577 event->unregister_event = vmpressure_unregister_event;
4578 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4579 event->register_event = memsw_cgroup_usage_register_event;
4580 event->unregister_event = memsw_cgroup_usage_unregister_event;
4581 } else {
4582 ret = -EINVAL;
4583 goto out_put_cfile;
4584 }
4585
4586 /*
4587 * Verify @cfile should belong to @css. Also, remaining events are
4588 * automatically removed on cgroup destruction but the removal is
4589 * asynchronous, so take an extra ref on @css.
4590 */
4591 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4592 &memory_cgrp_subsys);
4593 ret = -EINVAL;
4594 if (IS_ERR(cfile_css))
4595 goto out_put_cfile;
4596 if (cfile_css != css) {
4597 css_put(cfile_css);
4598 goto out_put_cfile;
4599 }
4600
4601 ret = event->register_event(memcg, event->eventfd, buf);
4602 if (ret)
4603 goto out_put_css;
4604
4605 vfs_poll(efile.file, &event->pt);
4606
4607 spin_lock(&memcg->event_list_lock);
4608 list_add(&event->list, &memcg->event_list);
4609 spin_unlock(&memcg->event_list_lock);
4610
4611 fdput(cfile);
4612 fdput(efile);
4613
4614 return nbytes;
4615
4616 out_put_css:
4617 css_put(css);
4618 out_put_cfile:
4619 fdput(cfile);
4620 out_put_eventfd:
4621 eventfd_ctx_put(event->eventfd);
4622 out_put_efile:
4623 fdput(efile);
4624 out_kfree:
4625 kfree(event);
4626
4627 return ret;
4628 }
4629
4630 static struct cftype mem_cgroup_legacy_files[] = {
4631 {
4632 .name = "usage_in_bytes",
4633 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4634 .read_u64 = mem_cgroup_read_u64,
4635 },
4636 {
4637 .name = "max_usage_in_bytes",
4638 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4639 .write = mem_cgroup_reset,
4640 .read_u64 = mem_cgroup_read_u64,
4641 },
4642 {
4643 .name = "limit_in_bytes",
4644 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4645 .write = mem_cgroup_write,
4646 .read_u64 = mem_cgroup_read_u64,
4647 },
4648 {
4649 .name = "soft_limit_in_bytes",
4650 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4651 .write = mem_cgroup_write,
4652 .read_u64 = mem_cgroup_read_u64,
4653 },
4654 {
4655 .name = "failcnt",
4656 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4657 .write = mem_cgroup_reset,
4658 .read_u64 = mem_cgroup_read_u64,
4659 },
4660 {
4661 .name = "stat",
4662 .seq_show = memcg_stat_show,
4663 },
4664 {
4665 .name = "force_empty",
4666 .write = mem_cgroup_force_empty_write,
4667 },
4668 {
4669 .name = "use_hierarchy",
4670 .write_u64 = mem_cgroup_hierarchy_write,
4671 .read_u64 = mem_cgroup_hierarchy_read,
4672 },
4673 {
4674 .name = "cgroup.event_control", /* XXX: for compat */
4675 .write = memcg_write_event_control,
4676 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4677 },
4678 {
4679 .name = "swappiness",
4680 .read_u64 = mem_cgroup_swappiness_read,
4681 .write_u64 = mem_cgroup_swappiness_write,
4682 },
4683 {
4684 .name = "move_charge_at_immigrate",
4685 .read_u64 = mem_cgroup_move_charge_read,
4686 .write_u64 = mem_cgroup_move_charge_write,
4687 },
4688 {
4689 .name = "oom_control",
4690 .seq_show = mem_cgroup_oom_control_read,
4691 .write_u64 = mem_cgroup_oom_control_write,
4692 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4693 },
4694 {
4695 .name = "pressure_level",
4696 },
4697 #ifdef CONFIG_NUMA
4698 {
4699 .name = "numa_stat",
4700 .seq_show = memcg_numa_stat_show,
4701 },
4702 #endif
4703 {
4704 .name = "kmem.limit_in_bytes",
4705 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4706 .write = mem_cgroup_write,
4707 .read_u64 = mem_cgroup_read_u64,
4708 },
4709 {
4710 .name = "kmem.usage_in_bytes",
4711 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4712 .read_u64 = mem_cgroup_read_u64,
4713 },
4714 {
4715 .name = "kmem.failcnt",
4716 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4717 .write = mem_cgroup_reset,
4718 .read_u64 = mem_cgroup_read_u64,
4719 },
4720 {
4721 .name = "kmem.max_usage_in_bytes",
4722 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
4723 .write = mem_cgroup_reset,
4724 .read_u64 = mem_cgroup_read_u64,
4725 },
4726 #if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
4727 {
4728 .name = "kmem.slabinfo",
4729 .seq_start = memcg_slab_start,
4730 .seq_next = memcg_slab_next,
4731 .seq_stop = memcg_slab_stop,
4732 .seq_show = memcg_slab_show,
4733 },
4734 #endif
4735 {
4736 .name = "kmem.tcp.limit_in_bytes",
4737 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4738 .write = mem_cgroup_write,
4739 .read_u64 = mem_cgroup_read_u64,
4740 },
4741 {
4742 .name = "kmem.tcp.usage_in_bytes",
4743 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4744 .read_u64 = mem_cgroup_read_u64,
4745 },
4746 {
4747 .name = "kmem.tcp.failcnt",
4748 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4749 .write = mem_cgroup_reset,
4750 .read_u64 = mem_cgroup_read_u64,
4751 },
4752 {
4753 .name = "kmem.tcp.max_usage_in_bytes",
4754 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4755 .write = mem_cgroup_reset,
4756 .read_u64 = mem_cgroup_read_u64,
4757 },
4758 { }, /* terminate */
4759 };
4760
4761 /*
4762 * Private memory cgroup IDR
4763 *
4764 * Swap-out records and page cache shadow entries need to store memcg
4765 * references in constrained space, so we maintain an ID space that is
4766 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4767 * memory-controlled cgroups to 64k.
4768 *
4769 * However, there usually are many references to the oflline CSS after
4770 * the cgroup has been destroyed, such as page cache or reclaimable
4771 * slab objects, that don't need to hang on to the ID. We want to keep
4772 * those dead CSS from occupying IDs, or we might quickly exhaust the
4773 * relatively small ID space and prevent the creation of new cgroups
4774 * even when there are much fewer than 64k cgroups - possibly none.
4775 *
4776 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4777 * be freed and recycled when it's no longer needed, which is usually
4778 * when the CSS is offlined.
4779 *
4780 * The only exception to that are records of swapped out tmpfs/shmem
4781 * pages that need to be attributed to live ancestors on swapin. But
4782 * those references are manageable from userspace.
4783 */
4784
4785 static DEFINE_IDR(mem_cgroup_idr);
4786
4787 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
4788 {
4789 if (memcg->id.id > 0) {
4790 idr_remove(&mem_cgroup_idr, memcg->id.id);
4791 memcg->id.id = 0;
4792 }
4793 }
4794
4795 static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
4796 {
4797 refcount_add(n, &memcg->id.ref);
4798 }
4799
4800 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
4801 {
4802 if (refcount_sub_and_test(n, &memcg->id.ref)) {
4803 mem_cgroup_id_remove(memcg);
4804
4805 /* Memcg ID pins CSS */
4806 css_put(&memcg->css);
4807 }
4808 }
4809
4810 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4811 {
4812 mem_cgroup_id_put_many(memcg, 1);
4813 }
4814
4815 /**
4816 * mem_cgroup_from_id - look up a memcg from a memcg id
4817 * @id: the memcg id to look up
4818 *
4819 * Caller must hold rcu_read_lock().
4820 */
4821 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4822 {
4823 WARN_ON_ONCE(!rcu_read_lock_held());
4824 return idr_find(&mem_cgroup_idr, id);
4825 }
4826
4827 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4828 {
4829 struct mem_cgroup_per_node *pn;
4830 int tmp = node;
4831 /*
4832 * This routine is called against possible nodes.
4833 * But it's BUG to call kmalloc() against offline node.
4834 *
4835 * TODO: this routine can waste much memory for nodes which will
4836 * never be onlined. It's better to use memory hotplug callback
4837 * function.
4838 */
4839 if (!node_state(node, N_NORMAL_MEMORY))
4840 tmp = -1;
4841 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4842 if (!pn)
4843 return 1;
4844
4845 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
4846 if (!pn->lruvec_stat_local) {
4847 kfree(pn);
4848 return 1;
4849 }
4850
4851 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
4852 if (!pn->lruvec_stat_cpu) {
4853 free_percpu(pn->lruvec_stat_local);
4854 kfree(pn);
4855 return 1;
4856 }
4857
4858 lruvec_init(&pn->lruvec);
4859 pn->usage_in_excess = 0;
4860 pn->on_tree = false;
4861 pn->memcg = memcg;
4862
4863 memcg->nodeinfo[node] = pn;
4864 return 0;
4865 }
4866
4867 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
4868 {
4869 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4870
4871 if (!pn)
4872 return;
4873
4874 free_percpu(pn->lruvec_stat_cpu);
4875 free_percpu(pn->lruvec_stat_local);
4876 kfree(pn);
4877 }
4878
4879 static void __mem_cgroup_free(struct mem_cgroup *memcg)
4880 {
4881 int node;
4882
4883 for_each_node(node)
4884 free_mem_cgroup_per_node_info(memcg, node);
4885 free_percpu(memcg->vmstats_percpu);
4886 free_percpu(memcg->vmstats_local);
4887 kfree(memcg);
4888 }
4889
4890 static void mem_cgroup_free(struct mem_cgroup *memcg)
4891 {
4892 memcg_wb_domain_exit(memcg);
4893 /*
4894 * Flush percpu vmstats and vmevents to guarantee the value correctness
4895 * on parent's and all ancestor levels.
