]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - mm/memcontrol.c
856db3ba3093806de05d96199ff8ff41ab206b6b
[mirror_ubuntu-hirsute-kernel.git] / mm / memcontrol.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 */
24
25 #include <linux/page_counter.h>
26 #include <linux/memcontrol.h>
27 #include <linux/cgroup.h>
28 #include <linux/pagewalk.h>
29 #include <linux/sched/mm.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/hugetlb.h>
32 #include <linux/pagemap.h>
33 #include <linux/vm_event_item.h>
34 #include <linux/smp.h>
35 #include <linux/page-flags.h>
36 #include <linux/backing-dev.h>
37 #include <linux/bit_spinlock.h>
38 #include <linux/rcupdate.h>
39 #include <linux/limits.h>
40 #include <linux/export.h>
41 #include <linux/mutex.h>
42 #include <linux/rbtree.h>
43 #include <linux/slab.h>
44 #include <linux/swap.h>
45 #include <linux/swapops.h>
46 #include <linux/spinlock.h>
47 #include <linux/eventfd.h>
48 #include <linux/poll.h>
49 #include <linux/sort.h>
50 #include <linux/fs.h>
51 #include <linux/seq_file.h>
52 #include <linux/vmpressure.h>
53 #include <linux/mm_inline.h>
54 #include <linux/swap_cgroup.h>
55 #include <linux/cpu.h>
56 #include <linux/oom.h>
57 #include <linux/lockdep.h>
58 #include <linux/file.h>
59 #include <linux/tracehook.h>
60 #include <linux/psi.h>
61 #include <linux/seq_buf.h>
62 #include "internal.h"
63 #include <net/sock.h>
64 #include <net/ip.h>
65 #include "slab.h"
66
67 #include <linux/uaccess.h>
68
69 #include <trace/events/vmscan.h>
70
71 struct cgroup_subsys memory_cgrp_subsys __read_mostly;
72 EXPORT_SYMBOL(memory_cgrp_subsys);
73
74 struct mem_cgroup *root_mem_cgroup __read_mostly;
75
76 /* Socket memory accounting disabled? */
77 static bool cgroup_memory_nosocket;
78
79 /* Kernel memory accounting disabled? */
80 static bool cgroup_memory_nokmem;
81
82 /* Whether the swap controller is active */
83 #ifdef CONFIG_MEMCG_SWAP
84 bool cgroup_memory_noswap __read_mostly;
85 #else
86 #define cgroup_memory_noswap 1
87 #endif
88
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
91 #endif
92
93 /* Whether legacy memory+swap accounting is active */
94 static bool do_memsw_account(void)
95 {
96 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_noswap;
97 }
98
99 #define THRESHOLDS_EVENTS_TARGET 128
100 #define SOFTLIMIT_EVENTS_TARGET 1024
101
102 /*
103 * Cgroups above their limits are maintained in a RB-Tree, independent of
104 * their hierarchy representation
105 */
106
107 struct mem_cgroup_tree_per_node {
108 struct rb_root rb_root;
109 struct rb_node *rb_rightmost;
110 spinlock_t lock;
111 };
112
113 struct mem_cgroup_tree {
114 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
115 };
116
117 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
118
119 /* for OOM */
120 struct mem_cgroup_eventfd_list {
121 struct list_head list;
122 struct eventfd_ctx *eventfd;
123 };
124
125 /*
126 * cgroup_event represents events which userspace want to receive.
127 */
128 struct mem_cgroup_event {
129 /*
130 * memcg which the event belongs to.
131 */
132 struct mem_cgroup *memcg;
133 /*
134 * eventfd to signal userspace about the event.
135 */
136 struct eventfd_ctx *eventfd;
137 /*
138 * Each of these stored in a list by the cgroup.
139 */
140 struct list_head list;
141 /*
142 * register_event() callback will be used to add new userspace
143 * waiter for changes related to this event. Use eventfd_signal()
144 * on eventfd to send notification to userspace.
145 */
146 int (*register_event)(struct mem_cgroup *memcg,
147 struct eventfd_ctx *eventfd, const char *args);
148 /*
149 * unregister_event() callback will be called when userspace closes
150 * the eventfd or on cgroup removing. This callback must be set,
151 * if you want provide notification functionality.
152 */
153 void (*unregister_event)(struct mem_cgroup *memcg,
154 struct eventfd_ctx *eventfd);
155 /*
156 * All fields below needed to unregister event when
157 * userspace closes eventfd.
158 */
159 poll_table pt;
160 wait_queue_head_t *wqh;
161 wait_queue_entry_t wait;
162 struct work_struct remove;
163 };
164
165 static void mem_cgroup_threshold(struct mem_cgroup *memcg);
166 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
167
168 /* Stuffs for move charges at task migration. */
169 /*
170 * Types of charges to be moved.
171 */
172 #define MOVE_ANON 0x1U
173 #define MOVE_FILE 0x2U
174 #define MOVE_MASK (MOVE_ANON | MOVE_FILE)
175
176 /* "mc" and its members are protected by cgroup_mutex */
177 static struct move_charge_struct {
178 spinlock_t lock; /* for from, to */
179 struct mm_struct *mm;
180 struct mem_cgroup *from;
181 struct mem_cgroup *to;
182 unsigned long flags;
183 unsigned long precharge;
184 unsigned long moved_charge;
185 unsigned long moved_swap;
186 struct task_struct *moving_task; /* a task moving charges */
187 wait_queue_head_t waitq; /* a waitq for other context */
188 } mc = {
189 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
190 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
191 };
192
193 /*
194 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
195 * limit reclaim to prevent infinite loops, if they ever occur.
196 */
197 #define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
198 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
199
200 enum charge_type {
201 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
202 MEM_CGROUP_CHARGE_TYPE_ANON,
203 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
204 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
205 NR_CHARGE_TYPE,
206 };
207
208 /* for encoding cft->private value on file */
209 enum res_type {
210 _MEM,
211 _MEMSWAP,
212 _OOM_TYPE,
213 _KMEM,
214 _TCP,
215 };
216
217 #define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
218 #define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
219 #define MEMFILE_ATTR(val) ((val) & 0xffff)
220 /* Used for OOM nofiier */
221 #define OOM_CONTROL (0)
222
223 /*
224 * Iteration constructs for visiting all cgroups (under a tree). If
225 * loops are exited prematurely (break), mem_cgroup_iter_break() must
226 * be used for reference counting.
227 */
228 #define for_each_mem_cgroup_tree(iter, root) \
229 for (iter = mem_cgroup_iter(root, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(root, iter, NULL))
232
233 #define for_each_mem_cgroup(iter) \
234 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
235 iter != NULL; \
236 iter = mem_cgroup_iter(NULL, iter, NULL))
237
238 static inline bool should_force_charge(void)
239 {
240 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
241 (current->flags & PF_EXITING);
242 }
243
244 /* Some nice accessors for the vmpressure. */
245 struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
246 {
247 if (!memcg)
248 memcg = root_mem_cgroup;
249 return &memcg->vmpressure;
250 }
251
252 struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
253 {
254 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
255 }
256
257 #ifdef CONFIG_MEMCG_KMEM
258 extern spinlock_t css_set_lock;
259
260 static void obj_cgroup_release(struct percpu_ref *ref)
261 {
262 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
263 struct mem_cgroup *memcg;
264 unsigned int nr_bytes;
265 unsigned int nr_pages;
266 unsigned long flags;
267
268 /*
269 * At this point all allocated objects are freed, and
270 * objcg->nr_charged_bytes can't have an arbitrary byte value.
271 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
272 *
273 * The following sequence can lead to it:
274 * 1) CPU0: objcg == stock->cached_objcg
275 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
276 * PAGE_SIZE bytes are charged
277 * 3) CPU1: a process from another memcg is allocating something,
278 * the stock if flushed,
279 * objcg->nr_charged_bytes = PAGE_SIZE - 92
280 * 5) CPU0: we do release this object,
281 * 92 bytes are added to stock->nr_bytes
282 * 6) CPU0: stock is flushed,
283 * 92 bytes are added to objcg->nr_charged_bytes
284 *
285 * In the result, nr_charged_bytes == PAGE_SIZE.
286 * This page will be uncharged in obj_cgroup_release().
287 */
288 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
289 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
290 nr_pages = nr_bytes >> PAGE_SHIFT;
291
292 spin_lock_irqsave(&css_set_lock, flags);
293 memcg = obj_cgroup_memcg(objcg);
294 if (nr_pages)
295 __memcg_kmem_uncharge(memcg, nr_pages);
296 list_del(&objcg->list);
297 mem_cgroup_put(memcg);
298 spin_unlock_irqrestore(&css_set_lock, flags);
299
300 percpu_ref_exit(ref);
301 kfree_rcu(objcg, rcu);
302 }
303
304 static struct obj_cgroup *obj_cgroup_alloc(void)
305 {
306 struct obj_cgroup *objcg;
307 int ret;
308
309 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
310 if (!objcg)
311 return NULL;
312
313 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
314 GFP_KERNEL);
315 if (ret) {
316 kfree(objcg);
317 return NULL;
318 }
319 INIT_LIST_HEAD(&objcg->list);
320 return objcg;
321 }
322
323 static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
324 struct mem_cgroup *parent)
325 {
326 struct obj_cgroup *objcg, *iter;
327
328 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
329
330 spin_lock_irq(&css_set_lock);
331
332 /* Move active objcg to the parent's list */
333 xchg(&objcg->memcg, parent);
334 css_get(&parent->css);
335 list_add(&objcg->list, &parent->objcg_list);
336
337 /* Move already reparented objcgs to the parent's list */
338 list_for_each_entry(iter, &memcg->objcg_list, list) {
339 css_get(&parent->css);
340 xchg(&iter->memcg, parent);
341 css_put(&memcg->css);
342 }
343 list_splice(&memcg->objcg_list, &parent->objcg_list);
344
345 spin_unlock_irq(&css_set_lock);
346
347 percpu_ref_kill(&objcg->refcnt);
348 }
349
350 /*
351 * This will be used as a shrinker list's index.
352 * The main reason for not using cgroup id for this:
353 * this works better in sparse environments, where we have a lot of memcgs,
354 * but only a few kmem-limited. Or also, if we have, for instance, 200
355 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
356 * 200 entry array for that.
357 *
358 * The current size of the caches array is stored in memcg_nr_cache_ids. It
359 * will double each time we have to increase it.
360 */
361 static DEFINE_IDA(memcg_cache_ida);
362 int memcg_nr_cache_ids;
363
364 /* Protects memcg_nr_cache_ids */
365 static DECLARE_RWSEM(memcg_cache_ids_sem);
366
367 void memcg_get_cache_ids(void)
368 {
369 down_read(&memcg_cache_ids_sem);
370 }
371
372 void memcg_put_cache_ids(void)
373 {
374 up_read(&memcg_cache_ids_sem);
375 }
376
377 /*
378 * MIN_SIZE is different than 1, because we would like to avoid going through
379 * the alloc/free process all the time. In a small machine, 4 kmem-limited
380 * cgroups is a reasonable guess. In the future, it could be a parameter or
381 * tunable, but that is strictly not necessary.
382 *
383 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
384 * this constant directly from cgroup, but it is understandable that this is
385 * better kept as an internal representation in cgroup.c. In any case, the
386 * cgrp_id space is not getting any smaller, and we don't have to necessarily
387 * increase ours as well if it increases.
388 */
389 #define MEMCG_CACHES_MIN_SIZE 4
390 #define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
391
392 /*
393 * A lot of the calls to the cache allocation functions are expected to be
394 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
395 * conditional to this static branch, we'll have to allow modules that does
396 * kmem_cache_alloc and the such to see this symbol as well
397 */
398 DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
399 EXPORT_SYMBOL(memcg_kmem_enabled_key);
400 #endif
401
402 static int memcg_shrinker_map_size;
403 static DEFINE_MUTEX(memcg_shrinker_map_mutex);
404
405 static void memcg_free_shrinker_map_rcu(struct rcu_head *head)
406 {
407 kvfree(container_of(head, struct memcg_shrinker_map, rcu));
408 }
409
410 static int memcg_expand_one_shrinker_map(struct mem_cgroup *memcg,
411 int size, int old_size)
412 {
413 struct memcg_shrinker_map *new, *old;
414 int nid;
415
416 lockdep_assert_held(&memcg_shrinker_map_mutex);
417
418 for_each_node(nid) {
419 old = rcu_dereference_protected(
420 mem_cgroup_nodeinfo(memcg, nid)->shrinker_map, true);
421 /* Not yet online memcg */
422 if (!old)
423 return 0;
424
425 new = kvmalloc_node(sizeof(*new) + size, GFP_KERNEL, nid);
426 if (!new)
427 return -ENOMEM;
428
429 /* Set all old bits, clear all new bits */
430 memset(new->map, (int)0xff, old_size);
431 memset((void *)new->map + old_size, 0, size - old_size);
432
433 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, new);
434 call_rcu(&old->rcu, memcg_free_shrinker_map_rcu);
435 }
436
437 return 0;
438 }
439
440 static void memcg_free_shrinker_maps(struct mem_cgroup *memcg)
441 {
442 struct mem_cgroup_per_node *pn;
443 struct memcg_shrinker_map *map;
444 int nid;
445
446 if (mem_cgroup_is_root(memcg))
447 return;
448
449 for_each_node(nid) {
450 pn = mem_cgroup_nodeinfo(memcg, nid);
451 map = rcu_dereference_protected(pn->shrinker_map, true);
452 if (map)
453 kvfree(map);
454 rcu_assign_pointer(pn->shrinker_map, NULL);
455 }
456 }
457
458 static int memcg_alloc_shrinker_maps(struct mem_cgroup *memcg)
459 {
460 struct memcg_shrinker_map *map;
461 int nid, size, ret = 0;
462
463 if (mem_cgroup_is_root(memcg))
464 return 0;
465
466 mutex_lock(&memcg_shrinker_map_mutex);
467 size = memcg_shrinker_map_size;
468 for_each_node(nid) {
469 map = kvzalloc_node(sizeof(*map) + size, GFP_KERNEL, nid);
470 if (!map) {
471 memcg_free_shrinker_maps(memcg);
472 ret = -ENOMEM;
473 break;
474 }
475 rcu_assign_pointer(memcg->nodeinfo[nid]->shrinker_map, map);
476 }
477 mutex_unlock(&memcg_shrinker_map_mutex);
478
479 return ret;
480 }
481
482 int memcg_expand_shrinker_maps(int new_id)
483 {
484 int size, old_size, ret = 0;
485 struct mem_cgroup *memcg;
486
487 size = DIV_ROUND_UP(new_id + 1, BITS_PER_LONG) * sizeof(unsigned long);
488 old_size = memcg_shrinker_map_size;
489 if (size <= old_size)
490 return 0;
491
492 mutex_lock(&memcg_shrinker_map_mutex);
493 if (!root_mem_cgroup)
494 goto unlock;
495
496 for_each_mem_cgroup(memcg) {
497 if (mem_cgroup_is_root(memcg))
498 continue;
499 ret = memcg_expand_one_shrinker_map(memcg, size, old_size);
500 if (ret) {
501 mem_cgroup_iter_break(NULL, memcg);
502 goto unlock;
503 }
504 }
505 unlock:
506 if (!ret)
507 memcg_shrinker_map_size = size;
508 mutex_unlock(&memcg_shrinker_map_mutex);
509 return ret;
510 }
511
512 void memcg_set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id)
513 {
514 if (shrinker_id >= 0 && memcg && !mem_cgroup_is_root(memcg)) {
515 struct memcg_shrinker_map *map;
516
517 rcu_read_lock();
518 map = rcu_dereference(memcg->nodeinfo[nid]->shrinker_map);
519 /* Pairs with smp mb in shrink_slab() */
520 smp_mb__before_atomic();
521 set_bit(shrinker_id, map->map);
522 rcu_read_unlock();
523 }
524 }
525
526 /**
527 * mem_cgroup_css_from_page - css of the memcg associated with a page
528 * @page: page of interest
529 *
530 * If memcg is bound to the default hierarchy, css of the memcg associated
531 * with @page is returned. The returned css remains associated with @page
532 * until it is released.
533 *
534 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
535 * is returned.
536 */
537 struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
538 {
539 struct mem_cgroup *memcg;
540
541 memcg = page->mem_cgroup;
542
543 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
544 memcg = root_mem_cgroup;
545
546 return &memcg->css;
547 }
548
549 /**
550 * page_cgroup_ino - return inode number of the memcg a page is charged to
551 * @page: the page
552 *
553 * Look up the closest online ancestor of the memory cgroup @page is charged to
554 * and return its inode number or 0 if @page is not charged to any cgroup. It
555 * is safe to call this function without holding a reference to @page.
556 *
557 * Note, this function is inherently racy, because there is nothing to prevent
558 * the cgroup inode from getting torn down and potentially reallocated a moment
559 * after page_cgroup_ino() returns, so it only should be used by callers that
560 * do not care (such as procfs interfaces).
561 */
562 ino_t page_cgroup_ino(struct page *page)
563 {
564 struct mem_cgroup *memcg;
565 unsigned long ino = 0;
566
567 rcu_read_lock();
568 memcg = page->mem_cgroup;
569
570 /*
571 * The lowest bit set means that memcg isn't a valid
572 * memcg pointer, but a obj_cgroups pointer.
573 * In this case the page is shared and doesn't belong
574 * to any specific memory cgroup.
575 */
576 if ((unsigned long) memcg & 0x1UL)
577 memcg = NULL;
578
579 while (memcg && !(memcg->css.flags & CSS_ONLINE))
580 memcg = parent_mem_cgroup(memcg);
581 if (memcg)
582 ino = cgroup_ino(memcg->css.cgroup);
583 rcu_read_unlock();
584 return ino;
585 }
586
587 static struct mem_cgroup_per_node *
588 mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
589 {
590 int nid = page_to_nid(page);
591
592 return memcg->nodeinfo[nid];
593 }
594
595 static struct mem_cgroup_tree_per_node *
596 soft_limit_tree_node(int nid)
597 {
598 return soft_limit_tree.rb_tree_per_node[nid];
599 }
600
601 static struct mem_cgroup_tree_per_node *
602 soft_limit_tree_from_page(struct page *page)
603 {
604 int nid = page_to_nid(page);
605
606 return soft_limit_tree.rb_tree_per_node[nid];
607 }
608
609 static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
610 struct mem_cgroup_tree_per_node *mctz,
611 unsigned long new_usage_in_excess)
612 {
613 struct rb_node **p = &mctz->rb_root.rb_node;
614 struct rb_node *parent = NULL;
615 struct mem_cgroup_per_node *mz_node;
616 bool rightmost = true;
617
618 if (mz->on_tree)
619 return;
620
621 mz->usage_in_excess = new_usage_in_excess;
622 if (!mz->usage_in_excess)
623 return;
624 while (*p) {
625 parent = *p;
626 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
627 tree_node);
628 if (mz->usage_in_excess < mz_node->usage_in_excess) {
629 p = &(*p)->rb_left;
630 rightmost = false;
631 }
632
633 /*
634 * We can't avoid mem cgroups that are over their soft
635 * limit by the same amount
636 */
637 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
638 p = &(*p)->rb_right;
639 }
640
641 if (rightmost)
642 mctz->rb_rightmost = &mz->tree_node;
643
644 rb_link_node(&mz->tree_node, parent, p);
645 rb_insert_color(&mz->tree_node, &mctz->rb_root);
646 mz->on_tree = true;
647 }
648
649 static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
650 struct mem_cgroup_tree_per_node *mctz)
651 {
652 if (!mz->on_tree)
653 return;
654
655 if (&mz->tree_node == mctz->rb_rightmost)
656 mctz->rb_rightmost = rb_prev(&mz->tree_node);
657
658 rb_erase(&mz->tree_node, &mctz->rb_root);
659 mz->on_tree = false;
660 }
661
662 static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
663 struct mem_cgroup_tree_per_node *mctz)
664 {
665 unsigned long flags;
666
667 spin_lock_irqsave(&mctz->lock, flags);
668 __mem_cgroup_remove_exceeded(mz, mctz);
669 spin_unlock_irqrestore(&mctz->lock, flags);
670 }
671
672 static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
673 {
674 unsigned long nr_pages = page_counter_read(&memcg->memory);
675 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
676 unsigned long excess = 0;
677
678 if (nr_pages > soft_limit)
679 excess = nr_pages - soft_limit;
680
681 return excess;
682 }
683
684 static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
685 {
686 unsigned long excess;
687 struct mem_cgroup_per_node *mz;
688 struct mem_cgroup_tree_per_node *mctz;
689
690 mctz = soft_limit_tree_from_page(page);
691 if (!mctz)
692 return;
693 /*
694 * Necessary to update all ancestors when hierarchy is used.
695 * because their event counter is not touched.
696 */
697 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
698 mz = mem_cgroup_page_nodeinfo(memcg, page);
699 excess = soft_limit_excess(memcg);
700 /*
701 * We have to update the tree if mz is on RB-tree or
702 * mem is over its softlimit.
703 */
704 if (excess || mz->on_tree) {
705 unsigned long flags;
706
707 spin_lock_irqsave(&mctz->lock, flags);
708 /* if on-tree, remove it */
709 if (mz->on_tree)
710 __mem_cgroup_remove_exceeded(mz, mctz);
711 /*
712 * Insert again. mz->usage_in_excess will be updated.
713 * If excess is 0, no tree ops.
714 */
715 __mem_cgroup_insert_exceeded(mz, mctz, excess);
716 spin_unlock_irqrestore(&mctz->lock, flags);
717 }
718 }
719 }
720
721 static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
722 {
723 struct mem_cgroup_tree_per_node *mctz;
724 struct mem_cgroup_per_node *mz;
725 int nid;
726
727 for_each_node(nid) {
728 mz = mem_cgroup_nodeinfo(memcg, nid);
729 mctz = soft_limit_tree_node(nid);
730 if (mctz)
731 mem_cgroup_remove_exceeded(mz, mctz);
732 }
733 }
734
735 static struct mem_cgroup_per_node *
736 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
737 {
738 struct mem_cgroup_per_node *mz;
739
740 retry:
741 mz = NULL;
742 if (!mctz->rb_rightmost)
743 goto done; /* Nothing to reclaim from */
744
745 mz = rb_entry(mctz->rb_rightmost,
746 struct mem_cgroup_per_node, tree_node);
747 /*
748 * Remove the node now but someone else can add it back,
749 * we will to add it back at the end of reclaim to its correct
750 * position in the tree.
751 */
752 __mem_cgroup_remove_exceeded(mz, mctz);
753 if (!soft_limit_excess(mz->memcg) ||
754 !css_tryget(&mz->memcg->css))
755 goto retry;
756 done:
757 return mz;
758 }
759
760 static struct mem_cgroup_per_node *
761 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
762 {
763 struct mem_cgroup_per_node *mz;
764
765 spin_lock_irq(&mctz->lock);
766 mz = __mem_cgroup_largest_soft_limit_node(mctz);
767 spin_unlock_irq(&mctz->lock);
768 return mz;
769 }
770
771 /**
772 * __mod_memcg_state - update cgroup memory statistics
773 * @memcg: the memory cgroup
774 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
775 * @val: delta to add to the counter, can be negative
776 */
777 void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
778 {
779 long x, threshold = MEMCG_CHARGE_BATCH;
780
781 if (mem_cgroup_disabled())
782 return;
783
784 if (vmstat_item_in_bytes(idx))
785 threshold <<= PAGE_SHIFT;
786
787 x = val + __this_cpu_read(memcg->vmstats_percpu->stat[idx]);
788 if (unlikely(abs(x) > threshold)) {
789 struct mem_cgroup *mi;
790
791 /*
792 * Batch local counters to keep them in sync with
793 * the hierarchical ones.
794 */
795 __this_cpu_add(memcg->vmstats_local->stat[idx], x);
796 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
797 atomic_long_add(x, &mi->vmstats[idx]);
798 x = 0;
799 }
800 __this_cpu_write(memcg->vmstats_percpu->stat[idx], x);
801 }
802
803 static struct mem_cgroup_per_node *
804 parent_nodeinfo(struct mem_cgroup_per_node *pn, int nid)
805 {
806 struct mem_cgroup *parent;
807
808 parent = parent_mem_cgroup(pn->memcg);
809 if (!parent)
810 return NULL;
811 return mem_cgroup_nodeinfo(parent, nid);
812 }
813
814 void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
815 int val)
816 {
817 struct mem_cgroup_per_node *pn;
818 struct mem_cgroup *memcg;
819 long x, threshold = MEMCG_CHARGE_BATCH;
820
821 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
822 memcg = pn->memcg;
823
824 /* Update memcg */
825 __mod_memcg_state(memcg, idx, val);
826
827 /* Update lruvec */
828 __this_cpu_add(pn->lruvec_stat_local->count[idx], val);
829
830 if (vmstat_item_in_bytes(idx))
831 threshold <<= PAGE_SHIFT;
832
833 x = val + __this_cpu_read(pn->lruvec_stat_cpu->count[idx]);
834 if (unlikely(abs(x) > threshold)) {
835 pg_data_t *pgdat = lruvec_pgdat(lruvec);
836 struct mem_cgroup_per_node *pi;
837
838 for (pi = pn; pi; pi = parent_nodeinfo(pi, pgdat->node_id))
839 atomic_long_add(x, &pi->lruvec_stat[idx]);
840 x = 0;
841 }
842 __this_cpu_write(pn->lruvec_stat_cpu->count[idx], x);
843 }
844
845 /**
846 * __mod_lruvec_state - update lruvec memory statistics
847 * @lruvec: the lruvec
848 * @idx: the stat item
849 * @val: delta to add to the counter, can be negative
850 *
851 * The lruvec is the intersection of the NUMA node and a cgroup. This
852 * function updates the all three counters that are affected by a
853 * change of state at this level: per-node, per-cgroup, per-lruvec.
854 */
855 void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
856 int val)
857 {
858 /* Update node */
859 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
860
861 /* Update memcg and lruvec */
862 if (!mem_cgroup_disabled())
863 __mod_memcg_lruvec_state(lruvec, idx, val);
864 }
865
866 void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val)
867 {
868 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
869 struct mem_cgroup *memcg;
870 struct lruvec *lruvec;
871
872 rcu_read_lock();
873 memcg = mem_cgroup_from_obj(p);
874
875 /* Untracked pages have no memcg, no lruvec. Update only the node */
876 if (!memcg || memcg == root_mem_cgroup) {
877 __mod_node_page_state(pgdat, idx, val);
878 } else {
879 lruvec = mem_cgroup_lruvec(memcg, pgdat);
880 __mod_lruvec_state(lruvec, idx, val);
881 }
882 rcu_read_unlock();
883 }
884
885 void mod_memcg_obj_state(void *p, int idx, int val)
886 {
887 struct mem_cgroup *memcg;
888
889 rcu_read_lock();
890 memcg = mem_cgroup_from_obj(p);
891 if (memcg)
892 mod_memcg_state(memcg, idx, val);
893 rcu_read_unlock();
894 }
895
896 /**
897 * __count_memcg_events - account VM events in a cgroup
898 * @memcg: the memory cgroup
899 * @idx: the event item
900 * @count: the number of events that occured
901 */
902 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
903 unsigned long count)
904 {
905 unsigned long x;
906
907 if (mem_cgroup_disabled())
908 return;
909
910 x = count + __this_cpu_read(memcg->vmstats_percpu->events[idx]);
911 if (unlikely(x > MEMCG_CHARGE_BATCH)) {
912 struct mem_cgroup *mi;
913
914 /*
915 * Batch local counters to keep them in sync with
916 * the hierarchical ones.