4896 */
4897 memcg_flush_percpu_vmstats(memcg);
4898 memcg_flush_percpu_vmevents(memcg);
4899 __mem_cgroup_free(memcg);
4900 }
4901
4902 static struct mem_cgroup *mem_cgroup_alloc(void)
4903 {
4904 struct mem_cgroup *memcg;
4905 unsigned int size;
4906 int node;
4907 int __maybe_unused i;
4908
4909 size = sizeof(struct mem_cgroup);
4910 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4911
4912 memcg = kzalloc(size, GFP_KERNEL);
4913 if (!memcg)
4914 return NULL;
4915
4916 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4917 1, MEM_CGROUP_ID_MAX,
4918 GFP_KERNEL);
4919 if (memcg->id.id < 0)
4920 goto fail;
4921
4922 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
4923 if (!memcg->vmstats_local)
4924 goto fail;
4925
4926 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
4927 if (!memcg->vmstats_percpu)
4928 goto fail;
4929
4930 for_each_node(node)
4931 if (alloc_mem_cgroup_per_node_info(memcg, node))
4932 goto fail;
4933
4934 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4935 goto fail;
4936
4937 INIT_WORK(&memcg->high_work, high_work_func);
4938 INIT_LIST_HEAD(&memcg->oom_notify);
4939 mutex_init(&memcg->thresholds_lock);
4940 spin_lock_init(&memcg->move_lock);
4941 vmpressure_init(&memcg->vmpressure);
4942 INIT_LIST_HEAD(&memcg->event_list);
4943 spin_lock_init(&memcg->event_list_lock);
4944 memcg->socket_pressure = jiffies;
4945 #ifdef CONFIG_MEMCG_KMEM
4946 memcg->kmemcg_id = -1;
4947 #endif
4948 #ifdef CONFIG_CGROUP_WRITEBACK
4949 INIT_LIST_HEAD(&memcg->cgwb_list);
4950 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
4951 memcg->cgwb_frn[i].done =
4952 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
4953 #endif
4954 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4955 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
4956 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
4957 memcg->deferred_split_queue.split_queue_len = 0;
4958 #endif
4959 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
4960 return memcg;
4961 fail:
4962 mem_cgroup_id_remove(memcg);
4963 __mem_cgroup_free(memcg);
4964 return NULL;
4965 }
4966
4967 static struct cgroup_subsys_state * __ref
4968 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
4969 {
4970 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4971 struct mem_cgroup *memcg;
4972 long error = -ENOMEM;
4973
4974 memcg = mem_cgroup_alloc();
4975 if (!memcg)
4976 return ERR_PTR(error);
4977
4978 memcg->high = PAGE_COUNTER_MAX;
4979 memcg->soft_limit = PAGE_COUNTER_MAX;
4980 if (parent) {
4981 memcg->swappiness = mem_cgroup_swappiness(parent);
4982 memcg->oom_kill_disable = parent->oom_kill_disable;
4983 }
4984 if (parent && parent->use_hierarchy) {
4985 memcg->use_hierarchy = true;
4986 page_counter_init(&memcg->memory, &parent->memory);
4987 page_counter_init(&memcg->swap, &parent->swap);
4988 page_counter_init(&memcg->memsw, &parent->memsw);
4989 page_counter_init(&memcg->kmem, &parent->kmem);
4990 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
4991 } else {
4992 page_counter_init(&memcg->memory, NULL);
4993 page_counter_init(&memcg->swap, NULL);
4994 page_counter_init(&memcg->memsw, NULL);
4995 page_counter_init(&memcg->kmem, NULL);
4996 page_counter_init(&memcg->tcpmem, NULL);
4997 /*
4998 * Deeper hierachy with use_hierarchy == false doesn't make
4999 * much sense so let cgroup subsystem know about this
5000 * unfortunate state in our controller.
5001 */
5002 if (parent != root_mem_cgroup)
5003 memory_cgrp_subsys.broken_hierarchy = true;
5004 }
5005
5006 /* The following stuff does not apply to the root */
5007 if (!parent) {
5008 #ifdef CONFIG_MEMCG_KMEM
5009 INIT_LIST_HEAD(&memcg->kmem_caches);
5010 #endif
5011 root_mem_cgroup = memcg;
5012 return &memcg->css;
5013 }
5014
5015 error = memcg_online_kmem(memcg);
5016 if (error)
5017 goto fail;
5018
5019 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5020 static_branch_inc(&memcg_sockets_enabled_key);
5021
5022 return &memcg->css;
5023 fail:
5024 mem_cgroup_id_remove(memcg);
5025 mem_cgroup_free(memcg);
5026 return ERR_PTR(-ENOMEM);
5027 }
5028
5029 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5030 {
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5032
5033 /*
5034 * A memcg must be visible for memcg_expand_shrinker_maps()
5035 * by the time the maps are allocated. So, we allocate maps
5036 * here, when for_each_mem_cgroup() can't skip it.
5037 */
5038 if (memcg_alloc_shrinker_maps(memcg)) {
5039 mem_cgroup_id_remove(memcg);
5040 return -ENOMEM;
5041 }
5042
5043 /* Online state pins memcg ID, memcg ID pins CSS */
5044 refcount_set(&memcg->id.ref, 1);
5045 css_get(css);
5046 return 0;
5047 }
5048
5049 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5050 {
5051 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5052 struct mem_cgroup_event *event, *tmp;
5053
5054 /*
5055 * Unregister events and notify userspace.
5056 * Notify userspace about cgroup removing only after rmdir of cgroup
5057 * directory to avoid race between userspace and kernelspace.
5058 */
5059 spin_lock(&memcg->event_list_lock);
5060 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5061 list_del_init(&event->list);
5062 schedule_work(&event->remove);
5063 }
5064 spin_unlock(&memcg->event_list_lock);
5065
5066 page_counter_set_min(&memcg->memory, 0);
5067 page_counter_set_low(&memcg->memory, 0);
5068
5069 memcg_offline_kmem(memcg);
5070 wb_memcg_offline(memcg);
5071
5072 drain_all_stock(memcg);
5073
5074 mem_cgroup_id_put(memcg);
5075 }
5076
5077 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5078 {
5079 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5080
5081 invalidate_reclaim_iterators(memcg);
5082 }
5083
5084 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5085 {
5086 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5087 int __maybe_unused i;
5088
5089 #ifdef CONFIG_CGROUP_WRITEBACK
5090 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5091 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5092 #endif
5093 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5094 static_branch_dec(&memcg_sockets_enabled_key);
5095
5096 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5097 static_branch_dec(&memcg_sockets_enabled_key);
5098
5099 vmpressure_cleanup(&memcg->vmpressure);
5100 cancel_work_sync(&memcg->high_work);
5101 mem_cgroup_remove_from_trees(memcg);
5102 memcg_free_shrinker_maps(memcg);
5103 memcg_free_kmem(memcg);
5104 mem_cgroup_free(memcg);
5105 }
5106
5107 /**
5108 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5109 * @css: the target css
5110 *
5111 * Reset the states of the mem_cgroup associated with @css. This is
5112 * invoked when the userland requests disabling on the default hierarchy
5113 * but the memcg is pinned through dependency. The memcg should stop
5114 * applying policies and should revert to the vanilla state as it may be
5115 * made visible again.
5116 *
5117 * The current implementation only resets the essential configurations.
5118 * This needs to be expanded to cover all the visible parts.
5119 */
5120 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5121 {
5122 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5123
5124 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5125 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5126 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5127 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5128 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5129 page_counter_set_min(&memcg->memory, 0);
5130 page_counter_set_low(&memcg->memory, 0);
5131 memcg->high = PAGE_COUNTER_MAX;
5132 memcg->soft_limit = PAGE_COUNTER_MAX;
5133 memcg_wb_domain_size_changed(memcg);
5134 }
5135
5136 #ifdef CONFIG_MMU
5137 /* Handlers for move charge at task migration. */
5138 static int mem_cgroup_do_precharge(unsigned long count)
5139 {
5140 int ret;
5141
5142 /* Try a single bulk charge without reclaim first, kswapd may wake */
5143 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5144 if (!ret) {
5145 mc.precharge += count;
5146 return ret;
5147 }
5148
5149 /* Try charges one by one with reclaim, but do not retry */
5150 while (count--) {
5151 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5152 if (ret)
5153 return ret;
5154 mc.precharge++;
5155 cond_resched();
5156 }
5157 return 0;
5158 }
5159
5160 union mc_target {
5161 struct page *page;
5162 swp_entry_t ent;
5163 };
5164
5165 enum mc_target_type {
5166 MC_TARGET_NONE = 0,
5167 MC_TARGET_PAGE,
5168 MC_TARGET_SWAP,
5169 MC_TARGET_DEVICE,
5170 };
5171
5172 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5173 unsigned long addr, pte_t ptent)
5174 {
5175 struct page *page = vm_normal_page(vma, addr, ptent);
5176
5177 if (!page || !page_mapped(page))
5178 return NULL;
5179 if (PageAnon(page)) {
5180 if (!(mc.flags & MOVE_ANON))
5181 return NULL;
5182 } else {
5183 if (!(mc.flags & MOVE_FILE))
5184 return NULL;
5185 }
5186 if (!get_page_unless_zero(page))
5187 return NULL;
5188
5189 return page;
5190 }
5191
5192 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5193 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5194 pte_t ptent, swp_entry_t *entry)
5195 {
5196 struct page *page = NULL;
5197 swp_entry_t ent = pte_to_swp_entry(ptent);
5198
5199 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5200 return NULL;
5201
5202 /*
5203 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5204 * a device and because they are not accessible by CPU they are store
5205 * as special swap entry in the CPU page table.
5206 */
5207 if (is_device_private_entry(ent)) {
5208 page = device_private_entry_to_page(ent);
5209 /*
5210 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5211 * a refcount of 1 when free (unlike normal page)
5212 */
5213 if (!page_ref_add_unless(page, 1, 1))
5214 return NULL;
5215 return page;
5216 }
5217
5218 /*
5219 * Because lookup_swap_cache() updates some statistics counter,
5220 * we call find_get_page() with swapper_space directly.
5221 */
5222 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5223 if (do_memsw_account())
5224 entry->val = ent.val;
5225
5226 return page;
5227 }
5228 #else
5229 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5230 pte_t ptent, swp_entry_t *entry)
5231 {
5232 return NULL;
5233 }
5234 #endif
5235
5236 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5237 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5238 {
5239 struct page *page = NULL;
5240 struct address_space *mapping;
5241 pgoff_t pgoff;
5242
5243 if (!vma->vm_file) /* anonymous vma */
5244 return NULL;
5245 if (!(mc.flags & MOVE_FILE))
5246 return NULL;
5247
5248 mapping = vma->vm_file->f_mapping;
5249 pgoff = linear_page_index(vma, addr);
5250
5251 /* page is moved even if it's not RSS of this task(page-faulted). */
5252 #ifdef CONFIG_SWAP
5253 /* shmem/tmpfs may report page out on swap: account for that too. */
5254 if (shmem_mapping(mapping)) {
5255 page = find_get_entry(mapping, pgoff);
5256 if (xa_is_value(page)) {
5257 swp_entry_t swp = radix_to_swp_entry(page);
5258 if (do_memsw_account())
5259 *entry = swp;
5260 page = find_get_page(swap_address_space(swp),
5261 swp_offset(swp));
5262 }
5263 } else
5264 page = find_get_page(mapping, pgoff);
5265 #else
5266 page = find_get_page(mapping, pgoff);
5267 #endif
5268 return page;
5269 }
5270
5271 /**
5272 * mem_cgroup_move_account - move account of the page
5273 * @page: the page
5274 * @compound: charge the page as compound or small page
5275 * @from: mem_cgroup which the page is moved from.
5276 * @to: mem_cgroup which the page is moved to. @from != @to.
5277 *
5278 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5279 *
5280 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5281 * from old cgroup.
5282 */
5283 static int mem_cgroup_move_account(struct page *page,
5284 bool compound,
5285 struct mem_cgroup *from,
5286 struct mem_cgroup *to)
5287 {
5288 struct lruvec *from_vec, *to_vec;
5289 struct pglist_data *pgdat;
5290 unsigned long flags;
5291 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5292 int ret;
5293 bool anon;
5294
5295 VM_BUG_ON(from == to);
5296 VM_BUG_ON_PAGE(PageLRU(page), page);
5297 VM_BUG_ON(compound && !PageTransHuge(page));
5298
5299 /*
5300 * Prevent mem_cgroup_migrate() from looking at
5301 * page->mem_cgroup of its source page while we change it.
5302 */
5303 ret = -EBUSY;
5304 if (!trylock_page(page))
5305 goto out;
5306
5307 ret = -EINVAL;
5308 if (page->mem_cgroup != from)
5309 goto out_unlock;
5310
5311 anon = PageAnon(page);
5312
5313 pgdat = page_pgdat(page);
5314 from_vec = mem_cgroup_lruvec(from, pgdat);
5315 to_vec = mem_cgroup_lruvec(to, pgdat);
5316
5317 spin_lock_irqsave(&from->move_lock, flags);
5318
5319 if (!anon && page_mapped(page)) {
5320 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5321 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5322 }
5323
5324 /*
5325 * move_lock grabbed above and caller set from->moving_account, so
5326 * mod_memcg_page_state will serialize updates to PageDirty.
5327 * So mapping should be stable for dirty pages.
5328 */
5329 if (!anon && PageDirty(page)) {
5330 struct address_space *mapping = page_mapping(page);
5331
5332 if (mapping_cap_account_dirty(mapping)) {
5333 __mod_lruvec_state(from_vec, NR_FILE_DIRTY, -nr_pages);
5334 __mod_lruvec_state(to_vec, NR_FILE_DIRTY, nr_pages);
5335 }
5336 }
5337
5338 if (PageWriteback(page)) {
5339 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5340 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5341 }
5342
5343 /*
5344 * It is safe to change page->mem_cgroup here because the page
5345 * is referenced, charged, and isolated - we can't race with
5346 * uncharging, charging, migration, or LRU putback.
5347 */
5348
5349 /* caller should have done css_get */
5350 page->mem_cgroup = to;
5351
5352 spin_unlock_irqrestore(&from->move_lock, flags);
5353
5354 ret = 0;
5355
5356 local_irq_disable();
5357 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
5358 memcg_check_events(to, page);
5359 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
5360 memcg_check_events(from, page);
5361 local_irq_enable();
5362 out_unlock:
5363 unlock_page(page);
5364 out:
5365 return ret;
5366 }
5367
5368 /**
5369 * get_mctgt_type - get target type of moving charge
5370 * @vma: the vma the pte to be checked belongs
5371 * @addr: the address corresponding to the pte to be checked
5372 * @ptent: the pte to be checked
5373 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5374 *
5375 * Returns
5376 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5377 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5378 * move charge. if @target is not NULL, the page is stored in target->page
5379 * with extra refcnt got(Callers should handle it).
5380 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5381 * target for charge migration. if @target is not NULL, the entry is stored
5382 * in target->ent.
5383 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5384 * (so ZONE_DEVICE page and thus not on the lru).
5385 * For now we such page is charge like a regular page would be as for all
5386 * intent and purposes it is just special memory taking the place of a
5387 * regular page.
5388 *
5389 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5390 *
5391 * Called with pte lock held.
5392 */
5393
5394 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5395 unsigned long addr, pte_t ptent, union mc_target *target)
5396 {
5397 struct page *page = NULL;
5398 enum mc_target_type ret = MC_TARGET_NONE;
5399 swp_entry_t ent = { .val = 0 };
5400
5401 if (pte_present(ptent))
5402 page = mc_handle_present_pte(vma, addr, ptent);
5403 else if (is_swap_pte(ptent))
5404 page = mc_handle_swap_pte(vma, ptent, &ent);
5405 else if (pte_none(ptent))
5406 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5407
5408 if (!page && !ent.val)
5409 return ret;
5410 if (page) {
5411 /*
5412 * Do only loose check w/o serialization.
5413 * mem_cgroup_move_account() checks the page is valid or
5414 * not under LRU exclusion.
5415 */
5416 if (page->mem_cgroup == mc.from) {
5417 ret = MC_TARGET_PAGE;
5418 if (is_device_private_page(page))
5419 ret = MC_TARGET_DEVICE;
5420 if (target)
5421 target->page = page;
5422 }
5423 if (!ret || !target)
5424 put_page(page);
5425 }
5426 /*
5427 * There is a swap entry and a page doesn't exist or isn't charged.
5428 * But we cannot move a tail-page in a THP.
5429 */
5430 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5431 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5432 ret = MC_TARGET_SWAP;
5433 if (target)
5434 target->ent = ent;
5435 }
5436 return ret;
5437 }
5438
5439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5440 /*
5441 * We don't consider PMD mapped swapping or file mapped pages because THP does
5442 * not support them for now.
5443 * Caller should make sure that pmd_trans_huge(pmd) is true.
5444 */
5445 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5446 unsigned long addr, pmd_t pmd, union mc_target *target)
5447 {
5448 struct page *page = NULL;
5449 enum mc_target_type ret = MC_TARGET_NONE;
5450
5451 if (unlikely(is_swap_pmd(pmd))) {
5452 VM_BUG_ON(thp_migration_supported() &&
5453 !is_pmd_migration_entry(pmd));
5454 return ret;
5455 }
5456 page = pmd_page(pmd);
5457 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5458 if (!(mc.flags & MOVE_ANON))
5459 return ret;
5460 if (page->mem_cgroup == mc.from) {
5461 ret = MC_TARGET_PAGE;
5462 if (target) {
5463 get_page(page);
5464 target->page = page;
5465 }
5466 }
5467 return ret;
5468 }
5469 #else
5470 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5471 unsigned long addr, pmd_t pmd, union mc_target *target)
5472 {
5473 return MC_TARGET_NONE;
5474 }
5475 #endif
5476
5477 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5478 unsigned long addr, unsigned long end,
5479 struct mm_walk *walk)
5480 {
5481 struct vm_area_struct *vma = walk->vma;
5482 pte_t *pte;
5483 spinlock_t *ptl;
5484
5485 ptl = pmd_trans_huge_lock(pmd, vma);
5486 if (ptl) {
5487 /*
5488 * Note their can not be MC_TARGET_DEVICE for now as we do not
5489 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5490 * this might change.
5491 */
5492 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5493 mc.precharge += HPAGE_PMD_NR;
5494 spin_unlock(ptl);
5495 return 0;
5496 }
5497
5498 if (pmd_trans_unstable(pmd))
5499 return 0;
5500 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5501 for (; addr != end; pte++, addr += PAGE_SIZE)
5502 if (get_mctgt_type(vma, addr, *pte, NULL))
5503 mc.precharge++; /* increment precharge temporarily */
5504 pte_unmap_unlock(pte - 1, ptl);
5505 cond_resched();
5506
5507 return 0;
5508 }
5509
5510 static const struct mm_walk_ops precharge_walk_ops = {
5511 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5512 };
5513
5514 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5515 {
5516 unsigned long precharge;
5517
5518 down_read(&mm->mmap_sem);
5519 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5520 up_read(&mm->mmap_sem);
5521
5522 precharge = mc.precharge;
5523 mc.precharge = 0;
5524
5525 return precharge;
5526 }
5527
5528 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5529 {
5530 unsigned long precharge = mem_cgroup_count_precharge(mm);
5531
5532 VM_BUG_ON(mc.moving_task);
5533 mc.moving_task = current;
5534 return mem_cgroup_do_precharge(precharge);
5535 }
5536
5537 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5538 static void __mem_cgroup_clear_mc(void)
5539 {
5540 struct mem_cgroup *from = mc.from;
5541 struct mem_cgroup *to = mc.to;
5542
5543 /* we must uncharge all the leftover precharges from mc.to */
5544 if (mc.precharge) {
5545 cancel_charge(mc.to, mc.precharge);
5546 mc.precharge = 0;
5547 }
5548 /*
5549 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5550 * we must uncharge here.