917 */
918 __this_cpu_add(memcg->vmstats_local->events[idx], x);
919 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
920 atomic_long_add(x, &mi->vmevents[idx]);
921 x = 0;
922 }
923 __this_cpu_write(memcg->vmstats_percpu->events[idx], x);
924 }
925
926 static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
927 {
928 return atomic_long_read(&memcg->vmevents[event]);
929 }
930
931 static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
932 {
933 long x = 0;
934 int cpu;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_local->events[event], cpu);
938 return x;
939 }
940
941 static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 struct page *page,
943 int nr_pages)
944 {
945 /* pagein of a big page is an event. So, ignore page size */
946 if (nr_pages > 0)
947 __count_memcg_events(memcg, PGPGIN, 1);
948 else {
949 __count_memcg_events(memcg, PGPGOUT, 1);
950 nr_pages = -nr_pages; /* for event */
951 }
952
953 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
954 }
955
956 static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
957 enum mem_cgroup_events_target target)
958 {
959 unsigned long val, next;
960
961 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
962 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
963 /* from time_after() in jiffies.h */
964 if ((long)(next - val) < 0) {
965 switch (target) {
966 case MEM_CGROUP_TARGET_THRESH:
967 next = val + THRESHOLDS_EVENTS_TARGET;
968 break;
969 case MEM_CGROUP_TARGET_SOFTLIMIT:
970 next = val + SOFTLIMIT_EVENTS_TARGET;
971 break;
972 default:
973 break;
974 }
975 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
976 return true;
977 }
978 return false;
979 }
980
981 /*
982 * Check events in order.
983 *
984 */
985 static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
986 {
987 /* threshold event is triggered in finer grain than soft limit */
988 if (unlikely(mem_cgroup_event_ratelimit(memcg,
989 MEM_CGROUP_TARGET_THRESH))) {
990 bool do_softlimit;
991
992 do_softlimit = mem_cgroup_event_ratelimit(memcg,
993 MEM_CGROUP_TARGET_SOFTLIMIT);
994 mem_cgroup_threshold(memcg);
995 if (unlikely(do_softlimit))
996 mem_cgroup_update_tree(memcg, page);
997 }
998 }
999
1000 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1001 {
1002 /*
1003 * mm_update_next_owner() may clear mm->owner to NULL
1004 * if it races with swapoff, page migration, etc.
1005 * So this can be called with p == NULL.
1006 */
1007 if (unlikely(!p))
1008 return NULL;
1009
1010 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1011 }
1012 EXPORT_SYMBOL(mem_cgroup_from_task);
1013
1014 /**
1015 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1016 * @mm: mm from which memcg should be extracted. It can be NULL.
1017 *
1018 * Obtain a reference on mm->memcg and returns it if successful. Otherwise
1019 * root_mem_cgroup is returned. However if mem_cgroup is disabled, NULL is
1020 * returned.
1021 */
1022 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1023 {
1024 struct mem_cgroup *memcg;
1025
1026 if (mem_cgroup_disabled())
1027 return NULL;
1028
1029 rcu_read_lock();
1030 do {
1031 /*
1032 * Page cache insertions can happen withou an
1033 * actual mm context, e.g. during disk probing
1034 * on boot, loopback IO, acct() writes etc.
1035 */
1036 if (unlikely(!mm))
1037 memcg = root_mem_cgroup;
1038 else {
1039 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1040 if (unlikely(!memcg))
1041 memcg = root_mem_cgroup;
1042 }
1043 } while (!css_tryget(&memcg->css));
1044 rcu_read_unlock();
1045 return memcg;
1046 }
1047 EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1048
1049 /**
1050 * get_mem_cgroup_from_page: Obtain a reference on given page's memcg.
1051 * @page: page from which memcg should be extracted.
1052 *
1053 * Obtain a reference on page->memcg and returns it if successful. Otherwise
1054 * root_mem_cgroup is returned.
1055 */
1056 struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1057 {
1058 struct mem_cgroup *memcg = page->mem_cgroup;
1059
1060 if (mem_cgroup_disabled())
1061 return NULL;
1062
1063 rcu_read_lock();
1064 /* Page should not get uncharged and freed memcg under us. */
1065 if (!memcg || WARN_ON_ONCE(!css_tryget(&memcg->css)))
1066 memcg = root_mem_cgroup;
1067 rcu_read_unlock();
1068 return memcg;
1069 }
1070 EXPORT_SYMBOL(get_mem_cgroup_from_page);
1071
1072 /**
1073 * If current->active_memcg is non-NULL, do not fallback to current->mm->memcg.
1074 */
1075 static __always_inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1076 {
1077 if (unlikely(current->active_memcg)) {
1078 struct mem_cgroup *memcg;
1079
1080 rcu_read_lock();
1081 /* current->active_memcg must hold a ref. */
1082 if (WARN_ON_ONCE(!css_tryget(&current->active_memcg->css)))
1083 memcg = root_mem_cgroup;
1084 else
1085 memcg = current->active_memcg;
1086 rcu_read_unlock();
1087 return memcg;
1088 }
1089 return get_mem_cgroup_from_mm(current->mm);
1090 }
1091
1092 /**
1093 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1094 * @root: hierarchy root
1095 * @prev: previously returned memcg, NULL on first invocation
1096 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1097 *
1098 * Returns references to children of the hierarchy below @root, or
1099 * @root itself, or %NULL after a full round-trip.
1100 *
1101 * Caller must pass the return value in @prev on subsequent
1102 * invocations for reference counting, or use mem_cgroup_iter_break()
1103 * to cancel a hierarchy walk before the round-trip is complete.
1104 *
1105 * Reclaimers can specify a node and a priority level in @reclaim to
1106 * divide up the memcgs in the hierarchy among all concurrent
1107 * reclaimers operating on the same node and priority.
1108 */
1109 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1110 struct mem_cgroup *prev,
1111 struct mem_cgroup_reclaim_cookie *reclaim)
1112 {
1113 struct mem_cgroup_reclaim_iter *iter;
1114 struct cgroup_subsys_state *css = NULL;
1115 struct mem_cgroup *memcg = NULL;
1116 struct mem_cgroup *pos = NULL;
1117
1118 if (mem_cgroup_disabled())
1119 return NULL;
1120
1121 if (!root)
1122 root = root_mem_cgroup;
1123
1124 if (prev && !reclaim)
1125 pos = prev;
1126
1127 if (!root->use_hierarchy && root != root_mem_cgroup) {
1128 if (prev)
1129 goto out;
1130 return root;
1131 }
1132
1133 rcu_read_lock();
1134
1135 if (reclaim) {
1136 struct mem_cgroup_per_node *mz;
1137
1138 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
1139 iter = &mz->iter;
1140
1141 if (prev && reclaim->generation != iter->generation)
1142 goto out_unlock;
1143
1144 while (1) {
1145 pos = READ_ONCE(iter->position);
1146 if (!pos || css_tryget(&pos->css))
1147 break;
1148 /*
1149 * css reference reached zero, so iter->position will
1150 * be cleared by ->css_released. However, we should not
1151 * rely on this happening soon, because ->css_released
1152 * is called from a work queue, and by busy-waiting we
1153 * might block it. So we clear iter->position right
1154 * away.
1155 */
1156 (void)cmpxchg(&iter->position, pos, NULL);
1157 }
1158 }
1159
1160 if (pos)
1161 css = &pos->css;
1162
1163 for (;;) {
1164 css = css_next_descendant_pre(css, &root->css);
1165 if (!css) {
1166 /*
1167 * Reclaimers share the hierarchy walk, and a
1168 * new one might jump in right at the end of
1169 * the hierarchy - make sure they see at least
1170 * one group and restart from the beginning.
1171 */
1172 if (!prev)
1173 continue;
1174 break;
1175 }
1176
1177 /*
1178 * Verify the css and acquire a reference. The root
1179 * is provided by the caller, so we know it's alive
1180 * and kicking, and don't take an extra reference.
1181 */
1182 memcg = mem_cgroup_from_css(css);
1183
1184 if (css == &root->css)
1185 break;
1186
1187 if (css_tryget(css))
1188 break;
1189
1190 memcg = NULL;
1191 }
1192
1193 if (reclaim) {
1194 /*
1195 * The position could have already been updated by a competing
1196 * thread, so check that the value hasn't changed since we read
1197 * it to avoid reclaiming from the same cgroup twice.
1198 */
1199 (void)cmpxchg(&iter->position, pos, memcg);
1200
1201 if (pos)
1202 css_put(&pos->css);
1203
1204 if (!memcg)
1205 iter->generation++;
1206 else if (!prev)
1207 reclaim->generation = iter->generation;
1208 }
1209
1210 out_unlock:
1211 rcu_read_unlock();
1212 out:
1213 if (prev && prev != root)
1214 css_put(&prev->css);
1215
1216 return memcg;
1217 }
1218
1219 /**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224 void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 struct mem_cgroup *prev)
1226 {
1227 if (!root)
1228 root = root_mem_cgroup;
1229 if (prev && prev != root)
1230 css_put(&prev->css);
1231 }
1232
1233 static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 struct mem_cgroup *dead_memcg)
1235 {
1236 struct mem_cgroup_reclaim_iter *iter;
1237 struct mem_cgroup_per_node *mz;
1238 int nid;
1239
1240 for_each_node(nid) {
1241 mz = mem_cgroup_nodeinfo(from, nid);
1242 iter = &mz->iter;
1243 cmpxchg(&iter->position, dead_memcg, NULL);
1244 }
1245 }
1246
1247 static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248 {
1249 struct mem_cgroup *memcg = dead_memcg;
1250 struct mem_cgroup *last;
1251
1252 do {
1253 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254 last = memcg;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257 /*
1258 * When cgruop1 non-hierarchy mode is used,
1259 * parent_mem_cgroup() does not walk all the way up to the
1260 * cgroup root (root_mem_cgroup). So we have to handle
1261 * dead_memcg from cgroup root separately.
1262 */
1263 if (last != root_mem_cgroup)
1264 __invalidate_reclaim_iterators(root_mem_cgroup,
1265 dead_memcg);
1266 }
1267
1268 /**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281 int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 int (*fn)(struct task_struct *, void *), void *arg)
1283 {
1284 struct mem_cgroup *iter;
1285 int ret = 0;
1286
1287 BUG_ON(memcg == root_mem_cgroup);
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 struct css_task_iter it;
1291 struct task_struct *task;
1292
1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 while (!ret && (task = css_task_iter_next(&it)))
1295 ret = fn(task, arg);
1296 css_task_iter_end(&it);
1297 if (ret) {
1298 mem_cgroup_iter_break(memcg, iter);
1299 break;
1300 }
1301 }
1302 return ret;
1303 }
1304
1305 /**
1306 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
1307 * @page: the page
1308 * @pgdat: pgdat of the page
1309 *
1310 * This function relies on page->mem_cgroup being stable - see the
1311 * access rules in commit_charge().
1312 */
1313 struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
1314 {
1315 struct mem_cgroup_per_node *mz;
1316 struct mem_cgroup *memcg;
1317 struct lruvec *lruvec;
1318
1319 if (mem_cgroup_disabled()) {
1320 lruvec = &pgdat->__lruvec;
1321 goto out;
1322 }
1323
1324 memcg = page->mem_cgroup;
1325 /*
1326 * Swapcache readahead pages are added to the LRU - and
1327 * possibly migrated - before they are charged.
1328 */
1329 if (!memcg)
1330 memcg = root_mem_cgroup;
1331
1332 mz = mem_cgroup_page_nodeinfo(memcg, page);
1333 lruvec = &mz->lruvec;
1334 out:
1335 /*
1336 * Since a node can be onlined after the mem_cgroup was created,
1337 * we have to be prepared to initialize lruvec->zone here;
1338 * and if offlined then reonlined, we need to reinitialize it.
1339 */
1340 if (unlikely(lruvec->pgdat != pgdat))
1341 lruvec->pgdat = pgdat;
1342 return lruvec;
1343 }
1344
1345 /**
1346 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1347 * @lruvec: mem_cgroup per zone lru vector
1348 * @lru: index of lru list the page is sitting on
1349 * @zid: zone id of the accounted pages
1350 * @nr_pages: positive when adding or negative when removing
1351 *
1352 * This function must be called under lru_lock, just before a page is added
1353 * to or just after a page is removed from an lru list (that ordering being
1354 * so as to allow it to check that lru_size 0 is consistent with list_empty).
1355 */
1356 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1357 int zid, int nr_pages)
1358 {
1359 struct mem_cgroup_per_node *mz;
1360 unsigned long *lru_size;
1361 long size;
1362
1363 if (mem_cgroup_disabled())
1364 return;
1365
1366 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1367 lru_size = &mz->lru_zone_size[zid][lru];
1368
1369 if (nr_pages < 0)
1370 *lru_size += nr_pages;
1371
1372 size = *lru_size;
1373 if (WARN_ONCE(size < 0,
1374 "%s(%p, %d, %d): lru_size %ld\n",
1375 __func__, lruvec, lru, nr_pages, size)) {
1376 VM_BUG_ON(1);
1377 *lru_size = 0;
1378 }
1379
1380 if (nr_pages > 0)
1381 *lru_size += nr_pages;
1382 }
1383
1384 /**
1385 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1386 * @memcg: the memory cgroup
1387 *
1388 * Returns the maximum amount of memory @mem can be charged with, in
1389 * pages.
1390 */
1391 static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1392 {
1393 unsigned long margin = 0;
1394 unsigned long count;
1395 unsigned long limit;
1396
1397 count = page_counter_read(&memcg->memory);
1398 limit = READ_ONCE(memcg->memory.max);
1399 if (count < limit)
1400 margin = limit - count;
1401
1402 if (do_memsw_account()) {
1403 count = page_counter_read(&memcg->memsw);
1404 limit = READ_ONCE(memcg->memsw.max);
1405 if (count < limit)
1406 margin = min(margin, limit - count);
1407 else
1408 margin = 0;
1409 }
1410
1411 return margin;
1412 }
1413
1414 /*
1415 * A routine for checking "mem" is under move_account() or not.
1416 *
1417 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1418 * moving cgroups. This is for waiting at high-memory pressure
1419 * caused by "move".
1420 */
1421 static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1422 {
1423 struct mem_cgroup *from;
1424 struct mem_cgroup *to;
1425 bool ret = false;
1426 /*
1427 * Unlike task_move routines, we access mc.to, mc.from not under
1428 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1429 */
1430 spin_lock(&mc.lock);
1431 from = mc.from;
1432 to = mc.to;
1433 if (!from)
1434 goto unlock;
1435
1436 ret = mem_cgroup_is_descendant(from, memcg) ||
1437 mem_cgroup_is_descendant(to, memcg);
1438 unlock:
1439 spin_unlock(&mc.lock);
1440 return ret;
1441 }
1442
1443 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1444 {
1445 if (mc.moving_task && current != mc.moving_task) {
1446 if (mem_cgroup_under_move(memcg)) {
1447 DEFINE_WAIT(wait);
1448 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1449 /* moving charge context might have finished. */
1450 if (mc.moving_task)
1451 schedule();
1452 finish_wait(&mc.waitq, &wait);
1453 return true;
1454 }
1455 }
1456 return false;
1457 }
1458
1459 static char *memory_stat_format(struct mem_cgroup *memcg)
1460 {
1461 struct seq_buf s;
1462 int i;
1463
1464 seq_buf_init(&s, kmalloc(PAGE_SIZE, GFP_KERNEL), PAGE_SIZE);
1465 if (!s.buffer)
1466 return NULL;
1467
1468 /*
1469 * Provide statistics on the state of the memory subsystem as
1470 * well as cumulative event counters that show past behavior.
1471 *
1472 * This list is ordered following a combination of these gradients:
1473 * 1) generic big picture -> specifics and details
1474 * 2) reflecting userspace activity -> reflecting kernel heuristics
1475 *
1476 * Current memory state:
1477 */
1478
1479 seq_buf_printf(&s, "anon %llu\n",
1480 (u64)memcg_page_state(memcg, NR_ANON_MAPPED) *
1481 PAGE_SIZE);
1482 seq_buf_printf(&s, "file %llu\n",
1483 (u64)memcg_page_state(memcg, NR_FILE_PAGES) *
1484 PAGE_SIZE);
1485 seq_buf_printf(&s, "kernel_stack %llu\n",
1486 (u64)memcg_page_state(memcg, NR_KERNEL_STACK_KB) *
1487 1024);
1488 seq_buf_printf(&s, "slab %llu\n",
1489 (u64)(memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B) +
1490 memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B)));
1491 seq_buf_printf(&s, "sock %llu\n",
1492 (u64)memcg_page_state(memcg, MEMCG_SOCK) *
1493 PAGE_SIZE);
1494
1495 seq_buf_printf(&s, "shmem %llu\n",
1496 (u64)memcg_page_state(memcg, NR_SHMEM) *
1497 PAGE_SIZE);
1498 seq_buf_printf(&s, "file_mapped %llu\n",
1499 (u64)memcg_page_state(memcg, NR_FILE_MAPPED) *
1500 PAGE_SIZE);
1501 seq_buf_printf(&s, "file_dirty %llu\n",
1502 (u64)memcg_page_state(memcg, NR_FILE_DIRTY) *
1503 PAGE_SIZE);
1504 seq_buf_printf(&s, "file_writeback %llu\n",
1505 (u64)memcg_page_state(memcg, NR_WRITEBACK) *
1506 PAGE_SIZE);
1507
1508 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1509 seq_buf_printf(&s, "anon_thp %llu\n",
1510 (u64)memcg_page_state(memcg, NR_ANON_THPS) *
1511 HPAGE_PMD_SIZE);
1512 #endif
1513
1514 for (i = 0; i < NR_LRU_LISTS; i++)
1515 seq_buf_printf(&s, "%s %llu\n", lru_list_name(i),
1516 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
1517 PAGE_SIZE);
1518
1519 seq_buf_printf(&s, "slab_reclaimable %llu\n",
1520 (u64)memcg_page_state(memcg, NR_SLAB_RECLAIMABLE_B));
1521 seq_buf_printf(&s, "slab_unreclaimable %llu\n",
1522 (u64)memcg_page_state(memcg, NR_SLAB_UNRECLAIMABLE_B));
1523
1524 /* Accumulated memory events */
1525
1526 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGFAULT),
1527 memcg_events(memcg, PGFAULT));
1528 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGMAJFAULT),
1529 memcg_events(memcg, PGMAJFAULT));
1530
1531 seq_buf_printf(&s, "workingset_refault %lu\n",
1532 memcg_page_state(memcg, WORKINGSET_REFAULT));
1533 seq_buf_printf(&s, "workingset_activate %lu\n",
1534 memcg_page_state(memcg, WORKINGSET_ACTIVATE));
1535 seq_buf_printf(&s, "workingset_restore %lu\n",
1536 memcg_page_state(memcg, WORKINGSET_RESTORE));
1537 seq_buf_printf(&s, "workingset_nodereclaim %lu\n",
1538 memcg_page_state(memcg, WORKINGSET_NODERECLAIM));
1539
1540 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGREFILL),
1541 memcg_events(memcg, PGREFILL));
1542 seq_buf_printf(&s, "pgscan %lu\n",
1543 memcg_events(memcg, PGSCAN_KSWAPD) +
1544 memcg_events(memcg, PGSCAN_DIRECT));
1545 seq_buf_printf(&s, "pgsteal %lu\n",
1546 memcg_events(memcg, PGSTEAL_KSWAPD) +
1547 memcg_events(memcg, PGSTEAL_DIRECT));
1548 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGACTIVATE),
1549 memcg_events(memcg, PGACTIVATE));
1550 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGDEACTIVATE),
1551 memcg_events(memcg, PGDEACTIVATE));
1552 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREE),
1553 memcg_events(memcg, PGLAZYFREE));
1554 seq_buf_printf(&s, "%s %lu\n", vm_event_name(PGLAZYFREED),
1555 memcg_events(memcg, PGLAZYFREED));
1556
1557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1558 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_FAULT_ALLOC),
1559 memcg_events(memcg, THP_FAULT_ALLOC));
1560 seq_buf_printf(&s, "%s %lu\n", vm_event_name(THP_COLLAPSE_ALLOC),
1561 memcg_events(memcg, THP_COLLAPSE_ALLOC));
1562 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1563
1564 /* The above should easily fit into one page */
1565 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1566
1567 return s.buffer;
1568 }
1569
1570 #define K(x) ((x) << (PAGE_SHIFT-10))
1571 /**
1572 * mem_cgroup_print_oom_context: Print OOM information relevant to
1573 * memory controller.
1574 * @memcg: The memory cgroup that went over limit
1575 * @p: Task that is going to be killed
1576 *
1577 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1578 * enabled
1579 */
1580 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1581 {
1582 rcu_read_lock();
1583
1584 if (memcg) {
1585 pr_cont(",oom_memcg=");
1586 pr_cont_cgroup_path(memcg->css.cgroup);
1587 } else
1588 pr_cont(",global_oom");
1589 if (p) {
1590 pr_cont(",task_memcg=");
1591 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1592 }
1593 rcu_read_unlock();
1594 }
1595
1596 /**
1597 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1598 * memory controller.
1599 * @memcg: The memory cgroup that went over limit
1600 */
1601 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1602 {
1603 char *buf;
1604
1605 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1606 K((u64)page_counter_read(&memcg->memory)),
1607 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1608 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1609 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1610 K((u64)page_counter_read(&memcg->swap)),
1611 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1612 else {
1613 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1614 K((u64)page_counter_read(&memcg->memsw)),
1615 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1616 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1617 K((u64)page_counter_read(&memcg->kmem)),
1618 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1619 }
1620
1621 pr_info("Memory cgroup stats for ");
1622 pr_cont_cgroup_path(memcg->css.cgroup);
1623 pr_cont(":");
1624 buf = memory_stat_format(memcg);
1625 if (!buf)
1626 return;
1627 pr_info("%s", buf);
1628 kfree(buf);
1629 }
1630
1631 /*
1632 * Return the memory (and swap, if configured) limit for a memcg.
1633 */
1634 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1635 {
1636 unsigned long max;
1637
1638 max = READ_ONCE(memcg->memory.max);
1639 if (mem_cgroup_swappiness(memcg)) {
1640 unsigned long memsw_max;
1641 unsigned long swap_max;
1642
1643 memsw_max = memcg->memsw.max;
1644 swap_max = READ_ONCE(memcg->swap.max);
1645 swap_max = min(swap_max, (unsigned long)total_swap_pages);
1646 max = min(max + swap_max, memsw_max);
1647 }
1648 return max;
1649 }
1650
1651 unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1652 {
1653 return page_counter_read(&memcg->memory);
1654 }
1655
1656 static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1657 int order)
1658 {
1659 struct oom_control oc = {
1660 .zonelist = NULL,
1661 .nodemask = NULL,
1662 .memcg = memcg,
1663 .gfp_mask = gfp_mask,
1664 .order = order,
1665 };
1666 bool ret = true;
1667
1668 if (mutex_lock_killable(&oom_lock))
1669 return true;
1670
1671 if (mem_cgroup_margin(memcg) >= (1 << order))
1672 goto unlock;
1673
1674 /*
1675 * A few threads which were not waiting at mutex_lock_killable() can
1676 * fail to bail out. Therefore, check again after holding oom_lock.
1677 */
1678 ret = should_force_charge() || out_of_memory(&oc);
1679
1680 unlock:
1681 mutex_unlock(&oom_lock);
1682 return ret;
1683 }
1684
1685 static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1686 pg_data_t *pgdat,
1687 gfp_t gfp_mask,
1688 unsigned long *total_scanned)
1689 {
1690 struct mem_cgroup *victim = NULL;
1691 int total = 0;
1692 int loop = 0;
1693 unsigned long excess;
1694 unsigned long nr_scanned;
1695 struct mem_cgroup_reclaim_cookie reclaim = {
1696 .pgdat = pgdat,
1697 };
1698
1699 excess = soft_limit_excess(root_memcg);
1700
1701 while (1) {
1702 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1703 if (!victim) {
1704 loop++;
1705 if (loop >= 2) {
1706 /*
1707 * If we have not been able to reclaim
1708 * anything, it might because there are
1709 * no reclaimable pages under this hierarchy
1710 */
1711 if (!total)
1712 break;
1713 /*
1714 * We want to do more targeted reclaim.
1715 * excess >> 2 is not to excessive so as to
1716 * reclaim too much, nor too less that we keep
1717 * coming back to reclaim from this cgroup
1718 */
1719 if (total >= (excess >> 2) ||
1720 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1721 break;
1722 }
1723 continue;
1724 }
1725 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1726 pgdat, &nr_scanned);
1727 *total_scanned += nr_scanned;
1728 if (!soft_limit_excess(root_memcg))
1729 break;
1730 }
1731 mem_cgroup_iter_break(root_memcg, victim);
1732 return total;
1733 }
1734
1735 #ifdef CONFIG_LOCKDEP
1736 static struct lockdep_map memcg_oom_lock_dep_map = {
1737 .name = "memcg_oom_lock",
1738 };
1739 #endif
1740
1741 static DEFINE_SPINLOCK(memcg_oom_lock);
1742
1743 /*
1744 * Check OOM-Killer is already running under our hierarchy.
1745 * If someone is running, return false.
1746 */
1747 static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1748 {
1749 struct mem_cgroup *iter, *failed = NULL;
1750
1751 spin_lock(&memcg_oom_lock);
1752
1753 for_each_mem_cgroup_tree(iter, memcg) {
1754 if (iter->oom_lock) {
1755 /*
1756 * this subtree of our hierarchy is already locked
1757 * so we cannot give a lock.
1758 */
1759 failed = iter;
1760 mem_cgroup_iter_break(memcg, iter);
1761 break;
1762 } else
1763 iter->oom_lock = true;
1764 }
1765
1766 if (failed) {
1767 /*
1768 * OK, we failed to lock the whole subtree so we have
1769 * to clean up what we set up to the failing subtree
1770 */
1771 for_each_mem_cgroup_tree(iter, memcg) {
1772 if (iter == failed) {
1773 mem_cgroup_iter_break(memcg, iter);
1774 break;
1775 }
1776 iter->oom_lock = false;
1777 }
1778 } else
1779 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1780
1781 spin_unlock(&memcg_oom_lock);
1782
1783 return !failed;
1784 }
1785
1786 static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1787 {
1788 struct mem_cgroup *iter;
1789
1790 spin_lock(&memcg_oom_lock);
1791 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1792 for_each_mem_cgroup_tree(iter, memcg)
1793 iter->oom_lock = false;
1794 spin_unlock(&memcg_oom_lock);
1795 }
1796
1797 static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1798 {
1799 struct mem_cgroup *iter;
1800
1801 spin_lock(&memcg_oom_lock);
1802 for_each_mem_cgroup_tree(iter, memcg)
1803 iter->under_oom++;
1804 spin_unlock(&memcg_oom_lock);
1805 }
1806
1807 static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1808 {
1809 struct mem_cgroup *iter;
1810
1811 /*
1812 * When a new child is created while the hierarchy is under oom,
1813 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
1814 */
1815 spin_lock(&memcg_oom_lock);
1816 for_each_mem_cgroup_tree(iter, memcg)
1817 if (iter->under_oom > 0)
1818 iter->under_oom--;
1819 spin_unlock(&memcg_oom_lock);
1820 }
1821
1822 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1823
1824 struct oom_wait_info {
1825 struct mem_cgroup *memcg;
1826 wait_queue_entry_t wait;
1827 };
1828
1829 static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1830 unsigned mode, int sync, void *arg)
1831 {
1832 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1833 struct mem_cgroup *oom_wait_memcg;
1834 struct oom_wait_info *oom_wait_info;
1835
1836 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1837 oom_wait_memcg = oom_wait_info->memcg;
1838
1839 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1840 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1841 return 0;
1842 return autoremove_wake_function(wait, mode, sync, arg);
1843 }
1844
1845 static void memcg_oom_recover(struct mem_cgroup *memcg)
1846 {
1847 /*
1848 * For the following lockless ->under_oom test, the only required
1849 * guarantee is that it must see the state asserted by an OOM when
1850 * this function is called as a result of userland actions
1851 * triggered by the notification of the OOM. This is trivially
1852 * achieved by invoking mem_cgroup_mark_under_oom() before
1853 * triggering notification.
1854 */
1855 if (memcg && memcg->under_oom)
1856 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1857 }
1858
1859 enum oom_status {
1860 OOM_SUCCESS,
1861 OOM_FAILED,
1862 OOM_ASYNC,
1863 OOM_SKIPPED
1864 };
1865
1866 static enum oom_status mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1867 {
1868 enum oom_status ret;
1869 bool locked;
1870
1871 if (order > PAGE_ALLOC_COSTLY_ORDER)
1872 return OOM_SKIPPED;
1873
1874 memcg_memory_event(memcg, MEMCG_OOM);
1875
1876 /*
1877 * We are in the middle of the charge context here, so we
1878 * don't want to block when potentially sitting on a callstack
1879 * that holds all kinds of filesystem and mm locks.
1880 *
1881 * cgroup1 allows disabling the OOM killer and waiting for outside
1882 * handling until the charge can succeed; remember the context and put
1883 * the task to sleep at the end of the page fault when all locks are
1884 * released.
1885 *
1886 * On the other hand, in-kernel OOM killer allows for an async victim
1887 * memory reclaim (oom_reaper) and that means that we are not solely
1888 * relying on the oom victim to make a forward progress and we can
1889 * invoke the oom killer here.
1890 *
1891 * Please note that mem_cgroup_out_of_memory might fail to find a
1892 * victim and then we have to bail out from the charge path.
1893 */
1894 if (memcg->oom_kill_disable) {
1895 if (!current->in_user_fault)
1896 return OOM_SKIPPED;
1897 css_get(&memcg->css);
1898 current->memcg_in_oom = memcg;
1899 current->memcg_oom_gfp_mask = mask;
1900 current->memcg_oom_order = order;
1901
1902 return OOM_ASYNC;
1903 }
1904
1905 mem_cgroup_mark_under_oom(memcg);
1906
1907 locked = mem_cgroup_oom_trylock(memcg);
1908
1909 if (locked)
1910 mem_cgroup_oom_notify(memcg);
1911
1912 mem_cgroup_unmark_under_oom(memcg);
1913 if (mem_cgroup_out_of_memory(memcg, mask, order))
1914 ret = OOM_SUCCESS;
1915 else
1916 ret = OOM_FAILED;
1917
1918 if (locked)
1919 mem_cgroup_oom_unlock(memcg);
1920
1921 return ret;
1922 }
1923
1924 /**
1925 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1926 * @handle: actually kill/wait or just clean up the OOM state
1927 *
1928 * This has to be called at the end of a page fault if the memcg OOM
1929 * handler was enabled.
1930 *
1931 * Memcg supports userspace OOM handling where failed allocations must
1932 * sleep on a waitqueue until the userspace task resolves the
1933 * situation. Sleeping directly in the charge context with all kinds
1934 * of locks held is not a good idea, instead we remember an OOM state
1935 * in the task and mem_cgroup_oom_synchronize() has to be called at
1936 * the end of the page fault to complete the OOM handling.
1937 *
1938 * Returns %true if an ongoing memcg OOM situation was detected and
1939 * completed, %false otherwise.
1940 */
1941 bool mem_cgroup_oom_synchronize(bool handle)
1942 {
1943 struct mem_cgroup *memcg = current->memcg_in_oom;
1944 struct oom_wait_info owait;
1945 bool locked;
1946
1947 /* OOM is global, do not handle */
1948 if (!memcg)
1949 return false;
1950
1951 if (!handle)
1952 goto cleanup;
1953
1954 owait.memcg = memcg;
1955 owait.wait.flags = 0;
1956 owait.wait.func = memcg_oom_wake_function;
1957 owait.wait.private = current;
1958 INIT_LIST_HEAD(&owait.wait.entry);
1959
1960 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1961 mem_cgroup_mark_under_oom(memcg);
1962
1963 locked = mem_cgroup_oom_trylock(memcg);
1964
1965 if (locked)
1966 mem_cgroup_oom_notify(memcg);
1967
1968 if (locked && !memcg->oom_kill_disable) {
1969 mem_cgroup_unmark_under_oom(memcg);
1970 finish_wait(&memcg_oom_waitq, &owait.wait);
1971 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1972 current->memcg_oom_order);
1973 } else {
1974 schedule();
1975 mem_cgroup_unmark_under_oom(memcg);
1976 finish_wait(&memcg_oom_waitq, &owait.wait);
1977 }
1978
1979 if (locked) {
1980 mem_cgroup_oom_unlock(memcg);
1981 /*
1982 * There is no guarantee that an OOM-lock contender
1983 * sees the wakeups triggered by the OOM kill
1984 * uncharges. Wake any sleepers explicitely.
1985 */
1986 memcg_oom_recover(memcg);
1987 }
1988 cleanup:
1989 current->memcg_in_oom = NULL;
1990 css_put(&memcg->css);
1991 return true;
1992 }
1993
1994 /**
1995 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
1996 * @victim: task to be killed by the OOM killer
1997 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
1998 *
1999 * Returns a pointer to a memory cgroup, which has to be cleaned up
2000 * by killing all belonging OOM-killable tasks.
2001 *
2002 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2003 */
2004 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2005 struct mem_cgroup *oom_domain)
2006 {
2007 struct mem_cgroup *oom_group = NULL;
2008 struct mem_cgroup *memcg;
2009
2010 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2011 return NULL;
2012
2013 if (!oom_domain)
2014 oom_domain = root_mem_cgroup;
2015
2016 rcu_read_lock();
2017
2018 memcg = mem_cgroup_from_task(victim);
2019 if (memcg == root_mem_cgroup)
2020 goto out;
2021
2022 /*
2023 * If the victim task has been asynchronously moved to a different
2024 * memory cgroup, we might end up killing tasks outside oom_domain.
2025 * In this case it's better to ignore memory.group.oom.
2026 */
2027 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2028 goto out;
2029
2030 /*
2031 * Traverse the memory cgroup hierarchy from the victim task's
2032 * cgroup up to the OOMing cgroup (or root) to find the
2033 * highest-level memory cgroup with oom.group set.
2034 */
2035 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2036 if (memcg->oom_group)
2037 oom_group = memcg;
2038
2039 if (memcg == oom_domain)
2040 break;
2041 }
2042
2043 if (oom_group)
2044 css_get(&oom_group->css);
2045 out:
2046 rcu_read_unlock();
2047
2048 return oom_group;
2049 }
2050
2051 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2052 {
2053 pr_info("Tasks in ");
2054 pr_cont_cgroup_path(memcg->css.cgroup);
2055 pr_cont(" are going to be killed due to memory.oom.group set\n");
2056 }
2057
2058 /**
2059 * lock_page_memcg - lock a page->mem_cgroup binding
2060 * @page: the page
2061 *
2062 * This function protects unlocked LRU pages from being moved to
2063 * another cgroup.
2064 *
2065 * It ensures lifetime of the returned memcg. Caller is responsible
2066 * for the lifetime of the page; __unlock_page_memcg() is available
2067 * when @page might get freed inside the locked section.
2068 */
2069 struct mem_cgroup *lock_page_memcg(struct page *page)
2070 {
2071 struct page *head = compound_head(page); /* rmap on tail pages */
2072 struct mem_cgroup *memcg;
2073 unsigned long flags;
2074
2075 /*
2076 * The RCU lock is held throughout the transaction. The fast
2077 * path can get away without acquiring the memcg->move_lock
2078 * because page moving starts with an RCU grace period.
2079 *
2080 * The RCU lock also protects the memcg from being freed when
2081 * the page state that is going to change is the only thing
2082 * preventing the page itself from being freed. E.g. writeback
2083 * doesn't hold a page reference and relies on PG_writeback to
2084 * keep off truncation, migration and so forth.
2085 */
2086 rcu_read_lock();
2087
2088 if (mem_cgroup_disabled())
2089 return NULL;
2090 again:
2091 memcg = head->mem_cgroup;
2092 if (unlikely(!memcg))
2093 return NULL;
2094
2095 if (atomic_read(&memcg->moving_account) <= 0)
2096 return memcg;
2097
2098 spin_lock_irqsave(&memcg->move_lock, flags);
2099 if (memcg != head->mem_cgroup) {
2100 spin_unlock_irqrestore(&memcg->move_lock, flags);
2101 goto again;
2102 }
2103
2104 /*
2105 * When charge migration first begins, we can have locked and
2106 * unlocked page stat updates happening concurrently. Track
2107 * the task who has the lock for unlock_page_memcg().
2108 */
2109 memcg->move_lock_task = current;
2110 memcg->move_lock_flags = flags;
2111
2112 return memcg;
2113 }
2114 EXPORT_SYMBOL(lock_page_memcg);
2115
2116 /**
2117 * __unlock_page_memcg - unlock and unpin a memcg
2118 * @memcg: the memcg
2119 *
2120 * Unlock and unpin a memcg returned by lock_page_memcg().
2121 */
2122 void __unlock_page_memcg(struct mem_cgroup *memcg)
2123 {
2124 if (memcg && memcg->move_lock_task == current) {
2125 unsigned long flags = memcg->move_lock_flags;
2126
2127 memcg->move_lock_task = NULL;
2128 memcg->move_lock_flags = 0;
2129
2130 spin_unlock_irqrestore(&memcg->move_lock, flags);
2131 }
2132
2133 rcu_read_unlock();
2134 }
2135
2136 /**
2137 * unlock_page_memcg - unlock a page->mem_cgroup binding
2138 * @page: the page
2139 */
2140 void unlock_page_memcg(struct page *page)
2141 {
2142 struct page *head = compound_head(page);
2143
2144 __unlock_page_memcg(head->mem_cgroup);
2145 }
2146 EXPORT_SYMBOL(unlock_page_memcg);
2147
2148 struct memcg_stock_pcp {
2149 struct mem_cgroup *cached; /* this never be root cgroup */
2150 unsigned int nr_pages;
2151
2152 #ifdef CONFIG_MEMCG_KMEM
2153 struct obj_cgroup *cached_objcg;
2154 unsigned int nr_bytes;
2155 #endif
2156
2157 struct work_struct work;
2158 unsigned long flags;
2159 #define FLUSHING_CACHED_CHARGE 0
2160 };
2161 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2162 static DEFINE_MUTEX(percpu_charge_mutex);
2163
2164 #ifdef CONFIG_MEMCG_KMEM
2165 static void drain_obj_stock(struct memcg_stock_pcp *stock);
2166 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2167 struct mem_cgroup *root_memcg);
2168
2169 #else
2170 static inline void drain_obj_stock(struct memcg_stock_pcp *stock)
2171 {
2172 }
2173 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2174 struct mem_cgroup *root_memcg)
2175 {
2176 return false;
2177 }
2178 #endif
2179
2180 /**
2181 * consume_stock: Try to consume stocked charge on this cpu.
2182 * @memcg: memcg to consume from.
2183 * @nr_pages: how many pages to charge.
2184 *
2185 * The charges will only happen if @memcg matches the current cpu's memcg
2186 * stock, and at least @nr_pages are available in that stock. Failure to
2187 * service an allocation will refill the stock.
2188 *
2189 * returns true if successful, false otherwise.
2190 */
2191 static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2192 {
2193 struct memcg_stock_pcp *stock;
2194 unsigned long flags;
2195 bool ret = false;
2196
2197 if (nr_pages > MEMCG_CHARGE_BATCH)
2198 return ret;
2199
2200 local_irq_save(flags);
2201
2202 stock = this_cpu_ptr(&memcg_stock);
2203 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2204 stock->nr_pages -= nr_pages;
2205 ret = true;
2206 }
2207
2208 local_irq_restore(flags);
2209
2210 return ret;
2211 }
2212
2213 /*
2214 * Returns stocks cached in percpu and reset cached information.
2215 */
2216 static void drain_stock(struct memcg_stock_pcp *stock)
2217 {
2218 struct mem_cgroup *old = stock->cached;
2219
2220 if (!old)
2221 return;
2222
2223 if (stock->nr_pages) {
2224 page_counter_uncharge(&old->memory, stock->nr_pages);
2225 if (do_memsw_account())
2226 page_counter_uncharge(&old->memsw, stock->nr_pages);
2227 stock->nr_pages = 0;
2228 }
2229
2230 css_put(&old->css);
2231 stock->cached = NULL;
2232 }
2233
2234 static void drain_local_stock(struct work_struct *dummy)
2235 {
2236 struct memcg_stock_pcp *stock;
2237 unsigned long flags;
2238
2239 /*
2240 * The only protection from memory hotplug vs. drain_stock races is
2241 * that we always operate on local CPU stock here with IRQ disabled
2242 */
2243 local_irq_save(flags);
2244
2245 stock = this_cpu_ptr(&memcg_stock);
2246 drain_obj_stock(stock);
2247 drain_stock(stock);
2248 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2249
2250 local_irq_restore(flags);
2251 }
2252
2253 /*
2254 * Cache charges(val) to local per_cpu area.
2255 * This will be consumed by consume_stock() function, later.
2256 */
2257 static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2258 {
2259 struct memcg_stock_pcp *stock;
2260 unsigned long flags;
2261
2262 local_irq_save(flags);
2263
2264 stock = this_cpu_ptr(&memcg_stock);
2265 if (stock->cached != memcg) { /* reset if necessary */
2266 drain_stock(stock);
2267 css_get(&memcg->css);
2268 stock->cached = memcg;
2269 }
2270 stock->nr_pages += nr_pages;
2271
2272 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2273 drain_stock(stock);
2274
2275 local_irq_restore(flags);
2276 }
2277
2278 /*
2279 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2280 * of the hierarchy under it.
2281 */
2282 static void drain_all_stock(struct mem_cgroup *root_memcg)
2283 {
2284 int cpu, curcpu;
2285
2286 /* If someone's already draining, avoid adding running more workers. */
2287 if (!mutex_trylock(&percpu_charge_mutex))
2288 return;
2289 /*
2290 * Notify other cpus that system-wide "drain" is running
2291 * We do not care about races with the cpu hotplug because cpu down
2292 * as well as workers from this path always operate on the local
2293 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2294 */
2295 curcpu = get_cpu();
2296 for_each_online_cpu(cpu) {
2297 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2298 struct mem_cgroup *memcg;
2299 bool flush = false;
2300
2301 rcu_read_lock();
2302 memcg = stock->cached;
2303 if (memcg && stock->nr_pages &&
2304 mem_cgroup_is_descendant(memcg, root_memcg))
2305 flush = true;
2306 if (obj_stock_flush_required(stock, root_memcg))
2307 flush = true;
2308 rcu_read_unlock();
2309
2310 if (flush &&
2311 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2312 if (cpu == curcpu)
2313 drain_local_stock(&stock->work);
2314 else
2315 schedule_work_on(cpu, &stock->work);
2316 }
2317 }
2318 put_cpu();
2319 mutex_unlock(&percpu_charge_mutex);
2320 }
2321
2322 static int memcg_hotplug_cpu_dead(unsigned int cpu)
2323 {
2324 struct memcg_stock_pcp *stock;
2325 struct mem_cgroup *memcg, *mi;
2326
2327 stock = &per_cpu(memcg_stock, cpu);
2328 drain_stock(stock);
2329
2330 for_each_mem_cgroup(memcg) {
2331 int i;
2332
2333 for (i = 0; i < MEMCG_NR_STAT; i++) {
2334 int nid;
2335 long x;
2336
2337 x = this_cpu_xchg(memcg->vmstats_percpu->stat[i], 0);
2338 if (x)
2339 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2340 atomic_long_add(x, &memcg->vmstats[i]);
2341
2342 if (i >= NR_VM_NODE_STAT_ITEMS)
2343 continue;
2344
2345 for_each_node(nid) {
2346 struct mem_cgroup_per_node *pn;
2347
2348 pn = mem_cgroup_nodeinfo(memcg, nid);
2349 x = this_cpu_xchg(pn->lruvec_stat_cpu->count[i], 0);
2350 if (x)
2351 do {
2352 atomic_long_add(x, &pn->lruvec_stat[i]);
2353 } while ((pn = parent_nodeinfo(pn, nid)));
2354 }
2355 }
2356
2357 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
2358 long x;
2359
2360 x = this_cpu_xchg(memcg->vmstats_percpu->events[i], 0);
2361 if (x)
2362 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
2363 atomic_long_add(x, &memcg->vmevents[i]);
2364 }
2365 }
2366
2367 return 0;
2368 }
2369
2370 static unsigned long reclaim_high(struct mem_cgroup *memcg,
2371 unsigned int nr_pages,
2372 gfp_t gfp_mask)
2373 {
2374 unsigned long nr_reclaimed = 0;
2375
2376 do {
2377 if (page_counter_read(&memcg->memory) <=
2378 READ_ONCE(memcg->memory.high))
2379 continue;
2380 memcg_memory_event(memcg, MEMCG_HIGH);
2381 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2382 gfp_mask, true);
2383 } while ((memcg = parent_mem_cgroup(memcg)) &&
2384 !mem_cgroup_is_root(memcg));
2385
2386 return nr_reclaimed;
2387 }
2388
2389 static void high_work_func(struct work_struct *work)
2390 {
2391 struct mem_cgroup *memcg;
2392
2393 memcg = container_of(work, struct mem_cgroup, high_work);
2394 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2395 }
2396
2397 /*
2398 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2399 * enough to still cause a significant slowdown in most cases, while still
2400 * allowing diagnostics and tracing to proceed without becoming stuck.
2401 */
2402 #define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2403
2404 /*
2405 * When calculating the delay, we use these either side of the exponentiation to
2406 * maintain precision and scale to a reasonable number of jiffies (see the table
2407 * below.
2408 *
2409 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2410 * overage ratio to a delay.
2411 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down down the
2412 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2413 * to produce a reasonable delay curve.
2414 *
2415 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2416 * reasonable delay curve compared to precision-adjusted overage, not
2417 * penalising heavily at first, but still making sure that growth beyond the
2418 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2419 * example, with a high of 100 megabytes:
2420 *
2421 * +-------+------------------------+
2422 * | usage | time to allocate in ms |
2423 * +-------+------------------------+
2424 * | 100M | 0 |
2425 * | 101M | 6 |
2426 * | 102M | 25 |
2427 * | 103M | 57 |
2428 * | 104M | 102 |
2429 * | 105M | 159 |
2430 * | 106M | 230 |
2431 * | 107M | 313 |
2432 * | 108M | 409 |
2433 * | 109M | 518 |
2434 * | 110M | 639 |
2435 * | 111M | 774 |
2436 * | 112M | 921 |
2437 * | 113M | 1081 |
2438 * | 114M | 1254 |
2439 * | 115M | 1439 |
2440 * | 116M | 1638 |
2441 * | 117M | 1849 |
2442 * | 118M | 2000 |
2443 * | 119M | 2000 |
2444 * | 120M | 2000 |
2445 * +-------+------------------------+
2446 */
2447 #define MEMCG_DELAY_PRECISION_SHIFT 20
2448 #define MEMCG_DELAY_SCALING_SHIFT 14
2449
2450 static u64 calculate_overage(unsigned long usage, unsigned long high)
2451 {
2452 u64 overage;
2453
2454 if (usage <= high)
2455 return 0;
2456
2457 /*
2458 * Prevent division by 0 in overage calculation by acting as if
2459 * it was a threshold of 1 page
2460 */
2461 high = max(high, 1UL);
2462
2463 overage = usage - high;
2464 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2465 return div64_u64(overage, high);
2466 }
2467
2468 static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2469 {
2470 u64 overage, max_overage = 0;
2471
2472 do {
2473 overage = calculate_overage(page_counter_read(&memcg->memory),
2474 READ_ONCE(memcg->memory.high));
2475 max_overage = max(overage, max_overage);
2476 } while ((memcg = parent_mem_cgroup(memcg)) &&
2477 !mem_cgroup_is_root(memcg));
2478
2479 return max_overage;
2480 }
2481
2482 static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2483 {
2484 u64 overage, max_overage = 0;
2485
2486 do {
2487 overage = calculate_overage(page_counter_read(&memcg->swap),
2488 READ_ONCE(memcg->swap.high));
2489 if (overage)
2490 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2491 max_overage = max(overage, max_overage);
2492 } while ((memcg = parent_mem_cgroup(memcg)) &&
2493 !mem_cgroup_is_root(memcg));
2494
2495 return max_overage;
2496 }
2497
2498 /*
2499 * Get the number of jiffies that we should penalise a mischievous cgroup which
2500 * is exceeding its memory.high by checking both it and its ancestors.
2501 */
2502 static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2503 unsigned int nr_pages,
2504 u64 max_overage)
2505 {
2506 unsigned long penalty_jiffies;
2507
2508 if (!max_overage)
2509 return 0;
2510
2511 /*
2512 * We use overage compared to memory.high to calculate the number of
2513 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2514 * fairly lenient on small overages, and increasingly harsh when the
2515 * memcg in question makes it clear that it has no intention of stopping
2516 * its crazy behaviour, so we exponentially increase the delay based on
2517 * overage amount.
2518 */
2519 penalty_jiffies = max_overage * max_overage * HZ;
2520 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2521 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2522
2523 /*
2524 * Factor in the task's own contribution to the overage, such that four
2525 * N-sized allocations are throttled approximately the same as one
2526 * 4N-sized allocation.
2527 *
2528 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2529 * larger the current charge patch is than that.
2530 */
2531 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2532 }
2533
2534 /*
2535 * Scheduled by try_charge() to be executed from the userland return path
2536 * and reclaims memory over the high limit.
2537 */
2538 void mem_cgroup_handle_over_high(void)
2539 {
2540 unsigned long penalty_jiffies;
2541 unsigned long pflags;
2542 unsigned long nr_reclaimed;
2543 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2544 int nr_retries = MAX_RECLAIM_RETRIES;
2545 struct mem_cgroup *memcg;
2546 bool in_retry = false;
2547
2548 if (likely(!nr_pages))
2549 return;
2550
2551 memcg = get_mem_cgroup_from_mm(current->mm);
2552 current->memcg_nr_pages_over_high = 0;
2553
2554 retry_reclaim:
2555 /*
2556 * The allocating task should reclaim at least the batch size, but for
2557 * subsequent retries we only want to do what's necessary to prevent oom
2558 * or breaching resource isolation.
2559 *
2560 * This is distinct from memory.max or page allocator behaviour because
2561 * memory.high is currently batched, whereas memory.max and the page
2562 * allocator run every time an allocation is made.
2563 */
2564 nr_reclaimed = reclaim_high(memcg,
2565 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2566 GFP_KERNEL);
2567
2568 /*
2569 * memory.high is breached and reclaim is unable to keep up. Throttle
2570 * allocators proactively to slow down excessive growth.
2571 */
2572 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2573 mem_find_max_overage(memcg));
2574
2575 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2576 swap_find_max_overage(memcg));
2577
2578 /*
2579 * Clamp the max delay per usermode return so as to still keep the
2580 * application moving forwards and also permit diagnostics, albeit
2581 * extremely slowly.
2582 */
2583 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2584
2585 /*
2586 * Don't sleep if the amount of jiffies this memcg owes us is so low
2587 * that it's not even worth doing, in an attempt to be nice to those who
2588 * go only a small amount over their memory.high value and maybe haven't
2589 * been aggressively reclaimed enough yet.
2590 */
2591 if (penalty_jiffies <= HZ / 100)
2592 goto out;
2593
2594 /*
2595 * If reclaim is making forward progress but we're still over
2596 * memory.high, we want to encourage that rather than doing allocator
2597 * throttling.
2598 */
2599 if (nr_reclaimed || nr_retries--) {
2600 in_retry = true;
2601 goto retry_reclaim;
2602 }
2603
2604 /*
2605 * If we exit early, we're guaranteed to die (since
2606 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2607 * need to account for any ill-begotten jiffies to pay them off later.
2608 */
2609 psi_memstall_enter(&pflags);
2610 schedule_timeout_killable(penalty_jiffies);
2611 psi_memstall_leave(&pflags);
2612
2613 out:
2614 css_put(&memcg->css);
2615 }
2616
2617 static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2618 unsigned int nr_pages)
2619 {
2620 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2621 int nr_retries = MAX_RECLAIM_RETRIES;
2622 struct mem_cgroup *mem_over_limit;
2623 struct page_counter *counter;
2624 unsigned long nr_reclaimed;
2625 bool may_swap = true;
2626 bool drained = false;
2627 enum oom_status oom_status;
2628
2629 if (mem_cgroup_is_root(memcg))
2630 return 0;
2631 retry:
2632 if (consume_stock(memcg, nr_pages))
2633 return 0;
2634
2635 if (!do_memsw_account() ||
2636 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2637 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2638 goto done_restock;
2639 if (do_memsw_account())
2640 page_counter_uncharge(&memcg->memsw, batch);
2641 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2642 } else {
2643 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2644 may_swap = false;
2645 }
2646
2647 if (batch > nr_pages) {
2648 batch = nr_pages;
2649 goto retry;
2650 }
2651
2652 /*
2653 * Memcg doesn't have a dedicated reserve for atomic
2654 * allocations. But like the global atomic pool, we need to
2655 * put the burden of reclaim on regular allocation requests
2656 * and let these go through as privileged allocations.
2657 */
2658 if (gfp_mask & __GFP_ATOMIC)
2659 goto force;
2660
2661 /*
2662 * Unlike in global OOM situations, memcg is not in a physical
2663 * memory shortage. Allow dying and OOM-killed tasks to
2664 * bypass the last charges so that they can exit quickly and
2665 * free their memory.
2666 */
2667 if (unlikely(should_force_charge()))
2668 goto force;
2669
2670 /*
2671 * Prevent unbounded recursion when reclaim operations need to
2672 * allocate memory. This might exceed the limits temporarily,
2673 * but we prefer facilitating memory reclaim and getting back
2674 * under the limit over triggering OOM kills in these cases.
2675 */
2676 if (unlikely(current->flags & PF_MEMALLOC))
2677 goto force;
2678
2679 if (unlikely(task_in_memcg_oom(current)))
2680 goto nomem;
2681
2682 if (!gfpflags_allow_blocking(gfp_mask))
2683 goto nomem;
2684
2685 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2686
2687 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2688 gfp_mask, may_swap);
2689
2690 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2691 goto retry;
2692
2693 if (!drained) {
2694 drain_all_stock(mem_over_limit);
2695 drained = true;
2696 goto retry;
2697 }
2698
2699 if (gfp_mask & __GFP_NORETRY)
2700 goto nomem;
2701 /*
2702 * Even though the limit is exceeded at this point, reclaim
2703 * may have been able to free some pages. Retry the charge
2704 * before killing the task.
2705 *
2706 * Only for regular pages, though: huge pages are rather
2707 * unlikely to succeed so close to the limit, and we fall back
2708 * to regular pages anyway in case of failure.
2709 */
2710 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2711 goto retry;
2712 /*
2713 * At task move, charge accounts can be doubly counted. So, it's
2714 * better to wait until the end of task_move if something is going on.
2715 */
2716 if (mem_cgroup_wait_acct_move(mem_over_limit))
2717 goto retry;
2718
2719 if (nr_retries--)
2720 goto retry;
2721
2722 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2723 goto nomem;
2724
2725 if (gfp_mask & __GFP_NOFAIL)
2726 goto force;
2727
2728 if (fatal_signal_pending(current))
2729 goto force;
2730
2731 /*
2732 * keep retrying as long as the memcg oom killer is able to make
2733 * a forward progress or bypass the charge if the oom killer
2734 * couldn't make any progress.
2735 */
2736 oom_status = mem_cgroup_oom(mem_over_limit, gfp_mask,
2737 get_order(nr_pages * PAGE_SIZE));
2738 switch (oom_status) {
2739 case OOM_SUCCESS:
2740 nr_retries = MAX_RECLAIM_RETRIES;
2741 goto retry;
2742 case OOM_FAILED:
2743 goto force;
2744 default:
2745 goto nomem;
2746 }
2747 nomem:
2748 if (!(gfp_mask & __GFP_NOFAIL))
2749 return -ENOMEM;
2750 force:
2751 /*
2752 * The allocation either can't fail or will lead to more memory
2753 * being freed very soon. Allow memory usage go over the limit
2754 * temporarily by force charging it.