5551 */
5552 if (mc.moved_charge) {
5553 cancel_charge(mc.from, mc.moved_charge);
5554 mc.moved_charge = 0;
5555 }
5556 /* we must fixup refcnts and charges */
5557 if (mc.moved_swap) {
5558 /* uncharge swap account from the old cgroup */
5559 if (!mem_cgroup_is_root(mc.from))
5560 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5561
5562 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5563
5564 /*
5565 * we charged both to->memory and to->memsw, so we
5566 * should uncharge to->memory.
5567 */
5568 if (!mem_cgroup_is_root(mc.to))
5569 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5570
5571 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
5572 css_put_many(&mc.to->css, mc.moved_swap);
5573
5574 mc.moved_swap = 0;
5575 }
5576 memcg_oom_recover(from);
5577 memcg_oom_recover(to);
5578 wake_up_all(&mc.waitq);
5579 }
5580
5581 static void mem_cgroup_clear_mc(void)
5582 {
5583 struct mm_struct *mm = mc.mm;
5584
5585 /*
5586 * we must clear moving_task before waking up waiters at the end of
5587 * task migration.
5588 */
5589 mc.moving_task = NULL;
5590 __mem_cgroup_clear_mc();
5591 spin_lock(&mc.lock);
5592 mc.from = NULL;
5593 mc.to = NULL;
5594 mc.mm = NULL;
5595 spin_unlock(&mc.lock);
5596
5597 mmput(mm);
5598 }
5599
5600 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5601 {
5602 struct cgroup_subsys_state *css;
5603 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5604 struct mem_cgroup *from;
5605 struct task_struct *leader, *p;
5606 struct mm_struct *mm;
5607 unsigned long move_flags;
5608 int ret = 0;
5609
5610 /* charge immigration isn't supported on the default hierarchy */
5611 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5612 return 0;
5613
5614 /*
5615 * Multi-process migrations only happen on the default hierarchy
5616 * where charge immigration is not used. Perform charge
5617 * immigration if @tset contains a leader and whine if there are
5618 * multiple.
5619 */
5620 p = NULL;
5621 cgroup_taskset_for_each_leader(leader, css, tset) {
5622 WARN_ON_ONCE(p);
5623 p = leader;
5624 memcg = mem_cgroup_from_css(css);
5625 }
5626 if (!p)
5627 return 0;
5628
5629 /*
5630 * We are now commited to this value whatever it is. Changes in this
5631 * tunable will only affect upcoming migrations, not the current one.
5632 * So we need to save it, and keep it going.
5633 */
5634 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5635 if (!move_flags)
5636 return 0;
5637
5638 from = mem_cgroup_from_task(p);
5639
5640 VM_BUG_ON(from == memcg);
5641
5642 mm = get_task_mm(p);
5643 if (!mm)
5644 return 0;
5645 /* We move charges only when we move a owner of the mm */
5646 if (mm->owner == p) {
5647 VM_BUG_ON(mc.from);
5648 VM_BUG_ON(mc.to);
5649 VM_BUG_ON(mc.precharge);
5650 VM_BUG_ON(mc.moved_charge);
5651 VM_BUG_ON(mc.moved_swap);
5652
5653 spin_lock(&mc.lock);
5654 mc.mm = mm;
5655 mc.from = from;
5656 mc.to = memcg;
5657 mc.flags = move_flags;
5658 spin_unlock(&mc.lock);
5659 /* We set mc.moving_task later */
5660
5661 ret = mem_cgroup_precharge_mc(mm);
5662 if (ret)
5663 mem_cgroup_clear_mc();
5664 } else {
5665 mmput(mm);
5666 }
5667 return ret;
5668 }
5669
5670 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5671 {
5672 if (mc.to)
5673 mem_cgroup_clear_mc();
5674 }
5675
5676 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5677 unsigned long addr, unsigned long end,
5678 struct mm_walk *walk)
5679 {
5680 int ret = 0;
5681 struct vm_area_struct *vma = walk->vma;
5682 pte_t *pte;
5683 spinlock_t *ptl;
5684 enum mc_target_type target_type;
5685 union mc_target target;
5686 struct page *page;
5687
5688 ptl = pmd_trans_huge_lock(pmd, vma);
5689 if (ptl) {
5690 if (mc.precharge < HPAGE_PMD_NR) {
5691 spin_unlock(ptl);
5692 return 0;
5693 }
5694 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5695 if (target_type == MC_TARGET_PAGE) {
5696 page = target.page;
5697 if (!isolate_lru_page(page)) {
5698 if (!mem_cgroup_move_account(page, true,
5699 mc.from, mc.to)) {
5700 mc.precharge -= HPAGE_PMD_NR;
5701 mc.moved_charge += HPAGE_PMD_NR;
5702 }
5703 putback_lru_page(page);
5704 }
5705 put_page(page);
5706 } else if (target_type == MC_TARGET_DEVICE) {
5707 page = target.page;
5708 if (!mem_cgroup_move_account(page, true,
5709 mc.from, mc.to)) {
5710 mc.precharge -= HPAGE_PMD_NR;
5711 mc.moved_charge += HPAGE_PMD_NR;
5712 }
5713 put_page(page);
5714 }
5715 spin_unlock(ptl);
5716 return 0;
5717 }
5718
5719 if (pmd_trans_unstable(pmd))
5720 return 0;
5721 retry:
5722 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5723 for (; addr != end; addr += PAGE_SIZE) {
5724 pte_t ptent = *(pte++);
5725 bool device = false;
5726 swp_entry_t ent;
5727
5728 if (!mc.precharge)
5729 break;
5730
5731 switch (get_mctgt_type(vma, addr, ptent, &target)) {
5732 case MC_TARGET_DEVICE:
5733 device = true;
5734 /* fall through */
5735 case MC_TARGET_PAGE:
5736 page = target.page;
5737 /*
5738 * We can have a part of the split pmd here. Moving it
5739 * can be done but it would be too convoluted so simply
5740 * ignore such a partial THP and keep it in original
5741 * memcg. There should be somebody mapping the head.
5742 */
5743 if (PageTransCompound(page))
5744 goto put;
5745 if (!device && isolate_lru_page(page))
5746 goto put;
5747 if (!mem_cgroup_move_account(page, false,
5748 mc.from, mc.to)) {
5749 mc.precharge--;
5750 /* we uncharge from mc.from later. */
5751 mc.moved_charge++;
5752 }
5753 if (!device)
5754 putback_lru_page(page);
5755 put: /* get_mctgt_type() gets the page */
5756 put_page(page);
5757 break;
5758 case MC_TARGET_SWAP:
5759 ent = target.ent;
5760 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
5761 mc.precharge--;
5762 /* we fixup refcnts and charges later. */
5763 mc.moved_swap++;
5764 }
5765 break;
5766 default:
5767 break;
5768 }
5769 }
5770 pte_unmap_unlock(pte - 1, ptl);
5771 cond_resched();
5772
5773 if (addr != end) {
5774 /*
5775 * We have consumed all precharges we got in can_attach().
5776 * We try charge one by one, but don't do any additional
5777 * charges to mc.to if we have failed in charge once in attach()
5778 * phase.
5779 */
5780 ret = mem_cgroup_do_precharge(1);
5781 if (!ret)
5782 goto retry;
5783 }
5784
5785 return ret;
5786 }
5787
5788 static const struct mm_walk_ops charge_walk_ops = {
5789 .pmd_entry = mem_cgroup_move_charge_pte_range,
5790 };
5791
5792 static void mem_cgroup_move_charge(void)
5793 {
5794 lru_add_drain_all();
5795 /*
5796 * Signal lock_page_memcg() to take the memcg's move_lock
5797 * while we're moving its pages to another memcg. Then wait
5798 * for already started RCU-only updates to finish.
5799 */
5800 atomic_inc(&mc.from->moving_account);
5801 synchronize_rcu();
5802 retry:
5803 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
5804 /*
5805 * Someone who are holding the mmap_sem might be waiting in
5806 * waitq. So we cancel all extra charges, wake up all waiters,
5807 * and retry. Because we cancel precharges, we might not be able
5808 * to move enough charges, but moving charge is a best-effort
5809 * feature anyway, so it wouldn't be a big problem.
5810 */
5811 __mem_cgroup_clear_mc();
5812 cond_resched();
5813 goto retry;
5814 }
5815 /*
5816 * When we have consumed all precharges and failed in doing
5817 * additional charge, the page walk just aborts.
5818 */
5819 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
5820 NULL);
5821
5822 up_read(&mc.mm->mmap_sem);
5823 atomic_dec(&mc.from->moving_account);
5824 }
5825
5826 static void mem_cgroup_move_task(void)
5827 {
5828 if (mc.to) {
5829 mem_cgroup_move_charge();
5830 mem_cgroup_clear_mc();
5831 }
5832 }
5833 #else /* !CONFIG_MMU */
5834 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5835 {
5836 return 0;
5837 }
5838 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5839 {
5840 }
5841 static void mem_cgroup_move_task(void)
5842 {
5843 }
5844 #endif
5845
5846 /*
5847 * Cgroup retains root cgroups across [un]mount cycles making it necessary
5848 * to verify whether we're attached to the default hierarchy on each mount
5849 * attempt.
5850 */
5851 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
5852 {
5853 /*
5854 * use_hierarchy is forced on the default hierarchy. cgroup core
5855 * guarantees that @root doesn't have any children, so turning it
5856 * on for the root memcg is enough.