2755 */
2756 page_counter_charge(&memcg->memory, nr_pages);
2757 if (do_memsw_account())
2758 page_counter_charge(&memcg->memsw, nr_pages);
2759
2760 return 0;
2761
2762 done_restock:
2763 if (batch > nr_pages)
2764 refill_stock(memcg, batch - nr_pages);
2765
2766 /*
2767 * If the hierarchy is above the normal consumption range, schedule
2768 * reclaim on returning to userland. We can perform reclaim here
2769 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2770 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2771 * not recorded as it most likely matches current's and won't
2772 * change in the meantime. As high limit is checked again before
2773 * reclaim, the cost of mismatch is negligible.
2774 */
2775 do {
2776 bool mem_high, swap_high;
2777
2778 mem_high = page_counter_read(&memcg->memory) >
2779 READ_ONCE(memcg->memory.high);
2780 swap_high = page_counter_read(&memcg->swap) >
2781 READ_ONCE(memcg->swap.high);
2782
2783 /* Don't bother a random interrupted task */
2784 if (in_interrupt()) {
2785 if (mem_high) {
2786 schedule_work(&memcg->high_work);
2787 break;
2788 }
2789 continue;
2790 }
2791
2792 if (mem_high || swap_high) {
2793 /*
2794 * The allocating tasks in this cgroup will need to do
2795 * reclaim or be throttled to prevent further growth
2796 * of the memory or swap footprints.
2797 *
2798 * Target some best-effort fairness between the tasks,
2799 * and distribute reclaim work and delay penalties
2800 * based on how much each task is actually allocating.
2801 */
2802 current->memcg_nr_pages_over_high += batch;
2803 set_notify_resume(current);
2804 break;
2805 }
2806 } while ((memcg = parent_mem_cgroup(memcg)));
2807
2808 return 0;
2809 }
2810
2811 #if defined(CONFIG_MEMCG_KMEM) || defined(CONFIG_MMU)
2812 static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2813 {
2814 if (mem_cgroup_is_root(memcg))
2815 return;
2816
2817 page_counter_uncharge(&memcg->memory, nr_pages);
2818 if (do_memsw_account())
2819 page_counter_uncharge(&memcg->memsw, nr_pages);
2820 }
2821 #endif
2822
2823 static void commit_charge(struct page *page, struct mem_cgroup *memcg)
2824 {
2825 VM_BUG_ON_PAGE(page->mem_cgroup, page);
2826 /*
2827 * Any of the following ensures page->mem_cgroup stability:
2828 *
2829 * - the page lock
2830 * - LRU isolation
2831 * - lock_page_memcg()
2832 * - exclusive reference
2833 */
2834 page->mem_cgroup = memcg;
2835 }
2836
2837 #ifdef CONFIG_MEMCG_KMEM
2838 int memcg_alloc_page_obj_cgroups(struct page *page, struct kmem_cache *s,
2839 gfp_t gfp)
2840 {
2841 unsigned int objects = objs_per_slab_page(s, page);
2842 void *vec;
2843
2844 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2845 page_to_nid(page));
2846 if (!vec)
2847 return -ENOMEM;
2848
2849 if (cmpxchg(&page->obj_cgroups, NULL,
2850 (struct obj_cgroup **) ((unsigned long)vec | 0x1UL)))
2851 kfree(vec);
2852 else
2853 kmemleak_not_leak(vec);
2854
2855 return 0;
2856 }
2857
2858 /*
2859 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2860 *
2861 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2862 * cgroup_mutex, etc.
2863 */
2864 struct mem_cgroup *mem_cgroup_from_obj(void *p)
2865 {
2866 struct page *page;
2867
2868 if (mem_cgroup_disabled())
2869 return NULL;
2870
2871 page = virt_to_head_page(p);
2872
2873 /*
2874 * Slab objects are accounted individually, not per-page.
2875 * Memcg membership data for each individual object is saved in
2876 * the page->obj_cgroups.
2877 */
2878 if (page_has_obj_cgroups(page)) {
2879 struct obj_cgroup *objcg;
2880 unsigned int off;
2881
2882 off = obj_to_index(page->slab_cache, page, p);
2883 objcg = page_obj_cgroups(page)[off];
2884 if (objcg)
2885 return obj_cgroup_memcg(objcg);
2886
2887 return NULL;
2888 }
2889
2890 /* All other pages use page->mem_cgroup */
2891 return page->mem_cgroup;
2892 }
2893
2894 __always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
2895 {
2896 struct obj_cgroup *objcg = NULL;
2897 struct mem_cgroup *memcg;
2898
2899 if (unlikely(!current->mm && !current->active_memcg))
2900 return NULL;
2901
2902 rcu_read_lock();
2903 if (unlikely(current->active_memcg))
2904 memcg = rcu_dereference(current->active_memcg);
2905 else
2906 memcg = mem_cgroup_from_task(current);
2907
2908 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
2909 objcg = rcu_dereference(memcg->objcg);
2910 if (objcg && obj_cgroup_tryget(objcg))
2911 break;
2912 }
2913 rcu_read_unlock();
2914
2915 return objcg;
2916 }
2917
2918 static int memcg_alloc_cache_id(void)
2919 {
2920 int id, size;
2921 int err;
2922
2923 id = ida_simple_get(&memcg_cache_ida,
2924 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2925 if (id < 0)
2926 return id;
2927
2928 if (id < memcg_nr_cache_ids)
2929 return id;
2930
2931 /*
2932 * There's no space for the new id in memcg_caches arrays,
2933 * so we have to grow them.
2934 */
2935 down_write(&memcg_cache_ids_sem);
2936
2937 size = 2 * (id + 1);
2938 if (size < MEMCG_CACHES_MIN_SIZE)
2939 size = MEMCG_CACHES_MIN_SIZE;
2940 else if (size > MEMCG_CACHES_MAX_SIZE)
2941 size = MEMCG_CACHES_MAX_SIZE;
2942
2943 err = memcg_update_all_list_lrus(size);
2944 if (!err)
2945 memcg_nr_cache_ids = size;
2946
2947 up_write(&memcg_cache_ids_sem);
2948
2949 if (err) {
2950 ida_simple_remove(&memcg_cache_ida, id);
2951 return err;
2952 }
2953 return id;
2954 }
2955
2956 static void memcg_free_cache_id(int id)
2957 {
2958 ida_simple_remove(&memcg_cache_ida, id);
2959 }
2960
2961 /**
2962 * __memcg_kmem_charge: charge a number of kernel pages to a memcg
2963 * @memcg: memory cgroup to charge
2964 * @gfp: reclaim mode
2965 * @nr_pages: number of pages to charge
2966 *
2967 * Returns 0 on success, an error code on failure.
2968 */
2969 int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
2970 unsigned int nr_pages)
2971 {
2972 struct page_counter *counter;
2973 int ret;
2974
2975 ret = try_charge(memcg, gfp, nr_pages);
2976 if (ret)
2977 return ret;
2978
2979 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2980 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2981
2982 /*
2983 * Enforce __GFP_NOFAIL allocation because callers are not
2984 * prepared to see failures and likely do not have any failure
2985 * handling code.
2986 */
2987 if (gfp & __GFP_NOFAIL) {
2988 page_counter_charge(&memcg->kmem, nr_pages);
2989 return 0;
2990 }
2991 cancel_charge(memcg, nr_pages);
2992 return -ENOMEM;
2993 }
2994 return 0;
2995 }
2996
2997 /**
2998 * __memcg_kmem_uncharge: uncharge a number of kernel pages from a memcg
2999 * @memcg: memcg to uncharge
3000 * @nr_pages: number of pages to uncharge
3001 */
3002 void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages)
3003 {
3004 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
3005 page_counter_uncharge(&memcg->kmem, nr_pages);
3006
3007 page_counter_uncharge(&memcg->memory, nr_pages);
3008 if (do_memsw_account())
3009 page_counter_uncharge(&memcg->memsw, nr_pages);
3010 }
3011
3012 /**
3013 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3014 * @page: page to charge
3015 * @gfp: reclaim mode
3016 * @order: allocation order
3017 *
3018 * Returns 0 on success, an error code on failure.
3019 */
3020 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3021 {
3022 struct mem_cgroup *memcg;
3023 int ret = 0;
3024
3025 if (memcg_kmem_bypass())
3026 return 0;
3027
3028 memcg = get_mem_cgroup_from_current();
3029 if (!mem_cgroup_is_root(memcg)) {
3030 ret = __memcg_kmem_charge(memcg, gfp, 1 << order);
3031 if (!ret) {
3032 page->mem_cgroup = memcg;
3033 __SetPageKmemcg(page);
3034 return 0;
3035 }
3036 }
3037 css_put(&memcg->css);
3038 return ret;
3039 }
3040
3041 /**
3042 * __memcg_kmem_uncharge_page: uncharge a kmem page
3043 * @page: page to uncharge
3044 * @order: allocation order
3045 */
3046 void __memcg_kmem_uncharge_page(struct page *page, int order)
3047 {
3048 struct mem_cgroup *memcg = page->mem_cgroup;
3049 unsigned int nr_pages = 1 << order;
3050
3051 if (!memcg)
3052 return;
3053
3054 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
3055 __memcg_kmem_uncharge(memcg, nr_pages);
3056 page->mem_cgroup = NULL;
3057 css_put(&memcg->css);
3058
3059 /* slab pages do not have PageKmemcg flag set */
3060 if (PageKmemcg(page))
3061 __ClearPageKmemcg(page);
3062 }
3063
3064 static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3065 {
3066 struct memcg_stock_pcp *stock;
3067 unsigned long flags;
3068 bool ret = false;
3069
3070 local_irq_save(flags);
3071
3072 stock = this_cpu_ptr(&memcg_stock);
3073 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3074 stock->nr_bytes -= nr_bytes;
3075 ret = true;
3076 }
3077
3078 local_irq_restore(flags);
3079
3080 return ret;
3081 }
3082
3083 static void drain_obj_stock(struct memcg_stock_pcp *stock)
3084 {
3085 struct obj_cgroup *old = stock->cached_objcg;
3086
3087 if (!old)
3088 return;
3089
3090 if (stock->nr_bytes) {
3091 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3092 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3093
3094 if (nr_pages) {
3095 rcu_read_lock();
3096 __memcg_kmem_uncharge(obj_cgroup_memcg(old), nr_pages);
3097 rcu_read_unlock();
3098 }
3099
3100 /*
3101 * The leftover is flushed to the centralized per-memcg value.
3102 * On the next attempt to refill obj stock it will be moved
3103 * to a per-cpu stock (probably, on an other CPU), see
3104 * refill_obj_stock().
3105 *
3106 * How often it's flushed is a trade-off between the memory
3107 * limit enforcement accuracy and potential CPU contention,
3108 * so it might be changed in the future.
3109 */
3110 atomic_add(nr_bytes, &old->nr_charged_bytes);
3111 stock->nr_bytes = 0;
3112 }
3113
3114 obj_cgroup_put(old);
3115 stock->cached_objcg = NULL;
3116 }
3117
3118 static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3119 struct mem_cgroup *root_memcg)
3120 {
3121 struct mem_cgroup *memcg;
3122
3123 if (stock->cached_objcg) {
3124 memcg = obj_cgroup_memcg(stock->cached_objcg);
3125 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3126 return true;
3127 }
3128
3129 return false;
3130 }
3131
3132 static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3133 {
3134 struct memcg_stock_pcp *stock;
3135 unsigned long flags;
3136
3137 local_irq_save(flags);
3138
3139 stock = this_cpu_ptr(&memcg_stock);
3140 if (stock->cached_objcg != objcg) { /* reset if necessary */
3141 drain_obj_stock(stock);
3142 obj_cgroup_get(objcg);
3143 stock->cached_objcg = objcg;
3144 stock->nr_bytes = atomic_xchg(&objcg->nr_charged_bytes, 0);
3145 }
3146 stock->nr_bytes += nr_bytes;
3147
3148 if (stock->nr_bytes > PAGE_SIZE)
3149 drain_obj_stock(stock);
3150
3151 local_irq_restore(flags);
3152 }
3153
3154 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3155 {
3156 struct mem_cgroup *memcg;
3157 unsigned int nr_pages, nr_bytes;
3158 int ret;
3159
3160 if (consume_obj_stock(objcg, size))
3161 return 0;
3162
3163 /*
3164 * In theory, memcg->nr_charged_bytes can have enough
3165 * pre-charged bytes to satisfy the allocation. However,
3166 * flushing memcg->nr_charged_bytes requires two atomic
3167 * operations, and memcg->nr_charged_bytes can't be big,
3168 * so it's better to ignore it and try grab some new pages.
3169 * memcg->nr_charged_bytes will be flushed in
3170 * refill_obj_stock(), called from this function or
3171 * independently later.
3172 */
3173 rcu_read_lock();
3174 memcg = obj_cgroup_memcg(objcg);
3175 css_get(&memcg->css);
3176 rcu_read_unlock();
3177
3178 nr_pages = size >> PAGE_SHIFT;
3179 nr_bytes = size & (PAGE_SIZE - 1);
3180
3181 if (nr_bytes)
3182 nr_pages += 1;
3183
3184 ret = __memcg_kmem_charge(memcg, gfp, nr_pages);
3185 if (!ret && nr_bytes)
3186 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes);
3187
3188 css_put(&memcg->css);
3189 return ret;
3190 }
3191
3192 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3193 {
3194 refill_obj_stock(objcg, size);
3195 }
3196
3197 #endif /* CONFIG_MEMCG_KMEM */
3198
3199 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3200
3201 /*
3202 * Because tail pages are not marked as "used", set it. We're under
3203 * pgdat->lru_lock and migration entries setup in all page mappings.
3204 */
3205 void mem_cgroup_split_huge_fixup(struct page *head)
3206 {
3207 struct mem_cgroup *memcg = head->mem_cgroup;
3208 int i;
3209
3210 if (mem_cgroup_disabled())
3211 return;
3212
3213 for (i = 1; i < HPAGE_PMD_NR; i++) {
3214 css_get(&memcg->css);
3215 head[i].mem_cgroup = memcg;
3216 }
3217 }
3218 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3219
3220 #ifdef CONFIG_MEMCG_SWAP
3221 /**
3222 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3223 * @entry: swap entry to be moved
3224 * @from: mem_cgroup which the entry is moved from
3225 * @to: mem_cgroup which the entry is moved to
3226 *
3227 * It succeeds only when the swap_cgroup's record for this entry is the same
3228 * as the mem_cgroup's id of @from.
3229 *
3230 * Returns 0 on success, -EINVAL on failure.
3231 *
3232 * The caller must have charged to @to, IOW, called page_counter_charge() about
3233 * both res and memsw, and called css_get().
3234 */
3235 static int mem_cgroup_move_swap_account(swp_entry_t entry,
3236 struct mem_cgroup *from, struct mem_cgroup *to)
3237 {
3238 unsigned short old_id, new_id;
3239
3240 old_id = mem_cgroup_id(from);
3241 new_id = mem_cgroup_id(to);
3242
3243 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3244 mod_memcg_state(from, MEMCG_SWAP, -1);
3245 mod_memcg_state(to, MEMCG_SWAP, 1);
3246 return 0;
3247 }
3248 return -EINVAL;
3249 }
3250 #else
3251 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3252 struct mem_cgroup *from, struct mem_cgroup *to)
3253 {
3254 return -EINVAL;
3255 }
3256 #endif
3257
3258 static DEFINE_MUTEX(memcg_max_mutex);
3259
3260 static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3261 unsigned long max, bool memsw)
3262 {
3263 bool enlarge = false;
3264 bool drained = false;
3265 int ret;
3266 bool limits_invariant;
3267 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3268
3269 do {
3270 if (signal_pending(current)) {
3271 ret = -EINTR;
3272 break;
3273 }
3274
3275 mutex_lock(&memcg_max_mutex);
3276 /*
3277 * Make sure that the new limit (memsw or memory limit) doesn't
3278 * break our basic invariant rule memory.max <= memsw.max.
3279 */
3280 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3281 max <= memcg->memsw.max;
3282 if (!limits_invariant) {
3283 mutex_unlock(&memcg_max_mutex);
3284 ret = -EINVAL;
3285 break;
3286 }
3287 if (max > counter->max)
3288 enlarge = true;
3289 ret = page_counter_set_max(counter, max);
3290 mutex_unlock(&memcg_max_mutex);
3291
3292 if (!ret)
3293 break;
3294
3295 if (!drained) {
3296 drain_all_stock(memcg);
3297 drained = true;
3298 continue;
3299 }
3300
3301 if (!try_to_free_mem_cgroup_pages(memcg, 1,
3302 GFP_KERNEL, !memsw)) {
3303 ret = -EBUSY;
3304 break;
3305 }
3306 } while (true);
3307
3308 if (!ret && enlarge)
3309 memcg_oom_recover(memcg);
3310
3311 return ret;
3312 }
3313
3314 unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3315 gfp_t gfp_mask,
3316 unsigned long *total_scanned)
3317 {
3318 unsigned long nr_reclaimed = 0;
3319 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3320 unsigned long reclaimed;
3321 int loop = 0;
3322 struct mem_cgroup_tree_per_node *mctz;
3323 unsigned long excess;
3324 unsigned long nr_scanned;
3325
3326 if (order > 0)
3327 return 0;
3328
3329 mctz = soft_limit_tree_node(pgdat->node_id);
3330
3331 /*
3332 * Do not even bother to check the largest node if the root
3333 * is empty. Do it lockless to prevent lock bouncing. Races
3334 * are acceptable as soft limit is best effort anyway.
3335 */
3336 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3337 return 0;
3338
3339 /*
3340 * This loop can run a while, specially if mem_cgroup's continuously
3341 * keep exceeding their soft limit and putting the system under
3342 * pressure
3343 */
3344 do {
3345 if (next_mz)
3346 mz = next_mz;
3347 else
3348 mz = mem_cgroup_largest_soft_limit_node(mctz);
3349 if (!mz)
3350 break;
3351
3352 nr_scanned = 0;
3353 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3354 gfp_mask, &nr_scanned);
3355 nr_reclaimed += reclaimed;
3356 *total_scanned += nr_scanned;
3357 spin_lock_irq(&mctz->lock);
3358 __mem_cgroup_remove_exceeded(mz, mctz);
3359
3360 /*
3361 * If we failed to reclaim anything from this memory cgroup
3362 * it is time to move on to the next cgroup
3363 */
3364 next_mz = NULL;
3365 if (!reclaimed)
3366 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3367
3368 excess = soft_limit_excess(mz->memcg);
3369 /*
3370 * One school of thought says that we should not add
3371 * back the node to the tree if reclaim returns 0.
3372 * But our reclaim could return 0, simply because due
3373 * to priority we are exposing a smaller subset of
3374 * memory to reclaim from. Consider this as a longer
3375 * term TODO.
3376 */
3377 /* If excess == 0, no tree ops */
3378 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3379 spin_unlock_irq(&mctz->lock);
3380 css_put(&mz->memcg->css);
3381 loop++;
3382 /*
3383 * Could not reclaim anything and there are no more
3384 * mem cgroups to try or we seem to be looping without
3385 * reclaiming anything.
3386 */
3387 if (!nr_reclaimed &&
3388 (next_mz == NULL ||
3389 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3390 break;
3391 } while (!nr_reclaimed);
3392 if (next_mz)
3393 css_put(&next_mz->memcg->css);
3394 return nr_reclaimed;
3395 }
3396
3397 /*
3398 * Test whether @memcg has children, dead or alive. Note that this
3399 * function doesn't care whether @memcg has use_hierarchy enabled and
3400 * returns %true if there are child csses according to the cgroup
3401 * hierarchy. Testing use_hierarchy is the caller's responsibility.
3402 */
3403 static inline bool memcg_has_children(struct mem_cgroup *memcg)
3404 {
3405 bool ret;
3406
3407 rcu_read_lock();
3408 ret = css_next_child(NULL, &memcg->css);
3409 rcu_read_unlock();
3410 return ret;
3411 }
3412
3413 /*
3414 * Reclaims as many pages from the given memcg as possible.
3415 *
3416 * Caller is responsible for holding css reference for memcg.
3417 */
3418 static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3419 {
3420 int nr_retries = MAX_RECLAIM_RETRIES;
3421
3422 /* we call try-to-free pages for make this cgroup empty */
3423 lru_add_drain_all();
3424
3425 drain_all_stock(memcg);
3426
3427 /* try to free all pages in this cgroup */
3428 while (nr_retries && page_counter_read(&memcg->memory)) {
3429 int progress;
3430
3431 if (signal_pending(current))
3432 return -EINTR;
3433
3434 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3435 GFP_KERNEL, true);
3436 if (!progress) {
3437 nr_retries--;
3438 /* maybe some writeback is necessary */
3439 congestion_wait(BLK_RW_ASYNC, HZ/10);
3440 }
3441
3442 }
3443
3444 return 0;
3445 }
3446
3447 static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3448 char *buf, size_t nbytes,
3449 loff_t off)
3450 {
3451 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3452
3453 if (mem_cgroup_is_root(memcg))
3454 return -EINVAL;
3455 return mem_cgroup_force_empty(memcg) ?: nbytes;
3456 }
3457
3458 static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3459 struct cftype *cft)
3460 {
3461 return mem_cgroup_from_css(css)->use_hierarchy;
3462 }
3463
3464 static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3465 struct cftype *cft, u64 val)
3466 {
3467 int retval = 0;
3468 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3469 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
3470
3471 if (memcg->use_hierarchy == val)
3472 return 0;
3473
3474 /*
3475 * If parent's use_hierarchy is set, we can't make any modifications
3476 * in the child subtrees. If it is unset, then the change can
3477 * occur, provided the current cgroup has no children.
3478 *
3479 * For the root cgroup, parent_mem is NULL, we allow value to be
3480 * set if there are no children.
3481 */
3482 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
3483 (val == 1 || val == 0)) {
3484 if (!memcg_has_children(memcg))
3485 memcg->use_hierarchy = val;
3486 else
3487 retval = -EBUSY;
3488 } else
3489 retval = -EINVAL;
3490
3491 return retval;
3492 }
3493
3494 static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3495 {
3496 unsigned long val;
3497
3498 if (mem_cgroup_is_root(memcg)) {
3499 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3500 memcg_page_state(memcg, NR_ANON_MAPPED);
3501 if (swap)
3502 val += memcg_page_state(memcg, MEMCG_SWAP);
3503 } else {
3504 if (!swap)
3505 val = page_counter_read(&memcg->memory);
3506 else
3507 val = page_counter_read(&memcg->memsw);
3508 }
3509 return val;
3510 }
3511
3512 enum {
3513 RES_USAGE,
3514 RES_LIMIT,
3515 RES_MAX_USAGE,
3516 RES_FAILCNT,
3517 RES_SOFT_LIMIT,
3518 };
3519
3520 static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3521 struct cftype *cft)
3522 {
3523 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3524 struct page_counter *counter;
3525
3526 switch (MEMFILE_TYPE(cft->private)) {
3527 case _MEM:
3528 counter = &memcg->memory;
3529 break;
3530 case _MEMSWAP:
3531 counter = &memcg->memsw;
3532 break;
3533 case _KMEM:
3534 counter = &memcg->kmem;
3535 break;
3536 case _TCP:
3537 counter = &memcg->tcpmem;
3538 break;
3539 default:
3540 BUG();
3541 }
3542
3543 switch (MEMFILE_ATTR(cft->private)) {
3544 case RES_USAGE:
3545 if (counter == &memcg->memory)
3546 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3547 if (counter == &memcg->memsw)
3548 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3549 return (u64)page_counter_read(counter) * PAGE_SIZE;
3550 case RES_LIMIT:
3551 return (u64)counter->max * PAGE_SIZE;
3552 case RES_MAX_USAGE:
3553 return (u64)counter->watermark * PAGE_SIZE;
3554 case RES_FAILCNT:
3555 return counter->failcnt;
3556 case RES_SOFT_LIMIT:
3557 return (u64)memcg->soft_limit * PAGE_SIZE;
3558 default:
3559 BUG();
3560 }
3561 }
3562
3563 static void memcg_flush_percpu_vmstats(struct mem_cgroup *memcg)
3564 {
3565 unsigned long stat[MEMCG_NR_STAT] = {0};
3566 struct mem_cgroup *mi;
3567 int node, cpu, i;
3568
3569 for_each_online_cpu(cpu)
3570 for (i = 0; i < MEMCG_NR_STAT; i++)
3571 stat[i] += per_cpu(memcg->vmstats_percpu->stat[i], cpu);
3572
3573 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3574 for (i = 0; i < MEMCG_NR_STAT; i++)
3575 atomic_long_add(stat[i], &mi->vmstats[i]);
3576
3577 for_each_node(node) {
3578 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
3579 struct mem_cgroup_per_node *pi;
3580
3581 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3582 stat[i] = 0;
3583
3584 for_each_online_cpu(cpu)
3585 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3586 stat[i] += per_cpu(
3587 pn->lruvec_stat_cpu->count[i], cpu);
3588
3589 for (pi = pn; pi; pi = parent_nodeinfo(pi, node))
3590 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
3591 atomic_long_add(stat[i], &pi->lruvec_stat[i]);
3592 }
3593 }
3594
3595 static void memcg_flush_percpu_vmevents(struct mem_cgroup *memcg)
3596 {
3597 unsigned long events[NR_VM_EVENT_ITEMS];
3598 struct mem_cgroup *mi;
3599 int cpu, i;
3600
3601 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3602 events[i] = 0;
3603
3604 for_each_online_cpu(cpu)
3605 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3606 events[i] += per_cpu(memcg->vmstats_percpu->events[i],
3607 cpu);
3608
3609 for (mi = memcg; mi; mi = parent_mem_cgroup(mi))
3610 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
3611 atomic_long_add(events[i], &mi->vmevents[i]);
3612 }
3613
3614 #ifdef CONFIG_MEMCG_KMEM
3615 static int memcg_online_kmem(struct mem_cgroup *memcg)
3616 {
3617 struct obj_cgroup *objcg;
3618 int memcg_id;
3619
3620 if (cgroup_memory_nokmem)
3621 return 0;
3622
3623 BUG_ON(memcg->kmemcg_id >= 0);
3624 BUG_ON(memcg->kmem_state);
3625
3626 memcg_id = memcg_alloc_cache_id();
3627 if (memcg_id < 0)
3628 return memcg_id;
3629
3630 objcg = obj_cgroup_alloc();
3631 if (!objcg) {
3632 memcg_free_cache_id(memcg_id);
3633 return -ENOMEM;
3634 }
3635 objcg->memcg = memcg;
3636 rcu_assign_pointer(memcg->objcg, objcg);
3637
3638 static_branch_enable(&memcg_kmem_enabled_key);
3639
3640 /*
3641 * A memory cgroup is considered kmem-online as soon as it gets
3642 * kmemcg_id. Setting the id after enabling static branching will
3643 * guarantee no one starts accounting before all call sites are
3644 * patched.
3645 */
3646 memcg->kmemcg_id = memcg_id;
3647 memcg->kmem_state = KMEM_ONLINE;
3648
3649 return 0;
3650 }
3651
3652 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3653 {
3654 struct cgroup_subsys_state *css;
3655 struct mem_cgroup *parent, *child;
3656 int kmemcg_id;
3657
3658 if (memcg->kmem_state != KMEM_ONLINE)
3659 return;
3660
3661 memcg->kmem_state = KMEM_ALLOCATED;
3662
3663 parent = parent_mem_cgroup(memcg);
3664 if (!parent)
3665 parent = root_mem_cgroup;
3666
3667 memcg_reparent_objcgs(memcg, parent);
3668
3669 kmemcg_id = memcg->kmemcg_id;
3670 BUG_ON(kmemcg_id < 0);
3671
3672 /*
3673 * Change kmemcg_id of this cgroup and all its descendants to the
3674 * parent's id, and then move all entries from this cgroup's list_lrus
3675 * to ones of the parent. After we have finished, all list_lrus
3676 * corresponding to this cgroup are guaranteed to remain empty. The
3677 * ordering is imposed by list_lru_node->lock taken by
3678 * memcg_drain_all_list_lrus().