5857 */
5858 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5859 root_mem_cgroup->use_hierarchy = true;
5860 else
5861 root_mem_cgroup->use_hierarchy = false;
5862 }
5863
5864 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
5865 {
5866 if (value == PAGE_COUNTER_MAX)
5867 seq_puts(m, "max\n");
5868 else
5869 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
5870
5871 return 0;
5872 }
5873
5874 static u64 memory_current_read(struct cgroup_subsys_state *css,
5875 struct cftype *cft)
5876 {
5877 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5878
5879 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
5880 }
5881
5882 static int memory_min_show(struct seq_file *m, void *v)
5883 {
5884 return seq_puts_memcg_tunable(m,
5885 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
5886 }
5887
5888 static ssize_t memory_min_write(struct kernfs_open_file *of,
5889 char *buf, size_t nbytes, loff_t off)
5890 {
5891 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5892 unsigned long min;
5893 int err;
5894
5895 buf = strstrip(buf);
5896 err = page_counter_memparse(buf, "max", &min);
5897 if (err)
5898 return err;
5899
5900 page_counter_set_min(&memcg->memory, min);
5901
5902 return nbytes;
5903 }
5904
5905 static int memory_low_show(struct seq_file *m, void *v)
5906 {
5907 return seq_puts_memcg_tunable(m,
5908 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
5909 }
5910
5911 static ssize_t memory_low_write(struct kernfs_open_file *of,
5912 char *buf, size_t nbytes, loff_t off)
5913 {
5914 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5915 unsigned long low;
5916 int err;
5917
5918 buf = strstrip(buf);
5919 err = page_counter_memparse(buf, "max", &low);
5920 if (err)
5921 return err;
5922
5923 page_counter_set_low(&memcg->memory, low);
5924
5925 return nbytes;
5926 }
5927
5928 static int memory_high_show(struct seq_file *m, void *v)
5929 {
5930 return seq_puts_memcg_tunable(m, READ_ONCE(mem_cgroup_from_seq(m)->high));
5931 }
5932
5933 static ssize_t memory_high_write(struct kernfs_open_file *of,
5934 char *buf, size_t nbytes, loff_t off)
5935 {
5936 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5937 unsigned int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
5938 bool drained = false;
5939 unsigned long high;
5940 int err;
5941
5942 buf = strstrip(buf);
5943 err = page_counter_memparse(buf, "max", &high);
5944 if (err)
5945 return err;
5946
5947 memcg->high = high;
5948
5949 for (;;) {
5950 unsigned long nr_pages = page_counter_read(&memcg->memory);
5951 unsigned long reclaimed;
5952
5953 if (nr_pages <= high)
5954 break;
5955
5956 if (signal_pending(current))
5957 break;
5958
5959 if (!drained) {
5960 drain_all_stock(memcg);
5961 drained = true;
5962 continue;
5963 }
5964
5965 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5966 GFP_KERNEL, true);
5967
5968 if (!reclaimed && !nr_retries--)
5969 break;
5970 }
5971
5972 return nbytes;
5973 }
5974
5975 static int memory_max_show(struct seq_file *m, void *v)
5976 {
5977 return seq_puts_memcg_tunable(m,
5978 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
5979 }
5980
5981 static ssize_t memory_max_write(struct kernfs_open_file *of,
5982 char *buf, size_t nbytes, loff_t off)
5983 {
5984 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5985 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5986 bool drained = false;
5987 unsigned long max;
5988 int err;
5989
5990 buf = strstrip(buf);
5991 err = page_counter_memparse(buf, "max", &max);
5992 if (err)
5993 return err;
5994
5995 xchg(&memcg->memory.max, max);
5996
5997 for (;;) {
5998 unsigned long nr_pages = page_counter_read(&memcg->memory);
5999
6000 if (nr_pages <= max)
6001 break;
6002
6003 if (signal_pending(current))
6004 break;
6005
6006 if (!drained) {
6007 drain_all_stock(memcg);
6008 drained = true;
6009 continue;
6010 }
6011
6012 if (nr_reclaims) {
6013 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6014 GFP_KERNEL, true))
6015 nr_reclaims--;
6016 continue;
6017 }
6018
6019 memcg_memory_event(memcg, MEMCG_OOM);
6020 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6021 break;
6022 }
6023
6024 memcg_wb_domain_size_changed(memcg);
6025 return nbytes;
6026 }
6027
6028 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6029 {
6030 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6031 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6032 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6033 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6034 seq_printf(m, "oom_kill %lu\n",
6035 atomic_long_read(&events[MEMCG_OOM_KILL]));
6036 }
6037
6038 static int memory_events_show(struct seq_file *m, void *v)
6039 {
6040 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6041
6042 __memory_events_show(m, memcg->memory_events);
6043 return 0;
6044 }
6045
6046 static int memory_events_local_show(struct seq_file *m, void *v)
6047 {
6048 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6049
6050 __memory_events_show(m, memcg->memory_events_local);
6051 return 0;
6052 }
6053
6054 static int memory_stat_show(struct seq_file *m, void *v)
6055 {
6056 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6057 char *buf;
6058
6059 buf = memory_stat_format(memcg);
6060 if (!buf)
6061 return -ENOMEM;
6062 seq_puts(m, buf);
6063 kfree(buf);
6064 return 0;
6065 }
6066
6067 static int memory_oom_group_show(struct seq_file *m, void *v)
6068 {
6069 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6070
6071 seq_printf(m, "%d\n", memcg->oom_group);
6072
6073 return 0;
6074 }
6075
6076 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6077 char *buf, size_t nbytes, loff_t off)
6078 {
6079 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6080 int ret, oom_group;
6081
6082 buf = strstrip(buf);
6083 if (!buf)
6084 return -EINVAL;
6085
6086 ret = kstrtoint(buf, 0, &oom_group);
6087 if (ret)
6088 return ret;
6089
6090 if (oom_group != 0 && oom_group != 1)
6091 return -EINVAL;
6092
6093 memcg->oom_group = oom_group;
6094
6095 return nbytes;
6096 }
6097
6098 static struct cftype memory_files[] = {
6099 {
6100 .name = "current",
6101 .flags = CFTYPE_NOT_ON_ROOT,
6102 .read_u64 = memory_current_read,
6103 },
6104 {
6105 .name = "min",
6106 .flags = CFTYPE_NOT_ON_ROOT,
6107 .seq_show = memory_min_show,
6108 .write = memory_min_write,
6109 },
6110 {
6111 .name = "low",
6112 .flags = CFTYPE_NOT_ON_ROOT,
6113 .seq_show = memory_low_show,
6114 .write = memory_low_write,
6115 },
6116 {
6117 .name = "high",
6118 .flags = CFTYPE_NOT_ON_ROOT,
6119 .seq_show = memory_high_show,
6120 .write = memory_high_write,
6121 },
6122 {
6123 .name = "max",
6124 .flags = CFTYPE_NOT_ON_ROOT,
6125 .seq_show = memory_max_show,
6126 .write = memory_max_write,
6127 },
6128 {
6129 .name = "events",
6130 .flags = CFTYPE_NOT_ON_ROOT,
6131 .file_offset = offsetof(struct mem_cgroup, events_file),
6132 .seq_show = memory_events_show,
6133 },
6134 {
6135 .name = "events.local",
6136 .flags = CFTYPE_NOT_ON_ROOT,
6137 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6138 .seq_show = memory_events_local_show,
6139 },
6140 {
6141 .name = "stat",
6142 .flags = CFTYPE_NOT_ON_ROOT,
6143 .seq_show = memory_stat_show,
6144 },
6145 {
6146 .name = "oom.group",
6147 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6148 .seq_show = memory_oom_group_show,
6149 .write = memory_oom_group_write,
6150 },
6151 { } /* terminate */
6152 };
6153
6154 struct cgroup_subsys memory_cgrp_subsys = {
6155 .css_alloc = mem_cgroup_css_alloc,
6156 .css_online = mem_cgroup_css_online,
6157 .css_offline = mem_cgroup_css_offline,
6158 .css_released = mem_cgroup_css_released,
6159 .css_free = mem_cgroup_css_free,
6160 .css_reset = mem_cgroup_css_reset,
6161 .can_attach = mem_cgroup_can_attach,
6162 .cancel_attach = mem_cgroup_cancel_attach,
6163 .post_attach = mem_cgroup_move_task,
6164 .bind = mem_cgroup_bind,
6165 .dfl_cftypes = memory_files,
6166 .legacy_cftypes = mem_cgroup_legacy_files,
6167 .early_init = 0,
6168 };
6169
6170 /**
6171 * mem_cgroup_protected - check if memory consumption is in the normal range
6172 * @root: the top ancestor of the sub-tree being checked
6173 * @memcg: the memory cgroup to check
6174 *
6175 * WARNING: This function is not stateless! It can only be used as part
6176 * of a top-down tree iteration, not for isolated queries.
6177 *
6178 * Returns one of the following:
6179 * MEMCG_PROT_NONE: cgroup memory is not protected
6180 * MEMCG_PROT_LOW: cgroup memory is protected as long there is
6181 * an unprotected supply of reclaimable memory from other cgroups.
6182 * MEMCG_PROT_MIN: cgroup memory is protected
6183 *
6184 * @root is exclusive; it is never protected when looked at directly
6185 *
6186 * To provide a proper hierarchical behavior, effective memory.min/low values
6187 * are used. Below is the description of how effective memory.low is calculated.
6188 * Effective memory.min values is calculated in the same way.
6189 *
6190 * Effective memory.low is always equal or less than the original memory.low.
6191 * If there is no memory.low overcommittment (which is always true for
6192 * top-level memory cgroups), these two values are equal.
6193 * Otherwise, it's a part of parent's effective memory.low,
6194 * calculated as a cgroup's memory.low usage divided by sum of sibling's
6195 * memory.low usages, where memory.low usage is the size of actually
6196 * protected memory.
6197 *
6198 * low_usage
6199 * elow = min( memory.low, parent->elow * ------------------ ),
6200 * siblings_low_usage
6201 *
6202 * | memory.current, if memory.current < memory.low
6203 * low_usage = |
6204 * | 0, otherwise.
6205 *
6206 *
6207 * Such definition of the effective memory.low provides the expected
6208 * hierarchical behavior: parent's memory.low value is limiting
6209 * children, unprotected memory is reclaimed first and cgroups,
6210 * which are not using their guarantee do not affect actual memory
6211 * distribution.
6212 *
6213 * For example, if there are memcgs A, A/B, A/C, A/D and A/E:
6214 *
6215 * A A/memory.low = 2G, A/memory.current = 6G
6216 * //\\
6217 * BC DE B/memory.low = 3G B/memory.current = 2G
6218 * C/memory.low = 1G C/memory.current = 2G
6219 * D/memory.low = 0 D/memory.current = 2G
6220 * E/memory.low = 10G E/memory.current = 0
6221 *
6222 * and the memory pressure is applied, the following memory distribution
6223 * is expected (approximately):
6224 *
6225 * A/memory.current = 2G
6226 *
6227 * B/memory.current = 1.3G
6228 * C/memory.current = 0.6G
6229 * D/memory.current = 0
6230 * E/memory.current = 0
6231 *
6232 * These calculations require constant tracking of the actual low usages
6233 * (see propagate_protected_usage()), as well as recursive calculation of
6234 * effective memory.low values. But as we do call mem_cgroup_protected()
6235 * path for each memory cgroup top-down from the reclaim,
6236 * it's possible to optimize this part, and save calculated elow
6237 * for next usage. This part is intentionally racy, but it's ok,
6238 * as memory.low is a best-effort mechanism.
6239 */
6240 enum mem_cgroup_protection mem_cgroup_protected(struct mem_cgroup *root,
6241 struct mem_cgroup *memcg)
6242 {
6243 struct mem_cgroup *parent;
6244 unsigned long emin, parent_emin;
6245 unsigned long elow, parent_elow;
6246 unsigned long usage;
6247
6248 if (mem_cgroup_disabled())
6249 return MEMCG_PROT_NONE;
6250
6251 if (!root)
6252 root = root_mem_cgroup;
6253 if (memcg == root)
6254 return MEMCG_PROT_NONE;
6255
6256 usage = page_counter_read(&memcg->memory);
6257 if (!usage)
6258 return MEMCG_PROT_NONE;
6259
6260 emin = memcg->memory.min;
6261 elow = memcg->memory.low;
6262
6263 parent = parent_mem_cgroup(memcg);
6264 /* No parent means a non-hierarchical mode on v1 memcg */
6265 if (!parent)
6266 return MEMCG_PROT_NONE;
6267
6268 if (parent == root)
6269 goto exit;
6270
6271 parent_emin = READ_ONCE(parent->memory.emin);
6272 emin = min(emin, parent_emin);
6273 if (emin && parent_emin) {
6274 unsigned long min_usage, siblings_min_usage;
6275
6276 min_usage = min(usage, memcg->memory.min);
6277 siblings_min_usage = atomic_long_read(
6278 &parent->memory.children_min_usage);
6279
6280 if (min_usage && siblings_min_usage)
6281 emin = min(emin, parent_emin * min_usage /
6282 siblings_min_usage);
6283 }
6284
6285 parent_elow = READ_ONCE(parent->memory.elow);
6286 elow = min(elow, parent_elow);
6287 if (elow && parent_elow) {
6288 unsigned long low_usage, siblings_low_usage;
6289
6290 low_usage = min(usage, memcg->memory.low);
6291 siblings_low_usage = atomic_long_read(
6292 &parent->memory.children_low_usage);
6293
6294 if (low_usage && siblings_low_usage)
6295 elow = min(elow, parent_elow * low_usage /
6296 siblings_low_usage);
6297 }
6298
6299 exit:
6300 memcg->memory.emin = emin;
6301 memcg->memory.elow = elow;
6302
6303 if (usage <= emin)
6304 return MEMCG_PROT_MIN;
6305 else if (usage <= elow)
6306 return MEMCG_PROT_LOW;
6307 else
6308 return MEMCG_PROT_NONE;
6309 }
6310
6311 /**
6312 * mem_cgroup_try_charge - try charging a page
6313 * @page: page to charge
6314 * @mm: mm context of the victim
6315 * @gfp_mask: reclaim mode
6316 * @memcgp: charged memcg return
6317 * @compound: charge the page as compound or small page
6318 *
6319 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6320 * pages according to @gfp_mask if necessary.
6321 *
6322 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
6323 * Otherwise, an error code is returned.
6324 *
6325 * After page->mapping has been set up, the caller must finalize the
6326 * charge with mem_cgroup_commit_charge(). Or abort the transaction
6327 * with mem_cgroup_cancel_charge() in case page instantiation fails.
6328 */
6329 int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
6330 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6331 bool compound)
6332 {
6333 struct mem_cgroup *memcg = NULL;
6334 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6335 int ret = 0;
6336
6337 if (mem_cgroup_disabled())
6338 goto out;
6339
6340 if (PageSwapCache(page)) {
6341 /*
6342 * Every swap fault against a single page tries to charge the
6343 * page, bail as early as possible. shmem_unuse() encounters
6344 * already charged pages, too. The USED bit is protected by
6345 * the page lock, which serializes swap cache removal, which
6346 * in turn serializes uncharging.
6347 */
6348 VM_BUG_ON_PAGE(!PageLocked(page), page);
6349 if (compound_head(page)->mem_cgroup)
6350 goto out;
6351
6352 if (do_swap_account) {
6353 swp_entry_t ent = { .val = page_private(page), };
6354 unsigned short id = lookup_swap_cgroup_id(ent);
6355
6356 rcu_read_lock();
6357 memcg = mem_cgroup_from_id(id);
6358 if (memcg && !css_tryget_online(&memcg->css))
6359 memcg = NULL;
6360 rcu_read_unlock();
6361 }
6362 }
6363
6364 if (!memcg)
6365 memcg = get_mem_cgroup_from_mm(mm);
6366
6367 ret = try_charge(memcg, gfp_mask, nr_pages);
6368
6369 css_put(&memcg->css);
6370 out:
6371 *memcgp = memcg;
6372 return ret;
6373 }
6374
6375 int mem_cgroup_try_charge_delay(struct page *page, struct mm_struct *mm,
6376 gfp_t gfp_mask, struct mem_cgroup **memcgp,
6377 bool compound)
6378 {
6379 struct mem_cgroup *memcg;
6380 int ret;
6381
6382 ret = mem_cgroup_try_charge(page, mm, gfp_mask, memcgp, compound);
6383 memcg = *memcgp;
6384 mem_cgroup_throttle_swaprate(memcg, page_to_nid(page), gfp_mask);
6385 return ret;
6386 }
6387
6388 /**
6389 * mem_cgroup_commit_charge - commit a page charge
6390 * @page: page to charge
6391 * @memcg: memcg to charge the page to
6392 * @lrucare: page might be on LRU already
6393 * @compound: charge the page as compound or small page
6394 *
6395 * Finalize a charge transaction started by mem_cgroup_try_charge(),
6396 * after page->mapping has been set up. This must happen atomically
6397 * as part of the page instantiation, i.e. under the page table lock
6398 * for anonymous pages, under the page lock for page and swap cache.
6399 *
6400 * In addition, the page must not be on the LRU during the commit, to
6401 * prevent racing with task migration. If it might be, use @lrucare.
6402 *
6403 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
6404 */
6405 void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
6406 bool lrucare, bool compound)
6407 {
6408 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6409
6410 VM_BUG_ON_PAGE(!page->mapping, page);
6411 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
6412
6413 if (mem_cgroup_disabled())
6414 return;
6415 /*
6416 * Swap faults will attempt to charge the same page multiple
6417 * times. But reuse_swap_page() might have removed the page
6418 * from swapcache already, so we can't check PageSwapCache().
6419 */
6420 if (!memcg)
6421 return;
6422
6423 commit_charge(page, memcg, lrucare);
6424
6425 local_irq_disable();
6426 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6427 memcg_check_events(memcg, page);
6428 local_irq_enable();
6429
6430 if (do_memsw_account() && PageSwapCache(page)) {
6431 swp_entry_t entry = { .val = page_private(page) };
6432 /*
6433 * The swap entry might not get freed for a long time,
6434 * let's not wait for it. The page already received a
6435 * memory+swap charge, drop the swap entry duplicate.
6436 */
6437 mem_cgroup_uncharge_swap(entry, nr_pages);
6438 }
6439 }
6440
6441 /**
6442 * mem_cgroup_cancel_charge - cancel a page charge
6443 * @page: page to charge
6444 * @memcg: memcg to charge the page to
6445 * @compound: charge the page as compound or small page
6446 *
6447 * Cancel a charge transaction started by mem_cgroup_try_charge().
6448 */
6449 void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
6450 bool compound)
6451 {
6452 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
6453
6454 if (mem_cgroup_disabled())
6455 return;
6456 /*
6457 * Swap faults will attempt to charge the same page multiple
6458 * times. But reuse_swap_page() might have removed the page
6459 * from swapcache already, so we can't check PageSwapCache().