3679 */
3680 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
3681 css_for_each_descendant_pre(css, &memcg->css) {
3682 child = mem_cgroup_from_css(css);
3683 BUG_ON(child->kmemcg_id != kmemcg_id);
3684 child->kmemcg_id = parent->kmemcg_id;
3685 if (!memcg->use_hierarchy)
3686 break;
3687 }
3688 rcu_read_unlock();
3689
3690 memcg_drain_all_list_lrus(kmemcg_id, parent);
3691
3692 memcg_free_cache_id(kmemcg_id);
3693 }
3694
3695 static void memcg_free_kmem(struct mem_cgroup *memcg)
3696 {
3697 /* css_alloc() failed, offlining didn't happen */
3698 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
3699 memcg_offline_kmem(memcg);
3700 }
3701 #else
3702 static int memcg_online_kmem(struct mem_cgroup *memcg)
3703 {
3704 return 0;
3705 }
3706 static void memcg_offline_kmem(struct mem_cgroup *memcg)
3707 {
3708 }
3709 static void memcg_free_kmem(struct mem_cgroup *memcg)
3710 {
3711 }
3712 #endif /* CONFIG_MEMCG_KMEM */
3713
3714 static int memcg_update_kmem_max(struct mem_cgroup *memcg,
3715 unsigned long max)
3716 {
3717 int ret;
3718
3719 mutex_lock(&memcg_max_mutex);
3720 ret = page_counter_set_max(&memcg->kmem, max);
3721 mutex_unlock(&memcg_max_mutex);
3722 return ret;
3723 }
3724
3725 static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3726 {
3727 int ret;
3728
3729 mutex_lock(&memcg_max_mutex);
3730
3731 ret = page_counter_set_max(&memcg->tcpmem, max);
3732 if (ret)
3733 goto out;
3734
3735 if (!memcg->tcpmem_active) {
3736 /*
3737 * The active flag needs to be written after the static_key
3738 * update. This is what guarantees that the socket activation
3739 * function is the last one to run. See mem_cgroup_sk_alloc()
3740 * for details, and note that we don't mark any socket as
3741 * belonging to this memcg until that flag is up.
3742 *
3743 * We need to do this, because static_keys will span multiple
3744 * sites, but we can't control their order. If we mark a socket
3745 * as accounted, but the accounting functions are not patched in
3746 * yet, we'll lose accounting.
3747 *
3748 * We never race with the readers in mem_cgroup_sk_alloc(),
3749 * because when this value change, the code to process it is not
3750 * patched in yet.
3751 */
3752 static_branch_inc(&memcg_sockets_enabled_key);
3753 memcg->tcpmem_active = true;
3754 }
3755 out:
3756 mutex_unlock(&memcg_max_mutex);
3757 return ret;
3758 }
3759
3760 /*
3761 * The user of this function is...
3762 * RES_LIMIT.
3763 */
3764 static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3765 char *buf, size_t nbytes, loff_t off)
3766 {
3767 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3768 unsigned long nr_pages;
3769 int ret;
3770
3771 buf = strstrip(buf);
3772 ret = page_counter_memparse(buf, "-1", &nr_pages);
3773 if (ret)
3774 return ret;
3775
3776 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3777 case RES_LIMIT:
3778 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3779 ret = -EINVAL;
3780 break;
3781 }
3782 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3783 case _MEM:
3784 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3785 break;
3786 case _MEMSWAP:
3787 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3788 break;
3789 case _KMEM:
3790 pr_warn_once("kmem.limit_in_bytes is deprecated and will be removed. "
3791 "Please report your usecase to linux-mm@kvack.org if you "
3792 "depend on this functionality.\n");
3793 ret = memcg_update_kmem_max(memcg, nr_pages);
3794 break;
3795 case _TCP:
3796 ret = memcg_update_tcp_max(memcg, nr_pages);
3797 break;
3798 }
3799 break;
3800 case RES_SOFT_LIMIT:
3801 memcg->soft_limit = nr_pages;
3802 ret = 0;
3803 break;
3804 }
3805 return ret ?: nbytes;
3806 }
3807
3808 static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3809 size_t nbytes, loff_t off)
3810 {
3811 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3812 struct page_counter *counter;
3813
3814 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3815 case _MEM:
3816 counter = &memcg->memory;
3817 break;
3818 case _MEMSWAP:
3819 counter = &memcg->memsw;
3820 break;
3821 case _KMEM:
3822 counter = &memcg->kmem;
3823 break;
3824 case _TCP:
3825 counter = &memcg->tcpmem;
3826 break;
3827 default:
3828 BUG();
3829 }
3830
3831 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3832 case RES_MAX_USAGE:
3833 page_counter_reset_watermark(counter);
3834 break;
3835 case RES_FAILCNT:
3836 counter->failcnt = 0;
3837 break;
3838 default:
3839 BUG();
3840 }
3841
3842 return nbytes;
3843 }
3844
3845 static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3846 struct cftype *cft)
3847 {
3848 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3849 }
3850
3851 #ifdef CONFIG_MMU
3852 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3853 struct cftype *cft, u64 val)
3854 {
3855 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3856
3857 if (val & ~MOVE_MASK)
3858 return -EINVAL;
3859
3860 /*
3861 * No kind of locking is needed in here, because ->can_attach() will
3862 * check this value once in the beginning of the process, and then carry
3863 * on with stale data. This means that changes to this value will only
3864 * affect task migrations starting after the change.
3865 */
3866 memcg->move_charge_at_immigrate = val;
3867 return 0;
3868 }
3869 #else
3870 static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3871 struct cftype *cft, u64 val)
3872 {
3873 return -ENOSYS;
3874 }
3875 #endif
3876
3877 #ifdef CONFIG_NUMA
3878
3879 #define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3880 #define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3881 #define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3882
3883 static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3884 int nid, unsigned int lru_mask, bool tree)
3885 {
3886 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3887 unsigned long nr = 0;
3888 enum lru_list lru;
3889
3890 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3891
3892 for_each_lru(lru) {
3893 if (!(BIT(lru) & lru_mask))
3894 continue;
3895 if (tree)
3896 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3897 else
3898 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3899 }
3900 return nr;
3901 }
3902
3903 static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3904 unsigned int lru_mask,
3905 bool tree)
3906 {
3907 unsigned long nr = 0;
3908 enum lru_list lru;
3909
3910 for_each_lru(lru) {
3911 if (!(BIT(lru) & lru_mask))
3912 continue;
3913 if (tree)
3914 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
3915 else
3916 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
3917 }
3918 return nr;
3919 }
3920
3921 static int memcg_numa_stat_show(struct seq_file *m, void *v)
3922 {
3923 struct numa_stat {
3924 const char *name;
3925 unsigned int lru_mask;
3926 };
3927
3928 static const struct numa_stat stats[] = {
3929 { "total", LRU_ALL },
3930 { "file", LRU_ALL_FILE },
3931 { "anon", LRU_ALL_ANON },
3932 { "unevictable", BIT(LRU_UNEVICTABLE) },
3933 };
3934 const struct numa_stat *stat;
3935 int nid;
3936 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
3937
3938 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3939 seq_printf(m, "%s=%lu", stat->name,
3940 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3941 false));
3942 for_each_node_state(nid, N_MEMORY)
3943 seq_printf(m, " N%d=%lu", nid,
3944 mem_cgroup_node_nr_lru_pages(memcg, nid,
3945 stat->lru_mask, false));
3946 seq_putc(m, '\n');
3947 }
3948
3949 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3950
3951 seq_printf(m, "hierarchical_%s=%lu", stat->name,
3952 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
3953 true));
3954 for_each_node_state(nid, N_MEMORY)
3955 seq_printf(m, " N%d=%lu", nid,
3956 mem_cgroup_node_nr_lru_pages(memcg, nid,
3957 stat->lru_mask, true));
3958 seq_putc(m, '\n');
3959 }
3960
3961 return 0;
3962 }
3963 #endif /* CONFIG_NUMA */
3964
3965 static const unsigned int memcg1_stats[] = {
3966 NR_FILE_PAGES,
3967 NR_ANON_MAPPED,
3968 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3969 NR_ANON_THPS,
3970 #endif
3971 NR_SHMEM,
3972 NR_FILE_MAPPED,
3973 NR_FILE_DIRTY,
3974 NR_WRITEBACK,
3975 MEMCG_SWAP,
3976 };
3977
3978 static const char *const memcg1_stat_names[] = {
3979 "cache",
3980 "rss",
3981 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3982 "rss_huge",
3983 #endif
3984 "shmem",
3985 "mapped_file",
3986 "dirty",
3987 "writeback",
3988 "swap",
3989 };
3990
3991 /* Universal VM events cgroup1 shows, original sort order */
3992 static const unsigned int memcg1_events[] = {
3993 PGPGIN,
3994 PGPGOUT,
3995 PGFAULT,
3996 PGMAJFAULT,
3997 };
3998
3999 static int memcg_stat_show(struct seq_file *m, void *v)
4000 {
4001 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4002 unsigned long memory, memsw;
4003 struct mem_cgroup *mi;
4004 unsigned int i;
4005
4006 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4007
4008 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4009 unsigned long nr;
4010
4011 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4012 continue;
4013 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4014 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4015 if (memcg1_stats[i] == NR_ANON_THPS)
4016 nr *= HPAGE_PMD_NR;
4017 #endif
4018 seq_printf(m, "%s %lu\n", memcg1_stat_names[i], nr * PAGE_SIZE);
4019 }
4020
4021 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4022 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4023 memcg_events_local(memcg, memcg1_events[i]));
4024
4025 for (i = 0; i < NR_LRU_LISTS; i++)
4026 seq_printf(m, "%s %lu\n", lru_list_name(i),
4027 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4028 PAGE_SIZE);
4029
4030 /* Hierarchical information */
4031 memory = memsw = PAGE_COUNTER_MAX;
4032 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4033 memory = min(memory, READ_ONCE(mi->memory.max));
4034 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4035 }
4036 seq_printf(m, "hierarchical_memory_limit %llu\n",
4037 (u64)memory * PAGE_SIZE);
4038 if (do_memsw_account())
4039 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4040 (u64)memsw * PAGE_SIZE);
4041
4042 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4043 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4044 continue;
4045 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4046 (u64)memcg_page_state(memcg, memcg1_stats[i]) *
4047 PAGE_SIZE);
4048 }
4049
4050 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4051 seq_printf(m, "total_%s %llu\n",
4052 vm_event_name(memcg1_events[i]),
4053 (u64)memcg_events(memcg, memcg1_events[i]));
4054
4055 for (i = 0; i < NR_LRU_LISTS; i++)
4056 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4057 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4058 PAGE_SIZE);
4059
4060 #ifdef CONFIG_DEBUG_VM
4061 {
4062 pg_data_t *pgdat;
4063 struct mem_cgroup_per_node *mz;
4064 unsigned long anon_cost = 0;
4065 unsigned long file_cost = 0;
4066
4067 for_each_online_pgdat(pgdat) {
4068 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
4069
4070 anon_cost += mz->lruvec.anon_cost;
4071 file_cost += mz->lruvec.file_cost;
4072 }
4073 seq_printf(m, "anon_cost %lu\n", anon_cost);
4074 seq_printf(m, "file_cost %lu\n", file_cost);
4075 }
4076 #endif
4077
4078 return 0;
4079 }
4080
4081 static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4082 struct cftype *cft)
4083 {
4084 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4085
4086 return mem_cgroup_swappiness(memcg);
4087 }
4088
4089 static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4090 struct cftype *cft, u64 val)
4091 {
4092 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4093
4094 if (val > 100)
4095 return -EINVAL;
4096
4097 if (css->parent)
4098 memcg->swappiness = val;
4099 else
4100 vm_swappiness = val;
4101
4102 return 0;
4103 }
4104
4105 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4106 {
4107 struct mem_cgroup_threshold_ary *t;
4108 unsigned long usage;
4109 int i;
4110
4111 rcu_read_lock();
4112 if (!swap)
4113 t = rcu_dereference(memcg->thresholds.primary);
4114 else
4115 t = rcu_dereference(memcg->memsw_thresholds.primary);
4116
4117 if (!t)
4118 goto unlock;
4119
4120 usage = mem_cgroup_usage(memcg, swap);
4121
4122 /*
4123 * current_threshold points to threshold just below or equal to usage.
4124 * If it's not true, a threshold was crossed after last
4125 * call of __mem_cgroup_threshold().
4126 */
4127 i = t->current_threshold;
4128
4129 /*
4130 * Iterate backward over array of thresholds starting from
4131 * current_threshold and check if a threshold is crossed.
4132 * If none of thresholds below usage is crossed, we read
4133 * only one element of the array here.
4134 */
4135 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4136 eventfd_signal(t->entries[i].eventfd, 1);
4137
4138 /* i = current_threshold + 1 */
4139 i++;
4140
4141 /*
4142 * Iterate forward over array of thresholds starting from
4143 * current_threshold+1 and check if a threshold is crossed.
4144 * If none of thresholds above usage is crossed, we read
4145 * only one element of the array here.
4146 */
4147 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4148 eventfd_signal(t->entries[i].eventfd, 1);
4149
4150 /* Update current_threshold */
4151 t->current_threshold = i - 1;
4152 unlock:
4153 rcu_read_unlock();
4154 }
4155
4156 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4157 {
4158 while (memcg) {
4159 __mem_cgroup_threshold(memcg, false);
4160 if (do_memsw_account())
4161 __mem_cgroup_threshold(memcg, true);
4162
4163 memcg = parent_mem_cgroup(memcg);
4164 }
4165 }
4166
4167 static int compare_thresholds(const void *a, const void *b)
4168 {
4169 const struct mem_cgroup_threshold *_a = a;
4170 const struct mem_cgroup_threshold *_b = b;
4171
4172 if (_a->threshold > _b->threshold)
4173 return 1;
4174
4175 if (_a->threshold < _b->threshold)
4176 return -1;
4177
4178 return 0;
4179 }
4180
4181 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4182 {
4183 struct mem_cgroup_eventfd_list *ev;
4184
4185 spin_lock(&memcg_oom_lock);
4186
4187 list_for_each_entry(ev, &memcg->oom_notify, list)
4188 eventfd_signal(ev->eventfd, 1);
4189
4190 spin_unlock(&memcg_oom_lock);
4191 return 0;
4192 }
4193
4194 static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4195 {
4196 struct mem_cgroup *iter;
4197
4198 for_each_mem_cgroup_tree(iter, memcg)
4199 mem_cgroup_oom_notify_cb(iter);
4200 }
4201
4202 static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4203 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4204 {
4205 struct mem_cgroup_thresholds *thresholds;
4206 struct mem_cgroup_threshold_ary *new;
4207 unsigned long threshold;
4208 unsigned long usage;
4209 int i, size, ret;
4210
4211 ret = page_counter_memparse(args, "-1", &threshold);
4212 if (ret)
4213 return ret;
4214
4215 mutex_lock(&memcg->thresholds_lock);
4216
4217 if (type == _MEM) {
4218 thresholds = &memcg->thresholds;
4219 usage = mem_cgroup_usage(memcg, false);
4220 } else if (type == _MEMSWAP) {
4221 thresholds = &memcg->memsw_thresholds;
4222 usage = mem_cgroup_usage(memcg, true);
4223 } else
4224 BUG();
4225
4226 /* Check if a threshold crossed before adding a new one */
4227 if (thresholds->primary)
4228 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4229
4230 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4231
4232 /* Allocate memory for new array of thresholds */
4233 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4234 if (!new) {
4235 ret = -ENOMEM;
4236 goto unlock;
4237 }
4238 new->size = size;
4239
4240 /* Copy thresholds (if any) to new array */
4241 if (thresholds->primary) {
4242 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
4243 sizeof(struct mem_cgroup_threshold));
4244 }
4245
4246 /* Add new threshold */
4247 new->entries[size - 1].eventfd = eventfd;
4248 new->entries[size - 1].threshold = threshold;
4249
4250 /* Sort thresholds. Registering of new threshold isn't time-critical */
4251 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
4252 compare_thresholds, NULL);
4253
4254 /* Find current threshold */
4255 new->current_threshold = -1;
4256 for (i = 0; i < size; i++) {
4257 if (new->entries[i].threshold <= usage) {
4258 /*
4259 * new->current_threshold will not be used until
4260 * rcu_assign_pointer(), so it's safe to increment
4261 * it here.
4262 */
4263 ++new->current_threshold;
4264 } else
4265 break;
4266 }
4267
4268 /* Free old spare buffer and save old primary buffer as spare */
4269 kfree(thresholds->spare);
4270 thresholds->spare = thresholds->primary;
4271
4272 rcu_assign_pointer(thresholds->primary, new);
4273
4274 /* To be sure that nobody uses thresholds */
4275 synchronize_rcu();
4276
4277 unlock:
4278 mutex_unlock(&memcg->thresholds_lock);
4279
4280 return ret;
4281 }
4282
4283 static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4284 struct eventfd_ctx *eventfd, const char *args)
4285 {
4286 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4287 }
4288
4289 static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4290 struct eventfd_ctx *eventfd, const char *args)
4291 {
4292 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4293 }
4294
4295 static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4296 struct eventfd_ctx *eventfd, enum res_type type)
4297 {
4298 struct mem_cgroup_thresholds *thresholds;
4299 struct mem_cgroup_threshold_ary *new;
4300 unsigned long usage;
4301 int i, j, size, entries;
4302
4303 mutex_lock(&memcg->thresholds_lock);
4304
4305 if (type == _MEM) {
4306 thresholds = &memcg->thresholds;
4307 usage = mem_cgroup_usage(memcg, false);
4308 } else if (type == _MEMSWAP) {
4309 thresholds = &memcg->memsw_thresholds;
4310 usage = mem_cgroup_usage(memcg, true);
4311 } else
4312 BUG();
4313
4314 if (!thresholds->primary)
4315 goto unlock;
4316
4317 /* Check if a threshold crossed before removing */
4318 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4319
4320 /* Calculate new number of threshold */
4321 size = entries = 0;
4322 for (i = 0; i < thresholds->primary->size; i++) {
4323 if (thresholds->primary->entries[i].eventfd != eventfd)
4324 size++;
4325 else
4326 entries++;
4327 }
4328
4329 new = thresholds->spare;
4330
4331 /* If no items related to eventfd have been cleared, nothing to do */
4332 if (!entries)
4333 goto unlock;
4334
4335 /* Set thresholds array to NULL if we don't have thresholds */
4336 if (!size) {
4337 kfree(new);
4338 new = NULL;
4339 goto swap_buffers;
4340 }
4341
4342 new->size = size;
4343
4344 /* Copy thresholds and find current threshold */
4345 new->current_threshold = -1;
4346 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4347 if (thresholds->primary->entries[i].eventfd == eventfd)
4348 continue;
4349
4350 new->entries[j] = thresholds->primary->entries[i];
4351 if (new->entries[j].threshold <= usage) {
4352 /*
4353 * new->current_threshold will not be used
4354 * until rcu_assign_pointer(), so it's safe to increment
4355 * it here.
4356 */
4357 ++new->current_threshold;
4358 }
4359 j++;
4360 }
4361
4362 swap_buffers:
4363 /* Swap primary and spare array */
4364 thresholds->spare = thresholds->primary;
4365
4366 rcu_assign_pointer(thresholds->primary, new);
4367
4368 /* To be sure that nobody uses thresholds */
4369 synchronize_rcu();
4370
4371 /* If all events are unregistered, free the spare array */
4372 if (!new) {
4373 kfree(thresholds->spare);
4374 thresholds->spare = NULL;
4375 }
4376 unlock:
4377 mutex_unlock(&memcg->thresholds_lock);
4378 }
4379
4380 static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4381 struct eventfd_ctx *eventfd)
4382 {
4383 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4384 }
4385
4386 static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4387 struct eventfd_ctx *eventfd)
4388 {
4389 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4390 }
4391
4392 static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4393 struct eventfd_ctx *eventfd, const char *args)
4394 {
4395 struct mem_cgroup_eventfd_list *event;
4396
4397 event = kmalloc(sizeof(*event), GFP_KERNEL);
4398 if (!event)
4399 return -ENOMEM;
4400
4401 spin_lock(&memcg_oom_lock);
4402
4403 event->eventfd = eventfd;
4404 list_add(&event->list, &memcg->oom_notify);
4405
4406 /* already in OOM ? */
4407 if (memcg->under_oom)
4408 eventfd_signal(eventfd, 1);
4409 spin_unlock(&memcg_oom_lock);
4410
4411 return 0;
4412 }
4413
4414 static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4415 struct eventfd_ctx *eventfd)
4416 {
4417 struct mem_cgroup_eventfd_list *ev, *tmp;
4418
4419 spin_lock(&memcg_oom_lock);
4420
4421 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4422 if (ev->eventfd == eventfd) {
4423 list_del(&ev->list);
4424 kfree(ev);
4425 }
4426 }
4427
4428 spin_unlock(&memcg_oom_lock);
4429 }
4430
4431 static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4432 {
4433 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4434
4435 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4436 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4437 seq_printf(sf, "oom_kill %lu\n",
4438 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4439 return 0;
4440 }
4441
4442 static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4443 struct cftype *cft, u64 val)
4444 {
4445 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4446
4447 /* cannot set to root cgroup and only 0 and 1 are allowed */
4448 if (!css->parent || !((val == 0) || (val == 1)))
4449 return -EINVAL;
4450
4451 memcg->oom_kill_disable = val;
4452 if (!val)
4453 memcg_oom_recover(memcg);
4454
4455 return 0;
4456 }
4457
4458 #ifdef CONFIG_CGROUP_WRITEBACK
4459
4460 #include <trace/events/writeback.h>
4461
4462 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4463 {
4464 return wb_domain_init(&memcg->cgwb_domain, gfp);
4465 }
4466
4467 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4468 {
4469 wb_domain_exit(&memcg->cgwb_domain);
4470 }
4471
4472 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4473 {
4474 wb_domain_size_changed(&memcg->cgwb_domain);
4475 }
4476
4477 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4478 {
4479 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4480
4481 if (!memcg->css.parent)
4482 return NULL;
4483
4484 return &memcg->cgwb_domain;
4485 }
4486
4487 /*
4488 * idx can be of type enum memcg_stat_item or node_stat_item.
4489 * Keep in sync with memcg_exact_page().
4490 */
4491 static unsigned long memcg_exact_page_state(struct mem_cgroup *memcg, int idx)
4492 {
4493 long x = atomic_long_read(&memcg->vmstats[idx]);
4494 int cpu;
4495
4496 for_each_online_cpu(cpu)
4497 x += per_cpu_ptr(memcg->vmstats_percpu, cpu)->stat[idx];
4498 if (x < 0)
4499 x = 0;
4500 return x;
4501 }
4502
4503 /**
4504 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4505 * @wb: bdi_writeback in question
4506 * @pfilepages: out parameter for number of file pages
4507 * @pheadroom: out parameter for number of allocatable pages according to memcg
4508 * @pdirty: out parameter for number of dirty pages
4509 * @pwriteback: out parameter for number of pages under writeback
4510 *
4511 * Determine the numbers of file, headroom, dirty, and writeback pages in
4512 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4513 * is a bit more involved.
4514 *
4515 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4516 * headroom is calculated as the lowest headroom of itself and the
4517 * ancestors. Note that this doesn't consider the actual amount of
4518 * available memory in the system. The caller should further cap
4519 * *@pheadroom accordingly.
4520 */
4521 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4522 unsigned long *pheadroom, unsigned long *pdirty,
4523 unsigned long *pwriteback)
4524 {
4525 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4526 struct mem_cgroup *parent;
4527
4528 *pdirty = memcg_exact_page_state(memcg, NR_FILE_DIRTY);
4529
4530 *pwriteback = memcg_exact_page_state(memcg, NR_WRITEBACK);
4531 *pfilepages = memcg_exact_page_state(memcg, NR_INACTIVE_FILE) +
4532 memcg_exact_page_state(memcg, NR_ACTIVE_FILE);
4533 *pheadroom = PAGE_COUNTER_MAX;
4534
4535 while ((parent = parent_mem_cgroup(memcg))) {
4536 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4537 READ_ONCE(memcg->memory.high));
4538 unsigned long used = page_counter_read(&memcg->memory);
4539
4540 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4541 memcg = parent;
4542 }
4543 }
4544
4545 /*
4546 * Foreign dirty flushing
4547 *
4548 * There's an inherent mismatch between memcg and writeback. The former
4549 * trackes ownership per-page while the latter per-inode. This was a
4550 * deliberate design decision because honoring per-page ownership in the
4551 * writeback path is complicated, may lead to higher CPU and IO overheads
4552 * and deemed unnecessary given that write-sharing an inode across
4553 * different cgroups isn't a common use-case.
4554 *
4555 * Combined with inode majority-writer ownership switching, this works well
4556 * enough in most cases but there are some pathological cases. For
4557 * example, let's say there are two cgroups A and B which keep writing to
4558 * different but confined parts of the same inode. B owns the inode and
4559 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4560 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4561 * triggering background writeback. A will be slowed down without a way to
4562 * make writeback of the dirty pages happen.
4563 *
4564 * Conditions like the above can lead to a cgroup getting repatedly and
4565 * severely throttled after making some progress after each
4566 * dirty_expire_interval while the underyling IO device is almost
4567 * completely idle.
4568 *
4569 * Solving this problem completely requires matching the ownership tracking
4570 * granularities between memcg and writeback in either direction. However,
4571 * the more egregious behaviors can be avoided by simply remembering the
4572 * most recent foreign dirtying events and initiating remote flushes on
4573 * them when local writeback isn't enough to keep the memory clean enough.
4574 *
4575 * The following two functions implement such mechanism. When a foreign
4576 * page - a page whose memcg and writeback ownerships don't match - is
4577 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4578 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4579 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4580 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4581 * foreign bdi_writebacks which haven't expired. Both the numbers of
4582 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4583 * limited to MEMCG_CGWB_FRN_CNT.
4584 *
4585 * The mechanism only remembers IDs and doesn't hold any object references.
4586 * As being wrong occasionally doesn't matter, updates and accesses to the
4587 * records are lockless and racy.
4588 */
4589 void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
4590 struct bdi_writeback *wb)
4591 {
4592 struct mem_cgroup *memcg = page->mem_cgroup;
4593 struct memcg_cgwb_frn *frn;
4594 u64 now = get_jiffies_64();
4595 u64 oldest_at = now;
4596 int oldest = -1;
4597 int i;
4598
4599 trace_track_foreign_dirty(page, wb);
4600
4601 /*
4602 * Pick the slot to use. If there is already a slot for @wb, keep
4603 * using it. If not replace the oldest one which isn't being
4604 * written out.
4605 */
4606 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4607 frn = &memcg->cgwb_frn[i];
4608 if (frn->bdi_id == wb->bdi->id &&
4609 frn->memcg_id == wb->memcg_css->id)
4610 break;
4611 if (time_before64(frn->at, oldest_at) &&
4612 atomic_read(&frn->done.cnt) == 1) {
4613 oldest = i;
4614 oldest_at = frn->at;
4615 }
4616 }
4617
4618 if (i < MEMCG_CGWB_FRN_CNT) {
4619 /*
4620 * Re-using an existing one. Update timestamp lazily to
4621 * avoid making the cacheline hot. We want them to be
4622 * reasonably up-to-date and significantly shorter than
4623 * dirty_expire_interval as that's what expires the record.
4624 * Use the shorter of 1s and dirty_expire_interval / 8.