6460 */
6461 if (!memcg)
6462 return;
6463
6464 cancel_charge(memcg, nr_pages);
6465 }
6466
6467 struct uncharge_gather {
6468 struct mem_cgroup *memcg;
6469 unsigned long pgpgout;
6470 unsigned long nr_anon;
6471 unsigned long nr_file;
6472 unsigned long nr_kmem;
6473 unsigned long nr_huge;
6474 unsigned long nr_shmem;
6475 struct page *dummy_page;
6476 };
6477
6478 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6479 {
6480 memset(ug, 0, sizeof(*ug));
6481 }
6482
6483 static void uncharge_batch(const struct uncharge_gather *ug)
6484 {
6485 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
6486 unsigned long flags;
6487
6488 if (!mem_cgroup_is_root(ug->memcg)) {
6489 page_counter_uncharge(&ug->memcg->memory, nr_pages);
6490 if (do_memsw_account())
6491 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
6492 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6493 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6494 memcg_oom_recover(ug->memcg);
6495 }
6496
6497 local_irq_save(flags);
6498 __mod_memcg_state(ug->memcg, MEMCG_RSS, -ug->nr_anon);
6499 __mod_memcg_state(ug->memcg, MEMCG_CACHE, -ug->nr_file);
6500 __mod_memcg_state(ug->memcg, MEMCG_RSS_HUGE, -ug->nr_huge);
6501 __mod_memcg_state(ug->memcg, NR_SHMEM, -ug->nr_shmem);
6502 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6503 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, nr_pages);
6504 memcg_check_events(ug->memcg, ug->dummy_page);
6505 local_irq_restore(flags);
6506
6507 if (!mem_cgroup_is_root(ug->memcg))
6508 css_put_many(&ug->memcg->css, nr_pages);
6509 }
6510
6511 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6512 {
6513 VM_BUG_ON_PAGE(PageLRU(page), page);
6514 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
6515 !PageHWPoison(page) , page);
6516
6517 if (!page->mem_cgroup)
6518 return;
6519
6520 /*
6521 * Nobody should be changing or seriously looking at
6522 * page->mem_cgroup at this point, we have fully
6523 * exclusive access to the page.
6524 */
6525
6526 if (ug->memcg != page->mem_cgroup) {
6527 if (ug->memcg) {
6528 uncharge_batch(ug);
6529 uncharge_gather_clear(ug);
6530 }
6531 ug->memcg = page->mem_cgroup;
6532 }
6533
6534 if (!PageKmemcg(page)) {
6535 unsigned int nr_pages = 1;
6536
6537 if (PageTransHuge(page)) {
6538 nr_pages = compound_nr(page);
6539 ug->nr_huge += nr_pages;
6540 }
6541 if (PageAnon(page))
6542 ug->nr_anon += nr_pages;
6543 else {
6544 ug->nr_file += nr_pages;
6545 if (PageSwapBacked(page))
6546 ug->nr_shmem += nr_pages;
6547 }
6548 ug->pgpgout++;
6549 } else {
6550 ug->nr_kmem += compound_nr(page);
6551 __ClearPageKmemcg(page);
6552 }
6553
6554 ug->dummy_page = page;
6555 page->mem_cgroup = NULL;
6556 }
6557
6558 static void uncharge_list(struct list_head *page_list)
6559 {
6560 struct uncharge_gather ug;
6561 struct list_head *next;
6562
6563 uncharge_gather_clear(&ug);
6564
6565 /*
6566 * Note that the list can be a single page->lru; hence the
6567 * do-while loop instead of a simple list_for_each_entry().
6568 */
6569 next = page_list->next;
6570 do {
6571 struct page *page;
6572
6573 page = list_entry(next, struct page, lru);
6574 next = page->lru.next;
6575
6576 uncharge_page(page, &ug);
6577 } while (next != page_list);
6578
6579 if (ug.memcg)
6580 uncharge_batch(&ug);
6581 }
6582
6583 /**
6584 * mem_cgroup_uncharge - uncharge a page
6585 * @page: page to uncharge
6586 *
6587 * Uncharge a page previously charged with mem_cgroup_try_charge() and
6588 * mem_cgroup_commit_charge().
6589 */
6590 void mem_cgroup_uncharge(struct page *page)
6591 {
6592 struct uncharge_gather ug;
6593
6594 if (mem_cgroup_disabled())
6595 return;
6596
6597 /* Don't touch page->lru of any random page, pre-check: */
6598 if (!page->mem_cgroup)
6599 return;
6600
6601 uncharge_gather_clear(&ug);
6602 uncharge_page(page, &ug);
6603 uncharge_batch(&ug);
6604 }
6605
6606 /**
6607 * mem_cgroup_uncharge_list - uncharge a list of page
6608 * @page_list: list of pages to uncharge
6609 *
6610 * Uncharge a list of pages previously charged with
6611 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
6612 */
6613 void mem_cgroup_uncharge_list(struct list_head *page_list)
6614 {
6615 if (mem_cgroup_disabled())
6616 return;
6617
6618 if (!list_empty(page_list))
6619 uncharge_list(page_list);
6620 }
6621
6622 /**
6623 * mem_cgroup_migrate - charge a page's replacement
6624 * @oldpage: currently circulating page
6625 * @newpage: replacement page
6626 *
6627 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6628 * be uncharged upon free.
6629 *
6630 * Both pages must be locked, @newpage->mapping must be set up.
6631 */
6632 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6633 {
6634 struct mem_cgroup *memcg;
6635 unsigned int nr_pages;
6636 unsigned long flags;
6637
6638 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6639 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6640 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6641 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6642 newpage);
6643
6644 if (mem_cgroup_disabled())
6645 return;
6646
6647 /* Page cache replacement: new page already charged? */
6648 if (newpage->mem_cgroup)
6649 return;
6650
6651 /* Swapcache readahead pages can get replaced before being charged */
6652 memcg = oldpage->mem_cgroup;
6653 if (!memcg)
6654 return;
6655
6656 /* Force-charge the new page. The old one will be freed soon */
6657 nr_pages = hpage_nr_pages(newpage);
6658
6659 page_counter_charge(&memcg->memory, nr_pages);
6660 if (do_memsw_account())
6661 page_counter_charge(&memcg->memsw, nr_pages);
6662 css_get_many(&memcg->css, nr_pages);
6663
6664 commit_charge(newpage, memcg, false);
6665
6666 local_irq_save(flags);
6667 mem_cgroup_charge_statistics(memcg, newpage, PageTransHuge(newpage),
6668 nr_pages);
6669 memcg_check_events(memcg, newpage);
6670 local_irq_restore(flags);
6671 }
6672
6673 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6674 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6675
6676 void mem_cgroup_sk_alloc(struct sock *sk)
6677 {
6678 struct mem_cgroup *memcg;
6679
6680 if (!mem_cgroup_sockets_enabled)
6681 return;
6682
6683 /*
6684 * Socket cloning can throw us here with sk_memcg already
6685 * filled. It won't however, necessarily happen from
6686 * process context. So the test for root memcg given
6687 * the current task's memcg won't help us in this case.
6688 *
6689 * Respecting the original socket's memcg is a better
6690 * decision in this case.
6691 */
6692 if (sk->sk_memcg) {
6693 css_get(&sk->sk_memcg->css);
6694 return;
6695 }
6696
6697 rcu_read_lock();
6698 memcg = mem_cgroup_from_task(current);
6699 if (memcg == root_mem_cgroup)
6700 goto out;
6701 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6702 goto out;
6703 if (css_tryget_online(&memcg->css))
6704 sk->sk_memcg = memcg;
6705 out:
6706 rcu_read_unlock();
6707 }
6708
6709 void mem_cgroup_sk_free(struct sock *sk)
6710 {
6711 if (sk->sk_memcg)
6712 css_put(&sk->sk_memcg->css);
6713 }
6714
6715 /**
6716 * mem_cgroup_charge_skmem - charge socket memory
6717 * @memcg: memcg to charge
6718 * @nr_pages: number of pages to charge
6719 *
6720 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6721 * @memcg's configured limit, %false if the charge had to be forced.
6722 */
6723 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6724 {
6725 gfp_t gfp_mask = GFP_KERNEL;
6726
6727 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6728 struct page_counter *fail;
6729
6730 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6731 memcg->tcpmem_pressure = 0;
6732 return true;
6733 }
6734 page_counter_charge(&memcg->tcpmem, nr_pages);
6735 memcg->tcpmem_pressure = 1;
6736 return false;
6737 }
6738
6739 /* Don't block in the packet receive path */
6740 if (in_softirq())
6741 gfp_mask = GFP_NOWAIT;
6742
6743 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6744
6745 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6746 return true;
6747
6748 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6749 return false;
6750 }
6751
6752 /**
6753 * mem_cgroup_uncharge_skmem - uncharge socket memory
6754 * @memcg: memcg to uncharge
6755 * @nr_pages: number of pages to uncharge
6756 */
6757 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6758 {
6759 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6760 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6761 return;
6762 }
6763
6764 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6765
6766 refill_stock(memcg, nr_pages);
6767 }
6768
6769 static int __init cgroup_memory(char *s)
6770 {
6771 char *token;
6772
6773 while ((token = strsep(&s, ",")) != NULL) {
6774 if (!*token)
6775 continue;
6776 if (!strcmp(token, "nosocket"))
6777 cgroup_memory_nosocket = true;
6778 if (!strcmp(token, "nokmem"))
6779 cgroup_memory_nokmem = true;
6780 }
6781 return 0;
6782 }
6783 __setup("cgroup.memory=", cgroup_memory);
6784
6785 /*
6786 * subsys_initcall() for memory controller.
6787 *
6788 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
6789 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
6790 * basically everything that doesn't depend on a specific mem_cgroup structure
6791 * should be initialized from here.
6792 */
6793 static int __init mem_cgroup_init(void)
6794 {
6795 int cpu, node;
6796
6797 #ifdef CONFIG_MEMCG_KMEM
6798 /*
6799 * Kmem cache creation is mostly done with the slab_mutex held,
6800 * so use a workqueue with limited concurrency to avoid stalling
6801 * all worker threads in case lots of cgroups are created and
6802 * destroyed simultaneously.