4625 */
4626 unsigned long update_intv =
4627 min_t(unsigned long, HZ,
4628 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4629
4630 if (time_before64(frn->at, now - update_intv))
4631 frn->at = now;
4632 } else if (oldest >= 0) {
4633 /* replace the oldest free one */
4634 frn = &memcg->cgwb_frn[oldest];
4635 frn->bdi_id = wb->bdi->id;
4636 frn->memcg_id = wb->memcg_css->id;
4637 frn->at = now;
4638 }
4639 }
4640
4641 /* issue foreign writeback flushes for recorded foreign dirtying events */
4642 void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4643 {
4644 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4645 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4646 u64 now = jiffies_64;
4647 int i;
4648
4649 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4650 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4651
4652 /*
4653 * If the record is older than dirty_expire_interval,
4654 * writeback on it has already started. No need to kick it
4655 * off again. Also, don't start a new one if there's
4656 * already one in flight.
4657 */
4658 if (time_after64(frn->at, now - intv) &&
4659 atomic_read(&frn->done.cnt) == 1) {
4660 frn->at = 0;
4661 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4662 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id, 0,
4663 WB_REASON_FOREIGN_FLUSH,
4664 &frn->done);
4665 }
4666 }
4667 }
4668
4669 #else /* CONFIG_CGROUP_WRITEBACK */
4670
4671 static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4672 {
4673 return 0;
4674 }
4675
4676 static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4677 {
4678 }
4679
4680 static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4681 {
4682 }
4683
4684 #endif /* CONFIG_CGROUP_WRITEBACK */
4685
4686 /*
4687 * DO NOT USE IN NEW FILES.
4688 *
4689 * "cgroup.event_control" implementation.
4690 *
4691 * This is way over-engineered. It tries to support fully configurable
4692 * events for each user. Such level of flexibility is completely
4693 * unnecessary especially in the light of the planned unified hierarchy.
4694 *
4695 * Please deprecate this and replace with something simpler if at all
4696 * possible.
4697 */
4698
4699 /*
4700 * Unregister event and free resources.
4701 *
4702 * Gets called from workqueue.
4703 */
4704 static void memcg_event_remove(struct work_struct *work)
4705 {
4706 struct mem_cgroup_event *event =
4707 container_of(work, struct mem_cgroup_event, remove);
4708 struct mem_cgroup *memcg = event->memcg;
4709
4710 remove_wait_queue(event->wqh, &event->wait);
4711
4712 event->unregister_event(memcg, event->eventfd);
4713
4714 /* Notify userspace the event is going away. */
4715 eventfd_signal(event->eventfd, 1);
4716
4717 eventfd_ctx_put(event->eventfd);
4718 kfree(event);
4719 css_put(&memcg->css);
4720 }
4721
4722 /*
4723 * Gets called on EPOLLHUP on eventfd when user closes it.
4724 *
4725 * Called with wqh->lock held and interrupts disabled.
4726 */
4727 static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4728 int sync, void *key)
4729 {
4730 struct mem_cgroup_event *event =
4731 container_of(wait, struct mem_cgroup_event, wait);
4732 struct mem_cgroup *memcg = event->memcg;
4733 __poll_t flags = key_to_poll(key);
4734
4735 if (flags & EPOLLHUP) {
4736 /*
4737 * If the event has been detached at cgroup removal, we
4738 * can simply return knowing the other side will cleanup
4739 * for us.
4740 *
4741 * We can't race against event freeing since the other
4742 * side will require wqh->lock via remove_wait_queue(),
4743 * which we hold.
4744 */
4745 spin_lock(&memcg->event_list_lock);
4746 if (!list_empty(&event->list)) {
4747 list_del_init(&event->list);
4748 /*
4749 * We are in atomic context, but cgroup_event_remove()
4750 * may sleep, so we have to call it in workqueue.
4751 */
4752 schedule_work(&event->remove);
4753 }
4754 spin_unlock(&memcg->event_list_lock);
4755 }
4756
4757 return 0;
4758 }
4759
4760 static void memcg_event_ptable_queue_proc(struct file *file,
4761 wait_queue_head_t *wqh, poll_table *pt)
4762 {
4763 struct mem_cgroup_event *event =
4764 container_of(pt, struct mem_cgroup_event, pt);
4765
4766 event->wqh = wqh;
4767 add_wait_queue(wqh, &event->wait);
4768 }
4769
4770 /*
4771 * DO NOT USE IN NEW FILES.
4772 *
4773 * Parse input and register new cgroup event handler.
4774 *
4775 * Input must be in format '<event_fd> <control_fd> <args>'.
4776 * Interpretation of args is defined by control file implementation.
4777 */
4778 static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4779 char *buf, size_t nbytes, loff_t off)
4780 {
4781 struct cgroup_subsys_state *css = of_css(of);
4782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4783 struct mem_cgroup_event *event;
4784 struct cgroup_subsys_state *cfile_css;
4785 unsigned int efd, cfd;
4786 struct fd efile;
4787 struct fd cfile;
4788 const char *name;
4789 char *endp;
4790 int ret;
4791
4792 buf = strstrip(buf);
4793
4794 efd = simple_strtoul(buf, &endp, 10);
4795 if (*endp != ' ')
4796 return -EINVAL;
4797 buf = endp + 1;
4798
4799 cfd = simple_strtoul(buf, &endp, 10);
4800 if ((*endp != ' ') && (*endp != '\0'))
4801 return -EINVAL;
4802 buf = endp + 1;
4803
4804 event = kzalloc(sizeof(*event), GFP_KERNEL);
4805 if (!event)
4806 return -ENOMEM;
4807
4808 event->memcg = memcg;
4809 INIT_LIST_HEAD(&event->list);
4810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4811 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4812 INIT_WORK(&event->remove, memcg_event_remove);
4813
4814 efile = fdget(efd);
4815 if (!efile.file) {
4816 ret = -EBADF;
4817 goto out_kfree;
4818 }
4819
4820 event->eventfd = eventfd_ctx_fileget(efile.file);
4821 if (IS_ERR(event->eventfd)) {
4822 ret = PTR_ERR(event->eventfd);
4823 goto out_put_efile;
4824 }
4825
4826 cfile = fdget(cfd);
4827 if (!cfile.file) {
4828 ret = -EBADF;
4829 goto out_put_eventfd;
4830 }
4831
4832 /* the process need read permission on control file */
4833 /* AV: shouldn't we check that it's been opened for read instead? */
4834 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4835 if (ret < 0)
4836 goto out_put_cfile;
4837
4838 /*
4839 * Determine the event callbacks and set them in @event. This used
4840 * to be done via struct cftype but cgroup core no longer knows
4841 * about these events. The following is crude but the whole thing
4842 * is for compatibility anyway.
4843 *
4844 * DO NOT ADD NEW FILES.
4845 */
4846 name = cfile.file->f_path.dentry->d_name.name;
4847
4848 if (!strcmp(name, "memory.usage_in_bytes")) {
4849 event->register_event = mem_cgroup_usage_register_event;
4850 event->unregister_event = mem_cgroup_usage_unregister_event;
4851 } else if (!strcmp(name, "memory.oom_control")) {
4852 event->register_event = mem_cgroup_oom_register_event;
4853 event->unregister_event = mem_cgroup_oom_unregister_event;
4854 } else if (!strcmp(name, "memory.pressure_level")) {
4855 event->register_event = vmpressure_register_event;
4856 event->unregister_event = vmpressure_unregister_event;
4857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4858 event->register_event = memsw_cgroup_usage_register_event;
4859 event->unregister_event = memsw_cgroup_usage_unregister_event;
4860 } else {
4861 ret = -EINVAL;
4862 goto out_put_cfile;
4863 }
4864
4865 /*
4866 * Verify @cfile should belong to @css. Also, remaining events are
4867 * automatically removed on cgroup destruction but the removal is
4868 * asynchronous, so take an extra ref on @css.
4869 */
4870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
4871 &memory_cgrp_subsys);
4872 ret = -EINVAL;
4873 if (IS_ERR(cfile_css))
4874 goto out_put_cfile;
4875 if (cfile_css != css) {
4876 css_put(cfile_css);
4877 goto out_put_cfile;
4878 }
4879
4880 ret = event->register_event(memcg, event->eventfd, buf);
4881 if (ret)
4882 goto out_put_css;
4883
4884 vfs_poll(efile.file, &event->pt);
4885
4886 spin_lock(&memcg->event_list_lock);
4887 list_add(&event->list, &memcg->event_list);
4888 spin_unlock(&memcg->event_list_lock);
4889
4890 fdput(cfile);
4891 fdput(efile);
4892
4893 return nbytes;
4894
4895 out_put_css:
4896 css_put(css);
4897 out_put_cfile:
4898 fdput(cfile);
4899 out_put_eventfd:
4900 eventfd_ctx_put(event->eventfd);
4901 out_put_efile:
4902 fdput(efile);
4903 out_kfree:
4904 kfree(event);
4905
4906 return ret;
4907 }
4908
4909 static struct cftype mem_cgroup_legacy_files[] = {
4910 {
4911 .name = "usage_in_bytes",
4912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4913 .read_u64 = mem_cgroup_read_u64,
4914 },
4915 {
4916 .name = "max_usage_in_bytes",
4917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4918 .write = mem_cgroup_reset,
4919 .read_u64 = mem_cgroup_read_u64,
4920 },
4921 {
4922 .name = "limit_in_bytes",
4923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4924 .write = mem_cgroup_write,
4925 .read_u64 = mem_cgroup_read_u64,
4926 },
4927 {
4928 .name = "soft_limit_in_bytes",
4929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4930 .write = mem_cgroup_write,
4931 .read_u64 = mem_cgroup_read_u64,
4932 },
4933 {
4934 .name = "failcnt",
4935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4936 .write = mem_cgroup_reset,
4937 .read_u64 = mem_cgroup_read_u64,
4938 },
4939 {
4940 .name = "stat",
4941 .seq_show = memcg_stat_show,
4942 },
4943 {
4944 .name = "force_empty",
4945 .write = mem_cgroup_force_empty_write,
4946 },
4947 {
4948 .name = "use_hierarchy",
4949 .write_u64 = mem_cgroup_hierarchy_write,
4950 .read_u64 = mem_cgroup_hierarchy_read,
4951 },
4952 {
4953 .name = "cgroup.event_control", /* XXX: for compat */
4954 .write = memcg_write_event_control,
4955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
4956 },
4957 {
4958 .name = "swappiness",
4959 .read_u64 = mem_cgroup_swappiness_read,
4960 .write_u64 = mem_cgroup_swappiness_write,
4961 },
4962 {
4963 .name = "move_charge_at_immigrate",
4964 .read_u64 = mem_cgroup_move_charge_read,
4965 .write_u64 = mem_cgroup_move_charge_write,
4966 },
4967 {
4968 .name = "oom_control",
4969 .seq_show = mem_cgroup_oom_control_read,
4970 .write_u64 = mem_cgroup_oom_control_write,
4971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4972 },
4973 {
4974 .name = "pressure_level",
4975 },
4976 #ifdef CONFIG_NUMA
4977 {
4978 .name = "numa_stat",
4979 .seq_show = memcg_numa_stat_show,
4980 },
4981 #endif
4982 {
4983 .name = "kmem.limit_in_bytes",
4984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
4985 .write = mem_cgroup_write,
4986 .read_u64 = mem_cgroup_read_u64,
4987 },
4988 {
4989 .name = "kmem.usage_in_bytes",
4990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
4991 .read_u64 = mem_cgroup_read_u64,
4992 },
4993 {
4994 .name = "kmem.failcnt",
4995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
4996 .write = mem_cgroup_reset,
4997 .read_u64 = mem_cgroup_read_u64,
4998 },
4999 {
5000 .name = "kmem.max_usage_in_bytes",
5001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5002 .write = mem_cgroup_reset,
5003 .read_u64 = mem_cgroup_read_u64,
5004 },
5005 #if defined(CONFIG_MEMCG_KMEM) && \
5006 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5007 {
5008 .name = "kmem.slabinfo",
5009 .seq_show = memcg_slab_show,
5010 },
5011 #endif
5012 {
5013 .name = "kmem.tcp.limit_in_bytes",
5014 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5015 .write = mem_cgroup_write,
5016 .read_u64 = mem_cgroup_read_u64,
5017 },
5018 {
5019 .name = "kmem.tcp.usage_in_bytes",
5020 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5021 .read_u64 = mem_cgroup_read_u64,
5022 },
5023 {
5024 .name = "kmem.tcp.failcnt",
5025 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5026 .write = mem_cgroup_reset,
5027 .read_u64 = mem_cgroup_read_u64,
5028 },
5029 {
5030 .name = "kmem.tcp.max_usage_in_bytes",
5031 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5032 .write = mem_cgroup_reset,
5033 .read_u64 = mem_cgroup_read_u64,
5034 },
5035 { }, /* terminate */
5036 };
5037
5038 /*
5039 * Private memory cgroup IDR
5040 *
5041 * Swap-out records and page cache shadow entries need to store memcg
5042 * references in constrained space, so we maintain an ID space that is
5043 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5044 * memory-controlled cgroups to 64k.
5045 *
5046 * However, there usually are many references to the offline CSS after
5047 * the cgroup has been destroyed, such as page cache or reclaimable
5048 * slab objects, that don't need to hang on to the ID. We want to keep
5049 * those dead CSS from occupying IDs, or we might quickly exhaust the
5050 * relatively small ID space and prevent the creation of new cgroups
5051 * even when there are much fewer than 64k cgroups - possibly none.
5052 *
5053 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5054 * be freed and recycled when it's no longer needed, which is usually
5055 * when the CSS is offlined.
5056 *
5057 * The only exception to that are records of swapped out tmpfs/shmem
5058 * pages that need to be attributed to live ancestors on swapin. But
5059 * those references are manageable from userspace.
5060 */
5061
5062 static DEFINE_IDR(mem_cgroup_idr);
5063
5064 static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5065 {
5066 if (memcg->id.id > 0) {
5067 idr_remove(&mem_cgroup_idr, memcg->id.id);
5068 memcg->id.id = 0;
5069 }
5070 }
5071
5072 static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5073 unsigned int n)
5074 {
5075 refcount_add(n, &memcg->id.ref);
5076 }
5077
5078 static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5079 {
5080 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5081 mem_cgroup_id_remove(memcg);
5082
5083 /* Memcg ID pins CSS */
5084 css_put(&memcg->css);
5085 }
5086 }
5087
5088 static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5089 {
5090 mem_cgroup_id_put_many(memcg, 1);
5091 }
5092
5093 /**
5094 * mem_cgroup_from_id - look up a memcg from a memcg id
5095 * @id: the memcg id to look up
5096 *
5097 * Caller must hold rcu_read_lock().
5098 */
5099 struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5100 {
5101 WARN_ON_ONCE(!rcu_read_lock_held());
5102 return idr_find(&mem_cgroup_idr, id);
5103 }
5104
5105 static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5106 {
5107 struct mem_cgroup_per_node *pn;
5108 int tmp = node;
5109 /*
5110 * This routine is called against possible nodes.
5111 * But it's BUG to call kmalloc() against offline node.
5112 *
5113 * TODO: this routine can waste much memory for nodes which will
5114 * never be onlined. It's better to use memory hotplug callback
5115 * function.
5116 */
5117 if (!node_state(node, N_NORMAL_MEMORY))
5118 tmp = -1;
5119 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
5120 if (!pn)
5121 return 1;
5122
5123 pn->lruvec_stat_local = alloc_percpu(struct lruvec_stat);
5124 if (!pn->lruvec_stat_local) {
5125 kfree(pn);
5126 return 1;
5127 }
5128
5129 pn->lruvec_stat_cpu = alloc_percpu(struct lruvec_stat);
5130 if (!pn->lruvec_stat_cpu) {
5131 free_percpu(pn->lruvec_stat_local);
5132 kfree(pn);
5133 return 1;
5134 }
5135
5136 lruvec_init(&pn->lruvec);
5137 pn->usage_in_excess = 0;
5138 pn->on_tree = false;
5139 pn->memcg = memcg;
5140
5141 memcg->nodeinfo[node] = pn;
5142 return 0;
5143 }
5144
5145 static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5146 {
5147 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5148
5149 if (!pn)
5150 return;
5151
5152 free_percpu(pn->lruvec_stat_cpu);
5153 free_percpu(pn->lruvec_stat_local);
5154 kfree(pn);
5155 }
5156
5157 static void __mem_cgroup_free(struct mem_cgroup *memcg)
5158 {
5159 int node;
5160
5161 for_each_node(node)
5162 free_mem_cgroup_per_node_info(memcg, node);
5163 free_percpu(memcg->vmstats_percpu);
5164 free_percpu(memcg->vmstats_local);
5165 kfree(memcg);
5166 }
5167
5168 static void mem_cgroup_free(struct mem_cgroup *memcg)
5169 {
5170 memcg_wb_domain_exit(memcg);
5171 /*
5172 * Flush percpu vmstats and vmevents to guarantee the value correctness
5173 * on parent's and all ancestor levels.
5174 */
5175 memcg_flush_percpu_vmstats(memcg);
5176 memcg_flush_percpu_vmevents(memcg);
5177 __mem_cgroup_free(memcg);
5178 }
5179
5180 static struct mem_cgroup *mem_cgroup_alloc(void)
5181 {
5182 struct mem_cgroup *memcg;
5183 unsigned int size;
5184 int node;
5185 int __maybe_unused i;
5186 long error = -ENOMEM;
5187
5188 size = sizeof(struct mem_cgroup);
5189 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
5190
5191 memcg = kzalloc(size, GFP_KERNEL);
5192 if (!memcg)
5193 return ERR_PTR(error);
5194
5195 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5196 1, MEM_CGROUP_ID_MAX,
5197 GFP_KERNEL);
5198 if (memcg->id.id < 0) {
5199 error = memcg->id.id;
5200 goto fail;
5201 }
5202
5203 memcg->vmstats_local = alloc_percpu(struct memcg_vmstats_percpu);
5204 if (!memcg->vmstats_local)
5205 goto fail;
5206
5207 memcg->vmstats_percpu = alloc_percpu(struct memcg_vmstats_percpu);
5208 if (!memcg->vmstats_percpu)
5209 goto fail;
5210
5211 for_each_node(node)
5212 if (alloc_mem_cgroup_per_node_info(memcg, node))
5213 goto fail;
5214
5215 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5216 goto fail;
5217
5218 INIT_WORK(&memcg->high_work, high_work_func);
5219 INIT_LIST_HEAD(&memcg->oom_notify);
5220 mutex_init(&memcg->thresholds_lock);
5221 spin_lock_init(&memcg->move_lock);
5222 vmpressure_init(&memcg->vmpressure);
5223 INIT_LIST_HEAD(&memcg->event_list);
5224 spin_lock_init(&memcg->event_list_lock);
5225 memcg->socket_pressure = jiffies;
5226 #ifdef CONFIG_MEMCG_KMEM
5227 memcg->kmemcg_id = -1;
5228 INIT_LIST_HEAD(&memcg->objcg_list);
5229 #endif
5230 #ifdef CONFIG_CGROUP_WRITEBACK
5231 INIT_LIST_HEAD(&memcg->cgwb_list);
5232 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5233 memcg->cgwb_frn[i].done =
5234 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5235 #endif
5236 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5237 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5238 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5239 memcg->deferred_split_queue.split_queue_len = 0;
5240 #endif
5241 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5242 return memcg;
5243 fail:
5244 mem_cgroup_id_remove(memcg);
5245 __mem_cgroup_free(memcg);
5246 return ERR_PTR(error);
5247 }
5248
5249 static struct cgroup_subsys_state * __ref
5250 mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5251 {
5252 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5253 struct mem_cgroup *memcg;
5254 long error = -ENOMEM;
5255
5256 memcg = mem_cgroup_alloc();
5257 if (IS_ERR(memcg))
5258 return ERR_CAST(memcg);
5259
5260 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5261 memcg->soft_limit = PAGE_COUNTER_MAX;
5262 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5263 if (parent) {
5264 memcg->swappiness = mem_cgroup_swappiness(parent);
5265 memcg->oom_kill_disable = parent->oom_kill_disable;
5266 }
5267 if (parent && parent->use_hierarchy) {
5268 memcg->use_hierarchy = true;
5269 page_counter_init(&memcg->memory, &parent->memory);
5270 page_counter_init(&memcg->swap, &parent->swap);
5271 page_counter_init(&memcg->memsw, &parent->memsw);
5272 page_counter_init(&memcg->kmem, &parent->kmem);
5273 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5274 } else {
5275 page_counter_init(&memcg->memory, NULL);
5276 page_counter_init(&memcg->swap, NULL);
5277 page_counter_init(&memcg->memsw, NULL);
5278 page_counter_init(&memcg->kmem, NULL);
5279 page_counter_init(&memcg->tcpmem, NULL);
5280 /*
5281 * Deeper hierachy with use_hierarchy == false doesn't make
5282 * much sense so let cgroup subsystem know about this
5283 * unfortunate state in our controller.
5284 */
5285 if (parent != root_mem_cgroup)
5286 memory_cgrp_subsys.broken_hierarchy = true;
5287 }
5288
5289 /* The following stuff does not apply to the root */
5290 if (!parent) {
5291 root_mem_cgroup = memcg;
5292 return &memcg->css;
5293 }
5294
5295 error = memcg_online_kmem(memcg);
5296 if (error)
5297 goto fail;
5298
5299 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5300 static_branch_inc(&memcg_sockets_enabled_key);
5301
5302 return &memcg->css;
5303 fail:
5304 mem_cgroup_id_remove(memcg);
5305 mem_cgroup_free(memcg);
5306 return ERR_PTR(error);
5307 }
5308
5309 static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5310 {
5311 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5312
5313 /*
5314 * A memcg must be visible for memcg_expand_shrinker_maps()
5315 * by the time the maps are allocated. So, we allocate maps
5316 * here, when for_each_mem_cgroup() can't skip it.
5317 */
5318 if (memcg_alloc_shrinker_maps(memcg)) {
5319 mem_cgroup_id_remove(memcg);
5320 return -ENOMEM;
5321 }
5322
5323 /* Online state pins memcg ID, memcg ID pins CSS */
5324 refcount_set(&memcg->id.ref, 1);
5325 css_get(css);
5326 return 0;
5327 }
5328
5329 static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5330 {
5331 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5332 struct mem_cgroup_event *event, *tmp;
5333
5334 /*
5335 * Unregister events and notify userspace.
5336 * Notify userspace about cgroup removing only after rmdir of cgroup
5337 * directory to avoid race between userspace and kernelspace.
5338 */
5339 spin_lock(&memcg->event_list_lock);
5340 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5341 list_del_init(&event->list);
5342 schedule_work(&event->remove);
5343 }
5344 spin_unlock(&memcg->event_list_lock);
5345
5346 page_counter_set_min(&memcg->memory, 0);
5347 page_counter_set_low(&memcg->memory, 0);
5348
5349 memcg_offline_kmem(memcg);
5350 wb_memcg_offline(memcg);
5351
5352 drain_all_stock(memcg);
5353
5354 mem_cgroup_id_put(memcg);
5355 }
5356
5357 static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5358 {
5359 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5360
5361 invalidate_reclaim_iterators(memcg);
5362 }
5363
5364 static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5365 {
5366 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5367 int __maybe_unused i;
5368
5369 #ifdef CONFIG_CGROUP_WRITEBACK
5370 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5371 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5372 #endif
5373 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5374 static_branch_dec(&memcg_sockets_enabled_key);
5375
5376 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5377 static_branch_dec(&memcg_sockets_enabled_key);
5378
5379 vmpressure_cleanup(&memcg->vmpressure);
5380 cancel_work_sync(&memcg->high_work);
5381 mem_cgroup_remove_from_trees(memcg);
5382 memcg_free_shrinker_maps(memcg);
5383 memcg_free_kmem(memcg);
5384 mem_cgroup_free(memcg);
5385 }
5386
5387 /**
5388 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5389 * @css: the target css
5390 *
5391 * Reset the states of the mem_cgroup associated with @css. This is
5392 * invoked when the userland requests disabling on the default hierarchy
5393 * but the memcg is pinned through dependency. The memcg should stop
5394 * applying policies and should revert to the vanilla state as it may be
5395 * made visible again.
5396 *
5397 * The current implementation only resets the essential configurations.
5398 * This needs to be expanded to cover all the visible parts.
5399 */
5400 static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5401 {
5402 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5403
5404 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5405 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5406 page_counter_set_max(&memcg->memsw, PAGE_COUNTER_MAX);
5407 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5408 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5409 page_counter_set_min(&memcg->memory, 0);
5410 page_counter_set_low(&memcg->memory, 0);
5411 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5412 memcg->soft_limit = PAGE_COUNTER_MAX;
5413 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5414 memcg_wb_domain_size_changed(memcg);
5415 }
5416
5417 #ifdef CONFIG_MMU
5418 /* Handlers for move charge at task migration. */
5419 static int mem_cgroup_do_precharge(unsigned long count)
5420 {
5421 int ret;
5422
5423 /* Try a single bulk charge without reclaim first, kswapd may wake */
5424 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5425 if (!ret) {
5426 mc.precharge += count;
5427 return ret;
5428 }
5429
5430 /* Try charges one by one with reclaim, but do not retry */
5431 while (count--) {
5432 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5433 if (ret)
5434 return ret;
5435 mc.precharge++;
5436 cond_resched();
5437 }
5438 return 0;
5439 }
5440
5441 union mc_target {
5442 struct page *page;
5443 swp_entry_t ent;
5444 };
5445
5446 enum mc_target_type {
5447 MC_TARGET_NONE = 0,
5448 MC_TARGET_PAGE,
5449 MC_TARGET_SWAP,
5450 MC_TARGET_DEVICE,
5451 };
5452
5453 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5454 unsigned long addr, pte_t ptent)
5455 {
5456 struct page *page = vm_normal_page(vma, addr, ptent);
5457
5458 if (!page || !page_mapped(page))
5459 return NULL;
5460 if (PageAnon(page)) {
5461 if (!(mc.flags & MOVE_ANON))
5462 return NULL;
5463 } else {
5464 if (!(mc.flags & MOVE_FILE))
5465 return NULL;
5466 }
5467 if (!get_page_unless_zero(page))
5468 return NULL;
5469
5470 return page;
5471 }
5472
5473 #if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5474 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5475 pte_t ptent, swp_entry_t *entry)
5476 {
5477 struct page *page = NULL;
5478 swp_entry_t ent = pte_to_swp_entry(ptent);
5479
5480 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
5481 return NULL;
5482
5483 /*
5484 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
5485 * a device and because they are not accessible by CPU they are store
5486 * as special swap entry in the CPU page table.
5487 */
5488 if (is_device_private_entry(ent)) {
5489 page = device_private_entry_to_page(ent);
5490 /*
5491 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
5492 * a refcount of 1 when free (unlike normal page)
5493 */
5494 if (!page_ref_add_unless(page, 1, 1))
5495 return NULL;
5496 return page;
5497 }
5498
5499 /*
5500 * Because lookup_swap_cache() updates some statistics counter,
5501 * we call find_get_page() with swapper_space directly.
5502 */
5503 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5504 entry->val = ent.val;
5505
5506 return page;
5507 }
5508 #else
5509 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5510 pte_t ptent, swp_entry_t *entry)
5511 {
5512 return NULL;
5513 }
5514 #endif
5515
5516 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5517 unsigned long addr, pte_t ptent, swp_entry_t *entry)
5518 {
5519 struct page *page = NULL;
5520 struct address_space *mapping;
5521 pgoff_t pgoff;
5522
5523 if (!vma->vm_file) /* anonymous vma */
5524 return NULL;
5525 if (!(mc.flags & MOVE_FILE))
5526 return NULL;
5527
5528 mapping = vma->vm_file->f_mapping;
5529 pgoff = linear_page_index(vma, addr);
5530
5531 /* page is moved even if it's not RSS of this task(page-faulted). */
5532 #ifdef CONFIG_SWAP
5533 /* shmem/tmpfs may report page out on swap: account for that too. */
5534 if (shmem_mapping(mapping)) {
5535 page = find_get_entry(mapping, pgoff);
5536 if (xa_is_value(page)) {
5537 swp_entry_t swp = radix_to_swp_entry(page);
5538 *entry = swp;
5539 page = find_get_page(swap_address_space(swp),
5540 swp_offset(swp));
5541 }
5542 } else
5543 page = find_get_page(mapping, pgoff);
5544 #else
5545 page = find_get_page(mapping, pgoff);
5546 #endif
5547 return page;
5548 }
5549
5550 /**
5551 * mem_cgroup_move_account - move account of the page
5552 * @page: the page
5553 * @compound: charge the page as compound or small page
5554 * @from: mem_cgroup which the page is moved from.
5555 * @to: mem_cgroup which the page is moved to. @from != @to.
5556 *
5557 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
5558 *
5559 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5560 * from old cgroup.
5561 */
5562 static int mem_cgroup_move_account(struct page *page,
5563 bool compound,
5564 struct mem_cgroup *from,
5565 struct mem_cgroup *to)
5566 {
5567 struct lruvec *from_vec, *to_vec;
5568 struct pglist_data *pgdat;
5569 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
5570 int ret;
5571
5572 VM_BUG_ON(from == to);
5573 VM_BUG_ON_PAGE(PageLRU(page), page);
5574 VM_BUG_ON(compound && !PageTransHuge(page));
5575
5576 /*
5577 * Prevent mem_cgroup_migrate() from looking at
5578 * page->mem_cgroup of its source page while we change it.
5579 */
5580 ret = -EBUSY;
5581 if (!trylock_page(page))
5582 goto out;
5583
5584 ret = -EINVAL;
5585 if (page->mem_cgroup != from)
5586 goto out_unlock;
5587
5588 pgdat = page_pgdat(page);
5589 from_vec = mem_cgroup_lruvec(from, pgdat);
5590 to_vec = mem_cgroup_lruvec(to, pgdat);
5591
5592 lock_page_memcg(page);
5593
5594 if (PageAnon(page)) {
5595 if (page_mapped(page)) {
5596 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5597 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5598 if (PageTransHuge(page)) {
5599 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5600 -nr_pages);
5601 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5602 nr_pages);
5603 }
5604
5605 }
5606 } else {
5607 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5608 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5609
5610 if (PageSwapBacked(page)) {
5611 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5612 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5613 }
5614
5615 if (page_mapped(page)) {
5616 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5617 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5618 }
5619
5620 if (PageDirty(page)) {
5621 struct address_space *mapping = page_mapping(page);
5622
5623 if (mapping_cap_account_dirty(mapping)) {
5624 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5625 -nr_pages);
5626 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5627 nr_pages);
5628 }
5629 }
5630 }
5631
5632 if (PageWriteback(page)) {
5633 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5634 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5635 }
5636
5637 /*
5638 * All state has been migrated, let's switch to the new memcg.
5639 *
5640 * It is safe to change page->mem_cgroup here because the page
5641 * is referenced, charged, isolated, and locked: we can't race
5642 * with (un)charging, migration, LRU putback, or anything else
5643 * that would rely on a stable page->mem_cgroup.
5644 *
5645 * Note that lock_page_memcg is a memcg lock, not a page lock,
5646 * to save space. As soon as we switch page->mem_cgroup to a
5647 * new memcg that isn't locked, the above state can change
5648 * concurrently again. Make sure we're truly done with it.
5649 */
5650 smp_mb();
5651
5652 css_get(&to->css);
5653 css_put(&from->css);
5654
5655 page->mem_cgroup = to;
5656
5657 __unlock_page_memcg(from);
5658
5659 ret = 0;
5660
5661 local_irq_disable();
5662 mem_cgroup_charge_statistics(to, page, nr_pages);
5663 memcg_check_events(to, page);
5664 mem_cgroup_charge_statistics(from, page, -nr_pages);
5665 memcg_check_events(from, page);
5666 local_irq_enable();
5667 out_unlock:
5668 unlock_page(page);
5669 out:
5670 return ret;
5671 }
5672
5673 /**
5674 * get_mctgt_type - get target type of moving charge
5675 * @vma: the vma the pte to be checked belongs
5676 * @addr: the address corresponding to the pte to be checked
5677 * @ptent: the pte to be checked
5678 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5679 *
5680 * Returns
5681 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5682 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5683 * move charge. if @target is not NULL, the page is stored in target->page
5684 * with extra refcnt got(Callers should handle it).
5685 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5686 * target for charge migration. if @target is not NULL, the entry is stored
5687 * in target->ent.
5688 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PRIVATE
5689 * (so ZONE_DEVICE page and thus not on the lru).
5690 * For now we such page is charge like a regular page would be as for all
5691 * intent and purposes it is just special memory taking the place of a
5692 * regular page.
5693 *
5694 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5695 *
5696 * Called with pte lock held.
5697 */
5698
5699 static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5700 unsigned long addr, pte_t ptent, union mc_target *target)
5701 {
5702 struct page *page = NULL;
5703 enum mc_target_type ret = MC_TARGET_NONE;
5704 swp_entry_t ent = { .val = 0 };
5705
5706 if (pte_present(ptent))
5707 page = mc_handle_present_pte(vma, addr, ptent);
5708 else if (is_swap_pte(ptent))
5709 page = mc_handle_swap_pte(vma, ptent, &ent);
5710 else if (pte_none(ptent))
5711 page = mc_handle_file_pte(vma, addr, ptent, &ent);
5712
5713 if (!page && !ent.val)
5714 return ret;
5715 if (page) {
5716 /*
5717 * Do only loose check w/o serialization.
5718 * mem_cgroup_move_account() checks the page is valid or
5719 * not under LRU exclusion.
5720 */
5721 if (page->mem_cgroup == mc.from) {
5722 ret = MC_TARGET_PAGE;
5723 if (is_device_private_page(page))
5724 ret = MC_TARGET_DEVICE;
5725 if (target)
5726 target->page = page;
5727 }
5728 if (!ret || !target)
5729 put_page(page);
5730 }
5731 /*
5732 * There is a swap entry and a page doesn't exist or isn't charged.
5733 * But we cannot move a tail-page in a THP.
5734 */
5735 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5736 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5737 ret = MC_TARGET_SWAP;
5738 if (target)
5739 target->ent = ent;
5740 }
5741 return ret;
5742 }
5743
5744 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5745 /*
5746 * We don't consider PMD mapped swapping or file mapped pages because THP does
5747 * not support them for now.
5748 * Caller should make sure that pmd_trans_huge(pmd) is true.
5749 */
5750 static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5751 unsigned long addr, pmd_t pmd, union mc_target *target)
5752 {
5753 struct page *page = NULL;
5754 enum mc_target_type ret = MC_TARGET_NONE;
5755
5756 if (unlikely(is_swap_pmd(pmd))) {
5757 VM_BUG_ON(thp_migration_supported() &&
5758 !is_pmd_migration_entry(pmd));
5759 return ret;
5760 }
5761 page = pmd_page(pmd);
5762 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5763 if (!(mc.flags & MOVE_ANON))
5764 return ret;
5765 if (page->mem_cgroup == mc.from) {
5766 ret = MC_TARGET_PAGE;
5767 if (target) {
5768 get_page(page);
5769 target->page = page;
5770 }
5771 }
5772 return ret;
5773 }
5774 #else
5775 static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5776 unsigned long addr, pmd_t pmd, union mc_target *target)
5777 {
5778 return MC_TARGET_NONE;
5779 }
5780 #endif
5781
5782 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5783 unsigned long addr, unsigned long end,
5784 struct mm_walk *walk)
5785 {
5786 struct vm_area_struct *vma = walk->vma;
5787 pte_t *pte;
5788 spinlock_t *ptl;
5789
5790 ptl = pmd_trans_huge_lock(pmd, vma);
5791 if (ptl) {
5792 /*
5793 * Note their can not be MC_TARGET_DEVICE for now as we do not
5794 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
5795 * this might change.
5796 */
5797 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
5798 mc.precharge += HPAGE_PMD_NR;
5799 spin_unlock(ptl);
5800 return 0;
5801 }
5802
5803 if (pmd_trans_unstable(pmd))
5804 return 0;
5805 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5806 for (; addr != end; pte++, addr += PAGE_SIZE)
5807 if (get_mctgt_type(vma, addr, *pte, NULL))
5808 mc.precharge++; /* increment precharge temporarily */
5809 pte_unmap_unlock(pte - 1, ptl);
5810 cond_resched();
5811
5812 return 0;
5813 }
5814
5815 static const struct mm_walk_ops precharge_walk_ops = {
5816 .pmd_entry = mem_cgroup_count_precharge_pte_range,
5817 };
5818
5819 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
5820 {
5821 unsigned long precharge;
5822
5823 mmap_read_lock(mm);
5824 walk_page_range(mm, 0, mm->highest_vm_end, &precharge_walk_ops, NULL);
5825 mmap_read_unlock(mm);
5826
5827 precharge = mc.precharge;
5828 mc.precharge = 0;
5829
5830 return precharge;
5831 }
5832
5833 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
5834 {
5835 unsigned long precharge = mem_cgroup_count_precharge(mm);
5836
5837 VM_BUG_ON(mc.moving_task);
5838 mc.moving_task = current;
5839 return mem_cgroup_do_precharge(precharge);
5840 }
5841
5842 /* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
5843 static void __mem_cgroup_clear_mc(void)
5844 {
5845 struct mem_cgroup *from = mc.from;
5846 struct mem_cgroup *to = mc.to;
5847
5848 /* we must uncharge all the leftover precharges from mc.to */
5849 if (mc.precharge) {
5850 cancel_charge(mc.to, mc.precharge);
5851 mc.precharge = 0;
5852 }
5853 /*
5854 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
5855 * we must uncharge here.
5856 */
5857 if (mc.moved_charge) {
5858 cancel_charge(mc.from, mc.moved_charge);
5859 mc.moved_charge = 0;
5860 }
5861 /* we must fixup refcnts and charges */
5862 if (mc.moved_swap) {
5863 /* uncharge swap account from the old cgroup */
5864 if (!mem_cgroup_is_root(mc.from))
5865 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
5866
5867 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
5868
5869 /*
5870 * we charged both to->memory and to->memsw, so we
5871 * should uncharge to->memory.
5872 */
5873 if (!mem_cgroup_is_root(mc.to))
5874 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5875
5876 mc.moved_swap = 0;
5877 }
5878 memcg_oom_recover(from);
5879 memcg_oom_recover(to);
5880 wake_up_all(&mc.waitq);
5881 }
5882
5883 static void mem_cgroup_clear_mc(void)
5884 {
5885 struct mm_struct *mm = mc.mm;
5886
5887 /*
5888 * we must clear moving_task before waking up waiters at the end of
5889 * task migration.
5890 */
5891 mc.moving_task = NULL;
5892 __mem_cgroup_clear_mc();
5893 spin_lock(&mc.lock);
5894 mc.from = NULL;
5895 mc.to = NULL;
5896 mc.mm = NULL;
5897 spin_unlock(&mc.lock);
5898
5899 mmput(mm);
5900 }
5901
5902 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5903 {
5904 struct cgroup_subsys_state *css;
5905 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
5906 struct mem_cgroup *from;
5907 struct task_struct *leader, *p;
5908 struct mm_struct *mm;
5909 unsigned long move_flags;
5910 int ret = 0;
5911
5912 /* charge immigration isn't supported on the default hierarchy */
5913 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5914 return 0;
5915
5916 /*
5917 * Multi-process migrations only happen on the default hierarchy
5918 * where charge immigration is not used. Perform charge
5919 * immigration if @tset contains a leader and whine if there are
5920 * multiple.
5921 */
5922 p = NULL;
5923 cgroup_taskset_for_each_leader(leader, css, tset) {
5924 WARN_ON_ONCE(p);
5925 p = leader;
5926 memcg = mem_cgroup_from_css(css);
5927 }
5928 if (!p)
5929 return 0;
5930
5931 /*
5932 * We are now commited to this value whatever it is. Changes in this
5933 * tunable will only affect upcoming migrations, not the current one.
5934 * So we need to save it, and keep it going.
5935 */
5936 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
5937 if (!move_flags)
5938 return 0;
5939
5940 from = mem_cgroup_from_task(p);
5941
5942 VM_BUG_ON(from == memcg);
5943
5944 mm = get_task_mm(p);
5945 if (!mm)
5946 return 0;
5947 /* We move charges only when we move a owner of the mm */
5948 if (mm->owner == p) {
5949 VM_BUG_ON(mc.from);
5950 VM_BUG_ON(mc.to);
5951 VM_BUG_ON(mc.precharge);
5952 VM_BUG_ON(mc.moved_charge);
5953 VM_BUG_ON(mc.moved_swap);
5954
5955 spin_lock(&mc.lock);
5956 mc.mm = mm;
5957 mc.from = from;
5958 mc.to = memcg;
5959 mc.flags = move_flags;
5960 spin_unlock(&mc.lock);
5961 /* We set mc.moving_task later */
5962
5963 ret = mem_cgroup_precharge_mc(mm);
5964 if (ret)
5965 mem_cgroup_clear_mc();
5966 } else {
5967 mmput(mm);
5968 }
5969 return ret;
5970 }
5971
5972 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5973 {
5974 if (mc.to)
5975 mem_cgroup_clear_mc();
5976 }
5977
5978 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5979 unsigned long addr, unsigned long end,
5980 struct mm_walk *walk)
5981 {
5982 int ret = 0;
5983 struct vm_area_struct *vma = walk->vma;
5984 pte_t *pte;
5985 spinlock_t *ptl;
5986 enum mc_target_type target_type;
5987 union mc_target target;
5988 struct page *page;
5989
5990 ptl = pmd_trans_huge_lock(pmd, vma);
5991 if (ptl) {
5992 if (mc.precharge < HPAGE_PMD_NR) {
5993 spin_unlock(ptl);
5994 return 0;
5995 }
5996 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5997 if (target_type == MC_TARGET_PAGE) {
5998 page = target.page;
5999 if (!isolate_lru_page(page)) {
6000 if (!mem_cgroup_move_account(page, true,
6001 mc.from, mc.to)) {
6002 mc.precharge -= HPAGE_PMD_NR;
6003 mc.moved_charge += HPAGE_PMD_NR;
6004 }
6005 putback_lru_page(page);
6006 }
6007 put_page(page);
6008 } else if (target_type == MC_TARGET_DEVICE) {
6009 page = target.page;
6010 if (!mem_cgroup_move_account(page, true,
6011 mc.from, mc.to)) {
6012 mc.precharge -= HPAGE_PMD_NR;
6013 mc.moved_charge += HPAGE_PMD_NR;
6014 }
6015 put_page(page);
6016 }
6017 spin_unlock(ptl);
6018 return 0;
6019 }
6020
6021 if (pmd_trans_unstable(pmd))
6022 return 0;
6023 retry:
6024 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6025 for (; addr != end; addr += PAGE_SIZE) {
6026 pte_t ptent = *(pte++);
6027 bool device = false;
6028 swp_entry_t ent;
6029
6030 if (!mc.precharge)
6031 break;
6032
6033 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6034 case MC_TARGET_DEVICE:
6035 device = true;
6036 fallthrough;
6037 case MC_TARGET_PAGE:
6038 page = target.page;
6039 /*
6040 * We can have a part of the split pmd here. Moving it
6041 * can be done but it would be too convoluted so simply
6042 * ignore such a partial THP and keep it in original
6043 * memcg. There should be somebody mapping the head.
6044 */
6045 if (PageTransCompound(page))
6046 goto put;
6047 if (!device && isolate_lru_page(page))
6048 goto put;
6049 if (!mem_cgroup_move_account(page, false,
6050 mc.from, mc.to)) {
6051 mc.precharge--;
6052 /* we uncharge from mc.from later. */
6053 mc.moved_charge++;
6054 }
6055 if (!device)
6056 putback_lru_page(page);
6057 put: /* get_mctgt_type() gets the page */
6058 put_page(page);
6059 break;
6060 case MC_TARGET_SWAP:
6061 ent = target.ent;
6062 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6063 mc.precharge--;
6064 mem_cgroup_id_get_many(mc.to, 1);
6065 /* we fixup other refcnts and charges later. */
6066 mc.moved_swap++;
6067 }
6068 break;
6069 default:
6070 break;
6071 }
6072 }
6073 pte_unmap_unlock(pte - 1, ptl);
6074 cond_resched();
6075
6076 if (addr != end) {
6077 /*
6078 * We have consumed all precharges we got in can_attach().
6079 * We try charge one by one, but don't do any additional
6080 * charges to mc.to if we have failed in charge once in attach()
6081 * phase.
6082 */
6083 ret = mem_cgroup_do_precharge(1);
6084 if (!ret)
6085 goto retry;
6086 }
6087
6088 return ret;
6089 }
6090
6091 static const struct mm_walk_ops charge_walk_ops = {
6092 .pmd_entry = mem_cgroup_move_charge_pte_range,
6093 };
6094
6095 static void mem_cgroup_move_charge(void)
6096 {
6097 lru_add_drain_all();
6098 /*
6099 * Signal lock_page_memcg() to take the memcg's move_lock
6100 * while we're moving its pages to another memcg. Then wait
6101 * for already started RCU-only updates to finish.
6102 */
6103 atomic_inc(&mc.from->moving_account);
6104 synchronize_rcu();
6105 retry:
6106 if (unlikely(!mmap_read_trylock(mc.mm))) {
6107 /*
6108 * Someone who are holding the mmap_lock might be waiting in
6109 * waitq. So we cancel all extra charges, wake up all waiters,
6110 * and retry. Because we cancel precharges, we might not be able
6111 * to move enough charges, but moving charge is a best-effort
6112 * feature anyway, so it wouldn't be a big problem.
6113 */
6114 __mem_cgroup_clear_mc();
6115 cond_resched();
6116 goto retry;
6117 }
6118 /*
6119 * When we have consumed all precharges and failed in doing
6120 * additional charge, the page walk just aborts.
6121 */
6122 walk_page_range(mc.mm, 0, mc.mm->highest_vm_end, &charge_walk_ops,
6123 NULL);
6124
6125 mmap_read_unlock(mc.mm);
6126 atomic_dec(&mc.from->moving_account);
6127 }
6128
6129 static void mem_cgroup_move_task(void)
6130 {
6131 if (mc.to) {
6132 mem_cgroup_move_charge();
6133 mem_cgroup_clear_mc();
6134 }
6135 }
6136 #else /* !CONFIG_MMU */
6137 static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6138 {
6139 return 0;
6140 }
6141 static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6142 {
6143 }
6144 static void mem_cgroup_move_task(void)
6145 {
6146 }
6147 #endif
6148
6149 /*
6150 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6151 * to verify whether we're attached to the default hierarchy on each mount
6152 * attempt.
6153 */
6154 static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6155 {
6156 /*
6157 * use_hierarchy is forced on the default hierarchy. cgroup core
6158 * guarantees that @root doesn't have any children, so turning it
6159 * on for the root memcg is enough.
6160 */
6161 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6162 root_mem_cgroup->use_hierarchy = true;
6163 else
6164 root_mem_cgroup->use_hierarchy = false;
6165 }
6166
6167 static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6168 {
6169 if (value == PAGE_COUNTER_MAX)
6170 seq_puts(m, "max\n");
6171 else
6172 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6173
6174 return 0;
6175 }
6176
6177 static u64 memory_current_read(struct cgroup_subsys_state *css,
6178 struct cftype *cft)
6179 {
6180 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6181
6182 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6183 }
6184
6185 static int memory_min_show(struct seq_file *m, void *v)
6186 {
6187 return seq_puts_memcg_tunable(m,
6188 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6189 }
6190
6191 static ssize_t memory_min_write(struct kernfs_open_file *of,
6192 char *buf, size_t nbytes, loff_t off)
6193 {
6194 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6195 unsigned long min;
6196 int err;
6197
6198 buf = strstrip(buf);
6199 err = page_counter_memparse(buf, "max", &min);
6200 if (err)
6201 return err;
6202
6203 page_counter_set_min(&memcg->memory, min);
6204
6205 return nbytes;
6206 }
6207
6208 static int memory_low_show(struct seq_file *m, void *v)
6209 {
6210 return seq_puts_memcg_tunable(m,
6211 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6212 }
6213
6214 static ssize_t memory_low_write(struct kernfs_open_file *of,
6215 char *buf, size_t nbytes, loff_t off)
6216 {
6217 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6218 unsigned long low;
6219 int err;
6220
6221 buf = strstrip(buf);
6222 err = page_counter_memparse(buf, "max", &low);
6223 if (err)
6224 return err;
6225
6226 page_counter_set_low(&memcg->memory, low);
6227
6228 return nbytes;
6229 }
6230
6231 static int memory_high_show(struct seq_file *m, void *v)
6232 {
6233 return seq_puts_memcg_tunable(m,
6234 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6235 }
6236
6237 static ssize_t memory_high_write(struct kernfs_open_file *of,
6238 char *buf, size_t nbytes, loff_t off)
6239 {
6240 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6241 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6242 bool drained = false;
6243 unsigned long high;
6244 int err;
6245
6246 buf = strstrip(buf);
6247 err = page_counter_memparse(buf, "max", &high);
6248 if (err)
6249 return err;
6250
6251 for (;;) {
6252 unsigned long nr_pages = page_counter_read(&memcg->memory);
6253 unsigned long reclaimed;
6254
6255 if (nr_pages <= high)
6256 break;
6257
6258 if (signal_pending(current))
6259 break;
6260
6261 if (!drained) {
6262 drain_all_stock(memcg);
6263 drained = true;
6264 continue;
6265 }
6266
6267 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6268 GFP_KERNEL, true);
6269
6270 if (!reclaimed && !nr_retries--)
6271 break;
6272 }
6273
6274 page_counter_set_high(&memcg->memory, high);
6275
6276 memcg_wb_domain_size_changed(memcg);
6277
6278 return nbytes;
6279 }
6280
6281 static int memory_max_show(struct seq_file *m, void *v)
6282 {
6283 return seq_puts_memcg_tunable(m,
6284 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6285 }
6286
6287 static ssize_t memory_max_write(struct kernfs_open_file *of,
6288 char *buf, size_t nbytes, loff_t off)
6289 {
6290 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6291 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6292 bool drained = false;
6293 unsigned long max;
6294 int err;
6295
6296 buf = strstrip(buf);
6297 err = page_counter_memparse(buf, "max", &max);
6298 if (err)
6299 return err;
6300
6301 xchg(&memcg->memory.max, max);
6302
6303 for (;;) {
6304 unsigned long nr_pages = page_counter_read(&memcg->memory);
6305
6306 if (nr_pages <= max)
6307 break;
6308
6309 if (signal_pending(current))
6310 break;
6311
6312 if (!drained) {
6313 drain_all_stock(memcg);
6314 drained = true;
6315 continue;
6316 }
6317
6318 if (nr_reclaims) {
6319 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6320 GFP_KERNEL, true))
6321 nr_reclaims--;
6322 continue;
6323 }
6324
6325 memcg_memory_event(memcg, MEMCG_OOM);
6326 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6327 break;
6328 }
6329
6330 memcg_wb_domain_size_changed(memcg);
6331 return nbytes;
6332 }
6333
6334 static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6335 {
6336 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6337 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6338 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6339 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6340 seq_printf(m, "oom_kill %lu\n",
6341 atomic_long_read(&events[MEMCG_OOM_KILL]));
6342 }
6343
6344 static int memory_events_show(struct seq_file *m, void *v)
6345 {
6346 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6347
6348 __memory_events_show(m, memcg->memory_events);
6349 return 0;
6350 }
6351
6352 static int memory_events_local_show(struct seq_file *m, void *v)
6353 {
6354 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6355
6356 __memory_events_show(m, memcg->memory_events_local);
6357 return 0;
6358 }
6359
6360 static int memory_stat_show(struct seq_file *m, void *v)
6361 {
6362 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6363 char *buf;
6364
6365 buf = memory_stat_format(memcg);
6366 if (!buf)
6367 return -ENOMEM;
6368 seq_puts(m, buf);
6369 kfree(buf);
6370 return 0;
6371 }
6372
6373 static int memory_oom_group_show(struct seq_file *m, void *v)
6374 {
6375 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6376
6377 seq_printf(m, "%d\n", memcg->oom_group);
6378
6379 return 0;
6380 }
6381
6382 static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6383 char *buf, size_t nbytes, loff_t off)
6384 {
6385 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6386 int ret, oom_group;
6387
6388 buf = strstrip(buf);
6389 if (!buf)
6390 return -EINVAL;
6391
6392 ret = kstrtoint(buf, 0, &oom_group);
6393 if (ret)
6394 return ret;
6395
6396 if (oom_group != 0 && oom_group != 1)
6397 return -EINVAL;
6398
6399 memcg->oom_group = oom_group;
6400
6401 return nbytes;
6402 }
6403
6404 static struct cftype memory_files[] = {
6405 {
6406 .name = "current",
6407 .flags = CFTYPE_NOT_ON_ROOT,
6408 .read_u64 = memory_current_read,
6409 },
6410 {
6411 .name = "min",
6412 .flags = CFTYPE_NOT_ON_ROOT,
6413 .seq_show = memory_min_show,
6414 .write = memory_min_write,
6415 },
6416 {
6417 .name = "low",
6418 .flags = CFTYPE_NOT_ON_ROOT,
6419 .seq_show = memory_low_show,
6420 .write = memory_low_write,
6421 },
6422 {
6423 .name = "high",
6424 .flags = CFTYPE_NOT_ON_ROOT,
6425 .seq_show = memory_high_show,
6426 .write = memory_high_write,
6427 },
6428 {
6429 .name = "max",
6430 .flags = CFTYPE_NOT_ON_ROOT,
6431 .seq_show = memory_max_show,
6432 .write = memory_max_write,
6433 },
6434 {
6435 .name = "events",
6436 .flags = CFTYPE_NOT_ON_ROOT,
6437 .file_offset = offsetof(struct mem_cgroup, events_file),
6438 .seq_show = memory_events_show,
6439 },
6440 {
6441 .name = "events.local",
6442 .flags = CFTYPE_NOT_ON_ROOT,
6443 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6444 .seq_show = memory_events_local_show,
6445 },
6446 {
6447 .name = "stat",
6448 .seq_show = memory_stat_show,
6449 },
6450 {
6451 .name = "oom.group",
6452 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6453 .seq_show = memory_oom_group_show,
6454 .write = memory_oom_group_write,
6455 },
6456 { } /* terminate */
6457 };
6458
6459 struct cgroup_subsys memory_cgrp_subsys = {
6460 .css_alloc = mem_cgroup_css_alloc,
6461 .css_online = mem_cgroup_css_online,
6462 .css_offline = mem_cgroup_css_offline,
6463 .css_released = mem_cgroup_css_released,
6464 .css_free = mem_cgroup_css_free,
6465 .css_reset = mem_cgroup_css_reset,
6466 .can_attach = mem_cgroup_can_attach,
6467 .cancel_attach = mem_cgroup_cancel_attach,
6468 .post_attach = mem_cgroup_move_task,
6469 .bind = mem_cgroup_bind,
6470 .dfl_cftypes = memory_files,
6471 .legacy_cftypes = mem_cgroup_legacy_files,
6472 .early_init = 0,
6473 };
6474
6475 /*
6476 * This function calculates an individual cgroup's effective
6477 * protection which is derived from its own memory.min/low, its
6478 * parent's and siblings' settings, as well as the actual memory
6479 * distribution in the tree.
6480 *
6481 * The following rules apply to the effective protection values:
6482 *
6483 * 1. At the first level of reclaim, effective protection is equal to
6484 * the declared protection in memory.min and memory.low.
6485 *
6486 * 2. To enable safe delegation of the protection configuration, at
6487 * subsequent levels the effective protection is capped to the
6488 * parent's effective protection.