6803 */
6804 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
6805 BUG_ON(!memcg_kmem_cache_wq);
6806 #endif
6807
6808 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
6809 memcg_hotplug_cpu_dead);
6810
6811 for_each_possible_cpu(cpu)
6812 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
6813 drain_local_stock);
6814
6815 for_each_node(node) {
6816 struct mem_cgroup_tree_per_node *rtpn;
6817
6818 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
6819 node_online(node) ? node : NUMA_NO_NODE);
6820
6821 rtpn->rb_root = RB_ROOT;
6822 rtpn->rb_rightmost = NULL;
6823 spin_lock_init(&rtpn->lock);
6824 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6825 }
6826
6827 return 0;
6828 }
6829 subsys_initcall(mem_cgroup_init);
6830
6831 #ifdef CONFIG_MEMCG_SWAP
6832 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
6833 {
6834 while (!refcount_inc_not_zero(&memcg->id.ref)) {
6835 /*
6836 * The root cgroup cannot be destroyed, so it's refcount must
6837 * always be >= 1.
6838 */
6839 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
6840 VM_BUG_ON(1);
6841 break;
6842 }
6843 memcg = parent_mem_cgroup(memcg);
6844 if (!memcg)
6845 memcg = root_mem_cgroup;
6846 }
6847 return memcg;
6848 }
6849
6850 /**
6851 * mem_cgroup_swapout - transfer a memsw charge to swap
6852 * @page: page whose memsw charge to transfer
6853 * @entry: swap entry to move the charge to
6854 *
6855 * Transfer the memsw charge of @page to @entry.
6856 */
6857 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6858 {
6859 struct mem_cgroup *memcg, *swap_memcg;
6860 unsigned int nr_entries;
6861 unsigned short oldid;
6862
6863 VM_BUG_ON_PAGE(PageLRU(page), page);
6864 VM_BUG_ON_PAGE(page_count(page), page);
6865
6866 if (!do_memsw_account())
6867 return;
6868
6869 memcg = page->mem_cgroup;
6870
6871 /* Readahead page, never charged */
6872 if (!memcg)
6873 return;
6874
6875 /*
6876 * In case the memcg owning these pages has been offlined and doesn't
6877 * have an ID allocated to it anymore, charge the closest online
6878 * ancestor for the swap instead and transfer the memory+swap charge.
6879 */
6880 swap_memcg = mem_cgroup_id_get_online(memcg);
6881 nr_entries = hpage_nr_pages(page);
6882 /* Get references for the tail pages, too */
6883 if (nr_entries > 1)
6884 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6885 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6886 nr_entries);
6887 VM_BUG_ON_PAGE(oldid, page);
6888 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
6889
6890 page->mem_cgroup = NULL;
6891
6892 if (!mem_cgroup_is_root(memcg))
6893 page_counter_uncharge(&memcg->memory, nr_entries);
6894
6895 if (memcg != swap_memcg) {
6896 if (!mem_cgroup_is_root(swap_memcg))
6897 page_counter_charge(&swap_memcg->memsw, nr_entries);
6898 page_counter_uncharge(&memcg->memsw, nr_entries);
6899 }
6900
6901 /*
6902 * Interrupts should be disabled here because the caller holds the
6903 * i_pages lock which is taken with interrupts-off. It is
6904 * important here to have the interrupts disabled because it is the
6905 * only synchronisation we have for updating the per-CPU variables.
6906 */
6907 VM_BUG_ON(!irqs_disabled());
6908 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6909 -nr_entries);
6910 memcg_check_events(memcg, page);
6911
6912 if (!mem_cgroup_is_root(memcg))
6913 css_put_many(&memcg->css, nr_entries);
6914 }
6915
6916 /**
6917 * mem_cgroup_try_charge_swap - try charging swap space for a page
6918 * @page: page being added to swap
6919 * @entry: swap entry to charge
6920 *
6921 * Try to charge @page's memcg for the swap space at @entry.
6922 *
6923 * Returns 0 on success, -ENOMEM on failure.
6924 */
6925 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6926 {
6927 unsigned int nr_pages = hpage_nr_pages(page);
6928 struct page_counter *counter;
6929 struct mem_cgroup *memcg;
6930 unsigned short oldid;
6931
6932 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6933 return 0;
6934
6935 memcg = page->mem_cgroup;
6936
6937 /* Readahead page, never charged */
6938 if (!memcg)
6939 return 0;
6940
6941 if (!entry.val) {
6942 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6943 return 0;
6944 }
6945
6946 memcg = mem_cgroup_id_get_online(memcg);
6947
6948 if (!mem_cgroup_is_root(memcg) &&
6949 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
6950 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
6951 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
6952 mem_cgroup_id_put(memcg);
6953 return -ENOMEM;
6954 }
6955
6956 /* Get references for the tail pages, too */
6957 if (nr_pages > 1)
6958 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6959 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
6960 VM_BUG_ON_PAGE(oldid, page);
6961 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
6962
6963 return 0;
6964 }
6965
6966 /**
6967 * mem_cgroup_uncharge_swap - uncharge swap space
6968 * @entry: swap entry to uncharge
6969 * @nr_pages: the amount of swap space to uncharge
6970 */
6971 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
6972 {
6973 struct mem_cgroup *memcg;
6974 unsigned short id;
6975
6976 if (!do_swap_account)
6977 return;
6978
6979 id = swap_cgroup_record(entry, 0, nr_pages);
6980 rcu_read_lock();
6981 memcg = mem_cgroup_from_id(id);
6982 if (memcg) {
6983 if (!mem_cgroup_is_root(memcg)) {
6984 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6985 page_counter_uncharge(&memcg->swap, nr_pages);
6986 else
6987 page_counter_uncharge(&memcg->memsw, nr_pages);
6988 }
6989 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
6990 mem_cgroup_id_put_many(memcg, nr_pages);
6991 }
6992 rcu_read_unlock();
6993 }
6994
6995 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6996 {
6997 long nr_swap_pages = get_nr_swap_pages();
6998
6999 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7000 return nr_swap_pages;
7001 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7002 nr_swap_pages = min_t(long, nr_swap_pages,
7003 READ_ONCE(memcg->swap.max) -
7004 page_counter_read(&memcg->swap));
7005 return nr_swap_pages;
7006 }
7007
7008 bool mem_cgroup_swap_full(struct page *page)
7009 {
7010 struct mem_cgroup *memcg;
7011
7012 VM_BUG_ON_PAGE(!PageLocked(page), page);
7013
7014 if (vm_swap_full())
7015 return true;
7016 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7017 return false;
7018
7019 memcg = page->mem_cgroup;
7020 if (!memcg)
7021 return false;
7022
7023 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7024 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.max)
7025 return true;
7026
7027 return false;
7028 }
7029
7030 /* for remember boot option*/
7031 #ifdef CONFIG_MEMCG_SWAP_ENABLED
7032 static int really_do_swap_account __initdata = 1;
7033 #else
7034 static int really_do_swap_account __initdata;
7035 #endif
7036
7037 static int __init enable_swap_account(char *s)
7038 {
7039 if (!strcmp(s, "1"))
7040 really_do_swap_account = 1;
7041 else if (!strcmp(s, "0"))
7042 really_do_swap_account = 0;
7043 return 1;
7044 }
7045 __setup("swapaccount=", enable_swap_account);
7046
7047 static u64 swap_current_read(struct cgroup_subsys_state *css,
7048 struct cftype *cft)
7049 {
7050 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7051
7052 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7053 }
7054
7055 static int swap_max_show(struct seq_file *m, void *v)
7056 {
7057 return seq_puts_memcg_tunable(m,
7058 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7059 }
7060
7061 static ssize_t swap_max_write(struct kernfs_open_file *of,
7062 char *buf, size_t nbytes, loff_t off)
7063 {
7064 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7065 unsigned long max;
7066 int err;
7067
7068 buf = strstrip(buf);
7069 err = page_counter_memparse(buf, "max", &max);
7070 if (err)
7071 return err;
7072
7073 xchg(&memcg->swap.max, max);
7074
7075 return nbytes;
7076 }
7077
7078 static int swap_events_show(struct seq_file *m, void *v)
7079 {
7080 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7081
7082 seq_printf(m, "max %lu\n",
7083 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7084 seq_printf(m, "fail %lu\n",
7085 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7086
7087 return 0;
7088 }
7089
7090 static struct cftype swap_files[] = {
7091 {
7092 .name = "swap.current",
7093 .flags = CFTYPE_NOT_ON_ROOT,
7094 .read_u64 = swap_current_read,
7095 },
7096 {
7097 .name = "swap.max",
7098 .flags = CFTYPE_NOT_ON_ROOT,
7099 .seq_show = swap_max_show,
7100 .write = swap_max_write,
7101 },
7102 {
7103 .name = "swap.events",
7104 .flags = CFTYPE_NOT_ON_ROOT,
7105 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7106 .seq_show = swap_events_show,
7107 },
7108 { } /* terminate */
7109 };
7110
7111 static struct cftype memsw_cgroup_files[] = {
7112 {
7113 .name = "memsw.usage_in_bytes",
7114 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7115 .read_u64 = mem_cgroup_read_u64,
7116 },
7117 {
7118 .name = "memsw.max_usage_in_bytes",
7119 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7120 .write = mem_cgroup_reset,
7121 .read_u64 = mem_cgroup_read_u64,
7122 },
7123 {
7124 .name = "memsw.limit_in_bytes",
7125 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7126 .write = mem_cgroup_write,
7127 .read_u64 = mem_cgroup_read_u64,
7128 },
7129 {
7130 .name = "memsw.failcnt",
7131 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7132 .write = mem_cgroup_reset,
7133 .read_u64 = mem_cgroup_read_u64,
7134 },
7135 { }, /* terminate */
7136 };
7137
7138 static int __init mem_cgroup_swap_init(void)
7139 {
7140 if (!mem_cgroup_disabled() && really_do_swap_account) {
7141 do_swap_account = 1;
7142 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
7143 swap_files));
7144 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
7145 memsw_cgroup_files));
7146 }
7147 return 0;
7148 }
7149 subsys_initcall(mem_cgroup_swap_init);
7150
7151 #endif /* CONFIG_MEMCG_SWAP */