6489 *
6490 * 3. To make complex and dynamic subtrees easier to configure, the
6491 * user is allowed to overcommit the declared protection at a given
6492 * level. If that is the case, the parent's effective protection is
6493 * distributed to the children in proportion to how much protection
6494 * they have declared and how much of it they are utilizing.
6495 *
6496 * This makes distribution proportional, but also work-conserving:
6497 * if one cgroup claims much more protection than it uses memory,
6498 * the unused remainder is available to its siblings.
6499 *
6500 * 4. Conversely, when the declared protection is undercommitted at a
6501 * given level, the distribution of the larger parental protection
6502 * budget is NOT proportional. A cgroup's protection from a sibling
6503 * is capped to its own memory.min/low setting.
6504 *
6505 * 5. However, to allow protecting recursive subtrees from each other
6506 * without having to declare each individual cgroup's fixed share
6507 * of the ancestor's claim to protection, any unutilized -
6508 * "floating" - protection from up the tree is distributed in
6509 * proportion to each cgroup's *usage*. This makes the protection
6510 * neutral wrt sibling cgroups and lets them compete freely over
6511 * the shared parental protection budget, but it protects the
6512 * subtree as a whole from neighboring subtrees.
6513 *
6514 * Note that 4. and 5. are not in conflict: 4. is about protecting
6515 * against immediate siblings whereas 5. is about protecting against
6516 * neighboring subtrees.
6517 */
6518 static unsigned long effective_protection(unsigned long usage,
6519 unsigned long parent_usage,
6520 unsigned long setting,
6521 unsigned long parent_effective,
6522 unsigned long siblings_protected)
6523 {
6524 unsigned long protected;
6525 unsigned long ep;
6526
6527 protected = min(usage, setting);
6528 /*
6529 * If all cgroups at this level combined claim and use more
6530 * protection then what the parent affords them, distribute
6531 * shares in proportion to utilization.
6532 *
6533 * We are using actual utilization rather than the statically
6534 * claimed protection in order to be work-conserving: claimed
6535 * but unused protection is available to siblings that would
6536 * otherwise get a smaller chunk than what they claimed.
6537 */
6538 if (siblings_protected > parent_effective)
6539 return protected * parent_effective / siblings_protected;
6540
6541 /*
6542 * Ok, utilized protection of all children is within what the
6543 * parent affords them, so we know whatever this child claims
6544 * and utilizes is effectively protected.
6545 *
6546 * If there is unprotected usage beyond this value, reclaim
6547 * will apply pressure in proportion to that amount.
6548 *
6549 * If there is unutilized protection, the cgroup will be fully
6550 * shielded from reclaim, but we do return a smaller value for
6551 * protection than what the group could enjoy in theory. This
6552 * is okay. With the overcommit distribution above, effective
6553 * protection is always dependent on how memory is actually
6554 * consumed among the siblings anyway.
6555 */
6556 ep = protected;
6557
6558 /*
6559 * If the children aren't claiming (all of) the protection
6560 * afforded to them by the parent, distribute the remainder in
6561 * proportion to the (unprotected) memory of each cgroup. That
6562 * way, cgroups that aren't explicitly prioritized wrt each
6563 * other compete freely over the allowance, but they are
6564 * collectively protected from neighboring trees.
6565 *
6566 * We're using unprotected memory for the weight so that if
6567 * some cgroups DO claim explicit protection, we don't protect
6568 * the same bytes twice.
6569 *
6570 * Check both usage and parent_usage against the respective
6571 * protected values. One should imply the other, but they
6572 * aren't read atomically - make sure the division is sane.
6573 */
6574 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6575 return ep;
6576 if (parent_effective > siblings_protected &&
6577 parent_usage > siblings_protected &&
6578 usage > protected) {
6579 unsigned long unclaimed;
6580
6581 unclaimed = parent_effective - siblings_protected;
6582 unclaimed *= usage - protected;
6583 unclaimed /= parent_usage - siblings_protected;
6584
6585 ep += unclaimed;
6586 }
6587
6588 return ep;
6589 }
6590
6591 /**
6592 * mem_cgroup_protected - check if memory consumption is in the normal range
6593 * @root: the top ancestor of the sub-tree being checked
6594 * @memcg: the memory cgroup to check
6595 *
6596 * WARNING: This function is not stateless! It can only be used as part
6597 * of a top-down tree iteration, not for isolated queries.
6598 */
6599 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6600 struct mem_cgroup *memcg)
6601 {
6602 unsigned long usage, parent_usage;
6603 struct mem_cgroup *parent;
6604
6605 if (mem_cgroup_disabled())
6606 return;
6607
6608 if (!root)
6609 root = root_mem_cgroup;
6610
6611 /*
6612 * Effective values of the reclaim targets are ignored so they
6613 * can be stale. Have a look at mem_cgroup_protection for more
6614 * details.
6615 * TODO: calculation should be more robust so that we do not need
6616 * that special casing.
6617 */
6618 if (memcg == root)
6619 return;
6620
6621 usage = page_counter_read(&memcg->memory);
6622 if (!usage)
6623 return;
6624
6625 parent = parent_mem_cgroup(memcg);
6626 /* No parent means a non-hierarchical mode on v1 memcg */
6627 if (!parent)
6628 return;
6629
6630 if (parent == root) {
6631 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6632 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6633 return;
6634 }
6635
6636 parent_usage = page_counter_read(&parent->memory);
6637
6638 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6639 READ_ONCE(memcg->memory.min),
6640 READ_ONCE(parent->memory.emin),
6641 atomic_long_read(&parent->memory.children_min_usage)));
6642
6643 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6644 READ_ONCE(memcg->memory.low),
6645 READ_ONCE(parent->memory.elow),
6646 atomic_long_read(&parent->memory.children_low_usage)));
6647 }
6648
6649 /**
6650 * mem_cgroup_charge - charge a newly allocated page to a cgroup
6651 * @page: page to charge
6652 * @mm: mm context of the victim
6653 * @gfp_mask: reclaim mode
6654 *
6655 * Try to charge @page to the memcg that @mm belongs to, reclaiming
6656 * pages according to @gfp_mask if necessary.
6657 *
6658 * Returns 0 on success. Otherwise, an error code is returned.
6659 */
6660 int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask)
6661 {
6662 unsigned int nr_pages = hpage_nr_pages(page);
6663 struct mem_cgroup *memcg = NULL;
6664 int ret = 0;
6665
6666 if (mem_cgroup_disabled())
6667 goto out;
6668
6669 if (PageSwapCache(page)) {
6670 swp_entry_t ent = { .val = page_private(page), };
6671 unsigned short id;
6672
6673 /*
6674 * Every swap fault against a single page tries to charge the
6675 * page, bail as early as possible. shmem_unuse() encounters
6676 * already charged pages, too. page->mem_cgroup is protected
6677 * by the page lock, which serializes swap cache removal, which
6678 * in turn serializes uncharging.
6679 */
6680 VM_BUG_ON_PAGE(!PageLocked(page), page);
6681 if (compound_head(page)->mem_cgroup)
6682 goto out;
6683
6684 id = lookup_swap_cgroup_id(ent);
6685 rcu_read_lock();
6686 memcg = mem_cgroup_from_id(id);
6687 if (memcg && !css_tryget_online(&memcg->css))
6688 memcg = NULL;
6689 rcu_read_unlock();
6690 }
6691
6692 if (!memcg)
6693 memcg = get_mem_cgroup_from_mm(mm);
6694
6695 ret = try_charge(memcg, gfp_mask, nr_pages);
6696 if (ret)
6697 goto out_put;
6698
6699 css_get(&memcg->css);
6700 commit_charge(page, memcg);
6701
6702 local_irq_disable();
6703 mem_cgroup_charge_statistics(memcg, page, nr_pages);
6704 memcg_check_events(memcg, page);
6705 local_irq_enable();
6706
6707 if (PageSwapCache(page)) {
6708 swp_entry_t entry = { .val = page_private(page) };
6709 /*
6710 * The swap entry might not get freed for a long time,
6711 * let's not wait for it. The page already received a
6712 * memory+swap charge, drop the swap entry duplicate.
6713 */
6714 mem_cgroup_uncharge_swap(entry, nr_pages);
6715 }
6716
6717 out_put:
6718 css_put(&memcg->css);
6719 out:
6720 return ret;
6721 }
6722
6723 struct uncharge_gather {
6724 struct mem_cgroup *memcg;
6725 unsigned long nr_pages;
6726 unsigned long pgpgout;
6727 unsigned long nr_kmem;
6728 struct page *dummy_page;
6729 };
6730
6731 static inline void uncharge_gather_clear(struct uncharge_gather *ug)
6732 {
6733 memset(ug, 0, sizeof(*ug));
6734 }
6735
6736 static void uncharge_batch(const struct uncharge_gather *ug)
6737 {
6738 unsigned long flags;
6739
6740 if (!mem_cgroup_is_root(ug->memcg)) {
6741 page_counter_uncharge(&ug->memcg->memory, ug->nr_pages);
6742 if (do_memsw_account())
6743 page_counter_uncharge(&ug->memcg->memsw, ug->nr_pages);
6744 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
6745 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
6746 memcg_oom_recover(ug->memcg);
6747 }
6748
6749 local_irq_save(flags);
6750 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
6751 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_pages);
6752 memcg_check_events(ug->memcg, ug->dummy_page);
6753 local_irq_restore(flags);
6754 }
6755
6756 static void uncharge_page(struct page *page, struct uncharge_gather *ug)
6757 {
6758 unsigned long nr_pages;
6759
6760 VM_BUG_ON_PAGE(PageLRU(page), page);
6761
6762 if (!page->mem_cgroup)
6763 return;
6764
6765 /*
6766 * Nobody should be changing or seriously looking at
6767 * page->mem_cgroup at this point, we have fully
6768 * exclusive access to the page.
6769 */
6770
6771 if (ug->memcg != page->mem_cgroup) {
6772 if (ug->memcg) {
6773 uncharge_batch(ug);
6774 uncharge_gather_clear(ug);
6775 }
6776 ug->memcg = page->mem_cgroup;
6777 }
6778
6779 nr_pages = compound_nr(page);
6780 ug->nr_pages += nr_pages;
6781
6782 if (!PageKmemcg(page)) {
6783 ug->pgpgout++;
6784 } else {
6785 ug->nr_kmem += nr_pages;
6786 __ClearPageKmemcg(page);
6787 }
6788
6789 ug->dummy_page = page;
6790 page->mem_cgroup = NULL;
6791 css_put(&ug->memcg->css);
6792 }
6793
6794 static void uncharge_list(struct list_head *page_list)
6795 {
6796 struct uncharge_gather ug;
6797 struct list_head *next;
6798
6799 uncharge_gather_clear(&ug);
6800
6801 /*
6802 * Note that the list can be a single page->lru; hence the
6803 * do-while loop instead of a simple list_for_each_entry().
6804 */
6805 next = page_list->next;
6806 do {
6807 struct page *page;
6808
6809 page = list_entry(next, struct page, lru);
6810 next = page->lru.next;
6811
6812 uncharge_page(page, &ug);
6813 } while (next != page_list);
6814
6815 if (ug.memcg)
6816 uncharge_batch(&ug);
6817 }
6818
6819 /**
6820 * mem_cgroup_uncharge - uncharge a page
6821 * @page: page to uncharge
6822 *
6823 * Uncharge a page previously charged with mem_cgroup_charge().
6824 */
6825 void mem_cgroup_uncharge(struct page *page)
6826 {
6827 struct uncharge_gather ug;
6828
6829 if (mem_cgroup_disabled())
6830 return;
6831
6832 /* Don't touch page->lru of any random page, pre-check: */
6833 if (!page->mem_cgroup)
6834 return;
6835
6836 uncharge_gather_clear(&ug);
6837 uncharge_page(page, &ug);
6838 uncharge_batch(&ug);
6839 }
6840
6841 /**
6842 * mem_cgroup_uncharge_list - uncharge a list of page
6843 * @page_list: list of pages to uncharge
6844 *
6845 * Uncharge a list of pages previously charged with
6846 * mem_cgroup_charge().
6847 */
6848 void mem_cgroup_uncharge_list(struct list_head *page_list)
6849 {
6850 if (mem_cgroup_disabled())
6851 return;
6852
6853 if (!list_empty(page_list))
6854 uncharge_list(page_list);
6855 }
6856
6857 /**
6858 * mem_cgroup_migrate - charge a page's replacement
6859 * @oldpage: currently circulating page
6860 * @newpage: replacement page
6861 *
6862 * Charge @newpage as a replacement page for @oldpage. @oldpage will
6863 * be uncharged upon free.
6864 *
6865 * Both pages must be locked, @newpage->mapping must be set up.
6866 */
6867 void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
6868 {
6869 struct mem_cgroup *memcg;
6870 unsigned int nr_pages;
6871 unsigned long flags;
6872
6873 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
6874 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
6875 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6876 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
6877 newpage);
6878
6879 if (mem_cgroup_disabled())
6880 return;
6881
6882 /* Page cache replacement: new page already charged? */
6883 if (newpage->mem_cgroup)
6884 return;
6885
6886 /* Swapcache readahead pages can get replaced before being charged */
6887 memcg = oldpage->mem_cgroup;
6888 if (!memcg)
6889 return;
6890
6891 /* Force-charge the new page. The old one will be freed soon */
6892 nr_pages = hpage_nr_pages(newpage);
6893
6894 page_counter_charge(&memcg->memory, nr_pages);
6895 if (do_memsw_account())
6896 page_counter_charge(&memcg->memsw, nr_pages);
6897
6898 css_get(&memcg->css);
6899 commit_charge(newpage, memcg);
6900
6901 local_irq_save(flags);
6902 mem_cgroup_charge_statistics(memcg, newpage, nr_pages);
6903 memcg_check_events(memcg, newpage);
6904 local_irq_restore(flags);
6905 }
6906
6907 DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
6908 EXPORT_SYMBOL(memcg_sockets_enabled_key);
6909
6910 void mem_cgroup_sk_alloc(struct sock *sk)
6911 {
6912 struct mem_cgroup *memcg;
6913
6914 if (!mem_cgroup_sockets_enabled)
6915 return;
6916
6917 /* Do not associate the sock with unrelated interrupted task's memcg. */
6918 if (in_interrupt())
6919 return;
6920
6921 rcu_read_lock();
6922 memcg = mem_cgroup_from_task(current);
6923 if (memcg == root_mem_cgroup)
6924 goto out;
6925 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
6926 goto out;
6927 if (css_tryget(&memcg->css))
6928 sk->sk_memcg = memcg;
6929 out:
6930 rcu_read_unlock();
6931 }
6932
6933 void mem_cgroup_sk_free(struct sock *sk)
6934 {
6935 if (sk->sk_memcg)
6936 css_put(&sk->sk_memcg->css);
6937 }
6938
6939 /**
6940 * mem_cgroup_charge_skmem - charge socket memory
6941 * @memcg: memcg to charge
6942 * @nr_pages: number of pages to charge
6943 *
6944 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
6945 * @memcg's configured limit, %false if the charge had to be forced.
6946 */
6947 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6948 {
6949 gfp_t gfp_mask = GFP_KERNEL;
6950
6951 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6952 struct page_counter *fail;
6953
6954 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
6955 memcg->tcpmem_pressure = 0;
6956 return true;
6957 }
6958 page_counter_charge(&memcg->tcpmem, nr_pages);
6959 memcg->tcpmem_pressure = 1;
6960 return false;
6961 }
6962
6963 /* Don't block in the packet receive path */
6964 if (in_softirq())
6965 gfp_mask = GFP_NOWAIT;
6966
6967 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
6968
6969 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
6970 return true;
6971
6972 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
6973 return false;
6974 }
6975
6976 /**
6977 * mem_cgroup_uncharge_skmem - uncharge socket memory
6978 * @memcg: memcg to uncharge
6979 * @nr_pages: number of pages to uncharge
6980 */
6981 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
6982 {
6983 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
6984 page_counter_uncharge(&memcg->tcpmem, nr_pages);
6985 return;
6986 }
6987
6988 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
6989
6990 refill_stock(memcg, nr_pages);
6991 }
6992
6993 static int __init cgroup_memory(char *s)
6994 {
6995 char *token;
6996
6997 while ((token = strsep(&s, ",")) != NULL) {
6998 if (!*token)
6999 continue;
7000 if (!strcmp(token, "nosocket"))
7001 cgroup_memory_nosocket = true;
7002 if (!strcmp(token, "nokmem"))
7003 cgroup_memory_nokmem = true;
7004 }
7005 return 0;
7006 }
7007 __setup("cgroup.memory=", cgroup_memory);
7008
7009 /*
7010 * subsys_initcall() for memory controller.
7011 *
7012 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7013 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7014 * basically everything that doesn't depend on a specific mem_cgroup structure
7015 * should be initialized from here.
7016 */
7017 static int __init mem_cgroup_init(void)
7018 {
7019 int cpu, node;
7020
7021 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7022 memcg_hotplug_cpu_dead);
7023
7024 for_each_possible_cpu(cpu)
7025 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7026 drain_local_stock);
7027
7028 for_each_node(node) {
7029 struct mem_cgroup_tree_per_node *rtpn;
7030
7031 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7032 node_online(node) ? node : NUMA_NO_NODE);
7033
7034 rtpn->rb_root = RB_ROOT;
7035 rtpn->rb_rightmost = NULL;
7036 spin_lock_init(&rtpn->lock);
7037 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7038 }
7039
7040 return 0;
7041 }
7042 subsys_initcall(mem_cgroup_init);
7043
7044 #ifdef CONFIG_MEMCG_SWAP
7045 static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7046 {
7047 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7048 /*
7049 * The root cgroup cannot be destroyed, so it's refcount must
7050 * always be >= 1.
7051 */
7052 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
7053 VM_BUG_ON(1);
7054 break;
7055 }
7056 memcg = parent_mem_cgroup(memcg);
7057 if (!memcg)
7058 memcg = root_mem_cgroup;
7059 }
7060 return memcg;
7061 }
7062
7063 /**
7064 * mem_cgroup_swapout - transfer a memsw charge to swap
7065 * @page: page whose memsw charge to transfer
7066 * @entry: swap entry to move the charge to
7067 *
7068 * Transfer the memsw charge of @page to @entry.
7069 */
7070 void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
7071 {
7072 struct mem_cgroup *memcg, *swap_memcg;
7073 unsigned int nr_entries;
7074 unsigned short oldid;
7075
7076 VM_BUG_ON_PAGE(PageLRU(page), page);
7077 VM_BUG_ON_PAGE(page_count(page), page);
7078
7079 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7080 return;
7081
7082 memcg = page->mem_cgroup;
7083
7084 /* Readahead page, never charged */
7085 if (!memcg)
7086 return;
7087
7088 /*
7089 * In case the memcg owning these pages has been offlined and doesn't
7090 * have an ID allocated to it anymore, charge the closest online
7091 * ancestor for the swap instead and transfer the memory+swap charge.
7092 */
7093 swap_memcg = mem_cgroup_id_get_online(memcg);
7094 nr_entries = hpage_nr_pages(page);
7095 /* Get references for the tail pages, too */
7096 if (nr_entries > 1)
7097 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7098 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7099 nr_entries);
7100 VM_BUG_ON_PAGE(oldid, page);
7101 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7102
7103 page->mem_cgroup = NULL;
7104
7105 if (!mem_cgroup_is_root(memcg))
7106 page_counter_uncharge(&memcg->memory, nr_entries);
7107
7108 if (!cgroup_memory_noswap && memcg != swap_memcg) {
7109 if (!mem_cgroup_is_root(swap_memcg))
7110 page_counter_charge(&swap_memcg->memsw, nr_entries);
7111 page_counter_uncharge(&memcg->memsw, nr_entries);
7112 }
7113
7114 /*
7115 * Interrupts should be disabled here because the caller holds the
7116 * i_pages lock which is taken with interrupts-off. It is
7117 * important here to have the interrupts disabled because it is the
7118 * only synchronisation we have for updating the per-CPU variables.
7119 */
7120 VM_BUG_ON(!irqs_disabled());
7121 mem_cgroup_charge_statistics(memcg, page, -nr_entries);
7122 memcg_check_events(memcg, page);
7123
7124 css_put(&memcg->css);
7125 }
7126
7127 /**
7128 * mem_cgroup_try_charge_swap - try charging swap space for a page
7129 * @page: page being added to swap
7130 * @entry: swap entry to charge
7131 *
7132 * Try to charge @page's memcg for the swap space at @entry.
7133 *
7134 * Returns 0 on success, -ENOMEM on failure.
7135 */
7136 int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
7137 {
7138 unsigned int nr_pages = hpage_nr_pages(page);
7139 struct page_counter *counter;
7140 struct mem_cgroup *memcg;
7141 unsigned short oldid;
7142
7143 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7144 return 0;
7145
7146 memcg = page->mem_cgroup;
7147
7148 /* Readahead page, never charged */
7149 if (!memcg)
7150 return 0;
7151
7152 if (!entry.val) {
7153 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7154 return 0;
7155 }
7156
7157 memcg = mem_cgroup_id_get_online(memcg);
7158
7159 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg) &&
7160 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7161 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7162 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7163 mem_cgroup_id_put(memcg);
7164 return -ENOMEM;
7165 }
7166
7167 /* Get references for the tail pages, too */
7168 if (nr_pages > 1)
7169 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7170 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7171 VM_BUG_ON_PAGE(oldid, page);
7172 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7173
7174 return 0;
7175 }
7176
7177 /**
7178 * mem_cgroup_uncharge_swap - uncharge swap space
7179 * @entry: swap entry to uncharge
7180 * @nr_pages: the amount of swap space to uncharge
7181 */
7182 void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7183 {
7184 struct mem_cgroup *memcg;
7185 unsigned short id;
7186
7187 id = swap_cgroup_record(entry, 0, nr_pages);
7188 rcu_read_lock();
7189 memcg = mem_cgroup_from_id(id);
7190 if (memcg) {
7191 if (!cgroup_memory_noswap && !mem_cgroup_is_root(memcg)) {
7192 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7193 page_counter_uncharge(&memcg->swap, nr_pages);
7194 else
7195 page_counter_uncharge(&memcg->memsw, nr_pages);
7196 }
7197 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7198 mem_cgroup_id_put_many(memcg, nr_pages);
7199 }
7200 rcu_read_unlock();
7201 }
7202
7203 long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7204 {
7205 long nr_swap_pages = get_nr_swap_pages();
7206
7207 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7208 return nr_swap_pages;
7209 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
7210 nr_swap_pages = min_t(long, nr_swap_pages,
7211 READ_ONCE(memcg->swap.max) -
7212 page_counter_read(&memcg->swap));
7213 return nr_swap_pages;
7214 }
7215
7216 bool mem_cgroup_swap_full(struct page *page)
7217 {
7218 struct mem_cgroup *memcg;
7219
7220 VM_BUG_ON_PAGE(!PageLocked(page), page);
7221
7222 if (vm_swap_full())
7223 return true;
7224 if (cgroup_memory_noswap || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
7225 return false;
7226
7227 memcg = page->mem_cgroup;
7228 if (!memcg)
7229 return false;
7230
7231 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg)) {
7232 unsigned long usage = page_counter_read(&memcg->swap);
7233
7234 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7235 usage * 2 >= READ_ONCE(memcg->swap.max))
7236 return true;
7237 }
7238
7239 return false;
7240 }
7241
7242 static int __init setup_swap_account(char *s)
7243 {
7244 if (!strcmp(s, "1"))
7245 cgroup_memory_noswap = 0;
7246 else if (!strcmp(s, "0"))
7247 cgroup_memory_noswap = 1;
7248 return 1;
7249 }
7250 __setup("swapaccount=", setup_swap_account);
7251
7252 static u64 swap_current_read(struct cgroup_subsys_state *css,
7253 struct cftype *cft)
7254 {
7255 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7256
7257 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7258 }
7259
7260 static int swap_high_show(struct seq_file *m, void *v)
7261 {
7262 return seq_puts_memcg_tunable(m,
7263 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7264 }
7265
7266 static ssize_t swap_high_write(struct kernfs_open_file *of,
7267 char *buf, size_t nbytes, loff_t off)
7268 {
7269 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7270 unsigned long high;
7271 int err;
7272
7273 buf = strstrip(buf);
7274 err = page_counter_memparse(buf, "max", &high);
7275 if (err)
7276 return err;
7277
7278 page_counter_set_high(&memcg->swap, high);
7279
7280 return nbytes;
7281 }
7282
7283 static int swap_max_show(struct seq_file *m, void *v)
7284 {
7285 return seq_puts_memcg_tunable(m,
7286 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7287 }
7288
7289 static ssize_t swap_max_write(struct kernfs_open_file *of,
7290 char *buf, size_t nbytes, loff_t off)
7291 {
7292 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7293 unsigned long max;
7294 int err;
7295
7296 buf = strstrip(buf);
7297 err = page_counter_memparse(buf, "max", &max);
7298 if (err)
7299 return err;
7300
7301 xchg(&memcg->swap.max, max);
7302
7303 return nbytes;
7304 }
7305
7306 static int swap_events_show(struct seq_file *m, void *v)
7307 {
7308 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7309
7310 seq_printf(m, "high %lu\n",
7311 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7312 seq_printf(m, "max %lu\n",
7313 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7314 seq_printf(m, "fail %lu\n",
7315 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7316
7317 return 0;
7318 }
7319
7320 static struct cftype swap_files[] = {
7321 {
7322 .name = "swap.current",
7323 .flags = CFTYPE_NOT_ON_ROOT,
7324 .read_u64 = swap_current_read,
7325 },
7326 {
7327 .name = "swap.high",
7328 .flags = CFTYPE_NOT_ON_ROOT,
7329 .seq_show = swap_high_show,
7330 .write = swap_high_write,
7331 },
7332 {
7333 .name = "swap.max",
7334 .flags = CFTYPE_NOT_ON_ROOT,
7335 .seq_show = swap_max_show,
7336 .write = swap_max_write,
7337 },
7338 {
7339 .name = "swap.events",
7340 .flags = CFTYPE_NOT_ON_ROOT,
7341 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7342 .seq_show = swap_events_show,
7343 },
7344 { } /* terminate */
7345 };
7346
7347 static struct cftype memsw_files[] = {
7348 {
7349 .name = "memsw.usage_in_bytes",
7350 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7351 .read_u64 = mem_cgroup_read_u64,
7352 },
7353 {
7354 .name = "memsw.max_usage_in_bytes",
7355 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7356 .write = mem_cgroup_reset,
7357 .read_u64 = mem_cgroup_read_u64,
7358 },
7359 {
7360 .name = "memsw.limit_in_bytes",
7361 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7362 .write = mem_cgroup_write,
7363 .read_u64 = mem_cgroup_read_u64,
7364 },
7365 {
7366 .name = "memsw.failcnt",
7367 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7368 .write = mem_cgroup_reset,
7369 .read_u64 = mem_cgroup_read_u64,
7370 },
7371 { }, /* terminate */
7372 };
7373
7374 /*
7375 * If mem_cgroup_swap_init() is implemented as a subsys_initcall()
7376 * instead of a core_initcall(), this could mean cgroup_memory_noswap still
7377 * remains set to false even when memcg is disabled via "cgroup_disable=memory"
7378 * boot parameter. This may result in premature OOPS inside
7379 * mem_cgroup_get_nr_swap_pages() function in corner cases.
7380 */
7381 static int __init mem_cgroup_swap_init(void)
7382 {
7383 /* No memory control -> no swap control */
7384 if (mem_cgroup_disabled())
7385 cgroup_memory_noswap = true;
7386
7387 if (cgroup_memory_noswap)
7388 return 0;
7389
7390 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7391 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7392
7393 return 0;
7394 }
7395 core_initcall(mem_cgroup_swap_init);
7396
7397 #endif /* CONFIG_MEMCG_SWAP */